1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ProfileSummary.h" 57 #include "llvm/ProfileData/InstrProfReader.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/ConvertUTF.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MD5.h" 63 #include "llvm/Support/TimeProfiler.h" 64 65 using namespace clang; 66 using namespace CodeGen; 67 68 static llvm::cl::opt<bool> LimitedCoverage( 69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 71 llvm::cl::init(false)); 72 73 static const char AnnotationSection[] = "llvm.metadata"; 74 75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 76 switch (CGM.getTarget().getCXXABI().getKind()) { 77 case TargetCXXABI::Fuchsia: 78 case TargetCXXABI::GenericAArch64: 79 case TargetCXXABI::GenericARM: 80 case TargetCXXABI::iOS: 81 case TargetCXXABI::iOS64: 82 case TargetCXXABI::WatchOS: 83 case TargetCXXABI::GenericMIPS: 84 case TargetCXXABI::GenericItanium: 85 case TargetCXXABI::WebAssembly: 86 case TargetCXXABI::XL: 87 return CreateItaniumCXXABI(CGM); 88 case TargetCXXABI::Microsoft: 89 return CreateMicrosoftCXXABI(CGM); 90 } 91 92 llvm_unreachable("invalid C++ ABI kind"); 93 } 94 95 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 96 const PreprocessorOptions &PPO, 97 const CodeGenOptions &CGO, llvm::Module &M, 98 DiagnosticsEngine &diags, 99 CoverageSourceInfo *CoverageInfo) 100 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 101 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 102 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 103 VMContext(M.getContext()), Types(*this), VTables(*this), 104 SanitizerMD(new SanitizerMetadata(*this)) { 105 106 // Initialize the type cache. 107 llvm::LLVMContext &LLVMContext = M.getContext(); 108 VoidTy = llvm::Type::getVoidTy(LLVMContext); 109 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 110 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 111 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 112 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 113 HalfTy = llvm::Type::getHalfTy(LLVMContext); 114 FloatTy = llvm::Type::getFloatTy(LLVMContext); 115 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 116 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 117 PointerAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 119 SizeSizeInBytes = 120 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 121 IntAlignInBytes = 122 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 123 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 124 IntPtrTy = llvm::IntegerType::get(LLVMContext, 125 C.getTargetInfo().getMaxPointerWidth()); 126 Int8PtrTy = Int8Ty->getPointerTo(0); 127 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 128 AllocaInt8PtrTy = Int8Ty->getPointerTo( 129 M.getDataLayout().getAllocaAddrSpace()); 130 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 131 132 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 133 134 if (LangOpts.ObjC) 135 createObjCRuntime(); 136 if (LangOpts.OpenCL) 137 createOpenCLRuntime(); 138 if (LangOpts.OpenMP) 139 createOpenMPRuntime(); 140 if (LangOpts.CUDA) 141 createCUDARuntime(); 142 143 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 144 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 145 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 146 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 147 getCXXABI().getMangleContext())); 148 149 // If debug info or coverage generation is enabled, create the CGDebugInfo 150 // object. 151 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 152 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 153 DebugInfo.reset(new CGDebugInfo(*this)); 154 155 Block.GlobalUniqueCount = 0; 156 157 if (C.getLangOpts().ObjC) 158 ObjCData.reset(new ObjCEntrypoints()); 159 160 if (CodeGenOpts.hasProfileClangUse()) { 161 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 162 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 163 if (auto E = ReaderOrErr.takeError()) { 164 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 165 "Could not read profile %0: %1"); 166 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 167 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 168 << EI.message(); 169 }); 170 } else 171 PGOReader = std::move(ReaderOrErr.get()); 172 } 173 174 // If coverage mapping generation is enabled, create the 175 // CoverageMappingModuleGen object. 176 if (CodeGenOpts.CoverageMapping) 177 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 178 } 179 180 CodeGenModule::~CodeGenModule() {} 181 182 void CodeGenModule::createObjCRuntime() { 183 // This is just isGNUFamily(), but we want to force implementors of 184 // new ABIs to decide how best to do this. 185 switch (LangOpts.ObjCRuntime.getKind()) { 186 case ObjCRuntime::GNUstep: 187 case ObjCRuntime::GCC: 188 case ObjCRuntime::ObjFW: 189 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 190 return; 191 192 case ObjCRuntime::FragileMacOSX: 193 case ObjCRuntime::MacOSX: 194 case ObjCRuntime::iOS: 195 case ObjCRuntime::WatchOS: 196 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 197 return; 198 } 199 llvm_unreachable("bad runtime kind"); 200 } 201 202 void CodeGenModule::createOpenCLRuntime() { 203 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 204 } 205 206 void CodeGenModule::createOpenMPRuntime() { 207 // Select a specialized code generation class based on the target, if any. 208 // If it does not exist use the default implementation. 209 switch (getTriple().getArch()) { 210 case llvm::Triple::nvptx: 211 case llvm::Triple::nvptx64: 212 assert(getLangOpts().OpenMPIsDevice && 213 "OpenMP NVPTX is only prepared to deal with device code."); 214 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 215 break; 216 default: 217 if (LangOpts.OpenMPSimd) 218 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 219 else 220 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 221 break; 222 } 223 224 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 225 // but we are not there yet so they both reside in CGModule for now and the 226 // OpenMP-IR-Builder is opt-in only. 227 if (LangOpts.OpenMPIRBuilder) { 228 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 229 OMPBuilder->initialize(); 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 void CodeGenModule::Release() { 405 EmitDeferred(); 406 EmitVTablesOpportunistically(); 407 applyGlobalValReplacements(); 408 applyReplacements(); 409 checkAliases(); 410 emitMultiVersionFunctions(); 411 EmitCXXGlobalInitFunc(); 412 EmitCXXGlobalDtorFunc(); 413 registerGlobalDtorsWithAtExit(); 414 EmitCXXThreadLocalInitFunc(); 415 if (ObjCRuntime) 416 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 417 AddGlobalCtor(ObjCInitFunction); 418 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 419 CUDARuntime) { 420 if (llvm::Function *CudaCtorFunction = 421 CUDARuntime->makeModuleCtorFunction()) 422 AddGlobalCtor(CudaCtorFunction); 423 } 424 if (OpenMPRuntime) { 425 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 426 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 427 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 428 } 429 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 430 OpenMPRuntime->clear(); 431 } 432 if (PGOReader) { 433 getModule().setProfileSummary( 434 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 435 llvm::ProfileSummary::PSK_Instr); 436 if (PGOStats.hasDiagnostics()) 437 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 438 } 439 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 440 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 441 EmitGlobalAnnotations(); 442 EmitStaticExternCAliases(); 443 EmitDeferredUnusedCoverageMappings(); 444 if (CoverageMapping) 445 CoverageMapping->emit(); 446 if (CodeGenOpts.SanitizeCfiCrossDso) { 447 CodeGenFunction(*this).EmitCfiCheckFail(); 448 CodeGenFunction(*this).EmitCfiCheckStub(); 449 } 450 emitAtAvailableLinkGuard(); 451 if (Context.getTargetInfo().getTriple().isWasm() && 452 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 453 EmitMainVoidAlias(); 454 } 455 emitLLVMUsed(); 456 if (SanStats) 457 SanStats->finish(); 458 459 if (CodeGenOpts.Autolink && 460 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 461 EmitModuleLinkOptions(); 462 } 463 464 // On ELF we pass the dependent library specifiers directly to the linker 465 // without manipulating them. This is in contrast to other platforms where 466 // they are mapped to a specific linker option by the compiler. This 467 // difference is a result of the greater variety of ELF linkers and the fact 468 // that ELF linkers tend to handle libraries in a more complicated fashion 469 // than on other platforms. This forces us to defer handling the dependent 470 // libs to the linker. 471 // 472 // CUDA/HIP device and host libraries are different. Currently there is no 473 // way to differentiate dependent libraries for host or device. Existing 474 // usage of #pragma comment(lib, *) is intended for host libraries on 475 // Windows. Therefore emit llvm.dependent-libraries only for host. 476 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 477 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 478 for (auto *MD : ELFDependentLibraries) 479 NMD->addOperand(MD); 480 } 481 482 // Record mregparm value now so it is visible through rest of codegen. 483 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 484 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 485 CodeGenOpts.NumRegisterParameters); 486 487 if (CodeGenOpts.DwarfVersion) { 488 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 489 CodeGenOpts.DwarfVersion); 490 } 491 492 if (Context.getLangOpts().SemanticInterposition) 493 // Require various optimization to respect semantic interposition. 494 getModule().setSemanticInterposition(1); 495 496 if (CodeGenOpts.EmitCodeView) { 497 // Indicate that we want CodeView in the metadata. 498 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 499 } 500 if (CodeGenOpts.CodeViewGHash) { 501 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 502 } 503 if (CodeGenOpts.ControlFlowGuard) { 504 // Function ID tables and checks for Control Flow Guard (cfguard=2). 505 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 506 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 507 // Function ID tables for Control Flow Guard (cfguard=1). 508 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 509 } 510 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 511 // We don't support LTO with 2 with different StrictVTablePointers 512 // FIXME: we could support it by stripping all the information introduced 513 // by StrictVTablePointers. 514 515 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 516 517 llvm::Metadata *Ops[2] = { 518 llvm::MDString::get(VMContext, "StrictVTablePointers"), 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 llvm::Type::getInt32Ty(VMContext), 1))}; 521 522 getModule().addModuleFlag(llvm::Module::Require, 523 "StrictVTablePointersRequirement", 524 llvm::MDNode::get(VMContext, Ops)); 525 } 526 if (DebugInfo) 527 // We support a single version in the linked module. The LLVM 528 // parser will drop debug info with a different version number 529 // (and warn about it, too). 530 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 531 llvm::DEBUG_METADATA_VERSION); 532 533 // We need to record the widths of enums and wchar_t, so that we can generate 534 // the correct build attributes in the ARM backend. wchar_size is also used by 535 // TargetLibraryInfo. 536 uint64_t WCharWidth = 537 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 538 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 539 540 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 541 if ( Arch == llvm::Triple::arm 542 || Arch == llvm::Triple::armeb 543 || Arch == llvm::Triple::thumb 544 || Arch == llvm::Triple::thumbeb) { 545 // The minimum width of an enum in bytes 546 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 547 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 548 } 549 550 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 551 StringRef ABIStr = Target.getABI(); 552 llvm::LLVMContext &Ctx = TheModule.getContext(); 553 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 554 llvm::MDString::get(Ctx, ABIStr)); 555 } 556 557 if (CodeGenOpts.SanitizeCfiCrossDso) { 558 // Indicate that we want cross-DSO control flow integrity checks. 559 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 560 } 561 562 if (CodeGenOpts.WholeProgramVTables) { 563 // Indicate whether VFE was enabled for this module, so that the 564 // vcall_visibility metadata added under whole program vtables is handled 565 // appropriately in the optimizer. 566 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 567 CodeGenOpts.VirtualFunctionElimination); 568 } 569 570 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 571 getModule().addModuleFlag(llvm::Module::Override, 572 "CFI Canonical Jump Tables", 573 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 574 } 575 576 if (CodeGenOpts.CFProtectionReturn && 577 Target.checkCFProtectionReturnSupported(getDiags())) { 578 // Indicate that we want to instrument return control flow protection. 579 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 580 1); 581 } 582 583 if (CodeGenOpts.CFProtectionBranch && 584 Target.checkCFProtectionBranchSupported(getDiags())) { 585 // Indicate that we want to instrument branch control flow protection. 586 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 587 1); 588 } 589 590 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 591 // Indicate whether __nvvm_reflect should be configured to flush denormal 592 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 593 // property.) 594 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 595 CodeGenOpts.FP32DenormalMode.Output != 596 llvm::DenormalMode::IEEE); 597 } 598 599 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 600 if (LangOpts.OpenCL) { 601 EmitOpenCLMetadata(); 602 // Emit SPIR version. 603 if (getTriple().isSPIR()) { 604 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 605 // opencl.spir.version named metadata. 606 // C++ is backwards compatible with OpenCL v2.0. 607 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 608 llvm::Metadata *SPIRVerElts[] = { 609 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 610 Int32Ty, Version / 100)), 611 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 612 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 613 llvm::NamedMDNode *SPIRVerMD = 614 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 615 llvm::LLVMContext &Ctx = TheModule.getContext(); 616 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 617 } 618 } 619 620 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 621 assert(PLevel < 3 && "Invalid PIC Level"); 622 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 623 if (Context.getLangOpts().PIE) 624 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 625 } 626 627 if (getCodeGenOpts().CodeModel.size() > 0) { 628 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 629 .Case("tiny", llvm::CodeModel::Tiny) 630 .Case("small", llvm::CodeModel::Small) 631 .Case("kernel", llvm::CodeModel::Kernel) 632 .Case("medium", llvm::CodeModel::Medium) 633 .Case("large", llvm::CodeModel::Large) 634 .Default(~0u); 635 if (CM != ~0u) { 636 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 637 getModule().setCodeModel(codeModel); 638 } 639 } 640 641 if (CodeGenOpts.NoPLT) 642 getModule().setRtLibUseGOT(); 643 644 SimplifyPersonality(); 645 646 if (getCodeGenOpts().EmitDeclMetadata) 647 EmitDeclMetadata(); 648 649 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 650 EmitCoverageFile(); 651 652 if (DebugInfo) 653 DebugInfo->finalize(); 654 655 if (getCodeGenOpts().EmitVersionIdentMetadata) 656 EmitVersionIdentMetadata(); 657 658 if (!getCodeGenOpts().RecordCommandLine.empty()) 659 EmitCommandLineMetadata(); 660 661 EmitTargetMetadata(); 662 } 663 664 void CodeGenModule::EmitOpenCLMetadata() { 665 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 666 // opencl.ocl.version named metadata node. 667 // C++ is backwards compatible with OpenCL v2.0. 668 // FIXME: We might need to add CXX version at some point too? 669 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 670 llvm::Metadata *OCLVerElts[] = { 671 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 672 Int32Ty, Version / 100)), 673 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 674 Int32Ty, (Version % 100) / 10))}; 675 llvm::NamedMDNode *OCLVerMD = 676 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 677 llvm::LLVMContext &Ctx = TheModule.getContext(); 678 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 679 } 680 681 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 682 // Make sure that this type is translated. 683 Types.UpdateCompletedType(TD); 684 } 685 686 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 687 // Make sure that this type is translated. 688 Types.RefreshTypeCacheForClass(RD); 689 } 690 691 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 692 if (!TBAA) 693 return nullptr; 694 return TBAA->getTypeInfo(QTy); 695 } 696 697 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 698 if (!TBAA) 699 return TBAAAccessInfo(); 700 return TBAA->getAccessInfo(AccessType); 701 } 702 703 TBAAAccessInfo 704 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 705 if (!TBAA) 706 return TBAAAccessInfo(); 707 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 708 } 709 710 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 711 if (!TBAA) 712 return nullptr; 713 return TBAA->getTBAAStructInfo(QTy); 714 } 715 716 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 717 if (!TBAA) 718 return nullptr; 719 return TBAA->getBaseTypeInfo(QTy); 720 } 721 722 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 723 if (!TBAA) 724 return nullptr; 725 return TBAA->getAccessTagInfo(Info); 726 } 727 728 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 729 TBAAAccessInfo TargetInfo) { 730 if (!TBAA) 731 return TBAAAccessInfo(); 732 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 733 } 734 735 TBAAAccessInfo 736 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 737 TBAAAccessInfo InfoB) { 738 if (!TBAA) 739 return TBAAAccessInfo(); 740 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 741 } 742 743 TBAAAccessInfo 744 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 745 TBAAAccessInfo SrcInfo) { 746 if (!TBAA) 747 return TBAAAccessInfo(); 748 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 749 } 750 751 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 752 TBAAAccessInfo TBAAInfo) { 753 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 754 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 755 } 756 757 void CodeGenModule::DecorateInstructionWithInvariantGroup( 758 llvm::Instruction *I, const CXXRecordDecl *RD) { 759 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 760 llvm::MDNode::get(getLLVMContext(), {})); 761 } 762 763 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 764 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 765 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 766 } 767 768 /// ErrorUnsupported - Print out an error that codegen doesn't support the 769 /// specified stmt yet. 770 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 771 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 772 "cannot compile this %0 yet"); 773 std::string Msg = Type; 774 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 775 << Msg << S->getSourceRange(); 776 } 777 778 /// ErrorUnsupported - Print out an error that codegen doesn't support the 779 /// specified decl yet. 780 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 781 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 782 "cannot compile this %0 yet"); 783 std::string Msg = Type; 784 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 785 } 786 787 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 788 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 789 } 790 791 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 792 const NamedDecl *D) const { 793 if (GV->hasDLLImportStorageClass()) 794 return; 795 // Internal definitions always have default visibility. 796 if (GV->hasLocalLinkage()) { 797 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 798 return; 799 } 800 if (!D) 801 return; 802 // Set visibility for definitions, and for declarations if requested globally 803 // or set explicitly. 804 LinkageInfo LV = D->getLinkageAndVisibility(); 805 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 806 !GV->isDeclarationForLinker()) 807 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 808 } 809 810 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 811 llvm::GlobalValue *GV) { 812 if (GV->hasLocalLinkage()) 813 return true; 814 815 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 816 return true; 817 818 // DLLImport explicitly marks the GV as external. 819 if (GV->hasDLLImportStorageClass()) 820 return false; 821 822 const llvm::Triple &TT = CGM.getTriple(); 823 if (TT.isWindowsGNUEnvironment()) { 824 // In MinGW, variables without DLLImport can still be automatically 825 // imported from a DLL by the linker; don't mark variables that 826 // potentially could come from another DLL as DSO local. 827 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 828 !GV->isThreadLocal()) 829 return false; 830 } 831 832 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 833 // remain unresolved in the link, they can be resolved to zero, which is 834 // outside the current DSO. 835 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 836 return false; 837 838 // Every other GV is local on COFF. 839 // Make an exception for windows OS in the triple: Some firmware builds use 840 // *-win32-macho triples. This (accidentally?) produced windows relocations 841 // without GOT tables in older clang versions; Keep this behaviour. 842 // FIXME: even thread local variables? 843 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 844 return true; 845 846 // Only handle COFF and ELF for now. 847 if (!TT.isOSBinFormatELF()) 848 return false; 849 850 // If this is not an executable, don't assume anything is local. 851 const auto &CGOpts = CGM.getCodeGenOpts(); 852 llvm::Reloc::Model RM = CGOpts.RelocationModel; 853 const auto &LOpts = CGM.getLangOpts(); 854 if (RM != llvm::Reloc::Static && !LOpts.PIE) 855 return false; 856 857 // A definition cannot be preempted from an executable. 858 if (!GV->isDeclarationForLinker()) 859 return true; 860 861 // Most PIC code sequences that assume that a symbol is local cannot produce a 862 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 863 // depended, it seems worth it to handle it here. 864 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 865 return false; 866 867 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 868 llvm::Triple::ArchType Arch = TT.getArch(); 869 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 870 Arch == llvm::Triple::ppc64le) 871 return false; 872 873 // If we can use copy relocations we can assume it is local. 874 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 875 if (!Var->isThreadLocal() && 876 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 877 return true; 878 879 // If we can use a plt entry as the symbol address we can assume it 880 // is local. 881 // FIXME: This should work for PIE, but the gold linker doesn't support it. 882 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 883 return true; 884 885 // Otherwise don't assume it is local. 886 return false; 887 } 888 889 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 890 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 891 } 892 893 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 894 GlobalDecl GD) const { 895 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 896 // C++ destructors have a few C++ ABI specific special cases. 897 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 898 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 899 return; 900 } 901 setDLLImportDLLExport(GV, D); 902 } 903 904 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 905 const NamedDecl *D) const { 906 if (D && D->isExternallyVisible()) { 907 if (D->hasAttr<DLLImportAttr>()) 908 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 909 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 910 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 911 } 912 } 913 914 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 915 GlobalDecl GD) const { 916 setDLLImportDLLExport(GV, GD); 917 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 918 } 919 920 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 921 const NamedDecl *D) const { 922 setDLLImportDLLExport(GV, D); 923 setGVPropertiesAux(GV, D); 924 } 925 926 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 927 const NamedDecl *D) const { 928 setGlobalVisibility(GV, D); 929 setDSOLocal(GV); 930 GV->setPartition(CodeGenOpts.SymbolPartition); 931 } 932 933 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 934 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 935 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 936 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 937 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 938 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 939 } 940 941 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 942 CodeGenOptions::TLSModel M) { 943 switch (M) { 944 case CodeGenOptions::GeneralDynamicTLSModel: 945 return llvm::GlobalVariable::GeneralDynamicTLSModel; 946 case CodeGenOptions::LocalDynamicTLSModel: 947 return llvm::GlobalVariable::LocalDynamicTLSModel; 948 case CodeGenOptions::InitialExecTLSModel: 949 return llvm::GlobalVariable::InitialExecTLSModel; 950 case CodeGenOptions::LocalExecTLSModel: 951 return llvm::GlobalVariable::LocalExecTLSModel; 952 } 953 llvm_unreachable("Invalid TLS model!"); 954 } 955 956 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 957 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 958 959 llvm::GlobalValue::ThreadLocalMode TLM; 960 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 961 962 // Override the TLS model if it is explicitly specified. 963 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 964 TLM = GetLLVMTLSModel(Attr->getModel()); 965 } 966 967 GV->setThreadLocalMode(TLM); 968 } 969 970 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 971 StringRef Name) { 972 const TargetInfo &Target = CGM.getTarget(); 973 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 974 } 975 976 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 977 const CPUSpecificAttr *Attr, 978 unsigned CPUIndex, 979 raw_ostream &Out) { 980 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 981 // supported. 982 if (Attr) 983 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 984 else if (CGM.getTarget().supportsIFunc()) 985 Out << ".resolver"; 986 } 987 988 static void AppendTargetMangling(const CodeGenModule &CGM, 989 const TargetAttr *Attr, raw_ostream &Out) { 990 if (Attr->isDefaultVersion()) 991 return; 992 993 Out << '.'; 994 const TargetInfo &Target = CGM.getTarget(); 995 ParsedTargetAttr Info = 996 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 997 // Multiversioning doesn't allow "no-${feature}", so we can 998 // only have "+" prefixes here. 999 assert(LHS.startswith("+") && RHS.startswith("+") && 1000 "Features should always have a prefix."); 1001 return Target.multiVersionSortPriority(LHS.substr(1)) > 1002 Target.multiVersionSortPriority(RHS.substr(1)); 1003 }); 1004 1005 bool IsFirst = true; 1006 1007 if (!Info.Architecture.empty()) { 1008 IsFirst = false; 1009 Out << "arch_" << Info.Architecture; 1010 } 1011 1012 for (StringRef Feat : Info.Features) { 1013 if (!IsFirst) 1014 Out << '_'; 1015 IsFirst = false; 1016 Out << Feat.substr(1); 1017 } 1018 } 1019 1020 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1021 const NamedDecl *ND, 1022 bool OmitMultiVersionMangling = false) { 1023 SmallString<256> Buffer; 1024 llvm::raw_svector_ostream Out(Buffer); 1025 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1026 if (MC.shouldMangleDeclName(ND)) 1027 MC.mangleName(GD.getWithDecl(ND), Out); 1028 else { 1029 IdentifierInfo *II = ND->getIdentifier(); 1030 assert(II && "Attempt to mangle unnamed decl."); 1031 const auto *FD = dyn_cast<FunctionDecl>(ND); 1032 1033 if (FD && 1034 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1035 Out << "__regcall3__" << II->getName(); 1036 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1037 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1038 Out << "__device_stub__" << II->getName(); 1039 } else { 1040 Out << II->getName(); 1041 } 1042 } 1043 1044 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1045 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1046 switch (FD->getMultiVersionKind()) { 1047 case MultiVersionKind::CPUDispatch: 1048 case MultiVersionKind::CPUSpecific: 1049 AppendCPUSpecificCPUDispatchMangling(CGM, 1050 FD->getAttr<CPUSpecificAttr>(), 1051 GD.getMultiVersionIndex(), Out); 1052 break; 1053 case MultiVersionKind::Target: 1054 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1055 break; 1056 case MultiVersionKind::None: 1057 llvm_unreachable("None multiversion type isn't valid here"); 1058 } 1059 } 1060 1061 return std::string(Out.str()); 1062 } 1063 1064 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1065 const FunctionDecl *FD) { 1066 if (!FD->isMultiVersion()) 1067 return; 1068 1069 // Get the name of what this would be without the 'target' attribute. This 1070 // allows us to lookup the version that was emitted when this wasn't a 1071 // multiversion function. 1072 std::string NonTargetName = 1073 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1074 GlobalDecl OtherGD; 1075 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1076 assert(OtherGD.getCanonicalDecl() 1077 .getDecl() 1078 ->getAsFunction() 1079 ->isMultiVersion() && 1080 "Other GD should now be a multiversioned function"); 1081 // OtherFD is the version of this function that was mangled BEFORE 1082 // becoming a MultiVersion function. It potentially needs to be updated. 1083 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1084 .getDecl() 1085 ->getAsFunction() 1086 ->getMostRecentDecl(); 1087 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1088 // This is so that if the initial version was already the 'default' 1089 // version, we don't try to update it. 1090 if (OtherName != NonTargetName) { 1091 // Remove instead of erase, since others may have stored the StringRef 1092 // to this. 1093 const auto ExistingRecord = Manglings.find(NonTargetName); 1094 if (ExistingRecord != std::end(Manglings)) 1095 Manglings.remove(&(*ExistingRecord)); 1096 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1097 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1098 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1099 Entry->setName(OtherName); 1100 } 1101 } 1102 } 1103 1104 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1105 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1106 1107 // Some ABIs don't have constructor variants. Make sure that base and 1108 // complete constructors get mangled the same. 1109 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1110 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1111 CXXCtorType OrigCtorType = GD.getCtorType(); 1112 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1113 if (OrigCtorType == Ctor_Base) 1114 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1115 } 1116 } 1117 1118 auto FoundName = MangledDeclNames.find(CanonicalGD); 1119 if (FoundName != MangledDeclNames.end()) 1120 return FoundName->second; 1121 1122 // Keep the first result in the case of a mangling collision. 1123 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1124 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1125 1126 // Ensure either we have different ABIs between host and device compilations, 1127 // says host compilation following MSVC ABI but device compilation follows 1128 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1129 // mangling should be the same after name stubbing. The later checking is 1130 // very important as the device kernel name being mangled in host-compilation 1131 // is used to resolve the device binaries to be executed. Inconsistent naming 1132 // result in undefined behavior. Even though we cannot check that naming 1133 // directly between host- and device-compilations, the host- and 1134 // device-mangling in host compilation could help catching certain ones. 1135 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1136 getLangOpts().CUDAIsDevice || 1137 (getContext().getAuxTargetInfo() && 1138 (getContext().getAuxTargetInfo()->getCXXABI() != 1139 getContext().getTargetInfo().getCXXABI())) || 1140 getCUDARuntime().getDeviceSideName(ND) == 1141 getMangledNameImpl( 1142 *this, 1143 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1144 ND)); 1145 1146 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1147 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1148 } 1149 1150 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1151 const BlockDecl *BD) { 1152 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1153 const Decl *D = GD.getDecl(); 1154 1155 SmallString<256> Buffer; 1156 llvm::raw_svector_ostream Out(Buffer); 1157 if (!D) 1158 MangleCtx.mangleGlobalBlock(BD, 1159 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1160 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1161 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1162 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1163 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1164 else 1165 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1166 1167 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1168 return Result.first->first(); 1169 } 1170 1171 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1172 return getModule().getNamedValue(Name); 1173 } 1174 1175 /// AddGlobalCtor - Add a function to the list that will be called before 1176 /// main() runs. 1177 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1178 llvm::Constant *AssociatedData) { 1179 // FIXME: Type coercion of void()* types. 1180 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1181 } 1182 1183 /// AddGlobalDtor - Add a function to the list that will be called 1184 /// when the module is unloaded. 1185 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1186 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1187 DtorsUsingAtExit[Priority].push_back(Dtor); 1188 return; 1189 } 1190 1191 // FIXME: Type coercion of void()* types. 1192 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1193 } 1194 1195 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1196 if (Fns.empty()) return; 1197 1198 // Ctor function type is void()*. 1199 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1200 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1201 TheModule.getDataLayout().getProgramAddressSpace()); 1202 1203 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1204 llvm::StructType *CtorStructTy = llvm::StructType::get( 1205 Int32Ty, CtorPFTy, VoidPtrTy); 1206 1207 // Construct the constructor and destructor arrays. 1208 ConstantInitBuilder builder(*this); 1209 auto ctors = builder.beginArray(CtorStructTy); 1210 for (const auto &I : Fns) { 1211 auto ctor = ctors.beginStruct(CtorStructTy); 1212 ctor.addInt(Int32Ty, I.Priority); 1213 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1214 if (I.AssociatedData) 1215 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1216 else 1217 ctor.addNullPointer(VoidPtrTy); 1218 ctor.finishAndAddTo(ctors); 1219 } 1220 1221 auto list = 1222 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1223 /*constant*/ false, 1224 llvm::GlobalValue::AppendingLinkage); 1225 1226 // The LTO linker doesn't seem to like it when we set an alignment 1227 // on appending variables. Take it off as a workaround. 1228 list->setAlignment(llvm::None); 1229 1230 Fns.clear(); 1231 } 1232 1233 llvm::GlobalValue::LinkageTypes 1234 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1235 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1236 1237 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1238 1239 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1240 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1241 1242 if (isa<CXXConstructorDecl>(D) && 1243 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1244 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1245 // Our approach to inheriting constructors is fundamentally different from 1246 // that used by the MS ABI, so keep our inheriting constructor thunks 1247 // internal rather than trying to pick an unambiguous mangling for them. 1248 return llvm::GlobalValue::InternalLinkage; 1249 } 1250 1251 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1252 } 1253 1254 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1255 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1256 if (!MDS) return nullptr; 1257 1258 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1259 } 1260 1261 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1262 const CGFunctionInfo &Info, 1263 llvm::Function *F) { 1264 unsigned CallingConv; 1265 llvm::AttributeList PAL; 1266 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1267 F->setAttributes(PAL); 1268 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1269 } 1270 1271 static void removeImageAccessQualifier(std::string& TyName) { 1272 std::string ReadOnlyQual("__read_only"); 1273 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1274 if (ReadOnlyPos != std::string::npos) 1275 // "+ 1" for the space after access qualifier. 1276 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1277 else { 1278 std::string WriteOnlyQual("__write_only"); 1279 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1280 if (WriteOnlyPos != std::string::npos) 1281 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1282 else { 1283 std::string ReadWriteQual("__read_write"); 1284 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1285 if (ReadWritePos != std::string::npos) 1286 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1287 } 1288 } 1289 } 1290 1291 // Returns the address space id that should be produced to the 1292 // kernel_arg_addr_space metadata. This is always fixed to the ids 1293 // as specified in the SPIR 2.0 specification in order to differentiate 1294 // for example in clGetKernelArgInfo() implementation between the address 1295 // spaces with targets without unique mapping to the OpenCL address spaces 1296 // (basically all single AS CPUs). 1297 static unsigned ArgInfoAddressSpace(LangAS AS) { 1298 switch (AS) { 1299 case LangAS::opencl_global: return 1; 1300 case LangAS::opencl_constant: return 2; 1301 case LangAS::opencl_local: return 3; 1302 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1303 default: 1304 return 0; // Assume private. 1305 } 1306 } 1307 1308 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1309 const FunctionDecl *FD, 1310 CodeGenFunction *CGF) { 1311 assert(((FD && CGF) || (!FD && !CGF)) && 1312 "Incorrect use - FD and CGF should either be both null or not!"); 1313 // Create MDNodes that represent the kernel arg metadata. 1314 // Each MDNode is a list in the form of "key", N number of values which is 1315 // the same number of values as their are kernel arguments. 1316 1317 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1318 1319 // MDNode for the kernel argument address space qualifiers. 1320 SmallVector<llvm::Metadata *, 8> addressQuals; 1321 1322 // MDNode for the kernel argument access qualifiers (images only). 1323 SmallVector<llvm::Metadata *, 8> accessQuals; 1324 1325 // MDNode for the kernel argument type names. 1326 SmallVector<llvm::Metadata *, 8> argTypeNames; 1327 1328 // MDNode for the kernel argument base type names. 1329 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1330 1331 // MDNode for the kernel argument type qualifiers. 1332 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1333 1334 // MDNode for the kernel argument names. 1335 SmallVector<llvm::Metadata *, 8> argNames; 1336 1337 if (FD && CGF) 1338 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1339 const ParmVarDecl *parm = FD->getParamDecl(i); 1340 QualType ty = parm->getType(); 1341 std::string typeQuals; 1342 1343 if (ty->isPointerType()) { 1344 QualType pointeeTy = ty->getPointeeType(); 1345 1346 // Get address qualifier. 1347 addressQuals.push_back( 1348 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1349 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1350 1351 // Get argument type name. 1352 std::string typeName = 1353 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1354 1355 // Turn "unsigned type" to "utype" 1356 std::string::size_type pos = typeName.find("unsigned"); 1357 if (pointeeTy.isCanonical() && pos != std::string::npos) 1358 typeName.erase(pos + 1, 8); 1359 1360 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1361 1362 std::string baseTypeName = 1363 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1364 Policy) + 1365 "*"; 1366 1367 // Turn "unsigned type" to "utype" 1368 pos = baseTypeName.find("unsigned"); 1369 if (pos != std::string::npos) 1370 baseTypeName.erase(pos + 1, 8); 1371 1372 argBaseTypeNames.push_back( 1373 llvm::MDString::get(VMContext, baseTypeName)); 1374 1375 // Get argument type qualifiers: 1376 if (ty.isRestrictQualified()) 1377 typeQuals = "restrict"; 1378 if (pointeeTy.isConstQualified() || 1379 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1380 typeQuals += typeQuals.empty() ? "const" : " const"; 1381 if (pointeeTy.isVolatileQualified()) 1382 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1383 } else { 1384 uint32_t AddrSpc = 0; 1385 bool isPipe = ty->isPipeType(); 1386 if (ty->isImageType() || isPipe) 1387 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1388 1389 addressQuals.push_back( 1390 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1391 1392 // Get argument type name. 1393 std::string typeName; 1394 if (isPipe) 1395 typeName = ty.getCanonicalType() 1396 ->castAs<PipeType>() 1397 ->getElementType() 1398 .getAsString(Policy); 1399 else 1400 typeName = ty.getUnqualifiedType().getAsString(Policy); 1401 1402 // Turn "unsigned type" to "utype" 1403 std::string::size_type pos = typeName.find("unsigned"); 1404 if (ty.isCanonical() && pos != std::string::npos) 1405 typeName.erase(pos + 1, 8); 1406 1407 std::string baseTypeName; 1408 if (isPipe) 1409 baseTypeName = ty.getCanonicalType() 1410 ->castAs<PipeType>() 1411 ->getElementType() 1412 .getCanonicalType() 1413 .getAsString(Policy); 1414 else 1415 baseTypeName = 1416 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1417 1418 // Remove access qualifiers on images 1419 // (as they are inseparable from type in clang implementation, 1420 // but OpenCL spec provides a special query to get access qualifier 1421 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1422 if (ty->isImageType()) { 1423 removeImageAccessQualifier(typeName); 1424 removeImageAccessQualifier(baseTypeName); 1425 } 1426 1427 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1428 1429 // Turn "unsigned type" to "utype" 1430 pos = baseTypeName.find("unsigned"); 1431 if (pos != std::string::npos) 1432 baseTypeName.erase(pos + 1, 8); 1433 1434 argBaseTypeNames.push_back( 1435 llvm::MDString::get(VMContext, baseTypeName)); 1436 1437 if (isPipe) 1438 typeQuals = "pipe"; 1439 } 1440 1441 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1442 1443 // Get image and pipe access qualifier: 1444 if (ty->isImageType() || ty->isPipeType()) { 1445 const Decl *PDecl = parm; 1446 if (auto *TD = dyn_cast<TypedefType>(ty)) 1447 PDecl = TD->getDecl(); 1448 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1449 if (A && A->isWriteOnly()) 1450 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1451 else if (A && A->isReadWrite()) 1452 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1453 else 1454 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1455 } else 1456 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1457 1458 // Get argument name. 1459 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1460 } 1461 1462 Fn->setMetadata("kernel_arg_addr_space", 1463 llvm::MDNode::get(VMContext, addressQuals)); 1464 Fn->setMetadata("kernel_arg_access_qual", 1465 llvm::MDNode::get(VMContext, accessQuals)); 1466 Fn->setMetadata("kernel_arg_type", 1467 llvm::MDNode::get(VMContext, argTypeNames)); 1468 Fn->setMetadata("kernel_arg_base_type", 1469 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1470 Fn->setMetadata("kernel_arg_type_qual", 1471 llvm::MDNode::get(VMContext, argTypeQuals)); 1472 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1473 Fn->setMetadata("kernel_arg_name", 1474 llvm::MDNode::get(VMContext, argNames)); 1475 } 1476 1477 /// Determines whether the language options require us to model 1478 /// unwind exceptions. We treat -fexceptions as mandating this 1479 /// except under the fragile ObjC ABI with only ObjC exceptions 1480 /// enabled. This means, for example, that C with -fexceptions 1481 /// enables this. 1482 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1483 // If exceptions are completely disabled, obviously this is false. 1484 if (!LangOpts.Exceptions) return false; 1485 1486 // If C++ exceptions are enabled, this is true. 1487 if (LangOpts.CXXExceptions) return true; 1488 1489 // If ObjC exceptions are enabled, this depends on the ABI. 1490 if (LangOpts.ObjCExceptions) { 1491 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1492 } 1493 1494 return true; 1495 } 1496 1497 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1498 const CXXMethodDecl *MD) { 1499 // Check that the type metadata can ever actually be used by a call. 1500 if (!CGM.getCodeGenOpts().LTOUnit || 1501 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1502 return false; 1503 1504 // Only functions whose address can be taken with a member function pointer 1505 // need this sort of type metadata. 1506 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1507 !isa<CXXDestructorDecl>(MD); 1508 } 1509 1510 std::vector<const CXXRecordDecl *> 1511 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1512 llvm::SetVector<const CXXRecordDecl *> MostBases; 1513 1514 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1515 CollectMostBases = [&](const CXXRecordDecl *RD) { 1516 if (RD->getNumBases() == 0) 1517 MostBases.insert(RD); 1518 for (const CXXBaseSpecifier &B : RD->bases()) 1519 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1520 }; 1521 CollectMostBases(RD); 1522 return MostBases.takeVector(); 1523 } 1524 1525 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1526 llvm::Function *F) { 1527 llvm::AttrBuilder B; 1528 1529 if (CodeGenOpts.UnwindTables) 1530 B.addAttribute(llvm::Attribute::UWTable); 1531 1532 if (CodeGenOpts.StackClashProtector) 1533 B.addAttribute("probe-stack", "inline-asm"); 1534 1535 if (!hasUnwindExceptions(LangOpts)) 1536 B.addAttribute(llvm::Attribute::NoUnwind); 1537 1538 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1539 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1540 B.addAttribute(llvm::Attribute::StackProtect); 1541 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1542 B.addAttribute(llvm::Attribute::StackProtectStrong); 1543 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1544 B.addAttribute(llvm::Attribute::StackProtectReq); 1545 } 1546 1547 if (!D) { 1548 // If we don't have a declaration to control inlining, the function isn't 1549 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1550 // disabled, mark the function as noinline. 1551 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1552 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1553 B.addAttribute(llvm::Attribute::NoInline); 1554 1555 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1556 return; 1557 } 1558 1559 // Track whether we need to add the optnone LLVM attribute, 1560 // starting with the default for this optimization level. 1561 bool ShouldAddOptNone = 1562 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1563 // We can't add optnone in the following cases, it won't pass the verifier. 1564 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1565 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1566 1567 // Add optnone, but do so only if the function isn't always_inline. 1568 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1569 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1570 B.addAttribute(llvm::Attribute::OptimizeNone); 1571 1572 // OptimizeNone implies noinline; we should not be inlining such functions. 1573 B.addAttribute(llvm::Attribute::NoInline); 1574 1575 // We still need to handle naked functions even though optnone subsumes 1576 // much of their semantics. 1577 if (D->hasAttr<NakedAttr>()) 1578 B.addAttribute(llvm::Attribute::Naked); 1579 1580 // OptimizeNone wins over OptimizeForSize and MinSize. 1581 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1582 F->removeFnAttr(llvm::Attribute::MinSize); 1583 } else if (D->hasAttr<NakedAttr>()) { 1584 // Naked implies noinline: we should not be inlining such functions. 1585 B.addAttribute(llvm::Attribute::Naked); 1586 B.addAttribute(llvm::Attribute::NoInline); 1587 } else if (D->hasAttr<NoDuplicateAttr>()) { 1588 B.addAttribute(llvm::Attribute::NoDuplicate); 1589 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1590 // Add noinline if the function isn't always_inline. 1591 B.addAttribute(llvm::Attribute::NoInline); 1592 } else if (D->hasAttr<AlwaysInlineAttr>() && 1593 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1594 // (noinline wins over always_inline, and we can't specify both in IR) 1595 B.addAttribute(llvm::Attribute::AlwaysInline); 1596 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1597 // If we're not inlining, then force everything that isn't always_inline to 1598 // carry an explicit noinline attribute. 1599 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1600 B.addAttribute(llvm::Attribute::NoInline); 1601 } else { 1602 // Otherwise, propagate the inline hint attribute and potentially use its 1603 // absence to mark things as noinline. 1604 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1605 // Search function and template pattern redeclarations for inline. 1606 auto CheckForInline = [](const FunctionDecl *FD) { 1607 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1608 return Redecl->isInlineSpecified(); 1609 }; 1610 if (any_of(FD->redecls(), CheckRedeclForInline)) 1611 return true; 1612 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1613 if (!Pattern) 1614 return false; 1615 return any_of(Pattern->redecls(), CheckRedeclForInline); 1616 }; 1617 if (CheckForInline(FD)) { 1618 B.addAttribute(llvm::Attribute::InlineHint); 1619 } else if (CodeGenOpts.getInlining() == 1620 CodeGenOptions::OnlyHintInlining && 1621 !FD->isInlined() && 1622 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1623 B.addAttribute(llvm::Attribute::NoInline); 1624 } 1625 } 1626 } 1627 1628 // Add other optimization related attributes if we are optimizing this 1629 // function. 1630 if (!D->hasAttr<OptimizeNoneAttr>()) { 1631 if (D->hasAttr<ColdAttr>()) { 1632 if (!ShouldAddOptNone) 1633 B.addAttribute(llvm::Attribute::OptimizeForSize); 1634 B.addAttribute(llvm::Attribute::Cold); 1635 } 1636 1637 if (D->hasAttr<MinSizeAttr>()) 1638 B.addAttribute(llvm::Attribute::MinSize); 1639 } 1640 1641 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1642 1643 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1644 if (alignment) 1645 F->setAlignment(llvm::Align(alignment)); 1646 1647 if (!D->hasAttr<AlignedAttr>()) 1648 if (LangOpts.FunctionAlignment) 1649 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1650 1651 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1652 // reserve a bit for differentiating between virtual and non-virtual member 1653 // functions. If the current target's C++ ABI requires this and this is a 1654 // member function, set its alignment accordingly. 1655 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1656 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1657 F->setAlignment(llvm::Align(2)); 1658 } 1659 1660 // In the cross-dso CFI mode with canonical jump tables, we want !type 1661 // attributes on definitions only. 1662 if (CodeGenOpts.SanitizeCfiCrossDso && 1663 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1664 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1665 // Skip available_externally functions. They won't be codegen'ed in the 1666 // current module anyway. 1667 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1668 CreateFunctionTypeMetadataForIcall(FD, F); 1669 } 1670 } 1671 1672 // Emit type metadata on member functions for member function pointer checks. 1673 // These are only ever necessary on definitions; we're guaranteed that the 1674 // definition will be present in the LTO unit as a result of LTO visibility. 1675 auto *MD = dyn_cast<CXXMethodDecl>(D); 1676 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1677 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1678 llvm::Metadata *Id = 1679 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1680 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1681 F->addTypeMetadata(0, Id); 1682 } 1683 } 1684 } 1685 1686 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1687 const Decl *D = GD.getDecl(); 1688 if (dyn_cast_or_null<NamedDecl>(D)) 1689 setGVProperties(GV, GD); 1690 else 1691 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1692 1693 if (D && D->hasAttr<UsedAttr>()) 1694 addUsedGlobal(GV); 1695 1696 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1697 const auto *VD = cast<VarDecl>(D); 1698 if (VD->getType().isConstQualified() && 1699 VD->getStorageDuration() == SD_Static) 1700 addUsedGlobal(GV); 1701 } 1702 } 1703 1704 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1705 llvm::AttrBuilder &Attrs) { 1706 // Add target-cpu and target-features attributes to functions. If 1707 // we have a decl for the function and it has a target attribute then 1708 // parse that and add it to the feature set. 1709 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1710 std::vector<std::string> Features; 1711 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1712 FD = FD ? FD->getMostRecentDecl() : FD; 1713 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1714 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1715 bool AddedAttr = false; 1716 if (TD || SD) { 1717 llvm::StringMap<bool> FeatureMap; 1718 getContext().getFunctionFeatureMap(FeatureMap, GD); 1719 1720 // Produce the canonical string for this set of features. 1721 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1722 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1723 1724 // Now add the target-cpu and target-features to the function. 1725 // While we populated the feature map above, we still need to 1726 // get and parse the target attribute so we can get the cpu for 1727 // the function. 1728 if (TD) { 1729 ParsedTargetAttr ParsedAttr = TD->parse(); 1730 if (ParsedAttr.Architecture != "" && 1731 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1732 TargetCPU = ParsedAttr.Architecture; 1733 } 1734 } else { 1735 // Otherwise just add the existing target cpu and target features to the 1736 // function. 1737 Features = getTarget().getTargetOpts().Features; 1738 } 1739 1740 if (TargetCPU != "") { 1741 Attrs.addAttribute("target-cpu", TargetCPU); 1742 AddedAttr = true; 1743 } 1744 if (!Features.empty()) { 1745 llvm::sort(Features); 1746 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1747 AddedAttr = true; 1748 } 1749 1750 return AddedAttr; 1751 } 1752 1753 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1754 llvm::GlobalObject *GO) { 1755 const Decl *D = GD.getDecl(); 1756 SetCommonAttributes(GD, GO); 1757 1758 if (D) { 1759 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1760 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1761 GV->addAttribute("bss-section", SA->getName()); 1762 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1763 GV->addAttribute("data-section", SA->getName()); 1764 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1765 GV->addAttribute("rodata-section", SA->getName()); 1766 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1767 GV->addAttribute("relro-section", SA->getName()); 1768 } 1769 1770 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1771 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1772 if (!D->getAttr<SectionAttr>()) 1773 F->addFnAttr("implicit-section-name", SA->getName()); 1774 1775 llvm::AttrBuilder Attrs; 1776 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1777 // We know that GetCPUAndFeaturesAttributes will always have the 1778 // newest set, since it has the newest possible FunctionDecl, so the 1779 // new ones should replace the old. 1780 F->removeFnAttr("target-cpu"); 1781 F->removeFnAttr("target-features"); 1782 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1783 } 1784 } 1785 1786 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1787 GO->setSection(CSA->getName()); 1788 else if (const auto *SA = D->getAttr<SectionAttr>()) 1789 GO->setSection(SA->getName()); 1790 } 1791 1792 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1793 } 1794 1795 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1796 llvm::Function *F, 1797 const CGFunctionInfo &FI) { 1798 const Decl *D = GD.getDecl(); 1799 SetLLVMFunctionAttributes(GD, FI, F); 1800 SetLLVMFunctionAttributesForDefinition(D, F); 1801 1802 F->setLinkage(llvm::Function::InternalLinkage); 1803 1804 setNonAliasAttributes(GD, F); 1805 } 1806 1807 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1808 // Set linkage and visibility in case we never see a definition. 1809 LinkageInfo LV = ND->getLinkageAndVisibility(); 1810 // Don't set internal linkage on declarations. 1811 // "extern_weak" is overloaded in LLVM; we probably should have 1812 // separate linkage types for this. 1813 if (isExternallyVisible(LV.getLinkage()) && 1814 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1815 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1816 } 1817 1818 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1819 llvm::Function *F) { 1820 // Only if we are checking indirect calls. 1821 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1822 return; 1823 1824 // Non-static class methods are handled via vtable or member function pointer 1825 // checks elsewhere. 1826 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1827 return; 1828 1829 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1830 F->addTypeMetadata(0, MD); 1831 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1832 1833 // Emit a hash-based bit set entry for cross-DSO calls. 1834 if (CodeGenOpts.SanitizeCfiCrossDso) 1835 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1836 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1837 } 1838 1839 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1840 bool IsIncompleteFunction, 1841 bool IsThunk) { 1842 1843 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1844 // If this is an intrinsic function, set the function's attributes 1845 // to the intrinsic's attributes. 1846 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1847 return; 1848 } 1849 1850 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1851 1852 if (!IsIncompleteFunction) 1853 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1854 1855 // Add the Returned attribute for "this", except for iOS 5 and earlier 1856 // where substantial code, including the libstdc++ dylib, was compiled with 1857 // GCC and does not actually return "this". 1858 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1859 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1860 assert(!F->arg_empty() && 1861 F->arg_begin()->getType() 1862 ->canLosslesslyBitCastTo(F->getReturnType()) && 1863 "unexpected this return"); 1864 F->addAttribute(1, llvm::Attribute::Returned); 1865 } 1866 1867 // Only a few attributes are set on declarations; these may later be 1868 // overridden by a definition. 1869 1870 setLinkageForGV(F, FD); 1871 setGVProperties(F, FD); 1872 1873 // Setup target-specific attributes. 1874 if (!IsIncompleteFunction && F->isDeclaration()) 1875 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1876 1877 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1878 F->setSection(CSA->getName()); 1879 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1880 F->setSection(SA->getName()); 1881 1882 if (FD->isInlineBuiltinDeclaration()) { 1883 F->addAttribute(llvm::AttributeList::FunctionIndex, 1884 llvm::Attribute::NoBuiltin); 1885 } 1886 1887 if (FD->isReplaceableGlobalAllocationFunction()) { 1888 // A replaceable global allocation function does not act like a builtin by 1889 // default, only if it is invoked by a new-expression or delete-expression. 1890 F->addAttribute(llvm::AttributeList::FunctionIndex, 1891 llvm::Attribute::NoBuiltin); 1892 } 1893 1894 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1895 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1896 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1897 if (MD->isVirtual()) 1898 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1899 1900 // Don't emit entries for function declarations in the cross-DSO mode. This 1901 // is handled with better precision by the receiving DSO. But if jump tables 1902 // are non-canonical then we need type metadata in order to produce the local 1903 // jump table. 1904 if (!CodeGenOpts.SanitizeCfiCrossDso || 1905 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1906 CreateFunctionTypeMetadataForIcall(FD, F); 1907 1908 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1909 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1910 1911 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1912 // Annotate the callback behavior as metadata: 1913 // - The callback callee (as argument number). 1914 // - The callback payloads (as argument numbers). 1915 llvm::LLVMContext &Ctx = F->getContext(); 1916 llvm::MDBuilder MDB(Ctx); 1917 1918 // The payload indices are all but the first one in the encoding. The first 1919 // identifies the callback callee. 1920 int CalleeIdx = *CB->encoding_begin(); 1921 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1922 F->addMetadata(llvm::LLVMContext::MD_callback, 1923 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1924 CalleeIdx, PayloadIndices, 1925 /* VarArgsArePassed */ false)})); 1926 } 1927 } 1928 1929 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV, bool SkipCheck) { 1930 assert(SkipCheck || (!GV->isDeclaration() && 1931 "Only globals with definition can force usage.")); 1932 LLVMUsed.emplace_back(GV); 1933 } 1934 1935 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1936 assert(!GV->isDeclaration() && 1937 "Only globals with definition can force usage."); 1938 LLVMCompilerUsed.emplace_back(GV); 1939 } 1940 1941 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1942 std::vector<llvm::WeakTrackingVH> &List) { 1943 // Don't create llvm.used if there is no need. 1944 if (List.empty()) 1945 return; 1946 1947 // Convert List to what ConstantArray needs. 1948 SmallVector<llvm::Constant*, 8> UsedArray; 1949 UsedArray.resize(List.size()); 1950 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1951 UsedArray[i] = 1952 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1953 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1954 } 1955 1956 if (UsedArray.empty()) 1957 return; 1958 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1959 1960 auto *GV = new llvm::GlobalVariable( 1961 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1962 llvm::ConstantArray::get(ATy, UsedArray), Name); 1963 1964 GV->setSection("llvm.metadata"); 1965 } 1966 1967 void CodeGenModule::emitLLVMUsed() { 1968 emitUsed(*this, "llvm.used", LLVMUsed); 1969 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1970 } 1971 1972 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1973 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1974 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1975 } 1976 1977 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1978 llvm::SmallString<32> Opt; 1979 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1980 if (Opt.empty()) 1981 return; 1982 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1983 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1984 } 1985 1986 void CodeGenModule::AddDependentLib(StringRef Lib) { 1987 auto &C = getLLVMContext(); 1988 if (getTarget().getTriple().isOSBinFormatELF()) { 1989 ELFDependentLibraries.push_back( 1990 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1991 return; 1992 } 1993 1994 llvm::SmallString<24> Opt; 1995 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1996 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1997 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1998 } 1999 2000 /// Add link options implied by the given module, including modules 2001 /// it depends on, using a postorder walk. 2002 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2003 SmallVectorImpl<llvm::MDNode *> &Metadata, 2004 llvm::SmallPtrSet<Module *, 16> &Visited) { 2005 // Import this module's parent. 2006 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2007 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2008 } 2009 2010 // Import this module's dependencies. 2011 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2012 if (Visited.insert(Mod->Imports[I - 1]).second) 2013 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2014 } 2015 2016 // Add linker options to link against the libraries/frameworks 2017 // described by this module. 2018 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2019 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2020 2021 // For modules that use export_as for linking, use that module 2022 // name instead. 2023 if (Mod->UseExportAsModuleLinkName) 2024 return; 2025 2026 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2027 // Link against a framework. Frameworks are currently Darwin only, so we 2028 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2029 if (Mod->LinkLibraries[I-1].IsFramework) { 2030 llvm::Metadata *Args[2] = { 2031 llvm::MDString::get(Context, "-framework"), 2032 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2033 2034 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2035 continue; 2036 } 2037 2038 // Link against a library. 2039 if (IsELF) { 2040 llvm::Metadata *Args[2] = { 2041 llvm::MDString::get(Context, "lib"), 2042 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2043 }; 2044 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2045 } else { 2046 llvm::SmallString<24> Opt; 2047 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2048 Mod->LinkLibraries[I - 1].Library, Opt); 2049 auto *OptString = llvm::MDString::get(Context, Opt); 2050 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2051 } 2052 } 2053 } 2054 2055 void CodeGenModule::EmitModuleLinkOptions() { 2056 // Collect the set of all of the modules we want to visit to emit link 2057 // options, which is essentially the imported modules and all of their 2058 // non-explicit child modules. 2059 llvm::SetVector<clang::Module *> LinkModules; 2060 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2061 SmallVector<clang::Module *, 16> Stack; 2062 2063 // Seed the stack with imported modules. 2064 for (Module *M : ImportedModules) { 2065 // Do not add any link flags when an implementation TU of a module imports 2066 // a header of that same module. 2067 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2068 !getLangOpts().isCompilingModule()) 2069 continue; 2070 if (Visited.insert(M).second) 2071 Stack.push_back(M); 2072 } 2073 2074 // Find all of the modules to import, making a little effort to prune 2075 // non-leaf modules. 2076 while (!Stack.empty()) { 2077 clang::Module *Mod = Stack.pop_back_val(); 2078 2079 bool AnyChildren = false; 2080 2081 // Visit the submodules of this module. 2082 for (const auto &SM : Mod->submodules()) { 2083 // Skip explicit children; they need to be explicitly imported to be 2084 // linked against. 2085 if (SM->IsExplicit) 2086 continue; 2087 2088 if (Visited.insert(SM).second) { 2089 Stack.push_back(SM); 2090 AnyChildren = true; 2091 } 2092 } 2093 2094 // We didn't find any children, so add this module to the list of 2095 // modules to link against. 2096 if (!AnyChildren) { 2097 LinkModules.insert(Mod); 2098 } 2099 } 2100 2101 // Add link options for all of the imported modules in reverse topological 2102 // order. We don't do anything to try to order import link flags with respect 2103 // to linker options inserted by things like #pragma comment(). 2104 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2105 Visited.clear(); 2106 for (Module *M : LinkModules) 2107 if (Visited.insert(M).second) 2108 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2109 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2110 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2111 2112 // Add the linker options metadata flag. 2113 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2114 for (auto *MD : LinkerOptionsMetadata) 2115 NMD->addOperand(MD); 2116 } 2117 2118 void CodeGenModule::EmitDeferred() { 2119 // Emit deferred declare target declarations. 2120 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2121 getOpenMPRuntime().emitDeferredTargetDecls(); 2122 2123 // Emit code for any potentially referenced deferred decls. Since a 2124 // previously unused static decl may become used during the generation of code 2125 // for a static function, iterate until no changes are made. 2126 2127 if (!DeferredVTables.empty()) { 2128 EmitDeferredVTables(); 2129 2130 // Emitting a vtable doesn't directly cause more vtables to 2131 // become deferred, although it can cause functions to be 2132 // emitted that then need those vtables. 2133 assert(DeferredVTables.empty()); 2134 } 2135 2136 // Stop if we're out of both deferred vtables and deferred declarations. 2137 if (DeferredDeclsToEmit.empty()) 2138 return; 2139 2140 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2141 // work, it will not interfere with this. 2142 std::vector<GlobalDecl> CurDeclsToEmit; 2143 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2144 2145 for (GlobalDecl &D : CurDeclsToEmit) { 2146 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2147 // to get GlobalValue with exactly the type we need, not something that 2148 // might had been created for another decl with the same mangled name but 2149 // different type. 2150 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2151 GetAddrOfGlobal(D, ForDefinition)); 2152 2153 // In case of different address spaces, we may still get a cast, even with 2154 // IsForDefinition equal to true. Query mangled names table to get 2155 // GlobalValue. 2156 if (!GV) 2157 GV = GetGlobalValue(getMangledName(D)); 2158 2159 // Make sure GetGlobalValue returned non-null. 2160 assert(GV); 2161 2162 // Check to see if we've already emitted this. This is necessary 2163 // for a couple of reasons: first, decls can end up in the 2164 // deferred-decls queue multiple times, and second, decls can end 2165 // up with definitions in unusual ways (e.g. by an extern inline 2166 // function acquiring a strong function redefinition). Just 2167 // ignore these cases. 2168 if (!GV->isDeclaration()) 2169 continue; 2170 2171 // If this is OpenMP, check if it is legal to emit this global normally. 2172 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2173 continue; 2174 2175 // Otherwise, emit the definition and move on to the next one. 2176 EmitGlobalDefinition(D, GV); 2177 2178 // If we found out that we need to emit more decls, do that recursively. 2179 // This has the advantage that the decls are emitted in a DFS and related 2180 // ones are close together, which is convenient for testing. 2181 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2182 EmitDeferred(); 2183 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2184 } 2185 } 2186 } 2187 2188 void CodeGenModule::EmitVTablesOpportunistically() { 2189 // Try to emit external vtables as available_externally if they have emitted 2190 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2191 // is not allowed to create new references to things that need to be emitted 2192 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2193 2194 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2195 && "Only emit opportunistic vtables with optimizations"); 2196 2197 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2198 assert(getVTables().isVTableExternal(RD) && 2199 "This queue should only contain external vtables"); 2200 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2201 VTables.GenerateClassData(RD); 2202 } 2203 OpportunisticVTables.clear(); 2204 } 2205 2206 void CodeGenModule::EmitGlobalAnnotations() { 2207 if (Annotations.empty()) 2208 return; 2209 2210 // Create a new global variable for the ConstantStruct in the Module. 2211 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2212 Annotations[0]->getType(), Annotations.size()), Annotations); 2213 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2214 llvm::GlobalValue::AppendingLinkage, 2215 Array, "llvm.global.annotations"); 2216 gv->setSection(AnnotationSection); 2217 } 2218 2219 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2220 llvm::Constant *&AStr = AnnotationStrings[Str]; 2221 if (AStr) 2222 return AStr; 2223 2224 // Not found yet, create a new global. 2225 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2226 auto *gv = 2227 new llvm::GlobalVariable(getModule(), s->getType(), true, 2228 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2229 gv->setSection(AnnotationSection); 2230 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2231 AStr = gv; 2232 return gv; 2233 } 2234 2235 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2236 SourceManager &SM = getContext().getSourceManager(); 2237 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2238 if (PLoc.isValid()) 2239 return EmitAnnotationString(PLoc.getFilename()); 2240 return EmitAnnotationString(SM.getBufferName(Loc)); 2241 } 2242 2243 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2244 SourceManager &SM = getContext().getSourceManager(); 2245 PresumedLoc PLoc = SM.getPresumedLoc(L); 2246 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2247 SM.getExpansionLineNumber(L); 2248 return llvm::ConstantInt::get(Int32Ty, LineNo); 2249 } 2250 2251 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2252 const AnnotateAttr *AA, 2253 SourceLocation L) { 2254 // Get the globals for file name, annotation, and the line number. 2255 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2256 *UnitGV = EmitAnnotationUnit(L), 2257 *LineNoCst = EmitAnnotationLineNo(L); 2258 2259 llvm::Constant *ASZeroGV = GV; 2260 if (GV->getAddressSpace() != 0) { 2261 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2262 GV, GV->getValueType()->getPointerTo(0)); 2263 } 2264 2265 // Create the ConstantStruct for the global annotation. 2266 llvm::Constant *Fields[4] = { 2267 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2268 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2269 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2270 LineNoCst 2271 }; 2272 return llvm::ConstantStruct::getAnon(Fields); 2273 } 2274 2275 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2276 llvm::GlobalValue *GV) { 2277 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2278 // Get the struct elements for these annotations. 2279 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2280 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2281 } 2282 2283 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2284 llvm::Function *Fn, 2285 SourceLocation Loc) const { 2286 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2287 // Blacklist by function name. 2288 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2289 return true; 2290 // Blacklist by location. 2291 if (Loc.isValid()) 2292 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2293 // If location is unknown, this may be a compiler-generated function. Assume 2294 // it's located in the main file. 2295 auto &SM = Context.getSourceManager(); 2296 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2297 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2298 } 2299 return false; 2300 } 2301 2302 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2303 SourceLocation Loc, QualType Ty, 2304 StringRef Category) const { 2305 // For now globals can be blacklisted only in ASan and KASan. 2306 const SanitizerMask EnabledAsanMask = 2307 LangOpts.Sanitize.Mask & 2308 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2309 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2310 SanitizerKind::MemTag); 2311 if (!EnabledAsanMask) 2312 return false; 2313 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2314 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2315 return true; 2316 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2317 return true; 2318 // Check global type. 2319 if (!Ty.isNull()) { 2320 // Drill down the array types: if global variable of a fixed type is 2321 // blacklisted, we also don't instrument arrays of them. 2322 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2323 Ty = AT->getElementType(); 2324 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2325 // We allow to blacklist only record types (classes, structs etc.) 2326 if (Ty->isRecordType()) { 2327 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2328 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2329 return true; 2330 } 2331 } 2332 return false; 2333 } 2334 2335 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2336 StringRef Category) const { 2337 const auto &XRayFilter = getContext().getXRayFilter(); 2338 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2339 auto Attr = ImbueAttr::NONE; 2340 if (Loc.isValid()) 2341 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2342 if (Attr == ImbueAttr::NONE) 2343 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2344 switch (Attr) { 2345 case ImbueAttr::NONE: 2346 return false; 2347 case ImbueAttr::ALWAYS: 2348 Fn->addFnAttr("function-instrument", "xray-always"); 2349 break; 2350 case ImbueAttr::ALWAYS_ARG1: 2351 Fn->addFnAttr("function-instrument", "xray-always"); 2352 Fn->addFnAttr("xray-log-args", "1"); 2353 break; 2354 case ImbueAttr::NEVER: 2355 Fn->addFnAttr("function-instrument", "xray-never"); 2356 break; 2357 } 2358 return true; 2359 } 2360 2361 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2362 // Never defer when EmitAllDecls is specified. 2363 if (LangOpts.EmitAllDecls) 2364 return true; 2365 2366 if (CodeGenOpts.KeepStaticConsts) { 2367 const auto *VD = dyn_cast<VarDecl>(Global); 2368 if (VD && VD->getType().isConstQualified() && 2369 VD->getStorageDuration() == SD_Static) 2370 return true; 2371 } 2372 2373 return getContext().DeclMustBeEmitted(Global); 2374 } 2375 2376 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2377 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2378 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2379 // Implicit template instantiations may change linkage if they are later 2380 // explicitly instantiated, so they should not be emitted eagerly. 2381 return false; 2382 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2383 // not emit them eagerly unless we sure that the function must be emitted on 2384 // the host. 2385 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2386 !LangOpts.OpenMPIsDevice && 2387 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2388 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2389 return false; 2390 } 2391 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2392 if (Context.getInlineVariableDefinitionKind(VD) == 2393 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2394 // A definition of an inline constexpr static data member may change 2395 // linkage later if it's redeclared outside the class. 2396 return false; 2397 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2398 // codegen for global variables, because they may be marked as threadprivate. 2399 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2400 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2401 !isTypeConstant(Global->getType(), false) && 2402 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2403 return false; 2404 2405 return true; 2406 } 2407 2408 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2409 const CXXUuidofExpr* E) { 2410 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2411 // well-formed. 2412 StringRef Uuid = E->getUuidStr(); 2413 std::string Name = "_GUID_" + Uuid.lower(); 2414 std::replace(Name.begin(), Name.end(), '-', '_'); 2415 2416 // The UUID descriptor should be pointer aligned. 2417 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2418 2419 // Look for an existing global. 2420 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2421 return ConstantAddress(GV, Alignment); 2422 2423 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2424 assert(Init && "failed to initialize as constant"); 2425 2426 auto *GV = new llvm::GlobalVariable( 2427 getModule(), Init->getType(), 2428 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2429 if (supportsCOMDAT()) 2430 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2431 setDSOLocal(GV); 2432 return ConstantAddress(GV, Alignment); 2433 } 2434 2435 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2436 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2437 assert(AA && "No alias?"); 2438 2439 CharUnits Alignment = getContext().getDeclAlign(VD); 2440 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2441 2442 // See if there is already something with the target's name in the module. 2443 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2444 if (Entry) { 2445 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2446 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2447 return ConstantAddress(Ptr, Alignment); 2448 } 2449 2450 llvm::Constant *Aliasee; 2451 if (isa<llvm::FunctionType>(DeclTy)) 2452 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2453 GlobalDecl(cast<FunctionDecl>(VD)), 2454 /*ForVTable=*/false); 2455 else 2456 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2457 llvm::PointerType::getUnqual(DeclTy), 2458 nullptr); 2459 2460 auto *F = cast<llvm::GlobalValue>(Aliasee); 2461 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2462 WeakRefReferences.insert(F); 2463 2464 return ConstantAddress(Aliasee, Alignment); 2465 } 2466 2467 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2468 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2469 2470 // Weak references don't produce any output by themselves. 2471 if (Global->hasAttr<WeakRefAttr>()) 2472 return; 2473 2474 // If this is an alias definition (which otherwise looks like a declaration) 2475 // emit it now. 2476 if (Global->hasAttr<AliasAttr>()) 2477 return EmitAliasDefinition(GD); 2478 2479 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2480 if (Global->hasAttr<IFuncAttr>()) 2481 return emitIFuncDefinition(GD); 2482 2483 // If this is a cpu_dispatch multiversion function, emit the resolver. 2484 if (Global->hasAttr<CPUDispatchAttr>()) 2485 return emitCPUDispatchDefinition(GD); 2486 2487 // If this is CUDA, be selective about which declarations we emit. 2488 if (LangOpts.CUDA) { 2489 if (LangOpts.CUDAIsDevice) { 2490 if (!Global->hasAttr<CUDADeviceAttr>() && 2491 !Global->hasAttr<CUDAGlobalAttr>() && 2492 !Global->hasAttr<CUDAConstantAttr>() && 2493 !Global->hasAttr<CUDASharedAttr>() && 2494 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2495 return; 2496 } else { 2497 // We need to emit host-side 'shadows' for all global 2498 // device-side variables because the CUDA runtime needs their 2499 // size and host-side address in order to provide access to 2500 // their device-side incarnations. 2501 2502 // So device-only functions are the only things we skip. 2503 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2504 Global->hasAttr<CUDADeviceAttr>()) 2505 return; 2506 2507 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2508 "Expected Variable or Function"); 2509 } 2510 } 2511 2512 if (LangOpts.OpenMP) { 2513 // If this is OpenMP, check if it is legal to emit this global normally. 2514 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2515 return; 2516 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2517 if (MustBeEmitted(Global)) 2518 EmitOMPDeclareReduction(DRD); 2519 return; 2520 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2521 if (MustBeEmitted(Global)) 2522 EmitOMPDeclareMapper(DMD); 2523 return; 2524 } 2525 } 2526 2527 // Ignore declarations, they will be emitted on their first use. 2528 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2529 // Forward declarations are emitted lazily on first use. 2530 if (!FD->doesThisDeclarationHaveABody()) { 2531 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2532 return; 2533 2534 StringRef MangledName = getMangledName(GD); 2535 2536 // Compute the function info and LLVM type. 2537 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2538 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2539 2540 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2541 /*DontDefer=*/false); 2542 return; 2543 } 2544 } else { 2545 const auto *VD = cast<VarDecl>(Global); 2546 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2547 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2548 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2549 if (LangOpts.OpenMP) { 2550 // Emit declaration of the must-be-emitted declare target variable. 2551 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2552 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2553 bool UnifiedMemoryEnabled = 2554 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2555 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2556 !UnifiedMemoryEnabled) { 2557 (void)GetAddrOfGlobalVar(VD); 2558 } else { 2559 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2560 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2561 UnifiedMemoryEnabled)) && 2562 "Link clause or to clause with unified memory expected."); 2563 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2564 } 2565 2566 return; 2567 } 2568 } 2569 // If this declaration may have caused an inline variable definition to 2570 // change linkage, make sure that it's emitted. 2571 if (Context.getInlineVariableDefinitionKind(VD) == 2572 ASTContext::InlineVariableDefinitionKind::Strong) 2573 GetAddrOfGlobalVar(VD); 2574 return; 2575 } 2576 } 2577 2578 // Defer code generation to first use when possible, e.g. if this is an inline 2579 // function. If the global must always be emitted, do it eagerly if possible 2580 // to benefit from cache locality. 2581 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2582 // Emit the definition if it can't be deferred. 2583 EmitGlobalDefinition(GD); 2584 return; 2585 } 2586 2587 // Check if this must be emitted as declare variant. 2588 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime && 2589 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false)) 2590 return; 2591 2592 // If we're deferring emission of a C++ variable with an 2593 // initializer, remember the order in which it appeared in the file. 2594 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2595 cast<VarDecl>(Global)->hasInit()) { 2596 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2597 CXXGlobalInits.push_back(nullptr); 2598 } 2599 2600 StringRef MangledName = getMangledName(GD); 2601 if (GetGlobalValue(MangledName) != nullptr) { 2602 // The value has already been used and should therefore be emitted. 2603 addDeferredDeclToEmit(GD); 2604 } else if (MustBeEmitted(Global)) { 2605 // The value must be emitted, but cannot be emitted eagerly. 2606 assert(!MayBeEmittedEagerly(Global)); 2607 addDeferredDeclToEmit(GD); 2608 } else { 2609 // Otherwise, remember that we saw a deferred decl with this name. The 2610 // first use of the mangled name will cause it to move into 2611 // DeferredDeclsToEmit. 2612 DeferredDecls[MangledName] = GD; 2613 } 2614 } 2615 2616 // Check if T is a class type with a destructor that's not dllimport. 2617 static bool HasNonDllImportDtor(QualType T) { 2618 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2619 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2620 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2621 return true; 2622 2623 return false; 2624 } 2625 2626 namespace { 2627 struct FunctionIsDirectlyRecursive 2628 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2629 const StringRef Name; 2630 const Builtin::Context &BI; 2631 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2632 : Name(N), BI(C) {} 2633 2634 bool VisitCallExpr(const CallExpr *E) { 2635 const FunctionDecl *FD = E->getDirectCallee(); 2636 if (!FD) 2637 return false; 2638 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2639 if (Attr && Name == Attr->getLabel()) 2640 return true; 2641 unsigned BuiltinID = FD->getBuiltinID(); 2642 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2643 return false; 2644 StringRef BuiltinName = BI.getName(BuiltinID); 2645 if (BuiltinName.startswith("__builtin_") && 2646 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2647 return true; 2648 } 2649 return false; 2650 } 2651 2652 bool VisitStmt(const Stmt *S) { 2653 for (const Stmt *Child : S->children()) 2654 if (Child && this->Visit(Child)) 2655 return true; 2656 return false; 2657 } 2658 }; 2659 2660 // Make sure we're not referencing non-imported vars or functions. 2661 struct DLLImportFunctionVisitor 2662 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2663 bool SafeToInline = true; 2664 2665 bool shouldVisitImplicitCode() const { return true; } 2666 2667 bool VisitVarDecl(VarDecl *VD) { 2668 if (VD->getTLSKind()) { 2669 // A thread-local variable cannot be imported. 2670 SafeToInline = false; 2671 return SafeToInline; 2672 } 2673 2674 // A variable definition might imply a destructor call. 2675 if (VD->isThisDeclarationADefinition()) 2676 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2677 2678 return SafeToInline; 2679 } 2680 2681 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2682 if (const auto *D = E->getTemporary()->getDestructor()) 2683 SafeToInline = D->hasAttr<DLLImportAttr>(); 2684 return SafeToInline; 2685 } 2686 2687 bool VisitDeclRefExpr(DeclRefExpr *E) { 2688 ValueDecl *VD = E->getDecl(); 2689 if (isa<FunctionDecl>(VD)) 2690 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2691 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2692 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2693 return SafeToInline; 2694 } 2695 2696 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2697 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2698 return SafeToInline; 2699 } 2700 2701 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2702 CXXMethodDecl *M = E->getMethodDecl(); 2703 if (!M) { 2704 // Call through a pointer to member function. This is safe to inline. 2705 SafeToInline = true; 2706 } else { 2707 SafeToInline = M->hasAttr<DLLImportAttr>(); 2708 } 2709 return SafeToInline; 2710 } 2711 2712 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2713 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2714 return SafeToInline; 2715 } 2716 2717 bool VisitCXXNewExpr(CXXNewExpr *E) { 2718 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2719 return SafeToInline; 2720 } 2721 }; 2722 } 2723 2724 // isTriviallyRecursive - Check if this function calls another 2725 // decl that, because of the asm attribute or the other decl being a builtin, 2726 // ends up pointing to itself. 2727 bool 2728 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2729 StringRef Name; 2730 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2731 // asm labels are a special kind of mangling we have to support. 2732 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2733 if (!Attr) 2734 return false; 2735 Name = Attr->getLabel(); 2736 } else { 2737 Name = FD->getName(); 2738 } 2739 2740 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2741 const Stmt *Body = FD->getBody(); 2742 return Body ? Walker.Visit(Body) : false; 2743 } 2744 2745 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2746 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2747 return true; 2748 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2749 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2750 return false; 2751 2752 if (F->hasAttr<DLLImportAttr>()) { 2753 // Check whether it would be safe to inline this dllimport function. 2754 DLLImportFunctionVisitor Visitor; 2755 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2756 if (!Visitor.SafeToInline) 2757 return false; 2758 2759 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2760 // Implicit destructor invocations aren't captured in the AST, so the 2761 // check above can't see them. Check for them manually here. 2762 for (const Decl *Member : Dtor->getParent()->decls()) 2763 if (isa<FieldDecl>(Member)) 2764 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2765 return false; 2766 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2767 if (HasNonDllImportDtor(B.getType())) 2768 return false; 2769 } 2770 } 2771 2772 // PR9614. Avoid cases where the source code is lying to us. An available 2773 // externally function should have an equivalent function somewhere else, 2774 // but a function that calls itself is clearly not equivalent to the real 2775 // implementation. 2776 // This happens in glibc's btowc and in some configure checks. 2777 return !isTriviallyRecursive(F); 2778 } 2779 2780 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2781 return CodeGenOpts.OptimizationLevel > 0; 2782 } 2783 2784 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2785 llvm::GlobalValue *GV) { 2786 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2787 2788 if (FD->isCPUSpecificMultiVersion()) { 2789 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2790 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2791 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2792 // Requires multiple emits. 2793 } else 2794 EmitGlobalFunctionDefinition(GD, GV); 2795 } 2796 2797 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition( 2798 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) { 2799 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2800 OpenMPRuntime && "Expected OpenMP device mode."); 2801 const auto *D = cast<FunctionDecl>(OldGD.getDecl()); 2802 2803 // Compute the function info and LLVM type. 2804 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD); 2805 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2806 2807 // Get or create the prototype for the function. 2808 if (!GV || (GV->getType()->getElementType() != Ty)) { 2809 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction( 2810 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false, 2811 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), 2812 ForDefinition)); 2813 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV), 2814 /*IsIncompleteFunction=*/false, 2815 /*IsThunk=*/false); 2816 } 2817 // We need to set linkage and visibility on the function before 2818 // generating code for it because various parts of IR generation 2819 // want to propagate this information down (e.g. to local static 2820 // declarations). 2821 auto *Fn = cast<llvm::Function>(GV); 2822 setFunctionLinkage(OldGD, Fn); 2823 2824 // FIXME: this is redundant with part of 2825 // setFunctionDefinitionAttributes 2826 setGVProperties(Fn, OldGD); 2827 2828 MaybeHandleStaticInExternC(D, Fn); 2829 2830 maybeSetTrivialComdat(*D, *Fn); 2831 2832 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI); 2833 2834 setNonAliasAttributes(OldGD, Fn); 2835 SetLLVMFunctionAttributesForDefinition(D, Fn); 2836 2837 if (D->hasAttr<AnnotateAttr>()) 2838 AddGlobalAnnotations(D, Fn); 2839 } 2840 2841 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2842 const auto *D = cast<ValueDecl>(GD.getDecl()); 2843 2844 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2845 Context.getSourceManager(), 2846 "Generating code for declaration"); 2847 2848 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2849 // At -O0, don't generate IR for functions with available_externally 2850 // linkage. 2851 if (!shouldEmitFunction(GD)) 2852 return; 2853 2854 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2855 std::string Name; 2856 llvm::raw_string_ostream OS(Name); 2857 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2858 /*Qualified=*/true); 2859 return Name; 2860 }); 2861 2862 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2863 // Make sure to emit the definition(s) before we emit the thunks. 2864 // This is necessary for the generation of certain thunks. 2865 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2866 ABI->emitCXXStructor(GD); 2867 else if (FD->isMultiVersion()) 2868 EmitMultiVersionFunctionDefinition(GD, GV); 2869 else 2870 EmitGlobalFunctionDefinition(GD, GV); 2871 2872 if (Method->isVirtual()) 2873 getVTables().EmitThunks(GD); 2874 2875 return; 2876 } 2877 2878 if (FD->isMultiVersion()) 2879 return EmitMultiVersionFunctionDefinition(GD, GV); 2880 return EmitGlobalFunctionDefinition(GD, GV); 2881 } 2882 2883 if (const auto *VD = dyn_cast<VarDecl>(D)) 2884 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2885 2886 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2887 } 2888 2889 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2890 llvm::Function *NewFn); 2891 2892 static unsigned 2893 TargetMVPriority(const TargetInfo &TI, 2894 const CodeGenFunction::MultiVersionResolverOption &RO) { 2895 unsigned Priority = 0; 2896 for (StringRef Feat : RO.Conditions.Features) 2897 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2898 2899 if (!RO.Conditions.Architecture.empty()) 2900 Priority = std::max( 2901 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2902 return Priority; 2903 } 2904 2905 void CodeGenModule::emitMultiVersionFunctions() { 2906 for (GlobalDecl GD : MultiVersionFuncs) { 2907 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2908 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2909 getContext().forEachMultiversionedFunctionVersion( 2910 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2911 GlobalDecl CurGD{ 2912 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2913 StringRef MangledName = getMangledName(CurGD); 2914 llvm::Constant *Func = GetGlobalValue(MangledName); 2915 if (!Func) { 2916 if (CurFD->isDefined()) { 2917 EmitGlobalFunctionDefinition(CurGD, nullptr); 2918 Func = GetGlobalValue(MangledName); 2919 } else { 2920 const CGFunctionInfo &FI = 2921 getTypes().arrangeGlobalDeclaration(GD); 2922 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2923 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2924 /*DontDefer=*/false, ForDefinition); 2925 } 2926 assert(Func && "This should have just been created"); 2927 } 2928 2929 const auto *TA = CurFD->getAttr<TargetAttr>(); 2930 llvm::SmallVector<StringRef, 8> Feats; 2931 TA->getAddedFeatures(Feats); 2932 2933 Options.emplace_back(cast<llvm::Function>(Func), 2934 TA->getArchitecture(), Feats); 2935 }); 2936 2937 llvm::Function *ResolverFunc; 2938 const TargetInfo &TI = getTarget(); 2939 2940 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2941 ResolverFunc = cast<llvm::Function>( 2942 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2943 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2944 } else { 2945 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2946 } 2947 2948 if (supportsCOMDAT()) 2949 ResolverFunc->setComdat( 2950 getModule().getOrInsertComdat(ResolverFunc->getName())); 2951 2952 llvm::stable_sort( 2953 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2954 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2955 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2956 }); 2957 CodeGenFunction CGF(*this); 2958 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2959 } 2960 } 2961 2962 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2963 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2964 assert(FD && "Not a FunctionDecl?"); 2965 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2966 assert(DD && "Not a cpu_dispatch Function?"); 2967 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2968 2969 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2970 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2971 DeclTy = getTypes().GetFunctionType(FInfo); 2972 } 2973 2974 StringRef ResolverName = getMangledName(GD); 2975 2976 llvm::Type *ResolverType; 2977 GlobalDecl ResolverGD; 2978 if (getTarget().supportsIFunc()) 2979 ResolverType = llvm::FunctionType::get( 2980 llvm::PointerType::get(DeclTy, 2981 Context.getTargetAddressSpace(FD->getType())), 2982 false); 2983 else { 2984 ResolverType = DeclTy; 2985 ResolverGD = GD; 2986 } 2987 2988 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2989 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2990 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2991 if (supportsCOMDAT()) 2992 ResolverFunc->setComdat( 2993 getModule().getOrInsertComdat(ResolverFunc->getName())); 2994 2995 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2996 const TargetInfo &Target = getTarget(); 2997 unsigned Index = 0; 2998 for (const IdentifierInfo *II : DD->cpus()) { 2999 // Get the name of the target function so we can look it up/create it. 3000 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3001 getCPUSpecificMangling(*this, II->getName()); 3002 3003 llvm::Constant *Func = GetGlobalValue(MangledName); 3004 3005 if (!Func) { 3006 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3007 if (ExistingDecl.getDecl() && 3008 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3009 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3010 Func = GetGlobalValue(MangledName); 3011 } else { 3012 if (!ExistingDecl.getDecl()) 3013 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3014 3015 Func = GetOrCreateLLVMFunction( 3016 MangledName, DeclTy, ExistingDecl, 3017 /*ForVTable=*/false, /*DontDefer=*/true, 3018 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3019 } 3020 } 3021 3022 llvm::SmallVector<StringRef, 32> Features; 3023 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3024 llvm::transform(Features, Features.begin(), 3025 [](StringRef Str) { return Str.substr(1); }); 3026 Features.erase(std::remove_if( 3027 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3028 return !Target.validateCpuSupports(Feat); 3029 }), Features.end()); 3030 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3031 ++Index; 3032 } 3033 3034 llvm::sort( 3035 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3036 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3037 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3038 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3039 }); 3040 3041 // If the list contains multiple 'default' versions, such as when it contains 3042 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3043 // always run on at least a 'pentium'). We do this by deleting the 'least 3044 // advanced' (read, lowest mangling letter). 3045 while (Options.size() > 1 && 3046 CodeGenFunction::GetX86CpuSupportsMask( 3047 (Options.end() - 2)->Conditions.Features) == 0) { 3048 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3049 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3050 if (LHSName.compare(RHSName) < 0) 3051 Options.erase(Options.end() - 2); 3052 else 3053 Options.erase(Options.end() - 1); 3054 } 3055 3056 CodeGenFunction CGF(*this); 3057 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3058 3059 if (getTarget().supportsIFunc()) { 3060 std::string AliasName = getMangledNameImpl( 3061 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3062 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3063 if (!AliasFunc) { 3064 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3065 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3066 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3067 auto *GA = llvm::GlobalAlias::create( 3068 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3069 GA->setLinkage(llvm::Function::WeakODRLinkage); 3070 SetCommonAttributes(GD, GA); 3071 } 3072 } 3073 } 3074 3075 /// If a dispatcher for the specified mangled name is not in the module, create 3076 /// and return an llvm Function with the specified type. 3077 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3078 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3079 std::string MangledName = 3080 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3081 3082 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3083 // a separate resolver). 3084 std::string ResolverName = MangledName; 3085 if (getTarget().supportsIFunc()) 3086 ResolverName += ".ifunc"; 3087 else if (FD->isTargetMultiVersion()) 3088 ResolverName += ".resolver"; 3089 3090 // If this already exists, just return that one. 3091 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3092 return ResolverGV; 3093 3094 // Since this is the first time we've created this IFunc, make sure 3095 // that we put this multiversioned function into the list to be 3096 // replaced later if necessary (target multiversioning only). 3097 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3098 MultiVersionFuncs.push_back(GD); 3099 3100 if (getTarget().supportsIFunc()) { 3101 llvm::Type *ResolverType = llvm::FunctionType::get( 3102 llvm::PointerType::get( 3103 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3104 false); 3105 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3106 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3107 /*ForVTable=*/false); 3108 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3109 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3110 GIF->setName(ResolverName); 3111 SetCommonAttributes(FD, GIF); 3112 3113 return GIF; 3114 } 3115 3116 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3117 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3118 assert(isa<llvm::GlobalValue>(Resolver) && 3119 "Resolver should be created for the first time"); 3120 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3121 return Resolver; 3122 } 3123 3124 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3125 /// module, create and return an llvm Function with the specified type. If there 3126 /// is something in the module with the specified name, return it potentially 3127 /// bitcasted to the right type. 3128 /// 3129 /// If D is non-null, it specifies a decl that correspond to this. This is used 3130 /// to set the attributes on the function when it is first created. 3131 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3132 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3133 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3134 ForDefinition_t IsForDefinition) { 3135 const Decl *D = GD.getDecl(); 3136 3137 // Any attempts to use a MultiVersion function should result in retrieving 3138 // the iFunc instead. Name Mangling will handle the rest of the changes. 3139 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3140 // For the device mark the function as one that should be emitted. 3141 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3142 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3143 !DontDefer && !IsForDefinition) { 3144 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3145 GlobalDecl GDDef; 3146 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3147 GDDef = GlobalDecl(CD, GD.getCtorType()); 3148 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3149 GDDef = GlobalDecl(DD, GD.getDtorType()); 3150 else 3151 GDDef = GlobalDecl(FDDef); 3152 EmitGlobal(GDDef); 3153 } 3154 } 3155 // Check if this must be emitted as declare variant and emit reference to 3156 // the the declare variant function. 3157 if (LangOpts.OpenMP && OpenMPRuntime) 3158 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true); 3159 3160 if (FD->isMultiVersion()) { 3161 if (FD->hasAttr<TargetAttr>()) 3162 UpdateMultiVersionNames(GD, FD); 3163 if (!IsForDefinition) 3164 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3165 } 3166 } 3167 3168 // Lookup the entry, lazily creating it if necessary. 3169 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3170 if (Entry) { 3171 if (WeakRefReferences.erase(Entry)) { 3172 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3173 if (FD && !FD->hasAttr<WeakAttr>()) 3174 Entry->setLinkage(llvm::Function::ExternalLinkage); 3175 } 3176 3177 // Handle dropped DLL attributes. 3178 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3179 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3180 setDSOLocal(Entry); 3181 } 3182 3183 // If there are two attempts to define the same mangled name, issue an 3184 // error. 3185 if (IsForDefinition && !Entry->isDeclaration()) { 3186 GlobalDecl OtherGD; 3187 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3188 // to make sure that we issue an error only once. 3189 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3190 (GD.getCanonicalDecl().getDecl() != 3191 OtherGD.getCanonicalDecl().getDecl()) && 3192 DiagnosedConflictingDefinitions.insert(GD).second) { 3193 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3194 << MangledName; 3195 getDiags().Report(OtherGD.getDecl()->getLocation(), 3196 diag::note_previous_definition); 3197 } 3198 } 3199 3200 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3201 (Entry->getType()->getElementType() == Ty)) { 3202 return Entry; 3203 } 3204 3205 // Make sure the result is of the correct type. 3206 // (If function is requested for a definition, we always need to create a new 3207 // function, not just return a bitcast.) 3208 if (!IsForDefinition) 3209 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3210 } 3211 3212 // This function doesn't have a complete type (for example, the return 3213 // type is an incomplete struct). Use a fake type instead, and make 3214 // sure not to try to set attributes. 3215 bool IsIncompleteFunction = false; 3216 3217 llvm::FunctionType *FTy; 3218 if (isa<llvm::FunctionType>(Ty)) { 3219 FTy = cast<llvm::FunctionType>(Ty); 3220 } else { 3221 FTy = llvm::FunctionType::get(VoidTy, false); 3222 IsIncompleteFunction = true; 3223 } 3224 3225 llvm::Function *F = 3226 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3227 Entry ? StringRef() : MangledName, &getModule()); 3228 3229 // If we already created a function with the same mangled name (but different 3230 // type) before, take its name and add it to the list of functions to be 3231 // replaced with F at the end of CodeGen. 3232 // 3233 // This happens if there is a prototype for a function (e.g. "int f()") and 3234 // then a definition of a different type (e.g. "int f(int x)"). 3235 if (Entry) { 3236 F->takeName(Entry); 3237 3238 // This might be an implementation of a function without a prototype, in 3239 // which case, try to do special replacement of calls which match the new 3240 // prototype. The really key thing here is that we also potentially drop 3241 // arguments from the call site so as to make a direct call, which makes the 3242 // inliner happier and suppresses a number of optimizer warnings (!) about 3243 // dropping arguments. 3244 if (!Entry->use_empty()) { 3245 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3246 Entry->removeDeadConstantUsers(); 3247 } 3248 3249 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3250 F, Entry->getType()->getElementType()->getPointerTo()); 3251 addGlobalValReplacement(Entry, BC); 3252 } 3253 3254 assert(F->getName() == MangledName && "name was uniqued!"); 3255 if (D) 3256 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3257 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3258 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3259 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3260 } 3261 3262 if (!DontDefer) { 3263 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3264 // each other bottoming out with the base dtor. Therefore we emit non-base 3265 // dtors on usage, even if there is no dtor definition in the TU. 3266 if (D && isa<CXXDestructorDecl>(D) && 3267 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3268 GD.getDtorType())) 3269 addDeferredDeclToEmit(GD); 3270 3271 // This is the first use or definition of a mangled name. If there is a 3272 // deferred decl with this name, remember that we need to emit it at the end 3273 // of the file. 3274 auto DDI = DeferredDecls.find(MangledName); 3275 if (DDI != DeferredDecls.end()) { 3276 // Move the potentially referenced deferred decl to the 3277 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3278 // don't need it anymore). 3279 addDeferredDeclToEmit(DDI->second); 3280 DeferredDecls.erase(DDI); 3281 3282 // Otherwise, there are cases we have to worry about where we're 3283 // using a declaration for which we must emit a definition but where 3284 // we might not find a top-level definition: 3285 // - member functions defined inline in their classes 3286 // - friend functions defined inline in some class 3287 // - special member functions with implicit definitions 3288 // If we ever change our AST traversal to walk into class methods, 3289 // this will be unnecessary. 3290 // 3291 // We also don't emit a definition for a function if it's going to be an 3292 // entry in a vtable, unless it's already marked as used. 3293 } else if (getLangOpts().CPlusPlus && D) { 3294 // Look for a declaration that's lexically in a record. 3295 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3296 FD = FD->getPreviousDecl()) { 3297 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3298 if (FD->doesThisDeclarationHaveABody()) { 3299 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3300 break; 3301 } 3302 } 3303 } 3304 } 3305 } 3306 3307 // Make sure the result is of the requested type. 3308 if (!IsIncompleteFunction) { 3309 assert(F->getType()->getElementType() == Ty); 3310 return F; 3311 } 3312 3313 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3314 return llvm::ConstantExpr::getBitCast(F, PTy); 3315 } 3316 3317 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3318 /// non-null, then this function will use the specified type if it has to 3319 /// create it (this occurs when we see a definition of the function). 3320 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3321 llvm::Type *Ty, 3322 bool ForVTable, 3323 bool DontDefer, 3324 ForDefinition_t IsForDefinition) { 3325 // If there was no specific requested type, just convert it now. 3326 if (!Ty) { 3327 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3328 Ty = getTypes().ConvertType(FD->getType()); 3329 } 3330 3331 // Devirtualized destructor calls may come through here instead of via 3332 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3333 // of the complete destructor when necessary. 3334 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3335 if (getTarget().getCXXABI().isMicrosoft() && 3336 GD.getDtorType() == Dtor_Complete && 3337 DD->getParent()->getNumVBases() == 0) 3338 GD = GlobalDecl(DD, Dtor_Base); 3339 } 3340 3341 StringRef MangledName = getMangledName(GD); 3342 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3343 /*IsThunk=*/false, llvm::AttributeList(), 3344 IsForDefinition); 3345 } 3346 3347 static const FunctionDecl * 3348 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3349 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3350 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3351 3352 IdentifierInfo &CII = C.Idents.get(Name); 3353 for (const auto &Result : DC->lookup(&CII)) 3354 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3355 return FD; 3356 3357 if (!C.getLangOpts().CPlusPlus) 3358 return nullptr; 3359 3360 // Demangle the premangled name from getTerminateFn() 3361 IdentifierInfo &CXXII = 3362 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3363 ? C.Idents.get("terminate") 3364 : C.Idents.get(Name); 3365 3366 for (const auto &N : {"__cxxabiv1", "std"}) { 3367 IdentifierInfo &NS = C.Idents.get(N); 3368 for (const auto &Result : DC->lookup(&NS)) { 3369 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3370 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3371 for (const auto &Result : LSD->lookup(&NS)) 3372 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3373 break; 3374 3375 if (ND) 3376 for (const auto &Result : ND->lookup(&CXXII)) 3377 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3378 return FD; 3379 } 3380 } 3381 3382 return nullptr; 3383 } 3384 3385 /// CreateRuntimeFunction - Create a new runtime function with the specified 3386 /// type and name. 3387 llvm::FunctionCallee 3388 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3389 llvm::AttributeList ExtraAttrs, bool Local, 3390 bool AssumeConvergent) { 3391 if (AssumeConvergent) { 3392 ExtraAttrs = 3393 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3394 llvm::Attribute::Convergent); 3395 } 3396 3397 llvm::Constant *C = 3398 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3399 /*DontDefer=*/false, /*IsThunk=*/false, 3400 ExtraAttrs); 3401 3402 if (auto *F = dyn_cast<llvm::Function>(C)) { 3403 if (F->empty()) { 3404 F->setCallingConv(getRuntimeCC()); 3405 3406 // In Windows Itanium environments, try to mark runtime functions 3407 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3408 // will link their standard library statically or dynamically. Marking 3409 // functions imported when they are not imported can cause linker errors 3410 // and warnings. 3411 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3412 !getCodeGenOpts().LTOVisibilityPublicStd) { 3413 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3414 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3415 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3416 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3417 } 3418 } 3419 setDSOLocal(F); 3420 } 3421 } 3422 3423 return {FTy, C}; 3424 } 3425 3426 /// isTypeConstant - Determine whether an object of this type can be emitted 3427 /// as a constant. 3428 /// 3429 /// If ExcludeCtor is true, the duration when the object's constructor runs 3430 /// will not be considered. The caller will need to verify that the object is 3431 /// not written to during its construction. 3432 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3433 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3434 return false; 3435 3436 if (Context.getLangOpts().CPlusPlus) { 3437 if (const CXXRecordDecl *Record 3438 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3439 return ExcludeCtor && !Record->hasMutableFields() && 3440 Record->hasTrivialDestructor(); 3441 } 3442 3443 return true; 3444 } 3445 3446 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3447 /// create and return an llvm GlobalVariable with the specified type. If there 3448 /// is something in the module with the specified name, return it potentially 3449 /// bitcasted to the right type. 3450 /// 3451 /// If D is non-null, it specifies a decl that correspond to this. This is used 3452 /// to set the attributes on the global when it is first created. 3453 /// 3454 /// If IsForDefinition is true, it is guaranteed that an actual global with 3455 /// type Ty will be returned, not conversion of a variable with the same 3456 /// mangled name but some other type. 3457 llvm::Constant * 3458 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3459 llvm::PointerType *Ty, 3460 const VarDecl *D, 3461 ForDefinition_t IsForDefinition) { 3462 // Lookup the entry, lazily creating it if necessary. 3463 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3464 if (Entry) { 3465 if (WeakRefReferences.erase(Entry)) { 3466 if (D && !D->hasAttr<WeakAttr>()) 3467 Entry->setLinkage(llvm::Function::ExternalLinkage); 3468 } 3469 3470 // Handle dropped DLL attributes. 3471 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3472 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3473 3474 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3475 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3476 3477 if (Entry->getType() == Ty) 3478 return Entry; 3479 3480 // If there are two attempts to define the same mangled name, issue an 3481 // error. 3482 if (IsForDefinition && !Entry->isDeclaration()) { 3483 GlobalDecl OtherGD; 3484 const VarDecl *OtherD; 3485 3486 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3487 // to make sure that we issue an error only once. 3488 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3489 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3490 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3491 OtherD->hasInit() && 3492 DiagnosedConflictingDefinitions.insert(D).second) { 3493 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3494 << MangledName; 3495 getDiags().Report(OtherGD.getDecl()->getLocation(), 3496 diag::note_previous_definition); 3497 } 3498 } 3499 3500 // Make sure the result is of the correct type. 3501 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3502 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3503 3504 // (If global is requested for a definition, we always need to create a new 3505 // global, not just return a bitcast.) 3506 if (!IsForDefinition) 3507 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3508 } 3509 3510 auto AddrSpace = GetGlobalVarAddressSpace(D); 3511 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3512 3513 auto *GV = new llvm::GlobalVariable( 3514 getModule(), Ty->getElementType(), false, 3515 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3516 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3517 3518 // If we already created a global with the same mangled name (but different 3519 // type) before, take its name and remove it from its parent. 3520 if (Entry) { 3521 GV->takeName(Entry); 3522 3523 if (!Entry->use_empty()) { 3524 llvm::Constant *NewPtrForOldDecl = 3525 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3526 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3527 } 3528 3529 Entry->eraseFromParent(); 3530 } 3531 3532 // This is the first use or definition of a mangled name. If there is a 3533 // deferred decl with this name, remember that we need to emit it at the end 3534 // of the file. 3535 auto DDI = DeferredDecls.find(MangledName); 3536 if (DDI != DeferredDecls.end()) { 3537 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3538 // list, and remove it from DeferredDecls (since we don't need it anymore). 3539 addDeferredDeclToEmit(DDI->second); 3540 DeferredDecls.erase(DDI); 3541 } 3542 3543 // Handle things which are present even on external declarations. 3544 if (D) { 3545 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3546 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3547 3548 // FIXME: This code is overly simple and should be merged with other global 3549 // handling. 3550 GV->setConstant(isTypeConstant(D->getType(), false)); 3551 3552 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3553 3554 setLinkageForGV(GV, D); 3555 3556 if (D->getTLSKind()) { 3557 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3558 CXXThreadLocals.push_back(D); 3559 setTLSMode(GV, *D); 3560 } 3561 3562 setGVProperties(GV, D); 3563 3564 // If required by the ABI, treat declarations of static data members with 3565 // inline initializers as definitions. 3566 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3567 EmitGlobalVarDefinition(D); 3568 } 3569 3570 // Emit section information for extern variables. 3571 if (D->hasExternalStorage()) { 3572 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3573 GV->setSection(SA->getName()); 3574 } 3575 3576 // Handle XCore specific ABI requirements. 3577 if (getTriple().getArch() == llvm::Triple::xcore && 3578 D->getLanguageLinkage() == CLanguageLinkage && 3579 D->getType().isConstant(Context) && 3580 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3581 GV->setSection(".cp.rodata"); 3582 3583 // Check if we a have a const declaration with an initializer, we may be 3584 // able to emit it as available_externally to expose it's value to the 3585 // optimizer. 3586 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3587 D->getType().isConstQualified() && !GV->hasInitializer() && 3588 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3589 const auto *Record = 3590 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3591 bool HasMutableFields = Record && Record->hasMutableFields(); 3592 if (!HasMutableFields) { 3593 const VarDecl *InitDecl; 3594 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3595 if (InitExpr) { 3596 ConstantEmitter emitter(*this); 3597 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3598 if (Init) { 3599 auto *InitType = Init->getType(); 3600 if (GV->getType()->getElementType() != InitType) { 3601 // The type of the initializer does not match the definition. 3602 // This happens when an initializer has a different type from 3603 // the type of the global (because of padding at the end of a 3604 // structure for instance). 3605 GV->setName(StringRef()); 3606 // Make a new global with the correct type, this is now guaranteed 3607 // to work. 3608 auto *NewGV = cast<llvm::GlobalVariable>( 3609 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3610 ->stripPointerCasts()); 3611 3612 // Erase the old global, since it is no longer used. 3613 GV->eraseFromParent(); 3614 GV = NewGV; 3615 } else { 3616 GV->setInitializer(Init); 3617 GV->setConstant(true); 3618 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3619 } 3620 emitter.finalize(GV); 3621 } 3622 } 3623 } 3624 } 3625 } 3626 3627 if (GV->isDeclaration()) 3628 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3629 3630 LangAS ExpectedAS = 3631 D ? D->getType().getAddressSpace() 3632 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3633 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3634 Ty->getPointerAddressSpace()); 3635 if (AddrSpace != ExpectedAS) 3636 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3637 ExpectedAS, Ty); 3638 3639 return GV; 3640 } 3641 3642 llvm::Constant * 3643 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3644 ForDefinition_t IsForDefinition) { 3645 const Decl *D = GD.getDecl(); 3646 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3647 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3648 /*DontDefer=*/false, IsForDefinition); 3649 else if (isa<CXXMethodDecl>(D)) { 3650 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3651 cast<CXXMethodDecl>(D)); 3652 auto Ty = getTypes().GetFunctionType(*FInfo); 3653 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3654 IsForDefinition); 3655 } else if (isa<FunctionDecl>(D)) { 3656 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3657 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3658 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3659 IsForDefinition); 3660 } else 3661 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3662 IsForDefinition); 3663 } 3664 3665 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3666 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3667 unsigned Alignment) { 3668 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3669 llvm::GlobalVariable *OldGV = nullptr; 3670 3671 if (GV) { 3672 // Check if the variable has the right type. 3673 if (GV->getType()->getElementType() == Ty) 3674 return GV; 3675 3676 // Because C++ name mangling, the only way we can end up with an already 3677 // existing global with the same name is if it has been declared extern "C". 3678 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3679 OldGV = GV; 3680 } 3681 3682 // Create a new variable. 3683 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3684 Linkage, nullptr, Name); 3685 3686 if (OldGV) { 3687 // Replace occurrences of the old variable if needed. 3688 GV->takeName(OldGV); 3689 3690 if (!OldGV->use_empty()) { 3691 llvm::Constant *NewPtrForOldDecl = 3692 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3693 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3694 } 3695 3696 OldGV->eraseFromParent(); 3697 } 3698 3699 if (supportsCOMDAT() && GV->isWeakForLinker() && 3700 !GV->hasAvailableExternallyLinkage()) 3701 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3702 3703 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3704 3705 return GV; 3706 } 3707 3708 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3709 /// given global variable. If Ty is non-null and if the global doesn't exist, 3710 /// then it will be created with the specified type instead of whatever the 3711 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3712 /// that an actual global with type Ty will be returned, not conversion of a 3713 /// variable with the same mangled name but some other type. 3714 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3715 llvm::Type *Ty, 3716 ForDefinition_t IsForDefinition) { 3717 assert(D->hasGlobalStorage() && "Not a global variable"); 3718 QualType ASTTy = D->getType(); 3719 if (!Ty) 3720 Ty = getTypes().ConvertTypeForMem(ASTTy); 3721 3722 llvm::PointerType *PTy = 3723 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3724 3725 StringRef MangledName = getMangledName(D); 3726 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3727 } 3728 3729 /// CreateRuntimeVariable - Create a new runtime global variable with the 3730 /// specified type and name. 3731 llvm::Constant * 3732 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3733 StringRef Name) { 3734 auto PtrTy = 3735 getContext().getLangOpts().OpenCL 3736 ? llvm::PointerType::get( 3737 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3738 : llvm::PointerType::getUnqual(Ty); 3739 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3740 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3741 return Ret; 3742 } 3743 3744 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3745 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3746 3747 StringRef MangledName = getMangledName(D); 3748 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3749 3750 // We already have a definition, not declaration, with the same mangled name. 3751 // Emitting of declaration is not required (and actually overwrites emitted 3752 // definition). 3753 if (GV && !GV->isDeclaration()) 3754 return; 3755 3756 // If we have not seen a reference to this variable yet, place it into the 3757 // deferred declarations table to be emitted if needed later. 3758 if (!MustBeEmitted(D) && !GV) { 3759 DeferredDecls[MangledName] = D; 3760 return; 3761 } 3762 3763 // The tentative definition is the only definition. 3764 EmitGlobalVarDefinition(D); 3765 } 3766 3767 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3768 EmitExternalVarDeclaration(D); 3769 } 3770 3771 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3772 return Context.toCharUnitsFromBits( 3773 getDataLayout().getTypeStoreSizeInBits(Ty)); 3774 } 3775 3776 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3777 LangAS AddrSpace = LangAS::Default; 3778 if (LangOpts.OpenCL) { 3779 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3780 assert(AddrSpace == LangAS::opencl_global || 3781 AddrSpace == LangAS::opencl_constant || 3782 AddrSpace == LangAS::opencl_local || 3783 AddrSpace >= LangAS::FirstTargetAddressSpace); 3784 return AddrSpace; 3785 } 3786 3787 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3788 if (D && D->hasAttr<CUDAConstantAttr>()) 3789 return LangAS::cuda_constant; 3790 else if (D && D->hasAttr<CUDASharedAttr>()) 3791 return LangAS::cuda_shared; 3792 else if (D && D->hasAttr<CUDADeviceAttr>()) 3793 return LangAS::cuda_device; 3794 else if (D && D->getType().isConstQualified()) 3795 return LangAS::cuda_constant; 3796 else 3797 return LangAS::cuda_device; 3798 } 3799 3800 if (LangOpts.OpenMP) { 3801 LangAS AS; 3802 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3803 return AS; 3804 } 3805 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3806 } 3807 3808 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3809 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3810 if (LangOpts.OpenCL) 3811 return LangAS::opencl_constant; 3812 if (auto AS = getTarget().getConstantAddressSpace()) 3813 return AS.getValue(); 3814 return LangAS::Default; 3815 } 3816 3817 // In address space agnostic languages, string literals are in default address 3818 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3819 // emitted in constant address space in LLVM IR. To be consistent with other 3820 // parts of AST, string literal global variables in constant address space 3821 // need to be casted to default address space before being put into address 3822 // map and referenced by other part of CodeGen. 3823 // In OpenCL, string literals are in constant address space in AST, therefore 3824 // they should not be casted to default address space. 3825 static llvm::Constant * 3826 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3827 llvm::GlobalVariable *GV) { 3828 llvm::Constant *Cast = GV; 3829 if (!CGM.getLangOpts().OpenCL) { 3830 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3831 if (AS != LangAS::Default) 3832 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3833 CGM, GV, AS.getValue(), LangAS::Default, 3834 GV->getValueType()->getPointerTo( 3835 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3836 } 3837 } 3838 return Cast; 3839 } 3840 3841 template<typename SomeDecl> 3842 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3843 llvm::GlobalValue *GV) { 3844 if (!getLangOpts().CPlusPlus) 3845 return; 3846 3847 // Must have 'used' attribute, or else inline assembly can't rely on 3848 // the name existing. 3849 if (!D->template hasAttr<UsedAttr>()) 3850 return; 3851 3852 // Must have internal linkage and an ordinary name. 3853 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3854 return; 3855 3856 // Must be in an extern "C" context. Entities declared directly within 3857 // a record are not extern "C" even if the record is in such a context. 3858 const SomeDecl *First = D->getFirstDecl(); 3859 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3860 return; 3861 3862 // OK, this is an internal linkage entity inside an extern "C" linkage 3863 // specification. Make a note of that so we can give it the "expected" 3864 // mangled name if nothing else is using that name. 3865 std::pair<StaticExternCMap::iterator, bool> R = 3866 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3867 3868 // If we have multiple internal linkage entities with the same name 3869 // in extern "C" regions, none of them gets that name. 3870 if (!R.second) 3871 R.first->second = nullptr; 3872 } 3873 3874 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3875 if (!CGM.supportsCOMDAT()) 3876 return false; 3877 3878 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3879 // them being "merged" by the COMDAT Folding linker optimization. 3880 if (D.hasAttr<CUDAGlobalAttr>()) 3881 return false; 3882 3883 if (D.hasAttr<SelectAnyAttr>()) 3884 return true; 3885 3886 GVALinkage Linkage; 3887 if (auto *VD = dyn_cast<VarDecl>(&D)) 3888 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3889 else 3890 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3891 3892 switch (Linkage) { 3893 case GVA_Internal: 3894 case GVA_AvailableExternally: 3895 case GVA_StrongExternal: 3896 return false; 3897 case GVA_DiscardableODR: 3898 case GVA_StrongODR: 3899 return true; 3900 } 3901 llvm_unreachable("No such linkage"); 3902 } 3903 3904 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3905 llvm::GlobalObject &GO) { 3906 if (!shouldBeInCOMDAT(*this, D)) 3907 return; 3908 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3909 } 3910 3911 /// Pass IsTentative as true if you want to create a tentative definition. 3912 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3913 bool IsTentative) { 3914 // OpenCL global variables of sampler type are translated to function calls, 3915 // therefore no need to be translated. 3916 QualType ASTTy = D->getType(); 3917 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3918 return; 3919 3920 // If this is OpenMP device, check if it is legal to emit this global 3921 // normally. 3922 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3923 OpenMPRuntime->emitTargetGlobalVariable(D)) 3924 return; 3925 3926 llvm::Constant *Init = nullptr; 3927 bool NeedsGlobalCtor = false; 3928 bool NeedsGlobalDtor = 3929 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3930 3931 const VarDecl *InitDecl; 3932 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3933 3934 Optional<ConstantEmitter> emitter; 3935 3936 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3937 // as part of their declaration." Sema has already checked for 3938 // error cases, so we just need to set Init to UndefValue. 3939 bool IsCUDASharedVar = 3940 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3941 // Shadows of initialized device-side global variables are also left 3942 // undefined. 3943 bool IsCUDAShadowVar = 3944 !getLangOpts().CUDAIsDevice && 3945 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3946 D->hasAttr<CUDASharedAttr>()); 3947 // HIP pinned shadow of initialized host-side global variables are also 3948 // left undefined. 3949 bool IsHIPPinnedShadowVar = 3950 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3951 if (getLangOpts().CUDA && 3952 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3953 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3954 else if (!InitExpr) { 3955 // This is a tentative definition; tentative definitions are 3956 // implicitly initialized with { 0 }. 3957 // 3958 // Note that tentative definitions are only emitted at the end of 3959 // a translation unit, so they should never have incomplete 3960 // type. In addition, EmitTentativeDefinition makes sure that we 3961 // never attempt to emit a tentative definition if a real one 3962 // exists. A use may still exists, however, so we still may need 3963 // to do a RAUW. 3964 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3965 Init = EmitNullConstant(D->getType()); 3966 } else { 3967 initializedGlobalDecl = GlobalDecl(D); 3968 emitter.emplace(*this); 3969 Init = emitter->tryEmitForInitializer(*InitDecl); 3970 3971 if (!Init) { 3972 QualType T = InitExpr->getType(); 3973 if (D->getType()->isReferenceType()) 3974 T = D->getType(); 3975 3976 if (getLangOpts().CPlusPlus) { 3977 Init = EmitNullConstant(T); 3978 NeedsGlobalCtor = true; 3979 } else { 3980 ErrorUnsupported(D, "static initializer"); 3981 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3982 } 3983 } else { 3984 // We don't need an initializer, so remove the entry for the delayed 3985 // initializer position (just in case this entry was delayed) if we 3986 // also don't need to register a destructor. 3987 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3988 DelayedCXXInitPosition.erase(D); 3989 } 3990 } 3991 3992 llvm::Type* InitType = Init->getType(); 3993 llvm::Constant *Entry = 3994 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3995 3996 // Strip off pointer casts if we got them. 3997 Entry = Entry->stripPointerCasts(); 3998 3999 // Entry is now either a Function or GlobalVariable. 4000 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4001 4002 // We have a definition after a declaration with the wrong type. 4003 // We must make a new GlobalVariable* and update everything that used OldGV 4004 // (a declaration or tentative definition) with the new GlobalVariable* 4005 // (which will be a definition). 4006 // 4007 // This happens if there is a prototype for a global (e.g. 4008 // "extern int x[];") and then a definition of a different type (e.g. 4009 // "int x[10];"). This also happens when an initializer has a different type 4010 // from the type of the global (this happens with unions). 4011 if (!GV || GV->getType()->getElementType() != InitType || 4012 GV->getType()->getAddressSpace() != 4013 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4014 4015 // Move the old entry aside so that we'll create a new one. 4016 Entry->setName(StringRef()); 4017 4018 // Make a new global with the correct type, this is now guaranteed to work. 4019 GV = cast<llvm::GlobalVariable>( 4020 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4021 ->stripPointerCasts()); 4022 4023 // Replace all uses of the old global with the new global 4024 llvm::Constant *NewPtrForOldDecl = 4025 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4026 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4027 4028 // Erase the old global, since it is no longer used. 4029 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4030 } 4031 4032 MaybeHandleStaticInExternC(D, GV); 4033 4034 if (D->hasAttr<AnnotateAttr>()) 4035 AddGlobalAnnotations(D, GV); 4036 4037 // Set the llvm linkage type as appropriate. 4038 llvm::GlobalValue::LinkageTypes Linkage = 4039 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4040 4041 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4042 // the device. [...]" 4043 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4044 // __device__, declares a variable that: [...] 4045 // Is accessible from all the threads within the grid and from the host 4046 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4047 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4048 if (GV && LangOpts.CUDA) { 4049 if (LangOpts.CUDAIsDevice) { 4050 if (Linkage != llvm::GlobalValue::InternalLinkage && 4051 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4052 GV->setExternallyInitialized(true); 4053 } else { 4054 // Host-side shadows of external declarations of device-side 4055 // global variables become internal definitions. These have to 4056 // be internal in order to prevent name conflicts with global 4057 // host variables with the same name in a different TUs. 4058 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4059 D->hasAttr<HIPPinnedShadowAttr>()) { 4060 Linkage = llvm::GlobalValue::InternalLinkage; 4061 4062 // Shadow variables and their properties must be registered 4063 // with CUDA runtime. 4064 unsigned Flags = 0; 4065 if (!D->hasDefinition()) 4066 Flags |= CGCUDARuntime::ExternDeviceVar; 4067 if (D->hasAttr<CUDAConstantAttr>()) 4068 Flags |= CGCUDARuntime::ConstantDeviceVar; 4069 // Extern global variables will be registered in the TU where they are 4070 // defined. 4071 if (!D->hasExternalStorage()) 4072 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 4073 } else if (D->hasAttr<CUDASharedAttr>()) 4074 // __shared__ variables are odd. Shadows do get created, but 4075 // they are not registered with the CUDA runtime, so they 4076 // can't really be used to access their device-side 4077 // counterparts. It's not clear yet whether it's nvcc's bug or 4078 // a feature, but we've got to do the same for compatibility. 4079 Linkage = llvm::GlobalValue::InternalLinkage; 4080 } 4081 } 4082 4083 // HIPPinnedShadowVar should remain in the final code object irrespective of 4084 // whether it is used or not within the code. Add it to used list, so that 4085 // it will not get eliminated when it is unused. Also, it is an extern var 4086 // within device code, and it should *not* get initialized within device code. 4087 if (IsHIPPinnedShadowVar) 4088 addUsedGlobal(GV, /*SkipCheck=*/true); 4089 else 4090 GV->setInitializer(Init); 4091 4092 if (emitter) 4093 emitter->finalize(GV); 4094 4095 // If it is safe to mark the global 'constant', do so now. 4096 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4097 isTypeConstant(D->getType(), true)); 4098 4099 // If it is in a read-only section, mark it 'constant'. 4100 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4101 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4102 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4103 GV->setConstant(true); 4104 } 4105 4106 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4107 4108 // On Darwin, if the normal linkage of a C++ thread_local variable is 4109 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4110 // copies within a linkage unit; otherwise, the backing variable has 4111 // internal linkage and all accesses should just be calls to the 4112 // Itanium-specified entry point, which has the normal linkage of the 4113 // variable. This is to preserve the ability to change the implementation 4114 // behind the scenes. 4115 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4116 Context.getTargetInfo().getTriple().isOSDarwin() && 4117 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4118 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4119 Linkage = llvm::GlobalValue::InternalLinkage; 4120 4121 GV->setLinkage(Linkage); 4122 if (D->hasAttr<DLLImportAttr>()) 4123 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4124 else if (D->hasAttr<DLLExportAttr>()) 4125 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4126 else 4127 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4128 4129 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4130 // common vars aren't constant even if declared const. 4131 GV->setConstant(false); 4132 // Tentative definition of global variables may be initialized with 4133 // non-zero null pointers. In this case they should have weak linkage 4134 // since common linkage must have zero initializer and must not have 4135 // explicit section therefore cannot have non-zero initial value. 4136 if (!GV->getInitializer()->isNullValue()) 4137 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4138 } 4139 4140 setNonAliasAttributes(D, GV); 4141 4142 if (D->getTLSKind() && !GV->isThreadLocal()) { 4143 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4144 CXXThreadLocals.push_back(D); 4145 setTLSMode(GV, *D); 4146 } 4147 4148 maybeSetTrivialComdat(*D, *GV); 4149 4150 // Emit the initializer function if necessary. 4151 if (NeedsGlobalCtor || NeedsGlobalDtor) 4152 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4153 4154 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4155 4156 // Emit global variable debug information. 4157 if (CGDebugInfo *DI = getModuleDebugInfo()) 4158 if (getCodeGenOpts().hasReducedDebugInfo()) 4159 DI->EmitGlobalVariable(GV, D); 4160 } 4161 4162 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4163 if (CGDebugInfo *DI = getModuleDebugInfo()) 4164 if (getCodeGenOpts().hasReducedDebugInfo()) { 4165 QualType ASTTy = D->getType(); 4166 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4167 llvm::PointerType *PTy = 4168 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4169 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4170 DI->EmitExternalVariable( 4171 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4172 } 4173 } 4174 4175 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4176 CodeGenModule &CGM, const VarDecl *D, 4177 bool NoCommon) { 4178 // Don't give variables common linkage if -fno-common was specified unless it 4179 // was overridden by a NoCommon attribute. 4180 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4181 return true; 4182 4183 // C11 6.9.2/2: 4184 // A declaration of an identifier for an object that has file scope without 4185 // an initializer, and without a storage-class specifier or with the 4186 // storage-class specifier static, constitutes a tentative definition. 4187 if (D->getInit() || D->hasExternalStorage()) 4188 return true; 4189 4190 // A variable cannot be both common and exist in a section. 4191 if (D->hasAttr<SectionAttr>()) 4192 return true; 4193 4194 // A variable cannot be both common and exist in a section. 4195 // We don't try to determine which is the right section in the front-end. 4196 // If no specialized section name is applicable, it will resort to default. 4197 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4198 D->hasAttr<PragmaClangDataSectionAttr>() || 4199 D->hasAttr<PragmaClangRelroSectionAttr>() || 4200 D->hasAttr<PragmaClangRodataSectionAttr>()) 4201 return true; 4202 4203 // Thread local vars aren't considered common linkage. 4204 if (D->getTLSKind()) 4205 return true; 4206 4207 // Tentative definitions marked with WeakImportAttr are true definitions. 4208 if (D->hasAttr<WeakImportAttr>()) 4209 return true; 4210 4211 // A variable cannot be both common and exist in a comdat. 4212 if (shouldBeInCOMDAT(CGM, *D)) 4213 return true; 4214 4215 // Declarations with a required alignment do not have common linkage in MSVC 4216 // mode. 4217 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4218 if (D->hasAttr<AlignedAttr>()) 4219 return true; 4220 QualType VarType = D->getType(); 4221 if (Context.isAlignmentRequired(VarType)) 4222 return true; 4223 4224 if (const auto *RT = VarType->getAs<RecordType>()) { 4225 const RecordDecl *RD = RT->getDecl(); 4226 for (const FieldDecl *FD : RD->fields()) { 4227 if (FD->isBitField()) 4228 continue; 4229 if (FD->hasAttr<AlignedAttr>()) 4230 return true; 4231 if (Context.isAlignmentRequired(FD->getType())) 4232 return true; 4233 } 4234 } 4235 } 4236 4237 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4238 // common symbols, so symbols with greater alignment requirements cannot be 4239 // common. 4240 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4241 // alignments for common symbols via the aligncomm directive, so this 4242 // restriction only applies to MSVC environments. 4243 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4244 Context.getTypeAlignIfKnown(D->getType()) > 4245 Context.toBits(CharUnits::fromQuantity(32))) 4246 return true; 4247 4248 return false; 4249 } 4250 4251 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4252 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4253 if (Linkage == GVA_Internal) 4254 return llvm::Function::InternalLinkage; 4255 4256 if (D->hasAttr<WeakAttr>()) { 4257 if (IsConstantVariable) 4258 return llvm::GlobalVariable::WeakODRLinkage; 4259 else 4260 return llvm::GlobalVariable::WeakAnyLinkage; 4261 } 4262 4263 if (const auto *FD = D->getAsFunction()) 4264 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4265 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4266 4267 // We are guaranteed to have a strong definition somewhere else, 4268 // so we can use available_externally linkage. 4269 if (Linkage == GVA_AvailableExternally) 4270 return llvm::GlobalValue::AvailableExternallyLinkage; 4271 4272 // Note that Apple's kernel linker doesn't support symbol 4273 // coalescing, so we need to avoid linkonce and weak linkages there. 4274 // Normally, this means we just map to internal, but for explicit 4275 // instantiations we'll map to external. 4276 4277 // In C++, the compiler has to emit a definition in every translation unit 4278 // that references the function. We should use linkonce_odr because 4279 // a) if all references in this translation unit are optimized away, we 4280 // don't need to codegen it. b) if the function persists, it needs to be 4281 // merged with other definitions. c) C++ has the ODR, so we know the 4282 // definition is dependable. 4283 if (Linkage == GVA_DiscardableODR) 4284 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4285 : llvm::Function::InternalLinkage; 4286 4287 // An explicit instantiation of a template has weak linkage, since 4288 // explicit instantiations can occur in multiple translation units 4289 // and must all be equivalent. However, we are not allowed to 4290 // throw away these explicit instantiations. 4291 // 4292 // We don't currently support CUDA device code spread out across multiple TUs, 4293 // so say that CUDA templates are either external (for kernels) or internal. 4294 // This lets llvm perform aggressive inter-procedural optimizations. 4295 if (Linkage == GVA_StrongODR) { 4296 if (Context.getLangOpts().AppleKext) 4297 return llvm::Function::ExternalLinkage; 4298 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4299 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4300 : llvm::Function::InternalLinkage; 4301 return llvm::Function::WeakODRLinkage; 4302 } 4303 4304 // C++ doesn't have tentative definitions and thus cannot have common 4305 // linkage. 4306 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4307 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4308 CodeGenOpts.NoCommon)) 4309 return llvm::GlobalVariable::CommonLinkage; 4310 4311 // selectany symbols are externally visible, so use weak instead of 4312 // linkonce. MSVC optimizes away references to const selectany globals, so 4313 // all definitions should be the same and ODR linkage should be used. 4314 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4315 if (D->hasAttr<SelectAnyAttr>()) 4316 return llvm::GlobalVariable::WeakODRLinkage; 4317 4318 // Otherwise, we have strong external linkage. 4319 assert(Linkage == GVA_StrongExternal); 4320 return llvm::GlobalVariable::ExternalLinkage; 4321 } 4322 4323 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4324 const VarDecl *VD, bool IsConstant) { 4325 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4326 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4327 } 4328 4329 /// Replace the uses of a function that was declared with a non-proto type. 4330 /// We want to silently drop extra arguments from call sites 4331 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4332 llvm::Function *newFn) { 4333 // Fast path. 4334 if (old->use_empty()) return; 4335 4336 llvm::Type *newRetTy = newFn->getReturnType(); 4337 SmallVector<llvm::Value*, 4> newArgs; 4338 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4339 4340 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4341 ui != ue; ) { 4342 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4343 llvm::User *user = use->getUser(); 4344 4345 // Recognize and replace uses of bitcasts. Most calls to 4346 // unprototyped functions will use bitcasts. 4347 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4348 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4349 replaceUsesOfNonProtoConstant(bitcast, newFn); 4350 continue; 4351 } 4352 4353 // Recognize calls to the function. 4354 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4355 if (!callSite) continue; 4356 if (!callSite->isCallee(&*use)) 4357 continue; 4358 4359 // If the return types don't match exactly, then we can't 4360 // transform this call unless it's dead. 4361 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4362 continue; 4363 4364 // Get the call site's attribute list. 4365 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4366 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4367 4368 // If the function was passed too few arguments, don't transform. 4369 unsigned newNumArgs = newFn->arg_size(); 4370 if (callSite->arg_size() < newNumArgs) 4371 continue; 4372 4373 // If extra arguments were passed, we silently drop them. 4374 // If any of the types mismatch, we don't transform. 4375 unsigned argNo = 0; 4376 bool dontTransform = false; 4377 for (llvm::Argument &A : newFn->args()) { 4378 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4379 dontTransform = true; 4380 break; 4381 } 4382 4383 // Add any parameter attributes. 4384 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4385 argNo++; 4386 } 4387 if (dontTransform) 4388 continue; 4389 4390 // Okay, we can transform this. Create the new call instruction and copy 4391 // over the required information. 4392 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4393 4394 // Copy over any operand bundles. 4395 callSite->getOperandBundlesAsDefs(newBundles); 4396 4397 llvm::CallBase *newCall; 4398 if (dyn_cast<llvm::CallInst>(callSite)) { 4399 newCall = 4400 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4401 } else { 4402 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4403 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4404 oldInvoke->getUnwindDest(), newArgs, 4405 newBundles, "", callSite); 4406 } 4407 newArgs.clear(); // for the next iteration 4408 4409 if (!newCall->getType()->isVoidTy()) 4410 newCall->takeName(callSite); 4411 newCall->setAttributes(llvm::AttributeList::get( 4412 newFn->getContext(), oldAttrs.getFnAttributes(), 4413 oldAttrs.getRetAttributes(), newArgAttrs)); 4414 newCall->setCallingConv(callSite->getCallingConv()); 4415 4416 // Finally, remove the old call, replacing any uses with the new one. 4417 if (!callSite->use_empty()) 4418 callSite->replaceAllUsesWith(newCall); 4419 4420 // Copy debug location attached to CI. 4421 if (callSite->getDebugLoc()) 4422 newCall->setDebugLoc(callSite->getDebugLoc()); 4423 4424 callSite->eraseFromParent(); 4425 } 4426 } 4427 4428 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4429 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4430 /// existing call uses of the old function in the module, this adjusts them to 4431 /// call the new function directly. 4432 /// 4433 /// This is not just a cleanup: the always_inline pass requires direct calls to 4434 /// functions to be able to inline them. If there is a bitcast in the way, it 4435 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4436 /// run at -O0. 4437 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4438 llvm::Function *NewFn) { 4439 // If we're redefining a global as a function, don't transform it. 4440 if (!isa<llvm::Function>(Old)) return; 4441 4442 replaceUsesOfNonProtoConstant(Old, NewFn); 4443 } 4444 4445 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4446 auto DK = VD->isThisDeclarationADefinition(); 4447 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4448 return; 4449 4450 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4451 // If we have a definition, this might be a deferred decl. If the 4452 // instantiation is explicit, make sure we emit it at the end. 4453 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4454 GetAddrOfGlobalVar(VD); 4455 4456 EmitTopLevelDecl(VD); 4457 } 4458 4459 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4460 llvm::GlobalValue *GV) { 4461 // Check if this must be emitted as declare variant. 4462 if (LangOpts.OpenMP && OpenMPRuntime && 4463 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true)) 4464 return; 4465 4466 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4467 4468 // Compute the function info and LLVM type. 4469 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4470 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4471 4472 // Get or create the prototype for the function. 4473 if (!GV || (GV->getType()->getElementType() != Ty)) 4474 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4475 /*DontDefer=*/true, 4476 ForDefinition)); 4477 4478 // Already emitted. 4479 if (!GV->isDeclaration()) 4480 return; 4481 4482 // We need to set linkage and visibility on the function before 4483 // generating code for it because various parts of IR generation 4484 // want to propagate this information down (e.g. to local static 4485 // declarations). 4486 auto *Fn = cast<llvm::Function>(GV); 4487 setFunctionLinkage(GD, Fn); 4488 4489 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4490 setGVProperties(Fn, GD); 4491 4492 MaybeHandleStaticInExternC(D, Fn); 4493 4494 4495 maybeSetTrivialComdat(*D, *Fn); 4496 4497 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4498 4499 setNonAliasAttributes(GD, Fn); 4500 SetLLVMFunctionAttributesForDefinition(D, Fn); 4501 4502 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4503 AddGlobalCtor(Fn, CA->getPriority()); 4504 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4505 AddGlobalDtor(Fn, DA->getPriority()); 4506 if (D->hasAttr<AnnotateAttr>()) 4507 AddGlobalAnnotations(D, Fn); 4508 } 4509 4510 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4511 const auto *D = cast<ValueDecl>(GD.getDecl()); 4512 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4513 assert(AA && "Not an alias?"); 4514 4515 StringRef MangledName = getMangledName(GD); 4516 4517 if (AA->getAliasee() == MangledName) { 4518 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4519 return; 4520 } 4521 4522 // If there is a definition in the module, then it wins over the alias. 4523 // This is dubious, but allow it to be safe. Just ignore the alias. 4524 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4525 if (Entry && !Entry->isDeclaration()) 4526 return; 4527 4528 Aliases.push_back(GD); 4529 4530 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4531 4532 // Create a reference to the named value. This ensures that it is emitted 4533 // if a deferred decl. 4534 llvm::Constant *Aliasee; 4535 llvm::GlobalValue::LinkageTypes LT; 4536 if (isa<llvm::FunctionType>(DeclTy)) { 4537 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4538 /*ForVTable=*/false); 4539 LT = getFunctionLinkage(GD); 4540 } else { 4541 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4542 llvm::PointerType::getUnqual(DeclTy), 4543 /*D=*/nullptr); 4544 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4545 D->getType().isConstQualified()); 4546 } 4547 4548 // Create the new alias itself, but don't set a name yet. 4549 auto *GA = 4550 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4551 4552 if (Entry) { 4553 if (GA->getAliasee() == Entry) { 4554 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4555 return; 4556 } 4557 4558 assert(Entry->isDeclaration()); 4559 4560 // If there is a declaration in the module, then we had an extern followed 4561 // by the alias, as in: 4562 // extern int test6(); 4563 // ... 4564 // int test6() __attribute__((alias("test7"))); 4565 // 4566 // Remove it and replace uses of it with the alias. 4567 GA->takeName(Entry); 4568 4569 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4570 Entry->getType())); 4571 Entry->eraseFromParent(); 4572 } else { 4573 GA->setName(MangledName); 4574 } 4575 4576 // Set attributes which are particular to an alias; this is a 4577 // specialization of the attributes which may be set on a global 4578 // variable/function. 4579 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4580 D->isWeakImported()) { 4581 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4582 } 4583 4584 if (const auto *VD = dyn_cast<VarDecl>(D)) 4585 if (VD->getTLSKind()) 4586 setTLSMode(GA, *VD); 4587 4588 SetCommonAttributes(GD, GA); 4589 } 4590 4591 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4592 const auto *D = cast<ValueDecl>(GD.getDecl()); 4593 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4594 assert(IFA && "Not an ifunc?"); 4595 4596 StringRef MangledName = getMangledName(GD); 4597 4598 if (IFA->getResolver() == MangledName) { 4599 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4600 return; 4601 } 4602 4603 // Report an error if some definition overrides ifunc. 4604 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4605 if (Entry && !Entry->isDeclaration()) { 4606 GlobalDecl OtherGD; 4607 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4608 DiagnosedConflictingDefinitions.insert(GD).second) { 4609 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4610 << MangledName; 4611 Diags.Report(OtherGD.getDecl()->getLocation(), 4612 diag::note_previous_definition); 4613 } 4614 return; 4615 } 4616 4617 Aliases.push_back(GD); 4618 4619 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4620 llvm::Constant *Resolver = 4621 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4622 /*ForVTable=*/false); 4623 llvm::GlobalIFunc *GIF = 4624 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4625 "", Resolver, &getModule()); 4626 if (Entry) { 4627 if (GIF->getResolver() == Entry) { 4628 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4629 return; 4630 } 4631 assert(Entry->isDeclaration()); 4632 4633 // If there is a declaration in the module, then we had an extern followed 4634 // by the ifunc, as in: 4635 // extern int test(); 4636 // ... 4637 // int test() __attribute__((ifunc("resolver"))); 4638 // 4639 // Remove it and replace uses of it with the ifunc. 4640 GIF->takeName(Entry); 4641 4642 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4643 Entry->getType())); 4644 Entry->eraseFromParent(); 4645 } else 4646 GIF->setName(MangledName); 4647 4648 SetCommonAttributes(GD, GIF); 4649 } 4650 4651 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4652 ArrayRef<llvm::Type*> Tys) { 4653 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4654 Tys); 4655 } 4656 4657 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4658 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4659 const StringLiteral *Literal, bool TargetIsLSB, 4660 bool &IsUTF16, unsigned &StringLength) { 4661 StringRef String = Literal->getString(); 4662 unsigned NumBytes = String.size(); 4663 4664 // Check for simple case. 4665 if (!Literal->containsNonAsciiOrNull()) { 4666 StringLength = NumBytes; 4667 return *Map.insert(std::make_pair(String, nullptr)).first; 4668 } 4669 4670 // Otherwise, convert the UTF8 literals into a string of shorts. 4671 IsUTF16 = true; 4672 4673 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4674 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4675 llvm::UTF16 *ToPtr = &ToBuf[0]; 4676 4677 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4678 ToPtr + NumBytes, llvm::strictConversion); 4679 4680 // ConvertUTF8toUTF16 returns the length in ToPtr. 4681 StringLength = ToPtr - &ToBuf[0]; 4682 4683 // Add an explicit null. 4684 *ToPtr = 0; 4685 return *Map.insert(std::make_pair( 4686 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4687 (StringLength + 1) * 2), 4688 nullptr)).first; 4689 } 4690 4691 ConstantAddress 4692 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4693 unsigned StringLength = 0; 4694 bool isUTF16 = false; 4695 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4696 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4697 getDataLayout().isLittleEndian(), isUTF16, 4698 StringLength); 4699 4700 if (auto *C = Entry.second) 4701 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4702 4703 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4704 llvm::Constant *Zeros[] = { Zero, Zero }; 4705 4706 const ASTContext &Context = getContext(); 4707 const llvm::Triple &Triple = getTriple(); 4708 4709 const auto CFRuntime = getLangOpts().CFRuntime; 4710 const bool IsSwiftABI = 4711 static_cast<unsigned>(CFRuntime) >= 4712 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4713 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4714 4715 // If we don't already have it, get __CFConstantStringClassReference. 4716 if (!CFConstantStringClassRef) { 4717 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4718 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4719 Ty = llvm::ArrayType::get(Ty, 0); 4720 4721 switch (CFRuntime) { 4722 default: break; 4723 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4724 case LangOptions::CoreFoundationABI::Swift5_0: 4725 CFConstantStringClassName = 4726 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4727 : "$s10Foundation19_NSCFConstantStringCN"; 4728 Ty = IntPtrTy; 4729 break; 4730 case LangOptions::CoreFoundationABI::Swift4_2: 4731 CFConstantStringClassName = 4732 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4733 : "$S10Foundation19_NSCFConstantStringCN"; 4734 Ty = IntPtrTy; 4735 break; 4736 case LangOptions::CoreFoundationABI::Swift4_1: 4737 CFConstantStringClassName = 4738 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4739 : "__T010Foundation19_NSCFConstantStringCN"; 4740 Ty = IntPtrTy; 4741 break; 4742 } 4743 4744 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4745 4746 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4747 llvm::GlobalValue *GV = nullptr; 4748 4749 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4750 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4751 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4752 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4753 4754 const VarDecl *VD = nullptr; 4755 for (const auto &Result : DC->lookup(&II)) 4756 if ((VD = dyn_cast<VarDecl>(Result))) 4757 break; 4758 4759 if (Triple.isOSBinFormatELF()) { 4760 if (!VD) 4761 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4762 } else { 4763 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4764 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4765 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4766 else 4767 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4768 } 4769 4770 setDSOLocal(GV); 4771 } 4772 } 4773 4774 // Decay array -> ptr 4775 CFConstantStringClassRef = 4776 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4777 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4778 } 4779 4780 QualType CFTy = Context.getCFConstantStringType(); 4781 4782 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4783 4784 ConstantInitBuilder Builder(*this); 4785 auto Fields = Builder.beginStruct(STy); 4786 4787 // Class pointer. 4788 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4789 4790 // Flags. 4791 if (IsSwiftABI) { 4792 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4793 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4794 } else { 4795 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4796 } 4797 4798 // String pointer. 4799 llvm::Constant *C = nullptr; 4800 if (isUTF16) { 4801 auto Arr = llvm::makeArrayRef( 4802 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4803 Entry.first().size() / 2); 4804 C = llvm::ConstantDataArray::get(VMContext, Arr); 4805 } else { 4806 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4807 } 4808 4809 // Note: -fwritable-strings doesn't make the backing store strings of 4810 // CFStrings writable. (See <rdar://problem/10657500>) 4811 auto *GV = 4812 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4813 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4814 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4815 // Don't enforce the target's minimum global alignment, since the only use 4816 // of the string is via this class initializer. 4817 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4818 : Context.getTypeAlignInChars(Context.CharTy); 4819 GV->setAlignment(Align.getAsAlign()); 4820 4821 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4822 // Without it LLVM can merge the string with a non unnamed_addr one during 4823 // LTO. Doing that changes the section it ends in, which surprises ld64. 4824 if (Triple.isOSBinFormatMachO()) 4825 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4826 : "__TEXT,__cstring,cstring_literals"); 4827 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4828 // the static linker to adjust permissions to read-only later on. 4829 else if (Triple.isOSBinFormatELF()) 4830 GV->setSection(".rodata"); 4831 4832 // String. 4833 llvm::Constant *Str = 4834 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4835 4836 if (isUTF16) 4837 // Cast the UTF16 string to the correct type. 4838 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4839 Fields.add(Str); 4840 4841 // String length. 4842 llvm::IntegerType *LengthTy = 4843 llvm::IntegerType::get(getModule().getContext(), 4844 Context.getTargetInfo().getLongWidth()); 4845 if (IsSwiftABI) { 4846 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4847 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4848 LengthTy = Int32Ty; 4849 else 4850 LengthTy = IntPtrTy; 4851 } 4852 Fields.addInt(LengthTy, StringLength); 4853 4854 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4855 // properly aligned on 32-bit platforms. 4856 CharUnits Alignment = 4857 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4858 4859 // The struct. 4860 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4861 /*isConstant=*/false, 4862 llvm::GlobalVariable::PrivateLinkage); 4863 GV->addAttribute("objc_arc_inert"); 4864 switch (Triple.getObjectFormat()) { 4865 case llvm::Triple::UnknownObjectFormat: 4866 llvm_unreachable("unknown file format"); 4867 case llvm::Triple::XCOFF: 4868 llvm_unreachable("XCOFF is not yet implemented"); 4869 case llvm::Triple::COFF: 4870 case llvm::Triple::ELF: 4871 case llvm::Triple::Wasm: 4872 GV->setSection("cfstring"); 4873 break; 4874 case llvm::Triple::MachO: 4875 GV->setSection("__DATA,__cfstring"); 4876 break; 4877 } 4878 Entry.second = GV; 4879 4880 return ConstantAddress(GV, Alignment); 4881 } 4882 4883 bool CodeGenModule::getExpressionLocationsEnabled() const { 4884 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4885 } 4886 4887 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4888 if (ObjCFastEnumerationStateType.isNull()) { 4889 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4890 D->startDefinition(); 4891 4892 QualType FieldTypes[] = { 4893 Context.UnsignedLongTy, 4894 Context.getPointerType(Context.getObjCIdType()), 4895 Context.getPointerType(Context.UnsignedLongTy), 4896 Context.getConstantArrayType(Context.UnsignedLongTy, 4897 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4898 }; 4899 4900 for (size_t i = 0; i < 4; ++i) { 4901 FieldDecl *Field = FieldDecl::Create(Context, 4902 D, 4903 SourceLocation(), 4904 SourceLocation(), nullptr, 4905 FieldTypes[i], /*TInfo=*/nullptr, 4906 /*BitWidth=*/nullptr, 4907 /*Mutable=*/false, 4908 ICIS_NoInit); 4909 Field->setAccess(AS_public); 4910 D->addDecl(Field); 4911 } 4912 4913 D->completeDefinition(); 4914 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4915 } 4916 4917 return ObjCFastEnumerationStateType; 4918 } 4919 4920 llvm::Constant * 4921 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4922 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4923 4924 // Don't emit it as the address of the string, emit the string data itself 4925 // as an inline array. 4926 if (E->getCharByteWidth() == 1) { 4927 SmallString<64> Str(E->getString()); 4928 4929 // Resize the string to the right size, which is indicated by its type. 4930 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4931 Str.resize(CAT->getSize().getZExtValue()); 4932 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4933 } 4934 4935 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4936 llvm::Type *ElemTy = AType->getElementType(); 4937 unsigned NumElements = AType->getNumElements(); 4938 4939 // Wide strings have either 2-byte or 4-byte elements. 4940 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4941 SmallVector<uint16_t, 32> Elements; 4942 Elements.reserve(NumElements); 4943 4944 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4945 Elements.push_back(E->getCodeUnit(i)); 4946 Elements.resize(NumElements); 4947 return llvm::ConstantDataArray::get(VMContext, Elements); 4948 } 4949 4950 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4951 SmallVector<uint32_t, 32> Elements; 4952 Elements.reserve(NumElements); 4953 4954 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4955 Elements.push_back(E->getCodeUnit(i)); 4956 Elements.resize(NumElements); 4957 return llvm::ConstantDataArray::get(VMContext, Elements); 4958 } 4959 4960 static llvm::GlobalVariable * 4961 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4962 CodeGenModule &CGM, StringRef GlobalName, 4963 CharUnits Alignment) { 4964 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4965 CGM.getStringLiteralAddressSpace()); 4966 4967 llvm::Module &M = CGM.getModule(); 4968 // Create a global variable for this string 4969 auto *GV = new llvm::GlobalVariable( 4970 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4971 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4972 GV->setAlignment(Alignment.getAsAlign()); 4973 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4974 if (GV->isWeakForLinker()) { 4975 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4976 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4977 } 4978 CGM.setDSOLocal(GV); 4979 4980 return GV; 4981 } 4982 4983 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4984 /// constant array for the given string literal. 4985 ConstantAddress 4986 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4987 StringRef Name) { 4988 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4989 4990 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4991 llvm::GlobalVariable **Entry = nullptr; 4992 if (!LangOpts.WritableStrings) { 4993 Entry = &ConstantStringMap[C]; 4994 if (auto GV = *Entry) { 4995 if (Alignment.getQuantity() > GV->getAlignment()) 4996 GV->setAlignment(Alignment.getAsAlign()); 4997 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4998 Alignment); 4999 } 5000 } 5001 5002 SmallString<256> MangledNameBuffer; 5003 StringRef GlobalVariableName; 5004 llvm::GlobalValue::LinkageTypes LT; 5005 5006 // Mangle the string literal if that's how the ABI merges duplicate strings. 5007 // Don't do it if they are writable, since we don't want writes in one TU to 5008 // affect strings in another. 5009 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5010 !LangOpts.WritableStrings) { 5011 llvm::raw_svector_ostream Out(MangledNameBuffer); 5012 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5013 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5014 GlobalVariableName = MangledNameBuffer; 5015 } else { 5016 LT = llvm::GlobalValue::PrivateLinkage; 5017 GlobalVariableName = Name; 5018 } 5019 5020 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5021 if (Entry) 5022 *Entry = GV; 5023 5024 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5025 QualType()); 5026 5027 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5028 Alignment); 5029 } 5030 5031 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5032 /// array for the given ObjCEncodeExpr node. 5033 ConstantAddress 5034 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5035 std::string Str; 5036 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5037 5038 return GetAddrOfConstantCString(Str); 5039 } 5040 5041 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5042 /// the literal and a terminating '\0' character. 5043 /// The result has pointer to array type. 5044 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5045 const std::string &Str, const char *GlobalName) { 5046 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5047 CharUnits Alignment = 5048 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5049 5050 llvm::Constant *C = 5051 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5052 5053 // Don't share any string literals if strings aren't constant. 5054 llvm::GlobalVariable **Entry = nullptr; 5055 if (!LangOpts.WritableStrings) { 5056 Entry = &ConstantStringMap[C]; 5057 if (auto GV = *Entry) { 5058 if (Alignment.getQuantity() > GV->getAlignment()) 5059 GV->setAlignment(Alignment.getAsAlign()); 5060 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5061 Alignment); 5062 } 5063 } 5064 5065 // Get the default prefix if a name wasn't specified. 5066 if (!GlobalName) 5067 GlobalName = ".str"; 5068 // Create a global variable for this. 5069 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5070 GlobalName, Alignment); 5071 if (Entry) 5072 *Entry = GV; 5073 5074 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5075 Alignment); 5076 } 5077 5078 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5079 const MaterializeTemporaryExpr *E, const Expr *Init) { 5080 assert((E->getStorageDuration() == SD_Static || 5081 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5082 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5083 5084 // If we're not materializing a subobject of the temporary, keep the 5085 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5086 QualType MaterializedType = Init->getType(); 5087 if (Init == E->getSubExpr()) 5088 MaterializedType = E->getType(); 5089 5090 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5091 5092 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5093 return ConstantAddress(Slot, Align); 5094 5095 // FIXME: If an externally-visible declaration extends multiple temporaries, 5096 // we need to give each temporary the same name in every translation unit (and 5097 // we also need to make the temporaries externally-visible). 5098 SmallString<256> Name; 5099 llvm::raw_svector_ostream Out(Name); 5100 getCXXABI().getMangleContext().mangleReferenceTemporary( 5101 VD, E->getManglingNumber(), Out); 5102 5103 APValue *Value = nullptr; 5104 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5105 // If the initializer of the extending declaration is a constant 5106 // initializer, we should have a cached constant initializer for this 5107 // temporary. Note that this might have a different value from the value 5108 // computed by evaluating the initializer if the surrounding constant 5109 // expression modifies the temporary. 5110 Value = E->getOrCreateValue(false); 5111 } 5112 5113 // Try evaluating it now, it might have a constant initializer. 5114 Expr::EvalResult EvalResult; 5115 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5116 !EvalResult.hasSideEffects()) 5117 Value = &EvalResult.Val; 5118 5119 LangAS AddrSpace = 5120 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5121 5122 Optional<ConstantEmitter> emitter; 5123 llvm::Constant *InitialValue = nullptr; 5124 bool Constant = false; 5125 llvm::Type *Type; 5126 if (Value) { 5127 // The temporary has a constant initializer, use it. 5128 emitter.emplace(*this); 5129 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5130 MaterializedType); 5131 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5132 Type = InitialValue->getType(); 5133 } else { 5134 // No initializer, the initialization will be provided when we 5135 // initialize the declaration which performed lifetime extension. 5136 Type = getTypes().ConvertTypeForMem(MaterializedType); 5137 } 5138 5139 // Create a global variable for this lifetime-extended temporary. 5140 llvm::GlobalValue::LinkageTypes Linkage = 5141 getLLVMLinkageVarDefinition(VD, Constant); 5142 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5143 const VarDecl *InitVD; 5144 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5145 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5146 // Temporaries defined inside a class get linkonce_odr linkage because the 5147 // class can be defined in multiple translation units. 5148 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5149 } else { 5150 // There is no need for this temporary to have external linkage if the 5151 // VarDecl has external linkage. 5152 Linkage = llvm::GlobalVariable::InternalLinkage; 5153 } 5154 } 5155 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5156 auto *GV = new llvm::GlobalVariable( 5157 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5158 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5159 if (emitter) emitter->finalize(GV); 5160 setGVProperties(GV, VD); 5161 GV->setAlignment(Align.getAsAlign()); 5162 if (supportsCOMDAT() && GV->isWeakForLinker()) 5163 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5164 if (VD->getTLSKind()) 5165 setTLSMode(GV, *VD); 5166 llvm::Constant *CV = GV; 5167 if (AddrSpace != LangAS::Default) 5168 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5169 *this, GV, AddrSpace, LangAS::Default, 5170 Type->getPointerTo( 5171 getContext().getTargetAddressSpace(LangAS::Default))); 5172 MaterializedGlobalTemporaryMap[E] = CV; 5173 return ConstantAddress(CV, Align); 5174 } 5175 5176 /// EmitObjCPropertyImplementations - Emit information for synthesized 5177 /// properties for an implementation. 5178 void CodeGenModule::EmitObjCPropertyImplementations(const 5179 ObjCImplementationDecl *D) { 5180 for (const auto *PID : D->property_impls()) { 5181 // Dynamic is just for type-checking. 5182 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5183 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5184 5185 // Determine which methods need to be implemented, some may have 5186 // been overridden. Note that ::isPropertyAccessor is not the method 5187 // we want, that just indicates if the decl came from a 5188 // property. What we want to know is if the method is defined in 5189 // this implementation. 5190 auto *Getter = PID->getGetterMethodDecl(); 5191 if (!Getter || Getter->isSynthesizedAccessorStub()) 5192 CodeGenFunction(*this).GenerateObjCGetter( 5193 const_cast<ObjCImplementationDecl *>(D), PID); 5194 auto *Setter = PID->getSetterMethodDecl(); 5195 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5196 CodeGenFunction(*this).GenerateObjCSetter( 5197 const_cast<ObjCImplementationDecl *>(D), PID); 5198 } 5199 } 5200 } 5201 5202 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5203 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5204 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5205 ivar; ivar = ivar->getNextIvar()) 5206 if (ivar->getType().isDestructedType()) 5207 return true; 5208 5209 return false; 5210 } 5211 5212 static bool AllTrivialInitializers(CodeGenModule &CGM, 5213 ObjCImplementationDecl *D) { 5214 CodeGenFunction CGF(CGM); 5215 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5216 E = D->init_end(); B != E; ++B) { 5217 CXXCtorInitializer *CtorInitExp = *B; 5218 Expr *Init = CtorInitExp->getInit(); 5219 if (!CGF.isTrivialInitializer(Init)) 5220 return false; 5221 } 5222 return true; 5223 } 5224 5225 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5226 /// for an implementation. 5227 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5228 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5229 if (needsDestructMethod(D)) { 5230 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5231 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5232 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5233 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5234 getContext().VoidTy, nullptr, D, 5235 /*isInstance=*/true, /*isVariadic=*/false, 5236 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5237 /*isImplicitlyDeclared=*/true, 5238 /*isDefined=*/false, ObjCMethodDecl::Required); 5239 D->addInstanceMethod(DTORMethod); 5240 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5241 D->setHasDestructors(true); 5242 } 5243 5244 // If the implementation doesn't have any ivar initializers, we don't need 5245 // a .cxx_construct. 5246 if (D->getNumIvarInitializers() == 0 || 5247 AllTrivialInitializers(*this, D)) 5248 return; 5249 5250 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5251 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5252 // The constructor returns 'self'. 5253 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5254 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5255 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5256 /*isVariadic=*/false, 5257 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5258 /*isImplicitlyDeclared=*/true, 5259 /*isDefined=*/false, ObjCMethodDecl::Required); 5260 D->addInstanceMethod(CTORMethod); 5261 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5262 D->setHasNonZeroConstructors(true); 5263 } 5264 5265 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5266 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5267 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5268 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5269 ErrorUnsupported(LSD, "linkage spec"); 5270 return; 5271 } 5272 5273 EmitDeclContext(LSD); 5274 } 5275 5276 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5277 for (auto *I : DC->decls()) { 5278 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5279 // are themselves considered "top-level", so EmitTopLevelDecl on an 5280 // ObjCImplDecl does not recursively visit them. We need to do that in 5281 // case they're nested inside another construct (LinkageSpecDecl / 5282 // ExportDecl) that does stop them from being considered "top-level". 5283 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5284 for (auto *M : OID->methods()) 5285 EmitTopLevelDecl(M); 5286 } 5287 5288 EmitTopLevelDecl(I); 5289 } 5290 } 5291 5292 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5293 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5294 // Ignore dependent declarations. 5295 if (D->isTemplated()) 5296 return; 5297 5298 switch (D->getKind()) { 5299 case Decl::CXXConversion: 5300 case Decl::CXXMethod: 5301 case Decl::Function: 5302 EmitGlobal(getGlobalDecl(cast<FunctionDecl>(D))); 5303 // Always provide some coverage mapping 5304 // even for the functions that aren't emitted. 5305 AddDeferredUnusedCoverageMapping(D); 5306 break; 5307 5308 case Decl::CXXDeductionGuide: 5309 // Function-like, but does not result in code emission. 5310 break; 5311 5312 case Decl::Var: 5313 case Decl::Decomposition: 5314 case Decl::VarTemplateSpecialization: 5315 EmitGlobal(cast<VarDecl>(D)); 5316 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5317 for (auto *B : DD->bindings()) 5318 if (auto *HD = B->getHoldingVar()) 5319 EmitGlobal(HD); 5320 break; 5321 5322 // Indirect fields from global anonymous structs and unions can be 5323 // ignored; only the actual variable requires IR gen support. 5324 case Decl::IndirectField: 5325 break; 5326 5327 // C++ Decls 5328 case Decl::Namespace: 5329 EmitDeclContext(cast<NamespaceDecl>(D)); 5330 break; 5331 case Decl::ClassTemplateSpecialization: { 5332 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5333 if (DebugInfo && 5334 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5335 Spec->hasDefinition()) 5336 DebugInfo->completeTemplateDefinition(*Spec); 5337 } LLVM_FALLTHROUGH; 5338 case Decl::CXXRecord: 5339 if (DebugInfo) { 5340 if (auto *ES = D->getASTContext().getExternalSource()) 5341 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5342 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5343 } 5344 // Emit any static data members, they may be definitions. 5345 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5346 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5347 EmitTopLevelDecl(I); 5348 break; 5349 // No code generation needed. 5350 case Decl::UsingShadow: 5351 case Decl::ClassTemplate: 5352 case Decl::VarTemplate: 5353 case Decl::Concept: 5354 case Decl::VarTemplatePartialSpecialization: 5355 case Decl::FunctionTemplate: 5356 case Decl::TypeAliasTemplate: 5357 case Decl::Block: 5358 case Decl::Empty: 5359 case Decl::Binding: 5360 break; 5361 case Decl::Using: // using X; [C++] 5362 if (CGDebugInfo *DI = getModuleDebugInfo()) 5363 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5364 return; 5365 case Decl::NamespaceAlias: 5366 if (CGDebugInfo *DI = getModuleDebugInfo()) 5367 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5368 return; 5369 case Decl::UsingDirective: // using namespace X; [C++] 5370 if (CGDebugInfo *DI = getModuleDebugInfo()) 5371 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5372 return; 5373 case Decl::CXXConstructor: 5374 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5375 break; 5376 case Decl::CXXDestructor: 5377 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5378 break; 5379 5380 case Decl::StaticAssert: 5381 // Nothing to do. 5382 break; 5383 5384 // Objective-C Decls 5385 5386 // Forward declarations, no (immediate) code generation. 5387 case Decl::ObjCInterface: 5388 case Decl::ObjCCategory: 5389 break; 5390 5391 case Decl::ObjCProtocol: { 5392 auto *Proto = cast<ObjCProtocolDecl>(D); 5393 if (Proto->isThisDeclarationADefinition()) 5394 ObjCRuntime->GenerateProtocol(Proto); 5395 break; 5396 } 5397 5398 case Decl::ObjCCategoryImpl: 5399 // Categories have properties but don't support synthesize so we 5400 // can ignore them here. 5401 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5402 break; 5403 5404 case Decl::ObjCImplementation: { 5405 auto *OMD = cast<ObjCImplementationDecl>(D); 5406 EmitObjCPropertyImplementations(OMD); 5407 EmitObjCIvarInitializations(OMD); 5408 ObjCRuntime->GenerateClass(OMD); 5409 // Emit global variable debug information. 5410 if (CGDebugInfo *DI = getModuleDebugInfo()) 5411 if (getCodeGenOpts().hasReducedDebugInfo()) 5412 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5413 OMD->getClassInterface()), OMD->getLocation()); 5414 break; 5415 } 5416 case Decl::ObjCMethod: { 5417 auto *OMD = cast<ObjCMethodDecl>(D); 5418 // If this is not a prototype, emit the body. 5419 if (OMD->getBody()) 5420 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5421 break; 5422 } 5423 case Decl::ObjCCompatibleAlias: 5424 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5425 break; 5426 5427 case Decl::PragmaComment: { 5428 const auto *PCD = cast<PragmaCommentDecl>(D); 5429 switch (PCD->getCommentKind()) { 5430 case PCK_Unknown: 5431 llvm_unreachable("unexpected pragma comment kind"); 5432 case PCK_Linker: 5433 AppendLinkerOptions(PCD->getArg()); 5434 break; 5435 case PCK_Lib: 5436 AddDependentLib(PCD->getArg()); 5437 break; 5438 case PCK_Compiler: 5439 case PCK_ExeStr: 5440 case PCK_User: 5441 break; // We ignore all of these. 5442 } 5443 break; 5444 } 5445 5446 case Decl::PragmaDetectMismatch: { 5447 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5448 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5449 break; 5450 } 5451 5452 case Decl::LinkageSpec: 5453 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5454 break; 5455 5456 case Decl::FileScopeAsm: { 5457 // File-scope asm is ignored during device-side CUDA compilation. 5458 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5459 break; 5460 // File-scope asm is ignored during device-side OpenMP compilation. 5461 if (LangOpts.OpenMPIsDevice) 5462 break; 5463 auto *AD = cast<FileScopeAsmDecl>(D); 5464 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5465 break; 5466 } 5467 5468 case Decl::Import: { 5469 auto *Import = cast<ImportDecl>(D); 5470 5471 // If we've already imported this module, we're done. 5472 if (!ImportedModules.insert(Import->getImportedModule())) 5473 break; 5474 5475 // Emit debug information for direct imports. 5476 if (!Import->getImportedOwningModule()) { 5477 if (CGDebugInfo *DI = getModuleDebugInfo()) 5478 DI->EmitImportDecl(*Import); 5479 } 5480 5481 // Find all of the submodules and emit the module initializers. 5482 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5483 SmallVector<clang::Module *, 16> Stack; 5484 Visited.insert(Import->getImportedModule()); 5485 Stack.push_back(Import->getImportedModule()); 5486 5487 while (!Stack.empty()) { 5488 clang::Module *Mod = Stack.pop_back_val(); 5489 if (!EmittedModuleInitializers.insert(Mod).second) 5490 continue; 5491 5492 for (auto *D : Context.getModuleInitializers(Mod)) 5493 EmitTopLevelDecl(D); 5494 5495 // Visit the submodules of this module. 5496 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5497 SubEnd = Mod->submodule_end(); 5498 Sub != SubEnd; ++Sub) { 5499 // Skip explicit children; they need to be explicitly imported to emit 5500 // the initializers. 5501 if ((*Sub)->IsExplicit) 5502 continue; 5503 5504 if (Visited.insert(*Sub).second) 5505 Stack.push_back(*Sub); 5506 } 5507 } 5508 break; 5509 } 5510 5511 case Decl::Export: 5512 EmitDeclContext(cast<ExportDecl>(D)); 5513 break; 5514 5515 case Decl::OMPThreadPrivate: 5516 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5517 break; 5518 5519 case Decl::OMPAllocate: 5520 break; 5521 5522 case Decl::OMPDeclareReduction: 5523 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5524 break; 5525 5526 case Decl::OMPDeclareMapper: 5527 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5528 break; 5529 5530 case Decl::OMPRequires: 5531 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5532 break; 5533 5534 default: 5535 // Make sure we handled everything we should, every other kind is a 5536 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5537 // function. Need to recode Decl::Kind to do that easily. 5538 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5539 break; 5540 } 5541 } 5542 5543 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5544 // Do we need to generate coverage mapping? 5545 if (!CodeGenOpts.CoverageMapping) 5546 return; 5547 switch (D->getKind()) { 5548 case Decl::CXXConversion: 5549 case Decl::CXXMethod: 5550 case Decl::Function: 5551 case Decl::ObjCMethod: 5552 case Decl::CXXConstructor: 5553 case Decl::CXXDestructor: { 5554 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5555 return; 5556 SourceManager &SM = getContext().getSourceManager(); 5557 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5558 return; 5559 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5560 if (I == DeferredEmptyCoverageMappingDecls.end()) 5561 DeferredEmptyCoverageMappingDecls[D] = true; 5562 break; 5563 } 5564 default: 5565 break; 5566 }; 5567 } 5568 5569 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5570 // Do we need to generate coverage mapping? 5571 if (!CodeGenOpts.CoverageMapping) 5572 return; 5573 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5574 if (Fn->isTemplateInstantiation()) 5575 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5576 } 5577 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5578 if (I == DeferredEmptyCoverageMappingDecls.end()) 5579 DeferredEmptyCoverageMappingDecls[D] = false; 5580 else 5581 I->second = false; 5582 } 5583 5584 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5585 // We call takeVector() here to avoid use-after-free. 5586 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5587 // we deserialize function bodies to emit coverage info for them, and that 5588 // deserializes more declarations. How should we handle that case? 5589 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5590 if (!Entry.second) 5591 continue; 5592 const Decl *D = Entry.first; 5593 switch (D->getKind()) { 5594 case Decl::CXXConversion: 5595 case Decl::CXXMethod: 5596 case Decl::Function: 5597 case Decl::ObjCMethod: { 5598 CodeGenPGO PGO(*this); 5599 GlobalDecl GD(cast<FunctionDecl>(D)); 5600 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5601 getFunctionLinkage(GD)); 5602 break; 5603 } 5604 case Decl::CXXConstructor: { 5605 CodeGenPGO PGO(*this); 5606 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5607 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5608 getFunctionLinkage(GD)); 5609 break; 5610 } 5611 case Decl::CXXDestructor: { 5612 CodeGenPGO PGO(*this); 5613 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5614 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5615 getFunctionLinkage(GD)); 5616 break; 5617 } 5618 default: 5619 break; 5620 }; 5621 } 5622 } 5623 5624 void CodeGenModule::EmitMainVoidAlias() { 5625 // In order to transition away from "__original_main" gracefully, emit an 5626 // alias for "main" in the no-argument case so that libc can detect when 5627 // new-style no-argument main is in used. 5628 if (llvm::Function *F = getModule().getFunction("main")) { 5629 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5630 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5631 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5632 } 5633 } 5634 5635 /// Turns the given pointer into a constant. 5636 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5637 const void *Ptr) { 5638 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5639 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5640 return llvm::ConstantInt::get(i64, PtrInt); 5641 } 5642 5643 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5644 llvm::NamedMDNode *&GlobalMetadata, 5645 GlobalDecl D, 5646 llvm::GlobalValue *Addr) { 5647 if (!GlobalMetadata) 5648 GlobalMetadata = 5649 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5650 5651 // TODO: should we report variant information for ctors/dtors? 5652 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5653 llvm::ConstantAsMetadata::get(GetPointerConstant( 5654 CGM.getLLVMContext(), D.getDecl()))}; 5655 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5656 } 5657 5658 /// For each function which is declared within an extern "C" region and marked 5659 /// as 'used', but has internal linkage, create an alias from the unmangled 5660 /// name to the mangled name if possible. People expect to be able to refer 5661 /// to such functions with an unmangled name from inline assembly within the 5662 /// same translation unit. 5663 void CodeGenModule::EmitStaticExternCAliases() { 5664 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5665 return; 5666 for (auto &I : StaticExternCValues) { 5667 IdentifierInfo *Name = I.first; 5668 llvm::GlobalValue *Val = I.second; 5669 if (Val && !getModule().getNamedValue(Name->getName())) 5670 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5671 } 5672 } 5673 5674 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5675 GlobalDecl &Result) const { 5676 auto Res = Manglings.find(MangledName); 5677 if (Res == Manglings.end()) 5678 return false; 5679 Result = Res->getValue(); 5680 return true; 5681 } 5682 5683 /// Emits metadata nodes associating all the global values in the 5684 /// current module with the Decls they came from. This is useful for 5685 /// projects using IR gen as a subroutine. 5686 /// 5687 /// Since there's currently no way to associate an MDNode directly 5688 /// with an llvm::GlobalValue, we create a global named metadata 5689 /// with the name 'clang.global.decl.ptrs'. 5690 void CodeGenModule::EmitDeclMetadata() { 5691 llvm::NamedMDNode *GlobalMetadata = nullptr; 5692 5693 for (auto &I : MangledDeclNames) { 5694 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5695 // Some mangled names don't necessarily have an associated GlobalValue 5696 // in this module, e.g. if we mangled it for DebugInfo. 5697 if (Addr) 5698 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5699 } 5700 } 5701 5702 /// Emits metadata nodes for all the local variables in the current 5703 /// function. 5704 void CodeGenFunction::EmitDeclMetadata() { 5705 if (LocalDeclMap.empty()) return; 5706 5707 llvm::LLVMContext &Context = getLLVMContext(); 5708 5709 // Find the unique metadata ID for this name. 5710 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5711 5712 llvm::NamedMDNode *GlobalMetadata = nullptr; 5713 5714 for (auto &I : LocalDeclMap) { 5715 const Decl *D = I.first; 5716 llvm::Value *Addr = I.second.getPointer(); 5717 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5718 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5719 Alloca->setMetadata( 5720 DeclPtrKind, llvm::MDNode::get( 5721 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5722 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5723 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5724 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5725 } 5726 } 5727 } 5728 5729 void CodeGenModule::EmitVersionIdentMetadata() { 5730 llvm::NamedMDNode *IdentMetadata = 5731 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5732 std::string Version = getClangFullVersion(); 5733 llvm::LLVMContext &Ctx = TheModule.getContext(); 5734 5735 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5736 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5737 } 5738 5739 void CodeGenModule::EmitCommandLineMetadata() { 5740 llvm::NamedMDNode *CommandLineMetadata = 5741 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5742 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5743 llvm::LLVMContext &Ctx = TheModule.getContext(); 5744 5745 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5746 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5747 } 5748 5749 void CodeGenModule::EmitTargetMetadata() { 5750 // Warning, new MangledDeclNames may be appended within this loop. 5751 // We rely on MapVector insertions adding new elements to the end 5752 // of the container. 5753 // FIXME: Move this loop into the one target that needs it, and only 5754 // loop over those declarations for which we couldn't emit the target 5755 // metadata when we emitted the declaration. 5756 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5757 auto Val = *(MangledDeclNames.begin() + I); 5758 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5759 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5760 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5761 } 5762 } 5763 5764 void CodeGenModule::EmitCoverageFile() { 5765 if (getCodeGenOpts().CoverageDataFile.empty() && 5766 getCodeGenOpts().CoverageNotesFile.empty()) 5767 return; 5768 5769 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5770 if (!CUNode) 5771 return; 5772 5773 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5774 llvm::LLVMContext &Ctx = TheModule.getContext(); 5775 auto *CoverageDataFile = 5776 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5777 auto *CoverageNotesFile = 5778 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5779 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5780 llvm::MDNode *CU = CUNode->getOperand(i); 5781 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5782 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5783 } 5784 } 5785 5786 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5787 // Sema has checked that all uuid strings are of the form 5788 // "12345678-1234-1234-1234-1234567890ab". 5789 assert(Uuid.size() == 36); 5790 for (unsigned i = 0; i < 36; ++i) { 5791 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5792 else assert(isHexDigit(Uuid[i])); 5793 } 5794 5795 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5796 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5797 5798 llvm::Constant *Field3[8]; 5799 for (unsigned Idx = 0; Idx < 8; ++Idx) 5800 Field3[Idx] = llvm::ConstantInt::get( 5801 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5802 5803 llvm::Constant *Fields[4] = { 5804 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5805 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5806 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5807 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5808 }; 5809 5810 return llvm::ConstantStruct::getAnon(Fields); 5811 } 5812 5813 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5814 bool ForEH) { 5815 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5816 // FIXME: should we even be calling this method if RTTI is disabled 5817 // and it's not for EH? 5818 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5819 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5820 getTriple().isNVPTX())) 5821 return llvm::Constant::getNullValue(Int8PtrTy); 5822 5823 if (ForEH && Ty->isObjCObjectPointerType() && 5824 LangOpts.ObjCRuntime.isGNUFamily()) 5825 return ObjCRuntime->GetEHType(Ty); 5826 5827 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5828 } 5829 5830 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5831 // Do not emit threadprivates in simd-only mode. 5832 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5833 return; 5834 for (auto RefExpr : D->varlists()) { 5835 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5836 bool PerformInit = 5837 VD->getAnyInitializer() && 5838 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5839 /*ForRef=*/false); 5840 5841 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5842 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5843 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5844 CXXGlobalInits.push_back(InitFunction); 5845 } 5846 } 5847 5848 llvm::Metadata * 5849 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5850 StringRef Suffix) { 5851 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5852 if (InternalId) 5853 return InternalId; 5854 5855 if (isExternallyVisible(T->getLinkage())) { 5856 std::string OutName; 5857 llvm::raw_string_ostream Out(OutName); 5858 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5859 Out << Suffix; 5860 5861 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5862 } else { 5863 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5864 llvm::ArrayRef<llvm::Metadata *>()); 5865 } 5866 5867 return InternalId; 5868 } 5869 5870 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5871 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5872 } 5873 5874 llvm::Metadata * 5875 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5876 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5877 } 5878 5879 // Generalize pointer types to a void pointer with the qualifiers of the 5880 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5881 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5882 // 'void *'. 5883 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5884 if (!Ty->isPointerType()) 5885 return Ty; 5886 5887 return Ctx.getPointerType( 5888 QualType(Ctx.VoidTy).withCVRQualifiers( 5889 Ty->getPointeeType().getCVRQualifiers())); 5890 } 5891 5892 // Apply type generalization to a FunctionType's return and argument types 5893 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5894 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5895 SmallVector<QualType, 8> GeneralizedParams; 5896 for (auto &Param : FnType->param_types()) 5897 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5898 5899 return Ctx.getFunctionType( 5900 GeneralizeType(Ctx, FnType->getReturnType()), 5901 GeneralizedParams, FnType->getExtProtoInfo()); 5902 } 5903 5904 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5905 return Ctx.getFunctionNoProtoType( 5906 GeneralizeType(Ctx, FnType->getReturnType())); 5907 5908 llvm_unreachable("Encountered unknown FunctionType"); 5909 } 5910 5911 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5912 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5913 GeneralizedMetadataIdMap, ".generalized"); 5914 } 5915 5916 /// Returns whether this module needs the "all-vtables" type identifier. 5917 bool CodeGenModule::NeedAllVtablesTypeId() const { 5918 // Returns true if at least one of vtable-based CFI checkers is enabled and 5919 // is not in the trapping mode. 5920 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5921 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5922 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5923 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5924 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5925 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5926 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5927 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5928 } 5929 5930 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5931 CharUnits Offset, 5932 const CXXRecordDecl *RD) { 5933 llvm::Metadata *MD = 5934 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5935 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5936 5937 if (CodeGenOpts.SanitizeCfiCrossDso) 5938 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5939 VTable->addTypeMetadata(Offset.getQuantity(), 5940 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5941 5942 if (NeedAllVtablesTypeId()) { 5943 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5944 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5945 } 5946 } 5947 5948 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5949 if (!SanStats) 5950 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5951 5952 return *SanStats; 5953 } 5954 llvm::Value * 5955 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5956 CodeGenFunction &CGF) { 5957 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5958 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5959 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5960 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5961 "__translate_sampler_initializer"), 5962 {C}); 5963 } 5964 5965 GlobalDecl CodeGenModule::getGlobalDecl(const FunctionDecl *FD) { 5966 if (FD->hasAttr<CUDAGlobalAttr>()) 5967 return GlobalDecl::getDefaultKernelReference(FD); 5968 else 5969 return GlobalDecl(FD); 5970 } 5971