1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MD5.h" 57 58 using namespace clang; 59 using namespace CodeGen; 60 61 static const char AnnotationSection[] = "llvm.metadata"; 62 63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 64 switch (CGM.getTarget().getCXXABI().getKind()) { 65 case TargetCXXABI::GenericAArch64: 66 case TargetCXXABI::GenericARM: 67 case TargetCXXABI::iOS: 68 case TargetCXXABI::iOS64: 69 case TargetCXXABI::WatchOS: 70 case TargetCXXABI::GenericMIPS: 71 case TargetCXXABI::GenericItanium: 72 case TargetCXXABI::WebAssembly: 73 return CreateItaniumCXXABI(CGM); 74 case TargetCXXABI::Microsoft: 75 return CreateMicrosoftCXXABI(CGM); 76 } 77 78 llvm_unreachable("invalid C++ ABI kind"); 79 } 80 81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 82 const PreprocessorOptions &PPO, 83 const CodeGenOptions &CGO, llvm::Module &M, 84 DiagnosticsEngine &diags, 85 CoverageSourceInfo *CoverageInfo) 86 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 87 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 88 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 89 VMContext(M.getContext()), Types(*this), VTables(*this), 90 SanitizerMD(new SanitizerMetadata(*this)) { 91 92 // Initialize the type cache. 93 llvm::LLVMContext &LLVMContext = M.getContext(); 94 VoidTy = llvm::Type::getVoidTy(LLVMContext); 95 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 96 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 FloatTy = llvm::Type::getFloatTy(LLVMContext); 100 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 IntAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 113 114 if (LangOpts.ObjC1) 115 createObjCRuntime(); 116 if (LangOpts.OpenCL) 117 createOpenCLRuntime(); 118 if (LangOpts.OpenMP) 119 createOpenMPRuntime(); 120 if (LangOpts.CUDA) 121 createCUDARuntime(); 122 123 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 124 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 125 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 126 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 127 getCXXABI().getMangleContext())); 128 129 // If debug info or coverage generation is enabled, create the CGDebugInfo 130 // object. 131 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 132 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 133 DebugInfo.reset(new CGDebugInfo(*this)); 134 135 Block.GlobalUniqueCount = 0; 136 137 if (C.getLangOpts().ObjC1) 138 ObjCData.reset(new ObjCEntrypoints()); 139 140 if (CodeGenOpts.hasProfileClangUse()) { 141 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 142 CodeGenOpts.ProfileInstrumentUsePath); 143 if (auto E = ReaderOrErr.takeError()) { 144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 145 "Could not read profile %0: %1"); 146 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 147 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 148 << EI.message(); 149 }); 150 } else 151 PGOReader = std::move(ReaderOrErr.get()); 152 } 153 154 // If coverage mapping generation is enabled, create the 155 // CoverageMappingModuleGen object. 156 if (CodeGenOpts.CoverageMapping) 157 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 158 } 159 160 CodeGenModule::~CodeGenModule() {} 161 162 void CodeGenModule::createObjCRuntime() { 163 // This is just isGNUFamily(), but we want to force implementors of 164 // new ABIs to decide how best to do this. 165 switch (LangOpts.ObjCRuntime.getKind()) { 166 case ObjCRuntime::GNUstep: 167 case ObjCRuntime::GCC: 168 case ObjCRuntime::ObjFW: 169 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 170 return; 171 172 case ObjCRuntime::FragileMacOSX: 173 case ObjCRuntime::MacOSX: 174 case ObjCRuntime::iOS: 175 case ObjCRuntime::WatchOS: 176 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 177 return; 178 } 179 llvm_unreachable("bad runtime kind"); 180 } 181 182 void CodeGenModule::createOpenCLRuntime() { 183 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 184 } 185 186 void CodeGenModule::createOpenMPRuntime() { 187 // Select a specialized code generation class based on the target, if any. 188 // If it does not exist use the default implementation. 189 switch (getTarget().getTriple().getArch()) { 190 191 case llvm::Triple::nvptx: 192 case llvm::Triple::nvptx64: 193 assert(getLangOpts().OpenMPIsDevice && 194 "OpenMP NVPTX is only prepared to deal with device code."); 195 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 196 break; 197 default: 198 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 199 break; 200 } 201 } 202 203 void CodeGenModule::createCUDARuntime() { 204 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 205 } 206 207 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 208 Replacements[Name] = C; 209 } 210 211 void CodeGenModule::applyReplacements() { 212 for (auto &I : Replacements) { 213 StringRef MangledName = I.first(); 214 llvm::Constant *Replacement = I.second; 215 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 216 if (!Entry) 217 continue; 218 auto *OldF = cast<llvm::Function>(Entry); 219 auto *NewF = dyn_cast<llvm::Function>(Replacement); 220 if (!NewF) { 221 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 222 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 223 } else { 224 auto *CE = cast<llvm::ConstantExpr>(Replacement); 225 assert(CE->getOpcode() == llvm::Instruction::BitCast || 226 CE->getOpcode() == llvm::Instruction::GetElementPtr); 227 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 228 } 229 } 230 231 // Replace old with new, but keep the old order. 232 OldF->replaceAllUsesWith(Replacement); 233 if (NewF) { 234 NewF->removeFromParent(); 235 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 236 NewF); 237 } 238 OldF->eraseFromParent(); 239 } 240 } 241 242 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 243 GlobalValReplacements.push_back(std::make_pair(GV, C)); 244 } 245 246 void CodeGenModule::applyGlobalValReplacements() { 247 for (auto &I : GlobalValReplacements) { 248 llvm::GlobalValue *GV = I.first; 249 llvm::Constant *C = I.second; 250 251 GV->replaceAllUsesWith(C); 252 GV->eraseFromParent(); 253 } 254 } 255 256 // This is only used in aliases that we created and we know they have a 257 // linear structure. 258 static const llvm::GlobalObject *getAliasedGlobal( 259 const llvm::GlobalIndirectSymbol &GIS) { 260 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 261 const llvm::Constant *C = &GIS; 262 for (;;) { 263 C = C->stripPointerCasts(); 264 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 265 return GO; 266 // stripPointerCasts will not walk over weak aliases. 267 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 268 if (!GIS2) 269 return nullptr; 270 if (!Visited.insert(GIS2).second) 271 return nullptr; 272 C = GIS2->getIndirectSymbol(); 273 } 274 } 275 276 void CodeGenModule::checkAliases() { 277 // Check if the constructed aliases are well formed. It is really unfortunate 278 // that we have to do this in CodeGen, but we only construct mangled names 279 // and aliases during codegen. 280 bool Error = false; 281 DiagnosticsEngine &Diags = getDiags(); 282 for (const GlobalDecl &GD : Aliases) { 283 const auto *D = cast<ValueDecl>(GD.getDecl()); 284 SourceLocation Location; 285 bool IsIFunc = D->hasAttr<IFuncAttr>(); 286 if (const Attr *A = D->getDefiningAttr()) 287 Location = A->getLocation(); 288 else 289 llvm_unreachable("Not an alias or ifunc?"); 290 StringRef MangledName = getMangledName(GD); 291 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 292 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 293 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 294 if (!GV) { 295 Error = true; 296 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 297 } else if (GV->isDeclaration()) { 298 Error = true; 299 Diags.Report(Location, diag::err_alias_to_undefined) 300 << IsIFunc << IsIFunc; 301 } else if (IsIFunc) { 302 // Check resolver function type. 303 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 304 GV->getType()->getPointerElementType()); 305 assert(FTy); 306 if (!FTy->getReturnType()->isPointerTy()) 307 Diags.Report(Location, diag::err_ifunc_resolver_return); 308 if (FTy->getNumParams()) 309 Diags.Report(Location, diag::err_ifunc_resolver_params); 310 } 311 312 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 313 llvm::GlobalValue *AliaseeGV; 314 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 315 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 316 else 317 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 318 319 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 320 StringRef AliasSection = SA->getName(); 321 if (AliasSection != AliaseeGV->getSection()) 322 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 323 << AliasSection << IsIFunc << IsIFunc; 324 } 325 326 // We have to handle alias to weak aliases in here. LLVM itself disallows 327 // this since the object semantics would not match the IL one. For 328 // compatibility with gcc we implement it by just pointing the alias 329 // to its aliasee's aliasee. We also warn, since the user is probably 330 // expecting the link to be weak. 331 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 332 if (GA->isInterposable()) { 333 Diags.Report(Location, diag::warn_alias_to_weak_alias) 334 << GV->getName() << GA->getName() << IsIFunc; 335 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 336 GA->getIndirectSymbol(), Alias->getType()); 337 Alias->setIndirectSymbol(Aliasee); 338 } 339 } 340 } 341 if (!Error) 342 return; 343 344 for (const GlobalDecl &GD : Aliases) { 345 StringRef MangledName = getMangledName(GD); 346 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 347 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 348 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 349 Alias->eraseFromParent(); 350 } 351 } 352 353 void CodeGenModule::clear() { 354 DeferredDeclsToEmit.clear(); 355 if (OpenMPRuntime) 356 OpenMPRuntime->clear(); 357 } 358 359 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 360 StringRef MainFile) { 361 if (!hasDiagnostics()) 362 return; 363 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 364 if (MainFile.empty()) 365 MainFile = "<stdin>"; 366 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 367 } else 368 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 369 << Mismatched; 370 } 371 372 void CodeGenModule::Release() { 373 EmitDeferred(); 374 applyGlobalValReplacements(); 375 applyReplacements(); 376 checkAliases(); 377 EmitCXXGlobalInitFunc(); 378 EmitCXXGlobalDtorFunc(); 379 EmitCXXThreadLocalInitFunc(); 380 if (ObjCRuntime) 381 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 382 AddGlobalCtor(ObjCInitFunction); 383 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 384 CUDARuntime) { 385 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 386 AddGlobalCtor(CudaCtorFunction); 387 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 388 AddGlobalDtor(CudaDtorFunction); 389 } 390 if (OpenMPRuntime) 391 if (llvm::Function *OpenMPRegistrationFunction = 392 OpenMPRuntime->emitRegistrationFunction()) 393 AddGlobalCtor(OpenMPRegistrationFunction, 0); 394 if (PGOReader) { 395 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 396 if (PGOStats.hasDiagnostics()) 397 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 398 } 399 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 400 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 401 EmitGlobalAnnotations(); 402 EmitStaticExternCAliases(); 403 EmitDeferredUnusedCoverageMappings(); 404 if (CoverageMapping) 405 CoverageMapping->emit(); 406 if (CodeGenOpts.SanitizeCfiCrossDso) 407 CodeGenFunction(*this).EmitCfiCheckFail(); 408 emitLLVMUsed(); 409 if (SanStats) 410 SanStats->finish(); 411 412 if (CodeGenOpts.Autolink && 413 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 414 EmitModuleLinkOptions(); 415 } 416 if (CodeGenOpts.DwarfVersion) { 417 // We actually want the latest version when there are conflicts. 418 // We can change from Warning to Latest if such mode is supported. 419 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 420 CodeGenOpts.DwarfVersion); 421 } 422 if (CodeGenOpts.EmitCodeView) { 423 // Indicate that we want CodeView in the metadata. 424 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 425 } 426 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 427 // We don't support LTO with 2 with different StrictVTablePointers 428 // FIXME: we could support it by stripping all the information introduced 429 // by StrictVTablePointers. 430 431 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 432 433 llvm::Metadata *Ops[2] = { 434 llvm::MDString::get(VMContext, "StrictVTablePointers"), 435 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 436 llvm::Type::getInt32Ty(VMContext), 1))}; 437 438 getModule().addModuleFlag(llvm::Module::Require, 439 "StrictVTablePointersRequirement", 440 llvm::MDNode::get(VMContext, Ops)); 441 } 442 if (DebugInfo) 443 // We support a single version in the linked module. The LLVM 444 // parser will drop debug info with a different version number 445 // (and warn about it, too). 446 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 447 llvm::DEBUG_METADATA_VERSION); 448 449 // We need to record the widths of enums and wchar_t, so that we can generate 450 // the correct build attributes in the ARM backend. 451 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 452 if ( Arch == llvm::Triple::arm 453 || Arch == llvm::Triple::armeb 454 || Arch == llvm::Triple::thumb 455 || Arch == llvm::Triple::thumbeb) { 456 // Width of wchar_t in bytes 457 uint64_t WCharWidth = 458 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 459 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 460 461 // The minimum width of an enum in bytes 462 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 463 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 464 } 465 466 if (CodeGenOpts.SanitizeCfiCrossDso) { 467 // Indicate that we want cross-DSO control flow integrity checks. 468 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 469 } 470 471 if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) { 472 // Indicate whether __nvvm_reflect should be configured to flush denormal 473 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 474 // property.) 475 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 476 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 477 } 478 479 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 480 assert(PLevel < 3 && "Invalid PIC Level"); 481 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 482 if (Context.getLangOpts().PIE) 483 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 484 } 485 486 SimplifyPersonality(); 487 488 if (getCodeGenOpts().EmitDeclMetadata) 489 EmitDeclMetadata(); 490 491 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 492 EmitCoverageFile(); 493 494 if (DebugInfo) 495 DebugInfo->finalize(); 496 497 EmitVersionIdentMetadata(); 498 499 EmitTargetMetadata(); 500 501 // Emit any deferred diagnostics gathered during codegen. We didn't emit them 502 // when we first discovered them because that would have halted codegen, 503 // preventing us from gathering other deferred diags. 504 for (const PartialDiagnosticAt &DiagAt : DeferredDiags) { 505 SourceLocation Loc = DiagAt.first; 506 const PartialDiagnostic &PD = DiagAt.second; 507 DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID())); 508 PD.Emit(Builder); 509 } 510 } 511 512 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 513 // Make sure that this type is translated. 514 Types.UpdateCompletedType(TD); 515 } 516 517 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 518 // Make sure that this type is translated. 519 Types.RefreshTypeCacheForClass(RD); 520 } 521 522 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 523 if (!TBAA) 524 return nullptr; 525 return TBAA->getTBAAInfo(QTy); 526 } 527 528 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 529 if (!TBAA) 530 return nullptr; 531 return TBAA->getTBAAInfoForVTablePtr(); 532 } 533 534 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 535 if (!TBAA) 536 return nullptr; 537 return TBAA->getTBAAStructInfo(QTy); 538 } 539 540 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 541 llvm::MDNode *AccessN, 542 uint64_t O) { 543 if (!TBAA) 544 return nullptr; 545 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 546 } 547 548 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 549 /// and struct-path aware TBAA, the tag has the same format: 550 /// base type, access type and offset. 551 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 552 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 553 llvm::MDNode *TBAAInfo, 554 bool ConvertTypeToTag) { 555 if (ConvertTypeToTag && TBAA) 556 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 557 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 558 else 559 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 560 } 561 562 void CodeGenModule::DecorateInstructionWithInvariantGroup( 563 llvm::Instruction *I, const CXXRecordDecl *RD) { 564 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 565 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 566 // Check if we have to wrap MDString in MDNode. 567 if (!MetaDataNode) 568 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 569 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 570 } 571 572 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 573 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 574 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 575 } 576 577 /// ErrorUnsupported - Print out an error that codegen doesn't support the 578 /// specified stmt yet. 579 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 580 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 581 "cannot compile this %0 yet"); 582 std::string Msg = Type; 583 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 584 << Msg << S->getSourceRange(); 585 } 586 587 /// ErrorUnsupported - Print out an error that codegen doesn't support the 588 /// specified decl yet. 589 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 590 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 591 "cannot compile this %0 yet"); 592 std::string Msg = Type; 593 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 594 } 595 596 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 597 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 598 } 599 600 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 601 const NamedDecl *D) const { 602 // Internal definitions always have default visibility. 603 if (GV->hasLocalLinkage()) { 604 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 605 return; 606 } 607 608 // Set visibility for definitions. 609 LinkageInfo LV = D->getLinkageAndVisibility(); 610 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 611 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 612 } 613 614 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 615 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 616 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 617 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 618 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 619 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 620 } 621 622 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 623 CodeGenOptions::TLSModel M) { 624 switch (M) { 625 case CodeGenOptions::GeneralDynamicTLSModel: 626 return llvm::GlobalVariable::GeneralDynamicTLSModel; 627 case CodeGenOptions::LocalDynamicTLSModel: 628 return llvm::GlobalVariable::LocalDynamicTLSModel; 629 case CodeGenOptions::InitialExecTLSModel: 630 return llvm::GlobalVariable::InitialExecTLSModel; 631 case CodeGenOptions::LocalExecTLSModel: 632 return llvm::GlobalVariable::LocalExecTLSModel; 633 } 634 llvm_unreachable("Invalid TLS model!"); 635 } 636 637 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 638 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 639 640 llvm::GlobalValue::ThreadLocalMode TLM; 641 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 642 643 // Override the TLS model if it is explicitly specified. 644 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 645 TLM = GetLLVMTLSModel(Attr->getModel()); 646 } 647 648 GV->setThreadLocalMode(TLM); 649 } 650 651 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 652 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 653 654 // Some ABIs don't have constructor variants. Make sure that base and 655 // complete constructors get mangled the same. 656 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 657 if (!getTarget().getCXXABI().hasConstructorVariants()) { 658 CXXCtorType OrigCtorType = GD.getCtorType(); 659 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 660 if (OrigCtorType == Ctor_Base) 661 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 662 } 663 } 664 665 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 666 if (!FoundStr.empty()) 667 return FoundStr; 668 669 const auto *ND = cast<NamedDecl>(GD.getDecl()); 670 SmallString<256> Buffer; 671 StringRef Str; 672 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 673 llvm::raw_svector_ostream Out(Buffer); 674 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 675 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 676 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 677 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 678 else 679 getCXXABI().getMangleContext().mangleName(ND, Out); 680 Str = Out.str(); 681 } else { 682 IdentifierInfo *II = ND->getIdentifier(); 683 assert(II && "Attempt to mangle unnamed decl."); 684 Str = II->getName(); 685 } 686 687 // Keep the first result in the case of a mangling collision. 688 auto Result = Manglings.insert(std::make_pair(Str, GD)); 689 return FoundStr = Result.first->first(); 690 } 691 692 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 693 const BlockDecl *BD) { 694 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 695 const Decl *D = GD.getDecl(); 696 697 SmallString<256> Buffer; 698 llvm::raw_svector_ostream Out(Buffer); 699 if (!D) 700 MangleCtx.mangleGlobalBlock(BD, 701 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 702 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 703 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 704 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 705 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 706 else 707 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 708 709 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 710 return Result.first->first(); 711 } 712 713 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 714 return getModule().getNamedValue(Name); 715 } 716 717 /// AddGlobalCtor - Add a function to the list that will be called before 718 /// main() runs. 719 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 720 llvm::Constant *AssociatedData) { 721 // FIXME: Type coercion of void()* types. 722 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 723 } 724 725 /// AddGlobalDtor - Add a function to the list that will be called 726 /// when the module is unloaded. 727 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 728 // FIXME: Type coercion of void()* types. 729 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 730 } 731 732 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 733 // Ctor function type is void()*. 734 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 735 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 736 737 // Get the type of a ctor entry, { i32, void ()*, i8* }. 738 llvm::StructType *CtorStructTy = llvm::StructType::get( 739 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 740 741 // Construct the constructor and destructor arrays. 742 SmallVector<llvm::Constant *, 8> Ctors; 743 for (const auto &I : Fns) { 744 llvm::Constant *S[] = { 745 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 746 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 747 (I.AssociatedData 748 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 749 : llvm::Constant::getNullValue(VoidPtrTy))}; 750 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 751 } 752 753 if (!Ctors.empty()) { 754 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 755 new llvm::GlobalVariable(TheModule, AT, false, 756 llvm::GlobalValue::AppendingLinkage, 757 llvm::ConstantArray::get(AT, Ctors), 758 GlobalName); 759 } 760 } 761 762 llvm::GlobalValue::LinkageTypes 763 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 764 const auto *D = cast<FunctionDecl>(GD.getDecl()); 765 766 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 767 768 if (isa<CXXDestructorDecl>(D) && 769 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 770 GD.getDtorType())) { 771 // Destructor variants in the Microsoft C++ ABI are always internal or 772 // linkonce_odr thunks emitted on an as-needed basis. 773 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 774 : llvm::GlobalValue::LinkOnceODRLinkage; 775 } 776 777 if (isa<CXXConstructorDecl>(D) && 778 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 779 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 780 // Our approach to inheriting constructors is fundamentally different from 781 // that used by the MS ABI, so keep our inheriting constructor thunks 782 // internal rather than trying to pick an unambiguous mangling for them. 783 return llvm::GlobalValue::InternalLinkage; 784 } 785 786 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 787 } 788 789 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 790 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 791 792 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 793 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 794 // Don't dllexport/import destructor thunks. 795 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 796 return; 797 } 798 } 799 800 if (FD->hasAttr<DLLImportAttr>()) 801 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 802 else if (FD->hasAttr<DLLExportAttr>()) 803 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 804 else 805 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 806 } 807 808 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 809 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 810 if (!MDS) return nullptr; 811 812 llvm::MD5 md5; 813 llvm::MD5::MD5Result result; 814 md5.update(MDS->getString()); 815 md5.final(result); 816 uint64_t id = 0; 817 for (int i = 0; i < 8; ++i) 818 id |= static_cast<uint64_t>(result[i]) << (i * 8); 819 return llvm::ConstantInt::get(Int64Ty, id); 820 } 821 822 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 823 llvm::Function *F) { 824 setNonAliasAttributes(D, F); 825 } 826 827 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 828 const CGFunctionInfo &Info, 829 llvm::Function *F) { 830 unsigned CallingConv; 831 AttributeListType AttributeList; 832 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 833 false); 834 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 835 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 836 } 837 838 /// Determines whether the language options require us to model 839 /// unwind exceptions. We treat -fexceptions as mandating this 840 /// except under the fragile ObjC ABI with only ObjC exceptions 841 /// enabled. This means, for example, that C with -fexceptions 842 /// enables this. 843 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 844 // If exceptions are completely disabled, obviously this is false. 845 if (!LangOpts.Exceptions) return false; 846 847 // If C++ exceptions are enabled, this is true. 848 if (LangOpts.CXXExceptions) return true; 849 850 // If ObjC exceptions are enabled, this depends on the ABI. 851 if (LangOpts.ObjCExceptions) { 852 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 853 } 854 855 return true; 856 } 857 858 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 859 llvm::Function *F) { 860 llvm::AttrBuilder B; 861 862 if (CodeGenOpts.UnwindTables) 863 B.addAttribute(llvm::Attribute::UWTable); 864 865 if (!hasUnwindExceptions(LangOpts)) 866 B.addAttribute(llvm::Attribute::NoUnwind); 867 868 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 869 B.addAttribute(llvm::Attribute::StackProtect); 870 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 871 B.addAttribute(llvm::Attribute::StackProtectStrong); 872 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 873 B.addAttribute(llvm::Attribute::StackProtectReq); 874 875 if (!D) { 876 F->addAttributes(llvm::AttributeSet::FunctionIndex, 877 llvm::AttributeSet::get( 878 F->getContext(), 879 llvm::AttributeSet::FunctionIndex, B)); 880 return; 881 } 882 883 if (D->hasAttr<NakedAttr>()) { 884 // Naked implies noinline: we should not be inlining such functions. 885 B.addAttribute(llvm::Attribute::Naked); 886 B.addAttribute(llvm::Attribute::NoInline); 887 } else if (D->hasAttr<NoDuplicateAttr>()) { 888 B.addAttribute(llvm::Attribute::NoDuplicate); 889 } else if (D->hasAttr<NoInlineAttr>()) { 890 B.addAttribute(llvm::Attribute::NoInline); 891 } else if (D->hasAttr<AlwaysInlineAttr>() && 892 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 893 llvm::Attribute::NoInline)) { 894 // (noinline wins over always_inline, and we can't specify both in IR) 895 B.addAttribute(llvm::Attribute::AlwaysInline); 896 } 897 898 if (D->hasAttr<ColdAttr>()) { 899 if (!D->hasAttr<OptimizeNoneAttr>()) 900 B.addAttribute(llvm::Attribute::OptimizeForSize); 901 B.addAttribute(llvm::Attribute::Cold); 902 } 903 904 if (D->hasAttr<MinSizeAttr>()) 905 B.addAttribute(llvm::Attribute::MinSize); 906 907 F->addAttributes(llvm::AttributeSet::FunctionIndex, 908 llvm::AttributeSet::get( 909 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 910 911 if (D->hasAttr<OptimizeNoneAttr>()) { 912 // OptimizeNone implies noinline; we should not be inlining such functions. 913 F->addFnAttr(llvm::Attribute::OptimizeNone); 914 F->addFnAttr(llvm::Attribute::NoInline); 915 916 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 917 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 918 F->removeFnAttr(llvm::Attribute::MinSize); 919 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 920 "OptimizeNone and AlwaysInline on same function!"); 921 922 // Attribute 'inlinehint' has no effect on 'optnone' functions. 923 // Explicitly remove it from the set of function attributes. 924 F->removeFnAttr(llvm::Attribute::InlineHint); 925 } 926 927 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 928 if (alignment) 929 F->setAlignment(alignment); 930 931 // Some C++ ABIs require 2-byte alignment for member functions, in order to 932 // reserve a bit for differentiating between virtual and non-virtual member 933 // functions. If the current target's C++ ABI requires this and this is a 934 // member function, set its alignment accordingly. 935 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 936 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 937 F->setAlignment(2); 938 } 939 } 940 941 void CodeGenModule::SetCommonAttributes(const Decl *D, 942 llvm::GlobalValue *GV) { 943 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 944 setGlobalVisibility(GV, ND); 945 else 946 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 947 948 if (D && D->hasAttr<UsedAttr>()) 949 addUsedGlobal(GV); 950 } 951 952 void CodeGenModule::setAliasAttributes(const Decl *D, 953 llvm::GlobalValue *GV) { 954 SetCommonAttributes(D, GV); 955 956 // Process the dllexport attribute based on whether the original definition 957 // (not necessarily the aliasee) was exported. 958 if (D->hasAttr<DLLExportAttr>()) 959 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 960 } 961 962 void CodeGenModule::setNonAliasAttributes(const Decl *D, 963 llvm::GlobalObject *GO) { 964 SetCommonAttributes(D, GO); 965 966 if (D) 967 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 968 GO->setSection(SA->getName()); 969 970 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 971 } 972 973 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 974 llvm::Function *F, 975 const CGFunctionInfo &FI) { 976 SetLLVMFunctionAttributes(D, FI, F); 977 SetLLVMFunctionAttributesForDefinition(D, F); 978 979 F->setLinkage(llvm::Function::InternalLinkage); 980 981 setNonAliasAttributes(D, F); 982 } 983 984 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 985 const NamedDecl *ND) { 986 // Set linkage and visibility in case we never see a definition. 987 LinkageInfo LV = ND->getLinkageAndVisibility(); 988 if (LV.getLinkage() != ExternalLinkage) { 989 // Don't set internal linkage on declarations. 990 } else { 991 if (ND->hasAttr<DLLImportAttr>()) { 992 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 993 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 994 } else if (ND->hasAttr<DLLExportAttr>()) { 995 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 996 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 997 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 998 // "extern_weak" is overloaded in LLVM; we probably should have 999 // separate linkage types for this. 1000 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1001 } 1002 1003 // Set visibility on a declaration only if it's explicit. 1004 if (LV.isVisibilityExplicit()) 1005 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1006 } 1007 } 1008 1009 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1010 llvm::Function *F) { 1011 // Only if we are checking indirect calls. 1012 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1013 return; 1014 1015 // Non-static class methods are handled via vtable pointer checks elsewhere. 1016 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1017 return; 1018 1019 // Additionally, if building with cross-DSO support... 1020 if (CodeGenOpts.SanitizeCfiCrossDso) { 1021 // Don't emit entries for function declarations. In cross-DSO mode these are 1022 // handled with better precision at run time. 1023 if (!FD->hasBody()) 1024 return; 1025 // Skip available_externally functions. They won't be codegen'ed in the 1026 // current module anyway. 1027 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1028 return; 1029 } 1030 1031 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1032 F->addTypeMetadata(0, MD); 1033 1034 // Emit a hash-based bit set entry for cross-DSO calls. 1035 if (CodeGenOpts.SanitizeCfiCrossDso) 1036 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1037 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1038 } 1039 1040 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1041 bool IsIncompleteFunction, 1042 bool IsThunk) { 1043 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1044 // If this is an intrinsic function, set the function's attributes 1045 // to the intrinsic's attributes. 1046 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1047 return; 1048 } 1049 1050 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1051 1052 if (!IsIncompleteFunction) 1053 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1054 1055 // Add the Returned attribute for "this", except for iOS 5 and earlier 1056 // where substantial code, including the libstdc++ dylib, was compiled with 1057 // GCC and does not actually return "this". 1058 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1059 !(getTarget().getTriple().isiOS() && 1060 getTarget().getTriple().isOSVersionLT(6))) { 1061 assert(!F->arg_empty() && 1062 F->arg_begin()->getType() 1063 ->canLosslesslyBitCastTo(F->getReturnType()) && 1064 "unexpected this return"); 1065 F->addAttribute(1, llvm::Attribute::Returned); 1066 } 1067 1068 // Only a few attributes are set on declarations; these may later be 1069 // overridden by a definition. 1070 1071 setLinkageAndVisibilityForGV(F, FD); 1072 1073 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1074 F->setSection(SA->getName()); 1075 1076 if (FD->isReplaceableGlobalAllocationFunction()) { 1077 // A replaceable global allocation function does not act like a builtin by 1078 // default, only if it is invoked by a new-expression or delete-expression. 1079 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1080 llvm::Attribute::NoBuiltin); 1081 1082 // A sane operator new returns a non-aliasing pointer. 1083 // FIXME: Also add NonNull attribute to the return value 1084 // for the non-nothrow forms? 1085 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1086 if (getCodeGenOpts().AssumeSaneOperatorNew && 1087 (Kind == OO_New || Kind == OO_Array_New)) 1088 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1089 llvm::Attribute::NoAlias); 1090 } 1091 1092 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1093 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1094 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1095 if (MD->isVirtual()) 1096 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1097 1098 CreateFunctionTypeMetadata(FD, F); 1099 } 1100 1101 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1102 assert(!GV->isDeclaration() && 1103 "Only globals with definition can force usage."); 1104 LLVMUsed.emplace_back(GV); 1105 } 1106 1107 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1108 assert(!GV->isDeclaration() && 1109 "Only globals with definition can force usage."); 1110 LLVMCompilerUsed.emplace_back(GV); 1111 } 1112 1113 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1114 std::vector<llvm::WeakVH> &List) { 1115 // Don't create llvm.used if there is no need. 1116 if (List.empty()) 1117 return; 1118 1119 // Convert List to what ConstantArray needs. 1120 SmallVector<llvm::Constant*, 8> UsedArray; 1121 UsedArray.resize(List.size()); 1122 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1123 UsedArray[i] = 1124 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1125 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1126 } 1127 1128 if (UsedArray.empty()) 1129 return; 1130 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1131 1132 auto *GV = new llvm::GlobalVariable( 1133 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1134 llvm::ConstantArray::get(ATy, UsedArray), Name); 1135 1136 GV->setSection("llvm.metadata"); 1137 } 1138 1139 void CodeGenModule::emitLLVMUsed() { 1140 emitUsed(*this, "llvm.used", LLVMUsed); 1141 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1142 } 1143 1144 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1145 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1146 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1147 } 1148 1149 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1150 llvm::SmallString<32> Opt; 1151 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1152 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1153 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1154 } 1155 1156 void CodeGenModule::AddDependentLib(StringRef Lib) { 1157 llvm::SmallString<24> Opt; 1158 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1159 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1160 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1161 } 1162 1163 /// \brief Add link options implied by the given module, including modules 1164 /// it depends on, using a postorder walk. 1165 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1166 SmallVectorImpl<llvm::Metadata *> &Metadata, 1167 llvm::SmallPtrSet<Module *, 16> &Visited) { 1168 // Import this module's parent. 1169 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1170 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1171 } 1172 1173 // Import this module's dependencies. 1174 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1175 if (Visited.insert(Mod->Imports[I - 1]).second) 1176 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1177 } 1178 1179 // Add linker options to link against the libraries/frameworks 1180 // described by this module. 1181 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1182 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1183 // Link against a framework. Frameworks are currently Darwin only, so we 1184 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1185 if (Mod->LinkLibraries[I-1].IsFramework) { 1186 llvm::Metadata *Args[2] = { 1187 llvm::MDString::get(Context, "-framework"), 1188 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1189 1190 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1191 continue; 1192 } 1193 1194 // Link against a library. 1195 llvm::SmallString<24> Opt; 1196 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1197 Mod->LinkLibraries[I-1].Library, Opt); 1198 auto *OptString = llvm::MDString::get(Context, Opt); 1199 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1200 } 1201 } 1202 1203 void CodeGenModule::EmitModuleLinkOptions() { 1204 // Collect the set of all of the modules we want to visit to emit link 1205 // options, which is essentially the imported modules and all of their 1206 // non-explicit child modules. 1207 llvm::SetVector<clang::Module *> LinkModules; 1208 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1209 SmallVector<clang::Module *, 16> Stack; 1210 1211 // Seed the stack with imported modules. 1212 for (Module *M : ImportedModules) 1213 if (Visited.insert(M).second) 1214 Stack.push_back(M); 1215 1216 // Find all of the modules to import, making a little effort to prune 1217 // non-leaf modules. 1218 while (!Stack.empty()) { 1219 clang::Module *Mod = Stack.pop_back_val(); 1220 1221 bool AnyChildren = false; 1222 1223 // Visit the submodules of this module. 1224 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1225 SubEnd = Mod->submodule_end(); 1226 Sub != SubEnd; ++Sub) { 1227 // Skip explicit children; they need to be explicitly imported to be 1228 // linked against. 1229 if ((*Sub)->IsExplicit) 1230 continue; 1231 1232 if (Visited.insert(*Sub).second) { 1233 Stack.push_back(*Sub); 1234 AnyChildren = true; 1235 } 1236 } 1237 1238 // We didn't find any children, so add this module to the list of 1239 // modules to link against. 1240 if (!AnyChildren) { 1241 LinkModules.insert(Mod); 1242 } 1243 } 1244 1245 // Add link options for all of the imported modules in reverse topological 1246 // order. We don't do anything to try to order import link flags with respect 1247 // to linker options inserted by things like #pragma comment(). 1248 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1249 Visited.clear(); 1250 for (Module *M : LinkModules) 1251 if (Visited.insert(M).second) 1252 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1253 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1254 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1255 1256 // Add the linker options metadata flag. 1257 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1258 llvm::MDNode::get(getLLVMContext(), 1259 LinkerOptionsMetadata)); 1260 } 1261 1262 void CodeGenModule::EmitDeferred() { 1263 // Emit code for any potentially referenced deferred decls. Since a 1264 // previously unused static decl may become used during the generation of code 1265 // for a static function, iterate until no changes are made. 1266 1267 if (!DeferredVTables.empty()) { 1268 EmitDeferredVTables(); 1269 1270 // Emitting a vtable doesn't directly cause more vtables to 1271 // become deferred, although it can cause functions to be 1272 // emitted that then need those vtables. 1273 assert(DeferredVTables.empty()); 1274 } 1275 1276 // Stop if we're out of both deferred vtables and deferred declarations. 1277 if (DeferredDeclsToEmit.empty()) 1278 return; 1279 1280 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1281 // work, it will not interfere with this. 1282 std::vector<DeferredGlobal> CurDeclsToEmit; 1283 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1284 1285 for (DeferredGlobal &G : CurDeclsToEmit) { 1286 GlobalDecl D = G.GD; 1287 G.GV = nullptr; 1288 1289 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1290 // to get GlobalValue with exactly the type we need, not something that 1291 // might had been created for another decl with the same mangled name but 1292 // different type. 1293 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1294 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1295 1296 // In case of different address spaces, we may still get a cast, even with 1297 // IsForDefinition equal to true. Query mangled names table to get 1298 // GlobalValue. 1299 if (!GV) 1300 GV = GetGlobalValue(getMangledName(D)); 1301 1302 // Make sure GetGlobalValue returned non-null. 1303 assert(GV); 1304 1305 // Check to see if we've already emitted this. This is necessary 1306 // for a couple of reasons: first, decls can end up in the 1307 // deferred-decls queue multiple times, and second, decls can end 1308 // up with definitions in unusual ways (e.g. by an extern inline 1309 // function acquiring a strong function redefinition). Just 1310 // ignore these cases. 1311 if (!GV->isDeclaration()) 1312 continue; 1313 1314 // Otherwise, emit the definition and move on to the next one. 1315 EmitGlobalDefinition(D, GV); 1316 1317 // If we found out that we need to emit more decls, do that recursively. 1318 // This has the advantage that the decls are emitted in a DFS and related 1319 // ones are close together, which is convenient for testing. 1320 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1321 EmitDeferred(); 1322 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1323 } 1324 } 1325 } 1326 1327 void CodeGenModule::EmitGlobalAnnotations() { 1328 if (Annotations.empty()) 1329 return; 1330 1331 // Create a new global variable for the ConstantStruct in the Module. 1332 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1333 Annotations[0]->getType(), Annotations.size()), Annotations); 1334 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1335 llvm::GlobalValue::AppendingLinkage, 1336 Array, "llvm.global.annotations"); 1337 gv->setSection(AnnotationSection); 1338 } 1339 1340 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1341 llvm::Constant *&AStr = AnnotationStrings[Str]; 1342 if (AStr) 1343 return AStr; 1344 1345 // Not found yet, create a new global. 1346 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1347 auto *gv = 1348 new llvm::GlobalVariable(getModule(), s->getType(), true, 1349 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1350 gv->setSection(AnnotationSection); 1351 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1352 AStr = gv; 1353 return gv; 1354 } 1355 1356 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1357 SourceManager &SM = getContext().getSourceManager(); 1358 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1359 if (PLoc.isValid()) 1360 return EmitAnnotationString(PLoc.getFilename()); 1361 return EmitAnnotationString(SM.getBufferName(Loc)); 1362 } 1363 1364 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1365 SourceManager &SM = getContext().getSourceManager(); 1366 PresumedLoc PLoc = SM.getPresumedLoc(L); 1367 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1368 SM.getExpansionLineNumber(L); 1369 return llvm::ConstantInt::get(Int32Ty, LineNo); 1370 } 1371 1372 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1373 const AnnotateAttr *AA, 1374 SourceLocation L) { 1375 // Get the globals for file name, annotation, and the line number. 1376 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1377 *UnitGV = EmitAnnotationUnit(L), 1378 *LineNoCst = EmitAnnotationLineNo(L); 1379 1380 // Create the ConstantStruct for the global annotation. 1381 llvm::Constant *Fields[4] = { 1382 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1383 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1384 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1385 LineNoCst 1386 }; 1387 return llvm::ConstantStruct::getAnon(Fields); 1388 } 1389 1390 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1391 llvm::GlobalValue *GV) { 1392 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1393 // Get the struct elements for these annotations. 1394 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1395 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1396 } 1397 1398 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1399 SourceLocation Loc) const { 1400 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1401 // Blacklist by function name. 1402 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1403 return true; 1404 // Blacklist by location. 1405 if (Loc.isValid()) 1406 return SanitizerBL.isBlacklistedLocation(Loc); 1407 // If location is unknown, this may be a compiler-generated function. Assume 1408 // it's located in the main file. 1409 auto &SM = Context.getSourceManager(); 1410 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1411 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1412 } 1413 return false; 1414 } 1415 1416 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1417 SourceLocation Loc, QualType Ty, 1418 StringRef Category) const { 1419 // For now globals can be blacklisted only in ASan and KASan. 1420 if (!LangOpts.Sanitize.hasOneOf( 1421 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1422 return false; 1423 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1424 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1425 return true; 1426 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1427 return true; 1428 // Check global type. 1429 if (!Ty.isNull()) { 1430 // Drill down the array types: if global variable of a fixed type is 1431 // blacklisted, we also don't instrument arrays of them. 1432 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1433 Ty = AT->getElementType(); 1434 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1435 // We allow to blacklist only record types (classes, structs etc.) 1436 if (Ty->isRecordType()) { 1437 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1438 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1439 return true; 1440 } 1441 } 1442 return false; 1443 } 1444 1445 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1446 // Never defer when EmitAllDecls is specified. 1447 if (LangOpts.EmitAllDecls) 1448 return true; 1449 1450 return getContext().DeclMustBeEmitted(Global); 1451 } 1452 1453 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1454 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1455 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1456 // Implicit template instantiations may change linkage if they are later 1457 // explicitly instantiated, so they should not be emitted eagerly. 1458 return false; 1459 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1460 if (Context.getInlineVariableDefinitionKind(VD) == 1461 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1462 // A definition of an inline constexpr static data member may change 1463 // linkage later if it's redeclared outside the class. 1464 return false; 1465 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1466 // codegen for global variables, because they may be marked as threadprivate. 1467 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1468 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1469 return false; 1470 1471 return true; 1472 } 1473 1474 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1475 const CXXUuidofExpr* E) { 1476 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1477 // well-formed. 1478 StringRef Uuid = E->getUuidStr(); 1479 std::string Name = "_GUID_" + Uuid.lower(); 1480 std::replace(Name.begin(), Name.end(), '-', '_'); 1481 1482 // The UUID descriptor should be pointer aligned. 1483 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1484 1485 // Look for an existing global. 1486 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1487 return ConstantAddress(GV, Alignment); 1488 1489 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1490 assert(Init && "failed to initialize as constant"); 1491 1492 auto *GV = new llvm::GlobalVariable( 1493 getModule(), Init->getType(), 1494 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1495 if (supportsCOMDAT()) 1496 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1497 return ConstantAddress(GV, Alignment); 1498 } 1499 1500 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1501 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1502 assert(AA && "No alias?"); 1503 1504 CharUnits Alignment = getContext().getDeclAlign(VD); 1505 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1506 1507 // See if there is already something with the target's name in the module. 1508 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1509 if (Entry) { 1510 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1511 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1512 return ConstantAddress(Ptr, Alignment); 1513 } 1514 1515 llvm::Constant *Aliasee; 1516 if (isa<llvm::FunctionType>(DeclTy)) 1517 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1518 GlobalDecl(cast<FunctionDecl>(VD)), 1519 /*ForVTable=*/false); 1520 else 1521 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1522 llvm::PointerType::getUnqual(DeclTy), 1523 nullptr); 1524 1525 auto *F = cast<llvm::GlobalValue>(Aliasee); 1526 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1527 WeakRefReferences.insert(F); 1528 1529 return ConstantAddress(Aliasee, Alignment); 1530 } 1531 1532 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1533 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1534 1535 // Weak references don't produce any output by themselves. 1536 if (Global->hasAttr<WeakRefAttr>()) 1537 return; 1538 1539 // If this is an alias definition (which otherwise looks like a declaration) 1540 // emit it now. 1541 if (Global->hasAttr<AliasAttr>()) 1542 return EmitAliasDefinition(GD); 1543 1544 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1545 if (Global->hasAttr<IFuncAttr>()) 1546 return emitIFuncDefinition(GD); 1547 1548 // If this is CUDA, be selective about which declarations we emit. 1549 if (LangOpts.CUDA) { 1550 if (LangOpts.CUDAIsDevice) { 1551 if (!Global->hasAttr<CUDADeviceAttr>() && 1552 !Global->hasAttr<CUDAGlobalAttr>() && 1553 !Global->hasAttr<CUDAConstantAttr>() && 1554 !Global->hasAttr<CUDASharedAttr>()) 1555 return; 1556 } else { 1557 // We need to emit host-side 'shadows' for all global 1558 // device-side variables because the CUDA runtime needs their 1559 // size and host-side address in order to provide access to 1560 // their device-side incarnations. 1561 1562 // So device-only functions are the only things we skip. 1563 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1564 Global->hasAttr<CUDADeviceAttr>()) 1565 return; 1566 1567 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1568 "Expected Variable or Function"); 1569 } 1570 } 1571 1572 if (LangOpts.OpenMP) { 1573 // If this is OpenMP device, check if it is legal to emit this global 1574 // normally. 1575 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1576 return; 1577 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1578 if (MustBeEmitted(Global)) 1579 EmitOMPDeclareReduction(DRD); 1580 return; 1581 } 1582 } 1583 1584 // Ignore declarations, they will be emitted on their first use. 1585 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1586 // Forward declarations are emitted lazily on first use. 1587 if (!FD->doesThisDeclarationHaveABody()) { 1588 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1589 return; 1590 1591 StringRef MangledName = getMangledName(GD); 1592 1593 // Compute the function info and LLVM type. 1594 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1595 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1596 1597 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1598 /*DontDefer=*/false); 1599 return; 1600 } 1601 } else { 1602 const auto *VD = cast<VarDecl>(Global); 1603 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1604 // We need to emit device-side global CUDA variables even if a 1605 // variable does not have a definition -- we still need to define 1606 // host-side shadow for it. 1607 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1608 !VD->hasDefinition() && 1609 (VD->hasAttr<CUDAConstantAttr>() || 1610 VD->hasAttr<CUDADeviceAttr>()); 1611 if (!MustEmitForCuda && 1612 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1613 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1614 // If this declaration may have caused an inline variable definition to 1615 // change linkage, make sure that it's emitted. 1616 if (Context.getInlineVariableDefinitionKind(VD) == 1617 ASTContext::InlineVariableDefinitionKind::Strong) 1618 GetAddrOfGlobalVar(VD); 1619 return; 1620 } 1621 } 1622 1623 // Defer code generation to first use when possible, e.g. if this is an inline 1624 // function. If the global must always be emitted, do it eagerly if possible 1625 // to benefit from cache locality. 1626 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1627 // Emit the definition if it can't be deferred. 1628 EmitGlobalDefinition(GD); 1629 return; 1630 } 1631 1632 // If we're deferring emission of a C++ variable with an 1633 // initializer, remember the order in which it appeared in the file. 1634 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1635 cast<VarDecl>(Global)->hasInit()) { 1636 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1637 CXXGlobalInits.push_back(nullptr); 1638 } 1639 1640 StringRef MangledName = getMangledName(GD); 1641 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1642 // The value has already been used and should therefore be emitted. 1643 addDeferredDeclToEmit(GV, GD); 1644 } else if (MustBeEmitted(Global)) { 1645 // The value must be emitted, but cannot be emitted eagerly. 1646 assert(!MayBeEmittedEagerly(Global)); 1647 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1648 } else { 1649 // Otherwise, remember that we saw a deferred decl with this name. The 1650 // first use of the mangled name will cause it to move into 1651 // DeferredDeclsToEmit. 1652 DeferredDecls[MangledName] = GD; 1653 } 1654 } 1655 1656 namespace { 1657 struct FunctionIsDirectlyRecursive : 1658 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1659 const StringRef Name; 1660 const Builtin::Context &BI; 1661 bool Result; 1662 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1663 Name(N), BI(C), Result(false) { 1664 } 1665 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1666 1667 bool TraverseCallExpr(CallExpr *E) { 1668 const FunctionDecl *FD = E->getDirectCallee(); 1669 if (!FD) 1670 return true; 1671 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1672 if (Attr && Name == Attr->getLabel()) { 1673 Result = true; 1674 return false; 1675 } 1676 unsigned BuiltinID = FD->getBuiltinID(); 1677 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1678 return true; 1679 StringRef BuiltinName = BI.getName(BuiltinID); 1680 if (BuiltinName.startswith("__builtin_") && 1681 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1682 Result = true; 1683 return false; 1684 } 1685 return true; 1686 } 1687 }; 1688 1689 struct DLLImportFunctionVisitor 1690 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1691 bool SafeToInline = true; 1692 1693 bool VisitVarDecl(VarDecl *VD) { 1694 // A thread-local variable cannot be imported. 1695 SafeToInline = !VD->getTLSKind(); 1696 return SafeToInline; 1697 } 1698 1699 // Make sure we're not referencing non-imported vars or functions. 1700 bool VisitDeclRefExpr(DeclRefExpr *E) { 1701 ValueDecl *VD = E->getDecl(); 1702 if (isa<FunctionDecl>(VD)) 1703 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1704 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1705 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1706 return SafeToInline; 1707 } 1708 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1709 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1710 return SafeToInline; 1711 } 1712 bool VisitCXXNewExpr(CXXNewExpr *E) { 1713 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1714 return SafeToInline; 1715 } 1716 }; 1717 } 1718 1719 // isTriviallyRecursive - Check if this function calls another 1720 // decl that, because of the asm attribute or the other decl being a builtin, 1721 // ends up pointing to itself. 1722 bool 1723 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1724 StringRef Name; 1725 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1726 // asm labels are a special kind of mangling we have to support. 1727 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1728 if (!Attr) 1729 return false; 1730 Name = Attr->getLabel(); 1731 } else { 1732 Name = FD->getName(); 1733 } 1734 1735 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1736 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1737 return Walker.Result; 1738 } 1739 1740 bool 1741 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1742 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1743 return true; 1744 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1745 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1746 return false; 1747 1748 if (F->hasAttr<DLLImportAttr>()) { 1749 // Check whether it would be safe to inline this dllimport function. 1750 DLLImportFunctionVisitor Visitor; 1751 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1752 if (!Visitor.SafeToInline) 1753 return false; 1754 } 1755 1756 // PR9614. Avoid cases where the source code is lying to us. An available 1757 // externally function should have an equivalent function somewhere else, 1758 // but a function that calls itself is clearly not equivalent to the real 1759 // implementation. 1760 // This happens in glibc's btowc and in some configure checks. 1761 return !isTriviallyRecursive(F); 1762 } 1763 1764 /// If the type for the method's class was generated by 1765 /// CGDebugInfo::createContextChain(), the cache contains only a 1766 /// limited DIType without any declarations. Since EmitFunctionStart() 1767 /// needs to find the canonical declaration for each method, we need 1768 /// to construct the complete type prior to emitting the method. 1769 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1770 if (!D->isInstance()) 1771 return; 1772 1773 if (CGDebugInfo *DI = getModuleDebugInfo()) 1774 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1775 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1776 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1777 } 1778 } 1779 1780 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1781 const auto *D = cast<ValueDecl>(GD.getDecl()); 1782 1783 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1784 Context.getSourceManager(), 1785 "Generating code for declaration"); 1786 1787 if (isa<FunctionDecl>(D)) { 1788 // At -O0, don't generate IR for functions with available_externally 1789 // linkage. 1790 if (!shouldEmitFunction(GD)) 1791 return; 1792 1793 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1794 CompleteDIClassType(Method); 1795 // Make sure to emit the definition(s) before we emit the thunks. 1796 // This is necessary for the generation of certain thunks. 1797 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1798 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1799 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1800 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1801 else 1802 EmitGlobalFunctionDefinition(GD, GV); 1803 1804 if (Method->isVirtual()) 1805 getVTables().EmitThunks(GD); 1806 1807 return; 1808 } 1809 1810 return EmitGlobalFunctionDefinition(GD, GV); 1811 } 1812 1813 if (const auto *VD = dyn_cast<VarDecl>(D)) 1814 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1815 1816 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1817 } 1818 1819 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1820 llvm::Function *NewFn); 1821 1822 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1823 /// module, create and return an llvm Function with the specified type. If there 1824 /// is something in the module with the specified name, return it potentially 1825 /// bitcasted to the right type. 1826 /// 1827 /// If D is non-null, it specifies a decl that correspond to this. This is used 1828 /// to set the attributes on the function when it is first created. 1829 llvm::Constant * 1830 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1831 llvm::Type *Ty, 1832 GlobalDecl GD, bool ForVTable, 1833 bool DontDefer, bool IsThunk, 1834 llvm::AttributeSet ExtraAttrs, 1835 bool IsForDefinition) { 1836 const Decl *D = GD.getDecl(); 1837 1838 // Lookup the entry, lazily creating it if necessary. 1839 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1840 if (Entry) { 1841 if (WeakRefReferences.erase(Entry)) { 1842 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1843 if (FD && !FD->hasAttr<WeakAttr>()) 1844 Entry->setLinkage(llvm::Function::ExternalLinkage); 1845 } 1846 1847 // Handle dropped DLL attributes. 1848 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1849 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1850 1851 // If there are two attempts to define the same mangled name, issue an 1852 // error. 1853 if (IsForDefinition && !Entry->isDeclaration()) { 1854 GlobalDecl OtherGD; 1855 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1856 // to make sure that we issue an error only once. 1857 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1858 (GD.getCanonicalDecl().getDecl() != 1859 OtherGD.getCanonicalDecl().getDecl()) && 1860 DiagnosedConflictingDefinitions.insert(GD).second) { 1861 getDiags().Report(D->getLocation(), 1862 diag::err_duplicate_mangled_name); 1863 getDiags().Report(OtherGD.getDecl()->getLocation(), 1864 diag::note_previous_definition); 1865 } 1866 } 1867 1868 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1869 (Entry->getType()->getElementType() == Ty)) { 1870 return Entry; 1871 } 1872 1873 // Make sure the result is of the correct type. 1874 // (If function is requested for a definition, we always need to create a new 1875 // function, not just return a bitcast.) 1876 if (!IsForDefinition) 1877 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1878 } 1879 1880 // This function doesn't have a complete type (for example, the return 1881 // type is an incomplete struct). Use a fake type instead, and make 1882 // sure not to try to set attributes. 1883 bool IsIncompleteFunction = false; 1884 1885 llvm::FunctionType *FTy; 1886 if (isa<llvm::FunctionType>(Ty)) { 1887 FTy = cast<llvm::FunctionType>(Ty); 1888 } else { 1889 FTy = llvm::FunctionType::get(VoidTy, false); 1890 IsIncompleteFunction = true; 1891 } 1892 1893 llvm::Function *F = 1894 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1895 Entry ? StringRef() : MangledName, &getModule()); 1896 1897 // If we already created a function with the same mangled name (but different 1898 // type) before, take its name and add it to the list of functions to be 1899 // replaced with F at the end of CodeGen. 1900 // 1901 // This happens if there is a prototype for a function (e.g. "int f()") and 1902 // then a definition of a different type (e.g. "int f(int x)"). 1903 if (Entry) { 1904 F->takeName(Entry); 1905 1906 // This might be an implementation of a function without a prototype, in 1907 // which case, try to do special replacement of calls which match the new 1908 // prototype. The really key thing here is that we also potentially drop 1909 // arguments from the call site so as to make a direct call, which makes the 1910 // inliner happier and suppresses a number of optimizer warnings (!) about 1911 // dropping arguments. 1912 if (!Entry->use_empty()) { 1913 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1914 Entry->removeDeadConstantUsers(); 1915 } 1916 1917 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1918 F, Entry->getType()->getElementType()->getPointerTo()); 1919 addGlobalValReplacement(Entry, BC); 1920 } 1921 1922 assert(F->getName() == MangledName && "name was uniqued!"); 1923 if (D) 1924 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1925 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1926 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1927 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1928 llvm::AttributeSet::get(VMContext, 1929 llvm::AttributeSet::FunctionIndex, 1930 B)); 1931 } 1932 1933 if (!DontDefer) { 1934 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1935 // each other bottoming out with the base dtor. Therefore we emit non-base 1936 // dtors on usage, even if there is no dtor definition in the TU. 1937 if (D && isa<CXXDestructorDecl>(D) && 1938 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1939 GD.getDtorType())) 1940 addDeferredDeclToEmit(F, GD); 1941 1942 // This is the first use or definition of a mangled name. If there is a 1943 // deferred decl with this name, remember that we need to emit it at the end 1944 // of the file. 1945 auto DDI = DeferredDecls.find(MangledName); 1946 if (DDI != DeferredDecls.end()) { 1947 // Move the potentially referenced deferred decl to the 1948 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1949 // don't need it anymore). 1950 addDeferredDeclToEmit(F, DDI->second); 1951 DeferredDecls.erase(DDI); 1952 1953 // Otherwise, there are cases we have to worry about where we're 1954 // using a declaration for which we must emit a definition but where 1955 // we might not find a top-level definition: 1956 // - member functions defined inline in their classes 1957 // - friend functions defined inline in some class 1958 // - special member functions with implicit definitions 1959 // If we ever change our AST traversal to walk into class methods, 1960 // this will be unnecessary. 1961 // 1962 // We also don't emit a definition for a function if it's going to be an 1963 // entry in a vtable, unless it's already marked as used. 1964 } else if (getLangOpts().CPlusPlus && D) { 1965 // Look for a declaration that's lexically in a record. 1966 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1967 FD = FD->getPreviousDecl()) { 1968 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1969 if (FD->doesThisDeclarationHaveABody()) { 1970 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1971 break; 1972 } 1973 } 1974 } 1975 } 1976 } 1977 1978 // Make sure the result is of the requested type. 1979 if (!IsIncompleteFunction) { 1980 assert(F->getType()->getElementType() == Ty); 1981 return F; 1982 } 1983 1984 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1985 return llvm::ConstantExpr::getBitCast(F, PTy); 1986 } 1987 1988 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1989 /// non-null, then this function will use the specified type if it has to 1990 /// create it (this occurs when we see a definition of the function). 1991 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1992 llvm::Type *Ty, 1993 bool ForVTable, 1994 bool DontDefer, 1995 bool IsForDefinition) { 1996 // If there was no specific requested type, just convert it now. 1997 if (!Ty) { 1998 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1999 auto CanonTy = Context.getCanonicalType(FD->getType()); 2000 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2001 } 2002 2003 StringRef MangledName = getMangledName(GD); 2004 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2005 /*IsThunk=*/false, llvm::AttributeSet(), 2006 IsForDefinition); 2007 } 2008 2009 /// CreateRuntimeFunction - Create a new runtime function with the specified 2010 /// type and name. 2011 llvm::Constant * 2012 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2013 StringRef Name, 2014 llvm::AttributeSet ExtraAttrs) { 2015 llvm::Constant *C = 2016 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2017 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2018 if (auto *F = dyn_cast<llvm::Function>(C)) 2019 if (F->empty()) 2020 F->setCallingConv(getRuntimeCC()); 2021 return C; 2022 } 2023 2024 /// CreateBuiltinFunction - Create a new builtin function with the specified 2025 /// type and name. 2026 llvm::Constant * 2027 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2028 StringRef Name, 2029 llvm::AttributeSet ExtraAttrs) { 2030 llvm::Constant *C = 2031 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2032 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2033 if (auto *F = dyn_cast<llvm::Function>(C)) 2034 if (F->empty()) 2035 F->setCallingConv(getBuiltinCC()); 2036 return C; 2037 } 2038 2039 /// isTypeConstant - Determine whether an object of this type can be emitted 2040 /// as a constant. 2041 /// 2042 /// If ExcludeCtor is true, the duration when the object's constructor runs 2043 /// will not be considered. The caller will need to verify that the object is 2044 /// not written to during its construction. 2045 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2046 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2047 return false; 2048 2049 if (Context.getLangOpts().CPlusPlus) { 2050 if (const CXXRecordDecl *Record 2051 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2052 return ExcludeCtor && !Record->hasMutableFields() && 2053 Record->hasTrivialDestructor(); 2054 } 2055 2056 return true; 2057 } 2058 2059 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2060 /// create and return an llvm GlobalVariable with the specified type. If there 2061 /// is something in the module with the specified name, return it potentially 2062 /// bitcasted to the right type. 2063 /// 2064 /// If D is non-null, it specifies a decl that correspond to this. This is used 2065 /// to set the attributes on the global when it is first created. 2066 /// 2067 /// If IsForDefinition is true, it is guranteed that an actual global with 2068 /// type Ty will be returned, not conversion of a variable with the same 2069 /// mangled name but some other type. 2070 llvm::Constant * 2071 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2072 llvm::PointerType *Ty, 2073 const VarDecl *D, 2074 bool IsForDefinition) { 2075 // Lookup the entry, lazily creating it if necessary. 2076 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2077 if (Entry) { 2078 if (WeakRefReferences.erase(Entry)) { 2079 if (D && !D->hasAttr<WeakAttr>()) 2080 Entry->setLinkage(llvm::Function::ExternalLinkage); 2081 } 2082 2083 // Handle dropped DLL attributes. 2084 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2085 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2086 2087 if (Entry->getType() == Ty) 2088 return Entry; 2089 2090 // If there are two attempts to define the same mangled name, issue an 2091 // error. 2092 if (IsForDefinition && !Entry->isDeclaration()) { 2093 GlobalDecl OtherGD; 2094 const VarDecl *OtherD; 2095 2096 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2097 // to make sure that we issue an error only once. 2098 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2099 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2100 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2101 OtherD->hasInit() && 2102 DiagnosedConflictingDefinitions.insert(D).second) { 2103 getDiags().Report(D->getLocation(), 2104 diag::err_duplicate_mangled_name); 2105 getDiags().Report(OtherGD.getDecl()->getLocation(), 2106 diag::note_previous_definition); 2107 } 2108 } 2109 2110 // Make sure the result is of the correct type. 2111 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2112 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2113 2114 // (If global is requested for a definition, we always need to create a new 2115 // global, not just return a bitcast.) 2116 if (!IsForDefinition) 2117 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2118 } 2119 2120 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2121 auto *GV = new llvm::GlobalVariable( 2122 getModule(), Ty->getElementType(), false, 2123 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2124 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2125 2126 // If we already created a global with the same mangled name (but different 2127 // type) before, take its name and remove it from its parent. 2128 if (Entry) { 2129 GV->takeName(Entry); 2130 2131 if (!Entry->use_empty()) { 2132 llvm::Constant *NewPtrForOldDecl = 2133 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2134 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2135 } 2136 2137 Entry->eraseFromParent(); 2138 } 2139 2140 // This is the first use or definition of a mangled name. If there is a 2141 // deferred decl with this name, remember that we need to emit it at the end 2142 // of the file. 2143 auto DDI = DeferredDecls.find(MangledName); 2144 if (DDI != DeferredDecls.end()) { 2145 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2146 // list, and remove it from DeferredDecls (since we don't need it anymore). 2147 addDeferredDeclToEmit(GV, DDI->second); 2148 DeferredDecls.erase(DDI); 2149 } 2150 2151 // Handle things which are present even on external declarations. 2152 if (D) { 2153 // FIXME: This code is overly simple and should be merged with other global 2154 // handling. 2155 GV->setConstant(isTypeConstant(D->getType(), false)); 2156 2157 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2158 2159 setLinkageAndVisibilityForGV(GV, D); 2160 2161 if (D->getTLSKind()) { 2162 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2163 CXXThreadLocals.push_back(D); 2164 setTLSMode(GV, *D); 2165 } 2166 2167 // If required by the ABI, treat declarations of static data members with 2168 // inline initializers as definitions. 2169 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2170 EmitGlobalVarDefinition(D); 2171 } 2172 2173 // Handle XCore specific ABI requirements. 2174 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2175 D->getLanguageLinkage() == CLanguageLinkage && 2176 D->getType().isConstant(Context) && 2177 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2178 GV->setSection(".cp.rodata"); 2179 } 2180 2181 if (AddrSpace != Ty->getAddressSpace()) 2182 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2183 2184 return GV; 2185 } 2186 2187 llvm::Constant * 2188 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2189 bool IsForDefinition) { 2190 if (isa<CXXConstructorDecl>(GD.getDecl())) 2191 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2192 getFromCtorType(GD.getCtorType()), 2193 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2194 /*DontDefer=*/false, IsForDefinition); 2195 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2196 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2197 getFromDtorType(GD.getDtorType()), 2198 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2199 /*DontDefer=*/false, IsForDefinition); 2200 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2201 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2202 cast<CXXMethodDecl>(GD.getDecl())); 2203 auto Ty = getTypes().GetFunctionType(*FInfo); 2204 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2205 IsForDefinition); 2206 } else if (isa<FunctionDecl>(GD.getDecl())) { 2207 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2208 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2209 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2210 IsForDefinition); 2211 } else 2212 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2213 IsForDefinition); 2214 } 2215 2216 llvm::GlobalVariable * 2217 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2218 llvm::Type *Ty, 2219 llvm::GlobalValue::LinkageTypes Linkage) { 2220 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2221 llvm::GlobalVariable *OldGV = nullptr; 2222 2223 if (GV) { 2224 // Check if the variable has the right type. 2225 if (GV->getType()->getElementType() == Ty) 2226 return GV; 2227 2228 // Because C++ name mangling, the only way we can end up with an already 2229 // existing global with the same name is if it has been declared extern "C". 2230 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2231 OldGV = GV; 2232 } 2233 2234 // Create a new variable. 2235 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2236 Linkage, nullptr, Name); 2237 2238 if (OldGV) { 2239 // Replace occurrences of the old variable if needed. 2240 GV->takeName(OldGV); 2241 2242 if (!OldGV->use_empty()) { 2243 llvm::Constant *NewPtrForOldDecl = 2244 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2245 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2246 } 2247 2248 OldGV->eraseFromParent(); 2249 } 2250 2251 if (supportsCOMDAT() && GV->isWeakForLinker() && 2252 !GV->hasAvailableExternallyLinkage()) 2253 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2254 2255 return GV; 2256 } 2257 2258 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2259 /// given global variable. If Ty is non-null and if the global doesn't exist, 2260 /// then it will be created with the specified type instead of whatever the 2261 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2262 /// that an actual global with type Ty will be returned, not conversion of a 2263 /// variable with the same mangled name but some other type. 2264 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2265 llvm::Type *Ty, 2266 bool IsForDefinition) { 2267 assert(D->hasGlobalStorage() && "Not a global variable"); 2268 QualType ASTTy = D->getType(); 2269 if (!Ty) 2270 Ty = getTypes().ConvertTypeForMem(ASTTy); 2271 2272 llvm::PointerType *PTy = 2273 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2274 2275 StringRef MangledName = getMangledName(D); 2276 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2277 } 2278 2279 /// CreateRuntimeVariable - Create a new runtime global variable with the 2280 /// specified type and name. 2281 llvm::Constant * 2282 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2283 StringRef Name) { 2284 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2285 } 2286 2287 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2288 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2289 2290 StringRef MangledName = getMangledName(D); 2291 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2292 2293 // We already have a definition, not declaration, with the same mangled name. 2294 // Emitting of declaration is not required (and actually overwrites emitted 2295 // definition). 2296 if (GV && !GV->isDeclaration()) 2297 return; 2298 2299 // If we have not seen a reference to this variable yet, place it into the 2300 // deferred declarations table to be emitted if needed later. 2301 if (!MustBeEmitted(D) && !GV) { 2302 DeferredDecls[MangledName] = D; 2303 return; 2304 } 2305 2306 // The tentative definition is the only definition. 2307 EmitGlobalVarDefinition(D); 2308 } 2309 2310 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2311 return Context.toCharUnitsFromBits( 2312 getDataLayout().getTypeStoreSizeInBits(Ty)); 2313 } 2314 2315 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2316 unsigned AddrSpace) { 2317 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2318 if (D->hasAttr<CUDAConstantAttr>()) 2319 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2320 else if (D->hasAttr<CUDASharedAttr>()) 2321 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2322 else 2323 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2324 } 2325 2326 return AddrSpace; 2327 } 2328 2329 template<typename SomeDecl> 2330 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2331 llvm::GlobalValue *GV) { 2332 if (!getLangOpts().CPlusPlus) 2333 return; 2334 2335 // Must have 'used' attribute, or else inline assembly can't rely on 2336 // the name existing. 2337 if (!D->template hasAttr<UsedAttr>()) 2338 return; 2339 2340 // Must have internal linkage and an ordinary name. 2341 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2342 return; 2343 2344 // Must be in an extern "C" context. Entities declared directly within 2345 // a record are not extern "C" even if the record is in such a context. 2346 const SomeDecl *First = D->getFirstDecl(); 2347 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2348 return; 2349 2350 // OK, this is an internal linkage entity inside an extern "C" linkage 2351 // specification. Make a note of that so we can give it the "expected" 2352 // mangled name if nothing else is using that name. 2353 std::pair<StaticExternCMap::iterator, bool> R = 2354 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2355 2356 // If we have multiple internal linkage entities with the same name 2357 // in extern "C" regions, none of them gets that name. 2358 if (!R.second) 2359 R.first->second = nullptr; 2360 } 2361 2362 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2363 if (!CGM.supportsCOMDAT()) 2364 return false; 2365 2366 if (D.hasAttr<SelectAnyAttr>()) 2367 return true; 2368 2369 GVALinkage Linkage; 2370 if (auto *VD = dyn_cast<VarDecl>(&D)) 2371 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2372 else 2373 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2374 2375 switch (Linkage) { 2376 case GVA_Internal: 2377 case GVA_AvailableExternally: 2378 case GVA_StrongExternal: 2379 return false; 2380 case GVA_DiscardableODR: 2381 case GVA_StrongODR: 2382 return true; 2383 } 2384 llvm_unreachable("No such linkage"); 2385 } 2386 2387 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2388 llvm::GlobalObject &GO) { 2389 if (!shouldBeInCOMDAT(*this, D)) 2390 return; 2391 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2392 } 2393 2394 /// Pass IsTentative as true if you want to create a tentative definition. 2395 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2396 bool IsTentative) { 2397 // OpenCL global variables of sampler type are translated to function calls, 2398 // therefore no need to be translated. 2399 QualType ASTTy = D->getType(); 2400 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2401 return; 2402 2403 llvm::Constant *Init = nullptr; 2404 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2405 bool NeedsGlobalCtor = false; 2406 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2407 2408 const VarDecl *InitDecl; 2409 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2410 2411 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2412 // as part of their declaration." Sema has already checked for 2413 // error cases, so we just need to set Init to UndefValue. 2414 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2415 D->hasAttr<CUDASharedAttr>()) 2416 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2417 else if (!InitExpr) { 2418 // This is a tentative definition; tentative definitions are 2419 // implicitly initialized with { 0 }. 2420 // 2421 // Note that tentative definitions are only emitted at the end of 2422 // a translation unit, so they should never have incomplete 2423 // type. In addition, EmitTentativeDefinition makes sure that we 2424 // never attempt to emit a tentative definition if a real one 2425 // exists. A use may still exists, however, so we still may need 2426 // to do a RAUW. 2427 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2428 Init = EmitNullConstant(D->getType()); 2429 } else { 2430 initializedGlobalDecl = GlobalDecl(D); 2431 Init = EmitConstantInit(*InitDecl); 2432 2433 if (!Init) { 2434 QualType T = InitExpr->getType(); 2435 if (D->getType()->isReferenceType()) 2436 T = D->getType(); 2437 2438 if (getLangOpts().CPlusPlus) { 2439 Init = EmitNullConstant(T); 2440 NeedsGlobalCtor = true; 2441 } else { 2442 ErrorUnsupported(D, "static initializer"); 2443 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2444 } 2445 } else { 2446 // We don't need an initializer, so remove the entry for the delayed 2447 // initializer position (just in case this entry was delayed) if we 2448 // also don't need to register a destructor. 2449 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2450 DelayedCXXInitPosition.erase(D); 2451 } 2452 } 2453 2454 llvm::Type* InitType = Init->getType(); 2455 llvm::Constant *Entry = 2456 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2457 2458 // Strip off a bitcast if we got one back. 2459 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2460 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2461 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2462 // All zero index gep. 2463 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2464 Entry = CE->getOperand(0); 2465 } 2466 2467 // Entry is now either a Function or GlobalVariable. 2468 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2469 2470 // We have a definition after a declaration with the wrong type. 2471 // We must make a new GlobalVariable* and update everything that used OldGV 2472 // (a declaration or tentative definition) with the new GlobalVariable* 2473 // (which will be a definition). 2474 // 2475 // This happens if there is a prototype for a global (e.g. 2476 // "extern int x[];") and then a definition of a different type (e.g. 2477 // "int x[10];"). This also happens when an initializer has a different type 2478 // from the type of the global (this happens with unions). 2479 if (!GV || 2480 GV->getType()->getElementType() != InitType || 2481 GV->getType()->getAddressSpace() != 2482 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2483 2484 // Move the old entry aside so that we'll create a new one. 2485 Entry->setName(StringRef()); 2486 2487 // Make a new global with the correct type, this is now guaranteed to work. 2488 GV = cast<llvm::GlobalVariable>( 2489 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2490 2491 // Replace all uses of the old global with the new global 2492 llvm::Constant *NewPtrForOldDecl = 2493 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2494 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2495 2496 // Erase the old global, since it is no longer used. 2497 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2498 } 2499 2500 MaybeHandleStaticInExternC(D, GV); 2501 2502 if (D->hasAttr<AnnotateAttr>()) 2503 AddGlobalAnnotations(D, GV); 2504 2505 // Set the llvm linkage type as appropriate. 2506 llvm::GlobalValue::LinkageTypes Linkage = 2507 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2508 2509 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2510 // the device. [...]" 2511 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2512 // __device__, declares a variable that: [...] 2513 // Is accessible from all the threads within the grid and from the host 2514 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2515 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2516 if (GV && LangOpts.CUDA) { 2517 if (LangOpts.CUDAIsDevice) { 2518 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2519 GV->setExternallyInitialized(true); 2520 } else { 2521 // Host-side shadows of external declarations of device-side 2522 // global variables become internal definitions. These have to 2523 // be internal in order to prevent name conflicts with global 2524 // host variables with the same name in a different TUs. 2525 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2526 Linkage = llvm::GlobalValue::InternalLinkage; 2527 2528 // Shadow variables and their properties must be registered 2529 // with CUDA runtime. 2530 unsigned Flags = 0; 2531 if (!D->hasDefinition()) 2532 Flags |= CGCUDARuntime::ExternDeviceVar; 2533 if (D->hasAttr<CUDAConstantAttr>()) 2534 Flags |= CGCUDARuntime::ConstantDeviceVar; 2535 getCUDARuntime().registerDeviceVar(*GV, Flags); 2536 } else if (D->hasAttr<CUDASharedAttr>()) 2537 // __shared__ variables are odd. Shadows do get created, but 2538 // they are not registered with the CUDA runtime, so they 2539 // can't really be used to access their device-side 2540 // counterparts. It's not clear yet whether it's nvcc's bug or 2541 // a feature, but we've got to do the same for compatibility. 2542 Linkage = llvm::GlobalValue::InternalLinkage; 2543 } 2544 } 2545 GV->setInitializer(Init); 2546 2547 // If it is safe to mark the global 'constant', do so now. 2548 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2549 isTypeConstant(D->getType(), true)); 2550 2551 // If it is in a read-only section, mark it 'constant'. 2552 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2553 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2554 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2555 GV->setConstant(true); 2556 } 2557 2558 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2559 2560 2561 // On Darwin, if the normal linkage of a C++ thread_local variable is 2562 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2563 // copies within a linkage unit; otherwise, the backing variable has 2564 // internal linkage and all accesses should just be calls to the 2565 // Itanium-specified entry point, which has the normal linkage of the 2566 // variable. This is to preserve the ability to change the implementation 2567 // behind the scenes. 2568 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2569 Context.getTargetInfo().getTriple().isOSDarwin() && 2570 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2571 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2572 Linkage = llvm::GlobalValue::InternalLinkage; 2573 2574 GV->setLinkage(Linkage); 2575 if (D->hasAttr<DLLImportAttr>()) 2576 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2577 else if (D->hasAttr<DLLExportAttr>()) 2578 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2579 else 2580 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2581 2582 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2583 // common vars aren't constant even if declared const. 2584 GV->setConstant(false); 2585 2586 setNonAliasAttributes(D, GV); 2587 2588 if (D->getTLSKind() && !GV->isThreadLocal()) { 2589 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2590 CXXThreadLocals.push_back(D); 2591 setTLSMode(GV, *D); 2592 } 2593 2594 maybeSetTrivialComdat(*D, *GV); 2595 2596 // Emit the initializer function if necessary. 2597 if (NeedsGlobalCtor || NeedsGlobalDtor) 2598 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2599 2600 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2601 2602 // Emit global variable debug information. 2603 if (CGDebugInfo *DI = getModuleDebugInfo()) 2604 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2605 DI->EmitGlobalVariable(GV, D); 2606 } 2607 2608 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2609 CodeGenModule &CGM, const VarDecl *D, 2610 bool NoCommon) { 2611 // Don't give variables common linkage if -fno-common was specified unless it 2612 // was overridden by a NoCommon attribute. 2613 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2614 return true; 2615 2616 // C11 6.9.2/2: 2617 // A declaration of an identifier for an object that has file scope without 2618 // an initializer, and without a storage-class specifier or with the 2619 // storage-class specifier static, constitutes a tentative definition. 2620 if (D->getInit() || D->hasExternalStorage()) 2621 return true; 2622 2623 // A variable cannot be both common and exist in a section. 2624 if (D->hasAttr<SectionAttr>()) 2625 return true; 2626 2627 // Thread local vars aren't considered common linkage. 2628 if (D->getTLSKind()) 2629 return true; 2630 2631 // Tentative definitions marked with WeakImportAttr are true definitions. 2632 if (D->hasAttr<WeakImportAttr>()) 2633 return true; 2634 2635 // A variable cannot be both common and exist in a comdat. 2636 if (shouldBeInCOMDAT(CGM, *D)) 2637 return true; 2638 2639 // Declarations with a required alignment do not have common linkage in MSVC 2640 // mode. 2641 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2642 if (D->hasAttr<AlignedAttr>()) 2643 return true; 2644 QualType VarType = D->getType(); 2645 if (Context.isAlignmentRequired(VarType)) 2646 return true; 2647 2648 if (const auto *RT = VarType->getAs<RecordType>()) { 2649 const RecordDecl *RD = RT->getDecl(); 2650 for (const FieldDecl *FD : RD->fields()) { 2651 if (FD->isBitField()) 2652 continue; 2653 if (FD->hasAttr<AlignedAttr>()) 2654 return true; 2655 if (Context.isAlignmentRequired(FD->getType())) 2656 return true; 2657 } 2658 } 2659 } 2660 2661 return false; 2662 } 2663 2664 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2665 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2666 if (Linkage == GVA_Internal) 2667 return llvm::Function::InternalLinkage; 2668 2669 if (D->hasAttr<WeakAttr>()) { 2670 if (IsConstantVariable) 2671 return llvm::GlobalVariable::WeakODRLinkage; 2672 else 2673 return llvm::GlobalVariable::WeakAnyLinkage; 2674 } 2675 2676 // We are guaranteed to have a strong definition somewhere else, 2677 // so we can use available_externally linkage. 2678 if (Linkage == GVA_AvailableExternally) 2679 return llvm::Function::AvailableExternallyLinkage; 2680 2681 // Note that Apple's kernel linker doesn't support symbol 2682 // coalescing, so we need to avoid linkonce and weak linkages there. 2683 // Normally, this means we just map to internal, but for explicit 2684 // instantiations we'll map to external. 2685 2686 // In C++, the compiler has to emit a definition in every translation unit 2687 // that references the function. We should use linkonce_odr because 2688 // a) if all references in this translation unit are optimized away, we 2689 // don't need to codegen it. b) if the function persists, it needs to be 2690 // merged with other definitions. c) C++ has the ODR, so we know the 2691 // definition is dependable. 2692 if (Linkage == GVA_DiscardableODR) 2693 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2694 : llvm::Function::InternalLinkage; 2695 2696 // An explicit instantiation of a template has weak linkage, since 2697 // explicit instantiations can occur in multiple translation units 2698 // and must all be equivalent. However, we are not allowed to 2699 // throw away these explicit instantiations. 2700 // 2701 // We don't currently support CUDA device code spread out across multiple TUs, 2702 // so say that CUDA templates are either external (for kernels) or internal. 2703 // This lets llvm perform aggressive inter-procedural optimizations. 2704 if (Linkage == GVA_StrongODR) { 2705 if (Context.getLangOpts().AppleKext) 2706 return llvm::Function::ExternalLinkage; 2707 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2708 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2709 : llvm::Function::InternalLinkage; 2710 return llvm::Function::WeakODRLinkage; 2711 } 2712 2713 // C++ doesn't have tentative definitions and thus cannot have common 2714 // linkage. 2715 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2716 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2717 CodeGenOpts.NoCommon)) 2718 return llvm::GlobalVariable::CommonLinkage; 2719 2720 // selectany symbols are externally visible, so use weak instead of 2721 // linkonce. MSVC optimizes away references to const selectany globals, so 2722 // all definitions should be the same and ODR linkage should be used. 2723 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2724 if (D->hasAttr<SelectAnyAttr>()) 2725 return llvm::GlobalVariable::WeakODRLinkage; 2726 2727 // Otherwise, we have strong external linkage. 2728 assert(Linkage == GVA_StrongExternal); 2729 return llvm::GlobalVariable::ExternalLinkage; 2730 } 2731 2732 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2733 const VarDecl *VD, bool IsConstant) { 2734 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2735 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2736 } 2737 2738 /// Replace the uses of a function that was declared with a non-proto type. 2739 /// We want to silently drop extra arguments from call sites 2740 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2741 llvm::Function *newFn) { 2742 // Fast path. 2743 if (old->use_empty()) return; 2744 2745 llvm::Type *newRetTy = newFn->getReturnType(); 2746 SmallVector<llvm::Value*, 4> newArgs; 2747 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2748 2749 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2750 ui != ue; ) { 2751 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2752 llvm::User *user = use->getUser(); 2753 2754 // Recognize and replace uses of bitcasts. Most calls to 2755 // unprototyped functions will use bitcasts. 2756 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2757 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2758 replaceUsesOfNonProtoConstant(bitcast, newFn); 2759 continue; 2760 } 2761 2762 // Recognize calls to the function. 2763 llvm::CallSite callSite(user); 2764 if (!callSite) continue; 2765 if (!callSite.isCallee(&*use)) continue; 2766 2767 // If the return types don't match exactly, then we can't 2768 // transform this call unless it's dead. 2769 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2770 continue; 2771 2772 // Get the call site's attribute list. 2773 SmallVector<llvm::AttributeSet, 8> newAttrs; 2774 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2775 2776 // Collect any return attributes from the call. 2777 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2778 newAttrs.push_back( 2779 llvm::AttributeSet::get(newFn->getContext(), 2780 oldAttrs.getRetAttributes())); 2781 2782 // If the function was passed too few arguments, don't transform. 2783 unsigned newNumArgs = newFn->arg_size(); 2784 if (callSite.arg_size() < newNumArgs) continue; 2785 2786 // If extra arguments were passed, we silently drop them. 2787 // If any of the types mismatch, we don't transform. 2788 unsigned argNo = 0; 2789 bool dontTransform = false; 2790 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2791 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2792 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2793 dontTransform = true; 2794 break; 2795 } 2796 2797 // Add any parameter attributes. 2798 if (oldAttrs.hasAttributes(argNo + 1)) 2799 newAttrs. 2800 push_back(llvm:: 2801 AttributeSet::get(newFn->getContext(), 2802 oldAttrs.getParamAttributes(argNo + 1))); 2803 } 2804 if (dontTransform) 2805 continue; 2806 2807 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2808 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2809 oldAttrs.getFnAttributes())); 2810 2811 // Okay, we can transform this. Create the new call instruction and copy 2812 // over the required information. 2813 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2814 2815 // Copy over any operand bundles. 2816 callSite.getOperandBundlesAsDefs(newBundles); 2817 2818 llvm::CallSite newCall; 2819 if (callSite.isCall()) { 2820 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2821 callSite.getInstruction()); 2822 } else { 2823 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2824 newCall = llvm::InvokeInst::Create(newFn, 2825 oldInvoke->getNormalDest(), 2826 oldInvoke->getUnwindDest(), 2827 newArgs, newBundles, "", 2828 callSite.getInstruction()); 2829 } 2830 newArgs.clear(); // for the next iteration 2831 2832 if (!newCall->getType()->isVoidTy()) 2833 newCall->takeName(callSite.getInstruction()); 2834 newCall.setAttributes( 2835 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2836 newCall.setCallingConv(callSite.getCallingConv()); 2837 2838 // Finally, remove the old call, replacing any uses with the new one. 2839 if (!callSite->use_empty()) 2840 callSite->replaceAllUsesWith(newCall.getInstruction()); 2841 2842 // Copy debug location attached to CI. 2843 if (callSite->getDebugLoc()) 2844 newCall->setDebugLoc(callSite->getDebugLoc()); 2845 2846 callSite->eraseFromParent(); 2847 } 2848 } 2849 2850 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2851 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2852 /// existing call uses of the old function in the module, this adjusts them to 2853 /// call the new function directly. 2854 /// 2855 /// This is not just a cleanup: the always_inline pass requires direct calls to 2856 /// functions to be able to inline them. If there is a bitcast in the way, it 2857 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2858 /// run at -O0. 2859 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2860 llvm::Function *NewFn) { 2861 // If we're redefining a global as a function, don't transform it. 2862 if (!isa<llvm::Function>(Old)) return; 2863 2864 replaceUsesOfNonProtoConstant(Old, NewFn); 2865 } 2866 2867 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2868 auto DK = VD->isThisDeclarationADefinition(); 2869 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2870 return; 2871 2872 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2873 // If we have a definition, this might be a deferred decl. If the 2874 // instantiation is explicit, make sure we emit it at the end. 2875 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2876 GetAddrOfGlobalVar(VD); 2877 2878 EmitTopLevelDecl(VD); 2879 } 2880 2881 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2882 llvm::GlobalValue *GV) { 2883 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2884 2885 // Emit this function's deferred diagnostics, if none of them are errors. If 2886 // any of them are errors, don't codegen the function, but also don't emit any 2887 // of the diagnostics just yet. Emitting an error during codegen stops 2888 // further codegen, and we want to display as many deferred diags as possible. 2889 // We'll emit the now twice-deferred diags at the very end of codegen. 2890 // 2891 // (If a function has both error and non-error diags, we don't emit the 2892 // non-error diags here, because order can be significant, e.g. with notes 2893 // that follow errors.) 2894 auto Diags = D->takeDeferredDiags(); 2895 bool HasError = llvm::any_of(Diags, [this](const PartialDiagnosticAt &PDAt) { 2896 return getDiags().getDiagnosticLevel(PDAt.second.getDiagID(), PDAt.first) >= 2897 DiagnosticsEngine::Error; 2898 }); 2899 if (HasError) { 2900 DeferredDiags.insert(DeferredDiags.end(), 2901 std::make_move_iterator(Diags.begin()), 2902 std::make_move_iterator(Diags.end())); 2903 return; 2904 } 2905 for (PartialDiagnosticAt &PDAt : Diags) { 2906 const SourceLocation &Loc = PDAt.first; 2907 const PartialDiagnostic &PD = PDAt.second; 2908 DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID())); 2909 PD.Emit(Builder); 2910 } 2911 2912 // Compute the function info and LLVM type. 2913 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2914 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2915 2916 // Get or create the prototype for the function. 2917 if (!GV || (GV->getType()->getElementType() != Ty)) 2918 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2919 /*DontDefer=*/true, 2920 /*IsForDefinition=*/true)); 2921 2922 // Already emitted. 2923 if (!GV->isDeclaration()) 2924 return; 2925 2926 // We need to set linkage and visibility on the function before 2927 // generating code for it because various parts of IR generation 2928 // want to propagate this information down (e.g. to local static 2929 // declarations). 2930 auto *Fn = cast<llvm::Function>(GV); 2931 setFunctionLinkage(GD, Fn); 2932 setFunctionDLLStorageClass(GD, Fn); 2933 2934 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2935 setGlobalVisibility(Fn, D); 2936 2937 MaybeHandleStaticInExternC(D, Fn); 2938 2939 maybeSetTrivialComdat(*D, *Fn); 2940 2941 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2942 2943 setFunctionDefinitionAttributes(D, Fn); 2944 SetLLVMFunctionAttributesForDefinition(D, Fn); 2945 2946 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2947 AddGlobalCtor(Fn, CA->getPriority()); 2948 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2949 AddGlobalDtor(Fn, DA->getPriority()); 2950 if (D->hasAttr<AnnotateAttr>()) 2951 AddGlobalAnnotations(D, Fn); 2952 } 2953 2954 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2955 const auto *D = cast<ValueDecl>(GD.getDecl()); 2956 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2957 assert(AA && "Not an alias?"); 2958 2959 StringRef MangledName = getMangledName(GD); 2960 2961 if (AA->getAliasee() == MangledName) { 2962 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2963 return; 2964 } 2965 2966 // If there is a definition in the module, then it wins over the alias. 2967 // This is dubious, but allow it to be safe. Just ignore the alias. 2968 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2969 if (Entry && !Entry->isDeclaration()) 2970 return; 2971 2972 Aliases.push_back(GD); 2973 2974 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2975 2976 // Create a reference to the named value. This ensures that it is emitted 2977 // if a deferred decl. 2978 llvm::Constant *Aliasee; 2979 if (isa<llvm::FunctionType>(DeclTy)) 2980 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2981 /*ForVTable=*/false); 2982 else 2983 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2984 llvm::PointerType::getUnqual(DeclTy), 2985 /*D=*/nullptr); 2986 2987 // Create the new alias itself, but don't set a name yet. 2988 auto *GA = llvm::GlobalAlias::create( 2989 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2990 2991 if (Entry) { 2992 if (GA->getAliasee() == Entry) { 2993 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2994 return; 2995 } 2996 2997 assert(Entry->isDeclaration()); 2998 2999 // If there is a declaration in the module, then we had an extern followed 3000 // by the alias, as in: 3001 // extern int test6(); 3002 // ... 3003 // int test6() __attribute__((alias("test7"))); 3004 // 3005 // Remove it and replace uses of it with the alias. 3006 GA->takeName(Entry); 3007 3008 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3009 Entry->getType())); 3010 Entry->eraseFromParent(); 3011 } else { 3012 GA->setName(MangledName); 3013 } 3014 3015 // Set attributes which are particular to an alias; this is a 3016 // specialization of the attributes which may be set on a global 3017 // variable/function. 3018 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3019 D->isWeakImported()) { 3020 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3021 } 3022 3023 if (const auto *VD = dyn_cast<VarDecl>(D)) 3024 if (VD->getTLSKind()) 3025 setTLSMode(GA, *VD); 3026 3027 setAliasAttributes(D, GA); 3028 } 3029 3030 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3031 const auto *D = cast<ValueDecl>(GD.getDecl()); 3032 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3033 assert(IFA && "Not an ifunc?"); 3034 3035 StringRef MangledName = getMangledName(GD); 3036 3037 if (IFA->getResolver() == MangledName) { 3038 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3039 return; 3040 } 3041 3042 // Report an error if some definition overrides ifunc. 3043 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3044 if (Entry && !Entry->isDeclaration()) { 3045 GlobalDecl OtherGD; 3046 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3047 DiagnosedConflictingDefinitions.insert(GD).second) { 3048 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3049 Diags.Report(OtherGD.getDecl()->getLocation(), 3050 diag::note_previous_definition); 3051 } 3052 return; 3053 } 3054 3055 Aliases.push_back(GD); 3056 3057 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3058 llvm::Constant *Resolver = 3059 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3060 /*ForVTable=*/false); 3061 llvm::GlobalIFunc *GIF = 3062 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3063 "", Resolver, &getModule()); 3064 if (Entry) { 3065 if (GIF->getResolver() == Entry) { 3066 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3067 return; 3068 } 3069 assert(Entry->isDeclaration()); 3070 3071 // If there is a declaration in the module, then we had an extern followed 3072 // by the ifunc, as in: 3073 // extern int test(); 3074 // ... 3075 // int test() __attribute__((ifunc("resolver"))); 3076 // 3077 // Remove it and replace uses of it with the ifunc. 3078 GIF->takeName(Entry); 3079 3080 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3081 Entry->getType())); 3082 Entry->eraseFromParent(); 3083 } else 3084 GIF->setName(MangledName); 3085 3086 SetCommonAttributes(D, GIF); 3087 } 3088 3089 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3090 ArrayRef<llvm::Type*> Tys) { 3091 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3092 Tys); 3093 } 3094 3095 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3096 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3097 const StringLiteral *Literal, bool TargetIsLSB, 3098 bool &IsUTF16, unsigned &StringLength) { 3099 StringRef String = Literal->getString(); 3100 unsigned NumBytes = String.size(); 3101 3102 // Check for simple case. 3103 if (!Literal->containsNonAsciiOrNull()) { 3104 StringLength = NumBytes; 3105 return *Map.insert(std::make_pair(String, nullptr)).first; 3106 } 3107 3108 // Otherwise, convert the UTF8 literals into a string of shorts. 3109 IsUTF16 = true; 3110 3111 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3112 const UTF8 *FromPtr = (const UTF8 *)String.data(); 3113 UTF16 *ToPtr = &ToBuf[0]; 3114 3115 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 3116 &ToPtr, ToPtr + NumBytes, 3117 strictConversion); 3118 3119 // ConvertUTF8toUTF16 returns the length in ToPtr. 3120 StringLength = ToPtr - &ToBuf[0]; 3121 3122 // Add an explicit null. 3123 *ToPtr = 0; 3124 return *Map.insert(std::make_pair( 3125 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3126 (StringLength + 1) * 2), 3127 nullptr)).first; 3128 } 3129 3130 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3131 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3132 const StringLiteral *Literal, unsigned &StringLength) { 3133 StringRef String = Literal->getString(); 3134 StringLength = String.size(); 3135 return *Map.insert(std::make_pair(String, nullptr)).first; 3136 } 3137 3138 ConstantAddress 3139 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3140 unsigned StringLength = 0; 3141 bool isUTF16 = false; 3142 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3143 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3144 getDataLayout().isLittleEndian(), isUTF16, 3145 StringLength); 3146 3147 if (auto *C = Entry.second) 3148 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3149 3150 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3151 llvm::Constant *Zeros[] = { Zero, Zero }; 3152 llvm::Value *V; 3153 3154 // If we don't already have it, get __CFConstantStringClassReference. 3155 if (!CFConstantStringClassRef) { 3156 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3157 Ty = llvm::ArrayType::get(Ty, 0); 3158 llvm::Constant *GV = 3159 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3160 3161 if (getTarget().getTriple().isOSBinFormatCOFF()) { 3162 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3163 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3164 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3165 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3166 3167 const VarDecl *VD = nullptr; 3168 for (const auto &Result : DC->lookup(&II)) 3169 if ((VD = dyn_cast<VarDecl>(Result))) 3170 break; 3171 3172 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3173 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3174 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3175 } else { 3176 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3177 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3178 } 3179 } 3180 3181 // Decay array -> ptr 3182 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3183 CFConstantStringClassRef = V; 3184 } else { 3185 V = CFConstantStringClassRef; 3186 } 3187 3188 QualType CFTy = getContext().getCFConstantStringType(); 3189 3190 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3191 3192 llvm::Constant *Fields[4]; 3193 3194 // Class pointer. 3195 Fields[0] = cast<llvm::ConstantExpr>(V); 3196 3197 // Flags. 3198 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3199 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 3200 : llvm::ConstantInt::get(Ty, 0x07C8); 3201 3202 // String pointer. 3203 llvm::Constant *C = nullptr; 3204 if (isUTF16) { 3205 auto Arr = llvm::makeArrayRef( 3206 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3207 Entry.first().size() / 2); 3208 C = llvm::ConstantDataArray::get(VMContext, Arr); 3209 } else { 3210 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3211 } 3212 3213 // Note: -fwritable-strings doesn't make the backing store strings of 3214 // CFStrings writable. (See <rdar://problem/10657500>) 3215 auto *GV = 3216 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3217 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3218 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3219 // Don't enforce the target's minimum global alignment, since the only use 3220 // of the string is via this class initializer. 3221 CharUnits Align = isUTF16 3222 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3223 : getContext().getTypeAlignInChars(getContext().CharTy); 3224 GV->setAlignment(Align.getQuantity()); 3225 3226 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3227 // Without it LLVM can merge the string with a non unnamed_addr one during 3228 // LTO. Doing that changes the section it ends in, which surprises ld64. 3229 if (getTarget().getTriple().isOSBinFormatMachO()) 3230 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3231 : "__TEXT,__cstring,cstring_literals"); 3232 3233 // String. 3234 Fields[2] = 3235 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3236 3237 if (isUTF16) 3238 // Cast the UTF16 string to the correct type. 3239 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3240 3241 // String length. 3242 Ty = getTypes().ConvertType(getContext().LongTy); 3243 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3244 3245 CharUnits Alignment = getPointerAlign(); 3246 3247 // The struct. 3248 C = llvm::ConstantStruct::get(STy, Fields); 3249 GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false, 3250 llvm::GlobalVariable::PrivateLinkage, C, 3251 "_unnamed_cfstring_"); 3252 GV->setAlignment(Alignment.getQuantity()); 3253 switch (getTarget().getTriple().getObjectFormat()) { 3254 case llvm::Triple::UnknownObjectFormat: 3255 llvm_unreachable("unknown file format"); 3256 case llvm::Triple::COFF: 3257 case llvm::Triple::ELF: 3258 GV->setSection("cfstring"); 3259 break; 3260 case llvm::Triple::MachO: 3261 GV->setSection("__DATA,__cfstring"); 3262 break; 3263 } 3264 Entry.second = GV; 3265 3266 return ConstantAddress(GV, Alignment); 3267 } 3268 3269 ConstantAddress 3270 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3271 unsigned StringLength = 0; 3272 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3273 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3274 3275 if (auto *C = Entry.second) 3276 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3277 3278 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3279 llvm::Constant *Zeros[] = { Zero, Zero }; 3280 llvm::Value *V; 3281 // If we don't already have it, get _NSConstantStringClassReference. 3282 if (!ConstantStringClassRef) { 3283 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3284 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3285 llvm::Constant *GV; 3286 if (LangOpts.ObjCRuntime.isNonFragile()) { 3287 std::string str = 3288 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3289 : "OBJC_CLASS_$_" + StringClass; 3290 GV = getObjCRuntime().GetClassGlobal(str); 3291 // Make sure the result is of the correct type. 3292 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3293 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3294 ConstantStringClassRef = V; 3295 } else { 3296 std::string str = 3297 StringClass.empty() ? "_NSConstantStringClassReference" 3298 : "_" + StringClass + "ClassReference"; 3299 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3300 GV = CreateRuntimeVariable(PTy, str); 3301 // Decay array -> ptr 3302 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3303 ConstantStringClassRef = V; 3304 } 3305 } else 3306 V = ConstantStringClassRef; 3307 3308 if (!NSConstantStringType) { 3309 // Construct the type for a constant NSString. 3310 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3311 D->startDefinition(); 3312 3313 QualType FieldTypes[3]; 3314 3315 // const int *isa; 3316 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3317 // const char *str; 3318 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3319 // unsigned int length; 3320 FieldTypes[2] = Context.UnsignedIntTy; 3321 3322 // Create fields 3323 for (unsigned i = 0; i < 3; ++i) { 3324 FieldDecl *Field = FieldDecl::Create(Context, D, 3325 SourceLocation(), 3326 SourceLocation(), nullptr, 3327 FieldTypes[i], /*TInfo=*/nullptr, 3328 /*BitWidth=*/nullptr, 3329 /*Mutable=*/false, 3330 ICIS_NoInit); 3331 Field->setAccess(AS_public); 3332 D->addDecl(Field); 3333 } 3334 3335 D->completeDefinition(); 3336 QualType NSTy = Context.getTagDeclType(D); 3337 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3338 } 3339 3340 llvm::Constant *Fields[3]; 3341 3342 // Class pointer. 3343 Fields[0] = cast<llvm::ConstantExpr>(V); 3344 3345 // String pointer. 3346 llvm::Constant *C = 3347 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3348 3349 llvm::GlobalValue::LinkageTypes Linkage; 3350 bool isConstant; 3351 Linkage = llvm::GlobalValue::PrivateLinkage; 3352 isConstant = !LangOpts.WritableStrings; 3353 3354 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3355 Linkage, C, ".str"); 3356 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3357 // Don't enforce the target's minimum global alignment, since the only use 3358 // of the string is via this class initializer. 3359 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3360 GV->setAlignment(Align.getQuantity()); 3361 Fields[1] = 3362 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3363 3364 // String length. 3365 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3366 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3367 3368 // The struct. 3369 CharUnits Alignment = getPointerAlign(); 3370 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3371 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3372 llvm::GlobalVariable::PrivateLinkage, C, 3373 "_unnamed_nsstring_"); 3374 GV->setAlignment(Alignment.getQuantity()); 3375 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3376 const char *NSStringNonFragileABISection = 3377 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3378 // FIXME. Fix section. 3379 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3380 ? NSStringNonFragileABISection 3381 : NSStringSection); 3382 Entry.second = GV; 3383 3384 return ConstantAddress(GV, Alignment); 3385 } 3386 3387 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3388 if (ObjCFastEnumerationStateType.isNull()) { 3389 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3390 D->startDefinition(); 3391 3392 QualType FieldTypes[] = { 3393 Context.UnsignedLongTy, 3394 Context.getPointerType(Context.getObjCIdType()), 3395 Context.getPointerType(Context.UnsignedLongTy), 3396 Context.getConstantArrayType(Context.UnsignedLongTy, 3397 llvm::APInt(32, 5), ArrayType::Normal, 0) 3398 }; 3399 3400 for (size_t i = 0; i < 4; ++i) { 3401 FieldDecl *Field = FieldDecl::Create(Context, 3402 D, 3403 SourceLocation(), 3404 SourceLocation(), nullptr, 3405 FieldTypes[i], /*TInfo=*/nullptr, 3406 /*BitWidth=*/nullptr, 3407 /*Mutable=*/false, 3408 ICIS_NoInit); 3409 Field->setAccess(AS_public); 3410 D->addDecl(Field); 3411 } 3412 3413 D->completeDefinition(); 3414 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3415 } 3416 3417 return ObjCFastEnumerationStateType; 3418 } 3419 3420 llvm::Constant * 3421 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3422 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3423 3424 // Don't emit it as the address of the string, emit the string data itself 3425 // as an inline array. 3426 if (E->getCharByteWidth() == 1) { 3427 SmallString<64> Str(E->getString()); 3428 3429 // Resize the string to the right size, which is indicated by its type. 3430 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3431 Str.resize(CAT->getSize().getZExtValue()); 3432 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3433 } 3434 3435 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3436 llvm::Type *ElemTy = AType->getElementType(); 3437 unsigned NumElements = AType->getNumElements(); 3438 3439 // Wide strings have either 2-byte or 4-byte elements. 3440 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3441 SmallVector<uint16_t, 32> Elements; 3442 Elements.reserve(NumElements); 3443 3444 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3445 Elements.push_back(E->getCodeUnit(i)); 3446 Elements.resize(NumElements); 3447 return llvm::ConstantDataArray::get(VMContext, Elements); 3448 } 3449 3450 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3451 SmallVector<uint32_t, 32> Elements; 3452 Elements.reserve(NumElements); 3453 3454 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3455 Elements.push_back(E->getCodeUnit(i)); 3456 Elements.resize(NumElements); 3457 return llvm::ConstantDataArray::get(VMContext, Elements); 3458 } 3459 3460 static llvm::GlobalVariable * 3461 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3462 CodeGenModule &CGM, StringRef GlobalName, 3463 CharUnits Alignment) { 3464 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3465 unsigned AddrSpace = 0; 3466 if (CGM.getLangOpts().OpenCL) 3467 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3468 3469 llvm::Module &M = CGM.getModule(); 3470 // Create a global variable for this string 3471 auto *GV = new llvm::GlobalVariable( 3472 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3473 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3474 GV->setAlignment(Alignment.getQuantity()); 3475 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3476 if (GV->isWeakForLinker()) { 3477 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3478 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3479 } 3480 3481 return GV; 3482 } 3483 3484 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3485 /// constant array for the given string literal. 3486 ConstantAddress 3487 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3488 StringRef Name) { 3489 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3490 3491 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3492 llvm::GlobalVariable **Entry = nullptr; 3493 if (!LangOpts.WritableStrings) { 3494 Entry = &ConstantStringMap[C]; 3495 if (auto GV = *Entry) { 3496 if (Alignment.getQuantity() > GV->getAlignment()) 3497 GV->setAlignment(Alignment.getQuantity()); 3498 return ConstantAddress(GV, Alignment); 3499 } 3500 } 3501 3502 SmallString<256> MangledNameBuffer; 3503 StringRef GlobalVariableName; 3504 llvm::GlobalValue::LinkageTypes LT; 3505 3506 // Mangle the string literal if the ABI allows for it. However, we cannot 3507 // do this if we are compiling with ASan or -fwritable-strings because they 3508 // rely on strings having normal linkage. 3509 if (!LangOpts.WritableStrings && 3510 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3511 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3512 llvm::raw_svector_ostream Out(MangledNameBuffer); 3513 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3514 3515 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3516 GlobalVariableName = MangledNameBuffer; 3517 } else { 3518 LT = llvm::GlobalValue::PrivateLinkage; 3519 GlobalVariableName = Name; 3520 } 3521 3522 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3523 if (Entry) 3524 *Entry = GV; 3525 3526 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3527 QualType()); 3528 return ConstantAddress(GV, Alignment); 3529 } 3530 3531 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3532 /// array for the given ObjCEncodeExpr node. 3533 ConstantAddress 3534 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3535 std::string Str; 3536 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3537 3538 return GetAddrOfConstantCString(Str); 3539 } 3540 3541 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3542 /// the literal and a terminating '\0' character. 3543 /// The result has pointer to array type. 3544 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3545 const std::string &Str, const char *GlobalName) { 3546 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3547 CharUnits Alignment = 3548 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3549 3550 llvm::Constant *C = 3551 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3552 3553 // Don't share any string literals if strings aren't constant. 3554 llvm::GlobalVariable **Entry = nullptr; 3555 if (!LangOpts.WritableStrings) { 3556 Entry = &ConstantStringMap[C]; 3557 if (auto GV = *Entry) { 3558 if (Alignment.getQuantity() > GV->getAlignment()) 3559 GV->setAlignment(Alignment.getQuantity()); 3560 return ConstantAddress(GV, Alignment); 3561 } 3562 } 3563 3564 // Get the default prefix if a name wasn't specified. 3565 if (!GlobalName) 3566 GlobalName = ".str"; 3567 // Create a global variable for this. 3568 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3569 GlobalName, Alignment); 3570 if (Entry) 3571 *Entry = GV; 3572 return ConstantAddress(GV, Alignment); 3573 } 3574 3575 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3576 const MaterializeTemporaryExpr *E, const Expr *Init) { 3577 assert((E->getStorageDuration() == SD_Static || 3578 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3579 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3580 3581 // If we're not materializing a subobject of the temporary, keep the 3582 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3583 QualType MaterializedType = Init->getType(); 3584 if (Init == E->GetTemporaryExpr()) 3585 MaterializedType = E->getType(); 3586 3587 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3588 3589 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3590 return ConstantAddress(Slot, Align); 3591 3592 // FIXME: If an externally-visible declaration extends multiple temporaries, 3593 // we need to give each temporary the same name in every translation unit (and 3594 // we also need to make the temporaries externally-visible). 3595 SmallString<256> Name; 3596 llvm::raw_svector_ostream Out(Name); 3597 getCXXABI().getMangleContext().mangleReferenceTemporary( 3598 VD, E->getManglingNumber(), Out); 3599 3600 APValue *Value = nullptr; 3601 if (E->getStorageDuration() == SD_Static) { 3602 // We might have a cached constant initializer for this temporary. Note 3603 // that this might have a different value from the value computed by 3604 // evaluating the initializer if the surrounding constant expression 3605 // modifies the temporary. 3606 Value = getContext().getMaterializedTemporaryValue(E, false); 3607 if (Value && Value->isUninit()) 3608 Value = nullptr; 3609 } 3610 3611 // Try evaluating it now, it might have a constant initializer. 3612 Expr::EvalResult EvalResult; 3613 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3614 !EvalResult.hasSideEffects()) 3615 Value = &EvalResult.Val; 3616 3617 llvm::Constant *InitialValue = nullptr; 3618 bool Constant = false; 3619 llvm::Type *Type; 3620 if (Value) { 3621 // The temporary has a constant initializer, use it. 3622 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3623 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3624 Type = InitialValue->getType(); 3625 } else { 3626 // No initializer, the initialization will be provided when we 3627 // initialize the declaration which performed lifetime extension. 3628 Type = getTypes().ConvertTypeForMem(MaterializedType); 3629 } 3630 3631 // Create a global variable for this lifetime-extended temporary. 3632 llvm::GlobalValue::LinkageTypes Linkage = 3633 getLLVMLinkageVarDefinition(VD, Constant); 3634 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3635 const VarDecl *InitVD; 3636 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3637 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3638 // Temporaries defined inside a class get linkonce_odr linkage because the 3639 // class can be defined in multipe translation units. 3640 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3641 } else { 3642 // There is no need for this temporary to have external linkage if the 3643 // VarDecl has external linkage. 3644 Linkage = llvm::GlobalVariable::InternalLinkage; 3645 } 3646 } 3647 unsigned AddrSpace = GetGlobalVarAddressSpace( 3648 VD, getContext().getTargetAddressSpace(MaterializedType)); 3649 auto *GV = new llvm::GlobalVariable( 3650 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3651 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3652 AddrSpace); 3653 setGlobalVisibility(GV, VD); 3654 GV->setAlignment(Align.getQuantity()); 3655 if (supportsCOMDAT() && GV->isWeakForLinker()) 3656 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3657 if (VD->getTLSKind()) 3658 setTLSMode(GV, *VD); 3659 MaterializedGlobalTemporaryMap[E] = GV; 3660 return ConstantAddress(GV, Align); 3661 } 3662 3663 /// EmitObjCPropertyImplementations - Emit information for synthesized 3664 /// properties for an implementation. 3665 void CodeGenModule::EmitObjCPropertyImplementations(const 3666 ObjCImplementationDecl *D) { 3667 for (const auto *PID : D->property_impls()) { 3668 // Dynamic is just for type-checking. 3669 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3670 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3671 3672 // Determine which methods need to be implemented, some may have 3673 // been overridden. Note that ::isPropertyAccessor is not the method 3674 // we want, that just indicates if the decl came from a 3675 // property. What we want to know is if the method is defined in 3676 // this implementation. 3677 if (!D->getInstanceMethod(PD->getGetterName())) 3678 CodeGenFunction(*this).GenerateObjCGetter( 3679 const_cast<ObjCImplementationDecl *>(D), PID); 3680 if (!PD->isReadOnly() && 3681 !D->getInstanceMethod(PD->getSetterName())) 3682 CodeGenFunction(*this).GenerateObjCSetter( 3683 const_cast<ObjCImplementationDecl *>(D), PID); 3684 } 3685 } 3686 } 3687 3688 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3689 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3690 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3691 ivar; ivar = ivar->getNextIvar()) 3692 if (ivar->getType().isDestructedType()) 3693 return true; 3694 3695 return false; 3696 } 3697 3698 static bool AllTrivialInitializers(CodeGenModule &CGM, 3699 ObjCImplementationDecl *D) { 3700 CodeGenFunction CGF(CGM); 3701 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3702 E = D->init_end(); B != E; ++B) { 3703 CXXCtorInitializer *CtorInitExp = *B; 3704 Expr *Init = CtorInitExp->getInit(); 3705 if (!CGF.isTrivialInitializer(Init)) 3706 return false; 3707 } 3708 return true; 3709 } 3710 3711 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3712 /// for an implementation. 3713 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3714 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3715 if (needsDestructMethod(D)) { 3716 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3717 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3718 ObjCMethodDecl *DTORMethod = 3719 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3720 cxxSelector, getContext().VoidTy, nullptr, D, 3721 /*isInstance=*/true, /*isVariadic=*/false, 3722 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3723 /*isDefined=*/false, ObjCMethodDecl::Required); 3724 D->addInstanceMethod(DTORMethod); 3725 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3726 D->setHasDestructors(true); 3727 } 3728 3729 // If the implementation doesn't have any ivar initializers, we don't need 3730 // a .cxx_construct. 3731 if (D->getNumIvarInitializers() == 0 || 3732 AllTrivialInitializers(*this, D)) 3733 return; 3734 3735 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3736 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3737 // The constructor returns 'self'. 3738 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3739 D->getLocation(), 3740 D->getLocation(), 3741 cxxSelector, 3742 getContext().getObjCIdType(), 3743 nullptr, D, /*isInstance=*/true, 3744 /*isVariadic=*/false, 3745 /*isPropertyAccessor=*/true, 3746 /*isImplicitlyDeclared=*/true, 3747 /*isDefined=*/false, 3748 ObjCMethodDecl::Required); 3749 D->addInstanceMethod(CTORMethod); 3750 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3751 D->setHasNonZeroConstructors(true); 3752 } 3753 3754 /// EmitNamespace - Emit all declarations in a namespace. 3755 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3756 for (auto *I : ND->decls()) { 3757 if (const auto *VD = dyn_cast<VarDecl>(I)) 3758 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3759 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3760 continue; 3761 EmitTopLevelDecl(I); 3762 } 3763 } 3764 3765 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3766 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3767 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3768 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3769 ErrorUnsupported(LSD, "linkage spec"); 3770 return; 3771 } 3772 3773 for (auto *I : LSD->decls()) { 3774 // Meta-data for ObjC class includes references to implemented methods. 3775 // Generate class's method definitions first. 3776 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3777 for (auto *M : OID->methods()) 3778 EmitTopLevelDecl(M); 3779 } 3780 EmitTopLevelDecl(I); 3781 } 3782 } 3783 3784 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3785 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3786 // Ignore dependent declarations. 3787 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3788 return; 3789 3790 switch (D->getKind()) { 3791 case Decl::CXXConversion: 3792 case Decl::CXXMethod: 3793 case Decl::Function: 3794 // Skip function templates 3795 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3796 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3797 return; 3798 3799 EmitGlobal(cast<FunctionDecl>(D)); 3800 // Always provide some coverage mapping 3801 // even for the functions that aren't emitted. 3802 AddDeferredUnusedCoverageMapping(D); 3803 break; 3804 3805 case Decl::Var: 3806 case Decl::Decomposition: 3807 // Skip variable templates 3808 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3809 return; 3810 case Decl::VarTemplateSpecialization: 3811 EmitGlobal(cast<VarDecl>(D)); 3812 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3813 for (auto *B : DD->bindings()) 3814 if (auto *HD = B->getHoldingVar()) 3815 EmitGlobal(HD); 3816 break; 3817 3818 // Indirect fields from global anonymous structs and unions can be 3819 // ignored; only the actual variable requires IR gen support. 3820 case Decl::IndirectField: 3821 break; 3822 3823 // C++ Decls 3824 case Decl::Namespace: 3825 EmitNamespace(cast<NamespaceDecl>(D)); 3826 break; 3827 case Decl::CXXRecord: 3828 // Emit any static data members, they may be definitions. 3829 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3830 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3831 EmitTopLevelDecl(I); 3832 break; 3833 // No code generation needed. 3834 case Decl::UsingShadow: 3835 case Decl::ClassTemplate: 3836 case Decl::VarTemplate: 3837 case Decl::VarTemplatePartialSpecialization: 3838 case Decl::FunctionTemplate: 3839 case Decl::TypeAliasTemplate: 3840 case Decl::Block: 3841 case Decl::Empty: 3842 break; 3843 case Decl::Using: // using X; [C++] 3844 if (CGDebugInfo *DI = getModuleDebugInfo()) 3845 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3846 return; 3847 case Decl::NamespaceAlias: 3848 if (CGDebugInfo *DI = getModuleDebugInfo()) 3849 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3850 return; 3851 case Decl::UsingDirective: // using namespace X; [C++] 3852 if (CGDebugInfo *DI = getModuleDebugInfo()) 3853 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3854 return; 3855 case Decl::CXXConstructor: 3856 // Skip function templates 3857 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3858 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3859 return; 3860 3861 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3862 break; 3863 case Decl::CXXDestructor: 3864 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3865 return; 3866 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3867 break; 3868 3869 case Decl::StaticAssert: 3870 // Nothing to do. 3871 break; 3872 3873 // Objective-C Decls 3874 3875 // Forward declarations, no (immediate) code generation. 3876 case Decl::ObjCInterface: 3877 case Decl::ObjCCategory: 3878 break; 3879 3880 case Decl::ObjCProtocol: { 3881 auto *Proto = cast<ObjCProtocolDecl>(D); 3882 if (Proto->isThisDeclarationADefinition()) 3883 ObjCRuntime->GenerateProtocol(Proto); 3884 break; 3885 } 3886 3887 case Decl::ObjCCategoryImpl: 3888 // Categories have properties but don't support synthesize so we 3889 // can ignore them here. 3890 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3891 break; 3892 3893 case Decl::ObjCImplementation: { 3894 auto *OMD = cast<ObjCImplementationDecl>(D); 3895 EmitObjCPropertyImplementations(OMD); 3896 EmitObjCIvarInitializations(OMD); 3897 ObjCRuntime->GenerateClass(OMD); 3898 // Emit global variable debug information. 3899 if (CGDebugInfo *DI = getModuleDebugInfo()) 3900 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3901 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3902 OMD->getClassInterface()), OMD->getLocation()); 3903 break; 3904 } 3905 case Decl::ObjCMethod: { 3906 auto *OMD = cast<ObjCMethodDecl>(D); 3907 // If this is not a prototype, emit the body. 3908 if (OMD->getBody()) 3909 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3910 break; 3911 } 3912 case Decl::ObjCCompatibleAlias: 3913 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3914 break; 3915 3916 case Decl::PragmaComment: { 3917 const auto *PCD = cast<PragmaCommentDecl>(D); 3918 switch (PCD->getCommentKind()) { 3919 case PCK_Unknown: 3920 llvm_unreachable("unexpected pragma comment kind"); 3921 case PCK_Linker: 3922 AppendLinkerOptions(PCD->getArg()); 3923 break; 3924 case PCK_Lib: 3925 AddDependentLib(PCD->getArg()); 3926 break; 3927 case PCK_Compiler: 3928 case PCK_ExeStr: 3929 case PCK_User: 3930 break; // We ignore all of these. 3931 } 3932 break; 3933 } 3934 3935 case Decl::PragmaDetectMismatch: { 3936 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3937 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3938 break; 3939 } 3940 3941 case Decl::LinkageSpec: 3942 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3943 break; 3944 3945 case Decl::FileScopeAsm: { 3946 // File-scope asm is ignored during device-side CUDA compilation. 3947 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3948 break; 3949 // File-scope asm is ignored during device-side OpenMP compilation. 3950 if (LangOpts.OpenMPIsDevice) 3951 break; 3952 auto *AD = cast<FileScopeAsmDecl>(D); 3953 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3954 break; 3955 } 3956 3957 case Decl::Import: { 3958 auto *Import = cast<ImportDecl>(D); 3959 3960 // If we've already imported this module, we're done. 3961 if (!ImportedModules.insert(Import->getImportedModule())) 3962 break; 3963 3964 // Emit debug information for direct imports. 3965 if (!Import->getImportedOwningModule()) { 3966 if (CGDebugInfo *DI = getModuleDebugInfo()) 3967 DI->EmitImportDecl(*Import); 3968 } 3969 3970 // Emit the module initializers. 3971 for (auto *D : Context.getModuleInitializers(Import->getImportedModule())) 3972 EmitTopLevelDecl(D); 3973 break; 3974 } 3975 3976 case Decl::OMPThreadPrivate: 3977 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3978 break; 3979 3980 case Decl::ClassTemplateSpecialization: { 3981 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3982 if (DebugInfo && 3983 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3984 Spec->hasDefinition()) 3985 DebugInfo->completeTemplateDefinition(*Spec); 3986 break; 3987 } 3988 3989 case Decl::OMPDeclareReduction: 3990 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3991 break; 3992 3993 default: 3994 // Make sure we handled everything we should, every other kind is a 3995 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3996 // function. Need to recode Decl::Kind to do that easily. 3997 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3998 break; 3999 } 4000 } 4001 4002 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4003 // Do we need to generate coverage mapping? 4004 if (!CodeGenOpts.CoverageMapping) 4005 return; 4006 switch (D->getKind()) { 4007 case Decl::CXXConversion: 4008 case Decl::CXXMethod: 4009 case Decl::Function: 4010 case Decl::ObjCMethod: 4011 case Decl::CXXConstructor: 4012 case Decl::CXXDestructor: { 4013 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4014 return; 4015 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4016 if (I == DeferredEmptyCoverageMappingDecls.end()) 4017 DeferredEmptyCoverageMappingDecls[D] = true; 4018 break; 4019 } 4020 default: 4021 break; 4022 }; 4023 } 4024 4025 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4026 // Do we need to generate coverage mapping? 4027 if (!CodeGenOpts.CoverageMapping) 4028 return; 4029 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4030 if (Fn->isTemplateInstantiation()) 4031 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4032 } 4033 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4034 if (I == DeferredEmptyCoverageMappingDecls.end()) 4035 DeferredEmptyCoverageMappingDecls[D] = false; 4036 else 4037 I->second = false; 4038 } 4039 4040 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4041 std::vector<const Decl *> DeferredDecls; 4042 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4043 if (!I.second) 4044 continue; 4045 DeferredDecls.push_back(I.first); 4046 } 4047 // Sort the declarations by their location to make sure that the tests get a 4048 // predictable order for the coverage mapping for the unused declarations. 4049 if (CodeGenOpts.DumpCoverageMapping) 4050 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4051 [] (const Decl *LHS, const Decl *RHS) { 4052 return LHS->getLocStart() < RHS->getLocStart(); 4053 }); 4054 for (const auto *D : DeferredDecls) { 4055 switch (D->getKind()) { 4056 case Decl::CXXConversion: 4057 case Decl::CXXMethod: 4058 case Decl::Function: 4059 case Decl::ObjCMethod: { 4060 CodeGenPGO PGO(*this); 4061 GlobalDecl GD(cast<FunctionDecl>(D)); 4062 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4063 getFunctionLinkage(GD)); 4064 break; 4065 } 4066 case Decl::CXXConstructor: { 4067 CodeGenPGO PGO(*this); 4068 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4069 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4070 getFunctionLinkage(GD)); 4071 break; 4072 } 4073 case Decl::CXXDestructor: { 4074 CodeGenPGO PGO(*this); 4075 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4076 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4077 getFunctionLinkage(GD)); 4078 break; 4079 } 4080 default: 4081 break; 4082 }; 4083 } 4084 } 4085 4086 /// Turns the given pointer into a constant. 4087 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4088 const void *Ptr) { 4089 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4090 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4091 return llvm::ConstantInt::get(i64, PtrInt); 4092 } 4093 4094 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4095 llvm::NamedMDNode *&GlobalMetadata, 4096 GlobalDecl D, 4097 llvm::GlobalValue *Addr) { 4098 if (!GlobalMetadata) 4099 GlobalMetadata = 4100 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4101 4102 // TODO: should we report variant information for ctors/dtors? 4103 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4104 llvm::ConstantAsMetadata::get(GetPointerConstant( 4105 CGM.getLLVMContext(), D.getDecl()))}; 4106 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4107 } 4108 4109 /// For each function which is declared within an extern "C" region and marked 4110 /// as 'used', but has internal linkage, create an alias from the unmangled 4111 /// name to the mangled name if possible. People expect to be able to refer 4112 /// to such functions with an unmangled name from inline assembly within the 4113 /// same translation unit. 4114 void CodeGenModule::EmitStaticExternCAliases() { 4115 // Don't do anything if we're generating CUDA device code -- the NVPTX 4116 // assembly target doesn't support aliases. 4117 if (Context.getTargetInfo().getTriple().isNVPTX()) 4118 return; 4119 for (auto &I : StaticExternCValues) { 4120 IdentifierInfo *Name = I.first; 4121 llvm::GlobalValue *Val = I.second; 4122 if (Val && !getModule().getNamedValue(Name->getName())) 4123 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4124 } 4125 } 4126 4127 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4128 GlobalDecl &Result) const { 4129 auto Res = Manglings.find(MangledName); 4130 if (Res == Manglings.end()) 4131 return false; 4132 Result = Res->getValue(); 4133 return true; 4134 } 4135 4136 /// Emits metadata nodes associating all the global values in the 4137 /// current module with the Decls they came from. This is useful for 4138 /// projects using IR gen as a subroutine. 4139 /// 4140 /// Since there's currently no way to associate an MDNode directly 4141 /// with an llvm::GlobalValue, we create a global named metadata 4142 /// with the name 'clang.global.decl.ptrs'. 4143 void CodeGenModule::EmitDeclMetadata() { 4144 llvm::NamedMDNode *GlobalMetadata = nullptr; 4145 4146 for (auto &I : MangledDeclNames) { 4147 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4148 // Some mangled names don't necessarily have an associated GlobalValue 4149 // in this module, e.g. if we mangled it for DebugInfo. 4150 if (Addr) 4151 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4152 } 4153 } 4154 4155 /// Emits metadata nodes for all the local variables in the current 4156 /// function. 4157 void CodeGenFunction::EmitDeclMetadata() { 4158 if (LocalDeclMap.empty()) return; 4159 4160 llvm::LLVMContext &Context = getLLVMContext(); 4161 4162 // Find the unique metadata ID for this name. 4163 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4164 4165 llvm::NamedMDNode *GlobalMetadata = nullptr; 4166 4167 for (auto &I : LocalDeclMap) { 4168 const Decl *D = I.first; 4169 llvm::Value *Addr = I.second.getPointer(); 4170 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4171 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4172 Alloca->setMetadata( 4173 DeclPtrKind, llvm::MDNode::get( 4174 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4175 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4176 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4177 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4178 } 4179 } 4180 } 4181 4182 void CodeGenModule::EmitVersionIdentMetadata() { 4183 llvm::NamedMDNode *IdentMetadata = 4184 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4185 std::string Version = getClangFullVersion(); 4186 llvm::LLVMContext &Ctx = TheModule.getContext(); 4187 4188 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4189 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4190 } 4191 4192 void CodeGenModule::EmitTargetMetadata() { 4193 // Warning, new MangledDeclNames may be appended within this loop. 4194 // We rely on MapVector insertions adding new elements to the end 4195 // of the container. 4196 // FIXME: Move this loop into the one target that needs it, and only 4197 // loop over those declarations for which we couldn't emit the target 4198 // metadata when we emitted the declaration. 4199 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4200 auto Val = *(MangledDeclNames.begin() + I); 4201 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4202 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4203 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4204 } 4205 } 4206 4207 void CodeGenModule::EmitCoverageFile() { 4208 if (!getCodeGenOpts().CoverageFile.empty()) { 4209 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 4210 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4211 llvm::LLVMContext &Ctx = TheModule.getContext(); 4212 llvm::MDString *CoverageFile = 4213 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 4214 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4215 llvm::MDNode *CU = CUNode->getOperand(i); 4216 llvm::Metadata *Elts[] = {CoverageFile, CU}; 4217 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4218 } 4219 } 4220 } 4221 } 4222 4223 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4224 // Sema has checked that all uuid strings are of the form 4225 // "12345678-1234-1234-1234-1234567890ab". 4226 assert(Uuid.size() == 36); 4227 for (unsigned i = 0; i < 36; ++i) { 4228 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4229 else assert(isHexDigit(Uuid[i])); 4230 } 4231 4232 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4233 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4234 4235 llvm::Constant *Field3[8]; 4236 for (unsigned Idx = 0; Idx < 8; ++Idx) 4237 Field3[Idx] = llvm::ConstantInt::get( 4238 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4239 4240 llvm::Constant *Fields[4] = { 4241 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4242 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4243 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4244 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4245 }; 4246 4247 return llvm::ConstantStruct::getAnon(Fields); 4248 } 4249 4250 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4251 bool ForEH) { 4252 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4253 // FIXME: should we even be calling this method if RTTI is disabled 4254 // and it's not for EH? 4255 if (!ForEH && !getLangOpts().RTTI) 4256 return llvm::Constant::getNullValue(Int8PtrTy); 4257 4258 if (ForEH && Ty->isObjCObjectPointerType() && 4259 LangOpts.ObjCRuntime.isGNUFamily()) 4260 return ObjCRuntime->GetEHType(Ty); 4261 4262 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4263 } 4264 4265 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4266 for (auto RefExpr : D->varlists()) { 4267 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4268 bool PerformInit = 4269 VD->getAnyInitializer() && 4270 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4271 /*ForRef=*/false); 4272 4273 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4274 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4275 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4276 CXXGlobalInits.push_back(InitFunction); 4277 } 4278 } 4279 4280 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4281 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4282 if (InternalId) 4283 return InternalId; 4284 4285 if (isExternallyVisible(T->getLinkage())) { 4286 std::string OutName; 4287 llvm::raw_string_ostream Out(OutName); 4288 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4289 4290 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4291 } else { 4292 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4293 llvm::ArrayRef<llvm::Metadata *>()); 4294 } 4295 4296 return InternalId; 4297 } 4298 4299 /// Returns whether this module needs the "all-vtables" type identifier. 4300 bool CodeGenModule::NeedAllVtablesTypeId() const { 4301 // Returns true if at least one of vtable-based CFI checkers is enabled and 4302 // is not in the trapping mode. 4303 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4304 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4305 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4306 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4307 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4308 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4309 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4310 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4311 } 4312 4313 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4314 CharUnits Offset, 4315 const CXXRecordDecl *RD) { 4316 llvm::Metadata *MD = 4317 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4318 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4319 4320 if (CodeGenOpts.SanitizeCfiCrossDso) 4321 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4322 VTable->addTypeMetadata(Offset.getQuantity(), 4323 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4324 4325 if (NeedAllVtablesTypeId()) { 4326 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4327 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4328 } 4329 } 4330 4331 // Fills in the supplied string map with the set of target features for the 4332 // passed in function. 4333 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4334 const FunctionDecl *FD) { 4335 StringRef TargetCPU = Target.getTargetOpts().CPU; 4336 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4337 // If we have a TargetAttr build up the feature map based on that. 4338 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4339 4340 // Make a copy of the features as passed on the command line into the 4341 // beginning of the additional features from the function to override. 4342 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4343 Target.getTargetOpts().FeaturesAsWritten.begin(), 4344 Target.getTargetOpts().FeaturesAsWritten.end()); 4345 4346 if (ParsedAttr.second != "") 4347 TargetCPU = ParsedAttr.second; 4348 4349 // Now populate the feature map, first with the TargetCPU which is either 4350 // the default or a new one from the target attribute string. Then we'll use 4351 // the passed in features (FeaturesAsWritten) along with the new ones from 4352 // the attribute. 4353 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4354 } else { 4355 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4356 Target.getTargetOpts().Features); 4357 } 4358 } 4359 4360 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4361 if (!SanStats) 4362 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4363 4364 return *SanStats; 4365 } 4366 llvm::Value * 4367 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4368 CodeGenFunction &CGF) { 4369 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4370 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4371 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4372 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4373 "__translate_sampler_initializer"), 4374 {C}); 4375 } 4376