1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 423 if (PGOStats.hasDiagnostics()) 424 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 425 } 426 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 427 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 428 EmitGlobalAnnotations(); 429 EmitStaticExternCAliases(); 430 EmitDeferredUnusedCoverageMappings(); 431 if (CoverageMapping) 432 CoverageMapping->emit(); 433 if (CodeGenOpts.SanitizeCfiCrossDso) { 434 CodeGenFunction(*this).EmitCfiCheckFail(); 435 CodeGenFunction(*this).EmitCfiCheckStub(); 436 } 437 emitAtAvailableLinkGuard(); 438 emitLLVMUsed(); 439 if (SanStats) 440 SanStats->finish(); 441 442 if (CodeGenOpts.Autolink && 443 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 444 EmitModuleLinkOptions(); 445 } 446 447 // Record mregparm value now so it is visible through rest of codegen. 448 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 449 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 450 CodeGenOpts.NumRegisterParameters); 451 452 if (CodeGenOpts.DwarfVersion) { 453 // We actually want the latest version when there are conflicts. 454 // We can change from Warning to Latest if such mode is supported. 455 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 456 CodeGenOpts.DwarfVersion); 457 } 458 if (CodeGenOpts.EmitCodeView) { 459 // Indicate that we want CodeView in the metadata. 460 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 461 } 462 if (CodeGenOpts.ControlFlowGuard) { 463 // We want function ID tables for Control Flow Guard. 464 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 465 } 466 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 467 // We don't support LTO with 2 with different StrictVTablePointers 468 // FIXME: we could support it by stripping all the information introduced 469 // by StrictVTablePointers. 470 471 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 472 473 llvm::Metadata *Ops[2] = { 474 llvm::MDString::get(VMContext, "StrictVTablePointers"), 475 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 476 llvm::Type::getInt32Ty(VMContext), 1))}; 477 478 getModule().addModuleFlag(llvm::Module::Require, 479 "StrictVTablePointersRequirement", 480 llvm::MDNode::get(VMContext, Ops)); 481 } 482 if (DebugInfo) 483 // We support a single version in the linked module. The LLVM 484 // parser will drop debug info with a different version number 485 // (and warn about it, too). 486 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 487 llvm::DEBUG_METADATA_VERSION); 488 489 // We need to record the widths of enums and wchar_t, so that we can generate 490 // the correct build attributes in the ARM backend. wchar_size is also used by 491 // TargetLibraryInfo. 492 uint64_t WCharWidth = 493 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 494 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 495 496 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 497 if ( Arch == llvm::Triple::arm 498 || Arch == llvm::Triple::armeb 499 || Arch == llvm::Triple::thumb 500 || Arch == llvm::Triple::thumbeb) { 501 // The minimum width of an enum in bytes 502 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 503 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 504 } 505 506 if (CodeGenOpts.SanitizeCfiCrossDso) { 507 // Indicate that we want cross-DSO control flow integrity checks. 508 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 509 } 510 511 if (CodeGenOpts.CFProtectionReturn && 512 Target.checkCFProtectionReturnSupported(getDiags())) { 513 // Indicate that we want to instrument return control flow protection. 514 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 515 1); 516 } 517 518 if (CodeGenOpts.CFProtectionBranch && 519 Target.checkCFProtectionBranchSupported(getDiags())) { 520 // Indicate that we want to instrument branch control flow protection. 521 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 522 1); 523 } 524 525 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 526 // Indicate whether __nvvm_reflect should be configured to flush denormal 527 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 528 // property.) 529 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 530 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 531 } 532 533 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 534 if (LangOpts.OpenCL) { 535 EmitOpenCLMetadata(); 536 // Emit SPIR version. 537 if (getTriple().getArch() == llvm::Triple::spir || 538 getTriple().getArch() == llvm::Triple::spir64) { 539 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 540 // opencl.spir.version named metadata. 541 llvm::Metadata *SPIRVerElts[] = { 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, LangOpts.OpenCLVersion / 100)), 544 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 545 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 546 llvm::NamedMDNode *SPIRVerMD = 547 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 548 llvm::LLVMContext &Ctx = TheModule.getContext(); 549 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 550 } 551 } 552 553 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 554 assert(PLevel < 3 && "Invalid PIC Level"); 555 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 556 if (Context.getLangOpts().PIE) 557 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 558 } 559 560 if (CodeGenOpts.NoPLT) 561 getModule().setRtLibUseGOT(); 562 563 SimplifyPersonality(); 564 565 if (getCodeGenOpts().EmitDeclMetadata) 566 EmitDeclMetadata(); 567 568 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 569 EmitCoverageFile(); 570 571 if (DebugInfo) 572 DebugInfo->finalize(); 573 574 EmitVersionIdentMetadata(); 575 576 EmitTargetMetadata(); 577 } 578 579 void CodeGenModule::EmitOpenCLMetadata() { 580 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 581 // opencl.ocl.version named metadata node. 582 llvm::Metadata *OCLVerElts[] = { 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, LangOpts.OpenCLVersion / 100)), 585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 586 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 587 llvm::NamedMDNode *OCLVerMD = 588 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 589 llvm::LLVMContext &Ctx = TheModule.getContext(); 590 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 591 } 592 593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 594 // Make sure that this type is translated. 595 Types.UpdateCompletedType(TD); 596 } 597 598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 599 // Make sure that this type is translated. 600 Types.RefreshTypeCacheForClass(RD); 601 } 602 603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 604 if (!TBAA) 605 return nullptr; 606 return TBAA->getTypeInfo(QTy); 607 } 608 609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 610 if (!TBAA) 611 return TBAAAccessInfo(); 612 return TBAA->getAccessInfo(AccessType); 613 } 614 615 TBAAAccessInfo 616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 617 if (!TBAA) 618 return TBAAAccessInfo(); 619 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 620 } 621 622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 623 if (!TBAA) 624 return nullptr; 625 return TBAA->getTBAAStructInfo(QTy); 626 } 627 628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 629 if (!TBAA) 630 return nullptr; 631 return TBAA->getBaseTypeInfo(QTy); 632 } 633 634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 635 if (!TBAA) 636 return nullptr; 637 return TBAA->getAccessTagInfo(Info); 638 } 639 640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 641 TBAAAccessInfo TargetInfo) { 642 if (!TBAA) 643 return TBAAAccessInfo(); 644 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 645 } 646 647 TBAAAccessInfo 648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 649 TBAAAccessInfo InfoB) { 650 if (!TBAA) 651 return TBAAAccessInfo(); 652 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 653 } 654 655 TBAAAccessInfo 656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 657 TBAAAccessInfo SrcInfo) { 658 if (!TBAA) 659 return TBAAAccessInfo(); 660 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 661 } 662 663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 664 TBAAAccessInfo TBAAInfo) { 665 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 666 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 667 } 668 669 void CodeGenModule::DecorateInstructionWithInvariantGroup( 670 llvm::Instruction *I, const CXXRecordDecl *RD) { 671 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 672 llvm::MDNode::get(getLLVMContext(), {})); 673 } 674 675 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 676 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 677 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 678 } 679 680 /// ErrorUnsupported - Print out an error that codegen doesn't support the 681 /// specified stmt yet. 682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 683 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 684 "cannot compile this %0 yet"); 685 std::string Msg = Type; 686 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 687 << Msg << S->getSourceRange(); 688 } 689 690 /// ErrorUnsupported - Print out an error that codegen doesn't support the 691 /// specified decl yet. 692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 693 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 694 "cannot compile this %0 yet"); 695 std::string Msg = Type; 696 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 697 } 698 699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 700 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 701 } 702 703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 704 const NamedDecl *D) const { 705 if (GV->hasDLLImportStorageClass()) 706 return; 707 // Internal definitions always have default visibility. 708 if (GV->hasLocalLinkage()) { 709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 710 return; 711 } 712 if (!D) 713 return; 714 // Set visibility for definitions. 715 LinkageInfo LV = D->getLinkageAndVisibility(); 716 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 717 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 718 } 719 720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 721 llvm::GlobalValue *GV) { 722 if (GV->hasLocalLinkage()) 723 return true; 724 725 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 726 return true; 727 728 // DLLImport explicitly marks the GV as external. 729 if (GV->hasDLLImportStorageClass()) 730 return false; 731 732 const llvm::Triple &TT = CGM.getTriple(); 733 // Every other GV is local on COFF. 734 // Make an exception for windows OS in the triple: Some firmware builds use 735 // *-win32-macho triples. This (accidentally?) produced windows relocations 736 // without GOT tables in older clang versions; Keep this behaviour. 737 // FIXME: even thread local variables? 738 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 739 return true; 740 741 // Only handle COFF and ELF for now. 742 if (!TT.isOSBinFormatELF()) 743 return false; 744 745 // If this is not an executable, don't assume anything is local. 746 const auto &CGOpts = CGM.getCodeGenOpts(); 747 llvm::Reloc::Model RM = CGOpts.RelocationModel; 748 const auto &LOpts = CGM.getLangOpts(); 749 if (RM != llvm::Reloc::Static && !LOpts.PIE) 750 return false; 751 752 // A definition cannot be preempted from an executable. 753 if (!GV->isDeclarationForLinker()) 754 return true; 755 756 // Most PIC code sequences that assume that a symbol is local cannot produce a 757 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 758 // depended, it seems worth it to handle it here. 759 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 760 return false; 761 762 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 763 llvm::Triple::ArchType Arch = TT.getArch(); 764 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 765 Arch == llvm::Triple::ppc64le) 766 return false; 767 768 // If we can use copy relocations we can assume it is local. 769 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 770 if (!Var->isThreadLocal() && 771 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 772 return true; 773 774 // If we can use a plt entry as the symbol address we can assume it 775 // is local. 776 // FIXME: This should work for PIE, but the gold linker doesn't support it. 777 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 778 return true; 779 780 // Otherwise don't assue it is local. 781 return false; 782 } 783 784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 785 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 786 } 787 788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 789 GlobalDecl GD) const { 790 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 791 // C++ destructors have a few C++ ABI specific special cases. 792 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 793 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 794 return; 795 } 796 setDLLImportDLLExport(GV, D); 797 } 798 799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 800 const NamedDecl *D) const { 801 if (D && D->isExternallyVisible()) { 802 if (D->hasAttr<DLLImportAttr>()) 803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 804 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 805 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 806 } 807 } 808 809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 810 GlobalDecl GD) const { 811 setDLLImportDLLExport(GV, GD); 812 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 813 } 814 815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 816 const NamedDecl *D) const { 817 setDLLImportDLLExport(GV, D); 818 setGlobalVisibilityAndLocal(GV, D); 819 } 820 821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 setGlobalVisibility(GV, D); 824 setDSOLocal(GV); 825 } 826 827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 828 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 829 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 830 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 831 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 832 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 833 } 834 835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 836 CodeGenOptions::TLSModel M) { 837 switch (M) { 838 case CodeGenOptions::GeneralDynamicTLSModel: 839 return llvm::GlobalVariable::GeneralDynamicTLSModel; 840 case CodeGenOptions::LocalDynamicTLSModel: 841 return llvm::GlobalVariable::LocalDynamicTLSModel; 842 case CodeGenOptions::InitialExecTLSModel: 843 return llvm::GlobalVariable::InitialExecTLSModel; 844 case CodeGenOptions::LocalExecTLSModel: 845 return llvm::GlobalVariable::LocalExecTLSModel; 846 } 847 llvm_unreachable("Invalid TLS model!"); 848 } 849 850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 851 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 852 853 llvm::GlobalValue::ThreadLocalMode TLM; 854 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 855 856 // Override the TLS model if it is explicitly specified. 857 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 858 TLM = GetLLVMTLSModel(Attr->getModel()); 859 } 860 861 GV->setThreadLocalMode(TLM); 862 } 863 864 static void AppendTargetMangling(const CodeGenModule &CGM, 865 const TargetAttr *Attr, raw_ostream &Out) { 866 if (Attr->isDefaultVersion()) 867 return; 868 869 Out << '.'; 870 const auto &Target = CGM.getTarget(); 871 TargetAttr::ParsedTargetAttr Info = 872 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 873 // Multiversioning doesn't allow "no-${feature}", so we can 874 // only have "+" prefixes here. 875 assert(LHS.startswith("+") && RHS.startswith("+") && 876 "Features should always have a prefix."); 877 return Target.multiVersionSortPriority(LHS.substr(1)) > 878 Target.multiVersionSortPriority(RHS.substr(1)); 879 }); 880 881 bool IsFirst = true; 882 883 if (!Info.Architecture.empty()) { 884 IsFirst = false; 885 Out << "arch_" << Info.Architecture; 886 } 887 888 for (StringRef Feat : Info.Features) { 889 if (!IsFirst) 890 Out << '_'; 891 IsFirst = false; 892 Out << Feat.substr(1); 893 } 894 } 895 896 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 897 const NamedDecl *ND, 898 bool OmitTargetMangling = false) { 899 SmallString<256> Buffer; 900 llvm::raw_svector_ostream Out(Buffer); 901 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 902 if (MC.shouldMangleDeclName(ND)) { 903 llvm::raw_svector_ostream Out(Buffer); 904 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 905 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 906 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 907 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 908 else 909 MC.mangleName(ND, Out); 910 } else { 911 IdentifierInfo *II = ND->getIdentifier(); 912 assert(II && "Attempt to mangle unnamed decl."); 913 const auto *FD = dyn_cast<FunctionDecl>(ND); 914 915 if (FD && 916 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 917 llvm::raw_svector_ostream Out(Buffer); 918 Out << "__regcall3__" << II->getName(); 919 } else { 920 Out << II->getName(); 921 } 922 } 923 924 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 925 if (FD->isMultiVersion() && !OmitTargetMangling) 926 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 927 return Out.str(); 928 } 929 930 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 931 const FunctionDecl *FD) { 932 if (!FD->isMultiVersion()) 933 return; 934 935 // Get the name of what this would be without the 'target' attribute. This 936 // allows us to lookup the version that was emitted when this wasn't a 937 // multiversion function. 938 std::string NonTargetName = 939 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 940 GlobalDecl OtherGD; 941 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 942 assert(OtherGD.getCanonicalDecl() 943 .getDecl() 944 ->getAsFunction() 945 ->isMultiVersion() && 946 "Other GD should now be a multiversioned function"); 947 // OtherFD is the version of this function that was mangled BEFORE 948 // becoming a MultiVersion function. It potentially needs to be updated. 949 const FunctionDecl *OtherFD = 950 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 951 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 952 // This is so that if the initial version was already the 'default' 953 // version, we don't try to update it. 954 if (OtherName != NonTargetName) { 955 // Remove instead of erase, since others may have stored the StringRef 956 // to this. 957 const auto ExistingRecord = Manglings.find(NonTargetName); 958 if (ExistingRecord != std::end(Manglings)) 959 Manglings.remove(&(*ExistingRecord)); 960 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 961 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 962 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 963 Entry->setName(OtherName); 964 } 965 } 966 } 967 968 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 969 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 970 971 // Some ABIs don't have constructor variants. Make sure that base and 972 // complete constructors get mangled the same. 973 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 974 if (!getTarget().getCXXABI().hasConstructorVariants()) { 975 CXXCtorType OrigCtorType = GD.getCtorType(); 976 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 977 if (OrigCtorType == Ctor_Base) 978 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 979 } 980 } 981 982 auto FoundName = MangledDeclNames.find(CanonicalGD); 983 if (FoundName != MangledDeclNames.end()) 984 return FoundName->second; 985 986 987 // Keep the first result in the case of a mangling collision. 988 const auto *ND = cast<NamedDecl>(GD.getDecl()); 989 auto Result = 990 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 991 return MangledDeclNames[CanonicalGD] = Result.first->first(); 992 } 993 994 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 995 const BlockDecl *BD) { 996 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 997 const Decl *D = GD.getDecl(); 998 999 SmallString<256> Buffer; 1000 llvm::raw_svector_ostream Out(Buffer); 1001 if (!D) 1002 MangleCtx.mangleGlobalBlock(BD, 1003 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1004 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1005 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1006 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1007 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1008 else 1009 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1010 1011 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1012 return Result.first->first(); 1013 } 1014 1015 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1016 return getModule().getNamedValue(Name); 1017 } 1018 1019 /// AddGlobalCtor - Add a function to the list that will be called before 1020 /// main() runs. 1021 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1022 llvm::Constant *AssociatedData) { 1023 // FIXME: Type coercion of void()* types. 1024 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1025 } 1026 1027 /// AddGlobalDtor - Add a function to the list that will be called 1028 /// when the module is unloaded. 1029 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1030 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1031 DtorsUsingAtExit[Priority].push_back(Dtor); 1032 return; 1033 } 1034 1035 // FIXME: Type coercion of void()* types. 1036 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1037 } 1038 1039 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1040 if (Fns.empty()) return; 1041 1042 // Ctor function type is void()*. 1043 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1044 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1045 1046 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1047 llvm::StructType *CtorStructTy = llvm::StructType::get( 1048 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1049 1050 // Construct the constructor and destructor arrays. 1051 ConstantInitBuilder builder(*this); 1052 auto ctors = builder.beginArray(CtorStructTy); 1053 for (const auto &I : Fns) { 1054 auto ctor = ctors.beginStruct(CtorStructTy); 1055 ctor.addInt(Int32Ty, I.Priority); 1056 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1057 if (I.AssociatedData) 1058 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1059 else 1060 ctor.addNullPointer(VoidPtrTy); 1061 ctor.finishAndAddTo(ctors); 1062 } 1063 1064 auto list = 1065 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1066 /*constant*/ false, 1067 llvm::GlobalValue::AppendingLinkage); 1068 1069 // The LTO linker doesn't seem to like it when we set an alignment 1070 // on appending variables. Take it off as a workaround. 1071 list->setAlignment(0); 1072 1073 Fns.clear(); 1074 } 1075 1076 llvm::GlobalValue::LinkageTypes 1077 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1078 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1079 1080 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1081 1082 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1083 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1084 1085 if (isa<CXXConstructorDecl>(D) && 1086 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1087 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1088 // Our approach to inheriting constructors is fundamentally different from 1089 // that used by the MS ABI, so keep our inheriting constructor thunks 1090 // internal rather than trying to pick an unambiguous mangling for them. 1091 return llvm::GlobalValue::InternalLinkage; 1092 } 1093 1094 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1095 } 1096 1097 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1098 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1099 if (!MDS) return nullptr; 1100 1101 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1102 } 1103 1104 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1105 const CGFunctionInfo &Info, 1106 llvm::Function *F) { 1107 unsigned CallingConv; 1108 llvm::AttributeList PAL; 1109 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1110 F->setAttributes(PAL); 1111 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1112 } 1113 1114 /// Determines whether the language options require us to model 1115 /// unwind exceptions. We treat -fexceptions as mandating this 1116 /// except under the fragile ObjC ABI with only ObjC exceptions 1117 /// enabled. This means, for example, that C with -fexceptions 1118 /// enables this. 1119 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1120 // If exceptions are completely disabled, obviously this is false. 1121 if (!LangOpts.Exceptions) return false; 1122 1123 // If C++ exceptions are enabled, this is true. 1124 if (LangOpts.CXXExceptions) return true; 1125 1126 // If ObjC exceptions are enabled, this depends on the ABI. 1127 if (LangOpts.ObjCExceptions) { 1128 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1129 } 1130 1131 return true; 1132 } 1133 1134 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1135 llvm::Function *F) { 1136 llvm::AttrBuilder B; 1137 1138 if (CodeGenOpts.UnwindTables) 1139 B.addAttribute(llvm::Attribute::UWTable); 1140 1141 if (!hasUnwindExceptions(LangOpts)) 1142 B.addAttribute(llvm::Attribute::NoUnwind); 1143 1144 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1145 B.addAttribute(llvm::Attribute::StackProtect); 1146 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1147 B.addAttribute(llvm::Attribute::StackProtectStrong); 1148 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1149 B.addAttribute(llvm::Attribute::StackProtectReq); 1150 1151 if (!D) { 1152 // If we don't have a declaration to control inlining, the function isn't 1153 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1154 // disabled, mark the function as noinline. 1155 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1156 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1157 B.addAttribute(llvm::Attribute::NoInline); 1158 1159 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1160 return; 1161 } 1162 1163 // Track whether we need to add the optnone LLVM attribute, 1164 // starting with the default for this optimization level. 1165 bool ShouldAddOptNone = 1166 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1167 // We can't add optnone in the following cases, it won't pass the verifier. 1168 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1169 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1170 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1171 1172 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1173 B.addAttribute(llvm::Attribute::OptimizeNone); 1174 1175 // OptimizeNone implies noinline; we should not be inlining such functions. 1176 B.addAttribute(llvm::Attribute::NoInline); 1177 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1178 "OptimizeNone and AlwaysInline on same function!"); 1179 1180 // We still need to handle naked functions even though optnone subsumes 1181 // much of their semantics. 1182 if (D->hasAttr<NakedAttr>()) 1183 B.addAttribute(llvm::Attribute::Naked); 1184 1185 // OptimizeNone wins over OptimizeForSize and MinSize. 1186 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1187 F->removeFnAttr(llvm::Attribute::MinSize); 1188 } else if (D->hasAttr<NakedAttr>()) { 1189 // Naked implies noinline: we should not be inlining such functions. 1190 B.addAttribute(llvm::Attribute::Naked); 1191 B.addAttribute(llvm::Attribute::NoInline); 1192 } else if (D->hasAttr<NoDuplicateAttr>()) { 1193 B.addAttribute(llvm::Attribute::NoDuplicate); 1194 } else if (D->hasAttr<NoInlineAttr>()) { 1195 B.addAttribute(llvm::Attribute::NoInline); 1196 } else if (D->hasAttr<AlwaysInlineAttr>() && 1197 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1198 // (noinline wins over always_inline, and we can't specify both in IR) 1199 B.addAttribute(llvm::Attribute::AlwaysInline); 1200 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1201 // If we're not inlining, then force everything that isn't always_inline to 1202 // carry an explicit noinline attribute. 1203 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1204 B.addAttribute(llvm::Attribute::NoInline); 1205 } else { 1206 // Otherwise, propagate the inline hint attribute and potentially use its 1207 // absence to mark things as noinline. 1208 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1209 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1210 return Redecl->isInlineSpecified(); 1211 })) { 1212 B.addAttribute(llvm::Attribute::InlineHint); 1213 } else if (CodeGenOpts.getInlining() == 1214 CodeGenOptions::OnlyHintInlining && 1215 !FD->isInlined() && 1216 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1217 B.addAttribute(llvm::Attribute::NoInline); 1218 } 1219 } 1220 } 1221 1222 // Add other optimization related attributes if we are optimizing this 1223 // function. 1224 if (!D->hasAttr<OptimizeNoneAttr>()) { 1225 if (D->hasAttr<ColdAttr>()) { 1226 if (!ShouldAddOptNone) 1227 B.addAttribute(llvm::Attribute::OptimizeForSize); 1228 B.addAttribute(llvm::Attribute::Cold); 1229 } 1230 1231 if (D->hasAttr<MinSizeAttr>()) 1232 B.addAttribute(llvm::Attribute::MinSize); 1233 } 1234 1235 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1236 1237 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1238 if (alignment) 1239 F->setAlignment(alignment); 1240 1241 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1242 // reserve a bit for differentiating between virtual and non-virtual member 1243 // functions. If the current target's C++ ABI requires this and this is a 1244 // member function, set its alignment accordingly. 1245 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1246 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1247 F->setAlignment(2); 1248 } 1249 1250 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1251 if (CodeGenOpts.SanitizeCfiCrossDso) 1252 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1253 CreateFunctionTypeMetadata(FD, F); 1254 } 1255 1256 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1257 const Decl *D = GD.getDecl(); 1258 if (dyn_cast_or_null<NamedDecl>(D)) 1259 setGVProperties(GV, GD); 1260 else 1261 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1262 1263 if (D && D->hasAttr<UsedAttr>()) 1264 addUsedGlobal(GV); 1265 } 1266 1267 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1268 llvm::AttrBuilder &Attrs) { 1269 // Add target-cpu and target-features attributes to functions. If 1270 // we have a decl for the function and it has a target attribute then 1271 // parse that and add it to the feature set. 1272 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1273 std::vector<std::string> Features; 1274 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1275 FD = FD ? FD->getMostRecentDecl() : FD; 1276 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1277 bool AddedAttr = false; 1278 if (TD) { 1279 llvm::StringMap<bool> FeatureMap; 1280 getFunctionFeatureMap(FeatureMap, FD); 1281 1282 // Produce the canonical string for this set of features. 1283 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1284 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1285 1286 // Now add the target-cpu and target-features to the function. 1287 // While we populated the feature map above, we still need to 1288 // get and parse the target attribute so we can get the cpu for 1289 // the function. 1290 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1291 if (ParsedAttr.Architecture != "" && 1292 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1293 TargetCPU = ParsedAttr.Architecture; 1294 } else { 1295 // Otherwise just add the existing target cpu and target features to the 1296 // function. 1297 Features = getTarget().getTargetOpts().Features; 1298 } 1299 1300 if (TargetCPU != "") { 1301 Attrs.addAttribute("target-cpu", TargetCPU); 1302 AddedAttr = true; 1303 } 1304 if (!Features.empty()) { 1305 llvm::sort(Features.begin(), Features.end()); 1306 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1307 AddedAttr = true; 1308 } 1309 1310 return AddedAttr; 1311 } 1312 1313 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1314 llvm::GlobalObject *GO) { 1315 const Decl *D = GD.getDecl(); 1316 SetCommonAttributes(GD, GO); 1317 1318 if (D) { 1319 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1320 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1321 GV->addAttribute("bss-section", SA->getName()); 1322 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1323 GV->addAttribute("data-section", SA->getName()); 1324 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1325 GV->addAttribute("rodata-section", SA->getName()); 1326 } 1327 1328 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1329 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1330 if (!D->getAttr<SectionAttr>()) 1331 F->addFnAttr("implicit-section-name", SA->getName()); 1332 1333 llvm::AttrBuilder Attrs; 1334 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1335 // We know that GetCPUAndFeaturesAttributes will always have the 1336 // newest set, since it has the newest possible FunctionDecl, so the 1337 // new ones should replace the old. 1338 F->removeFnAttr("target-cpu"); 1339 F->removeFnAttr("target-features"); 1340 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1341 } 1342 } 1343 1344 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1345 GO->setSection(SA->getName()); 1346 } 1347 1348 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1349 } 1350 1351 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1352 llvm::Function *F, 1353 const CGFunctionInfo &FI) { 1354 const Decl *D = GD.getDecl(); 1355 SetLLVMFunctionAttributes(D, FI, F); 1356 SetLLVMFunctionAttributesForDefinition(D, F); 1357 1358 F->setLinkage(llvm::Function::InternalLinkage); 1359 1360 setNonAliasAttributes(GD, F); 1361 } 1362 1363 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1364 // Set linkage and visibility in case we never see a definition. 1365 LinkageInfo LV = ND->getLinkageAndVisibility(); 1366 // Don't set internal linkage on declarations. 1367 // "extern_weak" is overloaded in LLVM; we probably should have 1368 // separate linkage types for this. 1369 if (isExternallyVisible(LV.getLinkage()) && 1370 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1371 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1372 } 1373 1374 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1375 llvm::Function *F) { 1376 // Only if we are checking indirect calls. 1377 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1378 return; 1379 1380 // Non-static class methods are handled via vtable pointer checks elsewhere. 1381 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1382 return; 1383 1384 // Additionally, if building with cross-DSO support... 1385 if (CodeGenOpts.SanitizeCfiCrossDso) { 1386 // Skip available_externally functions. They won't be codegen'ed in the 1387 // current module anyway. 1388 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1389 return; 1390 } 1391 1392 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1393 F->addTypeMetadata(0, MD); 1394 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1395 1396 // Emit a hash-based bit set entry for cross-DSO calls. 1397 if (CodeGenOpts.SanitizeCfiCrossDso) 1398 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1399 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1400 } 1401 1402 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1403 bool IsIncompleteFunction, 1404 bool IsThunk) { 1405 1406 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1407 // If this is an intrinsic function, set the function's attributes 1408 // to the intrinsic's attributes. 1409 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1410 return; 1411 } 1412 1413 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1414 1415 if (!IsIncompleteFunction) { 1416 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1417 // Setup target-specific attributes. 1418 if (F->isDeclaration()) 1419 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1420 } 1421 1422 // Add the Returned attribute for "this", except for iOS 5 and earlier 1423 // where substantial code, including the libstdc++ dylib, was compiled with 1424 // GCC and does not actually return "this". 1425 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1426 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1427 assert(!F->arg_empty() && 1428 F->arg_begin()->getType() 1429 ->canLosslesslyBitCastTo(F->getReturnType()) && 1430 "unexpected this return"); 1431 F->addAttribute(1, llvm::Attribute::Returned); 1432 } 1433 1434 // Only a few attributes are set on declarations; these may later be 1435 // overridden by a definition. 1436 1437 setLinkageForGV(F, FD); 1438 setGVProperties(F, FD); 1439 1440 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1441 F->addFnAttr("implicit-section-name"); 1442 } 1443 1444 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1445 F->setSection(SA->getName()); 1446 1447 if (FD->isReplaceableGlobalAllocationFunction()) { 1448 // A replaceable global allocation function does not act like a builtin by 1449 // default, only if it is invoked by a new-expression or delete-expression. 1450 F->addAttribute(llvm::AttributeList::FunctionIndex, 1451 llvm::Attribute::NoBuiltin); 1452 1453 // A sane operator new returns a non-aliasing pointer. 1454 // FIXME: Also add NonNull attribute to the return value 1455 // for the non-nothrow forms? 1456 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1457 if (getCodeGenOpts().AssumeSaneOperatorNew && 1458 (Kind == OO_New || Kind == OO_Array_New)) 1459 F->addAttribute(llvm::AttributeList::ReturnIndex, 1460 llvm::Attribute::NoAlias); 1461 } 1462 1463 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1464 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1465 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1466 if (MD->isVirtual()) 1467 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1468 1469 // Don't emit entries for function declarations in the cross-DSO mode. This 1470 // is handled with better precision by the receiving DSO. 1471 if (!CodeGenOpts.SanitizeCfiCrossDso) 1472 CreateFunctionTypeMetadata(FD, F); 1473 1474 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1475 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1476 } 1477 1478 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1479 assert(!GV->isDeclaration() && 1480 "Only globals with definition can force usage."); 1481 LLVMUsed.emplace_back(GV); 1482 } 1483 1484 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1485 assert(!GV->isDeclaration() && 1486 "Only globals with definition can force usage."); 1487 LLVMCompilerUsed.emplace_back(GV); 1488 } 1489 1490 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1491 std::vector<llvm::WeakTrackingVH> &List) { 1492 // Don't create llvm.used if there is no need. 1493 if (List.empty()) 1494 return; 1495 1496 // Convert List to what ConstantArray needs. 1497 SmallVector<llvm::Constant*, 8> UsedArray; 1498 UsedArray.resize(List.size()); 1499 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1500 UsedArray[i] = 1501 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1502 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1503 } 1504 1505 if (UsedArray.empty()) 1506 return; 1507 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1508 1509 auto *GV = new llvm::GlobalVariable( 1510 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1511 llvm::ConstantArray::get(ATy, UsedArray), Name); 1512 1513 GV->setSection("llvm.metadata"); 1514 } 1515 1516 void CodeGenModule::emitLLVMUsed() { 1517 emitUsed(*this, "llvm.used", LLVMUsed); 1518 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1519 } 1520 1521 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1522 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1523 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1524 } 1525 1526 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1527 llvm::SmallString<32> Opt; 1528 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1529 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1530 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1531 } 1532 1533 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1534 auto &C = getLLVMContext(); 1535 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1536 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1537 } 1538 1539 void CodeGenModule::AddDependentLib(StringRef Lib) { 1540 llvm::SmallString<24> Opt; 1541 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1542 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1543 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1544 } 1545 1546 /// \brief Add link options implied by the given module, including modules 1547 /// it depends on, using a postorder walk. 1548 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1549 SmallVectorImpl<llvm::MDNode *> &Metadata, 1550 llvm::SmallPtrSet<Module *, 16> &Visited) { 1551 // Import this module's parent. 1552 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1553 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1554 } 1555 1556 // Import this module's dependencies. 1557 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1558 if (Visited.insert(Mod->Imports[I - 1]).second) 1559 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1560 } 1561 1562 // Add linker options to link against the libraries/frameworks 1563 // described by this module. 1564 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1565 1566 // For modules that use export_as for linking, use that module 1567 // name instead. 1568 if (Mod->UseExportAsModuleLinkName) 1569 return; 1570 1571 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1572 // Link against a framework. Frameworks are currently Darwin only, so we 1573 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1574 if (Mod->LinkLibraries[I-1].IsFramework) { 1575 llvm::Metadata *Args[2] = { 1576 llvm::MDString::get(Context, "-framework"), 1577 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1578 1579 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1580 continue; 1581 } 1582 1583 // Link against a library. 1584 llvm::SmallString<24> Opt; 1585 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1586 Mod->LinkLibraries[I-1].Library, Opt); 1587 auto *OptString = llvm::MDString::get(Context, Opt); 1588 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1589 } 1590 } 1591 1592 void CodeGenModule::EmitModuleLinkOptions() { 1593 // Collect the set of all of the modules we want to visit to emit link 1594 // options, which is essentially the imported modules and all of their 1595 // non-explicit child modules. 1596 llvm::SetVector<clang::Module *> LinkModules; 1597 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1598 SmallVector<clang::Module *, 16> Stack; 1599 1600 // Seed the stack with imported modules. 1601 for (Module *M : ImportedModules) { 1602 // Do not add any link flags when an implementation TU of a module imports 1603 // a header of that same module. 1604 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1605 !getLangOpts().isCompilingModule()) 1606 continue; 1607 if (Visited.insert(M).second) 1608 Stack.push_back(M); 1609 } 1610 1611 // Find all of the modules to import, making a little effort to prune 1612 // non-leaf modules. 1613 while (!Stack.empty()) { 1614 clang::Module *Mod = Stack.pop_back_val(); 1615 1616 bool AnyChildren = false; 1617 1618 // Visit the submodules of this module. 1619 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1620 SubEnd = Mod->submodule_end(); 1621 Sub != SubEnd; ++Sub) { 1622 // Skip explicit children; they need to be explicitly imported to be 1623 // linked against. 1624 if ((*Sub)->IsExplicit) 1625 continue; 1626 1627 if (Visited.insert(*Sub).second) { 1628 Stack.push_back(*Sub); 1629 AnyChildren = true; 1630 } 1631 } 1632 1633 // We didn't find any children, so add this module to the list of 1634 // modules to link against. 1635 if (!AnyChildren) { 1636 LinkModules.insert(Mod); 1637 } 1638 } 1639 1640 // Add link options for all of the imported modules in reverse topological 1641 // order. We don't do anything to try to order import link flags with respect 1642 // to linker options inserted by things like #pragma comment(). 1643 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1644 Visited.clear(); 1645 for (Module *M : LinkModules) 1646 if (Visited.insert(M).second) 1647 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1648 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1649 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1650 1651 // Add the linker options metadata flag. 1652 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1653 for (auto *MD : LinkerOptionsMetadata) 1654 NMD->addOperand(MD); 1655 } 1656 1657 void CodeGenModule::EmitDeferred() { 1658 // Emit code for any potentially referenced deferred decls. Since a 1659 // previously unused static decl may become used during the generation of code 1660 // for a static function, iterate until no changes are made. 1661 1662 if (!DeferredVTables.empty()) { 1663 EmitDeferredVTables(); 1664 1665 // Emitting a vtable doesn't directly cause more vtables to 1666 // become deferred, although it can cause functions to be 1667 // emitted that then need those vtables. 1668 assert(DeferredVTables.empty()); 1669 } 1670 1671 // Stop if we're out of both deferred vtables and deferred declarations. 1672 if (DeferredDeclsToEmit.empty()) 1673 return; 1674 1675 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1676 // work, it will not interfere with this. 1677 std::vector<GlobalDecl> CurDeclsToEmit; 1678 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1679 1680 for (GlobalDecl &D : CurDeclsToEmit) { 1681 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1682 // to get GlobalValue with exactly the type we need, not something that 1683 // might had been created for another decl with the same mangled name but 1684 // different type. 1685 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1686 GetAddrOfGlobal(D, ForDefinition)); 1687 1688 // In case of different address spaces, we may still get a cast, even with 1689 // IsForDefinition equal to true. Query mangled names table to get 1690 // GlobalValue. 1691 if (!GV) 1692 GV = GetGlobalValue(getMangledName(D)); 1693 1694 // Make sure GetGlobalValue returned non-null. 1695 assert(GV); 1696 1697 // Check to see if we've already emitted this. This is necessary 1698 // for a couple of reasons: first, decls can end up in the 1699 // deferred-decls queue multiple times, and second, decls can end 1700 // up with definitions in unusual ways (e.g. by an extern inline 1701 // function acquiring a strong function redefinition). Just 1702 // ignore these cases. 1703 if (!GV->isDeclaration()) 1704 continue; 1705 1706 // Otherwise, emit the definition and move on to the next one. 1707 EmitGlobalDefinition(D, GV); 1708 1709 // If we found out that we need to emit more decls, do that recursively. 1710 // This has the advantage that the decls are emitted in a DFS and related 1711 // ones are close together, which is convenient for testing. 1712 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1713 EmitDeferred(); 1714 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1715 } 1716 } 1717 } 1718 1719 void CodeGenModule::EmitVTablesOpportunistically() { 1720 // Try to emit external vtables as available_externally if they have emitted 1721 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1722 // is not allowed to create new references to things that need to be emitted 1723 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1724 1725 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1726 && "Only emit opportunistic vtables with optimizations"); 1727 1728 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1729 assert(getVTables().isVTableExternal(RD) && 1730 "This queue should only contain external vtables"); 1731 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1732 VTables.GenerateClassData(RD); 1733 } 1734 OpportunisticVTables.clear(); 1735 } 1736 1737 void CodeGenModule::EmitGlobalAnnotations() { 1738 if (Annotations.empty()) 1739 return; 1740 1741 // Create a new global variable for the ConstantStruct in the Module. 1742 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1743 Annotations[0]->getType(), Annotations.size()), Annotations); 1744 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1745 llvm::GlobalValue::AppendingLinkage, 1746 Array, "llvm.global.annotations"); 1747 gv->setSection(AnnotationSection); 1748 } 1749 1750 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1751 llvm::Constant *&AStr = AnnotationStrings[Str]; 1752 if (AStr) 1753 return AStr; 1754 1755 // Not found yet, create a new global. 1756 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1757 auto *gv = 1758 new llvm::GlobalVariable(getModule(), s->getType(), true, 1759 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1760 gv->setSection(AnnotationSection); 1761 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1762 AStr = gv; 1763 return gv; 1764 } 1765 1766 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1767 SourceManager &SM = getContext().getSourceManager(); 1768 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1769 if (PLoc.isValid()) 1770 return EmitAnnotationString(PLoc.getFilename()); 1771 return EmitAnnotationString(SM.getBufferName(Loc)); 1772 } 1773 1774 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1775 SourceManager &SM = getContext().getSourceManager(); 1776 PresumedLoc PLoc = SM.getPresumedLoc(L); 1777 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1778 SM.getExpansionLineNumber(L); 1779 return llvm::ConstantInt::get(Int32Ty, LineNo); 1780 } 1781 1782 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1783 const AnnotateAttr *AA, 1784 SourceLocation L) { 1785 // Get the globals for file name, annotation, and the line number. 1786 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1787 *UnitGV = EmitAnnotationUnit(L), 1788 *LineNoCst = EmitAnnotationLineNo(L); 1789 1790 // Create the ConstantStruct for the global annotation. 1791 llvm::Constant *Fields[4] = { 1792 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1793 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1794 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1795 LineNoCst 1796 }; 1797 return llvm::ConstantStruct::getAnon(Fields); 1798 } 1799 1800 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1801 llvm::GlobalValue *GV) { 1802 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1803 // Get the struct elements for these annotations. 1804 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1805 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1806 } 1807 1808 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1809 llvm::Function *Fn, 1810 SourceLocation Loc) const { 1811 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1812 // Blacklist by function name. 1813 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1814 return true; 1815 // Blacklist by location. 1816 if (Loc.isValid()) 1817 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1818 // If location is unknown, this may be a compiler-generated function. Assume 1819 // it's located in the main file. 1820 auto &SM = Context.getSourceManager(); 1821 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1822 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1823 } 1824 return false; 1825 } 1826 1827 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1828 SourceLocation Loc, QualType Ty, 1829 StringRef Category) const { 1830 // For now globals can be blacklisted only in ASan and KASan. 1831 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1832 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1833 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1834 if (!EnabledAsanMask) 1835 return false; 1836 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1837 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1838 return true; 1839 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1840 return true; 1841 // Check global type. 1842 if (!Ty.isNull()) { 1843 // Drill down the array types: if global variable of a fixed type is 1844 // blacklisted, we also don't instrument arrays of them. 1845 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1846 Ty = AT->getElementType(); 1847 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1848 // We allow to blacklist only record types (classes, structs etc.) 1849 if (Ty->isRecordType()) { 1850 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1851 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1852 return true; 1853 } 1854 } 1855 return false; 1856 } 1857 1858 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1859 StringRef Category) const { 1860 if (!LangOpts.XRayInstrument) 1861 return false; 1862 1863 const auto &XRayFilter = getContext().getXRayFilter(); 1864 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1865 auto Attr = ImbueAttr::NONE; 1866 if (Loc.isValid()) 1867 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1868 if (Attr == ImbueAttr::NONE) 1869 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1870 switch (Attr) { 1871 case ImbueAttr::NONE: 1872 return false; 1873 case ImbueAttr::ALWAYS: 1874 Fn->addFnAttr("function-instrument", "xray-always"); 1875 break; 1876 case ImbueAttr::ALWAYS_ARG1: 1877 Fn->addFnAttr("function-instrument", "xray-always"); 1878 Fn->addFnAttr("xray-log-args", "1"); 1879 break; 1880 case ImbueAttr::NEVER: 1881 Fn->addFnAttr("function-instrument", "xray-never"); 1882 break; 1883 } 1884 return true; 1885 } 1886 1887 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1888 // Never defer when EmitAllDecls is specified. 1889 if (LangOpts.EmitAllDecls) 1890 return true; 1891 1892 return getContext().DeclMustBeEmitted(Global); 1893 } 1894 1895 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1896 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1897 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1898 // Implicit template instantiations may change linkage if they are later 1899 // explicitly instantiated, so they should not be emitted eagerly. 1900 return false; 1901 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1902 if (Context.getInlineVariableDefinitionKind(VD) == 1903 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1904 // A definition of an inline constexpr static data member may change 1905 // linkage later if it's redeclared outside the class. 1906 return false; 1907 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1908 // codegen for global variables, because they may be marked as threadprivate. 1909 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1910 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1911 return false; 1912 1913 return true; 1914 } 1915 1916 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1917 const CXXUuidofExpr* E) { 1918 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1919 // well-formed. 1920 StringRef Uuid = E->getUuidStr(); 1921 std::string Name = "_GUID_" + Uuid.lower(); 1922 std::replace(Name.begin(), Name.end(), '-', '_'); 1923 1924 // The UUID descriptor should be pointer aligned. 1925 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1926 1927 // Look for an existing global. 1928 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1929 return ConstantAddress(GV, Alignment); 1930 1931 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1932 assert(Init && "failed to initialize as constant"); 1933 1934 auto *GV = new llvm::GlobalVariable( 1935 getModule(), Init->getType(), 1936 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1937 if (supportsCOMDAT()) 1938 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1939 setDSOLocal(GV); 1940 return ConstantAddress(GV, Alignment); 1941 } 1942 1943 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1944 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1945 assert(AA && "No alias?"); 1946 1947 CharUnits Alignment = getContext().getDeclAlign(VD); 1948 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1949 1950 // See if there is already something with the target's name in the module. 1951 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1952 if (Entry) { 1953 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1954 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1955 return ConstantAddress(Ptr, Alignment); 1956 } 1957 1958 llvm::Constant *Aliasee; 1959 if (isa<llvm::FunctionType>(DeclTy)) 1960 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1961 GlobalDecl(cast<FunctionDecl>(VD)), 1962 /*ForVTable=*/false); 1963 else 1964 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1965 llvm::PointerType::getUnqual(DeclTy), 1966 nullptr); 1967 1968 auto *F = cast<llvm::GlobalValue>(Aliasee); 1969 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1970 WeakRefReferences.insert(F); 1971 1972 return ConstantAddress(Aliasee, Alignment); 1973 } 1974 1975 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1976 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1977 1978 // Weak references don't produce any output by themselves. 1979 if (Global->hasAttr<WeakRefAttr>()) 1980 return; 1981 1982 // If this is an alias definition (which otherwise looks like a declaration) 1983 // emit it now. 1984 if (Global->hasAttr<AliasAttr>()) 1985 return EmitAliasDefinition(GD); 1986 1987 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1988 if (Global->hasAttr<IFuncAttr>()) 1989 return emitIFuncDefinition(GD); 1990 1991 // If this is CUDA, be selective about which declarations we emit. 1992 if (LangOpts.CUDA) { 1993 if (LangOpts.CUDAIsDevice) { 1994 if (!Global->hasAttr<CUDADeviceAttr>() && 1995 !Global->hasAttr<CUDAGlobalAttr>() && 1996 !Global->hasAttr<CUDAConstantAttr>() && 1997 !Global->hasAttr<CUDASharedAttr>()) 1998 return; 1999 } else { 2000 // We need to emit host-side 'shadows' for all global 2001 // device-side variables because the CUDA runtime needs their 2002 // size and host-side address in order to provide access to 2003 // their device-side incarnations. 2004 2005 // So device-only functions are the only things we skip. 2006 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2007 Global->hasAttr<CUDADeviceAttr>()) 2008 return; 2009 2010 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2011 "Expected Variable or Function"); 2012 } 2013 } 2014 2015 if (LangOpts.OpenMP) { 2016 // If this is OpenMP device, check if it is legal to emit this global 2017 // normally. 2018 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2019 return; 2020 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2021 if (MustBeEmitted(Global)) 2022 EmitOMPDeclareReduction(DRD); 2023 return; 2024 } 2025 } 2026 2027 // Ignore declarations, they will be emitted on their first use. 2028 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2029 // Forward declarations are emitted lazily on first use. 2030 if (!FD->doesThisDeclarationHaveABody()) { 2031 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2032 return; 2033 2034 StringRef MangledName = getMangledName(GD); 2035 2036 // Compute the function info and LLVM type. 2037 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2038 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2039 2040 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2041 /*DontDefer=*/false); 2042 return; 2043 } 2044 } else { 2045 const auto *VD = cast<VarDecl>(Global); 2046 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2047 // We need to emit device-side global CUDA variables even if a 2048 // variable does not have a definition -- we still need to define 2049 // host-side shadow for it. 2050 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2051 !VD->hasDefinition() && 2052 (VD->hasAttr<CUDAConstantAttr>() || 2053 VD->hasAttr<CUDADeviceAttr>()); 2054 if (!MustEmitForCuda && 2055 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2056 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2057 // If this declaration may have caused an inline variable definition to 2058 // change linkage, make sure that it's emitted. 2059 if (Context.getInlineVariableDefinitionKind(VD) == 2060 ASTContext::InlineVariableDefinitionKind::Strong) 2061 GetAddrOfGlobalVar(VD); 2062 return; 2063 } 2064 } 2065 2066 // Defer code generation to first use when possible, e.g. if this is an inline 2067 // function. If the global must always be emitted, do it eagerly if possible 2068 // to benefit from cache locality. 2069 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2070 // Emit the definition if it can't be deferred. 2071 EmitGlobalDefinition(GD); 2072 return; 2073 } 2074 2075 // If we're deferring emission of a C++ variable with an 2076 // initializer, remember the order in which it appeared in the file. 2077 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2078 cast<VarDecl>(Global)->hasInit()) { 2079 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2080 CXXGlobalInits.push_back(nullptr); 2081 } 2082 2083 StringRef MangledName = getMangledName(GD); 2084 if (GetGlobalValue(MangledName) != nullptr) { 2085 // The value has already been used and should therefore be emitted. 2086 addDeferredDeclToEmit(GD); 2087 } else if (MustBeEmitted(Global)) { 2088 // The value must be emitted, but cannot be emitted eagerly. 2089 assert(!MayBeEmittedEagerly(Global)); 2090 addDeferredDeclToEmit(GD); 2091 } else { 2092 // Otherwise, remember that we saw a deferred decl with this name. The 2093 // first use of the mangled name will cause it to move into 2094 // DeferredDeclsToEmit. 2095 DeferredDecls[MangledName] = GD; 2096 } 2097 } 2098 2099 // Check if T is a class type with a destructor that's not dllimport. 2100 static bool HasNonDllImportDtor(QualType T) { 2101 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2102 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2103 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2104 return true; 2105 2106 return false; 2107 } 2108 2109 namespace { 2110 struct FunctionIsDirectlyRecursive : 2111 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2112 const StringRef Name; 2113 const Builtin::Context &BI; 2114 bool Result; 2115 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2116 Name(N), BI(C), Result(false) { 2117 } 2118 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2119 2120 bool TraverseCallExpr(CallExpr *E) { 2121 const FunctionDecl *FD = E->getDirectCallee(); 2122 if (!FD) 2123 return true; 2124 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2125 if (Attr && Name == Attr->getLabel()) { 2126 Result = true; 2127 return false; 2128 } 2129 unsigned BuiltinID = FD->getBuiltinID(); 2130 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2131 return true; 2132 StringRef BuiltinName = BI.getName(BuiltinID); 2133 if (BuiltinName.startswith("__builtin_") && 2134 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2135 Result = true; 2136 return false; 2137 } 2138 return true; 2139 } 2140 }; 2141 2142 // Make sure we're not referencing non-imported vars or functions. 2143 struct DLLImportFunctionVisitor 2144 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2145 bool SafeToInline = true; 2146 2147 bool shouldVisitImplicitCode() const { return true; } 2148 2149 bool VisitVarDecl(VarDecl *VD) { 2150 if (VD->getTLSKind()) { 2151 // A thread-local variable cannot be imported. 2152 SafeToInline = false; 2153 return SafeToInline; 2154 } 2155 2156 // A variable definition might imply a destructor call. 2157 if (VD->isThisDeclarationADefinition()) 2158 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2159 2160 return SafeToInline; 2161 } 2162 2163 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2164 if (const auto *D = E->getTemporary()->getDestructor()) 2165 SafeToInline = D->hasAttr<DLLImportAttr>(); 2166 return SafeToInline; 2167 } 2168 2169 bool VisitDeclRefExpr(DeclRefExpr *E) { 2170 ValueDecl *VD = E->getDecl(); 2171 if (isa<FunctionDecl>(VD)) 2172 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2173 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2174 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2175 return SafeToInline; 2176 } 2177 2178 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2179 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2180 return SafeToInline; 2181 } 2182 2183 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2184 CXXMethodDecl *M = E->getMethodDecl(); 2185 if (!M) { 2186 // Call through a pointer to member function. This is safe to inline. 2187 SafeToInline = true; 2188 } else { 2189 SafeToInline = M->hasAttr<DLLImportAttr>(); 2190 } 2191 return SafeToInline; 2192 } 2193 2194 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2195 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2196 return SafeToInline; 2197 } 2198 2199 bool VisitCXXNewExpr(CXXNewExpr *E) { 2200 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2201 return SafeToInline; 2202 } 2203 }; 2204 } 2205 2206 // isTriviallyRecursive - Check if this function calls another 2207 // decl that, because of the asm attribute or the other decl being a builtin, 2208 // ends up pointing to itself. 2209 bool 2210 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2211 StringRef Name; 2212 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2213 // asm labels are a special kind of mangling we have to support. 2214 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2215 if (!Attr) 2216 return false; 2217 Name = Attr->getLabel(); 2218 } else { 2219 Name = FD->getName(); 2220 } 2221 2222 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2223 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2224 return Walker.Result; 2225 } 2226 2227 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2228 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2229 return true; 2230 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2231 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2232 return false; 2233 2234 if (F->hasAttr<DLLImportAttr>()) { 2235 // Check whether it would be safe to inline this dllimport function. 2236 DLLImportFunctionVisitor Visitor; 2237 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2238 if (!Visitor.SafeToInline) 2239 return false; 2240 2241 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2242 // Implicit destructor invocations aren't captured in the AST, so the 2243 // check above can't see them. Check for them manually here. 2244 for (const Decl *Member : Dtor->getParent()->decls()) 2245 if (isa<FieldDecl>(Member)) 2246 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2247 return false; 2248 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2249 if (HasNonDllImportDtor(B.getType())) 2250 return false; 2251 } 2252 } 2253 2254 // PR9614. Avoid cases where the source code is lying to us. An available 2255 // externally function should have an equivalent function somewhere else, 2256 // but a function that calls itself is clearly not equivalent to the real 2257 // implementation. 2258 // This happens in glibc's btowc and in some configure checks. 2259 return !isTriviallyRecursive(F); 2260 } 2261 2262 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2263 return CodeGenOpts.OptimizationLevel > 0; 2264 } 2265 2266 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2267 const auto *D = cast<ValueDecl>(GD.getDecl()); 2268 2269 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2270 Context.getSourceManager(), 2271 "Generating code for declaration"); 2272 2273 if (isa<FunctionDecl>(D)) { 2274 // At -O0, don't generate IR for functions with available_externally 2275 // linkage. 2276 if (!shouldEmitFunction(GD)) 2277 return; 2278 2279 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2280 // Make sure to emit the definition(s) before we emit the thunks. 2281 // This is necessary for the generation of certain thunks. 2282 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2283 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2284 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2285 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2286 else 2287 EmitGlobalFunctionDefinition(GD, GV); 2288 2289 if (Method->isVirtual()) 2290 getVTables().EmitThunks(GD); 2291 2292 return; 2293 } 2294 2295 return EmitGlobalFunctionDefinition(GD, GV); 2296 } 2297 2298 if (const auto *VD = dyn_cast<VarDecl>(D)) 2299 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2300 2301 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2302 } 2303 2304 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2305 llvm::Function *NewFn); 2306 2307 void CodeGenModule::emitMultiVersionFunctions() { 2308 for (GlobalDecl GD : MultiVersionFuncs) { 2309 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2310 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2311 getContext().forEachMultiversionedFunctionVersion( 2312 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2313 GlobalDecl CurGD{ 2314 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2315 StringRef MangledName = getMangledName(CurGD); 2316 llvm::Constant *Func = GetGlobalValue(MangledName); 2317 if (!Func) { 2318 if (CurFD->isDefined()) { 2319 EmitGlobalFunctionDefinition(CurGD, nullptr); 2320 Func = GetGlobalValue(MangledName); 2321 } else { 2322 const CGFunctionInfo &FI = 2323 getTypes().arrangeGlobalDeclaration(GD); 2324 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2325 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2326 /*DontDefer=*/false, ForDefinition); 2327 } 2328 assert(Func && "This should have just been created"); 2329 } 2330 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2331 CurFD->getAttr<TargetAttr>()->parse()); 2332 }); 2333 2334 llvm::Function *ResolverFunc = cast<llvm::Function>( 2335 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2336 if (supportsCOMDAT()) 2337 ResolverFunc->setComdat( 2338 getModule().getOrInsertComdat(ResolverFunc->getName())); 2339 std::stable_sort( 2340 Options.begin(), Options.end(), 2341 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2342 CodeGenFunction CGF(*this); 2343 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2344 } 2345 } 2346 2347 /// If an ifunc for the specified mangled name is not in the module, create and 2348 /// return an llvm IFunc Function with the specified type. 2349 llvm::Constant * 2350 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2351 StringRef MangledName, 2352 const FunctionDecl *FD) { 2353 std::string IFuncName = (MangledName + ".ifunc").str(); 2354 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2355 return IFuncGV; 2356 2357 // Since this is the first time we've created this IFunc, make sure 2358 // that we put this multiversioned function into the list to be 2359 // replaced later. 2360 MultiVersionFuncs.push_back(GD); 2361 2362 std::string ResolverName = (MangledName + ".resolver").str(); 2363 llvm::Type *ResolverType = llvm::FunctionType::get( 2364 llvm::PointerType::get(DeclTy, 2365 Context.getTargetAddressSpace(FD->getType())), 2366 false); 2367 llvm::Constant *Resolver = 2368 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2369 /*ForVTable=*/false); 2370 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2371 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2372 GIF->setName(IFuncName); 2373 SetCommonAttributes(FD, GIF); 2374 2375 return GIF; 2376 } 2377 2378 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2379 /// module, create and return an llvm Function with the specified type. If there 2380 /// is something in the module with the specified name, return it potentially 2381 /// bitcasted to the right type. 2382 /// 2383 /// If D is non-null, it specifies a decl that correspond to this. This is used 2384 /// to set the attributes on the function when it is first created. 2385 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2386 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2387 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2388 ForDefinition_t IsForDefinition) { 2389 const Decl *D = GD.getDecl(); 2390 2391 // Any attempts to use a MultiVersion function should result in retrieving 2392 // the iFunc instead. Name Mangling will handle the rest of the changes. 2393 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2394 // For the device mark the function as one that should be emitted. 2395 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2396 !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() && 2397 !DontDefer && !IsForDefinition) 2398 addDeferredDeclToEmit(GD); 2399 2400 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2401 UpdateMultiVersionNames(GD, FD); 2402 if (!IsForDefinition) 2403 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2404 } 2405 } 2406 2407 // Lookup the entry, lazily creating it if necessary. 2408 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2409 if (Entry) { 2410 if (WeakRefReferences.erase(Entry)) { 2411 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2412 if (FD && !FD->hasAttr<WeakAttr>()) 2413 Entry->setLinkage(llvm::Function::ExternalLinkage); 2414 } 2415 2416 // Handle dropped DLL attributes. 2417 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2418 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2419 setDSOLocal(Entry); 2420 } 2421 2422 // If there are two attempts to define the same mangled name, issue an 2423 // error. 2424 if (IsForDefinition && !Entry->isDeclaration()) { 2425 GlobalDecl OtherGD; 2426 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2427 // to make sure that we issue an error only once. 2428 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2429 (GD.getCanonicalDecl().getDecl() != 2430 OtherGD.getCanonicalDecl().getDecl()) && 2431 DiagnosedConflictingDefinitions.insert(GD).second) { 2432 getDiags().Report(D->getLocation(), 2433 diag::err_duplicate_mangled_name); 2434 getDiags().Report(OtherGD.getDecl()->getLocation(), 2435 diag::note_previous_definition); 2436 } 2437 } 2438 2439 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2440 (Entry->getType()->getElementType() == Ty)) { 2441 return Entry; 2442 } 2443 2444 // Make sure the result is of the correct type. 2445 // (If function is requested for a definition, we always need to create a new 2446 // function, not just return a bitcast.) 2447 if (!IsForDefinition) 2448 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2449 } 2450 2451 // This function doesn't have a complete type (for example, the return 2452 // type is an incomplete struct). Use a fake type instead, and make 2453 // sure not to try to set attributes. 2454 bool IsIncompleteFunction = false; 2455 2456 llvm::FunctionType *FTy; 2457 if (isa<llvm::FunctionType>(Ty)) { 2458 FTy = cast<llvm::FunctionType>(Ty); 2459 } else { 2460 FTy = llvm::FunctionType::get(VoidTy, false); 2461 IsIncompleteFunction = true; 2462 } 2463 2464 llvm::Function *F = 2465 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2466 Entry ? StringRef() : MangledName, &getModule()); 2467 2468 // If we already created a function with the same mangled name (but different 2469 // type) before, take its name and add it to the list of functions to be 2470 // replaced with F at the end of CodeGen. 2471 // 2472 // This happens if there is a prototype for a function (e.g. "int f()") and 2473 // then a definition of a different type (e.g. "int f(int x)"). 2474 if (Entry) { 2475 F->takeName(Entry); 2476 2477 // This might be an implementation of a function without a prototype, in 2478 // which case, try to do special replacement of calls which match the new 2479 // prototype. The really key thing here is that we also potentially drop 2480 // arguments from the call site so as to make a direct call, which makes the 2481 // inliner happier and suppresses a number of optimizer warnings (!) about 2482 // dropping arguments. 2483 if (!Entry->use_empty()) { 2484 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2485 Entry->removeDeadConstantUsers(); 2486 } 2487 2488 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2489 F, Entry->getType()->getElementType()->getPointerTo()); 2490 addGlobalValReplacement(Entry, BC); 2491 } 2492 2493 assert(F->getName() == MangledName && "name was uniqued!"); 2494 if (D) 2495 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2496 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2497 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2498 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2499 } 2500 2501 if (!DontDefer) { 2502 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2503 // each other bottoming out with the base dtor. Therefore we emit non-base 2504 // dtors on usage, even if there is no dtor definition in the TU. 2505 if (D && isa<CXXDestructorDecl>(D) && 2506 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2507 GD.getDtorType())) 2508 addDeferredDeclToEmit(GD); 2509 2510 // This is the first use or definition of a mangled name. If there is a 2511 // deferred decl with this name, remember that we need to emit it at the end 2512 // of the file. 2513 auto DDI = DeferredDecls.find(MangledName); 2514 if (DDI != DeferredDecls.end()) { 2515 // Move the potentially referenced deferred decl to the 2516 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2517 // don't need it anymore). 2518 addDeferredDeclToEmit(DDI->second); 2519 DeferredDecls.erase(DDI); 2520 2521 // Otherwise, there are cases we have to worry about where we're 2522 // using a declaration for which we must emit a definition but where 2523 // we might not find a top-level definition: 2524 // - member functions defined inline in their classes 2525 // - friend functions defined inline in some class 2526 // - special member functions with implicit definitions 2527 // If we ever change our AST traversal to walk into class methods, 2528 // this will be unnecessary. 2529 // 2530 // We also don't emit a definition for a function if it's going to be an 2531 // entry in a vtable, unless it's already marked as used. 2532 } else if (getLangOpts().CPlusPlus && D) { 2533 // Look for a declaration that's lexically in a record. 2534 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2535 FD = FD->getPreviousDecl()) { 2536 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2537 if (FD->doesThisDeclarationHaveABody()) { 2538 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2539 break; 2540 } 2541 } 2542 } 2543 } 2544 } 2545 2546 // Make sure the result is of the requested type. 2547 if (!IsIncompleteFunction) { 2548 assert(F->getType()->getElementType() == Ty); 2549 return F; 2550 } 2551 2552 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2553 return llvm::ConstantExpr::getBitCast(F, PTy); 2554 } 2555 2556 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2557 /// non-null, then this function will use the specified type if it has to 2558 /// create it (this occurs when we see a definition of the function). 2559 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2560 llvm::Type *Ty, 2561 bool ForVTable, 2562 bool DontDefer, 2563 ForDefinition_t IsForDefinition) { 2564 // If there was no specific requested type, just convert it now. 2565 if (!Ty) { 2566 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2567 auto CanonTy = Context.getCanonicalType(FD->getType()); 2568 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2569 } 2570 2571 // Devirtualized destructor calls may come through here instead of via 2572 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2573 // of the complete destructor when necessary. 2574 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2575 if (getTarget().getCXXABI().isMicrosoft() && 2576 GD.getDtorType() == Dtor_Complete && 2577 DD->getParent()->getNumVBases() == 0) 2578 GD = GlobalDecl(DD, Dtor_Base); 2579 } 2580 2581 StringRef MangledName = getMangledName(GD); 2582 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2583 /*IsThunk=*/false, llvm::AttributeList(), 2584 IsForDefinition); 2585 } 2586 2587 static const FunctionDecl * 2588 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2589 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2590 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2591 2592 IdentifierInfo &CII = C.Idents.get(Name); 2593 for (const auto &Result : DC->lookup(&CII)) 2594 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2595 return FD; 2596 2597 if (!C.getLangOpts().CPlusPlus) 2598 return nullptr; 2599 2600 // Demangle the premangled name from getTerminateFn() 2601 IdentifierInfo &CXXII = 2602 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2603 ? C.Idents.get("terminate") 2604 : C.Idents.get(Name); 2605 2606 for (const auto &N : {"__cxxabiv1", "std"}) { 2607 IdentifierInfo &NS = C.Idents.get(N); 2608 for (const auto &Result : DC->lookup(&NS)) { 2609 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2610 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2611 for (const auto &Result : LSD->lookup(&NS)) 2612 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2613 break; 2614 2615 if (ND) 2616 for (const auto &Result : ND->lookup(&CXXII)) 2617 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2618 return FD; 2619 } 2620 } 2621 2622 return nullptr; 2623 } 2624 2625 /// CreateRuntimeFunction - Create a new runtime function with the specified 2626 /// type and name. 2627 llvm::Constant * 2628 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2629 llvm::AttributeList ExtraAttrs, 2630 bool Local) { 2631 llvm::Constant *C = 2632 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2633 /*DontDefer=*/false, /*IsThunk=*/false, 2634 ExtraAttrs); 2635 2636 if (auto *F = dyn_cast<llvm::Function>(C)) { 2637 if (F->empty()) { 2638 F->setCallingConv(getRuntimeCC()); 2639 2640 if (!Local && getTriple().isOSBinFormatCOFF() && 2641 !getCodeGenOpts().LTOVisibilityPublicStd && 2642 !getTriple().isWindowsGNUEnvironment()) { 2643 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2644 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2645 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2646 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2647 } 2648 } 2649 setDSOLocal(F); 2650 } 2651 } 2652 2653 return C; 2654 } 2655 2656 /// CreateBuiltinFunction - Create a new builtin function with the specified 2657 /// type and name. 2658 llvm::Constant * 2659 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2660 llvm::AttributeList ExtraAttrs) { 2661 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2662 } 2663 2664 /// isTypeConstant - Determine whether an object of this type can be emitted 2665 /// as a constant. 2666 /// 2667 /// If ExcludeCtor is true, the duration when the object's constructor runs 2668 /// will not be considered. The caller will need to verify that the object is 2669 /// not written to during its construction. 2670 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2671 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2672 return false; 2673 2674 if (Context.getLangOpts().CPlusPlus) { 2675 if (const CXXRecordDecl *Record 2676 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2677 return ExcludeCtor && !Record->hasMutableFields() && 2678 Record->hasTrivialDestructor(); 2679 } 2680 2681 return true; 2682 } 2683 2684 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2685 /// create and return an llvm GlobalVariable with the specified type. If there 2686 /// is something in the module with the specified name, return it potentially 2687 /// bitcasted to the right type. 2688 /// 2689 /// If D is non-null, it specifies a decl that correspond to this. This is used 2690 /// to set the attributes on the global when it is first created. 2691 /// 2692 /// If IsForDefinition is true, it is guaranteed that an actual global with 2693 /// type Ty will be returned, not conversion of a variable with the same 2694 /// mangled name but some other type. 2695 llvm::Constant * 2696 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2697 llvm::PointerType *Ty, 2698 const VarDecl *D, 2699 ForDefinition_t IsForDefinition) { 2700 // Lookup the entry, lazily creating it if necessary. 2701 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2702 if (Entry) { 2703 if (WeakRefReferences.erase(Entry)) { 2704 if (D && !D->hasAttr<WeakAttr>()) 2705 Entry->setLinkage(llvm::Function::ExternalLinkage); 2706 } 2707 2708 // Handle dropped DLL attributes. 2709 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2710 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2711 2712 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2713 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2714 2715 if (Entry->getType() == Ty) 2716 return Entry; 2717 2718 // If there are two attempts to define the same mangled name, issue an 2719 // error. 2720 if (IsForDefinition && !Entry->isDeclaration()) { 2721 GlobalDecl OtherGD; 2722 const VarDecl *OtherD; 2723 2724 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2725 // to make sure that we issue an error only once. 2726 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2727 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2728 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2729 OtherD->hasInit() && 2730 DiagnosedConflictingDefinitions.insert(D).second) { 2731 getDiags().Report(D->getLocation(), 2732 diag::err_duplicate_mangled_name); 2733 getDiags().Report(OtherGD.getDecl()->getLocation(), 2734 diag::note_previous_definition); 2735 } 2736 } 2737 2738 // Make sure the result is of the correct type. 2739 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2740 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2741 2742 // (If global is requested for a definition, we always need to create a new 2743 // global, not just return a bitcast.) 2744 if (!IsForDefinition) 2745 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2746 } 2747 2748 auto AddrSpace = GetGlobalVarAddressSpace(D); 2749 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2750 2751 auto *GV = new llvm::GlobalVariable( 2752 getModule(), Ty->getElementType(), false, 2753 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2754 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2755 2756 // If we already created a global with the same mangled name (but different 2757 // type) before, take its name and remove it from its parent. 2758 if (Entry) { 2759 GV->takeName(Entry); 2760 2761 if (!Entry->use_empty()) { 2762 llvm::Constant *NewPtrForOldDecl = 2763 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2764 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2765 } 2766 2767 Entry->eraseFromParent(); 2768 } 2769 2770 // This is the first use or definition of a mangled name. If there is a 2771 // deferred decl with this name, remember that we need to emit it at the end 2772 // of the file. 2773 auto DDI = DeferredDecls.find(MangledName); 2774 if (DDI != DeferredDecls.end()) { 2775 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2776 // list, and remove it from DeferredDecls (since we don't need it anymore). 2777 addDeferredDeclToEmit(DDI->second); 2778 DeferredDecls.erase(DDI); 2779 } 2780 2781 // Handle things which are present even on external declarations. 2782 if (D) { 2783 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2784 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2785 2786 // FIXME: This code is overly simple and should be merged with other global 2787 // handling. 2788 GV->setConstant(isTypeConstant(D->getType(), false)); 2789 2790 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2791 2792 setLinkageForGV(GV, D); 2793 2794 if (D->getTLSKind()) { 2795 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2796 CXXThreadLocals.push_back(D); 2797 setTLSMode(GV, *D); 2798 } 2799 2800 setGVProperties(GV, D); 2801 2802 // If required by the ABI, treat declarations of static data members with 2803 // inline initializers as definitions. 2804 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2805 EmitGlobalVarDefinition(D); 2806 } 2807 2808 // Emit section information for extern variables. 2809 if (D->hasExternalStorage()) { 2810 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2811 GV->setSection(SA->getName()); 2812 } 2813 2814 // Handle XCore specific ABI requirements. 2815 if (getTriple().getArch() == llvm::Triple::xcore && 2816 D->getLanguageLinkage() == CLanguageLinkage && 2817 D->getType().isConstant(Context) && 2818 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2819 GV->setSection(".cp.rodata"); 2820 2821 // Check if we a have a const declaration with an initializer, we may be 2822 // able to emit it as available_externally to expose it's value to the 2823 // optimizer. 2824 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2825 D->getType().isConstQualified() && !GV->hasInitializer() && 2826 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2827 const auto *Record = 2828 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2829 bool HasMutableFields = Record && Record->hasMutableFields(); 2830 if (!HasMutableFields) { 2831 const VarDecl *InitDecl; 2832 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2833 if (InitExpr) { 2834 ConstantEmitter emitter(*this); 2835 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2836 if (Init) { 2837 auto *InitType = Init->getType(); 2838 if (GV->getType()->getElementType() != InitType) { 2839 // The type of the initializer does not match the definition. 2840 // This happens when an initializer has a different type from 2841 // the type of the global (because of padding at the end of a 2842 // structure for instance). 2843 GV->setName(StringRef()); 2844 // Make a new global with the correct type, this is now guaranteed 2845 // to work. 2846 auto *NewGV = cast<llvm::GlobalVariable>( 2847 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2848 2849 // Erase the old global, since it is no longer used. 2850 GV->eraseFromParent(); 2851 GV = NewGV; 2852 } else { 2853 GV->setInitializer(Init); 2854 GV->setConstant(true); 2855 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2856 } 2857 emitter.finalize(GV); 2858 } 2859 } 2860 } 2861 } 2862 } 2863 2864 LangAS ExpectedAS = 2865 D ? D->getType().getAddressSpace() 2866 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2867 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2868 Ty->getPointerAddressSpace()); 2869 if (AddrSpace != ExpectedAS) 2870 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2871 ExpectedAS, Ty); 2872 2873 return GV; 2874 } 2875 2876 llvm::Constant * 2877 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2878 ForDefinition_t IsForDefinition) { 2879 const Decl *D = GD.getDecl(); 2880 if (isa<CXXConstructorDecl>(D)) 2881 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2882 getFromCtorType(GD.getCtorType()), 2883 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2884 /*DontDefer=*/false, IsForDefinition); 2885 else if (isa<CXXDestructorDecl>(D)) 2886 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2887 getFromDtorType(GD.getDtorType()), 2888 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2889 /*DontDefer=*/false, IsForDefinition); 2890 else if (isa<CXXMethodDecl>(D)) { 2891 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2892 cast<CXXMethodDecl>(D)); 2893 auto Ty = getTypes().GetFunctionType(*FInfo); 2894 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2895 IsForDefinition); 2896 } else if (isa<FunctionDecl>(D)) { 2897 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2898 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2899 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2900 IsForDefinition); 2901 } else 2902 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2903 IsForDefinition); 2904 } 2905 2906 llvm::GlobalVariable * 2907 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2908 llvm::Type *Ty, 2909 llvm::GlobalValue::LinkageTypes Linkage) { 2910 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2911 llvm::GlobalVariable *OldGV = nullptr; 2912 2913 if (GV) { 2914 // Check if the variable has the right type. 2915 if (GV->getType()->getElementType() == Ty) 2916 return GV; 2917 2918 // Because C++ name mangling, the only way we can end up with an already 2919 // existing global with the same name is if it has been declared extern "C". 2920 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2921 OldGV = GV; 2922 } 2923 2924 // Create a new variable. 2925 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2926 Linkage, nullptr, Name); 2927 2928 if (OldGV) { 2929 // Replace occurrences of the old variable if needed. 2930 GV->takeName(OldGV); 2931 2932 if (!OldGV->use_empty()) { 2933 llvm::Constant *NewPtrForOldDecl = 2934 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2935 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2936 } 2937 2938 OldGV->eraseFromParent(); 2939 } 2940 2941 if (supportsCOMDAT() && GV->isWeakForLinker() && 2942 !GV->hasAvailableExternallyLinkage()) 2943 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2944 2945 return GV; 2946 } 2947 2948 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2949 /// given global variable. If Ty is non-null and if the global doesn't exist, 2950 /// then it will be created with the specified type instead of whatever the 2951 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 2952 /// that an actual global with type Ty will be returned, not conversion of a 2953 /// variable with the same mangled name but some other type. 2954 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2955 llvm::Type *Ty, 2956 ForDefinition_t IsForDefinition) { 2957 assert(D->hasGlobalStorage() && "Not a global variable"); 2958 QualType ASTTy = D->getType(); 2959 if (!Ty) 2960 Ty = getTypes().ConvertTypeForMem(ASTTy); 2961 2962 llvm::PointerType *PTy = 2963 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2964 2965 StringRef MangledName = getMangledName(D); 2966 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2967 } 2968 2969 /// CreateRuntimeVariable - Create a new runtime global variable with the 2970 /// specified type and name. 2971 llvm::Constant * 2972 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2973 StringRef Name) { 2974 auto *Ret = 2975 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2976 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 2977 return Ret; 2978 } 2979 2980 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2981 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2982 2983 StringRef MangledName = getMangledName(D); 2984 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2985 2986 // We already have a definition, not declaration, with the same mangled name. 2987 // Emitting of declaration is not required (and actually overwrites emitted 2988 // definition). 2989 if (GV && !GV->isDeclaration()) 2990 return; 2991 2992 // If we have not seen a reference to this variable yet, place it into the 2993 // deferred declarations table to be emitted if needed later. 2994 if (!MustBeEmitted(D) && !GV) { 2995 DeferredDecls[MangledName] = D; 2996 return; 2997 } 2998 2999 // The tentative definition is the only definition. 3000 EmitGlobalVarDefinition(D); 3001 } 3002 3003 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3004 return Context.toCharUnitsFromBits( 3005 getDataLayout().getTypeStoreSizeInBits(Ty)); 3006 } 3007 3008 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3009 LangAS AddrSpace = LangAS::Default; 3010 if (LangOpts.OpenCL) { 3011 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3012 assert(AddrSpace == LangAS::opencl_global || 3013 AddrSpace == LangAS::opencl_constant || 3014 AddrSpace == LangAS::opencl_local || 3015 AddrSpace >= LangAS::FirstTargetAddressSpace); 3016 return AddrSpace; 3017 } 3018 3019 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3020 if (D && D->hasAttr<CUDAConstantAttr>()) 3021 return LangAS::cuda_constant; 3022 else if (D && D->hasAttr<CUDASharedAttr>()) 3023 return LangAS::cuda_shared; 3024 else 3025 return LangAS::cuda_device; 3026 } 3027 3028 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3029 } 3030 3031 template<typename SomeDecl> 3032 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3033 llvm::GlobalValue *GV) { 3034 if (!getLangOpts().CPlusPlus) 3035 return; 3036 3037 // Must have 'used' attribute, or else inline assembly can't rely on 3038 // the name existing. 3039 if (!D->template hasAttr<UsedAttr>()) 3040 return; 3041 3042 // Must have internal linkage and an ordinary name. 3043 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3044 return; 3045 3046 // Must be in an extern "C" context. Entities declared directly within 3047 // a record are not extern "C" even if the record is in such a context. 3048 const SomeDecl *First = D->getFirstDecl(); 3049 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3050 return; 3051 3052 // OK, this is an internal linkage entity inside an extern "C" linkage 3053 // specification. Make a note of that so we can give it the "expected" 3054 // mangled name if nothing else is using that name. 3055 std::pair<StaticExternCMap::iterator, bool> R = 3056 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3057 3058 // If we have multiple internal linkage entities with the same name 3059 // in extern "C" regions, none of them gets that name. 3060 if (!R.second) 3061 R.first->second = nullptr; 3062 } 3063 3064 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3065 if (!CGM.supportsCOMDAT()) 3066 return false; 3067 3068 if (D.hasAttr<SelectAnyAttr>()) 3069 return true; 3070 3071 GVALinkage Linkage; 3072 if (auto *VD = dyn_cast<VarDecl>(&D)) 3073 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3074 else 3075 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3076 3077 switch (Linkage) { 3078 case GVA_Internal: 3079 case GVA_AvailableExternally: 3080 case GVA_StrongExternal: 3081 return false; 3082 case GVA_DiscardableODR: 3083 case GVA_StrongODR: 3084 return true; 3085 } 3086 llvm_unreachable("No such linkage"); 3087 } 3088 3089 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3090 llvm::GlobalObject &GO) { 3091 if (!shouldBeInCOMDAT(*this, D)) 3092 return; 3093 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3094 } 3095 3096 /// Pass IsTentative as true if you want to create a tentative definition. 3097 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3098 bool IsTentative) { 3099 // OpenCL global variables of sampler type are translated to function calls, 3100 // therefore no need to be translated. 3101 QualType ASTTy = D->getType(); 3102 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3103 return; 3104 3105 // If this is OpenMP device, check if it is legal to emit this global 3106 // normally. 3107 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3108 OpenMPRuntime->emitTargetGlobalVariable(D)) 3109 return; 3110 3111 llvm::Constant *Init = nullptr; 3112 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3113 bool NeedsGlobalCtor = false; 3114 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3115 3116 const VarDecl *InitDecl; 3117 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3118 3119 Optional<ConstantEmitter> emitter; 3120 3121 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3122 // as part of their declaration." Sema has already checked for 3123 // error cases, so we just need to set Init to UndefValue. 3124 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3125 D->hasAttr<CUDASharedAttr>()) 3126 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3127 else if (!InitExpr) { 3128 // This is a tentative definition; tentative definitions are 3129 // implicitly initialized with { 0 }. 3130 // 3131 // Note that tentative definitions are only emitted at the end of 3132 // a translation unit, so they should never have incomplete 3133 // type. In addition, EmitTentativeDefinition makes sure that we 3134 // never attempt to emit a tentative definition if a real one 3135 // exists. A use may still exists, however, so we still may need 3136 // to do a RAUW. 3137 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3138 Init = EmitNullConstant(D->getType()); 3139 } else { 3140 initializedGlobalDecl = GlobalDecl(D); 3141 emitter.emplace(*this); 3142 Init = emitter->tryEmitForInitializer(*InitDecl); 3143 3144 if (!Init) { 3145 QualType T = InitExpr->getType(); 3146 if (D->getType()->isReferenceType()) 3147 T = D->getType(); 3148 3149 if (getLangOpts().CPlusPlus) { 3150 Init = EmitNullConstant(T); 3151 NeedsGlobalCtor = true; 3152 } else { 3153 ErrorUnsupported(D, "static initializer"); 3154 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3155 } 3156 } else { 3157 // We don't need an initializer, so remove the entry for the delayed 3158 // initializer position (just in case this entry was delayed) if we 3159 // also don't need to register a destructor. 3160 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3161 DelayedCXXInitPosition.erase(D); 3162 } 3163 } 3164 3165 llvm::Type* InitType = Init->getType(); 3166 llvm::Constant *Entry = 3167 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3168 3169 // Strip off a bitcast if we got one back. 3170 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3171 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3172 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3173 // All zero index gep. 3174 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3175 Entry = CE->getOperand(0); 3176 } 3177 3178 // Entry is now either a Function or GlobalVariable. 3179 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3180 3181 // We have a definition after a declaration with the wrong type. 3182 // We must make a new GlobalVariable* and update everything that used OldGV 3183 // (a declaration or tentative definition) with the new GlobalVariable* 3184 // (which will be a definition). 3185 // 3186 // This happens if there is a prototype for a global (e.g. 3187 // "extern int x[];") and then a definition of a different type (e.g. 3188 // "int x[10];"). This also happens when an initializer has a different type 3189 // from the type of the global (this happens with unions). 3190 if (!GV || GV->getType()->getElementType() != InitType || 3191 GV->getType()->getAddressSpace() != 3192 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3193 3194 // Move the old entry aside so that we'll create a new one. 3195 Entry->setName(StringRef()); 3196 3197 // Make a new global with the correct type, this is now guaranteed to work. 3198 GV = cast<llvm::GlobalVariable>( 3199 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3200 3201 // Replace all uses of the old global with the new global 3202 llvm::Constant *NewPtrForOldDecl = 3203 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3204 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3205 3206 // Erase the old global, since it is no longer used. 3207 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3208 } 3209 3210 MaybeHandleStaticInExternC(D, GV); 3211 3212 if (D->hasAttr<AnnotateAttr>()) 3213 AddGlobalAnnotations(D, GV); 3214 3215 // Set the llvm linkage type as appropriate. 3216 llvm::GlobalValue::LinkageTypes Linkage = 3217 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3218 3219 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3220 // the device. [...]" 3221 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3222 // __device__, declares a variable that: [...] 3223 // Is accessible from all the threads within the grid and from the host 3224 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3225 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3226 if (GV && LangOpts.CUDA) { 3227 if (LangOpts.CUDAIsDevice) { 3228 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3229 GV->setExternallyInitialized(true); 3230 } else { 3231 // Host-side shadows of external declarations of device-side 3232 // global variables become internal definitions. These have to 3233 // be internal in order to prevent name conflicts with global 3234 // host variables with the same name in a different TUs. 3235 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3236 Linkage = llvm::GlobalValue::InternalLinkage; 3237 3238 // Shadow variables and their properties must be registered 3239 // with CUDA runtime. 3240 unsigned Flags = 0; 3241 if (!D->hasDefinition()) 3242 Flags |= CGCUDARuntime::ExternDeviceVar; 3243 if (D->hasAttr<CUDAConstantAttr>()) 3244 Flags |= CGCUDARuntime::ConstantDeviceVar; 3245 getCUDARuntime().registerDeviceVar(*GV, Flags); 3246 } else if (D->hasAttr<CUDASharedAttr>()) 3247 // __shared__ variables are odd. Shadows do get created, but 3248 // they are not registered with the CUDA runtime, so they 3249 // can't really be used to access their device-side 3250 // counterparts. It's not clear yet whether it's nvcc's bug or 3251 // a feature, but we've got to do the same for compatibility. 3252 Linkage = llvm::GlobalValue::InternalLinkage; 3253 } 3254 } 3255 3256 GV->setInitializer(Init); 3257 if (emitter) emitter->finalize(GV); 3258 3259 // If it is safe to mark the global 'constant', do so now. 3260 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3261 isTypeConstant(D->getType(), true)); 3262 3263 // If it is in a read-only section, mark it 'constant'. 3264 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3265 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3266 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3267 GV->setConstant(true); 3268 } 3269 3270 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3271 3272 3273 // On Darwin, if the normal linkage of a C++ thread_local variable is 3274 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3275 // copies within a linkage unit; otherwise, the backing variable has 3276 // internal linkage and all accesses should just be calls to the 3277 // Itanium-specified entry point, which has the normal linkage of the 3278 // variable. This is to preserve the ability to change the implementation 3279 // behind the scenes. 3280 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3281 Context.getTargetInfo().getTriple().isOSDarwin() && 3282 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3283 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3284 Linkage = llvm::GlobalValue::InternalLinkage; 3285 3286 GV->setLinkage(Linkage); 3287 if (D->hasAttr<DLLImportAttr>()) 3288 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3289 else if (D->hasAttr<DLLExportAttr>()) 3290 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3291 else 3292 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3293 3294 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3295 // common vars aren't constant even if declared const. 3296 GV->setConstant(false); 3297 // Tentative definition of global variables may be initialized with 3298 // non-zero null pointers. In this case they should have weak linkage 3299 // since common linkage must have zero initializer and must not have 3300 // explicit section therefore cannot have non-zero initial value. 3301 if (!GV->getInitializer()->isNullValue()) 3302 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3303 } 3304 3305 setNonAliasAttributes(D, GV); 3306 3307 if (D->getTLSKind() && !GV->isThreadLocal()) { 3308 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3309 CXXThreadLocals.push_back(D); 3310 setTLSMode(GV, *D); 3311 } 3312 3313 maybeSetTrivialComdat(*D, *GV); 3314 3315 // Emit the initializer function if necessary. 3316 if (NeedsGlobalCtor || NeedsGlobalDtor) 3317 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3318 3319 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3320 3321 // Emit global variable debug information. 3322 if (CGDebugInfo *DI = getModuleDebugInfo()) 3323 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3324 DI->EmitGlobalVariable(GV, D); 3325 } 3326 3327 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3328 CodeGenModule &CGM, const VarDecl *D, 3329 bool NoCommon) { 3330 // Don't give variables common linkage if -fno-common was specified unless it 3331 // was overridden by a NoCommon attribute. 3332 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3333 return true; 3334 3335 // C11 6.9.2/2: 3336 // A declaration of an identifier for an object that has file scope without 3337 // an initializer, and without a storage-class specifier or with the 3338 // storage-class specifier static, constitutes a tentative definition. 3339 if (D->getInit() || D->hasExternalStorage()) 3340 return true; 3341 3342 // A variable cannot be both common and exist in a section. 3343 if (D->hasAttr<SectionAttr>()) 3344 return true; 3345 3346 // A variable cannot be both common and exist in a section. 3347 // We don't try to determine which is the right section in the front-end. 3348 // If no specialized section name is applicable, it will resort to default. 3349 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3350 D->hasAttr<PragmaClangDataSectionAttr>() || 3351 D->hasAttr<PragmaClangRodataSectionAttr>()) 3352 return true; 3353 3354 // Thread local vars aren't considered common linkage. 3355 if (D->getTLSKind()) 3356 return true; 3357 3358 // Tentative definitions marked with WeakImportAttr are true definitions. 3359 if (D->hasAttr<WeakImportAttr>()) 3360 return true; 3361 3362 // A variable cannot be both common and exist in a comdat. 3363 if (shouldBeInCOMDAT(CGM, *D)) 3364 return true; 3365 3366 // Declarations with a required alignment do not have common linkage in MSVC 3367 // mode. 3368 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3369 if (D->hasAttr<AlignedAttr>()) 3370 return true; 3371 QualType VarType = D->getType(); 3372 if (Context.isAlignmentRequired(VarType)) 3373 return true; 3374 3375 if (const auto *RT = VarType->getAs<RecordType>()) { 3376 const RecordDecl *RD = RT->getDecl(); 3377 for (const FieldDecl *FD : RD->fields()) { 3378 if (FD->isBitField()) 3379 continue; 3380 if (FD->hasAttr<AlignedAttr>()) 3381 return true; 3382 if (Context.isAlignmentRequired(FD->getType())) 3383 return true; 3384 } 3385 } 3386 } 3387 3388 return false; 3389 } 3390 3391 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3392 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3393 if (Linkage == GVA_Internal) 3394 return llvm::Function::InternalLinkage; 3395 3396 if (D->hasAttr<WeakAttr>()) { 3397 if (IsConstantVariable) 3398 return llvm::GlobalVariable::WeakODRLinkage; 3399 else 3400 return llvm::GlobalVariable::WeakAnyLinkage; 3401 } 3402 3403 // We are guaranteed to have a strong definition somewhere else, 3404 // so we can use available_externally linkage. 3405 if (Linkage == GVA_AvailableExternally) 3406 return llvm::GlobalValue::AvailableExternallyLinkage; 3407 3408 // Note that Apple's kernel linker doesn't support symbol 3409 // coalescing, so we need to avoid linkonce and weak linkages there. 3410 // Normally, this means we just map to internal, but for explicit 3411 // instantiations we'll map to external. 3412 3413 // In C++, the compiler has to emit a definition in every translation unit 3414 // that references the function. We should use linkonce_odr because 3415 // a) if all references in this translation unit are optimized away, we 3416 // don't need to codegen it. b) if the function persists, it needs to be 3417 // merged with other definitions. c) C++ has the ODR, so we know the 3418 // definition is dependable. 3419 if (Linkage == GVA_DiscardableODR) 3420 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3421 : llvm::Function::InternalLinkage; 3422 3423 // An explicit instantiation of a template has weak linkage, since 3424 // explicit instantiations can occur in multiple translation units 3425 // and must all be equivalent. However, we are not allowed to 3426 // throw away these explicit instantiations. 3427 // 3428 // We don't currently support CUDA device code spread out across multiple TUs, 3429 // so say that CUDA templates are either external (for kernels) or internal. 3430 // This lets llvm perform aggressive inter-procedural optimizations. 3431 if (Linkage == GVA_StrongODR) { 3432 if (Context.getLangOpts().AppleKext) 3433 return llvm::Function::ExternalLinkage; 3434 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3435 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3436 : llvm::Function::InternalLinkage; 3437 return llvm::Function::WeakODRLinkage; 3438 } 3439 3440 // C++ doesn't have tentative definitions and thus cannot have common 3441 // linkage. 3442 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3443 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3444 CodeGenOpts.NoCommon)) 3445 return llvm::GlobalVariable::CommonLinkage; 3446 3447 // selectany symbols are externally visible, so use weak instead of 3448 // linkonce. MSVC optimizes away references to const selectany globals, so 3449 // all definitions should be the same and ODR linkage should be used. 3450 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3451 if (D->hasAttr<SelectAnyAttr>()) 3452 return llvm::GlobalVariable::WeakODRLinkage; 3453 3454 // Otherwise, we have strong external linkage. 3455 assert(Linkage == GVA_StrongExternal); 3456 return llvm::GlobalVariable::ExternalLinkage; 3457 } 3458 3459 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3460 const VarDecl *VD, bool IsConstant) { 3461 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3462 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3463 } 3464 3465 /// Replace the uses of a function that was declared with a non-proto type. 3466 /// We want to silently drop extra arguments from call sites 3467 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3468 llvm::Function *newFn) { 3469 // Fast path. 3470 if (old->use_empty()) return; 3471 3472 llvm::Type *newRetTy = newFn->getReturnType(); 3473 SmallVector<llvm::Value*, 4> newArgs; 3474 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3475 3476 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3477 ui != ue; ) { 3478 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3479 llvm::User *user = use->getUser(); 3480 3481 // Recognize and replace uses of bitcasts. Most calls to 3482 // unprototyped functions will use bitcasts. 3483 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3484 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3485 replaceUsesOfNonProtoConstant(bitcast, newFn); 3486 continue; 3487 } 3488 3489 // Recognize calls to the function. 3490 llvm::CallSite callSite(user); 3491 if (!callSite) continue; 3492 if (!callSite.isCallee(&*use)) continue; 3493 3494 // If the return types don't match exactly, then we can't 3495 // transform this call unless it's dead. 3496 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3497 continue; 3498 3499 // Get the call site's attribute list. 3500 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3501 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3502 3503 // If the function was passed too few arguments, don't transform. 3504 unsigned newNumArgs = newFn->arg_size(); 3505 if (callSite.arg_size() < newNumArgs) continue; 3506 3507 // If extra arguments were passed, we silently drop them. 3508 // If any of the types mismatch, we don't transform. 3509 unsigned argNo = 0; 3510 bool dontTransform = false; 3511 for (llvm::Argument &A : newFn->args()) { 3512 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3513 dontTransform = true; 3514 break; 3515 } 3516 3517 // Add any parameter attributes. 3518 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3519 argNo++; 3520 } 3521 if (dontTransform) 3522 continue; 3523 3524 // Okay, we can transform this. Create the new call instruction and copy 3525 // over the required information. 3526 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3527 3528 // Copy over any operand bundles. 3529 callSite.getOperandBundlesAsDefs(newBundles); 3530 3531 llvm::CallSite newCall; 3532 if (callSite.isCall()) { 3533 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3534 callSite.getInstruction()); 3535 } else { 3536 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3537 newCall = llvm::InvokeInst::Create(newFn, 3538 oldInvoke->getNormalDest(), 3539 oldInvoke->getUnwindDest(), 3540 newArgs, newBundles, "", 3541 callSite.getInstruction()); 3542 } 3543 newArgs.clear(); // for the next iteration 3544 3545 if (!newCall->getType()->isVoidTy()) 3546 newCall->takeName(callSite.getInstruction()); 3547 newCall.setAttributes(llvm::AttributeList::get( 3548 newFn->getContext(), oldAttrs.getFnAttributes(), 3549 oldAttrs.getRetAttributes(), newArgAttrs)); 3550 newCall.setCallingConv(callSite.getCallingConv()); 3551 3552 // Finally, remove the old call, replacing any uses with the new one. 3553 if (!callSite->use_empty()) 3554 callSite->replaceAllUsesWith(newCall.getInstruction()); 3555 3556 // Copy debug location attached to CI. 3557 if (callSite->getDebugLoc()) 3558 newCall->setDebugLoc(callSite->getDebugLoc()); 3559 3560 callSite->eraseFromParent(); 3561 } 3562 } 3563 3564 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3565 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3566 /// existing call uses of the old function in the module, this adjusts them to 3567 /// call the new function directly. 3568 /// 3569 /// This is not just a cleanup: the always_inline pass requires direct calls to 3570 /// functions to be able to inline them. If there is a bitcast in the way, it 3571 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3572 /// run at -O0. 3573 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3574 llvm::Function *NewFn) { 3575 // If we're redefining a global as a function, don't transform it. 3576 if (!isa<llvm::Function>(Old)) return; 3577 3578 replaceUsesOfNonProtoConstant(Old, NewFn); 3579 } 3580 3581 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3582 auto DK = VD->isThisDeclarationADefinition(); 3583 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3584 return; 3585 3586 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3587 // If we have a definition, this might be a deferred decl. If the 3588 // instantiation is explicit, make sure we emit it at the end. 3589 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3590 GetAddrOfGlobalVar(VD); 3591 3592 EmitTopLevelDecl(VD); 3593 } 3594 3595 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3596 llvm::GlobalValue *GV) { 3597 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3598 3599 // Compute the function info and LLVM type. 3600 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3601 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3602 3603 // Get or create the prototype for the function. 3604 if (!GV || (GV->getType()->getElementType() != Ty)) 3605 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3606 /*DontDefer=*/true, 3607 ForDefinition)); 3608 3609 // Already emitted. 3610 if (!GV->isDeclaration()) 3611 return; 3612 3613 // We need to set linkage and visibility on the function before 3614 // generating code for it because various parts of IR generation 3615 // want to propagate this information down (e.g. to local static 3616 // declarations). 3617 auto *Fn = cast<llvm::Function>(GV); 3618 setFunctionLinkage(GD, Fn); 3619 3620 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3621 setGVProperties(Fn, GD); 3622 3623 MaybeHandleStaticInExternC(D, Fn); 3624 3625 maybeSetTrivialComdat(*D, *Fn); 3626 3627 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3628 3629 setNonAliasAttributes(GD, Fn); 3630 SetLLVMFunctionAttributesForDefinition(D, Fn); 3631 3632 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3633 AddGlobalCtor(Fn, CA->getPriority()); 3634 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3635 AddGlobalDtor(Fn, DA->getPriority()); 3636 if (D->hasAttr<AnnotateAttr>()) 3637 AddGlobalAnnotations(D, Fn); 3638 } 3639 3640 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3641 const auto *D = cast<ValueDecl>(GD.getDecl()); 3642 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3643 assert(AA && "Not an alias?"); 3644 3645 StringRef MangledName = getMangledName(GD); 3646 3647 if (AA->getAliasee() == MangledName) { 3648 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3649 return; 3650 } 3651 3652 // If there is a definition in the module, then it wins over the alias. 3653 // This is dubious, but allow it to be safe. Just ignore the alias. 3654 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3655 if (Entry && !Entry->isDeclaration()) 3656 return; 3657 3658 Aliases.push_back(GD); 3659 3660 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3661 3662 // Create a reference to the named value. This ensures that it is emitted 3663 // if a deferred decl. 3664 llvm::Constant *Aliasee; 3665 if (isa<llvm::FunctionType>(DeclTy)) 3666 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3667 /*ForVTable=*/false); 3668 else 3669 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3670 llvm::PointerType::getUnqual(DeclTy), 3671 /*D=*/nullptr); 3672 3673 // Create the new alias itself, but don't set a name yet. 3674 auto *GA = llvm::GlobalAlias::create( 3675 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3676 3677 if (Entry) { 3678 if (GA->getAliasee() == Entry) { 3679 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3680 return; 3681 } 3682 3683 assert(Entry->isDeclaration()); 3684 3685 // If there is a declaration in the module, then we had an extern followed 3686 // by the alias, as in: 3687 // extern int test6(); 3688 // ... 3689 // int test6() __attribute__((alias("test7"))); 3690 // 3691 // Remove it and replace uses of it with the alias. 3692 GA->takeName(Entry); 3693 3694 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3695 Entry->getType())); 3696 Entry->eraseFromParent(); 3697 } else { 3698 GA->setName(MangledName); 3699 } 3700 3701 // Set attributes which are particular to an alias; this is a 3702 // specialization of the attributes which may be set on a global 3703 // variable/function. 3704 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3705 D->isWeakImported()) { 3706 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3707 } 3708 3709 if (const auto *VD = dyn_cast<VarDecl>(D)) 3710 if (VD->getTLSKind()) 3711 setTLSMode(GA, *VD); 3712 3713 SetCommonAttributes(GD, GA); 3714 } 3715 3716 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3717 const auto *D = cast<ValueDecl>(GD.getDecl()); 3718 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3719 assert(IFA && "Not an ifunc?"); 3720 3721 StringRef MangledName = getMangledName(GD); 3722 3723 if (IFA->getResolver() == MangledName) { 3724 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3725 return; 3726 } 3727 3728 // Report an error if some definition overrides ifunc. 3729 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3730 if (Entry && !Entry->isDeclaration()) { 3731 GlobalDecl OtherGD; 3732 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3733 DiagnosedConflictingDefinitions.insert(GD).second) { 3734 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3735 Diags.Report(OtherGD.getDecl()->getLocation(), 3736 diag::note_previous_definition); 3737 } 3738 return; 3739 } 3740 3741 Aliases.push_back(GD); 3742 3743 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3744 llvm::Constant *Resolver = 3745 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3746 /*ForVTable=*/false); 3747 llvm::GlobalIFunc *GIF = 3748 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3749 "", Resolver, &getModule()); 3750 if (Entry) { 3751 if (GIF->getResolver() == Entry) { 3752 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3753 return; 3754 } 3755 assert(Entry->isDeclaration()); 3756 3757 // If there is a declaration in the module, then we had an extern followed 3758 // by the ifunc, as in: 3759 // extern int test(); 3760 // ... 3761 // int test() __attribute__((ifunc("resolver"))); 3762 // 3763 // Remove it and replace uses of it with the ifunc. 3764 GIF->takeName(Entry); 3765 3766 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3767 Entry->getType())); 3768 Entry->eraseFromParent(); 3769 } else 3770 GIF->setName(MangledName); 3771 3772 SetCommonAttributes(GD, GIF); 3773 } 3774 3775 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3776 ArrayRef<llvm::Type*> Tys) { 3777 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3778 Tys); 3779 } 3780 3781 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3782 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3783 const StringLiteral *Literal, bool TargetIsLSB, 3784 bool &IsUTF16, unsigned &StringLength) { 3785 StringRef String = Literal->getString(); 3786 unsigned NumBytes = String.size(); 3787 3788 // Check for simple case. 3789 if (!Literal->containsNonAsciiOrNull()) { 3790 StringLength = NumBytes; 3791 return *Map.insert(std::make_pair(String, nullptr)).first; 3792 } 3793 3794 // Otherwise, convert the UTF8 literals into a string of shorts. 3795 IsUTF16 = true; 3796 3797 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3798 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3799 llvm::UTF16 *ToPtr = &ToBuf[0]; 3800 3801 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3802 ToPtr + NumBytes, llvm::strictConversion); 3803 3804 // ConvertUTF8toUTF16 returns the length in ToPtr. 3805 StringLength = ToPtr - &ToBuf[0]; 3806 3807 // Add an explicit null. 3808 *ToPtr = 0; 3809 return *Map.insert(std::make_pair( 3810 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3811 (StringLength + 1) * 2), 3812 nullptr)).first; 3813 } 3814 3815 ConstantAddress 3816 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3817 unsigned StringLength = 0; 3818 bool isUTF16 = false; 3819 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3820 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3821 getDataLayout().isLittleEndian(), isUTF16, 3822 StringLength); 3823 3824 if (auto *C = Entry.second) 3825 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3826 3827 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3828 llvm::Constant *Zeros[] = { Zero, Zero }; 3829 3830 // If we don't already have it, get __CFConstantStringClassReference. 3831 if (!CFConstantStringClassRef) { 3832 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3833 Ty = llvm::ArrayType::get(Ty, 0); 3834 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 3835 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 3836 3837 if (getTriple().isOSBinFormatCOFF()) { 3838 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3839 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3840 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3841 3842 const VarDecl *VD = nullptr; 3843 for (const auto &Result : DC->lookup(&II)) 3844 if ((VD = dyn_cast<VarDecl>(Result))) 3845 break; 3846 3847 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3848 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3849 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3850 } else { 3851 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3852 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3853 } 3854 } 3855 setDSOLocal(GV); 3856 3857 // Decay array -> ptr 3858 CFConstantStringClassRef = 3859 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3860 } 3861 3862 QualType CFTy = getContext().getCFConstantStringType(); 3863 3864 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3865 3866 ConstantInitBuilder Builder(*this); 3867 auto Fields = Builder.beginStruct(STy); 3868 3869 // Class pointer. 3870 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3871 3872 // Flags. 3873 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3874 3875 // String pointer. 3876 llvm::Constant *C = nullptr; 3877 if (isUTF16) { 3878 auto Arr = llvm::makeArrayRef( 3879 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3880 Entry.first().size() / 2); 3881 C = llvm::ConstantDataArray::get(VMContext, Arr); 3882 } else { 3883 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3884 } 3885 3886 // Note: -fwritable-strings doesn't make the backing store strings of 3887 // CFStrings writable. (See <rdar://problem/10657500>) 3888 auto *GV = 3889 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3890 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3891 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3892 // Don't enforce the target's minimum global alignment, since the only use 3893 // of the string is via this class initializer. 3894 CharUnits Align = isUTF16 3895 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3896 : getContext().getTypeAlignInChars(getContext().CharTy); 3897 GV->setAlignment(Align.getQuantity()); 3898 3899 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3900 // Without it LLVM can merge the string with a non unnamed_addr one during 3901 // LTO. Doing that changes the section it ends in, which surprises ld64. 3902 if (getTriple().isOSBinFormatMachO()) 3903 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3904 : "__TEXT,__cstring,cstring_literals"); 3905 3906 // String. 3907 llvm::Constant *Str = 3908 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3909 3910 if (isUTF16) 3911 // Cast the UTF16 string to the correct type. 3912 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3913 Fields.add(Str); 3914 3915 // String length. 3916 auto Ty = getTypes().ConvertType(getContext().LongTy); 3917 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3918 3919 CharUnits Alignment = getPointerAlign(); 3920 3921 // The struct. 3922 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3923 /*isConstant=*/false, 3924 llvm::GlobalVariable::PrivateLinkage); 3925 switch (getTriple().getObjectFormat()) { 3926 case llvm::Triple::UnknownObjectFormat: 3927 llvm_unreachable("unknown file format"); 3928 case llvm::Triple::COFF: 3929 case llvm::Triple::ELF: 3930 case llvm::Triple::Wasm: 3931 GV->setSection("cfstring"); 3932 break; 3933 case llvm::Triple::MachO: 3934 GV->setSection("__DATA,__cfstring"); 3935 break; 3936 } 3937 Entry.second = GV; 3938 3939 return ConstantAddress(GV, Alignment); 3940 } 3941 3942 bool CodeGenModule::getExpressionLocationsEnabled() const { 3943 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3944 } 3945 3946 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3947 if (ObjCFastEnumerationStateType.isNull()) { 3948 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3949 D->startDefinition(); 3950 3951 QualType FieldTypes[] = { 3952 Context.UnsignedLongTy, 3953 Context.getPointerType(Context.getObjCIdType()), 3954 Context.getPointerType(Context.UnsignedLongTy), 3955 Context.getConstantArrayType(Context.UnsignedLongTy, 3956 llvm::APInt(32, 5), ArrayType::Normal, 0) 3957 }; 3958 3959 for (size_t i = 0; i < 4; ++i) { 3960 FieldDecl *Field = FieldDecl::Create(Context, 3961 D, 3962 SourceLocation(), 3963 SourceLocation(), nullptr, 3964 FieldTypes[i], /*TInfo=*/nullptr, 3965 /*BitWidth=*/nullptr, 3966 /*Mutable=*/false, 3967 ICIS_NoInit); 3968 Field->setAccess(AS_public); 3969 D->addDecl(Field); 3970 } 3971 3972 D->completeDefinition(); 3973 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3974 } 3975 3976 return ObjCFastEnumerationStateType; 3977 } 3978 3979 llvm::Constant * 3980 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3981 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3982 3983 // Don't emit it as the address of the string, emit the string data itself 3984 // as an inline array. 3985 if (E->getCharByteWidth() == 1) { 3986 SmallString<64> Str(E->getString()); 3987 3988 // Resize the string to the right size, which is indicated by its type. 3989 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3990 Str.resize(CAT->getSize().getZExtValue()); 3991 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3992 } 3993 3994 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3995 llvm::Type *ElemTy = AType->getElementType(); 3996 unsigned NumElements = AType->getNumElements(); 3997 3998 // Wide strings have either 2-byte or 4-byte elements. 3999 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4000 SmallVector<uint16_t, 32> Elements; 4001 Elements.reserve(NumElements); 4002 4003 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4004 Elements.push_back(E->getCodeUnit(i)); 4005 Elements.resize(NumElements); 4006 return llvm::ConstantDataArray::get(VMContext, Elements); 4007 } 4008 4009 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4010 SmallVector<uint32_t, 32> Elements; 4011 Elements.reserve(NumElements); 4012 4013 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4014 Elements.push_back(E->getCodeUnit(i)); 4015 Elements.resize(NumElements); 4016 return llvm::ConstantDataArray::get(VMContext, Elements); 4017 } 4018 4019 static llvm::GlobalVariable * 4020 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4021 CodeGenModule &CGM, StringRef GlobalName, 4022 CharUnits Alignment) { 4023 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4024 unsigned AddrSpace = 0; 4025 if (CGM.getLangOpts().OpenCL) 4026 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 4027 4028 llvm::Module &M = CGM.getModule(); 4029 // Create a global variable for this string 4030 auto *GV = new llvm::GlobalVariable( 4031 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4032 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4033 GV->setAlignment(Alignment.getQuantity()); 4034 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4035 if (GV->isWeakForLinker()) { 4036 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4037 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4038 } 4039 CGM.setDSOLocal(GV); 4040 4041 return GV; 4042 } 4043 4044 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4045 /// constant array for the given string literal. 4046 ConstantAddress 4047 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4048 StringRef Name) { 4049 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4050 4051 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4052 llvm::GlobalVariable **Entry = nullptr; 4053 if (!LangOpts.WritableStrings) { 4054 Entry = &ConstantStringMap[C]; 4055 if (auto GV = *Entry) { 4056 if (Alignment.getQuantity() > GV->getAlignment()) 4057 GV->setAlignment(Alignment.getQuantity()); 4058 return ConstantAddress(GV, Alignment); 4059 } 4060 } 4061 4062 SmallString<256> MangledNameBuffer; 4063 StringRef GlobalVariableName; 4064 llvm::GlobalValue::LinkageTypes LT; 4065 4066 // Mangle the string literal if the ABI allows for it. However, we cannot 4067 // do this if we are compiling with ASan or -fwritable-strings because they 4068 // rely on strings having normal linkage. 4069 if (!LangOpts.WritableStrings && 4070 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4071 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4072 llvm::raw_svector_ostream Out(MangledNameBuffer); 4073 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4074 4075 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4076 GlobalVariableName = MangledNameBuffer; 4077 } else { 4078 LT = llvm::GlobalValue::PrivateLinkage; 4079 GlobalVariableName = Name; 4080 } 4081 4082 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4083 if (Entry) 4084 *Entry = GV; 4085 4086 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4087 QualType()); 4088 return ConstantAddress(GV, Alignment); 4089 } 4090 4091 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4092 /// array for the given ObjCEncodeExpr node. 4093 ConstantAddress 4094 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4095 std::string Str; 4096 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4097 4098 return GetAddrOfConstantCString(Str); 4099 } 4100 4101 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4102 /// the literal and a terminating '\0' character. 4103 /// The result has pointer to array type. 4104 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4105 const std::string &Str, const char *GlobalName) { 4106 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4107 CharUnits Alignment = 4108 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4109 4110 llvm::Constant *C = 4111 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4112 4113 // Don't share any string literals if strings aren't constant. 4114 llvm::GlobalVariable **Entry = nullptr; 4115 if (!LangOpts.WritableStrings) { 4116 Entry = &ConstantStringMap[C]; 4117 if (auto GV = *Entry) { 4118 if (Alignment.getQuantity() > GV->getAlignment()) 4119 GV->setAlignment(Alignment.getQuantity()); 4120 return ConstantAddress(GV, Alignment); 4121 } 4122 } 4123 4124 // Get the default prefix if a name wasn't specified. 4125 if (!GlobalName) 4126 GlobalName = ".str"; 4127 // Create a global variable for this. 4128 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4129 GlobalName, Alignment); 4130 if (Entry) 4131 *Entry = GV; 4132 return ConstantAddress(GV, Alignment); 4133 } 4134 4135 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4136 const MaterializeTemporaryExpr *E, const Expr *Init) { 4137 assert((E->getStorageDuration() == SD_Static || 4138 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4139 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4140 4141 // If we're not materializing a subobject of the temporary, keep the 4142 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4143 QualType MaterializedType = Init->getType(); 4144 if (Init == E->GetTemporaryExpr()) 4145 MaterializedType = E->getType(); 4146 4147 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4148 4149 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4150 return ConstantAddress(Slot, Align); 4151 4152 // FIXME: If an externally-visible declaration extends multiple temporaries, 4153 // we need to give each temporary the same name in every translation unit (and 4154 // we also need to make the temporaries externally-visible). 4155 SmallString<256> Name; 4156 llvm::raw_svector_ostream Out(Name); 4157 getCXXABI().getMangleContext().mangleReferenceTemporary( 4158 VD, E->getManglingNumber(), Out); 4159 4160 APValue *Value = nullptr; 4161 if (E->getStorageDuration() == SD_Static) { 4162 // We might have a cached constant initializer for this temporary. Note 4163 // that this might have a different value from the value computed by 4164 // evaluating the initializer if the surrounding constant expression 4165 // modifies the temporary. 4166 Value = getContext().getMaterializedTemporaryValue(E, false); 4167 if (Value && Value->isUninit()) 4168 Value = nullptr; 4169 } 4170 4171 // Try evaluating it now, it might have a constant initializer. 4172 Expr::EvalResult EvalResult; 4173 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4174 !EvalResult.hasSideEffects()) 4175 Value = &EvalResult.Val; 4176 4177 LangAS AddrSpace = 4178 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4179 4180 Optional<ConstantEmitter> emitter; 4181 llvm::Constant *InitialValue = nullptr; 4182 bool Constant = false; 4183 llvm::Type *Type; 4184 if (Value) { 4185 // The temporary has a constant initializer, use it. 4186 emitter.emplace(*this); 4187 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4188 MaterializedType); 4189 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4190 Type = InitialValue->getType(); 4191 } else { 4192 // No initializer, the initialization will be provided when we 4193 // initialize the declaration which performed lifetime extension. 4194 Type = getTypes().ConvertTypeForMem(MaterializedType); 4195 } 4196 4197 // Create a global variable for this lifetime-extended temporary. 4198 llvm::GlobalValue::LinkageTypes Linkage = 4199 getLLVMLinkageVarDefinition(VD, Constant); 4200 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4201 const VarDecl *InitVD; 4202 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4203 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4204 // Temporaries defined inside a class get linkonce_odr linkage because the 4205 // class can be defined in multiple translation units. 4206 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4207 } else { 4208 // There is no need for this temporary to have external linkage if the 4209 // VarDecl has external linkage. 4210 Linkage = llvm::GlobalVariable::InternalLinkage; 4211 } 4212 } 4213 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4214 auto *GV = new llvm::GlobalVariable( 4215 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4216 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4217 if (emitter) emitter->finalize(GV); 4218 setGVProperties(GV, VD); 4219 GV->setAlignment(Align.getQuantity()); 4220 if (supportsCOMDAT() && GV->isWeakForLinker()) 4221 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4222 if (VD->getTLSKind()) 4223 setTLSMode(GV, *VD); 4224 llvm::Constant *CV = GV; 4225 if (AddrSpace != LangAS::Default) 4226 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4227 *this, GV, AddrSpace, LangAS::Default, 4228 Type->getPointerTo( 4229 getContext().getTargetAddressSpace(LangAS::Default))); 4230 MaterializedGlobalTemporaryMap[E] = CV; 4231 return ConstantAddress(CV, Align); 4232 } 4233 4234 /// EmitObjCPropertyImplementations - Emit information for synthesized 4235 /// properties for an implementation. 4236 void CodeGenModule::EmitObjCPropertyImplementations(const 4237 ObjCImplementationDecl *D) { 4238 for (const auto *PID : D->property_impls()) { 4239 // Dynamic is just for type-checking. 4240 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4241 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4242 4243 // Determine which methods need to be implemented, some may have 4244 // been overridden. Note that ::isPropertyAccessor is not the method 4245 // we want, that just indicates if the decl came from a 4246 // property. What we want to know is if the method is defined in 4247 // this implementation. 4248 if (!D->getInstanceMethod(PD->getGetterName())) 4249 CodeGenFunction(*this).GenerateObjCGetter( 4250 const_cast<ObjCImplementationDecl *>(D), PID); 4251 if (!PD->isReadOnly() && 4252 !D->getInstanceMethod(PD->getSetterName())) 4253 CodeGenFunction(*this).GenerateObjCSetter( 4254 const_cast<ObjCImplementationDecl *>(D), PID); 4255 } 4256 } 4257 } 4258 4259 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4260 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4261 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4262 ivar; ivar = ivar->getNextIvar()) 4263 if (ivar->getType().isDestructedType()) 4264 return true; 4265 4266 return false; 4267 } 4268 4269 static bool AllTrivialInitializers(CodeGenModule &CGM, 4270 ObjCImplementationDecl *D) { 4271 CodeGenFunction CGF(CGM); 4272 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4273 E = D->init_end(); B != E; ++B) { 4274 CXXCtorInitializer *CtorInitExp = *B; 4275 Expr *Init = CtorInitExp->getInit(); 4276 if (!CGF.isTrivialInitializer(Init)) 4277 return false; 4278 } 4279 return true; 4280 } 4281 4282 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4283 /// for an implementation. 4284 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4285 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4286 if (needsDestructMethod(D)) { 4287 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4288 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4289 ObjCMethodDecl *DTORMethod = 4290 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4291 cxxSelector, getContext().VoidTy, nullptr, D, 4292 /*isInstance=*/true, /*isVariadic=*/false, 4293 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4294 /*isDefined=*/false, ObjCMethodDecl::Required); 4295 D->addInstanceMethod(DTORMethod); 4296 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4297 D->setHasDestructors(true); 4298 } 4299 4300 // If the implementation doesn't have any ivar initializers, we don't need 4301 // a .cxx_construct. 4302 if (D->getNumIvarInitializers() == 0 || 4303 AllTrivialInitializers(*this, D)) 4304 return; 4305 4306 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4307 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4308 // The constructor returns 'self'. 4309 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4310 D->getLocation(), 4311 D->getLocation(), 4312 cxxSelector, 4313 getContext().getObjCIdType(), 4314 nullptr, D, /*isInstance=*/true, 4315 /*isVariadic=*/false, 4316 /*isPropertyAccessor=*/true, 4317 /*isImplicitlyDeclared=*/true, 4318 /*isDefined=*/false, 4319 ObjCMethodDecl::Required); 4320 D->addInstanceMethod(CTORMethod); 4321 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4322 D->setHasNonZeroConstructors(true); 4323 } 4324 4325 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4326 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4327 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4328 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4329 ErrorUnsupported(LSD, "linkage spec"); 4330 return; 4331 } 4332 4333 EmitDeclContext(LSD); 4334 } 4335 4336 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4337 for (auto *I : DC->decls()) { 4338 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4339 // are themselves considered "top-level", so EmitTopLevelDecl on an 4340 // ObjCImplDecl does not recursively visit them. We need to do that in 4341 // case they're nested inside another construct (LinkageSpecDecl / 4342 // ExportDecl) that does stop them from being considered "top-level". 4343 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4344 for (auto *M : OID->methods()) 4345 EmitTopLevelDecl(M); 4346 } 4347 4348 EmitTopLevelDecl(I); 4349 } 4350 } 4351 4352 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4353 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4354 // Ignore dependent declarations. 4355 if (D->isTemplated()) 4356 return; 4357 4358 switch (D->getKind()) { 4359 case Decl::CXXConversion: 4360 case Decl::CXXMethod: 4361 case Decl::Function: 4362 EmitGlobal(cast<FunctionDecl>(D)); 4363 // Always provide some coverage mapping 4364 // even for the functions that aren't emitted. 4365 AddDeferredUnusedCoverageMapping(D); 4366 break; 4367 4368 case Decl::CXXDeductionGuide: 4369 // Function-like, but does not result in code emission. 4370 break; 4371 4372 case Decl::Var: 4373 case Decl::Decomposition: 4374 case Decl::VarTemplateSpecialization: 4375 EmitGlobal(cast<VarDecl>(D)); 4376 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4377 for (auto *B : DD->bindings()) 4378 if (auto *HD = B->getHoldingVar()) 4379 EmitGlobal(HD); 4380 break; 4381 4382 // Indirect fields from global anonymous structs and unions can be 4383 // ignored; only the actual variable requires IR gen support. 4384 case Decl::IndirectField: 4385 break; 4386 4387 // C++ Decls 4388 case Decl::Namespace: 4389 EmitDeclContext(cast<NamespaceDecl>(D)); 4390 break; 4391 case Decl::ClassTemplateSpecialization: { 4392 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4393 if (DebugInfo && 4394 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4395 Spec->hasDefinition()) 4396 DebugInfo->completeTemplateDefinition(*Spec); 4397 } LLVM_FALLTHROUGH; 4398 case Decl::CXXRecord: 4399 if (DebugInfo) { 4400 if (auto *ES = D->getASTContext().getExternalSource()) 4401 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4402 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4403 } 4404 // Emit any static data members, they may be definitions. 4405 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4406 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4407 EmitTopLevelDecl(I); 4408 break; 4409 // No code generation needed. 4410 case Decl::UsingShadow: 4411 case Decl::ClassTemplate: 4412 case Decl::VarTemplate: 4413 case Decl::VarTemplatePartialSpecialization: 4414 case Decl::FunctionTemplate: 4415 case Decl::TypeAliasTemplate: 4416 case Decl::Block: 4417 case Decl::Empty: 4418 break; 4419 case Decl::Using: // using X; [C++] 4420 if (CGDebugInfo *DI = getModuleDebugInfo()) 4421 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4422 return; 4423 case Decl::NamespaceAlias: 4424 if (CGDebugInfo *DI = getModuleDebugInfo()) 4425 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4426 return; 4427 case Decl::UsingDirective: // using namespace X; [C++] 4428 if (CGDebugInfo *DI = getModuleDebugInfo()) 4429 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4430 return; 4431 case Decl::CXXConstructor: 4432 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4433 break; 4434 case Decl::CXXDestructor: 4435 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4436 break; 4437 4438 case Decl::StaticAssert: 4439 // Nothing to do. 4440 break; 4441 4442 // Objective-C Decls 4443 4444 // Forward declarations, no (immediate) code generation. 4445 case Decl::ObjCInterface: 4446 case Decl::ObjCCategory: 4447 break; 4448 4449 case Decl::ObjCProtocol: { 4450 auto *Proto = cast<ObjCProtocolDecl>(D); 4451 if (Proto->isThisDeclarationADefinition()) 4452 ObjCRuntime->GenerateProtocol(Proto); 4453 break; 4454 } 4455 4456 case Decl::ObjCCategoryImpl: 4457 // Categories have properties but don't support synthesize so we 4458 // can ignore them here. 4459 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4460 break; 4461 4462 case Decl::ObjCImplementation: { 4463 auto *OMD = cast<ObjCImplementationDecl>(D); 4464 EmitObjCPropertyImplementations(OMD); 4465 EmitObjCIvarInitializations(OMD); 4466 ObjCRuntime->GenerateClass(OMD); 4467 // Emit global variable debug information. 4468 if (CGDebugInfo *DI = getModuleDebugInfo()) 4469 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4470 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4471 OMD->getClassInterface()), OMD->getLocation()); 4472 break; 4473 } 4474 case Decl::ObjCMethod: { 4475 auto *OMD = cast<ObjCMethodDecl>(D); 4476 // If this is not a prototype, emit the body. 4477 if (OMD->getBody()) 4478 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4479 break; 4480 } 4481 case Decl::ObjCCompatibleAlias: 4482 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4483 break; 4484 4485 case Decl::PragmaComment: { 4486 const auto *PCD = cast<PragmaCommentDecl>(D); 4487 switch (PCD->getCommentKind()) { 4488 case PCK_Unknown: 4489 llvm_unreachable("unexpected pragma comment kind"); 4490 case PCK_Linker: 4491 AppendLinkerOptions(PCD->getArg()); 4492 break; 4493 case PCK_Lib: 4494 if (getTarget().getTriple().isOSBinFormatELF() && 4495 !getTarget().getTriple().isPS4()) 4496 AddELFLibDirective(PCD->getArg()); 4497 else 4498 AddDependentLib(PCD->getArg()); 4499 break; 4500 case PCK_Compiler: 4501 case PCK_ExeStr: 4502 case PCK_User: 4503 break; // We ignore all of these. 4504 } 4505 break; 4506 } 4507 4508 case Decl::PragmaDetectMismatch: { 4509 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4510 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4511 break; 4512 } 4513 4514 case Decl::LinkageSpec: 4515 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4516 break; 4517 4518 case Decl::FileScopeAsm: { 4519 // File-scope asm is ignored during device-side CUDA compilation. 4520 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4521 break; 4522 // File-scope asm is ignored during device-side OpenMP compilation. 4523 if (LangOpts.OpenMPIsDevice) 4524 break; 4525 auto *AD = cast<FileScopeAsmDecl>(D); 4526 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4527 break; 4528 } 4529 4530 case Decl::Import: { 4531 auto *Import = cast<ImportDecl>(D); 4532 4533 // If we've already imported this module, we're done. 4534 if (!ImportedModules.insert(Import->getImportedModule())) 4535 break; 4536 4537 // Emit debug information for direct imports. 4538 if (!Import->getImportedOwningModule()) { 4539 if (CGDebugInfo *DI = getModuleDebugInfo()) 4540 DI->EmitImportDecl(*Import); 4541 } 4542 4543 // Find all of the submodules and emit the module initializers. 4544 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4545 SmallVector<clang::Module *, 16> Stack; 4546 Visited.insert(Import->getImportedModule()); 4547 Stack.push_back(Import->getImportedModule()); 4548 4549 while (!Stack.empty()) { 4550 clang::Module *Mod = Stack.pop_back_val(); 4551 if (!EmittedModuleInitializers.insert(Mod).second) 4552 continue; 4553 4554 for (auto *D : Context.getModuleInitializers(Mod)) 4555 EmitTopLevelDecl(D); 4556 4557 // Visit the submodules of this module. 4558 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4559 SubEnd = Mod->submodule_end(); 4560 Sub != SubEnd; ++Sub) { 4561 // Skip explicit children; they need to be explicitly imported to emit 4562 // the initializers. 4563 if ((*Sub)->IsExplicit) 4564 continue; 4565 4566 if (Visited.insert(*Sub).second) 4567 Stack.push_back(*Sub); 4568 } 4569 } 4570 break; 4571 } 4572 4573 case Decl::Export: 4574 EmitDeclContext(cast<ExportDecl>(D)); 4575 break; 4576 4577 case Decl::OMPThreadPrivate: 4578 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4579 break; 4580 4581 case Decl::OMPDeclareReduction: 4582 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4583 break; 4584 4585 default: 4586 // Make sure we handled everything we should, every other kind is a 4587 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4588 // function. Need to recode Decl::Kind to do that easily. 4589 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4590 break; 4591 } 4592 } 4593 4594 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4595 // Do we need to generate coverage mapping? 4596 if (!CodeGenOpts.CoverageMapping) 4597 return; 4598 switch (D->getKind()) { 4599 case Decl::CXXConversion: 4600 case Decl::CXXMethod: 4601 case Decl::Function: 4602 case Decl::ObjCMethod: 4603 case Decl::CXXConstructor: 4604 case Decl::CXXDestructor: { 4605 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4606 return; 4607 SourceManager &SM = getContext().getSourceManager(); 4608 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4609 return; 4610 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4611 if (I == DeferredEmptyCoverageMappingDecls.end()) 4612 DeferredEmptyCoverageMappingDecls[D] = true; 4613 break; 4614 } 4615 default: 4616 break; 4617 }; 4618 } 4619 4620 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4621 // Do we need to generate coverage mapping? 4622 if (!CodeGenOpts.CoverageMapping) 4623 return; 4624 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4625 if (Fn->isTemplateInstantiation()) 4626 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4627 } 4628 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4629 if (I == DeferredEmptyCoverageMappingDecls.end()) 4630 DeferredEmptyCoverageMappingDecls[D] = false; 4631 else 4632 I->second = false; 4633 } 4634 4635 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4636 // We call takeVector() here to avoid use-after-free. 4637 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4638 // we deserialize function bodies to emit coverage info for them, and that 4639 // deserializes more declarations. How should we handle that case? 4640 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4641 if (!Entry.second) 4642 continue; 4643 const Decl *D = Entry.first; 4644 switch (D->getKind()) { 4645 case Decl::CXXConversion: 4646 case Decl::CXXMethod: 4647 case Decl::Function: 4648 case Decl::ObjCMethod: { 4649 CodeGenPGO PGO(*this); 4650 GlobalDecl GD(cast<FunctionDecl>(D)); 4651 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4652 getFunctionLinkage(GD)); 4653 break; 4654 } 4655 case Decl::CXXConstructor: { 4656 CodeGenPGO PGO(*this); 4657 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4658 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4659 getFunctionLinkage(GD)); 4660 break; 4661 } 4662 case Decl::CXXDestructor: { 4663 CodeGenPGO PGO(*this); 4664 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4665 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4666 getFunctionLinkage(GD)); 4667 break; 4668 } 4669 default: 4670 break; 4671 }; 4672 } 4673 } 4674 4675 /// Turns the given pointer into a constant. 4676 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4677 const void *Ptr) { 4678 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4679 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4680 return llvm::ConstantInt::get(i64, PtrInt); 4681 } 4682 4683 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4684 llvm::NamedMDNode *&GlobalMetadata, 4685 GlobalDecl D, 4686 llvm::GlobalValue *Addr) { 4687 if (!GlobalMetadata) 4688 GlobalMetadata = 4689 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4690 4691 // TODO: should we report variant information for ctors/dtors? 4692 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4693 llvm::ConstantAsMetadata::get(GetPointerConstant( 4694 CGM.getLLVMContext(), D.getDecl()))}; 4695 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4696 } 4697 4698 /// For each function which is declared within an extern "C" region and marked 4699 /// as 'used', but has internal linkage, create an alias from the unmangled 4700 /// name to the mangled name if possible. People expect to be able to refer 4701 /// to such functions with an unmangled name from inline assembly within the 4702 /// same translation unit. 4703 void CodeGenModule::EmitStaticExternCAliases() { 4704 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4705 return; 4706 for (auto &I : StaticExternCValues) { 4707 IdentifierInfo *Name = I.first; 4708 llvm::GlobalValue *Val = I.second; 4709 if (Val && !getModule().getNamedValue(Name->getName())) 4710 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4711 } 4712 } 4713 4714 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4715 GlobalDecl &Result) const { 4716 auto Res = Manglings.find(MangledName); 4717 if (Res == Manglings.end()) 4718 return false; 4719 Result = Res->getValue(); 4720 return true; 4721 } 4722 4723 /// Emits metadata nodes associating all the global values in the 4724 /// current module with the Decls they came from. This is useful for 4725 /// projects using IR gen as a subroutine. 4726 /// 4727 /// Since there's currently no way to associate an MDNode directly 4728 /// with an llvm::GlobalValue, we create a global named metadata 4729 /// with the name 'clang.global.decl.ptrs'. 4730 void CodeGenModule::EmitDeclMetadata() { 4731 llvm::NamedMDNode *GlobalMetadata = nullptr; 4732 4733 for (auto &I : MangledDeclNames) { 4734 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4735 // Some mangled names don't necessarily have an associated GlobalValue 4736 // in this module, e.g. if we mangled it for DebugInfo. 4737 if (Addr) 4738 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4739 } 4740 } 4741 4742 /// Emits metadata nodes for all the local variables in the current 4743 /// function. 4744 void CodeGenFunction::EmitDeclMetadata() { 4745 if (LocalDeclMap.empty()) return; 4746 4747 llvm::LLVMContext &Context = getLLVMContext(); 4748 4749 // Find the unique metadata ID for this name. 4750 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4751 4752 llvm::NamedMDNode *GlobalMetadata = nullptr; 4753 4754 for (auto &I : LocalDeclMap) { 4755 const Decl *D = I.first; 4756 llvm::Value *Addr = I.second.getPointer(); 4757 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4758 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4759 Alloca->setMetadata( 4760 DeclPtrKind, llvm::MDNode::get( 4761 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4762 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4763 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4764 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4765 } 4766 } 4767 } 4768 4769 void CodeGenModule::EmitVersionIdentMetadata() { 4770 llvm::NamedMDNode *IdentMetadata = 4771 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4772 std::string Version = getClangFullVersion(); 4773 llvm::LLVMContext &Ctx = TheModule.getContext(); 4774 4775 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4776 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4777 } 4778 4779 void CodeGenModule::EmitTargetMetadata() { 4780 // Warning, new MangledDeclNames may be appended within this loop. 4781 // We rely on MapVector insertions adding new elements to the end 4782 // of the container. 4783 // FIXME: Move this loop into the one target that needs it, and only 4784 // loop over those declarations for which we couldn't emit the target 4785 // metadata when we emitted the declaration. 4786 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4787 auto Val = *(MangledDeclNames.begin() + I); 4788 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4789 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4790 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4791 } 4792 } 4793 4794 void CodeGenModule::EmitCoverageFile() { 4795 if (getCodeGenOpts().CoverageDataFile.empty() && 4796 getCodeGenOpts().CoverageNotesFile.empty()) 4797 return; 4798 4799 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4800 if (!CUNode) 4801 return; 4802 4803 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4804 llvm::LLVMContext &Ctx = TheModule.getContext(); 4805 auto *CoverageDataFile = 4806 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4807 auto *CoverageNotesFile = 4808 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4809 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4810 llvm::MDNode *CU = CUNode->getOperand(i); 4811 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4812 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4813 } 4814 } 4815 4816 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4817 // Sema has checked that all uuid strings are of the form 4818 // "12345678-1234-1234-1234-1234567890ab". 4819 assert(Uuid.size() == 36); 4820 for (unsigned i = 0; i < 36; ++i) { 4821 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4822 else assert(isHexDigit(Uuid[i])); 4823 } 4824 4825 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4826 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4827 4828 llvm::Constant *Field3[8]; 4829 for (unsigned Idx = 0; Idx < 8; ++Idx) 4830 Field3[Idx] = llvm::ConstantInt::get( 4831 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4832 4833 llvm::Constant *Fields[4] = { 4834 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4835 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4836 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4837 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4838 }; 4839 4840 return llvm::ConstantStruct::getAnon(Fields); 4841 } 4842 4843 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4844 bool ForEH) { 4845 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4846 // FIXME: should we even be calling this method if RTTI is disabled 4847 // and it's not for EH? 4848 if (!ForEH && !getLangOpts().RTTI) 4849 return llvm::Constant::getNullValue(Int8PtrTy); 4850 4851 if (ForEH && Ty->isObjCObjectPointerType() && 4852 LangOpts.ObjCRuntime.isGNUFamily()) 4853 return ObjCRuntime->GetEHType(Ty); 4854 4855 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4856 } 4857 4858 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4859 // Do not emit threadprivates in simd-only mode. 4860 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4861 return; 4862 for (auto RefExpr : D->varlists()) { 4863 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4864 bool PerformInit = 4865 VD->getAnyInitializer() && 4866 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4867 /*ForRef=*/false); 4868 4869 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4870 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4871 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4872 CXXGlobalInits.push_back(InitFunction); 4873 } 4874 } 4875 4876 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4877 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4878 if (InternalId) 4879 return InternalId; 4880 4881 if (isExternallyVisible(T->getLinkage())) { 4882 std::string OutName; 4883 llvm::raw_string_ostream Out(OutName); 4884 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4885 4886 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4887 } else { 4888 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4889 llvm::ArrayRef<llvm::Metadata *>()); 4890 } 4891 4892 return InternalId; 4893 } 4894 4895 // Generalize pointer types to a void pointer with the qualifiers of the 4896 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4897 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4898 // 'void *'. 4899 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4900 if (!Ty->isPointerType()) 4901 return Ty; 4902 4903 return Ctx.getPointerType( 4904 QualType(Ctx.VoidTy).withCVRQualifiers( 4905 Ty->getPointeeType().getCVRQualifiers())); 4906 } 4907 4908 // Apply type generalization to a FunctionType's return and argument types 4909 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4910 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4911 SmallVector<QualType, 8> GeneralizedParams; 4912 for (auto &Param : FnType->param_types()) 4913 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4914 4915 return Ctx.getFunctionType( 4916 GeneralizeType(Ctx, FnType->getReturnType()), 4917 GeneralizedParams, FnType->getExtProtoInfo()); 4918 } 4919 4920 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4921 return Ctx.getFunctionNoProtoType( 4922 GeneralizeType(Ctx, FnType->getReturnType())); 4923 4924 llvm_unreachable("Encountered unknown FunctionType"); 4925 } 4926 4927 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4928 T = GeneralizeFunctionType(getContext(), T); 4929 4930 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4931 if (InternalId) 4932 return InternalId; 4933 4934 if (isExternallyVisible(T->getLinkage())) { 4935 std::string OutName; 4936 llvm::raw_string_ostream Out(OutName); 4937 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4938 Out << ".generalized"; 4939 4940 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4941 } else { 4942 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4943 llvm::ArrayRef<llvm::Metadata *>()); 4944 } 4945 4946 return InternalId; 4947 } 4948 4949 /// Returns whether this module needs the "all-vtables" type identifier. 4950 bool CodeGenModule::NeedAllVtablesTypeId() const { 4951 // Returns true if at least one of vtable-based CFI checkers is enabled and 4952 // is not in the trapping mode. 4953 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4954 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4955 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4956 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4957 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4958 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4959 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4960 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4961 } 4962 4963 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4964 CharUnits Offset, 4965 const CXXRecordDecl *RD) { 4966 llvm::Metadata *MD = 4967 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4968 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4969 4970 if (CodeGenOpts.SanitizeCfiCrossDso) 4971 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4972 VTable->addTypeMetadata(Offset.getQuantity(), 4973 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4974 4975 if (NeedAllVtablesTypeId()) { 4976 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4977 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4978 } 4979 } 4980 4981 // Fills in the supplied string map with the set of target features for the 4982 // passed in function. 4983 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4984 const FunctionDecl *FD) { 4985 StringRef TargetCPU = Target.getTargetOpts().CPU; 4986 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4987 // If we have a TargetAttr build up the feature map based on that. 4988 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4989 4990 ParsedAttr.Features.erase( 4991 llvm::remove_if(ParsedAttr.Features, 4992 [&](const std::string &Feat) { 4993 return !Target.isValidFeatureName( 4994 StringRef{Feat}.substr(1)); 4995 }), 4996 ParsedAttr.Features.end()); 4997 4998 // Make a copy of the features as passed on the command line into the 4999 // beginning of the additional features from the function to override. 5000 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5001 Target.getTargetOpts().FeaturesAsWritten.begin(), 5002 Target.getTargetOpts().FeaturesAsWritten.end()); 5003 5004 if (ParsedAttr.Architecture != "" && 5005 Target.isValidCPUName(ParsedAttr.Architecture)) 5006 TargetCPU = ParsedAttr.Architecture; 5007 5008 // Now populate the feature map, first with the TargetCPU which is either 5009 // the default or a new one from the target attribute string. Then we'll use 5010 // the passed in features (FeaturesAsWritten) along with the new ones from 5011 // the attribute. 5012 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5013 ParsedAttr.Features); 5014 } else { 5015 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5016 Target.getTargetOpts().Features); 5017 } 5018 } 5019 5020 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5021 if (!SanStats) 5022 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5023 5024 return *SanStats; 5025 } 5026 llvm::Value * 5027 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5028 CodeGenFunction &CGF) { 5029 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5030 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5031 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5032 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5033 "__translate_sampler_initializer"), 5034 {C}); 5035 } 5036