1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 160 } 161 162 /// AddGlobalCtor - Add a function to the list that will be called before 163 /// main() runs. 164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 165 // FIXME: Type coercion of void()* types. 166 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 167 } 168 169 /// AddGlobalDtor - Add a function to the list that will be called 170 /// when the module is unloaded. 171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 174 } 175 176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 177 // Ctor function type is void()*. 178 llvm::FunctionType* CtorFTy = 179 llvm::FunctionType::get(llvm::Type::VoidTy, 180 std::vector<const llvm::Type*>(), 181 false); 182 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 183 184 // Get the type of a ctor entry, { i32, void ()* }. 185 llvm::StructType* CtorStructTy = 186 llvm::StructType::get(llvm::Type::Int32Ty, 187 llvm::PointerType::getUnqual(CtorFTy), NULL); 188 189 // Construct the constructor and destructor arrays. 190 std::vector<llvm::Constant*> Ctors; 191 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 192 std::vector<llvm::Constant*> S; 193 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 194 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 195 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 196 } 197 198 if (!Ctors.empty()) { 199 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 200 new llvm::GlobalVariable(AT, false, 201 llvm::GlobalValue::AppendingLinkage, 202 llvm::ConstantArray::get(AT, Ctors), 203 GlobalName, 204 &TheModule); 205 } 206 } 207 208 void CodeGenModule::EmitAnnotations() { 209 if (Annotations.empty()) 210 return; 211 212 // Create a new global variable for the ConstantStruct in the Module. 213 llvm::Constant *Array = 214 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 215 Annotations.size()), 216 Annotations); 217 llvm::GlobalValue *gv = 218 new llvm::GlobalVariable(Array->getType(), false, 219 llvm::GlobalValue::AppendingLinkage, Array, 220 "llvm.global.annotations", &TheModule); 221 gv->setSection("llvm.metadata"); 222 } 223 224 /// SetGlobalValueAttributes - Set attributes for a global. 225 /// 226 /// FIXME: This is currently only done for aliases and functions, but 227 /// not for variables (these details are set in 228 /// EmitGlobalVarDefinition for variables). 229 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 230 GVALinkage Linkage, 231 llvm::GlobalValue *GV, 232 bool ForDefinition) { 233 // FIXME: Set up linkage and many other things. Note, this is a simple 234 // approximation of what we really want. 235 if (!ForDefinition) { 236 // Only a few attributes are set on declarations. 237 238 // The dllimport attribute is overridden by a subsequent declaration as 239 // dllexport. 240 if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 241 // dllimport attribute can be applied only to function decls, not to 242 // definitions. 243 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 244 if (!FD->getBody()) 245 GV->setLinkage(llvm::Function::DLLImportLinkage); 246 } else 247 GV->setLinkage(llvm::Function::DLLImportLinkage); 248 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 249 // "extern_weak" is overloaded in LLVM; we probably should have 250 // separate linkage types for this. 251 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 252 } 253 } else if (Linkage == GVA_Internal) { 254 GV->setLinkage(llvm::Function::InternalLinkage); 255 } else if (D->hasAttr<DLLExportAttr>()) { 256 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 257 // The dllexport attribute is ignored for undefined symbols. 258 if (FD->getBody()) 259 GV->setLinkage(llvm::Function::DLLExportLinkage); 260 } else { 261 GV->setLinkage(llvm::Function::DLLExportLinkage); 262 } 263 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 264 GV->setLinkage(llvm::Function::WeakAnyLinkage); 265 } else if (Linkage == GVA_ExternInline) { 266 // "extern inline" always gets available_externally linkage, which is the 267 // strongest linkage type we can give an inline function: we don't have to 268 // codegen the definition at all, yet we know that it is "ODR". 269 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 270 } else if (Linkage == GVA_Inline) { 271 // The definition of inline changes based on the language. Note that we 272 // have already handled "static inline" above, with the GVA_Internal case. 273 if (Features.CPlusPlus) { 274 // In C++, the compiler has to emit a definition in every translation unit 275 // that references the function. We should use linkonce_odr because 276 // a) if all references in this translation unit are optimized away, we 277 // don't need to codegen it. b) if the function persists, it needs to be 278 // merged with other definitions. c) C++ has the ODR, so we know the 279 // definition is dependable. 280 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 281 } else if (Features.C99) { 282 // In C99 mode, 'inline' functions are guaranteed to have a strong 283 // definition somewhere else, so we can use available_externally linkage. 284 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 285 } else { 286 // In C89 mode, an 'inline' function may only occur in one translation 287 // unit in the program, but may be extern'd in others. Give it strong 288 // external linkage. 289 GV->setLinkage(llvm::Function::ExternalLinkage); 290 } 291 } 292 293 if (ForDefinition) { 294 setGlobalVisibility(GV, D); 295 296 // Only add to llvm.used when we see a definition, otherwise we 297 // might add it multiple times or risk the value being replaced by 298 // a subsequent RAUW. 299 if (D->hasAttr<UsedAttr>()) 300 AddUsedGlobal(GV); 301 } 302 303 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 304 GV->setSection(SA->getName()); 305 } 306 307 void CodeGenModule::SetFunctionAttributes(const Decl *D, 308 const CGFunctionInfo &Info, 309 llvm::Function *F) { 310 AttributeListType AttributeList; 311 ConstructAttributeList(Info, D, AttributeList); 312 313 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 314 AttributeList.size())); 315 316 // Set the appropriate calling convention for the Function. 317 if (D->hasAttr<FastCallAttr>()) 318 F->setCallingConv(llvm::CallingConv::X86_FastCall); 319 320 if (D->hasAttr<StdCallAttr>()) 321 F->setCallingConv(llvm::CallingConv::X86_StdCall); 322 } 323 324 325 static CodeGenModule::GVALinkage 326 GetLinkageForFunctionOrMethodDecl(const Decl *D) { 327 if (isa<ObjCMethodDecl>(D)) 328 return CodeGenModule::GVA_Internal; 329 330 const FunctionDecl *FD = cast<FunctionDecl>(D); 331 // "static" and attr(always_inline) functions get internal linkage. 332 if (FD->getStorageClass() == FunctionDecl::Static || 333 FD->hasAttr<AlwaysInlineAttr>()) 334 return CodeGenModule::GVA_Internal; 335 336 if (FD->isInline()) { 337 if (FD->getStorageClass() == FunctionDecl::Extern) 338 return CodeGenModule::GVA_ExternInline; 339 return CodeGenModule::GVA_Inline; 340 } 341 342 return CodeGenModule::GVA_Normal; 343 } 344 345 /// SetFunctionAttributesForDefinition - Set function attributes 346 /// specific to a function definition. 347 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 348 llvm::Function *F) { 349 SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true); 350 351 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 352 F->addFnAttr(llvm::Attribute::NoUnwind); 353 354 if (D->hasAttr<AlwaysInlineAttr>()) 355 F->addFnAttr(llvm::Attribute::AlwaysInline); 356 357 if (D->hasAttr<NoinlineAttr>()) 358 F->addFnAttr(llvm::Attribute::NoInline); 359 } 360 361 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 362 llvm::Function *F) { 363 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 364 365 SetFunctionAttributesForDefinition(MD, F); 366 } 367 368 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 369 llvm::Function *F) { 370 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 371 372 SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false); 373 } 374 375 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 376 assert(!GV->isDeclaration() && 377 "Only globals with definition can force usage."); 378 LLVMUsed.push_back(GV); 379 } 380 381 void CodeGenModule::EmitLLVMUsed() { 382 // Don't create llvm.used if there is no need. 383 if (LLVMUsed.empty()) 384 return; 385 386 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 387 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 388 389 // Convert LLVMUsed to what ConstantArray needs. 390 std::vector<llvm::Constant*> UsedArray; 391 UsedArray.resize(LLVMUsed.size()); 392 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 393 UsedArray[i] = 394 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 395 } 396 397 llvm::GlobalVariable *GV = 398 new llvm::GlobalVariable(ATy, false, 399 llvm::GlobalValue::AppendingLinkage, 400 llvm::ConstantArray::get(ATy, UsedArray), 401 "llvm.used", &getModule()); 402 403 GV->setSection("llvm.metadata"); 404 } 405 406 void CodeGenModule::EmitDeferred() { 407 // Emit code for any potentially referenced deferred decls. Since a 408 // previously unused static decl may become used during the generation of code 409 // for a static function, iterate until no changes are made. 410 while (!DeferredDeclsToEmit.empty()) { 411 const ValueDecl *D = DeferredDeclsToEmit.back(); 412 DeferredDeclsToEmit.pop_back(); 413 414 // The mangled name for the decl must have been emitted in GlobalDeclMap. 415 // Look it up to see if it was defined with a stronger definition (e.g. an 416 // extern inline function with a strong function redefinition). If so, 417 // just ignore the deferred decl. 418 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 419 assert(CGRef && "Deferred decl wasn't referenced?"); 420 421 if (!CGRef->isDeclaration()) 422 continue; 423 424 // Otherwise, emit the definition and move on to the next one. 425 EmitGlobalDefinition(D); 426 } 427 } 428 429 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 430 /// annotation information for a given GlobalValue. The annotation struct is 431 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 432 /// GlobalValue being annotated. The second field is the constant string 433 /// created from the AnnotateAttr's annotation. The third field is a constant 434 /// string containing the name of the translation unit. The fourth field is 435 /// the line number in the file of the annotated value declaration. 436 /// 437 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 438 /// appears to. 439 /// 440 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 441 const AnnotateAttr *AA, 442 unsigned LineNo) { 443 llvm::Module *M = &getModule(); 444 445 // get [N x i8] constants for the annotation string, and the filename string 446 // which are the 2nd and 3rd elements of the global annotation structure. 447 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 448 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 449 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 450 true); 451 452 // Get the two global values corresponding to the ConstantArrays we just 453 // created to hold the bytes of the strings. 454 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 455 llvm::GlobalValue *annoGV = 456 new llvm::GlobalVariable(anno->getType(), false, 457 llvm::GlobalValue::InternalLinkage, anno, 458 GV->getName() + StringPrefix, M); 459 // translation unit name string, emitted into the llvm.metadata section. 460 llvm::GlobalValue *unitGV = 461 new llvm::GlobalVariable(unit->getType(), false, 462 llvm::GlobalValue::InternalLinkage, unit, 463 StringPrefix, M); 464 465 // Create the ConstantStruct that is the global annotion. 466 llvm::Constant *Fields[4] = { 467 llvm::ConstantExpr::getBitCast(GV, SBP), 468 llvm::ConstantExpr::getBitCast(annoGV, SBP), 469 llvm::ConstantExpr::getBitCast(unitGV, SBP), 470 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 471 }; 472 return llvm::ConstantStruct::get(Fields, 4, false); 473 } 474 475 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 476 // Never defer when EmitAllDecls is specified or the decl has 477 // attribute used. 478 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 479 return false; 480 481 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 482 // Constructors and destructors should never be deferred. 483 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 484 return false; 485 486 GVALinkage Linkage = GetLinkageForFunctionOrMethodDecl(FD); 487 488 // static, static inline, always_inline, and extern inline functions can 489 // always be deferred. 490 if (Linkage == GVA_Internal || Linkage == GVA_ExternInline) 491 return true; 492 493 // inline functions can be deferred unless we're in C89 mode. 494 if (Linkage == GVA_Inline && (Features.C99 || Features.CPlusPlus)) 495 return true; 496 497 return false; 498 } 499 500 const VarDecl *VD = cast<VarDecl>(Global); 501 assert(VD->isFileVarDecl() && "Invalid decl"); 502 return VD->getStorageClass() == VarDecl::Static; 503 } 504 505 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 506 // If this is an alias definition (which otherwise looks like a declaration) 507 // emit it now. 508 if (Global->hasAttr<AliasAttr>()) 509 return EmitAliasDefinition(Global); 510 511 // Ignore declarations, they will be emitted on their first use. 512 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 513 // Forward declarations are emitted lazily on first use. 514 if (!FD->isThisDeclarationADefinition()) 515 return; 516 } else { 517 const VarDecl *VD = cast<VarDecl>(Global); 518 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 519 520 // Forward declarations are emitted lazily on first use. 521 if (!VD->getInit() && VD->hasExternalStorage()) 522 return; 523 } 524 525 // Defer code generation when possible if this is a static definition, inline 526 // function etc. These we only want to emit if they are used. 527 if (MayDeferGeneration(Global)) { 528 // If the value has already been used, add it directly to the 529 // DeferredDeclsToEmit list. 530 const char *MangledName = getMangledName(Global); 531 if (GlobalDeclMap.count(MangledName)) 532 DeferredDeclsToEmit.push_back(Global); 533 else { 534 // Otherwise, remember that we saw a deferred decl with this name. The 535 // first use of the mangled name will cause it to move into 536 // DeferredDeclsToEmit. 537 DeferredDecls[MangledName] = Global; 538 } 539 return; 540 } 541 542 // Otherwise emit the definition. 543 EmitGlobalDefinition(Global); 544 } 545 546 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 547 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 548 EmitGlobalFunctionDefinition(FD); 549 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 550 EmitGlobalVarDefinition(VD); 551 } else { 552 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 553 } 554 } 555 556 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 557 /// module, create and return an llvm Function with the specified type. If there 558 /// is something in the module with the specified name, return it potentially 559 /// bitcasted to the right type. 560 /// 561 /// If D is non-null, it specifies a decl that correspond to this. This is used 562 /// to set the attributes on the function when it is first created. 563 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 564 const llvm::Type *Ty, 565 const FunctionDecl *D) { 566 // Lookup the entry, lazily creating it if necessary. 567 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 568 if (Entry) { 569 if (Entry->getType()->getElementType() == Ty) 570 return Entry; 571 572 // Make sure the result is of the correct type. 573 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 574 return llvm::ConstantExpr::getBitCast(Entry, PTy); 575 } 576 577 // This is the first use or definition of a mangled name. If there is a 578 // deferred decl with this name, remember that we need to emit it at the end 579 // of the file. 580 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 581 DeferredDecls.find(MangledName); 582 if (DDI != DeferredDecls.end()) { 583 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 584 // list, and remove it from DeferredDecls (since we don't need it anymore). 585 DeferredDeclsToEmit.push_back(DDI->second); 586 DeferredDecls.erase(DDI); 587 } 588 589 // This function doesn't have a complete type (for example, the return 590 // type is an incomplete struct). Use a fake type instead, and make 591 // sure not to try to set attributes. 592 bool ShouldSetAttributes = true; 593 if (!isa<llvm::FunctionType>(Ty)) { 594 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 595 std::vector<const llvm::Type*>(), false); 596 ShouldSetAttributes = false; 597 } 598 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 599 llvm::Function::ExternalLinkage, 600 "", &getModule()); 601 F->setName(MangledName); 602 if (D && ShouldSetAttributes) 603 SetFunctionAttributes(D, F); 604 Entry = F; 605 return F; 606 } 607 608 /// GetAddrOfFunction - Return the address of the given function. If Ty is 609 /// non-null, then this function will use the specified type if it has to 610 /// create it (this occurs when we see a definition of the function). 611 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 612 const llvm::Type *Ty) { 613 // If there was no specific requested type, just convert it now. 614 if (!Ty) 615 Ty = getTypes().ConvertType(D->getType()); 616 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 617 } 618 619 /// CreateRuntimeFunction - Create a new runtime function with the specified 620 /// type and name. 621 llvm::Constant * 622 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 623 const char *Name) { 624 // Convert Name to be a uniqued string from the IdentifierInfo table. 625 Name = getContext().Idents.get(Name).getName(); 626 return GetOrCreateLLVMFunction(Name, FTy, 0); 627 } 628 629 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 630 /// create and return an llvm GlobalVariable with the specified type. If there 631 /// is something in the module with the specified name, return it potentially 632 /// bitcasted to the right type. 633 /// 634 /// If D is non-null, it specifies a decl that correspond to this. This is used 635 /// to set the attributes on the global when it is first created. 636 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 637 const llvm::PointerType*Ty, 638 const VarDecl *D) { 639 // Lookup the entry, lazily creating it if necessary. 640 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 641 if (Entry) { 642 if (Entry->getType() == Ty) 643 return Entry; 644 645 // Make sure the result is of the correct type. 646 return llvm::ConstantExpr::getBitCast(Entry, Ty); 647 } 648 649 // We don't support __thread yet. 650 if (D && D->isThreadSpecified()) 651 ErrorUnsupported(D, "thread local ('__thread') variable", true); 652 653 // This is the first use or definition of a mangled name. If there is a 654 // deferred decl with this name, remember that we need to emit it at the end 655 // of the file. 656 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 657 DeferredDecls.find(MangledName); 658 if (DDI != DeferredDecls.end()) { 659 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 660 // list, and remove it from DeferredDecls (since we don't need it anymore). 661 DeferredDeclsToEmit.push_back(DDI->second); 662 DeferredDecls.erase(DDI); 663 } 664 665 llvm::GlobalVariable *GV = 666 new llvm::GlobalVariable(Ty->getElementType(), false, 667 llvm::GlobalValue::ExternalLinkage, 668 0, "", &getModule(), 669 0, Ty->getAddressSpace()); 670 GV->setName(MangledName); 671 672 // Handle things which are present even on external declarations. 673 if (D) { 674 // FIXME: This code is overly simple and should be merged with 675 // other global handling. 676 GV->setConstant(D->getType().isConstant(Context)); 677 678 // FIXME: Merge with other attribute handling code. 679 if (D->getStorageClass() == VarDecl::PrivateExtern) 680 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 681 682 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 683 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 684 } 685 686 return Entry = GV; 687 } 688 689 690 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 691 /// given global variable. If Ty is non-null and if the global doesn't exist, 692 /// then it will be greated with the specified type instead of whatever the 693 /// normal requested type would be. 694 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 695 const llvm::Type *Ty) { 696 assert(D->hasGlobalStorage() && "Not a global variable"); 697 QualType ASTTy = D->getType(); 698 if (Ty == 0) 699 Ty = getTypes().ConvertTypeForMem(ASTTy); 700 701 const llvm::PointerType *PTy = 702 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 703 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 704 } 705 706 /// CreateRuntimeVariable - Create a new runtime global variable with the 707 /// specified type and name. 708 llvm::Constant * 709 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 710 const char *Name) { 711 // Convert Name to be a uniqued string from the IdentifierInfo table. 712 Name = getContext().Idents.get(Name).getName(); 713 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 714 } 715 716 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 717 llvm::Constant *Init = 0; 718 QualType ASTTy = D->getType(); 719 720 if (D->getInit() == 0) { 721 // This is a tentative definition; tentative definitions are 722 // implicitly initialized with { 0 } 723 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 724 if (ASTTy->isIncompleteArrayType()) { 725 // An incomplete array is normally [ TYPE x 0 ], but we need 726 // to fix it to [ TYPE x 1 ]. 727 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 728 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 729 } 730 Init = llvm::Constant::getNullValue(InitTy); 731 } else { 732 Init = EmitConstantExpr(D->getInit(), D->getType()); 733 if (!Init) { 734 ErrorUnsupported(D, "static initializer"); 735 QualType T = D->getInit()->getType(); 736 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 737 } 738 } 739 740 const llvm::Type* InitType = Init->getType(); 741 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 742 743 // Strip off a bitcast if we got one back. 744 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 745 assert(CE->getOpcode() == llvm::Instruction::BitCast); 746 Entry = CE->getOperand(0); 747 } 748 749 // Entry is now either a Function or GlobalVariable. 750 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 751 752 // If we already have this global and it has an initializer, then 753 // we are in the rare situation where we emitted the defining 754 // declaration of the global and are now being asked to emit a 755 // definition which would be common. This occurs, for example, in 756 // the following situation because statics can be emitted out of 757 // order: 758 // 759 // static int x; 760 // static int *y = &x; 761 // static int x = 10; 762 // int **z = &y; 763 // 764 // Bail here so we don't blow away the definition. Note that if we 765 // can't distinguish here if we emitted a definition with a null 766 // initializer, but this case is safe. 767 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 768 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 769 return; 770 } 771 772 // We have a definition after a declaration with the wrong type. 773 // We must make a new GlobalVariable* and update everything that used OldGV 774 // (a declaration or tentative definition) with the new GlobalVariable* 775 // (which will be a definition). 776 // 777 // This happens if there is a prototype for a global (e.g. 778 // "extern int x[];") and then a definition of a different type (e.g. 779 // "int x[10];"). This also happens when an initializer has a different type 780 // from the type of the global (this happens with unions). 781 if (GV == 0 || 782 GV->getType()->getElementType() != InitType || 783 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 784 785 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 786 GlobalDeclMap.erase(getMangledName(D)); 787 788 // Make a new global with the correct type, this is now guaranteed to work. 789 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 790 GV->takeName(cast<llvm::GlobalValue>(Entry)); 791 792 // Replace all uses of the old global with the new global 793 llvm::Constant *NewPtrForOldDecl = 794 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 795 Entry->replaceAllUsesWith(NewPtrForOldDecl); 796 797 // Erase the old global, since it is no longer used. 798 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 799 } 800 801 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 802 SourceManager &SM = Context.getSourceManager(); 803 AddAnnotation(EmitAnnotateAttr(GV, AA, 804 SM.getInstantiationLineNumber(D->getLocation()))); 805 } 806 807 GV->setInitializer(Init); 808 GV->setConstant(D->getType().isConstant(Context)); 809 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 810 811 // Set the llvm linkage type as appropriate. 812 if (D->getStorageClass() == VarDecl::Static) 813 GV->setLinkage(llvm::Function::InternalLinkage); 814 else if (D->hasAttr<DLLImportAttr>()) 815 GV->setLinkage(llvm::Function::DLLImportLinkage); 816 else if (D->hasAttr<DLLExportAttr>()) 817 GV->setLinkage(llvm::Function::DLLExportLinkage); 818 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 819 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 820 else if (!CompileOpts.NoCommon && 821 (!D->hasExternalStorage() && !D->getInit())) 822 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 823 else 824 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 825 826 setGlobalVisibility(GV, D); 827 828 if (D->hasAttr<UsedAttr>()) 829 AddUsedGlobal(GV); 830 831 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 832 GV->setSection(SA->getName()); 833 834 // Emit global variable debug information. 835 if (CGDebugInfo *DI = getDebugInfo()) { 836 DI->setLocation(D->getLocation()); 837 DI->EmitGlobalVariable(GV, D); 838 } 839 } 840 841 842 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 843 const llvm::FunctionType *Ty; 844 845 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 846 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 847 848 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 849 } else { 850 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 851 852 // As a special case, make sure that definitions of K&R function 853 // "type foo()" aren't declared as varargs (which forces the backend 854 // to do unnecessary work). 855 if (D->getType()->isFunctionNoProtoType()) { 856 assert(Ty->isVarArg() && "Didn't lower type as expected"); 857 // Due to stret, the lowered function could have arguments. 858 // Just create the same type as was lowered by ConvertType 859 // but strip off the varargs bit. 860 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 861 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 862 } 863 } 864 865 // Get or create the prototype for teh function. 866 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 867 868 // Strip off a bitcast if we got one back. 869 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 870 assert(CE->getOpcode() == llvm::Instruction::BitCast); 871 Entry = CE->getOperand(0); 872 } 873 874 875 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 876 // If the types mismatch then we have to rewrite the definition. 877 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 878 "Shouldn't replace non-declaration"); 879 880 // F is the Function* for the one with the wrong type, we must make a new 881 // Function* and update everything that used F (a declaration) with the new 882 // Function* (which will be a definition). 883 // 884 // This happens if there is a prototype for a function 885 // (e.g. "int f()") and then a definition of a different type 886 // (e.g. "int f(int x)"). Start by making a new function of the 887 // correct type, RAUW, then steal the name. 888 GlobalDeclMap.erase(getMangledName(D)); 889 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 890 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 891 892 // Replace uses of F with the Function we will endow with a body. 893 llvm::Constant *NewPtrForOldDecl = 894 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 895 Entry->replaceAllUsesWith(NewPtrForOldDecl); 896 897 // Ok, delete the old function now, which is dead. 898 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 899 900 Entry = NewFn; 901 } 902 903 llvm::Function *Fn = cast<llvm::Function>(Entry); 904 905 CodeGenFunction(*this).GenerateCode(D, Fn); 906 907 SetFunctionAttributesForDefinition(D, Fn); 908 909 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 910 AddGlobalCtor(Fn, CA->getPriority()); 911 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 912 AddGlobalDtor(Fn, DA->getPriority()); 913 } 914 915 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 916 const AliasAttr *AA = D->getAttr<AliasAttr>(); 917 assert(AA && "Not an alias?"); 918 919 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 920 921 // Unique the name through the identifier table. 922 const char *AliaseeName = AA->getAliasee().c_str(); 923 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 924 925 // Create a reference to the named value. This ensures that it is emitted 926 // if a deferred decl. 927 llvm::Constant *Aliasee; 928 if (isa<llvm::FunctionType>(DeclTy)) 929 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 930 else 931 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 932 llvm::PointerType::getUnqual(DeclTy), 0); 933 934 // Create the new alias itself, but don't set a name yet. 935 llvm::GlobalValue *GA = 936 new llvm::GlobalAlias(Aliasee->getType(), 937 llvm::Function::ExternalLinkage, 938 "", Aliasee, &getModule()); 939 940 // See if there is already something with the alias' name in the module. 941 const char *MangledName = getMangledName(D); 942 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 943 944 if (Entry && !Entry->isDeclaration()) { 945 // If there is a definition in the module, then it wins over the alias. 946 // This is dubious, but allow it to be safe. Just ignore the alias. 947 GA->eraseFromParent(); 948 return; 949 } 950 951 if (Entry) { 952 // If there is a declaration in the module, then we had an extern followed 953 // by the alias, as in: 954 // extern int test6(); 955 // ... 956 // int test6() __attribute__((alias("test7"))); 957 // 958 // Remove it and replace uses of it with the alias. 959 960 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 961 Entry->getType())); 962 Entry->eraseFromParent(); 963 } 964 965 // Now we know that there is no conflict, set the name. 966 Entry = GA; 967 GA->setName(MangledName); 968 969 // Alias should never be internal or inline. 970 SetGlobalValueAttributes(D, GVA_Normal, GA, true); 971 } 972 973 /// getBuiltinLibFunction - Given a builtin id for a function like 974 /// "__builtin_fabsf", return a Function* for "fabsf". 975 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 976 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 977 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 978 "isn't a lib fn"); 979 980 // Get the name, skip over the __builtin_ prefix (if necessary). 981 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 982 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 983 Name += 10; 984 985 // Get the type for the builtin. 986 Builtin::Context::GetBuiltinTypeError Error; 987 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 988 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 989 990 const llvm::FunctionType *Ty = 991 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 992 993 // Unique the name through the identifier table. 994 Name = getContext().Idents.get(Name).getName(); 995 // FIXME: param attributes for sext/zext etc. 996 return GetOrCreateLLVMFunction(Name, Ty, 0); 997 } 998 999 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1000 unsigned NumTys) { 1001 return llvm::Intrinsic::getDeclaration(&getModule(), 1002 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1003 } 1004 1005 llvm::Function *CodeGenModule::getMemCpyFn() { 1006 if (MemCpyFn) return MemCpyFn; 1007 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1008 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1009 } 1010 1011 llvm::Function *CodeGenModule::getMemMoveFn() { 1012 if (MemMoveFn) return MemMoveFn; 1013 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1014 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1015 } 1016 1017 llvm::Function *CodeGenModule::getMemSetFn() { 1018 if (MemSetFn) return MemSetFn; 1019 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1020 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1021 } 1022 1023 static void appendFieldAndPadding(CodeGenModule &CGM, 1024 std::vector<llvm::Constant*>& Fields, 1025 FieldDecl *FieldD, FieldDecl *NextFieldD, 1026 llvm::Constant* Field, 1027 RecordDecl* RD, const llvm::StructType *STy) { 1028 // Append the field. 1029 Fields.push_back(Field); 1030 1031 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1032 1033 int NextStructFieldNo; 1034 if (!NextFieldD) { 1035 NextStructFieldNo = STy->getNumElements(); 1036 } else { 1037 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1038 } 1039 1040 // Append padding 1041 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1042 llvm::Constant *C = 1043 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1044 1045 Fields.push_back(C); 1046 } 1047 } 1048 1049 llvm::Constant *CodeGenModule:: 1050 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1051 std::string str; 1052 unsigned StringLength; 1053 1054 bool isUTF16 = false; 1055 if (Literal->containsNonAsciiOrNull()) { 1056 // Convert from UTF-8 to UTF-16. 1057 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1058 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1059 UTF16 *ToPtr = &ToBuf[0]; 1060 1061 ConversionResult Result; 1062 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1063 &ToPtr, ToPtr+Literal->getByteLength(), 1064 strictConversion); 1065 if (Result == conversionOK) { 1066 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1067 // without doing more surgery to this routine. Since we aren't explicitly 1068 // checking for endianness here, it's also a bug (when generating code for 1069 // a target that doesn't match the host endianness). Modeling this as an 1070 // i16 array is likely the cleanest solution. 1071 StringLength = ToPtr-&ToBuf[0]; 1072 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1073 isUTF16 = true; 1074 } else if (Result == sourceIllegal) { 1075 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1076 str.assign(Literal->getStrData(), Literal->getByteLength()); 1077 StringLength = str.length(); 1078 } else 1079 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1080 1081 } else { 1082 str.assign(Literal->getStrData(), Literal->getByteLength()); 1083 StringLength = str.length(); 1084 } 1085 llvm::StringMapEntry<llvm::Constant *> &Entry = 1086 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1087 1088 if (llvm::Constant *C = Entry.getValue()) 1089 return C; 1090 1091 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1092 llvm::Constant *Zeros[] = { Zero, Zero }; 1093 1094 if (!CFConstantStringClassRef) { 1095 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1096 Ty = llvm::ArrayType::get(Ty, 0); 1097 1098 // FIXME: This is fairly broken if 1099 // __CFConstantStringClassReference is already defined, in that it 1100 // will get renamed and the user will most likely see an opaque 1101 // error message. This is a general issue with relying on 1102 // particular names. 1103 llvm::GlobalVariable *GV = 1104 new llvm::GlobalVariable(Ty, false, 1105 llvm::GlobalVariable::ExternalLinkage, 0, 1106 "__CFConstantStringClassReference", 1107 &getModule()); 1108 1109 // Decay array -> ptr 1110 CFConstantStringClassRef = 1111 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1112 } 1113 1114 QualType CFTy = getContext().getCFConstantStringType(); 1115 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1116 1117 const llvm::StructType *STy = 1118 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1119 1120 std::vector<llvm::Constant*> Fields; 1121 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1122 1123 // Class pointer. 1124 FieldDecl *CurField = *Field++; 1125 FieldDecl *NextField = *Field++; 1126 appendFieldAndPadding(*this, Fields, CurField, NextField, 1127 CFConstantStringClassRef, CFRD, STy); 1128 1129 // Flags. 1130 CurField = NextField; 1131 NextField = *Field++; 1132 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1133 appendFieldAndPadding(*this, Fields, CurField, NextField, 1134 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1135 : llvm::ConstantInt::get(Ty, 0x07C8), 1136 CFRD, STy); 1137 1138 // String pointer. 1139 CurField = NextField; 1140 NextField = *Field++; 1141 llvm::Constant *C = llvm::ConstantArray::get(str); 1142 1143 const char *Sect, *Prefix; 1144 bool isConstant; 1145 if (isUTF16) { 1146 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1147 Sect = getContext().Target.getUnicodeStringSection(); 1148 // FIXME: Why does GCC not set constant here? 1149 isConstant = false; 1150 } else { 1151 Prefix = getContext().Target.getStringSymbolPrefix(true); 1152 Sect = getContext().Target.getCFStringDataSection(); 1153 // FIXME: -fwritable-strings should probably affect this, but we 1154 // are following gcc here. 1155 isConstant = true; 1156 } 1157 llvm::GlobalVariable *GV = 1158 new llvm::GlobalVariable(C->getType(), isConstant, 1159 llvm::GlobalValue::InternalLinkage, 1160 C, Prefix, &getModule()); 1161 if (Sect) 1162 GV->setSection(Sect); 1163 if (isUTF16) { 1164 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1165 GV->setAlignment(Align); 1166 } 1167 appendFieldAndPadding(*this, Fields, CurField, NextField, 1168 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1169 CFRD, STy); 1170 1171 // String length. 1172 CurField = NextField; 1173 NextField = 0; 1174 Ty = getTypes().ConvertType(getContext().LongTy); 1175 appendFieldAndPadding(*this, Fields, CurField, NextField, 1176 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1177 1178 // The struct. 1179 C = llvm::ConstantStruct::get(STy, Fields); 1180 GV = new llvm::GlobalVariable(C->getType(), true, 1181 llvm::GlobalVariable::InternalLinkage, C, 1182 getContext().Target.getCFStringSymbolPrefix(), 1183 &getModule()); 1184 if (const char *Sect = getContext().Target.getCFStringSection()) 1185 GV->setSection(Sect); 1186 Entry.setValue(GV); 1187 1188 return GV; 1189 } 1190 1191 /// GetStringForStringLiteral - Return the appropriate bytes for a 1192 /// string literal, properly padded to match the literal type. 1193 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1194 const char *StrData = E->getStrData(); 1195 unsigned Len = E->getByteLength(); 1196 1197 const ConstantArrayType *CAT = 1198 getContext().getAsConstantArrayType(E->getType()); 1199 assert(CAT && "String isn't pointer or array!"); 1200 1201 // Resize the string to the right size. 1202 std::string Str(StrData, StrData+Len); 1203 uint64_t RealLen = CAT->getSize().getZExtValue(); 1204 1205 if (E->isWide()) 1206 RealLen *= getContext().Target.getWCharWidth()/8; 1207 1208 Str.resize(RealLen, '\0'); 1209 1210 return Str; 1211 } 1212 1213 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1214 /// constant array for the given string literal. 1215 llvm::Constant * 1216 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1217 // FIXME: This can be more efficient. 1218 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1219 } 1220 1221 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1222 /// array for the given ObjCEncodeExpr node. 1223 llvm::Constant * 1224 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1225 std::string Str; 1226 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1227 1228 return GetAddrOfConstantCString(Str); 1229 } 1230 1231 1232 /// GenerateWritableString -- Creates storage for a string literal. 1233 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1234 bool constant, 1235 CodeGenModule &CGM, 1236 const char *GlobalName) { 1237 // Create Constant for this string literal. Don't add a '\0'. 1238 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1239 1240 // Create a global variable for this string 1241 return new llvm::GlobalVariable(C->getType(), constant, 1242 llvm::GlobalValue::InternalLinkage, 1243 C, GlobalName, &CGM.getModule()); 1244 } 1245 1246 /// GetAddrOfConstantString - Returns a pointer to a character array 1247 /// containing the literal. This contents are exactly that of the 1248 /// given string, i.e. it will not be null terminated automatically; 1249 /// see GetAddrOfConstantCString. Note that whether the result is 1250 /// actually a pointer to an LLVM constant depends on 1251 /// Feature.WriteableStrings. 1252 /// 1253 /// The result has pointer to array type. 1254 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1255 const char *GlobalName) { 1256 bool IsConstant = !Features.WritableStrings; 1257 1258 // Get the default prefix if a name wasn't specified. 1259 if (!GlobalName) 1260 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1261 1262 // Don't share any string literals if strings aren't constant. 1263 if (!IsConstant) 1264 return GenerateStringLiteral(str, false, *this, GlobalName); 1265 1266 llvm::StringMapEntry<llvm::Constant *> &Entry = 1267 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1268 1269 if (Entry.getValue()) 1270 return Entry.getValue(); 1271 1272 // Create a global variable for this. 1273 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1274 Entry.setValue(C); 1275 return C; 1276 } 1277 1278 /// GetAddrOfConstantCString - Returns a pointer to a character 1279 /// array containing the literal and a terminating '\-' 1280 /// character. The result has pointer to array type. 1281 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1282 const char *GlobalName){ 1283 return GetAddrOfConstantString(str + '\0', GlobalName); 1284 } 1285 1286 /// EmitObjCPropertyImplementations - Emit information for synthesized 1287 /// properties for an implementation. 1288 void CodeGenModule::EmitObjCPropertyImplementations(const 1289 ObjCImplementationDecl *D) { 1290 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1291 e = D->propimpl_end(); i != e; ++i) { 1292 ObjCPropertyImplDecl *PID = *i; 1293 1294 // Dynamic is just for type-checking. 1295 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1296 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1297 1298 // Determine which methods need to be implemented, some may have 1299 // been overridden. Note that ::isSynthesized is not the method 1300 // we want, that just indicates if the decl came from a 1301 // property. What we want to know is if the method is defined in 1302 // this implementation. 1303 if (!D->getInstanceMethod(PD->getGetterName())) 1304 CodeGenFunction(*this).GenerateObjCGetter( 1305 const_cast<ObjCImplementationDecl *>(D), PID); 1306 if (!PD->isReadOnly() && 1307 !D->getInstanceMethod(PD->getSetterName())) 1308 CodeGenFunction(*this).GenerateObjCSetter( 1309 const_cast<ObjCImplementationDecl *>(D), PID); 1310 } 1311 } 1312 } 1313 1314 /// EmitNamespace - Emit all declarations in a namespace. 1315 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1316 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1317 E = ND->decls_end(getContext()); 1318 I != E; ++I) 1319 EmitTopLevelDecl(*I); 1320 } 1321 1322 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1323 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1324 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1325 ErrorUnsupported(LSD, "linkage spec"); 1326 return; 1327 } 1328 1329 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1330 E = LSD->decls_end(getContext()); 1331 I != E; ++I) 1332 EmitTopLevelDecl(*I); 1333 } 1334 1335 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1336 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1337 // If an error has occurred, stop code generation, but continue 1338 // parsing and semantic analysis (to ensure all warnings and errors 1339 // are emitted). 1340 if (Diags.hasErrorOccurred()) 1341 return; 1342 1343 switch (D->getKind()) { 1344 case Decl::CXXMethod: 1345 case Decl::Function: 1346 case Decl::Var: 1347 EmitGlobal(cast<ValueDecl>(D)); 1348 break; 1349 1350 case Decl::Namespace: 1351 EmitNamespace(cast<NamespaceDecl>(D)); 1352 break; 1353 1354 // Objective-C Decls 1355 1356 // Forward declarations, no (immediate) code generation. 1357 case Decl::ObjCClass: 1358 case Decl::ObjCForwardProtocol: 1359 case Decl::ObjCCategory: 1360 break; 1361 case Decl::ObjCInterface: 1362 // If we already laid out this interface due to an @class, and if we 1363 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1364 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1365 break; 1366 1367 case Decl::ObjCProtocol: 1368 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1369 break; 1370 1371 case Decl::ObjCCategoryImpl: 1372 // Categories have properties but don't support synthesize so we 1373 // can ignore them here. 1374 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1375 break; 1376 1377 case Decl::ObjCImplementation: { 1378 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1379 EmitObjCPropertyImplementations(OMD); 1380 Runtime->GenerateClass(OMD); 1381 break; 1382 } 1383 case Decl::ObjCMethod: { 1384 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1385 // If this is not a prototype, emit the body. 1386 if (OMD->getBody()) 1387 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1388 break; 1389 } 1390 case Decl::ObjCCompatibleAlias: 1391 // compatibility-alias is a directive and has no code gen. 1392 break; 1393 1394 case Decl::LinkageSpec: 1395 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1396 break; 1397 1398 case Decl::FileScopeAsm: { 1399 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1400 std::string AsmString(AD->getAsmString()->getStrData(), 1401 AD->getAsmString()->getByteLength()); 1402 1403 const std::string &S = getModule().getModuleInlineAsm(); 1404 if (S.empty()) 1405 getModule().setModuleInlineAsm(AsmString); 1406 else 1407 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1408 break; 1409 } 1410 1411 default: 1412 // Make sure we handled everything we should, every other kind is 1413 // a non-top-level decl. FIXME: Would be nice to have an 1414 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1415 // that easily. 1416 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1417 } 1418 } 1419