1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return UniqueMangledName(Name.begin(), Name.end());
160 }
161 
162 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
163                                              const char *NameEnd) {
164   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
165 
166   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
167 }
168 
169 /// AddGlobalCtor - Add a function to the list that will be called before
170 /// main() runs.
171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
174 }
175 
176 /// AddGlobalDtor - Add a function to the list that will be called
177 /// when the module is unloaded.
178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
179   // FIXME: Type coercion of void()* types.
180   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
181 }
182 
183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
184   // Ctor function type is void()*.
185   llvm::FunctionType* CtorFTy =
186     llvm::FunctionType::get(llvm::Type::VoidTy,
187                             std::vector<const llvm::Type*>(),
188                             false);
189   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
190 
191   // Get the type of a ctor entry, { i32, void ()* }.
192   llvm::StructType* CtorStructTy =
193     llvm::StructType::get(llvm::Type::Int32Ty,
194                           llvm::PointerType::getUnqual(CtorFTy), NULL);
195 
196   // Construct the constructor and destructor arrays.
197   std::vector<llvm::Constant*> Ctors;
198   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
199     std::vector<llvm::Constant*> S;
200     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
201     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
202     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
203   }
204 
205   if (!Ctors.empty()) {
206     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
207     new llvm::GlobalVariable(AT, false,
208                              llvm::GlobalValue::AppendingLinkage,
209                              llvm::ConstantArray::get(AT, Ctors),
210                              GlobalName,
211                              &TheModule);
212   }
213 }
214 
215 void CodeGenModule::EmitAnnotations() {
216   if (Annotations.empty())
217     return;
218 
219   // Create a new global variable for the ConstantStruct in the Module.
220   llvm::Constant *Array =
221   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
222                                                 Annotations.size()),
223                            Annotations);
224   llvm::GlobalValue *gv =
225   new llvm::GlobalVariable(Array->getType(), false,
226                            llvm::GlobalValue::AppendingLinkage, Array,
227                            "llvm.global.annotations", &TheModule);
228   gv->setSection("llvm.metadata");
229 }
230 
231 static CodeGenModule::GVALinkage
232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
233   // "static" and attr(always_inline) functions get internal linkage.
234   if (FD->getStorageClass() == FunctionDecl::Static ||
235       FD->hasAttr<AlwaysInlineAttr>())
236     return CodeGenModule::GVA_Internal;
237 
238   if (!FD->isInline())
239     return CodeGenModule::GVA_StrongExternal;
240 
241   // If the inline function explicitly has the GNU inline attribute on it, or if
242   // this is C89 mode, we use to GNU semantics.
243   if (!Features.C99 && !Features.CPlusPlus) {
244     // extern inline in GNU mode is like C99 inline.
245     if (FD->getStorageClass() == FunctionDecl::Extern)
246       return CodeGenModule::GVA_C99Inline;
247     // Normal inline is a strong symbol.
248     return CodeGenModule::GVA_StrongExternal;
249   } else if (FD->hasActiveGNUInlineAttribute()) {
250     // GCC in C99 mode seems to use a different decision-making
251     // process for extern inline, which factors in previous
252     // declarations.
253     if (FD->isExternGNUInline())
254       return CodeGenModule::GVA_C99Inline;
255     // Normal inline is a strong symbol.
256     return CodeGenModule::GVA_StrongExternal;
257   }
258 
259   // The definition of inline changes based on the language.  Note that we
260   // have already handled "static inline" above, with the GVA_Internal case.
261   if (Features.CPlusPlus)  // inline and extern inline.
262     return CodeGenModule::GVA_CXXInline;
263 
264   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
265   if (FD->isC99InlineDefinition())
266     return CodeGenModule::GVA_C99Inline;
267 
268   return CodeGenModule::GVA_StrongExternal;
269 }
270 
271 /// SetFunctionDefinitionAttributes - Set attributes for a global.
272 ///
273 /// FIXME: This is currently only done for aliases and functions, but
274 /// not for variables (these details are set in
275 /// EmitGlobalVarDefinition for variables).
276 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
277                                                     llvm::GlobalValue *GV) {
278   GVALinkage Linkage = GetLinkageForFunction(D, Features);
279 
280   if (Linkage == GVA_Internal) {
281     GV->setLinkage(llvm::Function::InternalLinkage);
282   } else if (D->hasAttr<DLLExportAttr>()) {
283     GV->setLinkage(llvm::Function::DLLExportLinkage);
284   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
285     GV->setLinkage(llvm::Function::WeakAnyLinkage);
286   } else if (Linkage == GVA_C99Inline) {
287     // In C99 mode, 'inline' functions are guaranteed to have a strong
288     // definition somewhere else, so we can use available_externally linkage.
289     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
290   } else if (Linkage == GVA_CXXInline) {
291     // In C++, the compiler has to emit a definition in every translation unit
292     // that references the function.  We should use linkonce_odr because
293     // a) if all references in this translation unit are optimized away, we
294     // don't need to codegen it.  b) if the function persists, it needs to be
295     // merged with other definitions. c) C++ has the ODR, so we know the
296     // definition is dependable.
297     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
298   } else {
299     assert(Linkage == GVA_StrongExternal);
300     // Otherwise, we have strong external linkage.
301     GV->setLinkage(llvm::Function::ExternalLinkage);
302   }
303 
304   SetCommonAttributes(D, GV);
305 }
306 
307 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
308                                               const CGFunctionInfo &Info,
309                                               llvm::Function *F) {
310   AttributeListType AttributeList;
311   ConstructAttributeList(Info, D, AttributeList);
312 
313   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
314                                         AttributeList.size()));
315 
316   // Set the appropriate calling convention for the Function.
317   if (D->hasAttr<FastCallAttr>())
318     F->setCallingConv(llvm::CallingConv::X86_FastCall);
319 
320   if (D->hasAttr<StdCallAttr>())
321     F->setCallingConv(llvm::CallingConv::X86_StdCall);
322 }
323 
324 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
325                                                            llvm::Function *F) {
326   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
327     F->addFnAttr(llvm::Attribute::NoUnwind);
328 
329   if (D->hasAttr<AlwaysInlineAttr>())
330     F->addFnAttr(llvm::Attribute::AlwaysInline);
331 
332   if (D->hasAttr<NoinlineAttr>())
333     F->addFnAttr(llvm::Attribute::NoInline);
334 }
335 
336 void CodeGenModule::SetCommonAttributes(const Decl *D,
337                                         llvm::GlobalValue *GV) {
338   setGlobalVisibility(GV, D);
339 
340   if (D->hasAttr<UsedAttr>())
341     AddUsedGlobal(GV);
342 
343   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
344     GV->setSection(SA->getName());
345 }
346 
347 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
348                                                   llvm::Function *F,
349                                                   const CGFunctionInfo &FI) {
350   SetLLVMFunctionAttributes(D, FI, F);
351   SetLLVMFunctionAttributesForDefinition(D, F);
352 
353   F->setLinkage(llvm::Function::InternalLinkage);
354 
355   SetCommonAttributes(D, F);
356 }
357 
358 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
359                                           llvm::Function *F) {
360   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
361 
362   // Only a few attributes are set on declarations; these may later be
363   // overridden by a definition.
364 
365   if (FD->hasAttr<DLLImportAttr>()) {
366     F->setLinkage(llvm::Function::DLLImportLinkage);
367   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
368     // "extern_weak" is overloaded in LLVM; we probably should have
369     // separate linkage types for this.
370     F->setLinkage(llvm::Function::ExternalWeakLinkage);
371   } else {
372     F->setLinkage(llvm::Function::ExternalLinkage);
373   }
374 
375   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
376     F->setSection(SA->getName());
377 }
378 
379 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
380   assert(!GV->isDeclaration() &&
381          "Only globals with definition can force usage.");
382   LLVMUsed.push_back(GV);
383 }
384 
385 void CodeGenModule::EmitLLVMUsed() {
386   // Don't create llvm.used if there is no need.
387   if (LLVMUsed.empty())
388     return;
389 
390   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
391   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
392 
393   // Convert LLVMUsed to what ConstantArray needs.
394   std::vector<llvm::Constant*> UsedArray;
395   UsedArray.resize(LLVMUsed.size());
396   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
397     UsedArray[i] =
398      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
399   }
400 
401   llvm::GlobalVariable *GV =
402     new llvm::GlobalVariable(ATy, false,
403                              llvm::GlobalValue::AppendingLinkage,
404                              llvm::ConstantArray::get(ATy, UsedArray),
405                              "llvm.used", &getModule());
406 
407   GV->setSection("llvm.metadata");
408 }
409 
410 void CodeGenModule::EmitDeferred() {
411   // Emit code for any potentially referenced deferred decls.  Since a
412   // previously unused static decl may become used during the generation of code
413   // for a static function, iterate until no  changes are made.
414   while (!DeferredDeclsToEmit.empty()) {
415     const ValueDecl *D = DeferredDeclsToEmit.back();
416     DeferredDeclsToEmit.pop_back();
417 
418     // The mangled name for the decl must have been emitted in GlobalDeclMap.
419     // Look it up to see if it was defined with a stronger definition (e.g. an
420     // extern inline function with a strong function redefinition).  If so,
421     // just ignore the deferred decl.
422     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
423     assert(CGRef && "Deferred decl wasn't referenced?");
424 
425     if (!CGRef->isDeclaration())
426       continue;
427 
428     // Otherwise, emit the definition and move on to the next one.
429     EmitGlobalDefinition(D);
430   }
431 }
432 
433 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
434 /// annotation information for a given GlobalValue.  The annotation struct is
435 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
436 /// GlobalValue being annotated.  The second field is the constant string
437 /// created from the AnnotateAttr's annotation.  The third field is a constant
438 /// string containing the name of the translation unit.  The fourth field is
439 /// the line number in the file of the annotated value declaration.
440 ///
441 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
442 ///        appears to.
443 ///
444 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
445                                                 const AnnotateAttr *AA,
446                                                 unsigned LineNo) {
447   llvm::Module *M = &getModule();
448 
449   // get [N x i8] constants for the annotation string, and the filename string
450   // which are the 2nd and 3rd elements of the global annotation structure.
451   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
452   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
453   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
454                                                   true);
455 
456   // Get the two global values corresponding to the ConstantArrays we just
457   // created to hold the bytes of the strings.
458   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
459   llvm::GlobalValue *annoGV =
460   new llvm::GlobalVariable(anno->getType(), false,
461                            llvm::GlobalValue::InternalLinkage, anno,
462                            GV->getName() + StringPrefix, M);
463   // translation unit name string, emitted into the llvm.metadata section.
464   llvm::GlobalValue *unitGV =
465   new llvm::GlobalVariable(unit->getType(), false,
466                            llvm::GlobalValue::InternalLinkage, unit,
467                            StringPrefix, M);
468 
469   // Create the ConstantStruct for the global annotation.
470   llvm::Constant *Fields[4] = {
471     llvm::ConstantExpr::getBitCast(GV, SBP),
472     llvm::ConstantExpr::getBitCast(annoGV, SBP),
473     llvm::ConstantExpr::getBitCast(unitGV, SBP),
474     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
475   };
476   return llvm::ConstantStruct::get(Fields, 4, false);
477 }
478 
479 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
480   // Never defer when EmitAllDecls is specified or the decl has
481   // attribute used.
482   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
483     return false;
484 
485   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
486     // Constructors and destructors should never be deferred.
487     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
488       return false;
489 
490     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
491 
492     // static, static inline, always_inline, and extern inline functions can
493     // always be deferred.  Normal inline functions can be deferred in C99/C++.
494     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
495         Linkage == GVA_CXXInline)
496       return true;
497     return false;
498   }
499 
500   const VarDecl *VD = cast<VarDecl>(Global);
501   assert(VD->isFileVarDecl() && "Invalid decl");
502 
503   return VD->getStorageClass() == VarDecl::Static;
504 }
505 
506 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
507   // If this is an alias definition (which otherwise looks like a declaration)
508   // emit it now.
509   if (Global->hasAttr<AliasAttr>())
510     return EmitAliasDefinition(Global);
511 
512   // Ignore declarations, they will be emitted on their first use.
513   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
514     // Forward declarations are emitted lazily on first use.
515     if (!FD->isThisDeclarationADefinition())
516       return;
517   } else {
518     const VarDecl *VD = cast<VarDecl>(Global);
519     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
520 
521     // In C++, if this is marked "extern", defer code generation.
522     if (getLangOptions().CPlusPlus &&
523         VD->getStorageClass() == VarDecl::Extern && !VD->getInit())
524       return;
525 
526     // In C, if this isn't a definition, defer code generation.
527     if (!getLangOptions().CPlusPlus && !VD->getInit())
528       return;
529   }
530 
531   // Defer code generation when possible if this is a static definition, inline
532   // function etc.  These we only want to emit if they are used.
533   if (MayDeferGeneration(Global)) {
534     // If the value has already been used, add it directly to the
535     // DeferredDeclsToEmit list.
536     const char *MangledName = getMangledName(Global);
537     if (GlobalDeclMap.count(MangledName))
538       DeferredDeclsToEmit.push_back(Global);
539     else {
540       // Otherwise, remember that we saw a deferred decl with this name.  The
541       // first use of the mangled name will cause it to move into
542       // DeferredDeclsToEmit.
543       DeferredDecls[MangledName] = Global;
544     }
545     return;
546   }
547 
548   // Otherwise emit the definition.
549   EmitGlobalDefinition(Global);
550 }
551 
552 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
553   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
554     EmitGlobalFunctionDefinition(FD);
555   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
556     EmitGlobalVarDefinition(VD);
557   } else {
558     assert(0 && "Invalid argument to EmitGlobalDefinition()");
559   }
560 }
561 
562 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
563 /// module, create and return an llvm Function with the specified type. If there
564 /// is something in the module with the specified name, return it potentially
565 /// bitcasted to the right type.
566 ///
567 /// If D is non-null, it specifies a decl that correspond to this.  This is used
568 /// to set the attributes on the function when it is first created.
569 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
570                                                        const llvm::Type *Ty,
571                                                        const FunctionDecl *D) {
572   // Lookup the entry, lazily creating it if necessary.
573   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
574   if (Entry) {
575     if (Entry->getType()->getElementType() == Ty)
576       return Entry;
577 
578     // Make sure the result is of the correct type.
579     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
580     return llvm::ConstantExpr::getBitCast(Entry, PTy);
581   }
582 
583   // This is the first use or definition of a mangled name.  If there is a
584   // deferred decl with this name, remember that we need to emit it at the end
585   // of the file.
586   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
587   DeferredDecls.find(MangledName);
588   if (DDI != DeferredDecls.end()) {
589     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
590     // list, and remove it from DeferredDecls (since we don't need it anymore).
591     DeferredDeclsToEmit.push_back(DDI->second);
592     DeferredDecls.erase(DDI);
593   }
594 
595   // This function doesn't have a complete type (for example, the return
596   // type is an incomplete struct). Use a fake type instead, and make
597   // sure not to try to set attributes.
598   bool ShouldSetAttributes = true;
599   if (!isa<llvm::FunctionType>(Ty)) {
600     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
601                                  std::vector<const llvm::Type*>(), false);
602     ShouldSetAttributes = false;
603   }
604   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
605                                              llvm::Function::ExternalLinkage,
606                                              "", &getModule());
607   F->setName(MangledName);
608   if (D && ShouldSetAttributes)
609     SetFunctionAttributes(D, F);
610   Entry = F;
611   return F;
612 }
613 
614 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
615 /// non-null, then this function will use the specified type if it has to
616 /// create it (this occurs when we see a definition of the function).
617 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
618                                                  const llvm::Type *Ty) {
619   // If there was no specific requested type, just convert it now.
620   if (!Ty)
621     Ty = getTypes().ConvertType(D->getType());
622   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
623 }
624 
625 /// CreateRuntimeFunction - Create a new runtime function with the specified
626 /// type and name.
627 llvm::Constant *
628 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
629                                      const char *Name) {
630   // Convert Name to be a uniqued string from the IdentifierInfo table.
631   Name = getContext().Idents.get(Name).getName();
632   return GetOrCreateLLVMFunction(Name, FTy, 0);
633 }
634 
635 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
636 /// create and return an llvm GlobalVariable with the specified type.  If there
637 /// is something in the module with the specified name, return it potentially
638 /// bitcasted to the right type.
639 ///
640 /// If D is non-null, it specifies a decl that correspond to this.  This is used
641 /// to set the attributes on the global when it is first created.
642 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
643                                                      const llvm::PointerType*Ty,
644                                                      const VarDecl *D) {
645   // Lookup the entry, lazily creating it if necessary.
646   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
647   if (Entry) {
648     if (Entry->getType() == Ty)
649       return Entry;
650 
651     // Make sure the result is of the correct type.
652     return llvm::ConstantExpr::getBitCast(Entry, Ty);
653   }
654 
655   // This is the first use or definition of a mangled name.  If there is a
656   // deferred decl with this name, remember that we need to emit it at the end
657   // of the file.
658   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
659     DeferredDecls.find(MangledName);
660   if (DDI != DeferredDecls.end()) {
661     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
662     // list, and remove it from DeferredDecls (since we don't need it anymore).
663     DeferredDeclsToEmit.push_back(DDI->second);
664     DeferredDecls.erase(DDI);
665   }
666 
667   llvm::GlobalVariable *GV =
668     new llvm::GlobalVariable(Ty->getElementType(), false,
669                              llvm::GlobalValue::ExternalLinkage,
670                              0, "", &getModule(),
671                              false, Ty->getAddressSpace());
672   GV->setName(MangledName);
673 
674   // Handle things which are present even on external declarations.
675   if (D) {
676     // FIXME: This code is overly simple and should be merged with
677     // other global handling.
678     GV->setConstant(D->getType().isConstant(Context));
679 
680     // FIXME: Merge with other attribute handling code.
681     if (D->getStorageClass() == VarDecl::PrivateExtern)
682       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
683 
684     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
685       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
686 
687     GV->setThreadLocal(D->isThreadSpecified());
688   }
689 
690   return Entry = GV;
691 }
692 
693 
694 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
695 /// given global variable.  If Ty is non-null and if the global doesn't exist,
696 /// then it will be greated with the specified type instead of whatever the
697 /// normal requested type would be.
698 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
699                                                   const llvm::Type *Ty) {
700   assert(D->hasGlobalStorage() && "Not a global variable");
701   QualType ASTTy = D->getType();
702   if (Ty == 0)
703     Ty = getTypes().ConvertTypeForMem(ASTTy);
704 
705   const llvm::PointerType *PTy =
706     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
707   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
708 }
709 
710 /// CreateRuntimeVariable - Create a new runtime global variable with the
711 /// specified type and name.
712 llvm::Constant *
713 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
714                                      const char *Name) {
715   // Convert Name to be a uniqued string from the IdentifierInfo table.
716   Name = getContext().Idents.get(Name).getName();
717   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
718 }
719 
720 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
721   assert(!D->getInit() && "Cannot emit definite definitions here!");
722 
723   if (MayDeferGeneration(D)) {
724     // If we have not seen a reference to this variable yet, place it
725     // into the deferred declarations table to be emitted if needed
726     // later.
727     const char *MangledName = getMangledName(D);
728     if (GlobalDeclMap.count(MangledName) == 0) {
729       DeferredDecls[MangledName] = D;
730       return;
731     }
732   }
733 
734   // The tentative definition is the only definition.
735   EmitGlobalVarDefinition(D);
736 }
737 
738 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
739   llvm::Constant *Init = 0;
740   QualType ASTTy = D->getType();
741 
742   if (D->getInit() == 0) {
743     // This is a tentative definition; tentative definitions are
744     // implicitly initialized with { 0 }.
745     //
746     // Note that tentative definitions are only emitted at the end of
747     // a translation unit, so they should never have incomplete
748     // type. In addition, EmitTentativeDefinition makes sure that we
749     // never attempt to emit a tentative definition if a real one
750     // exists. A use may still exists, however, so we still may need
751     // to do a RAUW.
752     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
753     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
754   } else {
755     Init = EmitConstantExpr(D->getInit(), D->getType());
756     if (!Init) {
757       ErrorUnsupported(D, "static initializer");
758       QualType T = D->getInit()->getType();
759       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
760     }
761   }
762 
763   const llvm::Type* InitType = Init->getType();
764   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
765 
766   // Strip off a bitcast if we got one back.
767   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
768     assert(CE->getOpcode() == llvm::Instruction::BitCast);
769     Entry = CE->getOperand(0);
770   }
771 
772   // Entry is now either a Function or GlobalVariable.
773   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
774 
775   // We have a definition after a declaration with the wrong type.
776   // We must make a new GlobalVariable* and update everything that used OldGV
777   // (a declaration or tentative definition) with the new GlobalVariable*
778   // (which will be a definition).
779   //
780   // This happens if there is a prototype for a global (e.g.
781   // "extern int x[];") and then a definition of a different type (e.g.
782   // "int x[10];"). This also happens when an initializer has a different type
783   // from the type of the global (this happens with unions).
784   if (GV == 0 ||
785       GV->getType()->getElementType() != InitType ||
786       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
787 
788     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
789     GlobalDeclMap.erase(getMangledName(D));
790 
791     // Make a new global with the correct type, this is now guaranteed to work.
792     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
793     GV->takeName(cast<llvm::GlobalValue>(Entry));
794 
795     // Replace all uses of the old global with the new global
796     llvm::Constant *NewPtrForOldDecl =
797         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
798     Entry->replaceAllUsesWith(NewPtrForOldDecl);
799 
800     // Erase the old global, since it is no longer used.
801     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
802   }
803 
804   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
805     SourceManager &SM = Context.getSourceManager();
806     AddAnnotation(EmitAnnotateAttr(GV, AA,
807                               SM.getInstantiationLineNumber(D->getLocation())));
808   }
809 
810   GV->setInitializer(Init);
811   GV->setConstant(D->getType().isConstant(Context));
812   GV->setAlignment(getContext().getDeclAlignInBytes(D));
813 
814   // Set the llvm linkage type as appropriate.
815   if (D->getStorageClass() == VarDecl::Static)
816     GV->setLinkage(llvm::Function::InternalLinkage);
817   else if (D->hasAttr<DLLImportAttr>())
818     GV->setLinkage(llvm::Function::DLLImportLinkage);
819   else if (D->hasAttr<DLLExportAttr>())
820     GV->setLinkage(llvm::Function::DLLExportLinkage);
821   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
822     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
823   else if (!CompileOpts.NoCommon &&
824            (!D->hasExternalStorage() && !D->getInit()))
825     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
826   else
827     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
828 
829   SetCommonAttributes(D, GV);
830 
831   // Emit global variable debug information.
832   if (CGDebugInfo *DI = getDebugInfo()) {
833     DI->setLocation(D->getLocation());
834     DI->EmitGlobalVariable(GV, D);
835   }
836 }
837 
838 
839 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
840   const llvm::FunctionType *Ty;
841 
842   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
843     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
844 
845     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
846   } else {
847     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
848 
849     // As a special case, make sure that definitions of K&R function
850     // "type foo()" aren't declared as varargs (which forces the backend
851     // to do unnecessary work).
852     if (D->getType()->isFunctionNoProtoType()) {
853       assert(Ty->isVarArg() && "Didn't lower type as expected");
854       // Due to stret, the lowered function could have arguments.
855       // Just create the same type as was lowered by ConvertType
856       // but strip off the varargs bit.
857       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
858       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
859     }
860   }
861 
862   // Get or create the prototype for teh function.
863   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
864 
865   // Strip off a bitcast if we got one back.
866   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
867     assert(CE->getOpcode() == llvm::Instruction::BitCast);
868     Entry = CE->getOperand(0);
869   }
870 
871 
872   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
873     // If the types mismatch then we have to rewrite the definition.
874     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
875            "Shouldn't replace non-declaration");
876 
877     // F is the Function* for the one with the wrong type, we must make a new
878     // Function* and update everything that used F (a declaration) with the new
879     // Function* (which will be a definition).
880     //
881     // This happens if there is a prototype for a function
882     // (e.g. "int f()") and then a definition of a different type
883     // (e.g. "int f(int x)").  Start by making a new function of the
884     // correct type, RAUW, then steal the name.
885     GlobalDeclMap.erase(getMangledName(D));
886     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
887     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
888 
889     // Replace uses of F with the Function we will endow with a body.
890     llvm::Constant *NewPtrForOldDecl =
891       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
892     Entry->replaceAllUsesWith(NewPtrForOldDecl);
893 
894     // Ok, delete the old function now, which is dead.
895     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
896 
897     Entry = NewFn;
898   }
899 
900   llvm::Function *Fn = cast<llvm::Function>(Entry);
901 
902   CodeGenFunction(*this).GenerateCode(D, Fn);
903 
904   SetFunctionDefinitionAttributes(D, Fn);
905   SetLLVMFunctionAttributesForDefinition(D, Fn);
906 
907   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
908     AddGlobalCtor(Fn, CA->getPriority());
909   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
910     AddGlobalDtor(Fn, DA->getPriority());
911 }
912 
913 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
914   const AliasAttr *AA = D->getAttr<AliasAttr>();
915   assert(AA && "Not an alias?");
916 
917   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
918 
919   // Unique the name through the identifier table.
920   const char *AliaseeName = AA->getAliasee().c_str();
921   AliaseeName = getContext().Idents.get(AliaseeName).getName();
922 
923   // Create a reference to the named value.  This ensures that it is emitted
924   // if a deferred decl.
925   llvm::Constant *Aliasee;
926   if (isa<llvm::FunctionType>(DeclTy))
927     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
928   else
929     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
930                                     llvm::PointerType::getUnqual(DeclTy), 0);
931 
932   // Create the new alias itself, but don't set a name yet.
933   llvm::GlobalValue *GA =
934     new llvm::GlobalAlias(Aliasee->getType(),
935                           llvm::Function::ExternalLinkage,
936                           "", Aliasee, &getModule());
937 
938   // See if there is already something with the alias' name in the module.
939   const char *MangledName = getMangledName(D);
940   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
941 
942   if (Entry && !Entry->isDeclaration()) {
943     // If there is a definition in the module, then it wins over the alias.
944     // This is dubious, but allow it to be safe.  Just ignore the alias.
945     GA->eraseFromParent();
946     return;
947   }
948 
949   if (Entry) {
950     // If there is a declaration in the module, then we had an extern followed
951     // by the alias, as in:
952     //   extern int test6();
953     //   ...
954     //   int test6() __attribute__((alias("test7")));
955     //
956     // Remove it and replace uses of it with the alias.
957 
958     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
959                                                           Entry->getType()));
960     Entry->eraseFromParent();
961   }
962 
963   // Now we know that there is no conflict, set the name.
964   Entry = GA;
965   GA->setName(MangledName);
966 
967   // Set attributes which are particular to an alias; this is a
968   // specialization of the attributes which may be set on a global
969   // variable/function.
970   if (D->hasAttr<DLLExportAttr>()) {
971     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
972       // The dllexport attribute is ignored for undefined symbols.
973       if (FD->getBody(getContext()))
974         GA->setLinkage(llvm::Function::DLLExportLinkage);
975     } else {
976       GA->setLinkage(llvm::Function::DLLExportLinkage);
977     }
978   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
979     GA->setLinkage(llvm::Function::WeakAnyLinkage);
980   }
981 
982   SetCommonAttributes(D, GA);
983 }
984 
985 /// getBuiltinLibFunction - Given a builtin id for a function like
986 /// "__builtin_fabsf", return a Function* for "fabsf".
987 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
988   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
989           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
990          "isn't a lib fn");
991 
992   // Get the name, skip over the __builtin_ prefix (if necessary).
993   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
994   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
995     Name += 10;
996 
997   // Get the type for the builtin.
998   Builtin::Context::GetBuiltinTypeError Error;
999   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
1000   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1001 
1002   const llvm::FunctionType *Ty =
1003     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1004 
1005   // Unique the name through the identifier table.
1006   Name = getContext().Idents.get(Name).getName();
1007   // FIXME: param attributes for sext/zext etc.
1008   return GetOrCreateLLVMFunction(Name, Ty, 0);
1009 }
1010 
1011 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1012                                             unsigned NumTys) {
1013   return llvm::Intrinsic::getDeclaration(&getModule(),
1014                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1015 }
1016 
1017 llvm::Function *CodeGenModule::getMemCpyFn() {
1018   if (MemCpyFn) return MemCpyFn;
1019   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1020   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1021 }
1022 
1023 llvm::Function *CodeGenModule::getMemMoveFn() {
1024   if (MemMoveFn) return MemMoveFn;
1025   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1026   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1027 }
1028 
1029 llvm::Function *CodeGenModule::getMemSetFn() {
1030   if (MemSetFn) return MemSetFn;
1031   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1032   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1033 }
1034 
1035 static void appendFieldAndPadding(CodeGenModule &CGM,
1036                                   std::vector<llvm::Constant*>& Fields,
1037                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1038                                   llvm::Constant* Field,
1039                                   RecordDecl* RD, const llvm::StructType *STy) {
1040   // Append the field.
1041   Fields.push_back(Field);
1042 
1043   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1044 
1045   int NextStructFieldNo;
1046   if (!NextFieldD) {
1047     NextStructFieldNo = STy->getNumElements();
1048   } else {
1049     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1050   }
1051 
1052   // Append padding
1053   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1054     llvm::Constant *C =
1055       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1056 
1057     Fields.push_back(C);
1058   }
1059 }
1060 
1061 llvm::Constant *CodeGenModule::
1062 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1063   std::string str;
1064   unsigned StringLength = 0;
1065 
1066   bool isUTF16 = false;
1067   if (Literal->containsNonAsciiOrNull()) {
1068     // Convert from UTF-8 to UTF-16.
1069     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1070     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1071     UTF16 *ToPtr = &ToBuf[0];
1072 
1073     ConversionResult Result;
1074     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1075                                 &ToPtr, ToPtr+Literal->getByteLength(),
1076                                 strictConversion);
1077     if (Result == conversionOK) {
1078       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1079       // without doing more surgery to this routine. Since we aren't explicitly
1080       // checking for endianness here, it's also a bug (when generating code for
1081       // a target that doesn't match the host endianness). Modeling this as an
1082       // i16 array is likely the cleanest solution.
1083       StringLength = ToPtr-&ToBuf[0];
1084       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1085       isUTF16 = true;
1086     } else if (Result == sourceIllegal) {
1087       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1088       str.assign(Literal->getStrData(), Literal->getByteLength());
1089       StringLength = str.length();
1090     } else
1091       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1092 
1093   } else {
1094     str.assign(Literal->getStrData(), Literal->getByteLength());
1095     StringLength = str.length();
1096   }
1097   llvm::StringMapEntry<llvm::Constant *> &Entry =
1098     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1099 
1100   if (llvm::Constant *C = Entry.getValue())
1101     return C;
1102 
1103   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1104   llvm::Constant *Zeros[] = { Zero, Zero };
1105 
1106   if (!CFConstantStringClassRef) {
1107     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1108     Ty = llvm::ArrayType::get(Ty, 0);
1109 
1110     // FIXME: This is fairly broken if
1111     // __CFConstantStringClassReference is already defined, in that it
1112     // will get renamed and the user will most likely see an opaque
1113     // error message. This is a general issue with relying on
1114     // particular names.
1115     llvm::GlobalVariable *GV =
1116       new llvm::GlobalVariable(Ty, false,
1117                                llvm::GlobalVariable::ExternalLinkage, 0,
1118                                "__CFConstantStringClassReference",
1119                                &getModule());
1120 
1121     // Decay array -> ptr
1122     CFConstantStringClassRef =
1123       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1124   }
1125 
1126   QualType CFTy = getContext().getCFConstantStringType();
1127   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1128 
1129   const llvm::StructType *STy =
1130     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1131 
1132   std::vector<llvm::Constant*> Fields;
1133   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1134 
1135   // Class pointer.
1136   FieldDecl *CurField = *Field++;
1137   FieldDecl *NextField = *Field++;
1138   appendFieldAndPadding(*this, Fields, CurField, NextField,
1139                         CFConstantStringClassRef, CFRD, STy);
1140 
1141   // Flags.
1142   CurField = NextField;
1143   NextField = *Field++;
1144   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1145   appendFieldAndPadding(*this, Fields, CurField, NextField,
1146                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1147                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1148                         CFRD, STy);
1149 
1150   // String pointer.
1151   CurField = NextField;
1152   NextField = *Field++;
1153   llvm::Constant *C = llvm::ConstantArray::get(str);
1154 
1155   const char *Sect, *Prefix;
1156   bool isConstant;
1157   if (isUTF16) {
1158     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1159     Sect = getContext().Target.getUnicodeStringSection();
1160     // FIXME: Why does GCC not set constant here?
1161     isConstant = false;
1162   } else {
1163     Prefix = getContext().Target.getStringSymbolPrefix(true);
1164     Sect = getContext().Target.getCFStringDataSection();
1165     // FIXME: -fwritable-strings should probably affect this, but we
1166     // are following gcc here.
1167     isConstant = true;
1168   }
1169   llvm::GlobalVariable *GV =
1170     new llvm::GlobalVariable(C->getType(), isConstant,
1171                              llvm::GlobalValue::InternalLinkage,
1172                              C, Prefix, &getModule());
1173   if (Sect)
1174     GV->setSection(Sect);
1175   if (isUTF16) {
1176     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1177     GV->setAlignment(Align);
1178   }
1179   appendFieldAndPadding(*this, Fields, CurField, NextField,
1180                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1181                         CFRD, STy);
1182 
1183   // String length.
1184   CurField = NextField;
1185   NextField = 0;
1186   Ty = getTypes().ConvertType(getContext().LongTy);
1187   appendFieldAndPadding(*this, Fields, CurField, NextField,
1188                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1189 
1190   // The struct.
1191   C = llvm::ConstantStruct::get(STy, Fields);
1192   GV = new llvm::GlobalVariable(C->getType(), true,
1193                                 llvm::GlobalVariable::InternalLinkage, C,
1194                                 getContext().Target.getCFStringSymbolPrefix(),
1195                                 &getModule());
1196   if (const char *Sect = getContext().Target.getCFStringSection())
1197     GV->setSection(Sect);
1198   Entry.setValue(GV);
1199 
1200   return GV;
1201 }
1202 
1203 /// GetStringForStringLiteral - Return the appropriate bytes for a
1204 /// string literal, properly padded to match the literal type.
1205 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1206   const char *StrData = E->getStrData();
1207   unsigned Len = E->getByteLength();
1208 
1209   const ConstantArrayType *CAT =
1210     getContext().getAsConstantArrayType(E->getType());
1211   assert(CAT && "String isn't pointer or array!");
1212 
1213   // Resize the string to the right size.
1214   std::string Str(StrData, StrData+Len);
1215   uint64_t RealLen = CAT->getSize().getZExtValue();
1216 
1217   if (E->isWide())
1218     RealLen *= getContext().Target.getWCharWidth()/8;
1219 
1220   Str.resize(RealLen, '\0');
1221 
1222   return Str;
1223 }
1224 
1225 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1226 /// constant array for the given string literal.
1227 llvm::Constant *
1228 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1229   // FIXME: This can be more efficient.
1230   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1231 }
1232 
1233 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1234 /// array for the given ObjCEncodeExpr node.
1235 llvm::Constant *
1236 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1237   std::string Str;
1238   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1239 
1240   return GetAddrOfConstantCString(Str);
1241 }
1242 
1243 
1244 /// GenerateWritableString -- Creates storage for a string literal.
1245 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1246                                              bool constant,
1247                                              CodeGenModule &CGM,
1248                                              const char *GlobalName) {
1249   // Create Constant for this string literal. Don't add a '\0'.
1250   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1251 
1252   // Create a global variable for this string
1253   return new llvm::GlobalVariable(C->getType(), constant,
1254                                   llvm::GlobalValue::InternalLinkage,
1255                                   C, GlobalName, &CGM.getModule());
1256 }
1257 
1258 /// GetAddrOfConstantString - Returns a pointer to a character array
1259 /// containing the literal. This contents are exactly that of the
1260 /// given string, i.e. it will not be null terminated automatically;
1261 /// see GetAddrOfConstantCString. Note that whether the result is
1262 /// actually a pointer to an LLVM constant depends on
1263 /// Feature.WriteableStrings.
1264 ///
1265 /// The result has pointer to array type.
1266 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1267                                                        const char *GlobalName) {
1268   bool IsConstant = !Features.WritableStrings;
1269 
1270   // Get the default prefix if a name wasn't specified.
1271   if (!GlobalName)
1272     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1273 
1274   // Don't share any string literals if strings aren't constant.
1275   if (!IsConstant)
1276     return GenerateStringLiteral(str, false, *this, GlobalName);
1277 
1278   llvm::StringMapEntry<llvm::Constant *> &Entry =
1279   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1280 
1281   if (Entry.getValue())
1282     return Entry.getValue();
1283 
1284   // Create a global variable for this.
1285   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1286   Entry.setValue(C);
1287   return C;
1288 }
1289 
1290 /// GetAddrOfConstantCString - Returns a pointer to a character
1291 /// array containing the literal and a terminating '\-'
1292 /// character. The result has pointer to array type.
1293 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1294                                                         const char *GlobalName){
1295   return GetAddrOfConstantString(str + '\0', GlobalName);
1296 }
1297 
1298 /// EmitObjCPropertyImplementations - Emit information for synthesized
1299 /// properties for an implementation.
1300 void CodeGenModule::EmitObjCPropertyImplementations(const
1301                                                     ObjCImplementationDecl *D) {
1302   for (ObjCImplementationDecl::propimpl_iterator
1303          i = D->propimpl_begin(getContext()),
1304          e = D->propimpl_end(getContext()); i != e; ++i) {
1305     ObjCPropertyImplDecl *PID = *i;
1306 
1307     // Dynamic is just for type-checking.
1308     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1309       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1310 
1311       // Determine which methods need to be implemented, some may have
1312       // been overridden. Note that ::isSynthesized is not the method
1313       // we want, that just indicates if the decl came from a
1314       // property. What we want to know is if the method is defined in
1315       // this implementation.
1316       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1317         CodeGenFunction(*this).GenerateObjCGetter(
1318                                  const_cast<ObjCImplementationDecl *>(D), PID);
1319       if (!PD->isReadOnly() &&
1320           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1321         CodeGenFunction(*this).GenerateObjCSetter(
1322                                  const_cast<ObjCImplementationDecl *>(D), PID);
1323     }
1324   }
1325 }
1326 
1327 /// EmitNamespace - Emit all declarations in a namespace.
1328 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1329   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1330          E = ND->decls_end(getContext());
1331        I != E; ++I)
1332     EmitTopLevelDecl(*I);
1333 }
1334 
1335 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1336 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1337   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1338     ErrorUnsupported(LSD, "linkage spec");
1339     return;
1340   }
1341 
1342   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1343          E = LSD->decls_end(getContext());
1344        I != E; ++I)
1345     EmitTopLevelDecl(*I);
1346 }
1347 
1348 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1349 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1350   // If an error has occurred, stop code generation, but continue
1351   // parsing and semantic analysis (to ensure all warnings and errors
1352   // are emitted).
1353   if (Diags.hasErrorOccurred())
1354     return;
1355 
1356   switch (D->getKind()) {
1357   case Decl::CXXMethod:
1358   case Decl::Function:
1359   case Decl::Var:
1360     EmitGlobal(cast<ValueDecl>(D));
1361     break;
1362 
1363   // C++ Decls
1364   case Decl::Namespace:
1365     EmitNamespace(cast<NamespaceDecl>(D));
1366     break;
1367   case Decl::CXXConstructor:
1368     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1369     break;
1370   case Decl::CXXDestructor:
1371     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1372     break;
1373 
1374   // Objective-C Decls
1375 
1376   // Forward declarations, no (immediate) code generation.
1377   case Decl::ObjCClass:
1378   case Decl::ObjCForwardProtocol:
1379   case Decl::ObjCCategory:
1380   case Decl::ObjCInterface:
1381     break;
1382 
1383   case Decl::ObjCProtocol:
1384     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1385     break;
1386 
1387   case Decl::ObjCCategoryImpl:
1388     // Categories have properties but don't support synthesize so we
1389     // can ignore them here.
1390     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1391     break;
1392 
1393   case Decl::ObjCImplementation: {
1394     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1395     EmitObjCPropertyImplementations(OMD);
1396     Runtime->GenerateClass(OMD);
1397     break;
1398   }
1399   case Decl::ObjCMethod: {
1400     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1401     // If this is not a prototype, emit the body.
1402     if (OMD->getBody(getContext()))
1403       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1404     break;
1405   }
1406   case Decl::ObjCCompatibleAlias:
1407     // compatibility-alias is a directive and has no code gen.
1408     break;
1409 
1410   case Decl::LinkageSpec:
1411     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1412     break;
1413 
1414   case Decl::FileScopeAsm: {
1415     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1416     std::string AsmString(AD->getAsmString()->getStrData(),
1417                           AD->getAsmString()->getByteLength());
1418 
1419     const std::string &S = getModule().getModuleInlineAsm();
1420     if (S.empty())
1421       getModule().setModuleInlineAsm(AsmString);
1422     else
1423       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1424     break;
1425   }
1426 
1427   default:
1428     // Make sure we handled everything we should, every other kind is
1429     // a non-top-level decl.  FIXME: Would be nice to have an
1430     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1431     // that easily.
1432     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1433   }
1434 }
1435