1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Support/ErrorHandling.h" 35 using namespace clang; 36 using namespace CodeGen; 37 38 39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 40 llvm::Module &M, const llvm::TargetData &TD, 41 Diagnostic &diags) 42 : BlockModule(C, M, TD, Types, *this), Context(C), 43 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 44 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 45 VtableInfo(*this), Runtime(0), 46 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 47 VMContext(M.getContext()) { 48 49 if (!Features.ObjC1) 50 Runtime = 0; 51 else if (!Features.NeXTRuntime) 52 Runtime = CreateGNUObjCRuntime(*this); 53 else if (Features.ObjCNonFragileABI) 54 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 55 else 56 Runtime = CreateMacObjCRuntime(*this); 57 58 // If debug info generation is enabled, create the CGDebugInfo object. 59 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 60 } 61 62 CodeGenModule::~CodeGenModule() { 63 delete Runtime; 64 delete DebugInfo; 65 } 66 67 void CodeGenModule::Release() { 68 // We need to call this first because it can add deferred declarations. 69 EmitCXXGlobalInitFunc(); 70 71 EmitDeferred(); 72 if (Runtime) 73 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 74 AddGlobalCtor(ObjCInitFunction); 75 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 76 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 77 EmitAnnotations(); 78 EmitLLVMUsed(); 79 } 80 81 /// ErrorUnsupported - Print out an error that codegen doesn't support the 82 /// specified stmt yet. 83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 84 bool OmitOnError) { 85 if (OmitOnError && getDiags().hasErrorOccurred()) 86 return; 87 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 88 "cannot compile this %0 yet"); 89 std::string Msg = Type; 90 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 91 << Msg << S->getSourceRange(); 92 } 93 94 /// ErrorUnsupported - Print out an error that codegen doesn't support the 95 /// specified decl yet. 96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 97 bool OmitOnError) { 98 if (OmitOnError && getDiags().hasErrorOccurred()) 99 return; 100 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 101 "cannot compile this %0 yet"); 102 std::string Msg = Type; 103 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 104 } 105 106 LangOptions::VisibilityMode 107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 108 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 109 if (VD->getStorageClass() == VarDecl::PrivateExtern) 110 return LangOptions::Hidden; 111 112 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 113 switch (attr->getVisibility()) { 114 default: assert(0 && "Unknown visibility!"); 115 case VisibilityAttr::DefaultVisibility: 116 return LangOptions::Default; 117 case VisibilityAttr::HiddenVisibility: 118 return LangOptions::Hidden; 119 case VisibilityAttr::ProtectedVisibility: 120 return LangOptions::Protected; 121 } 122 } 123 124 return getLangOptions().getVisibilityMode(); 125 } 126 127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 128 const Decl *D) const { 129 // Internal definitions always have default visibility. 130 if (GV->hasLocalLinkage()) { 131 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 return; 133 } 134 135 switch (getDeclVisibilityMode(D)) { 136 default: assert(0 && "Unknown visibility!"); 137 case LangOptions::Default: 138 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 139 case LangOptions::Hidden: 140 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 141 case LangOptions::Protected: 142 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 143 } 144 } 145 146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 147 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 148 149 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 150 return getMangledCXXCtorName(D, GD.getCtorType()); 151 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 152 return getMangledCXXDtorName(D, GD.getDtorType()); 153 154 return getMangledName(ND); 155 } 156 157 /// \brief Retrieves the mangled name for the given declaration. 158 /// 159 /// If the given declaration requires a mangled name, returns an 160 /// const char* containing the mangled name. Otherwise, returns 161 /// the unmangled name. 162 /// 163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 164 if (!getMangleContext().shouldMangleDeclName(ND)) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 llvm::SmallString<256> Name; 170 getMangleContext().mangleName(ND, Name); 171 Name += '\0'; 172 return UniqueMangledName(Name.begin(), Name.end()); 173 } 174 175 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 176 const char *NameEnd) { 177 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 178 179 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 180 } 181 182 /// AddGlobalCtor - Add a function to the list that will be called before 183 /// main() runs. 184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 185 // FIXME: Type coercion of void()* types. 186 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 187 } 188 189 /// AddGlobalDtor - Add a function to the list that will be called 190 /// when the module is unloaded. 191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 192 // FIXME: Type coercion of void()* types. 193 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 194 } 195 196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 197 // Ctor function type is void()*. 198 llvm::FunctionType* CtorFTy = 199 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 200 std::vector<const llvm::Type*>(), 201 false); 202 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 203 204 // Get the type of a ctor entry, { i32, void ()* }. 205 llvm::StructType* CtorStructTy = 206 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 207 llvm::PointerType::getUnqual(CtorFTy), NULL); 208 209 // Construct the constructor and destructor arrays. 210 std::vector<llvm::Constant*> Ctors; 211 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 212 std::vector<llvm::Constant*> S; 213 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 214 I->second, false)); 215 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 llvm::ConstantArray::get(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // Everything located semantically within an anonymous namespace is 248 // always internal. 249 if (FD->isInAnonymousNamespace()) 250 return CodeGenModule::GVA_Internal; 251 252 // "static" functions get internal linkage. 253 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 254 return CodeGenModule::GVA_Internal; 255 256 // The kind of external linkage this function will have, if it is not 257 // inline or static. 258 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 259 if (Context.getLangOptions().CPlusPlus) { 260 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 261 262 if (TSK == TSK_ExplicitInstantiationDefinition) { 263 // If a function has been explicitly instantiated, then it should 264 // always have strong external linkage. 265 return CodeGenModule::GVA_StrongExternal; 266 } 267 268 if (TSK == TSK_ImplicitInstantiation) 269 External = CodeGenModule::GVA_TemplateInstantiation; 270 } 271 272 if (!FD->isInlined()) 273 return External; 274 275 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 276 // GNU or C99 inline semantics. Determine whether this symbol should be 277 // externally visible. 278 if (FD->isInlineDefinitionExternallyVisible()) 279 return External; 280 281 // C99 inline semantics, where the symbol is not externally visible. 282 return CodeGenModule::GVA_C99Inline; 283 } 284 285 // C++0x [temp.explicit]p9: 286 // [ Note: The intent is that an inline function that is the subject of 287 // an explicit instantiation declaration will still be implicitly 288 // instantiated when used so that the body can be considered for 289 // inlining, but that no out-of-line copy of the inline function would be 290 // generated in the translation unit. -- end note ] 291 if (FD->getTemplateSpecializationKind() 292 == TSK_ExplicitInstantiationDeclaration) 293 return CodeGenModule::GVA_C99Inline; 294 295 return CodeGenModule::GVA_CXXInline; 296 } 297 298 /// SetFunctionDefinitionAttributes - Set attributes for a global. 299 /// 300 /// FIXME: This is currently only done for aliases and functions, but not for 301 /// variables (these details are set in EmitGlobalVarDefinition for variables). 302 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 303 llvm::GlobalValue *GV) { 304 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 305 306 if (Linkage == GVA_Internal) { 307 GV->setLinkage(llvm::Function::InternalLinkage); 308 } else if (D->hasAttr<DLLExportAttr>()) { 309 GV->setLinkage(llvm::Function::DLLExportLinkage); 310 } else if (D->hasAttr<WeakAttr>()) { 311 GV->setLinkage(llvm::Function::WeakAnyLinkage); 312 } else if (Linkage == GVA_C99Inline) { 313 // In C99 mode, 'inline' functions are guaranteed to have a strong 314 // definition somewhere else, so we can use available_externally linkage. 315 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 316 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 317 // In C++, the compiler has to emit a definition in every translation unit 318 // that references the function. We should use linkonce_odr because 319 // a) if all references in this translation unit are optimized away, we 320 // don't need to codegen it. b) if the function persists, it needs to be 321 // merged with other definitions. c) C++ has the ODR, so we know the 322 // definition is dependable. 323 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 324 } else { 325 assert(Linkage == GVA_StrongExternal); 326 // Otherwise, we have strong external linkage. 327 GV->setLinkage(llvm::Function::ExternalLinkage); 328 } 329 330 SetCommonAttributes(D, GV); 331 } 332 333 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 334 const CGFunctionInfo &Info, 335 llvm::Function *F) { 336 unsigned CallingConv; 337 AttributeListType AttributeList; 338 ConstructAttributeList(Info, D, AttributeList, CallingConv); 339 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 340 AttributeList.size())); 341 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 342 } 343 344 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 345 llvm::Function *F) { 346 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 347 F->addFnAttr(llvm::Attribute::NoUnwind); 348 349 if (D->hasAttr<AlwaysInlineAttr>()) 350 F->addFnAttr(llvm::Attribute::AlwaysInline); 351 352 if (D->hasAttr<NoInlineAttr>()) 353 F->addFnAttr(llvm::Attribute::NoInline); 354 355 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 356 F->addFnAttr(llvm::Attribute::StackProtect); 357 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 358 F->addFnAttr(llvm::Attribute::StackProtectReq); 359 360 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 361 unsigned width = Context.Target.getCharWidth(); 362 F->setAlignment(AA->getAlignment() / width); 363 while ((AA = AA->getNext<AlignedAttr>())) 364 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 365 } 366 // C++ ABI requires 2-byte alignment for member functions. 367 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 368 F->setAlignment(2); 369 } 370 371 void CodeGenModule::SetCommonAttributes(const Decl *D, 372 llvm::GlobalValue *GV) { 373 setGlobalVisibility(GV, D); 374 375 if (D->hasAttr<UsedAttr>()) 376 AddUsedGlobal(GV); 377 378 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 379 GV->setSection(SA->getName()); 380 } 381 382 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 383 llvm::Function *F, 384 const CGFunctionInfo &FI) { 385 SetLLVMFunctionAttributes(D, FI, F); 386 SetLLVMFunctionAttributesForDefinition(D, F); 387 388 F->setLinkage(llvm::Function::InternalLinkage); 389 390 SetCommonAttributes(D, F); 391 } 392 393 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 394 llvm::Function *F, 395 bool IsIncompleteFunction) { 396 if (!IsIncompleteFunction) 397 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 398 399 // Only a few attributes are set on declarations; these may later be 400 // overridden by a definition. 401 402 if (FD->hasAttr<DLLImportAttr>()) { 403 F->setLinkage(llvm::Function::DLLImportLinkage); 404 } else if (FD->hasAttr<WeakAttr>() || 405 FD->hasAttr<WeakImportAttr>()) { 406 // "extern_weak" is overloaded in LLVM; we probably should have 407 // separate linkage types for this. 408 F->setLinkage(llvm::Function::ExternalWeakLinkage); 409 } else { 410 F->setLinkage(llvm::Function::ExternalLinkage); 411 } 412 413 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 414 F->setSection(SA->getName()); 415 } 416 417 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 418 assert(!GV->isDeclaration() && 419 "Only globals with definition can force usage."); 420 LLVMUsed.push_back(GV); 421 } 422 423 void CodeGenModule::EmitLLVMUsed() { 424 // Don't create llvm.used if there is no need. 425 if (LLVMUsed.empty()) 426 return; 427 428 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 429 430 // Convert LLVMUsed to what ConstantArray needs. 431 std::vector<llvm::Constant*> UsedArray; 432 UsedArray.resize(LLVMUsed.size()); 433 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 434 UsedArray[i] = 435 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 436 i8PTy); 437 } 438 439 if (UsedArray.empty()) 440 return; 441 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 442 443 llvm::GlobalVariable *GV = 444 new llvm::GlobalVariable(getModule(), ATy, false, 445 llvm::GlobalValue::AppendingLinkage, 446 llvm::ConstantArray::get(ATy, UsedArray), 447 "llvm.used"); 448 449 GV->setSection("llvm.metadata"); 450 } 451 452 void CodeGenModule::EmitDeferred() { 453 // Emit code for any potentially referenced deferred decls. Since a 454 // previously unused static decl may become used during the generation of code 455 // for a static function, iterate until no changes are made. 456 while (!DeferredDeclsToEmit.empty()) { 457 GlobalDecl D = DeferredDeclsToEmit.back(); 458 DeferredDeclsToEmit.pop_back(); 459 460 // The mangled name for the decl must have been emitted in GlobalDeclMap. 461 // Look it up to see if it was defined with a stronger definition (e.g. an 462 // extern inline function with a strong function redefinition). If so, 463 // just ignore the deferred decl. 464 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 465 assert(CGRef && "Deferred decl wasn't referenced?"); 466 467 if (!CGRef->isDeclaration()) 468 continue; 469 470 // Otherwise, emit the definition and move on to the next one. 471 EmitGlobalDefinition(D); 472 } 473 } 474 475 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 476 /// annotation information for a given GlobalValue. The annotation struct is 477 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 478 /// GlobalValue being annotated. The second field is the constant string 479 /// created from the AnnotateAttr's annotation. The third field is a constant 480 /// string containing the name of the translation unit. The fourth field is 481 /// the line number in the file of the annotated value declaration. 482 /// 483 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 484 /// appears to. 485 /// 486 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 487 const AnnotateAttr *AA, 488 unsigned LineNo) { 489 llvm::Module *M = &getModule(); 490 491 // get [N x i8] constants for the annotation string, and the filename string 492 // which are the 2nd and 3rd elements of the global annotation structure. 493 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 494 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 495 AA->getAnnotation(), true); 496 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 497 M->getModuleIdentifier(), 498 true); 499 500 // Get the two global values corresponding to the ConstantArrays we just 501 // created to hold the bytes of the strings. 502 llvm::GlobalValue *annoGV = 503 new llvm::GlobalVariable(*M, anno->getType(), false, 504 llvm::GlobalValue::PrivateLinkage, anno, 505 GV->getName()); 506 // translation unit name string, emitted into the llvm.metadata section. 507 llvm::GlobalValue *unitGV = 508 new llvm::GlobalVariable(*M, unit->getType(), false, 509 llvm::GlobalValue::PrivateLinkage, unit, 510 ".str"); 511 512 // Create the ConstantStruct for the global annotation. 513 llvm::Constant *Fields[4] = { 514 llvm::ConstantExpr::getBitCast(GV, SBP), 515 llvm::ConstantExpr::getBitCast(annoGV, SBP), 516 llvm::ConstantExpr::getBitCast(unitGV, SBP), 517 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 518 }; 519 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 520 } 521 522 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 523 // Never defer when EmitAllDecls is specified or the decl has 524 // attribute used. 525 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 526 return false; 527 528 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 529 // Constructors and destructors should never be deferred. 530 if (FD->hasAttr<ConstructorAttr>() || 531 FD->hasAttr<DestructorAttr>()) 532 return false; 533 534 // The key function for a class must never be deferred. 535 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 536 const CXXRecordDecl *RD = MD->getParent(); 537 if (MD->isOutOfLine() && RD->isDynamicClass()) { 538 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 539 if (KeyFunction == MD->getCanonicalDecl()) 540 return false; 541 } 542 } 543 544 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 545 546 // static, static inline, always_inline, and extern inline functions can 547 // always be deferred. Normal inline functions can be deferred in C99/C++. 548 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 549 Linkage == GVA_CXXInline) 550 return true; 551 return false; 552 } 553 554 const VarDecl *VD = cast<VarDecl>(Global); 555 assert(VD->isFileVarDecl() && "Invalid decl"); 556 557 // We never want to defer structs that have non-trivial constructors or 558 // destructors. 559 560 // FIXME: Handle references. 561 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 562 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 563 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 564 return false; 565 } 566 } 567 568 // Static data may be deferred, but out-of-line static data members 569 // cannot be. 570 if (VD->isInAnonymousNamespace()) 571 return true; 572 if (VD->getLinkage() == VarDecl::InternalLinkage) { 573 // Initializer has side effects? 574 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 575 return false; 576 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 577 } 578 return false; 579 } 580 581 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 582 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 583 584 // If this is an alias definition (which otherwise looks like a declaration) 585 // emit it now. 586 if (Global->hasAttr<AliasAttr>()) 587 return EmitAliasDefinition(Global); 588 589 // Ignore declarations, they will be emitted on their first use. 590 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 591 // Forward declarations are emitted lazily on first use. 592 if (!FD->isThisDeclarationADefinition()) 593 return; 594 } else { 595 const VarDecl *VD = cast<VarDecl>(Global); 596 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 597 598 if (getLangOptions().CPlusPlus && !VD->getInit()) { 599 // In C++, if this is marked "extern", defer code generation. 600 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 601 return; 602 603 // If this is a declaration of an explicit specialization of a static 604 // data member in a class template, don't emit it. 605 if (VD->isStaticDataMember() && 606 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 607 return; 608 } 609 610 // In C, if this isn't a definition, defer code generation. 611 if (!getLangOptions().CPlusPlus && !VD->getInit()) 612 return; 613 } 614 615 // Defer code generation when possible if this is a static definition, inline 616 // function etc. These we only want to emit if they are used. 617 if (MayDeferGeneration(Global)) { 618 // If the value has already been used, add it directly to the 619 // DeferredDeclsToEmit list. 620 const char *MangledName = getMangledName(GD); 621 if (GlobalDeclMap.count(MangledName)) 622 DeferredDeclsToEmit.push_back(GD); 623 else { 624 // Otherwise, remember that we saw a deferred decl with this name. The 625 // first use of the mangled name will cause it to move into 626 // DeferredDeclsToEmit. 627 DeferredDecls[MangledName] = GD; 628 } 629 return; 630 } 631 632 // Otherwise emit the definition. 633 EmitGlobalDefinition(GD); 634 } 635 636 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 637 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 638 639 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 640 Context.getSourceManager(), 641 "Generating code for declaration"); 642 643 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 644 getVtableInfo().MaybeEmitVtable(GD); 645 if (MD->isVirtual() && MD->isOutOfLine() && 646 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 647 if (isa<CXXDestructorDecl>(D)) { 648 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 649 GD.getDtorType()); 650 BuildThunksForVirtual(CanonGD); 651 } else { 652 BuildThunksForVirtual(MD->getCanonicalDecl()); 653 } 654 } 655 } 656 657 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 658 EmitCXXConstructor(CD, GD.getCtorType()); 659 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 660 EmitCXXDestructor(DD, GD.getDtorType()); 661 else if (isa<FunctionDecl>(D)) 662 EmitGlobalFunctionDefinition(GD); 663 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 664 EmitGlobalVarDefinition(VD); 665 else { 666 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 667 } 668 } 669 670 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 671 /// module, create and return an llvm Function with the specified type. If there 672 /// is something in the module with the specified name, return it potentially 673 /// bitcasted to the right type. 674 /// 675 /// If D is non-null, it specifies a decl that correspond to this. This is used 676 /// to set the attributes on the function when it is first created. 677 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 678 const llvm::Type *Ty, 679 GlobalDecl D) { 680 // Lookup the entry, lazily creating it if necessary. 681 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 682 if (Entry) { 683 if (Entry->getType()->getElementType() == Ty) 684 return Entry; 685 686 // Make sure the result is of the correct type. 687 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 688 return llvm::ConstantExpr::getBitCast(Entry, PTy); 689 } 690 691 // This function doesn't have a complete type (for example, the return 692 // type is an incomplete struct). Use a fake type instead, and make 693 // sure not to try to set attributes. 694 bool IsIncompleteFunction = false; 695 if (!isa<llvm::FunctionType>(Ty)) { 696 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 697 std::vector<const llvm::Type*>(), false); 698 IsIncompleteFunction = true; 699 } 700 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 701 llvm::Function::ExternalLinkage, 702 "", &getModule()); 703 F->setName(MangledName); 704 if (D.getDecl()) 705 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 706 IsIncompleteFunction); 707 Entry = F; 708 709 // This is the first use or definition of a mangled name. If there is a 710 // deferred decl with this name, remember that we need to emit it at the end 711 // of the file. 712 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 713 DeferredDecls.find(MangledName); 714 if (DDI != DeferredDecls.end()) { 715 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 716 // list, and remove it from DeferredDecls (since we don't need it anymore). 717 DeferredDeclsToEmit.push_back(DDI->second); 718 DeferredDecls.erase(DDI); 719 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 720 // If this the first reference to a C++ inline function in a class, queue up 721 // the deferred function body for emission. These are not seen as 722 // top-level declarations. 723 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 724 DeferredDeclsToEmit.push_back(D); 725 // A called constructor which has no definition or declaration need be 726 // synthesized. 727 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 728 if (CD->isImplicit()) 729 DeferredDeclsToEmit.push_back(D); 730 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 731 if (DD->isImplicit()) 732 DeferredDeclsToEmit.push_back(D); 733 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 734 if (MD->isCopyAssignment() && MD->isImplicit()) 735 DeferredDeclsToEmit.push_back(D); 736 } 737 } 738 739 return F; 740 } 741 742 /// GetAddrOfFunction - Return the address of the given function. If Ty is 743 /// non-null, then this function will use the specified type if it has to 744 /// create it (this occurs when we see a definition of the function). 745 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 746 const llvm::Type *Ty) { 747 // If there was no specific requested type, just convert it now. 748 if (!Ty) 749 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 750 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 751 } 752 753 /// CreateRuntimeFunction - Create a new runtime function with the specified 754 /// type and name. 755 llvm::Constant * 756 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 757 const char *Name) { 758 // Convert Name to be a uniqued string from the IdentifierInfo table. 759 Name = getContext().Idents.get(Name).getNameStart(); 760 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 761 } 762 763 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 764 /// create and return an llvm GlobalVariable with the specified type. If there 765 /// is something in the module with the specified name, return it potentially 766 /// bitcasted to the right type. 767 /// 768 /// If D is non-null, it specifies a decl that correspond to this. This is used 769 /// to set the attributes on the global when it is first created. 770 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 771 const llvm::PointerType*Ty, 772 const VarDecl *D) { 773 // Lookup the entry, lazily creating it if necessary. 774 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 775 if (Entry) { 776 if (Entry->getType() == Ty) 777 return Entry; 778 779 // Make sure the result is of the correct type. 780 return llvm::ConstantExpr::getBitCast(Entry, Ty); 781 } 782 783 // This is the first use or definition of a mangled name. If there is a 784 // deferred decl with this name, remember that we need to emit it at the end 785 // of the file. 786 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 787 DeferredDecls.find(MangledName); 788 if (DDI != DeferredDecls.end()) { 789 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 790 // list, and remove it from DeferredDecls (since we don't need it anymore). 791 DeferredDeclsToEmit.push_back(DDI->second); 792 DeferredDecls.erase(DDI); 793 } 794 795 llvm::GlobalVariable *GV = 796 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 797 llvm::GlobalValue::ExternalLinkage, 798 0, "", 0, 799 false, Ty->getAddressSpace()); 800 GV->setName(MangledName); 801 802 // Handle things which are present even on external declarations. 803 if (D) { 804 // FIXME: This code is overly simple and should be merged with other global 805 // handling. 806 GV->setConstant(D->getType().isConstant(Context)); 807 808 // FIXME: Merge with other attribute handling code. 809 if (D->getStorageClass() == VarDecl::PrivateExtern) 810 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 811 812 if (D->hasAttr<WeakAttr>() || 813 D->hasAttr<WeakImportAttr>()) 814 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 815 816 GV->setThreadLocal(D->isThreadSpecified()); 817 } 818 819 return Entry = GV; 820 } 821 822 823 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 824 /// given global variable. If Ty is non-null and if the global doesn't exist, 825 /// then it will be greated with the specified type instead of whatever the 826 /// normal requested type would be. 827 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 828 const llvm::Type *Ty) { 829 assert(D->hasGlobalStorage() && "Not a global variable"); 830 QualType ASTTy = D->getType(); 831 if (Ty == 0) 832 Ty = getTypes().ConvertTypeForMem(ASTTy); 833 834 const llvm::PointerType *PTy = 835 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 836 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 837 } 838 839 /// CreateRuntimeVariable - Create a new runtime global variable with the 840 /// specified type and name. 841 llvm::Constant * 842 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 843 const char *Name) { 844 // Convert Name to be a uniqued string from the IdentifierInfo table. 845 Name = getContext().Idents.get(Name).getNameStart(); 846 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 847 } 848 849 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 850 assert(!D->getInit() && "Cannot emit definite definitions here!"); 851 852 if (MayDeferGeneration(D)) { 853 // If we have not seen a reference to this variable yet, place it 854 // into the deferred declarations table to be emitted if needed 855 // later. 856 const char *MangledName = getMangledName(D); 857 if (GlobalDeclMap.count(MangledName) == 0) { 858 DeferredDecls[MangledName] = D; 859 return; 860 } 861 } 862 863 // The tentative definition is the only definition. 864 EmitGlobalVarDefinition(D); 865 } 866 867 static CodeGenModule::GVALinkage 868 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 869 // Everything located semantically within an anonymous namespace is 870 // always internal. 871 if (VD->isInAnonymousNamespace()) 872 return CodeGenModule::GVA_Internal; 873 874 // Handle linkage for static data members. 875 if (VD->isStaticDataMember()) { 876 switch (VD->getTemplateSpecializationKind()) { 877 case TSK_Undeclared: 878 case TSK_ExplicitSpecialization: 879 case TSK_ExplicitInstantiationDefinition: 880 return CodeGenModule::GVA_StrongExternal; 881 882 case TSK_ExplicitInstantiationDeclaration: 883 llvm::llvm_unreachable("Variable should not be instantiated"); 884 // Fall through to treat this like any other instantiation. 885 886 case TSK_ImplicitInstantiation: 887 return CodeGenModule::GVA_TemplateInstantiation; 888 } 889 } 890 891 if (VD->getLinkage() == VarDecl::InternalLinkage) 892 return CodeGenModule::GVA_Internal; 893 894 return CodeGenModule::GVA_StrongExternal; 895 } 896 897 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 898 llvm::Constant *Init = 0; 899 QualType ASTTy = D->getType(); 900 901 if (D->getInit() == 0) { 902 // This is a tentative definition; tentative definitions are 903 // implicitly initialized with { 0 }. 904 // 905 // Note that tentative definitions are only emitted at the end of 906 // a translation unit, so they should never have incomplete 907 // type. In addition, EmitTentativeDefinition makes sure that we 908 // never attempt to emit a tentative definition if a real one 909 // exists. A use may still exists, however, so we still may need 910 // to do a RAUW. 911 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 912 Init = EmitNullConstant(D->getType()); 913 } else { 914 Init = EmitConstantExpr(D->getInit(), D->getType()); 915 916 if (!Init) { 917 QualType T = D->getInit()->getType(); 918 if (getLangOptions().CPlusPlus) { 919 CXXGlobalInits.push_back(D); 920 Init = EmitNullConstant(T); 921 } else { 922 ErrorUnsupported(D, "static initializer"); 923 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 924 } 925 } 926 } 927 928 const llvm::Type* InitType = Init->getType(); 929 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 930 931 // Strip off a bitcast if we got one back. 932 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 933 assert(CE->getOpcode() == llvm::Instruction::BitCast || 934 // all zero index gep. 935 CE->getOpcode() == llvm::Instruction::GetElementPtr); 936 Entry = CE->getOperand(0); 937 } 938 939 // Entry is now either a Function or GlobalVariable. 940 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 941 942 // We have a definition after a declaration with the wrong type. 943 // We must make a new GlobalVariable* and update everything that used OldGV 944 // (a declaration or tentative definition) with the new GlobalVariable* 945 // (which will be a definition). 946 // 947 // This happens if there is a prototype for a global (e.g. 948 // "extern int x[];") and then a definition of a different type (e.g. 949 // "int x[10];"). This also happens when an initializer has a different type 950 // from the type of the global (this happens with unions). 951 if (GV == 0 || 952 GV->getType()->getElementType() != InitType || 953 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 954 955 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 956 GlobalDeclMap.erase(getMangledName(D)); 957 958 // Make a new global with the correct type, this is now guaranteed to work. 959 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 960 GV->takeName(cast<llvm::GlobalValue>(Entry)); 961 962 // Replace all uses of the old global with the new global 963 llvm::Constant *NewPtrForOldDecl = 964 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 965 Entry->replaceAllUsesWith(NewPtrForOldDecl); 966 967 // Erase the old global, since it is no longer used. 968 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 969 } 970 971 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 972 SourceManager &SM = Context.getSourceManager(); 973 AddAnnotation(EmitAnnotateAttr(GV, AA, 974 SM.getInstantiationLineNumber(D->getLocation()))); 975 } 976 977 GV->setInitializer(Init); 978 979 // If it is safe to mark the global 'constant', do so now. 980 GV->setConstant(false); 981 if (D->getType().isConstant(Context)) { 982 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 983 // members, it cannot be declared "LLVM const". 984 GV->setConstant(true); 985 } 986 987 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 988 989 // Set the llvm linkage type as appropriate. 990 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 991 if (Linkage == GVA_Internal) 992 GV->setLinkage(llvm::Function::InternalLinkage); 993 else if (D->hasAttr<DLLImportAttr>()) 994 GV->setLinkage(llvm::Function::DLLImportLinkage); 995 else if (D->hasAttr<DLLExportAttr>()) 996 GV->setLinkage(llvm::Function::DLLExportLinkage); 997 else if (D->hasAttr<WeakAttr>()) { 998 if (GV->isConstant()) 999 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1000 else 1001 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1002 } else if (Linkage == GVA_TemplateInstantiation) 1003 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1004 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1005 !D->hasExternalStorage() && !D->getInit() && 1006 !D->getAttr<SectionAttr>()) { 1007 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1008 // common vars aren't constant even if declared const. 1009 GV->setConstant(false); 1010 } else 1011 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1012 1013 SetCommonAttributes(D, GV); 1014 1015 // Emit global variable debug information. 1016 if (CGDebugInfo *DI = getDebugInfo()) { 1017 DI->setLocation(D->getLocation()); 1018 DI->EmitGlobalVariable(GV, D); 1019 } 1020 } 1021 1022 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1023 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1024 /// existing call uses of the old function in the module, this adjusts them to 1025 /// call the new function directly. 1026 /// 1027 /// This is not just a cleanup: the always_inline pass requires direct calls to 1028 /// functions to be able to inline them. If there is a bitcast in the way, it 1029 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1030 /// run at -O0. 1031 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1032 llvm::Function *NewFn) { 1033 // If we're redefining a global as a function, don't transform it. 1034 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1035 if (OldFn == 0) return; 1036 1037 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1038 llvm::SmallVector<llvm::Value*, 4> ArgList; 1039 1040 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1041 UI != E; ) { 1042 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1043 unsigned OpNo = UI.getOperandNo(); 1044 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1045 if (!CI || OpNo != 0) continue; 1046 1047 // If the return types don't match exactly, and if the call isn't dead, then 1048 // we can't transform this call. 1049 if (CI->getType() != NewRetTy && !CI->use_empty()) 1050 continue; 1051 1052 // If the function was passed too few arguments, don't transform. If extra 1053 // arguments were passed, we silently drop them. If any of the types 1054 // mismatch, we don't transform. 1055 unsigned ArgNo = 0; 1056 bool DontTransform = false; 1057 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1058 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1059 if (CI->getNumOperands()-1 == ArgNo || 1060 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1061 DontTransform = true; 1062 break; 1063 } 1064 } 1065 if (DontTransform) 1066 continue; 1067 1068 // Okay, we can transform this. Create the new call instruction and copy 1069 // over the required information. 1070 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1071 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1072 ArgList.end(), "", CI); 1073 ArgList.clear(); 1074 if (!NewCall->getType()->isVoidTy()) 1075 NewCall->takeName(CI); 1076 NewCall->setAttributes(CI->getAttributes()); 1077 NewCall->setCallingConv(CI->getCallingConv()); 1078 1079 // Finally, remove the old call, replacing any uses with the new one. 1080 if (!CI->use_empty()) 1081 CI->replaceAllUsesWith(NewCall); 1082 1083 // Copy any custom metadata attached with CI. 1084 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1085 TheMetadata.copyMD(CI, NewCall); 1086 1087 CI->eraseFromParent(); 1088 } 1089 } 1090 1091 1092 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1093 const llvm::FunctionType *Ty; 1094 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1095 1096 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1097 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1098 1099 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1100 } else { 1101 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1102 1103 // As a special case, make sure that definitions of K&R function 1104 // "type foo()" aren't declared as varargs (which forces the backend 1105 // to do unnecessary work). 1106 if (D->getType()->isFunctionNoProtoType()) { 1107 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1108 // Due to stret, the lowered function could have arguments. 1109 // Just create the same type as was lowered by ConvertType 1110 // but strip off the varargs bit. 1111 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1112 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1113 } 1114 } 1115 1116 // Get or create the prototype for the function. 1117 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1118 1119 // Strip off a bitcast if we got one back. 1120 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1121 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1122 Entry = CE->getOperand(0); 1123 } 1124 1125 1126 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1127 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1128 1129 // If the types mismatch then we have to rewrite the definition. 1130 assert(OldFn->isDeclaration() && 1131 "Shouldn't replace non-declaration"); 1132 1133 // F is the Function* for the one with the wrong type, we must make a new 1134 // Function* and update everything that used F (a declaration) with the new 1135 // Function* (which will be a definition). 1136 // 1137 // This happens if there is a prototype for a function 1138 // (e.g. "int f()") and then a definition of a different type 1139 // (e.g. "int f(int x)"). Start by making a new function of the 1140 // correct type, RAUW, then steal the name. 1141 GlobalDeclMap.erase(getMangledName(D)); 1142 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1143 NewFn->takeName(OldFn); 1144 1145 // If this is an implementation of a function without a prototype, try to 1146 // replace any existing uses of the function (which may be calls) with uses 1147 // of the new function 1148 if (D->getType()->isFunctionNoProtoType()) { 1149 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1150 OldFn->removeDeadConstantUsers(); 1151 } 1152 1153 // Replace uses of F with the Function we will endow with a body. 1154 if (!Entry->use_empty()) { 1155 llvm::Constant *NewPtrForOldDecl = 1156 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1157 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1158 } 1159 1160 // Ok, delete the old function now, which is dead. 1161 OldFn->eraseFromParent(); 1162 1163 Entry = NewFn; 1164 } 1165 1166 llvm::Function *Fn = cast<llvm::Function>(Entry); 1167 1168 CodeGenFunction(*this).GenerateCode(D, Fn); 1169 1170 SetFunctionDefinitionAttributes(D, Fn); 1171 SetLLVMFunctionAttributesForDefinition(D, Fn); 1172 1173 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1174 AddGlobalCtor(Fn, CA->getPriority()); 1175 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1176 AddGlobalDtor(Fn, DA->getPriority()); 1177 } 1178 1179 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1180 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1181 assert(AA && "Not an alias?"); 1182 1183 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1184 1185 // Unique the name through the identifier table. 1186 const char *AliaseeName = AA->getAliasee().c_str(); 1187 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1188 1189 // Create a reference to the named value. This ensures that it is emitted 1190 // if a deferred decl. 1191 llvm::Constant *Aliasee; 1192 if (isa<llvm::FunctionType>(DeclTy)) 1193 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1194 else 1195 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1196 llvm::PointerType::getUnqual(DeclTy), 0); 1197 1198 // Create the new alias itself, but don't set a name yet. 1199 llvm::GlobalValue *GA = 1200 new llvm::GlobalAlias(Aliasee->getType(), 1201 llvm::Function::ExternalLinkage, 1202 "", Aliasee, &getModule()); 1203 1204 // See if there is already something with the alias' name in the module. 1205 const char *MangledName = getMangledName(D); 1206 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1207 1208 if (Entry && !Entry->isDeclaration()) { 1209 // If there is a definition in the module, then it wins over the alias. 1210 // This is dubious, but allow it to be safe. Just ignore the alias. 1211 GA->eraseFromParent(); 1212 return; 1213 } 1214 1215 if (Entry) { 1216 // If there is a declaration in the module, then we had an extern followed 1217 // by the alias, as in: 1218 // extern int test6(); 1219 // ... 1220 // int test6() __attribute__((alias("test7"))); 1221 // 1222 // Remove it and replace uses of it with the alias. 1223 1224 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1225 Entry->getType())); 1226 Entry->eraseFromParent(); 1227 } 1228 1229 // Now we know that there is no conflict, set the name. 1230 Entry = GA; 1231 GA->setName(MangledName); 1232 1233 // Set attributes which are particular to an alias; this is a 1234 // specialization of the attributes which may be set on a global 1235 // variable/function. 1236 if (D->hasAttr<DLLExportAttr>()) { 1237 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1238 // The dllexport attribute is ignored for undefined symbols. 1239 if (FD->getBody()) 1240 GA->setLinkage(llvm::Function::DLLExportLinkage); 1241 } else { 1242 GA->setLinkage(llvm::Function::DLLExportLinkage); 1243 } 1244 } else if (D->hasAttr<WeakAttr>() || 1245 D->hasAttr<WeakImportAttr>()) { 1246 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1247 } 1248 1249 SetCommonAttributes(D, GA); 1250 } 1251 1252 /// getBuiltinLibFunction - Given a builtin id for a function like 1253 /// "__builtin_fabsf", return a Function* for "fabsf". 1254 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1255 unsigned BuiltinID) { 1256 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1257 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1258 "isn't a lib fn"); 1259 1260 // Get the name, skip over the __builtin_ prefix (if necessary). 1261 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1262 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1263 Name += 10; 1264 1265 const llvm::FunctionType *Ty = 1266 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1267 1268 // Unique the name through the identifier table. 1269 Name = getContext().Idents.get(Name).getNameStart(); 1270 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1271 } 1272 1273 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1274 unsigned NumTys) { 1275 return llvm::Intrinsic::getDeclaration(&getModule(), 1276 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1277 } 1278 1279 llvm::Function *CodeGenModule::getMemCpyFn() { 1280 if (MemCpyFn) return MemCpyFn; 1281 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1282 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1283 } 1284 1285 llvm::Function *CodeGenModule::getMemMoveFn() { 1286 if (MemMoveFn) return MemMoveFn; 1287 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1288 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1289 } 1290 1291 llvm::Function *CodeGenModule::getMemSetFn() { 1292 if (MemSetFn) return MemSetFn; 1293 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1294 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1295 } 1296 1297 static llvm::StringMapEntry<llvm::Constant*> & 1298 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1299 const StringLiteral *Literal, 1300 bool TargetIsLSB, 1301 bool &IsUTF16, 1302 unsigned &StringLength) { 1303 unsigned NumBytes = Literal->getByteLength(); 1304 1305 // Check for simple case. 1306 if (!Literal->containsNonAsciiOrNull()) { 1307 StringLength = NumBytes; 1308 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1309 StringLength)); 1310 } 1311 1312 // Otherwise, convert the UTF8 literals into a byte string. 1313 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1314 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1315 UTF16 *ToPtr = &ToBuf[0]; 1316 1317 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1318 &ToPtr, ToPtr + NumBytes, 1319 strictConversion); 1320 1321 // Check for conversion failure. 1322 if (Result != conversionOK) { 1323 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1324 // this duplicate code. 1325 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1326 StringLength = NumBytes; 1327 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1328 StringLength)); 1329 } 1330 1331 // ConvertUTF8toUTF16 returns the length in ToPtr. 1332 StringLength = ToPtr - &ToBuf[0]; 1333 1334 // Render the UTF-16 string into a byte array and convert to the target byte 1335 // order. 1336 // 1337 // FIXME: This isn't something we should need to do here. 1338 llvm::SmallString<128> AsBytes; 1339 AsBytes.reserve(StringLength * 2); 1340 for (unsigned i = 0; i != StringLength; ++i) { 1341 unsigned short Val = ToBuf[i]; 1342 if (TargetIsLSB) { 1343 AsBytes.push_back(Val & 0xFF); 1344 AsBytes.push_back(Val >> 8); 1345 } else { 1346 AsBytes.push_back(Val >> 8); 1347 AsBytes.push_back(Val & 0xFF); 1348 } 1349 } 1350 // Append one extra null character, the second is automatically added by our 1351 // caller. 1352 AsBytes.push_back(0); 1353 1354 IsUTF16 = true; 1355 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1356 } 1357 1358 llvm::Constant * 1359 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1360 unsigned StringLength = 0; 1361 bool isUTF16 = false; 1362 llvm::StringMapEntry<llvm::Constant*> &Entry = 1363 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1364 getTargetData().isLittleEndian(), 1365 isUTF16, StringLength); 1366 1367 if (llvm::Constant *C = Entry.getValue()) 1368 return C; 1369 1370 llvm::Constant *Zero = 1371 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1372 llvm::Constant *Zeros[] = { Zero, Zero }; 1373 1374 // If we don't already have it, get __CFConstantStringClassReference. 1375 if (!CFConstantStringClassRef) { 1376 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1377 Ty = llvm::ArrayType::get(Ty, 0); 1378 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1379 "__CFConstantStringClassReference"); 1380 // Decay array -> ptr 1381 CFConstantStringClassRef = 1382 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1383 } 1384 1385 QualType CFTy = getContext().getCFConstantStringType(); 1386 1387 const llvm::StructType *STy = 1388 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1389 1390 std::vector<llvm::Constant*> Fields(4); 1391 1392 // Class pointer. 1393 Fields[0] = CFConstantStringClassRef; 1394 1395 // Flags. 1396 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1397 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1398 llvm::ConstantInt::get(Ty, 0x07C8); 1399 1400 // String pointer. 1401 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1402 1403 const char *Sect = 0; 1404 llvm::GlobalValue::LinkageTypes Linkage; 1405 bool isConstant; 1406 if (isUTF16) { 1407 Sect = getContext().Target.getUnicodeStringSection(); 1408 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1409 Linkage = llvm::GlobalValue::InternalLinkage; 1410 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1411 // does make plain ascii ones writable. 1412 isConstant = true; 1413 } else { 1414 Linkage = llvm::GlobalValue::PrivateLinkage; 1415 isConstant = !Features.WritableStrings; 1416 } 1417 1418 llvm::GlobalVariable *GV = 1419 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1420 ".str"); 1421 if (Sect) 1422 GV->setSection(Sect); 1423 if (isUTF16) { 1424 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1425 GV->setAlignment(Align); 1426 } 1427 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1428 1429 // String length. 1430 Ty = getTypes().ConvertType(getContext().LongTy); 1431 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1432 1433 // The struct. 1434 C = llvm::ConstantStruct::get(STy, Fields); 1435 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1436 llvm::GlobalVariable::PrivateLinkage, C, 1437 "_unnamed_cfstring_"); 1438 if (const char *Sect = getContext().Target.getCFStringSection()) 1439 GV->setSection(Sect); 1440 Entry.setValue(GV); 1441 1442 return GV; 1443 } 1444 1445 /// GetStringForStringLiteral - Return the appropriate bytes for a 1446 /// string literal, properly padded to match the literal type. 1447 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1448 const char *StrData = E->getStrData(); 1449 unsigned Len = E->getByteLength(); 1450 1451 const ConstantArrayType *CAT = 1452 getContext().getAsConstantArrayType(E->getType()); 1453 assert(CAT && "String isn't pointer or array!"); 1454 1455 // Resize the string to the right size. 1456 std::string Str(StrData, StrData+Len); 1457 uint64_t RealLen = CAT->getSize().getZExtValue(); 1458 1459 if (E->isWide()) 1460 RealLen *= getContext().Target.getWCharWidth()/8; 1461 1462 Str.resize(RealLen, '\0'); 1463 1464 return Str; 1465 } 1466 1467 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1468 /// constant array for the given string literal. 1469 llvm::Constant * 1470 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1471 // FIXME: This can be more efficient. 1472 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1473 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1474 if (S->isWide()) { 1475 llvm::Type *DestTy = 1476 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1477 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1478 } 1479 return C; 1480 } 1481 1482 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1483 /// array for the given ObjCEncodeExpr node. 1484 llvm::Constant * 1485 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1486 std::string Str; 1487 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1488 1489 return GetAddrOfConstantCString(Str); 1490 } 1491 1492 1493 /// GenerateWritableString -- Creates storage for a string literal. 1494 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1495 bool constant, 1496 CodeGenModule &CGM, 1497 const char *GlobalName) { 1498 // Create Constant for this string literal. Don't add a '\0'. 1499 llvm::Constant *C = 1500 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1501 1502 // Create a global variable for this string 1503 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1504 llvm::GlobalValue::PrivateLinkage, 1505 C, GlobalName); 1506 } 1507 1508 /// GetAddrOfConstantString - Returns a pointer to a character array 1509 /// containing the literal. This contents are exactly that of the 1510 /// given string, i.e. it will not be null terminated automatically; 1511 /// see GetAddrOfConstantCString. Note that whether the result is 1512 /// actually a pointer to an LLVM constant depends on 1513 /// Feature.WriteableStrings. 1514 /// 1515 /// The result has pointer to array type. 1516 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1517 const char *GlobalName) { 1518 bool IsConstant = !Features.WritableStrings; 1519 1520 // Get the default prefix if a name wasn't specified. 1521 if (!GlobalName) 1522 GlobalName = ".str"; 1523 1524 // Don't share any string literals if strings aren't constant. 1525 if (!IsConstant) 1526 return GenerateStringLiteral(str, false, *this, GlobalName); 1527 1528 llvm::StringMapEntry<llvm::Constant *> &Entry = 1529 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1530 1531 if (Entry.getValue()) 1532 return Entry.getValue(); 1533 1534 // Create a global variable for this. 1535 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1536 Entry.setValue(C); 1537 return C; 1538 } 1539 1540 /// GetAddrOfConstantCString - Returns a pointer to a character 1541 /// array containing the literal and a terminating '\-' 1542 /// character. The result has pointer to array type. 1543 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1544 const char *GlobalName){ 1545 return GetAddrOfConstantString(str + '\0', GlobalName); 1546 } 1547 1548 /// EmitObjCPropertyImplementations - Emit information for synthesized 1549 /// properties for an implementation. 1550 void CodeGenModule::EmitObjCPropertyImplementations(const 1551 ObjCImplementationDecl *D) { 1552 for (ObjCImplementationDecl::propimpl_iterator 1553 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1554 ObjCPropertyImplDecl *PID = *i; 1555 1556 // Dynamic is just for type-checking. 1557 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1558 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1559 1560 // Determine which methods need to be implemented, some may have 1561 // been overridden. Note that ::isSynthesized is not the method 1562 // we want, that just indicates if the decl came from a 1563 // property. What we want to know is if the method is defined in 1564 // this implementation. 1565 if (!D->getInstanceMethod(PD->getGetterName())) 1566 CodeGenFunction(*this).GenerateObjCGetter( 1567 const_cast<ObjCImplementationDecl *>(D), PID); 1568 if (!PD->isReadOnly() && 1569 !D->getInstanceMethod(PD->getSetterName())) 1570 CodeGenFunction(*this).GenerateObjCSetter( 1571 const_cast<ObjCImplementationDecl *>(D), PID); 1572 } 1573 } 1574 } 1575 1576 /// EmitNamespace - Emit all declarations in a namespace. 1577 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1578 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1579 I != E; ++I) 1580 EmitTopLevelDecl(*I); 1581 } 1582 1583 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1584 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1585 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1586 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1587 ErrorUnsupported(LSD, "linkage spec"); 1588 return; 1589 } 1590 1591 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1592 I != E; ++I) 1593 EmitTopLevelDecl(*I); 1594 } 1595 1596 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1597 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1598 // If an error has occurred, stop code generation, but continue 1599 // parsing and semantic analysis (to ensure all warnings and errors 1600 // are emitted). 1601 if (Diags.hasErrorOccurred()) 1602 return; 1603 1604 // Ignore dependent declarations. 1605 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1606 return; 1607 1608 switch (D->getKind()) { 1609 case Decl::CXXConversion: 1610 case Decl::CXXMethod: 1611 case Decl::Function: 1612 // Skip function templates 1613 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1614 return; 1615 1616 EmitGlobal(cast<FunctionDecl>(D)); 1617 break; 1618 1619 case Decl::Var: 1620 EmitGlobal(cast<VarDecl>(D)); 1621 break; 1622 1623 // C++ Decls 1624 case Decl::Namespace: 1625 EmitNamespace(cast<NamespaceDecl>(D)); 1626 break; 1627 // No code generation needed. 1628 case Decl::UsingShadow: 1629 case Decl::Using: 1630 case Decl::UsingDirective: 1631 case Decl::ClassTemplate: 1632 case Decl::FunctionTemplate: 1633 case Decl::NamespaceAlias: 1634 break; 1635 case Decl::CXXConstructor: 1636 // Skip function templates 1637 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1638 return; 1639 1640 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1641 break; 1642 case Decl::CXXDestructor: 1643 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1644 break; 1645 1646 case Decl::StaticAssert: 1647 // Nothing to do. 1648 break; 1649 1650 // Objective-C Decls 1651 1652 // Forward declarations, no (immediate) code generation. 1653 case Decl::ObjCClass: 1654 case Decl::ObjCForwardProtocol: 1655 case Decl::ObjCCategory: 1656 case Decl::ObjCInterface: 1657 break; 1658 1659 case Decl::ObjCProtocol: 1660 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1661 break; 1662 1663 case Decl::ObjCCategoryImpl: 1664 // Categories have properties but don't support synthesize so we 1665 // can ignore them here. 1666 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1667 break; 1668 1669 case Decl::ObjCImplementation: { 1670 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1671 EmitObjCPropertyImplementations(OMD); 1672 Runtime->GenerateClass(OMD); 1673 break; 1674 } 1675 case Decl::ObjCMethod: { 1676 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1677 // If this is not a prototype, emit the body. 1678 if (OMD->getBody()) 1679 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1680 break; 1681 } 1682 case Decl::ObjCCompatibleAlias: 1683 // compatibility-alias is a directive and has no code gen. 1684 break; 1685 1686 case Decl::LinkageSpec: 1687 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1688 break; 1689 1690 case Decl::FileScopeAsm: { 1691 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1692 std::string AsmString(AD->getAsmString()->getStrData(), 1693 AD->getAsmString()->getByteLength()); 1694 1695 const std::string &S = getModule().getModuleInlineAsm(); 1696 if (S.empty()) 1697 getModule().setModuleInlineAsm(AsmString); 1698 else 1699 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1700 break; 1701 } 1702 1703 default: 1704 // Make sure we handled everything we should, every other kind is a 1705 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1706 // function. Need to recode Decl::Kind to do that easily. 1707 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1708 } 1709 } 1710