1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 /// setGlobalVisibility - Set the visibility for the given LLVM 99 /// GlobalValue according to the given clang AST visibility value. 100 static void setGlobalVisibility(llvm::GlobalValue *GV, 101 VisibilityAttr::VisibilityTypes Vis) { 102 // Internal definitions should always have default visibility. 103 if (GV->hasLocalLinkage()) { 104 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 105 return; 106 } 107 108 switch (Vis) { 109 default: assert(0 && "Unknown visibility!"); 110 case VisibilityAttr::DefaultVisibility: 111 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 112 break; 113 case VisibilityAttr::HiddenVisibility: 114 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 115 break; 116 case VisibilityAttr::ProtectedVisibility: 117 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 118 break; 119 } 120 } 121 122 static void setGlobalOptionVisibility(llvm::GlobalValue *GV, 123 LangOptions::VisibilityMode Vis) { 124 // Internal definitions should always have default visibility. 125 if (GV->hasLocalLinkage()) { 126 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 127 return; 128 } 129 130 switch (Vis) { 131 default: assert(0 && "Unknown visibility!"); 132 case LangOptions::NonVisibility: 133 break; 134 case LangOptions::DefaultVisibility: 135 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 break; 137 case LangOptions::HiddenVisibility: 138 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 139 break; 140 case LangOptions::ProtectedVisibility: 141 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 142 break; 143 } 144 } 145 146 147 /// \brief Retrieves the mangled name for the given declaration. 148 /// 149 /// If the given declaration requires a mangled name, returns an 150 /// const char* containing the mangled name. Otherwise, returns 151 /// the unmangled name. 152 /// 153 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 154 // In C, functions with no attributes never need to be mangled. Fastpath them. 155 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 156 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 157 return ND->getNameAsCString(); 158 } 159 160 llvm::SmallString<256> Name; 161 llvm::raw_svector_ostream Out(Name); 162 if (!mangleName(ND, Context, Out)) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 Name += '\0'; 168 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 169 } 170 171 /// AddGlobalCtor - Add a function to the list that will be called before 172 /// main() runs. 173 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 174 // FIXME: Type coercion of void()* types. 175 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 176 } 177 178 /// AddGlobalDtor - Add a function to the list that will be called 179 /// when the module is unloaded. 180 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 181 // FIXME: Type coercion of void()* types. 182 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 183 } 184 185 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 186 // Ctor function type is void()*. 187 llvm::FunctionType* CtorFTy = 188 llvm::FunctionType::get(llvm::Type::VoidTy, 189 std::vector<const llvm::Type*>(), 190 false); 191 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 192 193 // Get the type of a ctor entry, { i32, void ()* }. 194 llvm::StructType* CtorStructTy = 195 llvm::StructType::get(llvm::Type::Int32Ty, 196 llvm::PointerType::getUnqual(CtorFTy), NULL); 197 198 // Construct the constructor and destructor arrays. 199 std::vector<llvm::Constant*> Ctors; 200 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 201 std::vector<llvm::Constant*> S; 202 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 203 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 204 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 205 } 206 207 if (!Ctors.empty()) { 208 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 209 new llvm::GlobalVariable(AT, false, 210 llvm::GlobalValue::AppendingLinkage, 211 llvm::ConstantArray::get(AT, Ctors), 212 GlobalName, 213 &TheModule); 214 } 215 } 216 217 void CodeGenModule::EmitAnnotations() { 218 if (Annotations.empty()) 219 return; 220 221 // Create a new global variable for the ConstantStruct in the Module. 222 llvm::Constant *Array = 223 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 224 Annotations.size()), 225 Annotations); 226 llvm::GlobalValue *gv = 227 new llvm::GlobalVariable(Array->getType(), false, 228 llvm::GlobalValue::AppendingLinkage, Array, 229 "llvm.global.annotations", &TheModule); 230 gv->setSection("llvm.metadata"); 231 } 232 233 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 234 bool IsInternal, 235 bool IsInline, 236 llvm::GlobalValue *GV, 237 bool ForDefinition) { 238 // FIXME: Set up linkage and many other things. Note, this is a simple 239 // approximation of what we really want. 240 if (!ForDefinition) { 241 // Only a few attributes are set on declarations. 242 if (D->hasAttr<DLLImportAttr>()) { 243 // The dllimport attribute is overridden by a subsequent declaration as 244 // dllexport. 245 if (!D->hasAttr<DLLExportAttr>()) { 246 // dllimport attribute can be applied only to function decls, not to 247 // definitions. 248 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 249 if (!FD->getBody()) 250 GV->setLinkage(llvm::Function::DLLImportLinkage); 251 } else 252 GV->setLinkage(llvm::Function::DLLImportLinkage); 253 } 254 } else if (D->hasAttr<WeakAttr>() || 255 D->hasAttr<WeakImportAttr>()) { 256 // "extern_weak" is overloaded in LLVM; we probably should have 257 // separate linkage types for this. 258 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 259 } 260 } else { 261 if (IsInternal) { 262 GV->setLinkage(llvm::Function::InternalLinkage); 263 } else { 264 if (D->hasAttr<DLLExportAttr>()) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 266 // The dllexport attribute is ignored for undefined symbols. 267 if (FD->getBody()) 268 GV->setLinkage(llvm::Function::DLLExportLinkage); 269 } else 270 GV->setLinkage(llvm::Function::DLLExportLinkage); 271 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>() || 272 IsInline) 273 GV->setLinkage(llvm::Function::WeakAnyLinkage); 274 } 275 } 276 277 // FIXME: Figure out the relative priority of the attribute, 278 // -fvisibility, and private_extern. 279 if (ForDefinition) { 280 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 281 setGlobalVisibility(GV, attr->getVisibility()); 282 else 283 setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode()); 284 } 285 286 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 287 GV->setSection(SA->getName()); 288 289 // Only add to llvm.used when we see a definition, otherwise we 290 // might add multiple times or risk the value being replaced by a 291 // subsequent RAUW. 292 if (ForDefinition) { 293 if (D->hasAttr<UsedAttr>()) 294 AddUsedGlobal(GV); 295 } 296 } 297 298 void CodeGenModule::SetFunctionAttributes(const Decl *D, 299 const CGFunctionInfo &Info, 300 llvm::Function *F) { 301 AttributeListType AttributeList; 302 ConstructAttributeList(Info, D, AttributeList); 303 304 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 305 AttributeList.size())); 306 307 // Set the appropriate calling convention for the Function. 308 if (D->hasAttr<FastCallAttr>()) 309 F->setCallingConv(llvm::CallingConv::X86_FastCall); 310 311 if (D->hasAttr<StdCallAttr>()) 312 F->setCallingConv(llvm::CallingConv::X86_StdCall); 313 } 314 315 /// SetFunctionAttributesForDefinition - Set function attributes 316 /// specific to a function definition. 317 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 318 llvm::Function *F) { 319 if (isa<ObjCMethodDecl>(D)) { 320 SetGlobalValueAttributes(D, true, false, F, true); 321 } else { 322 const FunctionDecl *FD = cast<FunctionDecl>(D); 323 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 324 FD->isInline(), F, true); 325 } 326 327 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 328 F->addFnAttr(llvm::Attribute::NoUnwind); 329 330 if (D->hasAttr<AlwaysInlineAttr>()) 331 F->addFnAttr(llvm::Attribute::AlwaysInline); 332 333 if (D->hasAttr<NoinlineAttr>()) 334 F->addFnAttr(llvm::Attribute::NoInline); 335 } 336 337 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 338 llvm::Function *F) { 339 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 340 341 SetFunctionAttributesForDefinition(MD, F); 342 } 343 344 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 345 llvm::Function *F) { 346 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 347 348 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 349 FD->isInline(), F, false); 350 } 351 352 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 353 assert(!GV->isDeclaration() && 354 "Only globals with definition can force usage."); 355 LLVMUsed.push_back(GV); 356 } 357 358 void CodeGenModule::EmitLLVMUsed() { 359 // Don't create llvm.used if there is no need. 360 if (LLVMUsed.empty()) 361 return; 362 363 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 364 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 365 366 // Convert LLVMUsed to what ConstantArray needs. 367 std::vector<llvm::Constant*> UsedArray; 368 UsedArray.resize(LLVMUsed.size()); 369 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 370 UsedArray[i] = 371 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 372 } 373 374 llvm::GlobalVariable *GV = 375 new llvm::GlobalVariable(ATy, false, 376 llvm::GlobalValue::AppendingLinkage, 377 llvm::ConstantArray::get(ATy, UsedArray), 378 "llvm.used", &getModule()); 379 380 GV->setSection("llvm.metadata"); 381 } 382 383 void CodeGenModule::EmitDeferred() { 384 // Emit code for any potentially referenced deferred decls. Since a 385 // previously unused static decl may become used during the generation of code 386 // for a static function, iterate until no changes are made. 387 while (!DeferredDeclsToEmit.empty()) { 388 const ValueDecl *D = DeferredDeclsToEmit.back(); 389 DeferredDeclsToEmit.pop_back(); 390 391 // The mangled name for the decl must have been emitted in GlobalDeclMap. 392 // Look it up to see if it was defined with a stronger definition (e.g. an 393 // extern inline function with a strong function redefinition). If so, 394 // just ignore the deferred decl. 395 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 396 assert(CGRef && "Deferred decl wasn't referenced?"); 397 398 if (!CGRef->isDeclaration()) 399 continue; 400 401 // Otherwise, emit the definition and move on to the next one. 402 EmitGlobalDefinition(D); 403 } 404 } 405 406 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 407 /// annotation information for a given GlobalValue. The annotation struct is 408 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 409 /// GlobalValue being annotated. The second field is the constant string 410 /// created from the AnnotateAttr's annotation. The third field is a constant 411 /// string containing the name of the translation unit. The fourth field is 412 /// the line number in the file of the annotated value declaration. 413 /// 414 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 415 /// appears to. 416 /// 417 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 418 const AnnotateAttr *AA, 419 unsigned LineNo) { 420 llvm::Module *M = &getModule(); 421 422 // get [N x i8] constants for the annotation string, and the filename string 423 // which are the 2nd and 3rd elements of the global annotation structure. 424 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 425 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 426 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 427 true); 428 429 // Get the two global values corresponding to the ConstantArrays we just 430 // created to hold the bytes of the strings. 431 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 432 llvm::GlobalValue *annoGV = 433 new llvm::GlobalVariable(anno->getType(), false, 434 llvm::GlobalValue::InternalLinkage, anno, 435 GV->getName() + StringPrefix, M); 436 // translation unit name string, emitted into the llvm.metadata section. 437 llvm::GlobalValue *unitGV = 438 new llvm::GlobalVariable(unit->getType(), false, 439 llvm::GlobalValue::InternalLinkage, unit, 440 StringPrefix, M); 441 442 // Create the ConstantStruct that is the global annotion. 443 llvm::Constant *Fields[4] = { 444 llvm::ConstantExpr::getBitCast(GV, SBP), 445 llvm::ConstantExpr::getBitCast(annoGV, SBP), 446 llvm::ConstantExpr::getBitCast(unitGV, SBP), 447 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 448 }; 449 return llvm::ConstantStruct::get(Fields, 4, false); 450 } 451 452 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 453 // Never defer when EmitAllDecls is specified or the decl has 454 // attribute used. 455 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 456 return false; 457 458 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 459 // Constructors and destructors should never be deferred. 460 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 461 return false; 462 463 // FIXME: What about inline, and/or extern inline? 464 if (FD->getStorageClass() != FunctionDecl::Static) 465 return false; 466 } else { 467 const VarDecl *VD = cast<VarDecl>(Global); 468 assert(VD->isFileVarDecl() && "Invalid decl"); 469 470 if (VD->getStorageClass() != VarDecl::Static) 471 return false; 472 } 473 474 return true; 475 } 476 477 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 478 // If this is an alias definition (which otherwise looks like a declaration) 479 // emit it now. 480 if (Global->hasAttr<AliasAttr>()) 481 return EmitAliasDefinition(Global); 482 483 // Ignore declarations, they will be emitted on their first use. 484 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 485 // Forward declarations are emitted lazily on first use. 486 if (!FD->isThisDeclarationADefinition()) 487 return; 488 } else { 489 const VarDecl *VD = cast<VarDecl>(Global); 490 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 491 492 // Forward declarations are emitted lazily on first use. 493 if (!VD->getInit() && VD->hasExternalStorage()) 494 return; 495 } 496 497 // Defer code generation when possible if this is a static definition, inline 498 // function etc. These we only want to emit if they are used. 499 if (MayDeferGeneration(Global)) { 500 // If the value has already been used, add it directly to the 501 // DeferredDeclsToEmit list. 502 const char *MangledName = getMangledName(Global); 503 if (GlobalDeclMap.count(MangledName)) 504 DeferredDeclsToEmit.push_back(Global); 505 else { 506 // Otherwise, remember that we saw a deferred decl with this name. The 507 // first use of the mangled name will cause it to move into 508 // DeferredDeclsToEmit. 509 DeferredDecls[MangledName] = Global; 510 } 511 return; 512 } 513 514 // Otherwise emit the definition. 515 EmitGlobalDefinition(Global); 516 } 517 518 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 520 EmitGlobalFunctionDefinition(FD); 521 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 522 EmitGlobalVarDefinition(VD); 523 } else { 524 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 525 } 526 } 527 528 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 529 /// module, create and return an llvm Function with the specified type. If there 530 /// is something in the module with the specified name, return it potentially 531 /// bitcasted to the right type. 532 /// 533 /// If D is non-null, it specifies a decl that correspond to this. This is used 534 /// to set the attributes on the function when it is first created. 535 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 536 const llvm::Type *Ty, 537 const FunctionDecl *D) { 538 // Lookup the entry, lazily creating it if necessary. 539 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 540 if (Entry) { 541 if (Entry->getType()->getElementType() == Ty) 542 return Entry; 543 544 // Make sure the result is of the correct type. 545 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 546 return llvm::ConstantExpr::getBitCast(Entry, PTy); 547 } 548 549 // This is the first use or definition of a mangled name. If there is a 550 // deferred decl with this name, remember that we need to emit it at the end 551 // of the file. 552 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 553 DeferredDecls.find(MangledName); 554 if (DDI != DeferredDecls.end()) { 555 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 556 // list, and remove it from DeferredDecls (since we don't need it anymore). 557 DeferredDeclsToEmit.push_back(DDI->second); 558 DeferredDecls.erase(DDI); 559 } 560 561 // This function doesn't have a complete type (for example, the return 562 // type is an incomplete struct). Use a fake type instead, and make 563 // sure not to try to set attributes. 564 bool ShouldSetAttributes = true; 565 if (!isa<llvm::FunctionType>(Ty)) { 566 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 567 std::vector<const llvm::Type*>(), false); 568 ShouldSetAttributes = false; 569 } 570 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 571 llvm::Function::ExternalLinkage, 572 "", &getModule()); 573 F->setName(MangledName); 574 if (D && ShouldSetAttributes) 575 SetFunctionAttributes(D, F); 576 Entry = F; 577 return F; 578 } 579 580 /// GetAddrOfFunction - Return the address of the given function. If Ty is 581 /// non-null, then this function will use the specified type if it has to 582 /// create it (this occurs when we see a definition of the function). 583 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 584 const llvm::Type *Ty) { 585 // If there was no specific requested type, just convert it now. 586 if (!Ty) 587 Ty = getTypes().ConvertType(D->getType()); 588 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 589 } 590 591 /// CreateRuntimeFunction - Create a new runtime function with the specified 592 /// type and name. 593 llvm::Constant * 594 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 595 const char *Name) { 596 // Convert Name to be a uniqued string from the IdentifierInfo table. 597 Name = getContext().Idents.get(Name).getName(); 598 return GetOrCreateLLVMFunction(Name, FTy, 0); 599 } 600 601 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 602 /// create and return an llvm GlobalVariable with the specified type. If there 603 /// is something in the module with the specified name, return it potentially 604 /// bitcasted to the right type. 605 /// 606 /// If D is non-null, it specifies a decl that correspond to this. This is used 607 /// to set the attributes on the global when it is first created. 608 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 609 const llvm::PointerType*Ty, 610 const VarDecl *D) { 611 // Lookup the entry, lazily creating it if necessary. 612 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 613 if (Entry) { 614 if (Entry->getType() == Ty) 615 return Entry; 616 617 // Make sure the result is of the correct type. 618 return llvm::ConstantExpr::getBitCast(Entry, Ty); 619 } 620 621 // We don't support __thread yet. 622 if (D && D->isThreadSpecified()) 623 ErrorUnsupported(D, "thread local ('__thread') variable", true); 624 625 // This is the first use or definition of a mangled name. If there is a 626 // deferred decl with this name, remember that we need to emit it at the end 627 // of the file. 628 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 629 DeferredDecls.find(MangledName); 630 if (DDI != DeferredDecls.end()) { 631 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 632 // list, and remove it from DeferredDecls (since we don't need it anymore). 633 DeferredDeclsToEmit.push_back(DDI->second); 634 DeferredDecls.erase(DDI); 635 } 636 637 llvm::GlobalVariable *GV = 638 new llvm::GlobalVariable(Ty->getElementType(), false, 639 llvm::GlobalValue::ExternalLinkage, 640 0, "", &getModule(), 641 0, Ty->getAddressSpace()); 642 GV->setName(MangledName); 643 644 // Handle things which are present even on external declarations. 645 if (D) { 646 // FIXME: This code is overly simple and should be merged with 647 // other global handling. 648 GV->setConstant(D->getType().isConstant(Context)); 649 650 // FIXME: Merge with other attribute handling code. 651 if (D->getStorageClass() == VarDecl::PrivateExtern) 652 setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); 653 654 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 655 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 656 } 657 658 return Entry = GV; 659 } 660 661 662 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 663 /// given global variable. If Ty is non-null and if the global doesn't exist, 664 /// then it will be greated with the specified type instead of whatever the 665 /// normal requested type would be. 666 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 667 const llvm::Type *Ty) { 668 assert(D->hasGlobalStorage() && "Not a global variable"); 669 QualType ASTTy = D->getType(); 670 if (Ty == 0) 671 Ty = getTypes().ConvertTypeForMem(ASTTy); 672 673 const llvm::PointerType *PTy = 674 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 675 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 676 } 677 678 /// CreateRuntimeVariable - Create a new runtime global variable with the 679 /// specified type and name. 680 llvm::Constant * 681 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 682 const char *Name) { 683 // Convert Name to be a uniqued string from the IdentifierInfo table. 684 Name = getContext().Idents.get(Name).getName(); 685 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 686 } 687 688 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 689 llvm::Constant *Init = 0; 690 QualType ASTTy = D->getType(); 691 692 if (D->getInit() == 0) { 693 // This is a tentative definition; tentative definitions are 694 // implicitly initialized with { 0 } 695 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 696 if (ASTTy->isIncompleteArrayType()) { 697 // An incomplete array is normally [ TYPE x 0 ], but we need 698 // to fix it to [ TYPE x 1 ]. 699 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 700 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 701 } 702 Init = llvm::Constant::getNullValue(InitTy); 703 } else { 704 Init = EmitConstantExpr(D->getInit(), D->getType()); 705 if (!Init) { 706 ErrorUnsupported(D, "static initializer"); 707 QualType T = D->getInit()->getType(); 708 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 709 } 710 } 711 712 const llvm::Type* InitType = Init->getType(); 713 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 714 715 // Strip off a bitcast if we got one back. 716 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 717 assert(CE->getOpcode() == llvm::Instruction::BitCast); 718 Entry = CE->getOperand(0); 719 } 720 721 // Entry is now either a Function or GlobalVariable. 722 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 723 724 // If we already have this global and it has an initializer, then 725 // we are in the rare situation where we emitted the defining 726 // declaration of the global and are now being asked to emit a 727 // definition which would be common. This occurs, for example, in 728 // the following situation because statics can be emitted out of 729 // order: 730 // 731 // static int x; 732 // static int *y = &x; 733 // static int x = 10; 734 // int **z = &y; 735 // 736 // Bail here so we don't blow away the definition. Note that if we 737 // can't distinguish here if we emitted a definition with a null 738 // initializer, but this case is safe. 739 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 740 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 741 return; 742 } 743 744 // We have a definition after a declaration with the wrong type. 745 // We must make a new GlobalVariable* and update everything that used OldGV 746 // (a declaration or tentative definition) with the new GlobalVariable* 747 // (which will be a definition). 748 // 749 // This happens if there is a prototype for a global (e.g. 750 // "extern int x[];") and then a definition of a different type (e.g. 751 // "int x[10];"). This also happens when an initializer has a different type 752 // from the type of the global (this happens with unions). 753 // 754 // FIXME: This also ends up happening if there's a definition followed by 755 // a tentative definition! (Although Sema rejects that construct 756 // at the moment.) 757 if (GV == 0 || 758 GV->getType()->getElementType() != InitType || 759 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 760 761 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 762 GlobalDeclMap.erase(getMangledName(D)); 763 764 // Make a new global with the correct type, this is now guaranteed to work. 765 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 766 GV->takeName(cast<llvm::GlobalValue>(Entry)); 767 768 // Replace all uses of the old global with the new global 769 llvm::Constant *NewPtrForOldDecl = 770 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 771 Entry->replaceAllUsesWith(NewPtrForOldDecl); 772 773 // Erase the old global, since it is no longer used. 774 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 775 } 776 777 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 778 SourceManager &SM = Context.getSourceManager(); 779 AddAnnotation(EmitAnnotateAttr(GV, AA, 780 SM.getInstantiationLineNumber(D->getLocation()))); 781 } 782 783 GV->setInitializer(Init); 784 GV->setConstant(D->getType().isConstant(Context)); 785 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 786 787 // Set the llvm linkage type as appropriate. 788 if (D->getStorageClass() == VarDecl::Static) 789 GV->setLinkage(llvm::Function::InternalLinkage); 790 else if (D->hasAttr<DLLImportAttr>()) 791 GV->setLinkage(llvm::Function::DLLImportLinkage); 792 else if (D->hasAttr<DLLExportAttr>()) 793 GV->setLinkage(llvm::Function::DLLExportLinkage); 794 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 795 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 796 else { 797 // FIXME: This isn't right. This should handle common linkage and other 798 // stuff. 799 switch (D->getStorageClass()) { 800 case VarDecl::Static: assert(0 && "This case handled above"); 801 case VarDecl::Auto: 802 case VarDecl::Register: 803 assert(0 && "Can't have auto or register globals"); 804 case VarDecl::None: 805 if (!D->getInit() && !CompileOpts.NoCommon) 806 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 807 else 808 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 809 break; 810 case VarDecl::Extern: 811 // FIXME: common 812 break; 813 814 case VarDecl::PrivateExtern: 815 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 816 // FIXME: common 817 break; 818 } 819 } 820 821 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 822 setGlobalVisibility(GV, attr->getVisibility()); 823 else 824 setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode()); 825 826 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 827 GV->setSection(SA->getName()); 828 829 if (D->hasAttr<UsedAttr>()) 830 AddUsedGlobal(GV); 831 832 // Emit global variable debug information. 833 if (CGDebugInfo *DI = getDebugInfo()) { 834 DI->setLocation(D->getLocation()); 835 DI->EmitGlobalVariable(GV, D); 836 } 837 } 838 839 840 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 841 const llvm::FunctionType *Ty; 842 843 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 844 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 845 846 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 847 } else { 848 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 849 850 // As a special case, make sure that definitions of K&R function 851 // "type foo()" aren't declared as varargs (which forces the backend 852 // to do unnecessary work). 853 if (D->getType()->isFunctionNoProtoType()) { 854 assert(Ty->isVarArg() && "Didn't lower type as expected"); 855 // Due to stret, the lowered function could have arguments. 856 // Just create the same type as was lowered by ConvertType 857 // but strip off the varargs bit. 858 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 859 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 860 } 861 } 862 863 // Get or create the prototype for teh function. 864 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 865 866 // Strip off a bitcast if we got one back. 867 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 868 assert(CE->getOpcode() == llvm::Instruction::BitCast); 869 Entry = CE->getOperand(0); 870 } 871 872 873 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 874 // If the types mismatch then we have to rewrite the definition. 875 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 876 "Shouldn't replace non-declaration"); 877 878 // F is the Function* for the one with the wrong type, we must make a new 879 // Function* and update everything that used F (a declaration) with the new 880 // Function* (which will be a definition). 881 // 882 // This happens if there is a prototype for a function 883 // (e.g. "int f()") and then a definition of a different type 884 // (e.g. "int f(int x)"). Start by making a new function of the 885 // correct type, RAUW, then steal the name. 886 GlobalDeclMap.erase(getMangledName(D)); 887 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 888 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 889 890 // Replace uses of F with the Function we will endow with a body. 891 llvm::Constant *NewPtrForOldDecl = 892 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 893 Entry->replaceAllUsesWith(NewPtrForOldDecl); 894 895 // Ok, delete the old function now, which is dead. 896 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 897 898 Entry = NewFn; 899 } 900 901 llvm::Function *Fn = cast<llvm::Function>(Entry); 902 903 CodeGenFunction(*this).GenerateCode(D, Fn); 904 905 SetFunctionAttributesForDefinition(D, Fn); 906 907 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 908 AddGlobalCtor(Fn, CA->getPriority()); 909 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 910 AddGlobalDtor(Fn, DA->getPriority()); 911 } 912 913 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 914 const AliasAttr *AA = D->getAttr<AliasAttr>(); 915 assert(AA && "Not an alias?"); 916 917 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 918 919 // Unique the name through the identifier table. 920 const char *AliaseeName = AA->getAliasee().c_str(); 921 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 922 923 // Create a reference to the named value. This ensures that it is emitted 924 // if a deferred decl. 925 llvm::Constant *Aliasee; 926 if (isa<llvm::FunctionType>(DeclTy)) 927 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 928 else 929 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 930 llvm::PointerType::getUnqual(DeclTy), 0); 931 932 // Create the new alias itself, but don't set a name yet. 933 llvm::GlobalValue *GA = 934 new llvm::GlobalAlias(Aliasee->getType(), 935 llvm::Function::ExternalLinkage, 936 "", Aliasee, &getModule()); 937 938 // See if there is already something with the alias' name in the module. 939 const char *MangledName = getMangledName(D); 940 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 941 942 if (Entry && !Entry->isDeclaration()) { 943 // If there is a definition in the module, then it wins over the alias. 944 // This is dubious, but allow it to be safe. Just ignore the alias. 945 GA->eraseFromParent(); 946 return; 947 } 948 949 if (Entry) { 950 // If there is a declaration in the module, then we had an extern followed 951 // by the alias, as in: 952 // extern int test6(); 953 // ... 954 // int test6() __attribute__((alias("test7"))); 955 // 956 // Remove it and replace uses of it with the alias. 957 958 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 959 Entry->getType())); 960 Entry->eraseFromParent(); 961 } 962 963 // Now we know that there is no conflict, set the name. 964 Entry = GA; 965 GA->setName(MangledName); 966 967 // Alias should never be internal or inline. 968 SetGlobalValueAttributes(D, false, false, GA, true); 969 } 970 971 /// getBuiltinLibFunction - Given a builtin id for a function like 972 /// "__builtin_fabsf", return a Function* for "fabsf". 973 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 974 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 975 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 976 "isn't a lib fn"); 977 978 // Get the name, skip over the __builtin_ prefix (if necessary). 979 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 980 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 981 Name += 10; 982 983 // Get the type for the builtin. 984 Builtin::Context::GetBuiltinTypeError Error; 985 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 986 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 987 988 const llvm::FunctionType *Ty = 989 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 990 991 // Unique the name through the identifier table. 992 Name = getContext().Idents.get(Name).getName(); 993 // FIXME: param attributes for sext/zext etc. 994 return GetOrCreateLLVMFunction(Name, Ty, 0); 995 } 996 997 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 998 unsigned NumTys) { 999 return llvm::Intrinsic::getDeclaration(&getModule(), 1000 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1001 } 1002 1003 llvm::Function *CodeGenModule::getMemCpyFn() { 1004 if (MemCpyFn) return MemCpyFn; 1005 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1006 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1007 } 1008 1009 llvm::Function *CodeGenModule::getMemMoveFn() { 1010 if (MemMoveFn) return MemMoveFn; 1011 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1012 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1013 } 1014 1015 llvm::Function *CodeGenModule::getMemSetFn() { 1016 if (MemSetFn) return MemSetFn; 1017 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1018 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1019 } 1020 1021 static void appendFieldAndPadding(CodeGenModule &CGM, 1022 std::vector<llvm::Constant*>& Fields, 1023 FieldDecl *FieldD, FieldDecl *NextFieldD, 1024 llvm::Constant* Field, 1025 RecordDecl* RD, const llvm::StructType *STy) { 1026 // Append the field. 1027 Fields.push_back(Field); 1028 1029 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1030 1031 int NextStructFieldNo; 1032 if (!NextFieldD) { 1033 NextStructFieldNo = STy->getNumElements(); 1034 } else { 1035 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1036 } 1037 1038 // Append padding 1039 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1040 llvm::Constant *C = 1041 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1042 1043 Fields.push_back(C); 1044 } 1045 } 1046 1047 llvm::Constant *CodeGenModule:: 1048 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1049 std::string str; 1050 unsigned StringLength; 1051 1052 bool isUTF16 = false; 1053 if (Literal->containsNonAsciiOrNull()) { 1054 // Convert from UTF-8 to UTF-16. 1055 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1056 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1057 UTF16 *ToPtr = &ToBuf[0]; 1058 1059 ConversionResult Result; 1060 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1061 &ToPtr, ToPtr+Literal->getByteLength(), 1062 strictConversion); 1063 if (Result == conversionOK) { 1064 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1065 // without doing more surgery to this routine. Since we aren't explicitly 1066 // checking for endianness here, it's also a bug (when generating code for 1067 // a target that doesn't match the host endianness). Modeling this as an 1068 // i16 array is likely the cleanest solution. 1069 StringLength = ToPtr-&ToBuf[0]; 1070 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1071 isUTF16 = true; 1072 } else if (Result == sourceIllegal) { 1073 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1074 str.assign(Literal->getStrData(), Literal->getByteLength()); 1075 StringLength = str.length(); 1076 } else 1077 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1078 1079 } else { 1080 str.assign(Literal->getStrData(), Literal->getByteLength()); 1081 StringLength = str.length(); 1082 } 1083 llvm::StringMapEntry<llvm::Constant *> &Entry = 1084 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1085 1086 if (llvm::Constant *C = Entry.getValue()) 1087 return C; 1088 1089 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1090 llvm::Constant *Zeros[] = { Zero, Zero }; 1091 1092 if (!CFConstantStringClassRef) { 1093 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1094 Ty = llvm::ArrayType::get(Ty, 0); 1095 1096 // FIXME: This is fairly broken if 1097 // __CFConstantStringClassReference is already defined, in that it 1098 // will get renamed and the user will most likely see an opaque 1099 // error message. This is a general issue with relying on 1100 // particular names. 1101 llvm::GlobalVariable *GV = 1102 new llvm::GlobalVariable(Ty, false, 1103 llvm::GlobalVariable::ExternalLinkage, 0, 1104 "__CFConstantStringClassReference", 1105 &getModule()); 1106 1107 // Decay array -> ptr 1108 CFConstantStringClassRef = 1109 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1110 } 1111 1112 QualType CFTy = getContext().getCFConstantStringType(); 1113 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1114 1115 const llvm::StructType *STy = 1116 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1117 1118 std::vector<llvm::Constant*> Fields; 1119 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1120 1121 // Class pointer. 1122 FieldDecl *CurField = *Field++; 1123 FieldDecl *NextField = *Field++; 1124 appendFieldAndPadding(*this, Fields, CurField, NextField, 1125 CFConstantStringClassRef, CFRD, STy); 1126 1127 // Flags. 1128 CurField = NextField; 1129 NextField = *Field++; 1130 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1131 appendFieldAndPadding(*this, Fields, CurField, NextField, 1132 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1133 : llvm::ConstantInt::get(Ty, 0x07C8), 1134 CFRD, STy); 1135 1136 // String pointer. 1137 CurField = NextField; 1138 NextField = *Field++; 1139 llvm::Constant *C = llvm::ConstantArray::get(str); 1140 1141 const char *Sect, *Prefix; 1142 bool isConstant; 1143 if (isUTF16) { 1144 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1145 Sect = getContext().Target.getUnicodeStringSection(); 1146 // FIXME: Why does GCC not set constant here? 1147 isConstant = false; 1148 } else { 1149 Prefix = getContext().Target.getStringSymbolPrefix(true); 1150 Sect = getContext().Target.getCFStringDataSection(); 1151 // FIXME: -fwritable-strings should probably affect this, but we 1152 // are following gcc here. 1153 isConstant = true; 1154 } 1155 llvm::GlobalVariable *GV = 1156 new llvm::GlobalVariable(C->getType(), isConstant, 1157 llvm::GlobalValue::InternalLinkage, 1158 C, Prefix, &getModule()); 1159 if (Sect) 1160 GV->setSection(Sect); 1161 if (isUTF16) { 1162 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1163 GV->setAlignment(Align); 1164 } 1165 appendFieldAndPadding(*this, Fields, CurField, NextField, 1166 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1167 CFRD, STy); 1168 1169 // String length. 1170 CurField = NextField; 1171 NextField = 0; 1172 Ty = getTypes().ConvertType(getContext().LongTy); 1173 appendFieldAndPadding(*this, Fields, CurField, NextField, 1174 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1175 1176 // The struct. 1177 C = llvm::ConstantStruct::get(STy, Fields); 1178 GV = new llvm::GlobalVariable(C->getType(), true, 1179 llvm::GlobalVariable::InternalLinkage, C, 1180 getContext().Target.getCFStringSymbolPrefix(), 1181 &getModule()); 1182 if (const char *Sect = getContext().Target.getCFStringSection()) 1183 GV->setSection(Sect); 1184 Entry.setValue(GV); 1185 1186 return GV; 1187 } 1188 1189 /// GetStringForStringLiteral - Return the appropriate bytes for a 1190 /// string literal, properly padded to match the literal type. 1191 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1192 const char *StrData = E->getStrData(); 1193 unsigned Len = E->getByteLength(); 1194 1195 const ConstantArrayType *CAT = 1196 getContext().getAsConstantArrayType(E->getType()); 1197 assert(CAT && "String isn't pointer or array!"); 1198 1199 // Resize the string to the right size. 1200 std::string Str(StrData, StrData+Len); 1201 uint64_t RealLen = CAT->getSize().getZExtValue(); 1202 1203 if (E->isWide()) 1204 RealLen *= getContext().Target.getWCharWidth()/8; 1205 1206 Str.resize(RealLen, '\0'); 1207 1208 return Str; 1209 } 1210 1211 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1212 /// constant array for the given string literal. 1213 llvm::Constant * 1214 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1215 // FIXME: This can be more efficient. 1216 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1217 } 1218 1219 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1220 /// array for the given ObjCEncodeExpr node. 1221 llvm::Constant * 1222 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1223 std::string Str; 1224 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1225 1226 return GetAddrOfConstantCString(Str); 1227 } 1228 1229 1230 /// GenerateWritableString -- Creates storage for a string literal. 1231 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1232 bool constant, 1233 CodeGenModule &CGM, 1234 const char *GlobalName) { 1235 // Create Constant for this string literal. Don't add a '\0'. 1236 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1237 1238 // Create a global variable for this string 1239 return new llvm::GlobalVariable(C->getType(), constant, 1240 llvm::GlobalValue::InternalLinkage, 1241 C, GlobalName, &CGM.getModule()); 1242 } 1243 1244 /// GetAddrOfConstantString - Returns a pointer to a character array 1245 /// containing the literal. This contents are exactly that of the 1246 /// given string, i.e. it will not be null terminated automatically; 1247 /// see GetAddrOfConstantCString. Note that whether the result is 1248 /// actually a pointer to an LLVM constant depends on 1249 /// Feature.WriteableStrings. 1250 /// 1251 /// The result has pointer to array type. 1252 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1253 const char *GlobalName) { 1254 bool IsConstant = !Features.WritableStrings; 1255 1256 // Get the default prefix if a name wasn't specified. 1257 if (!GlobalName) 1258 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1259 1260 // Don't share any string literals if strings aren't constant. 1261 if (!IsConstant) 1262 return GenerateStringLiteral(str, false, *this, GlobalName); 1263 1264 llvm::StringMapEntry<llvm::Constant *> &Entry = 1265 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1266 1267 if (Entry.getValue()) 1268 return Entry.getValue(); 1269 1270 // Create a global variable for this. 1271 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1272 Entry.setValue(C); 1273 return C; 1274 } 1275 1276 /// GetAddrOfConstantCString - Returns a pointer to a character 1277 /// array containing the literal and a terminating '\-' 1278 /// character. The result has pointer to array type. 1279 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1280 const char *GlobalName){ 1281 return GetAddrOfConstantString(str + '\0', GlobalName); 1282 } 1283 1284 /// EmitObjCPropertyImplementations - Emit information for synthesized 1285 /// properties for an implementation. 1286 void CodeGenModule::EmitObjCPropertyImplementations(const 1287 ObjCImplementationDecl *D) { 1288 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1289 e = D->propimpl_end(); i != e; ++i) { 1290 ObjCPropertyImplDecl *PID = *i; 1291 1292 // Dynamic is just for type-checking. 1293 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1294 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1295 1296 // Determine which methods need to be implemented, some may have 1297 // been overridden. Note that ::isSynthesized is not the method 1298 // we want, that just indicates if the decl came from a 1299 // property. What we want to know is if the method is defined in 1300 // this implementation. 1301 if (!D->getInstanceMethod(PD->getGetterName())) 1302 CodeGenFunction(*this).GenerateObjCGetter( 1303 const_cast<ObjCImplementationDecl *>(D), PID); 1304 if (!PD->isReadOnly() && 1305 !D->getInstanceMethod(PD->getSetterName())) 1306 CodeGenFunction(*this).GenerateObjCSetter( 1307 const_cast<ObjCImplementationDecl *>(D), PID); 1308 } 1309 } 1310 } 1311 1312 /// EmitNamespace - Emit all declarations in a namespace. 1313 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1314 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1315 E = ND->decls_end(getContext()); 1316 I != E; ++I) 1317 EmitTopLevelDecl(*I); 1318 } 1319 1320 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1321 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1322 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1323 ErrorUnsupported(LSD, "linkage spec"); 1324 return; 1325 } 1326 1327 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1328 E = LSD->decls_end(getContext()); 1329 I != E; ++I) 1330 EmitTopLevelDecl(*I); 1331 } 1332 1333 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1334 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1335 // If an error has occurred, stop code generation, but continue 1336 // parsing and semantic analysis (to ensure all warnings and errors 1337 // are emitted). 1338 if (Diags.hasErrorOccurred()) 1339 return; 1340 1341 switch (D->getKind()) { 1342 case Decl::CXXMethod: 1343 case Decl::Function: 1344 case Decl::Var: 1345 EmitGlobal(cast<ValueDecl>(D)); 1346 break; 1347 1348 case Decl::Namespace: 1349 EmitNamespace(cast<NamespaceDecl>(D)); 1350 break; 1351 1352 // Objective-C Decls 1353 1354 // Forward declarations, no (immediate) code generation. 1355 case Decl::ObjCClass: 1356 case Decl::ObjCForwardProtocol: 1357 case Decl::ObjCCategory: 1358 break; 1359 case Decl::ObjCInterface: 1360 // If we already laid out this interface due to an @class, and if we 1361 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1362 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1363 break; 1364 1365 case Decl::ObjCProtocol: 1366 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1367 break; 1368 1369 case Decl::ObjCCategoryImpl: 1370 // Categories have properties but don't support synthesize so we 1371 // can ignore them here. 1372 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1373 break; 1374 1375 case Decl::ObjCImplementation: { 1376 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1377 EmitObjCPropertyImplementations(OMD); 1378 Runtime->GenerateClass(OMD); 1379 break; 1380 } 1381 case Decl::ObjCMethod: { 1382 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1383 // If this is not a prototype, emit the body. 1384 if (OMD->getBody()) 1385 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1386 break; 1387 } 1388 case Decl::ObjCCompatibleAlias: 1389 // compatibility-alias is a directive and has no code gen. 1390 break; 1391 1392 case Decl::LinkageSpec: 1393 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1394 break; 1395 1396 case Decl::FileScopeAsm: { 1397 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1398 std::string AsmString(AD->getAsmString()->getStrData(), 1399 AD->getAsmString()->getByteLength()); 1400 1401 const std::string &S = getModule().getModuleInlineAsm(); 1402 if (S.empty()) 1403 getModule().setModuleInlineAsm(AsmString); 1404 else 1405 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1406 break; 1407 } 1408 1409 default: 1410 // Make sure we handled everything we should, every other kind is 1411 // a non-top-level decl. FIXME: Would be nice to have an 1412 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1413 // that easily. 1414 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1415 } 1416 } 1417