1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/Support/ErrorHandling.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 41 llvm::Module &M, const llvm::TargetData &TD, 42 Diagnostic &diags) 43 : BlockModule(C, M, TD, Types, *this), Context(C), 44 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 45 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 46 VtableInfo(*this), Runtime(0), 47 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 48 VMContext(M.getContext()) { 49 50 if (!Features.ObjC1) 51 Runtime = 0; 52 else if (!Features.NeXTRuntime) 53 Runtime = CreateGNUObjCRuntime(*this); 54 else if (Features.ObjCNonFragileABI) 55 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 56 else 57 Runtime = CreateMacObjCRuntime(*this); 58 59 // If debug info generation is enabled, create the CGDebugInfo object. 60 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 61 } 62 63 CodeGenModule::~CodeGenModule() { 64 delete Runtime; 65 delete DebugInfo; 66 } 67 68 void CodeGenModule::Release() { 69 // We need to call this first because it can add deferred declarations. 70 EmitCXXGlobalInitFunc(); 71 72 EmitDeferred(); 73 if (Runtime) 74 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 75 AddGlobalCtor(ObjCInitFunction); 76 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 77 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 78 EmitAnnotations(); 79 EmitLLVMUsed(); 80 } 81 82 /// ErrorUnsupported - Print out an error that codegen doesn't support the 83 /// specified stmt yet. 84 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 85 bool OmitOnError) { 86 if (OmitOnError && getDiags().hasErrorOccurred()) 87 return; 88 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 89 "cannot compile this %0 yet"); 90 std::string Msg = Type; 91 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 92 << Msg << S->getSourceRange(); 93 } 94 95 /// ErrorUnsupported - Print out an error that codegen doesn't support the 96 /// specified decl yet. 97 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 98 bool OmitOnError) { 99 if (OmitOnError && getDiags().hasErrorOccurred()) 100 return; 101 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 102 "cannot compile this %0 yet"); 103 std::string Msg = Type; 104 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 105 } 106 107 LangOptions::VisibilityMode 108 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 109 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 110 if (VD->getStorageClass() == VarDecl::PrivateExtern) 111 return LangOptions::Hidden; 112 113 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 114 switch (attr->getVisibility()) { 115 default: assert(0 && "Unknown visibility!"); 116 case VisibilityAttr::DefaultVisibility: 117 return LangOptions::Default; 118 case VisibilityAttr::HiddenVisibility: 119 return LangOptions::Hidden; 120 case VisibilityAttr::ProtectedVisibility: 121 return LangOptions::Protected; 122 } 123 } 124 125 return getLangOptions().getVisibilityMode(); 126 } 127 128 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 129 const Decl *D) const { 130 // Internal definitions always have default visibility. 131 if (GV->hasLocalLinkage()) { 132 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 133 return; 134 } 135 136 switch (getDeclVisibilityMode(D)) { 137 default: assert(0 && "Unknown visibility!"); 138 case LangOptions::Default: 139 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 140 case LangOptions::Hidden: 141 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 142 case LangOptions::Protected: 143 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 144 } 145 } 146 147 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 148 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 149 150 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 151 return getMangledCXXCtorName(D, GD.getCtorType()); 152 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 153 return getMangledCXXDtorName(D, GD.getDtorType()); 154 155 return getMangledName(ND); 156 } 157 158 /// \brief Retrieves the mangled name for the given declaration. 159 /// 160 /// If the given declaration requires a mangled name, returns an 161 /// const char* containing the mangled name. Otherwise, returns 162 /// the unmangled name. 163 /// 164 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 165 if (!getMangleContext().shouldMangleDeclName(ND)) { 166 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 167 return ND->getNameAsCString(); 168 } 169 170 llvm::SmallString<256> Name; 171 getMangleContext().mangleName(ND, Name); 172 Name += '\0'; 173 return UniqueMangledName(Name.begin(), Name.end()); 174 } 175 176 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 177 const char *NameEnd) { 178 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 179 180 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 181 } 182 183 /// AddGlobalCtor - Add a function to the list that will be called before 184 /// main() runs. 185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 186 // FIXME: Type coercion of void()* types. 187 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 188 } 189 190 /// AddGlobalDtor - Add a function to the list that will be called 191 /// when the module is unloaded. 192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 193 // FIXME: Type coercion of void()* types. 194 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 195 } 196 197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 198 // Ctor function type is void()*. 199 llvm::FunctionType* CtorFTy = 200 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 201 std::vector<const llvm::Type*>(), 202 false); 203 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 204 205 // Get the type of a ctor entry, { i32, void ()* }. 206 llvm::StructType* CtorStructTy = 207 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 208 llvm::PointerType::getUnqual(CtorFTy), NULL); 209 210 // Construct the constructor and destructor arrays. 211 std::vector<llvm::Constant*> Ctors; 212 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 213 std::vector<llvm::Constant*> S; 214 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 215 I->second, false)); 216 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 217 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 218 } 219 220 if (!Ctors.empty()) { 221 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 222 new llvm::GlobalVariable(TheModule, AT, false, 223 llvm::GlobalValue::AppendingLinkage, 224 llvm::ConstantArray::get(AT, Ctors), 225 GlobalName); 226 } 227 } 228 229 void CodeGenModule::EmitAnnotations() { 230 if (Annotations.empty()) 231 return; 232 233 // Create a new global variable for the ConstantStruct in the Module. 234 llvm::Constant *Array = 235 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 236 Annotations.size()), 237 Annotations); 238 llvm::GlobalValue *gv = 239 new llvm::GlobalVariable(TheModule, Array->getType(), false, 240 llvm::GlobalValue::AppendingLinkage, Array, 241 "llvm.global.annotations"); 242 gv->setSection("llvm.metadata"); 243 } 244 245 static CodeGenModule::GVALinkage 246 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 247 const LangOptions &Features) { 248 // Everything located semantically within an anonymous namespace is 249 // always internal. 250 if (FD->isInAnonymousNamespace()) 251 return CodeGenModule::GVA_Internal; 252 253 // "static" functions get internal linkage. 254 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 255 return CodeGenModule::GVA_Internal; 256 257 // The kind of external linkage this function will have, if it is not 258 // inline or static. 259 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 260 if (Context.getLangOptions().CPlusPlus) { 261 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 262 263 if (TSK == TSK_ExplicitInstantiationDefinition) { 264 // If a function has been explicitly instantiated, then it should 265 // always have strong external linkage. 266 return CodeGenModule::GVA_StrongExternal; 267 } 268 269 if (TSK == TSK_ImplicitInstantiation) 270 External = CodeGenModule::GVA_TemplateInstantiation; 271 } 272 273 if (!FD->isInlined()) 274 return External; 275 276 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 277 // GNU or C99 inline semantics. Determine whether this symbol should be 278 // externally visible. 279 if (FD->isInlineDefinitionExternallyVisible()) 280 return External; 281 282 // C99 inline semantics, where the symbol is not externally visible. 283 return CodeGenModule::GVA_C99Inline; 284 } 285 286 // C++0x [temp.explicit]p9: 287 // [ Note: The intent is that an inline function that is the subject of 288 // an explicit instantiation declaration will still be implicitly 289 // instantiated when used so that the body can be considered for 290 // inlining, but that no out-of-line copy of the inline function would be 291 // generated in the translation unit. -- end note ] 292 if (FD->getTemplateSpecializationKind() 293 == TSK_ExplicitInstantiationDeclaration) 294 return CodeGenModule::GVA_C99Inline; 295 296 return CodeGenModule::GVA_CXXInline; 297 } 298 299 /// SetFunctionDefinitionAttributes - Set attributes for a global. 300 /// 301 /// FIXME: This is currently only done for aliases and functions, but not for 302 /// variables (these details are set in EmitGlobalVarDefinition for variables). 303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 304 llvm::GlobalValue *GV) { 305 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 306 307 if (Linkage == GVA_Internal) { 308 GV->setLinkage(llvm::Function::InternalLinkage); 309 } else if (D->hasAttr<DLLExportAttr>()) { 310 GV->setLinkage(llvm::Function::DLLExportLinkage); 311 } else if (D->hasAttr<WeakAttr>()) { 312 GV->setLinkage(llvm::Function::WeakAnyLinkage); 313 } else if (Linkage == GVA_C99Inline) { 314 // In C99 mode, 'inline' functions are guaranteed to have a strong 315 // definition somewhere else, so we can use available_externally linkage. 316 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 317 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 318 // In C++, the compiler has to emit a definition in every translation unit 319 // that references the function. We should use linkonce_odr because 320 // a) if all references in this translation unit are optimized away, we 321 // don't need to codegen it. b) if the function persists, it needs to be 322 // merged with other definitions. c) C++ has the ODR, so we know the 323 // definition is dependable. 324 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 325 } else { 326 assert(Linkage == GVA_StrongExternal); 327 // Otherwise, we have strong external linkage. 328 GV->setLinkage(llvm::Function::ExternalLinkage); 329 } 330 331 SetCommonAttributes(D, GV); 332 } 333 334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 335 const CGFunctionInfo &Info, 336 llvm::Function *F) { 337 unsigned CallingConv; 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList, CallingConv); 340 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 341 AttributeList.size())); 342 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 343 } 344 345 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 346 llvm::Function *F) { 347 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 348 F->addFnAttr(llvm::Attribute::NoUnwind); 349 350 if (D->hasAttr<AlwaysInlineAttr>()) 351 F->addFnAttr(llvm::Attribute::AlwaysInline); 352 353 if (D->hasAttr<NoInlineAttr>()) 354 F->addFnAttr(llvm::Attribute::NoInline); 355 356 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 357 F->addFnAttr(llvm::Attribute::StackProtect); 358 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 359 F->addFnAttr(llvm::Attribute::StackProtectReq); 360 361 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 362 unsigned width = Context.Target.getCharWidth(); 363 F->setAlignment(AA->getAlignment() / width); 364 while ((AA = AA->getNext<AlignedAttr>())) 365 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 366 } 367 // C++ ABI requires 2-byte alignment for member functions. 368 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 369 F->setAlignment(2); 370 } 371 372 void CodeGenModule::SetCommonAttributes(const Decl *D, 373 llvm::GlobalValue *GV) { 374 setGlobalVisibility(GV, D); 375 376 if (D->hasAttr<UsedAttr>()) 377 AddUsedGlobal(GV); 378 379 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 380 GV->setSection(SA->getName()); 381 } 382 383 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 384 llvm::Function *F, 385 const CGFunctionInfo &FI) { 386 SetLLVMFunctionAttributes(D, FI, F); 387 SetLLVMFunctionAttributesForDefinition(D, F); 388 389 F->setLinkage(llvm::Function::InternalLinkage); 390 391 SetCommonAttributes(D, F); 392 } 393 394 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 395 llvm::Function *F, 396 bool IsIncompleteFunction) { 397 if (!IsIncompleteFunction) 398 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 399 400 // Only a few attributes are set on declarations; these may later be 401 // overridden by a definition. 402 403 if (FD->hasAttr<DLLImportAttr>()) { 404 F->setLinkage(llvm::Function::DLLImportLinkage); 405 } else if (FD->hasAttr<WeakAttr>() || 406 FD->hasAttr<WeakImportAttr>()) { 407 // "extern_weak" is overloaded in LLVM; we probably should have 408 // separate linkage types for this. 409 F->setLinkage(llvm::Function::ExternalWeakLinkage); 410 } else { 411 F->setLinkage(llvm::Function::ExternalLinkage); 412 } 413 414 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 415 F->setSection(SA->getName()); 416 } 417 418 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 419 assert(!GV->isDeclaration() && 420 "Only globals with definition can force usage."); 421 LLVMUsed.push_back(GV); 422 } 423 424 void CodeGenModule::EmitLLVMUsed() { 425 // Don't create llvm.used if there is no need. 426 if (LLVMUsed.empty()) 427 return; 428 429 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 430 431 // Convert LLVMUsed to what ConstantArray needs. 432 std::vector<llvm::Constant*> UsedArray; 433 UsedArray.resize(LLVMUsed.size()); 434 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 435 UsedArray[i] = 436 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 437 i8PTy); 438 } 439 440 if (UsedArray.empty()) 441 return; 442 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 443 444 llvm::GlobalVariable *GV = 445 new llvm::GlobalVariable(getModule(), ATy, false, 446 llvm::GlobalValue::AppendingLinkage, 447 llvm::ConstantArray::get(ATy, UsedArray), 448 "llvm.used"); 449 450 GV->setSection("llvm.metadata"); 451 } 452 453 void CodeGenModule::EmitDeferred() { 454 // Emit code for any potentially referenced deferred decls. Since a 455 // previously unused static decl may become used during the generation of code 456 // for a static function, iterate until no changes are made. 457 while (!DeferredDeclsToEmit.empty()) { 458 GlobalDecl D = DeferredDeclsToEmit.back(); 459 DeferredDeclsToEmit.pop_back(); 460 461 // The mangled name for the decl must have been emitted in GlobalDeclMap. 462 // Look it up to see if it was defined with a stronger definition (e.g. an 463 // extern inline function with a strong function redefinition). If so, 464 // just ignore the deferred decl. 465 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 466 assert(CGRef && "Deferred decl wasn't referenced?"); 467 468 if (!CGRef->isDeclaration()) 469 continue; 470 471 // Otherwise, emit the definition and move on to the next one. 472 EmitGlobalDefinition(D); 473 } 474 } 475 476 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 477 /// annotation information for a given GlobalValue. The annotation struct is 478 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 479 /// GlobalValue being annotated. The second field is the constant string 480 /// created from the AnnotateAttr's annotation. The third field is a constant 481 /// string containing the name of the translation unit. The fourth field is 482 /// the line number in the file of the annotated value declaration. 483 /// 484 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 485 /// appears to. 486 /// 487 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 488 const AnnotateAttr *AA, 489 unsigned LineNo) { 490 llvm::Module *M = &getModule(); 491 492 // get [N x i8] constants for the annotation string, and the filename string 493 // which are the 2nd and 3rd elements of the global annotation structure. 494 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 495 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 496 AA->getAnnotation(), true); 497 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 498 M->getModuleIdentifier(), 499 true); 500 501 // Get the two global values corresponding to the ConstantArrays we just 502 // created to hold the bytes of the strings. 503 llvm::GlobalValue *annoGV = 504 new llvm::GlobalVariable(*M, anno->getType(), false, 505 llvm::GlobalValue::PrivateLinkage, anno, 506 GV->getName()); 507 // translation unit name string, emitted into the llvm.metadata section. 508 llvm::GlobalValue *unitGV = 509 new llvm::GlobalVariable(*M, unit->getType(), false, 510 llvm::GlobalValue::PrivateLinkage, unit, 511 ".str"); 512 513 // Create the ConstantStruct for the global annotation. 514 llvm::Constant *Fields[4] = { 515 llvm::ConstantExpr::getBitCast(GV, SBP), 516 llvm::ConstantExpr::getBitCast(annoGV, SBP), 517 llvm::ConstantExpr::getBitCast(unitGV, SBP), 518 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 519 }; 520 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 521 } 522 523 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 524 // Never defer when EmitAllDecls is specified or the decl has 525 // attribute used. 526 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 527 return false; 528 529 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 530 // Constructors and destructors should never be deferred. 531 if (FD->hasAttr<ConstructorAttr>() || 532 FD->hasAttr<DestructorAttr>()) 533 return false; 534 535 // The key function for a class must never be deferred. 536 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 537 const CXXRecordDecl *RD = MD->getParent(); 538 if (MD->isOutOfLine() && RD->isDynamicClass()) { 539 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 540 if (KeyFunction == MD->getCanonicalDecl()) 541 return false; 542 } 543 } 544 545 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 546 547 // static, static inline, always_inline, and extern inline functions can 548 // always be deferred. Normal inline functions can be deferred in C99/C++. 549 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 550 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 551 return true; 552 return false; 553 } 554 555 const VarDecl *VD = cast<VarDecl>(Global); 556 assert(VD->isFileVarDecl() && "Invalid decl"); 557 558 // We never want to defer structs that have non-trivial constructors or 559 // destructors. 560 561 // FIXME: Handle references. 562 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 563 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 564 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 565 return false; 566 } 567 } 568 569 // Static data may be deferred, but out-of-line static data members 570 // cannot be. 571 if (VD->isInAnonymousNamespace()) 572 return true; 573 if (VD->getLinkage() == VarDecl::InternalLinkage) { 574 // Initializer has side effects? 575 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 576 return false; 577 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 578 } 579 return false; 580 } 581 582 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 583 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 584 585 // If this is an alias definition (which otherwise looks like a declaration) 586 // emit it now. 587 if (Global->hasAttr<AliasAttr>()) 588 return EmitAliasDefinition(Global); 589 590 // Ignore declarations, they will be emitted on their first use. 591 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 592 // Forward declarations are emitted lazily on first use. 593 if (!FD->isThisDeclarationADefinition()) 594 return; 595 } else { 596 const VarDecl *VD = cast<VarDecl>(Global); 597 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 598 599 if (getLangOptions().CPlusPlus && !VD->getInit()) { 600 // In C++, if this is marked "extern", defer code generation. 601 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 602 return; 603 604 // If this is a declaration of an explicit specialization of a static 605 // data member in a class template, don't emit it. 606 if (VD->isStaticDataMember() && 607 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 608 return; 609 } 610 611 // In C, if this isn't a definition, defer code generation. 612 if (!getLangOptions().CPlusPlus && !VD->getInit()) 613 return; 614 } 615 616 // Defer code generation when possible if this is a static definition, inline 617 // function etc. These we only want to emit if they are used. 618 if (MayDeferGeneration(Global)) { 619 // If the value has already been used, add it directly to the 620 // DeferredDeclsToEmit list. 621 const char *MangledName = getMangledName(GD); 622 if (GlobalDeclMap.count(MangledName)) 623 DeferredDeclsToEmit.push_back(GD); 624 else { 625 // Otherwise, remember that we saw a deferred decl with this name. The 626 // first use of the mangled name will cause it to move into 627 // DeferredDeclsToEmit. 628 DeferredDecls[MangledName] = GD; 629 } 630 return; 631 } 632 633 // Otherwise emit the definition. 634 EmitGlobalDefinition(GD); 635 } 636 637 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 638 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 639 640 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 641 Context.getSourceManager(), 642 "Generating code for declaration"); 643 644 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 645 getVtableInfo().MaybeEmitVtable(GD); 646 if (MD->isVirtual() && MD->isOutOfLine() && 647 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 648 if (isa<CXXDestructorDecl>(D)) { 649 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 650 GD.getDtorType()); 651 BuildThunksForVirtual(CanonGD); 652 } else { 653 BuildThunksForVirtual(MD->getCanonicalDecl()); 654 } 655 } 656 } 657 658 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 659 EmitCXXConstructor(CD, GD.getCtorType()); 660 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 661 EmitCXXDestructor(DD, GD.getDtorType()); 662 else if (isa<FunctionDecl>(D)) 663 EmitGlobalFunctionDefinition(GD); 664 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 665 EmitGlobalVarDefinition(VD); 666 else { 667 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 668 } 669 } 670 671 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 672 /// module, create and return an llvm Function with the specified type. If there 673 /// is something in the module with the specified name, return it potentially 674 /// bitcasted to the right type. 675 /// 676 /// If D is non-null, it specifies a decl that correspond to this. This is used 677 /// to set the attributes on the function when it is first created. 678 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 679 const llvm::Type *Ty, 680 GlobalDecl D) { 681 // Lookup the entry, lazily creating it if necessary. 682 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 683 if (Entry) { 684 if (Entry->getType()->getElementType() == Ty) 685 return Entry; 686 687 // Make sure the result is of the correct type. 688 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 689 return llvm::ConstantExpr::getBitCast(Entry, PTy); 690 } 691 692 // This function doesn't have a complete type (for example, the return 693 // type is an incomplete struct). Use a fake type instead, and make 694 // sure not to try to set attributes. 695 bool IsIncompleteFunction = false; 696 if (!isa<llvm::FunctionType>(Ty)) { 697 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 698 std::vector<const llvm::Type*>(), false); 699 IsIncompleteFunction = true; 700 } 701 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 702 llvm::Function::ExternalLinkage, 703 "", &getModule()); 704 F->setName(MangledName); 705 if (D.getDecl()) 706 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 707 IsIncompleteFunction); 708 Entry = F; 709 710 // This is the first use or definition of a mangled name. If there is a 711 // deferred decl with this name, remember that we need to emit it at the end 712 // of the file. 713 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 714 DeferredDecls.find(MangledName); 715 if (DDI != DeferredDecls.end()) { 716 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 717 // list, and remove it from DeferredDecls (since we don't need it anymore). 718 DeferredDeclsToEmit.push_back(DDI->second); 719 DeferredDecls.erase(DDI); 720 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 721 // If this the first reference to a C++ inline function in a class, queue up 722 // the deferred function body for emission. These are not seen as 723 // top-level declarations. 724 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 725 DeferredDeclsToEmit.push_back(D); 726 // A called constructor which has no definition or declaration need be 727 // synthesized. 728 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 729 if (CD->isImplicit()) 730 DeferredDeclsToEmit.push_back(D); 731 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 732 if (DD->isImplicit()) 733 DeferredDeclsToEmit.push_back(D); 734 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 735 if (MD->isCopyAssignment() && MD->isImplicit()) 736 DeferredDeclsToEmit.push_back(D); 737 } 738 } 739 740 return F; 741 } 742 743 /// GetAddrOfFunction - Return the address of the given function. If Ty is 744 /// non-null, then this function will use the specified type if it has to 745 /// create it (this occurs when we see a definition of the function). 746 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 747 const llvm::Type *Ty) { 748 // If there was no specific requested type, just convert it now. 749 if (!Ty) 750 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 751 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 752 } 753 754 /// CreateRuntimeFunction - Create a new runtime function with the specified 755 /// type and name. 756 llvm::Constant * 757 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 758 const char *Name) { 759 // Convert Name to be a uniqued string from the IdentifierInfo table. 760 Name = getContext().Idents.get(Name).getNameStart(); 761 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 762 } 763 764 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 765 if (!D->getType().isConstant(Context)) 766 return false; 767 if (Context.getLangOptions().CPlusPlus && 768 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 769 // FIXME: We should do something fancier here! 770 return false; 771 } 772 return true; 773 } 774 775 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 776 /// create and return an llvm GlobalVariable with the specified type. If there 777 /// is something in the module with the specified name, return it potentially 778 /// bitcasted to the right type. 779 /// 780 /// If D is non-null, it specifies a decl that correspond to this. This is used 781 /// to set the attributes on the global when it is first created. 782 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 783 const llvm::PointerType*Ty, 784 const VarDecl *D) { 785 // Lookup the entry, lazily creating it if necessary. 786 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 787 if (Entry) { 788 if (Entry->getType() == Ty) 789 return Entry; 790 791 // Make sure the result is of the correct type. 792 return llvm::ConstantExpr::getBitCast(Entry, Ty); 793 } 794 795 // This is the first use or definition of a mangled name. If there is a 796 // deferred decl with this name, remember that we need to emit it at the end 797 // of the file. 798 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 799 DeferredDecls.find(MangledName); 800 if (DDI != DeferredDecls.end()) { 801 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 802 // list, and remove it from DeferredDecls (since we don't need it anymore). 803 DeferredDeclsToEmit.push_back(DDI->second); 804 DeferredDecls.erase(DDI); 805 } 806 807 llvm::GlobalVariable *GV = 808 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 809 llvm::GlobalValue::ExternalLinkage, 810 0, "", 0, 811 false, Ty->getAddressSpace()); 812 GV->setName(MangledName); 813 814 // Handle things which are present even on external declarations. 815 if (D) { 816 // FIXME: This code is overly simple and should be merged with other global 817 // handling. 818 GV->setConstant(DeclIsConstantGlobal(Context, D)); 819 820 // FIXME: Merge with other attribute handling code. 821 if (D->getStorageClass() == VarDecl::PrivateExtern) 822 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 823 824 if (D->hasAttr<WeakAttr>() || 825 D->hasAttr<WeakImportAttr>()) 826 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 827 828 GV->setThreadLocal(D->isThreadSpecified()); 829 } 830 831 return Entry = GV; 832 } 833 834 835 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 836 /// given global variable. If Ty is non-null and if the global doesn't exist, 837 /// then it will be greated with the specified type instead of whatever the 838 /// normal requested type would be. 839 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 840 const llvm::Type *Ty) { 841 assert(D->hasGlobalStorage() && "Not a global variable"); 842 QualType ASTTy = D->getType(); 843 if (Ty == 0) 844 Ty = getTypes().ConvertTypeForMem(ASTTy); 845 846 const llvm::PointerType *PTy = 847 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 848 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 849 } 850 851 /// CreateRuntimeVariable - Create a new runtime global variable with the 852 /// specified type and name. 853 llvm::Constant * 854 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 855 const char *Name) { 856 // Convert Name to be a uniqued string from the IdentifierInfo table. 857 Name = getContext().Idents.get(Name).getNameStart(); 858 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 859 } 860 861 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 862 assert(!D->getInit() && "Cannot emit definite definitions here!"); 863 864 if (MayDeferGeneration(D)) { 865 // If we have not seen a reference to this variable yet, place it 866 // into the deferred declarations table to be emitted if needed 867 // later. 868 const char *MangledName = getMangledName(D); 869 if (GlobalDeclMap.count(MangledName) == 0) { 870 DeferredDecls[MangledName] = D; 871 return; 872 } 873 } 874 875 // The tentative definition is the only definition. 876 EmitGlobalVarDefinition(D); 877 } 878 879 static CodeGenModule::GVALinkage 880 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 881 // Everything located semantically within an anonymous namespace is 882 // always internal. 883 if (VD->isInAnonymousNamespace()) 884 return CodeGenModule::GVA_Internal; 885 886 // Handle linkage for static data members. 887 if (VD->isStaticDataMember()) { 888 switch (VD->getTemplateSpecializationKind()) { 889 case TSK_Undeclared: 890 case TSK_ExplicitSpecialization: 891 case TSK_ExplicitInstantiationDefinition: 892 return CodeGenModule::GVA_StrongExternal; 893 894 case TSK_ExplicitInstantiationDeclaration: 895 llvm_unreachable("Variable should not be instantiated"); 896 // Fall through to treat this like any other instantiation. 897 898 case TSK_ImplicitInstantiation: 899 return CodeGenModule::GVA_TemplateInstantiation; 900 } 901 } 902 903 if (VD->getLinkage() == VarDecl::InternalLinkage) 904 return CodeGenModule::GVA_Internal; 905 906 return CodeGenModule::GVA_StrongExternal; 907 } 908 909 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 910 llvm::Constant *Init = 0; 911 QualType ASTTy = D->getType(); 912 913 if (D->getInit() == 0) { 914 // This is a tentative definition; tentative definitions are 915 // implicitly initialized with { 0 }. 916 // 917 // Note that tentative definitions are only emitted at the end of 918 // a translation unit, so they should never have incomplete 919 // type. In addition, EmitTentativeDefinition makes sure that we 920 // never attempt to emit a tentative definition if a real one 921 // exists. A use may still exists, however, so we still may need 922 // to do a RAUW. 923 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 924 Init = EmitNullConstant(D->getType()); 925 } else { 926 Init = EmitConstantExpr(D->getInit(), D->getType()); 927 928 if (!Init) { 929 QualType T = D->getInit()->getType(); 930 if (getLangOptions().CPlusPlus) { 931 CXXGlobalInits.push_back(D); 932 Init = EmitNullConstant(T); 933 } else { 934 ErrorUnsupported(D, "static initializer"); 935 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 936 } 937 } 938 } 939 940 const llvm::Type* InitType = Init->getType(); 941 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 942 943 // Strip off a bitcast if we got one back. 944 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 945 assert(CE->getOpcode() == llvm::Instruction::BitCast || 946 // all zero index gep. 947 CE->getOpcode() == llvm::Instruction::GetElementPtr); 948 Entry = CE->getOperand(0); 949 } 950 951 // Entry is now either a Function or GlobalVariable. 952 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 953 954 // We have a definition after a declaration with the wrong type. 955 // We must make a new GlobalVariable* and update everything that used OldGV 956 // (a declaration or tentative definition) with the new GlobalVariable* 957 // (which will be a definition). 958 // 959 // This happens if there is a prototype for a global (e.g. 960 // "extern int x[];") and then a definition of a different type (e.g. 961 // "int x[10];"). This also happens when an initializer has a different type 962 // from the type of the global (this happens with unions). 963 if (GV == 0 || 964 GV->getType()->getElementType() != InitType || 965 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 966 967 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 968 GlobalDeclMap.erase(getMangledName(D)); 969 970 // Make a new global with the correct type, this is now guaranteed to work. 971 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 972 GV->takeName(cast<llvm::GlobalValue>(Entry)); 973 974 // Replace all uses of the old global with the new global 975 llvm::Constant *NewPtrForOldDecl = 976 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 977 Entry->replaceAllUsesWith(NewPtrForOldDecl); 978 979 // Erase the old global, since it is no longer used. 980 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 981 } 982 983 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 984 SourceManager &SM = Context.getSourceManager(); 985 AddAnnotation(EmitAnnotateAttr(GV, AA, 986 SM.getInstantiationLineNumber(D->getLocation()))); 987 } 988 989 GV->setInitializer(Init); 990 991 // If it is safe to mark the global 'constant', do so now. 992 GV->setConstant(false); 993 if (DeclIsConstantGlobal(Context, D)) 994 GV->setConstant(true); 995 996 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 997 998 // Set the llvm linkage type as appropriate. 999 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1000 if (Linkage == GVA_Internal) 1001 GV->setLinkage(llvm::Function::InternalLinkage); 1002 else if (D->hasAttr<DLLImportAttr>()) 1003 GV->setLinkage(llvm::Function::DLLImportLinkage); 1004 else if (D->hasAttr<DLLExportAttr>()) 1005 GV->setLinkage(llvm::Function::DLLExportLinkage); 1006 else if (D->hasAttr<WeakAttr>()) { 1007 if (GV->isConstant()) 1008 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1009 else 1010 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1011 } else if (Linkage == GVA_TemplateInstantiation) 1012 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1013 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1014 !D->hasExternalStorage() && !D->getInit() && 1015 !D->getAttr<SectionAttr>()) { 1016 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1017 // common vars aren't constant even if declared const. 1018 GV->setConstant(false); 1019 } else 1020 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1021 1022 SetCommonAttributes(D, GV); 1023 1024 // Emit global variable debug information. 1025 if (CGDebugInfo *DI = getDebugInfo()) { 1026 DI->setLocation(D->getLocation()); 1027 DI->EmitGlobalVariable(GV, D); 1028 } 1029 } 1030 1031 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1032 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1033 /// existing call uses of the old function in the module, this adjusts them to 1034 /// call the new function directly. 1035 /// 1036 /// This is not just a cleanup: the always_inline pass requires direct calls to 1037 /// functions to be able to inline them. If there is a bitcast in the way, it 1038 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1039 /// run at -O0. 1040 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1041 llvm::Function *NewFn) { 1042 // If we're redefining a global as a function, don't transform it. 1043 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1044 if (OldFn == 0) return; 1045 1046 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1047 llvm::SmallVector<llvm::Value*, 4> ArgList; 1048 1049 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1050 UI != E; ) { 1051 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1052 unsigned OpNo = UI.getOperandNo(); 1053 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1054 if (!CI || OpNo != 0) continue; 1055 1056 // If the return types don't match exactly, and if the call isn't dead, then 1057 // we can't transform this call. 1058 if (CI->getType() != NewRetTy && !CI->use_empty()) 1059 continue; 1060 1061 // If the function was passed too few arguments, don't transform. If extra 1062 // arguments were passed, we silently drop them. If any of the types 1063 // mismatch, we don't transform. 1064 unsigned ArgNo = 0; 1065 bool DontTransform = false; 1066 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1067 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1068 if (CI->getNumOperands()-1 == ArgNo || 1069 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1070 DontTransform = true; 1071 break; 1072 } 1073 } 1074 if (DontTransform) 1075 continue; 1076 1077 // Okay, we can transform this. Create the new call instruction and copy 1078 // over the required information. 1079 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1080 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1081 ArgList.end(), "", CI); 1082 ArgList.clear(); 1083 if (!NewCall->getType()->isVoidTy()) 1084 NewCall->takeName(CI); 1085 NewCall->setAttributes(CI->getAttributes()); 1086 NewCall->setCallingConv(CI->getCallingConv()); 1087 1088 // Finally, remove the old call, replacing any uses with the new one. 1089 if (!CI->use_empty()) 1090 CI->replaceAllUsesWith(NewCall); 1091 1092 // Copy any custom metadata attached with CI. 1093 CI->getContext().getMetadata().copyMD(CI, NewCall); 1094 CI->eraseFromParent(); 1095 } 1096 } 1097 1098 1099 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1100 const llvm::FunctionType *Ty; 1101 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1102 1103 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1104 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1105 1106 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1107 } else { 1108 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1109 1110 // As a special case, make sure that definitions of K&R function 1111 // "type foo()" aren't declared as varargs (which forces the backend 1112 // to do unnecessary work). 1113 if (D->getType()->isFunctionNoProtoType()) { 1114 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1115 // Due to stret, the lowered function could have arguments. 1116 // Just create the same type as was lowered by ConvertType 1117 // but strip off the varargs bit. 1118 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1119 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1120 } 1121 } 1122 1123 // Get or create the prototype for the function. 1124 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1125 1126 // Strip off a bitcast if we got one back. 1127 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1128 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1129 Entry = CE->getOperand(0); 1130 } 1131 1132 1133 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1134 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1135 1136 // If the types mismatch then we have to rewrite the definition. 1137 assert(OldFn->isDeclaration() && 1138 "Shouldn't replace non-declaration"); 1139 1140 // F is the Function* for the one with the wrong type, we must make a new 1141 // Function* and update everything that used F (a declaration) with the new 1142 // Function* (which will be a definition). 1143 // 1144 // This happens if there is a prototype for a function 1145 // (e.g. "int f()") and then a definition of a different type 1146 // (e.g. "int f(int x)"). Start by making a new function of the 1147 // correct type, RAUW, then steal the name. 1148 GlobalDeclMap.erase(getMangledName(D)); 1149 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1150 NewFn->takeName(OldFn); 1151 1152 // If this is an implementation of a function without a prototype, try to 1153 // replace any existing uses of the function (which may be calls) with uses 1154 // of the new function 1155 if (D->getType()->isFunctionNoProtoType()) { 1156 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1157 OldFn->removeDeadConstantUsers(); 1158 } 1159 1160 // Replace uses of F with the Function we will endow with a body. 1161 if (!Entry->use_empty()) { 1162 llvm::Constant *NewPtrForOldDecl = 1163 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1164 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1165 } 1166 1167 // Ok, delete the old function now, which is dead. 1168 OldFn->eraseFromParent(); 1169 1170 Entry = NewFn; 1171 } 1172 1173 llvm::Function *Fn = cast<llvm::Function>(Entry); 1174 1175 CodeGenFunction(*this).GenerateCode(D, Fn); 1176 1177 SetFunctionDefinitionAttributes(D, Fn); 1178 SetLLVMFunctionAttributesForDefinition(D, Fn); 1179 1180 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1181 AddGlobalCtor(Fn, CA->getPriority()); 1182 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1183 AddGlobalDtor(Fn, DA->getPriority()); 1184 } 1185 1186 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1187 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1188 assert(AA && "Not an alias?"); 1189 1190 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1191 1192 // Unique the name through the identifier table. 1193 const char *AliaseeName = AA->getAliasee().c_str(); 1194 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1195 1196 // Create a reference to the named value. This ensures that it is emitted 1197 // if a deferred decl. 1198 llvm::Constant *Aliasee; 1199 if (isa<llvm::FunctionType>(DeclTy)) 1200 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1201 else 1202 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1203 llvm::PointerType::getUnqual(DeclTy), 0); 1204 1205 // Create the new alias itself, but don't set a name yet. 1206 llvm::GlobalValue *GA = 1207 new llvm::GlobalAlias(Aliasee->getType(), 1208 llvm::Function::ExternalLinkage, 1209 "", Aliasee, &getModule()); 1210 1211 // See if there is already something with the alias' name in the module. 1212 const char *MangledName = getMangledName(D); 1213 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1214 1215 if (Entry && !Entry->isDeclaration()) { 1216 // If there is a definition in the module, then it wins over the alias. 1217 // This is dubious, but allow it to be safe. Just ignore the alias. 1218 GA->eraseFromParent(); 1219 return; 1220 } 1221 1222 if (Entry) { 1223 // If there is a declaration in the module, then we had an extern followed 1224 // by the alias, as in: 1225 // extern int test6(); 1226 // ... 1227 // int test6() __attribute__((alias("test7"))); 1228 // 1229 // Remove it and replace uses of it with the alias. 1230 1231 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1232 Entry->getType())); 1233 Entry->eraseFromParent(); 1234 } 1235 1236 // Now we know that there is no conflict, set the name. 1237 Entry = GA; 1238 GA->setName(MangledName); 1239 1240 // Set attributes which are particular to an alias; this is a 1241 // specialization of the attributes which may be set on a global 1242 // variable/function. 1243 if (D->hasAttr<DLLExportAttr>()) { 1244 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1245 // The dllexport attribute is ignored for undefined symbols. 1246 if (FD->getBody()) 1247 GA->setLinkage(llvm::Function::DLLExportLinkage); 1248 } else { 1249 GA->setLinkage(llvm::Function::DLLExportLinkage); 1250 } 1251 } else if (D->hasAttr<WeakAttr>() || 1252 D->hasAttr<WeakImportAttr>()) { 1253 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1254 } 1255 1256 SetCommonAttributes(D, GA); 1257 } 1258 1259 /// getBuiltinLibFunction - Given a builtin id for a function like 1260 /// "__builtin_fabsf", return a Function* for "fabsf". 1261 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1262 unsigned BuiltinID) { 1263 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1264 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1265 "isn't a lib fn"); 1266 1267 // Get the name, skip over the __builtin_ prefix (if necessary). 1268 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1269 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1270 Name += 10; 1271 1272 const llvm::FunctionType *Ty = 1273 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1274 1275 // Unique the name through the identifier table. 1276 Name = getContext().Idents.get(Name).getNameStart(); 1277 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1278 } 1279 1280 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1281 unsigned NumTys) { 1282 return llvm::Intrinsic::getDeclaration(&getModule(), 1283 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1284 } 1285 1286 llvm::Function *CodeGenModule::getMemCpyFn() { 1287 if (MemCpyFn) return MemCpyFn; 1288 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1289 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1290 } 1291 1292 llvm::Function *CodeGenModule::getMemMoveFn() { 1293 if (MemMoveFn) return MemMoveFn; 1294 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1295 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1296 } 1297 1298 llvm::Function *CodeGenModule::getMemSetFn() { 1299 if (MemSetFn) return MemSetFn; 1300 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1301 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1302 } 1303 1304 static llvm::StringMapEntry<llvm::Constant*> & 1305 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1306 const StringLiteral *Literal, 1307 bool TargetIsLSB, 1308 bool &IsUTF16, 1309 unsigned &StringLength) { 1310 unsigned NumBytes = Literal->getByteLength(); 1311 1312 // Check for simple case. 1313 if (!Literal->containsNonAsciiOrNull()) { 1314 StringLength = NumBytes; 1315 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1316 StringLength)); 1317 } 1318 1319 // Otherwise, convert the UTF8 literals into a byte string. 1320 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1321 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1322 UTF16 *ToPtr = &ToBuf[0]; 1323 1324 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1325 &ToPtr, ToPtr + NumBytes, 1326 strictConversion); 1327 1328 // Check for conversion failure. 1329 if (Result != conversionOK) { 1330 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1331 // this duplicate code. 1332 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1333 StringLength = NumBytes; 1334 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1335 StringLength)); 1336 } 1337 1338 // ConvertUTF8toUTF16 returns the length in ToPtr. 1339 StringLength = ToPtr - &ToBuf[0]; 1340 1341 // Render the UTF-16 string into a byte array and convert to the target byte 1342 // order. 1343 // 1344 // FIXME: This isn't something we should need to do here. 1345 llvm::SmallString<128> AsBytes; 1346 AsBytes.reserve(StringLength * 2); 1347 for (unsigned i = 0; i != StringLength; ++i) { 1348 unsigned short Val = ToBuf[i]; 1349 if (TargetIsLSB) { 1350 AsBytes.push_back(Val & 0xFF); 1351 AsBytes.push_back(Val >> 8); 1352 } else { 1353 AsBytes.push_back(Val >> 8); 1354 AsBytes.push_back(Val & 0xFF); 1355 } 1356 } 1357 // Append one extra null character, the second is automatically added by our 1358 // caller. 1359 AsBytes.push_back(0); 1360 1361 IsUTF16 = true; 1362 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1363 } 1364 1365 llvm::Constant * 1366 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1367 unsigned StringLength = 0; 1368 bool isUTF16 = false; 1369 llvm::StringMapEntry<llvm::Constant*> &Entry = 1370 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1371 getTargetData().isLittleEndian(), 1372 isUTF16, StringLength); 1373 1374 if (llvm::Constant *C = Entry.getValue()) 1375 return C; 1376 1377 llvm::Constant *Zero = 1378 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1379 llvm::Constant *Zeros[] = { Zero, Zero }; 1380 1381 // If we don't already have it, get __CFConstantStringClassReference. 1382 if (!CFConstantStringClassRef) { 1383 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1384 Ty = llvm::ArrayType::get(Ty, 0); 1385 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1386 "__CFConstantStringClassReference"); 1387 // Decay array -> ptr 1388 CFConstantStringClassRef = 1389 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1390 } 1391 1392 QualType CFTy = getContext().getCFConstantStringType(); 1393 1394 const llvm::StructType *STy = 1395 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1396 1397 std::vector<llvm::Constant*> Fields(4); 1398 1399 // Class pointer. 1400 Fields[0] = CFConstantStringClassRef; 1401 1402 // Flags. 1403 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1404 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1405 llvm::ConstantInt::get(Ty, 0x07C8); 1406 1407 // String pointer. 1408 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1409 1410 const char *Sect = 0; 1411 llvm::GlobalValue::LinkageTypes Linkage; 1412 bool isConstant; 1413 if (isUTF16) { 1414 Sect = getContext().Target.getUnicodeStringSection(); 1415 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1416 Linkage = llvm::GlobalValue::InternalLinkage; 1417 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1418 // does make plain ascii ones writable. 1419 isConstant = true; 1420 } else { 1421 Linkage = llvm::GlobalValue::PrivateLinkage; 1422 isConstant = !Features.WritableStrings; 1423 } 1424 1425 llvm::GlobalVariable *GV = 1426 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1427 ".str"); 1428 if (Sect) 1429 GV->setSection(Sect); 1430 if (isUTF16) { 1431 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1432 GV->setAlignment(Align); 1433 } 1434 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1435 1436 // String length. 1437 Ty = getTypes().ConvertType(getContext().LongTy); 1438 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1439 1440 // The struct. 1441 C = llvm::ConstantStruct::get(STy, Fields); 1442 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1443 llvm::GlobalVariable::PrivateLinkage, C, 1444 "_unnamed_cfstring_"); 1445 if (const char *Sect = getContext().Target.getCFStringSection()) 1446 GV->setSection(Sect); 1447 Entry.setValue(GV); 1448 1449 return GV; 1450 } 1451 1452 /// GetStringForStringLiteral - Return the appropriate bytes for a 1453 /// string literal, properly padded to match the literal type. 1454 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1455 const char *StrData = E->getStrData(); 1456 unsigned Len = E->getByteLength(); 1457 1458 const ConstantArrayType *CAT = 1459 getContext().getAsConstantArrayType(E->getType()); 1460 assert(CAT && "String isn't pointer or array!"); 1461 1462 // Resize the string to the right size. 1463 std::string Str(StrData, StrData+Len); 1464 uint64_t RealLen = CAT->getSize().getZExtValue(); 1465 1466 if (E->isWide()) 1467 RealLen *= getContext().Target.getWCharWidth()/8; 1468 1469 Str.resize(RealLen, '\0'); 1470 1471 return Str; 1472 } 1473 1474 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1475 /// constant array for the given string literal. 1476 llvm::Constant * 1477 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1478 // FIXME: This can be more efficient. 1479 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1480 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1481 if (S->isWide()) { 1482 llvm::Type *DestTy = 1483 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1484 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1485 } 1486 return C; 1487 } 1488 1489 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1490 /// array for the given ObjCEncodeExpr node. 1491 llvm::Constant * 1492 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1493 std::string Str; 1494 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1495 1496 return GetAddrOfConstantCString(Str); 1497 } 1498 1499 1500 /// GenerateWritableString -- Creates storage for a string literal. 1501 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1502 bool constant, 1503 CodeGenModule &CGM, 1504 const char *GlobalName) { 1505 // Create Constant for this string literal. Don't add a '\0'. 1506 llvm::Constant *C = 1507 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1508 1509 // Create a global variable for this string 1510 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1511 llvm::GlobalValue::PrivateLinkage, 1512 C, GlobalName); 1513 } 1514 1515 /// GetAddrOfConstantString - Returns a pointer to a character array 1516 /// containing the literal. This contents are exactly that of the 1517 /// given string, i.e. it will not be null terminated automatically; 1518 /// see GetAddrOfConstantCString. Note that whether the result is 1519 /// actually a pointer to an LLVM constant depends on 1520 /// Feature.WriteableStrings. 1521 /// 1522 /// The result has pointer to array type. 1523 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1524 const char *GlobalName) { 1525 bool IsConstant = !Features.WritableStrings; 1526 1527 // Get the default prefix if a name wasn't specified. 1528 if (!GlobalName) 1529 GlobalName = ".str"; 1530 1531 // Don't share any string literals if strings aren't constant. 1532 if (!IsConstant) 1533 return GenerateStringLiteral(str, false, *this, GlobalName); 1534 1535 llvm::StringMapEntry<llvm::Constant *> &Entry = 1536 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1537 1538 if (Entry.getValue()) 1539 return Entry.getValue(); 1540 1541 // Create a global variable for this. 1542 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1543 Entry.setValue(C); 1544 return C; 1545 } 1546 1547 /// GetAddrOfConstantCString - Returns a pointer to a character 1548 /// array containing the literal and a terminating '\-' 1549 /// character. The result has pointer to array type. 1550 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1551 const char *GlobalName){ 1552 return GetAddrOfConstantString(str + '\0', GlobalName); 1553 } 1554 1555 /// EmitObjCPropertyImplementations - Emit information for synthesized 1556 /// properties for an implementation. 1557 void CodeGenModule::EmitObjCPropertyImplementations(const 1558 ObjCImplementationDecl *D) { 1559 for (ObjCImplementationDecl::propimpl_iterator 1560 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1561 ObjCPropertyImplDecl *PID = *i; 1562 1563 // Dynamic is just for type-checking. 1564 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1565 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1566 1567 // Determine which methods need to be implemented, some may have 1568 // been overridden. Note that ::isSynthesized is not the method 1569 // we want, that just indicates if the decl came from a 1570 // property. What we want to know is if the method is defined in 1571 // this implementation. 1572 if (!D->getInstanceMethod(PD->getGetterName())) 1573 CodeGenFunction(*this).GenerateObjCGetter( 1574 const_cast<ObjCImplementationDecl *>(D), PID); 1575 if (!PD->isReadOnly() && 1576 !D->getInstanceMethod(PD->getSetterName())) 1577 CodeGenFunction(*this).GenerateObjCSetter( 1578 const_cast<ObjCImplementationDecl *>(D), PID); 1579 } 1580 } 1581 } 1582 1583 /// EmitNamespace - Emit all declarations in a namespace. 1584 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1585 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1586 I != E; ++I) 1587 EmitTopLevelDecl(*I); 1588 } 1589 1590 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1591 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1592 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1593 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1594 ErrorUnsupported(LSD, "linkage spec"); 1595 return; 1596 } 1597 1598 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1599 I != E; ++I) 1600 EmitTopLevelDecl(*I); 1601 } 1602 1603 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1604 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1605 // If an error has occurred, stop code generation, but continue 1606 // parsing and semantic analysis (to ensure all warnings and errors 1607 // are emitted). 1608 if (Diags.hasErrorOccurred()) 1609 return; 1610 1611 // Ignore dependent declarations. 1612 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1613 return; 1614 1615 switch (D->getKind()) { 1616 case Decl::CXXConversion: 1617 case Decl::CXXMethod: 1618 case Decl::Function: 1619 // Skip function templates 1620 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1621 return; 1622 1623 EmitGlobal(cast<FunctionDecl>(D)); 1624 break; 1625 1626 case Decl::Var: 1627 EmitGlobal(cast<VarDecl>(D)); 1628 break; 1629 1630 // C++ Decls 1631 case Decl::Namespace: 1632 EmitNamespace(cast<NamespaceDecl>(D)); 1633 break; 1634 // No code generation needed. 1635 case Decl::UsingShadow: 1636 case Decl::Using: 1637 case Decl::UsingDirective: 1638 case Decl::ClassTemplate: 1639 case Decl::FunctionTemplate: 1640 case Decl::NamespaceAlias: 1641 break; 1642 case Decl::CXXConstructor: 1643 // Skip function templates 1644 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1645 return; 1646 1647 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1648 break; 1649 case Decl::CXXDestructor: 1650 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1651 break; 1652 1653 case Decl::StaticAssert: 1654 // Nothing to do. 1655 break; 1656 1657 // Objective-C Decls 1658 1659 // Forward declarations, no (immediate) code generation. 1660 case Decl::ObjCClass: 1661 case Decl::ObjCForwardProtocol: 1662 case Decl::ObjCCategory: 1663 case Decl::ObjCInterface: 1664 break; 1665 1666 case Decl::ObjCProtocol: 1667 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1668 break; 1669 1670 case Decl::ObjCCategoryImpl: 1671 // Categories have properties but don't support synthesize so we 1672 // can ignore them here. 1673 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1674 break; 1675 1676 case Decl::ObjCImplementation: { 1677 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1678 EmitObjCPropertyImplementations(OMD); 1679 Runtime->GenerateClass(OMD); 1680 break; 1681 } 1682 case Decl::ObjCMethod: { 1683 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1684 // If this is not a prototype, emit the body. 1685 if (OMD->getBody()) 1686 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1687 break; 1688 } 1689 case Decl::ObjCCompatibleAlias: 1690 // compatibility-alias is a directive and has no code gen. 1691 break; 1692 1693 case Decl::LinkageSpec: 1694 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1695 break; 1696 1697 case Decl::FileScopeAsm: { 1698 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1699 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1700 1701 const std::string &S = getModule().getModuleInlineAsm(); 1702 if (S.empty()) 1703 getModule().setModuleInlineAsm(AsmString); 1704 else 1705 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1706 break; 1707 } 1708 1709 default: 1710 // Make sure we handled everything we should, every other kind is a 1711 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1712 // function. Need to recode Decl::Kind to do that easily. 1713 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1714 } 1715 } 1716