1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/Support/ErrorHandling.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 41 llvm::Module &M, const llvm::TargetData &TD, 42 Diagnostic &diags) 43 : BlockModule(C, M, TD, Types, *this), Context(C), 44 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 45 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 46 VtableInfo(*this), Runtime(0), 47 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 48 VMContext(M.getContext()) { 49 50 if (!Features.ObjC1) 51 Runtime = 0; 52 else if (!Features.NeXTRuntime) 53 Runtime = CreateGNUObjCRuntime(*this); 54 else if (Features.ObjCNonFragileABI) 55 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 56 else 57 Runtime = CreateMacObjCRuntime(*this); 58 59 // If debug info generation is enabled, create the CGDebugInfo object. 60 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 61 } 62 63 CodeGenModule::~CodeGenModule() { 64 delete Runtime; 65 delete DebugInfo; 66 } 67 68 void CodeGenModule::Release() { 69 EmitDeferred(); 70 EmitCXXGlobalInitFunc(); 71 if (Runtime) 72 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 73 AddGlobalCtor(ObjCInitFunction); 74 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 75 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 76 EmitAnnotations(); 77 EmitLLVMUsed(); 78 } 79 80 /// ErrorUnsupported - Print out an error that codegen doesn't support the 81 /// specified stmt yet. 82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 83 bool OmitOnError) { 84 if (OmitOnError && getDiags().hasErrorOccurred()) 85 return; 86 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 87 "cannot compile this %0 yet"); 88 std::string Msg = Type; 89 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 90 << Msg << S->getSourceRange(); 91 } 92 93 /// ErrorUnsupported - Print out an error that codegen doesn't support the 94 /// specified decl yet. 95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 96 bool OmitOnError) { 97 if (OmitOnError && getDiags().hasErrorOccurred()) 98 return; 99 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 100 "cannot compile this %0 yet"); 101 std::string Msg = Type; 102 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 103 } 104 105 LangOptions::VisibilityMode 106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 107 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 108 if (VD->getStorageClass() == VarDecl::PrivateExtern) 109 return LangOptions::Hidden; 110 111 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 112 switch (attr->getVisibility()) { 113 default: assert(0 && "Unknown visibility!"); 114 case VisibilityAttr::DefaultVisibility: 115 return LangOptions::Default; 116 case VisibilityAttr::HiddenVisibility: 117 return LangOptions::Hidden; 118 case VisibilityAttr::ProtectedVisibility: 119 return LangOptions::Protected; 120 } 121 } 122 123 return getLangOptions().getVisibilityMode(); 124 } 125 126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 127 const Decl *D) const { 128 // Internal definitions always have default visibility. 129 if (GV->hasLocalLinkage()) { 130 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 return; 132 } 133 134 switch (getDeclVisibilityMode(D)) { 135 default: assert(0 && "Unknown visibility!"); 136 case LangOptions::Default: 137 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 138 case LangOptions::Hidden: 139 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 140 case LangOptions::Protected: 141 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 142 } 143 } 144 145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 146 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 147 148 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 149 return getMangledCXXCtorName(D, GD.getCtorType()); 150 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 151 return getMangledCXXDtorName(D, GD.getDtorType()); 152 153 return getMangledName(ND); 154 } 155 156 /// \brief Retrieves the mangled name for the given declaration. 157 /// 158 /// If the given declaration requires a mangled name, returns an 159 /// const char* containing the mangled name. Otherwise, returns 160 /// the unmangled name. 161 /// 162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 163 if (!getMangleContext().shouldMangleDeclName(ND)) { 164 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 165 return ND->getNameAsCString(); 166 } 167 168 llvm::SmallString<256> Name; 169 getMangleContext().mangleName(ND, Name); 170 Name += '\0'; 171 return UniqueMangledName(Name.begin(), Name.end()); 172 } 173 174 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 175 const char *NameEnd) { 176 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 177 178 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 179 } 180 181 /// AddGlobalCtor - Add a function to the list that will be called before 182 /// main() runs. 183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 184 // FIXME: Type coercion of void()* types. 185 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 186 } 187 188 /// AddGlobalDtor - Add a function to the list that will be called 189 /// when the module is unloaded. 190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 191 // FIXME: Type coercion of void()* types. 192 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 193 } 194 195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 196 // Ctor function type is void()*. 197 llvm::FunctionType* CtorFTy = 198 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 199 std::vector<const llvm::Type*>(), 200 false); 201 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 202 203 // Get the type of a ctor entry, { i32, void ()* }. 204 llvm::StructType* CtorStructTy = 205 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 206 llvm::PointerType::getUnqual(CtorFTy), NULL); 207 208 // Construct the constructor and destructor arrays. 209 std::vector<llvm::Constant*> Ctors; 210 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 211 std::vector<llvm::Constant*> S; 212 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 213 I->second, false)); 214 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 215 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 216 } 217 218 if (!Ctors.empty()) { 219 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 220 new llvm::GlobalVariable(TheModule, AT, false, 221 llvm::GlobalValue::AppendingLinkage, 222 llvm::ConstantArray::get(AT, Ctors), 223 GlobalName); 224 } 225 } 226 227 void CodeGenModule::EmitAnnotations() { 228 if (Annotations.empty()) 229 return; 230 231 // Create a new global variable for the ConstantStruct in the Module. 232 llvm::Constant *Array = 233 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 234 Annotations.size()), 235 Annotations); 236 llvm::GlobalValue *gv = 237 new llvm::GlobalVariable(TheModule, Array->getType(), false, 238 llvm::GlobalValue::AppendingLinkage, Array, 239 "llvm.global.annotations"); 240 gv->setSection("llvm.metadata"); 241 } 242 243 static CodeGenModule::GVALinkage 244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 245 const LangOptions &Features) { 246 // Everything located semantically within an anonymous namespace is 247 // always internal. 248 if (FD->isInAnonymousNamespace()) 249 return CodeGenModule::GVA_Internal; 250 251 // "static" functions get internal linkage. 252 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 253 return CodeGenModule::GVA_Internal; 254 255 // The kind of external linkage this function will have, if it is not 256 // inline or static. 257 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 258 if (Context.getLangOptions().CPlusPlus) { 259 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 260 261 if (TSK == TSK_ExplicitInstantiationDefinition) { 262 // If a function has been explicitly instantiated, then it should 263 // always have strong external linkage. 264 return CodeGenModule::GVA_StrongExternal; 265 } 266 267 if (TSK == TSK_ImplicitInstantiation) 268 External = CodeGenModule::GVA_TemplateInstantiation; 269 } 270 271 if (!FD->isInlined()) 272 return External; 273 274 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 275 // GNU or C99 inline semantics. Determine whether this symbol should be 276 // externally visible. 277 if (FD->isInlineDefinitionExternallyVisible()) 278 return External; 279 280 // C99 inline semantics, where the symbol is not externally visible. 281 return CodeGenModule::GVA_C99Inline; 282 } 283 284 // C++0x [temp.explicit]p9: 285 // [ Note: The intent is that an inline function that is the subject of 286 // an explicit instantiation declaration will still be implicitly 287 // instantiated when used so that the body can be considered for 288 // inlining, but that no out-of-line copy of the inline function would be 289 // generated in the translation unit. -- end note ] 290 if (FD->getTemplateSpecializationKind() 291 == TSK_ExplicitInstantiationDeclaration) 292 return CodeGenModule::GVA_C99Inline; 293 294 return CodeGenModule::GVA_CXXInline; 295 } 296 297 /// SetFunctionDefinitionAttributes - Set attributes for a global. 298 /// 299 /// FIXME: This is currently only done for aliases and functions, but not for 300 /// variables (these details are set in EmitGlobalVarDefinition for variables). 301 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 302 llvm::GlobalValue *GV) { 303 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 304 305 if (Linkage == GVA_Internal) { 306 GV->setLinkage(llvm::Function::InternalLinkage); 307 } else if (D->hasAttr<DLLExportAttr>()) { 308 GV->setLinkage(llvm::Function::DLLExportLinkage); 309 } else if (D->hasAttr<WeakAttr>()) { 310 GV->setLinkage(llvm::Function::WeakAnyLinkage); 311 } else if (Linkage == GVA_C99Inline) { 312 // In C99 mode, 'inline' functions are guaranteed to have a strong 313 // definition somewhere else, so we can use available_externally linkage. 314 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 315 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 316 // In C++, the compiler has to emit a definition in every translation unit 317 // that references the function. We should use linkonce_odr because 318 // a) if all references in this translation unit are optimized away, we 319 // don't need to codegen it. b) if the function persists, it needs to be 320 // merged with other definitions. c) C++ has the ODR, so we know the 321 // definition is dependable. 322 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 323 } else { 324 assert(Linkage == GVA_StrongExternal); 325 // Otherwise, we have strong external linkage. 326 GV->setLinkage(llvm::Function::ExternalLinkage); 327 } 328 329 SetCommonAttributes(D, GV); 330 } 331 332 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 333 const CGFunctionInfo &Info, 334 llvm::Function *F) { 335 unsigned CallingConv; 336 AttributeListType AttributeList; 337 ConstructAttributeList(Info, D, AttributeList, CallingConv); 338 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 339 AttributeList.size())); 340 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 341 } 342 343 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 344 llvm::Function *F) { 345 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 346 F->addFnAttr(llvm::Attribute::NoUnwind); 347 348 if (D->hasAttr<AlwaysInlineAttr>()) 349 F->addFnAttr(llvm::Attribute::AlwaysInline); 350 351 if (D->hasAttr<NoInlineAttr>()) 352 F->addFnAttr(llvm::Attribute::NoInline); 353 354 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 355 F->addFnAttr(llvm::Attribute::StackProtect); 356 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 357 F->addFnAttr(llvm::Attribute::StackProtectReq); 358 359 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 360 unsigned width = Context.Target.getCharWidth(); 361 F->setAlignment(AA->getAlignment() / width); 362 while ((AA = AA->getNext<AlignedAttr>())) 363 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 364 } 365 // C++ ABI requires 2-byte alignment for member functions. 366 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 367 F->setAlignment(2); 368 } 369 370 void CodeGenModule::SetCommonAttributes(const Decl *D, 371 llvm::GlobalValue *GV) { 372 setGlobalVisibility(GV, D); 373 374 if (D->hasAttr<UsedAttr>()) 375 AddUsedGlobal(GV); 376 377 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 378 GV->setSection(SA->getName()); 379 } 380 381 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 382 llvm::Function *F, 383 const CGFunctionInfo &FI) { 384 SetLLVMFunctionAttributes(D, FI, F); 385 SetLLVMFunctionAttributesForDefinition(D, F); 386 387 F->setLinkage(llvm::Function::InternalLinkage); 388 389 SetCommonAttributes(D, F); 390 } 391 392 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 393 llvm::Function *F, 394 bool IsIncompleteFunction) { 395 if (!IsIncompleteFunction) 396 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 397 398 // Only a few attributes are set on declarations; these may later be 399 // overridden by a definition. 400 401 if (FD->hasAttr<DLLImportAttr>()) { 402 F->setLinkage(llvm::Function::DLLImportLinkage); 403 } else if (FD->hasAttr<WeakAttr>() || 404 FD->hasAttr<WeakImportAttr>()) { 405 // "extern_weak" is overloaded in LLVM; we probably should have 406 // separate linkage types for this. 407 F->setLinkage(llvm::Function::ExternalWeakLinkage); 408 } else { 409 F->setLinkage(llvm::Function::ExternalLinkage); 410 } 411 412 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 413 F->setSection(SA->getName()); 414 } 415 416 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 417 assert(!GV->isDeclaration() && 418 "Only globals with definition can force usage."); 419 LLVMUsed.push_back(GV); 420 } 421 422 void CodeGenModule::EmitLLVMUsed() { 423 // Don't create llvm.used if there is no need. 424 if (LLVMUsed.empty()) 425 return; 426 427 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 428 429 // Convert LLVMUsed to what ConstantArray needs. 430 std::vector<llvm::Constant*> UsedArray; 431 UsedArray.resize(LLVMUsed.size()); 432 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 433 UsedArray[i] = 434 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 435 i8PTy); 436 } 437 438 if (UsedArray.empty()) 439 return; 440 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 441 442 llvm::GlobalVariable *GV = 443 new llvm::GlobalVariable(getModule(), ATy, false, 444 llvm::GlobalValue::AppendingLinkage, 445 llvm::ConstantArray::get(ATy, UsedArray), 446 "llvm.used"); 447 448 GV->setSection("llvm.metadata"); 449 } 450 451 void CodeGenModule::EmitDeferred() { 452 // Emit code for any potentially referenced deferred decls. Since a 453 // previously unused static decl may become used during the generation of code 454 // for a static function, iterate until no changes are made. 455 while (!DeferredDeclsToEmit.empty()) { 456 GlobalDecl D = DeferredDeclsToEmit.back(); 457 DeferredDeclsToEmit.pop_back(); 458 459 // The mangled name for the decl must have been emitted in GlobalDeclMap. 460 // Look it up to see if it was defined with a stronger definition (e.g. an 461 // extern inline function with a strong function redefinition). If so, 462 // just ignore the deferred decl. 463 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 464 assert(CGRef && "Deferred decl wasn't referenced?"); 465 466 if (!CGRef->isDeclaration()) 467 continue; 468 469 // Skip available externally functions at -O0 470 // FIXME: these aren't instantiated yet, so we can't yet do this. 471 if (0 && getCodeGenOpts().OptimizationLevel == 0) 472 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D.getDecl())) { 473 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 474 475 if (Linkage == GVA_C99Inline) 476 continue; 477 } 478 479 // Otherwise, emit the definition and move on to the next one. 480 EmitGlobalDefinition(D); 481 } 482 } 483 484 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 485 /// annotation information for a given GlobalValue. The annotation struct is 486 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 487 /// GlobalValue being annotated. The second field is the constant string 488 /// created from the AnnotateAttr's annotation. The third field is a constant 489 /// string containing the name of the translation unit. The fourth field is 490 /// the line number in the file of the annotated value declaration. 491 /// 492 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 493 /// appears to. 494 /// 495 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 496 const AnnotateAttr *AA, 497 unsigned LineNo) { 498 llvm::Module *M = &getModule(); 499 500 // get [N x i8] constants for the annotation string, and the filename string 501 // which are the 2nd and 3rd elements of the global annotation structure. 502 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 503 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 504 AA->getAnnotation(), true); 505 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 506 M->getModuleIdentifier(), 507 true); 508 509 // Get the two global values corresponding to the ConstantArrays we just 510 // created to hold the bytes of the strings. 511 llvm::GlobalValue *annoGV = 512 new llvm::GlobalVariable(*M, anno->getType(), false, 513 llvm::GlobalValue::PrivateLinkage, anno, 514 GV->getName()); 515 // translation unit name string, emitted into the llvm.metadata section. 516 llvm::GlobalValue *unitGV = 517 new llvm::GlobalVariable(*M, unit->getType(), false, 518 llvm::GlobalValue::PrivateLinkage, unit, 519 ".str"); 520 521 // Create the ConstantStruct for the global annotation. 522 llvm::Constant *Fields[4] = { 523 llvm::ConstantExpr::getBitCast(GV, SBP), 524 llvm::ConstantExpr::getBitCast(annoGV, SBP), 525 llvm::ConstantExpr::getBitCast(unitGV, SBP), 526 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 527 }; 528 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 529 } 530 531 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 532 // Never defer when EmitAllDecls is specified or the decl has 533 // attribute used. 534 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 535 return false; 536 537 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 538 // Constructors and destructors should never be deferred. 539 if (FD->hasAttr<ConstructorAttr>() || 540 FD->hasAttr<DestructorAttr>()) 541 return false; 542 543 // The key function for a class must never be deferred. 544 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 545 const CXXRecordDecl *RD = MD->getParent(); 546 if (MD->isOutOfLine() && RD->isDynamicClass()) { 547 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 548 if (KeyFunction && 549 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 550 return false; 551 } 552 } 553 554 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 555 556 // static, static inline, always_inline, and extern inline functions can 557 // always be deferred. Normal inline functions can be deferred in C99/C++. 558 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 559 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 560 return true; 561 return false; 562 } 563 564 const VarDecl *VD = cast<VarDecl>(Global); 565 assert(VD->isFileVarDecl() && "Invalid decl"); 566 567 // We never want to defer structs that have non-trivial constructors or 568 // destructors. 569 570 // FIXME: Handle references. 571 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 572 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 573 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 574 return false; 575 } 576 } 577 578 // Static data may be deferred, but out-of-line static data members 579 // cannot be. 580 if (VD->isInAnonymousNamespace()) 581 return true; 582 if (VD->getLinkage() == VarDecl::InternalLinkage) { 583 // Initializer has side effects? 584 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 585 return false; 586 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 587 } 588 return false; 589 } 590 591 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 592 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 593 594 // If this is an alias definition (which otherwise looks like a declaration) 595 // emit it now. 596 if (Global->hasAttr<AliasAttr>()) 597 return EmitAliasDefinition(Global); 598 599 // Ignore declarations, they will be emitted on their first use. 600 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 601 // Forward declarations are emitted lazily on first use. 602 if (!FD->isThisDeclarationADefinition()) 603 return; 604 } else { 605 const VarDecl *VD = cast<VarDecl>(Global); 606 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 607 608 if (getLangOptions().CPlusPlus && !VD->getInit()) { 609 // In C++, if this is marked "extern", defer code generation. 610 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 611 return; 612 613 // If this is a declaration of an explicit specialization of a static 614 // data member in a class template, don't emit it. 615 if (VD->isStaticDataMember() && 616 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 617 return; 618 } 619 620 // In C, if this isn't a definition, defer code generation. 621 if (!getLangOptions().CPlusPlus && !VD->getInit()) 622 return; 623 } 624 625 // Defer code generation when possible if this is a static definition, inline 626 // function etc. These we only want to emit if they are used. 627 if (MayDeferGeneration(Global)) { 628 // If the value has already been used, add it directly to the 629 // DeferredDeclsToEmit list. 630 const char *MangledName = getMangledName(GD); 631 if (GlobalDeclMap.count(MangledName)) 632 DeferredDeclsToEmit.push_back(GD); 633 else { 634 // Otherwise, remember that we saw a deferred decl with this name. The 635 // first use of the mangled name will cause it to move into 636 // DeferredDeclsToEmit. 637 DeferredDecls[MangledName] = GD; 638 } 639 return; 640 } 641 642 // Otherwise emit the definition. 643 EmitGlobalDefinition(GD); 644 } 645 646 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 647 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 648 649 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 650 Context.getSourceManager(), 651 "Generating code for declaration"); 652 653 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 654 getVtableInfo().MaybeEmitVtable(GD); 655 if (MD->isVirtual() && MD->isOutOfLine() && 656 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 657 if (isa<CXXDestructorDecl>(D)) { 658 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 659 GD.getDtorType()); 660 BuildThunksForVirtual(CanonGD); 661 } else { 662 BuildThunksForVirtual(MD->getCanonicalDecl()); 663 } 664 } 665 } 666 667 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 668 EmitCXXConstructor(CD, GD.getCtorType()); 669 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 670 EmitCXXDestructor(DD, GD.getDtorType()); 671 else if (isa<FunctionDecl>(D)) 672 EmitGlobalFunctionDefinition(GD); 673 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 674 EmitGlobalVarDefinition(VD); 675 else { 676 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 677 } 678 } 679 680 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 681 /// module, create and return an llvm Function with the specified type. If there 682 /// is something in the module with the specified name, return it potentially 683 /// bitcasted to the right type. 684 /// 685 /// If D is non-null, it specifies a decl that correspond to this. This is used 686 /// to set the attributes on the function when it is first created. 687 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 688 const llvm::Type *Ty, 689 GlobalDecl D) { 690 // Lookup the entry, lazily creating it if necessary. 691 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 692 if (Entry) { 693 if (Entry->getType()->getElementType() == Ty) 694 return Entry; 695 696 // Make sure the result is of the correct type. 697 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 698 return llvm::ConstantExpr::getBitCast(Entry, PTy); 699 } 700 701 // This function doesn't have a complete type (for example, the return 702 // type is an incomplete struct). Use a fake type instead, and make 703 // sure not to try to set attributes. 704 bool IsIncompleteFunction = false; 705 if (!isa<llvm::FunctionType>(Ty)) { 706 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 707 std::vector<const llvm::Type*>(), false); 708 IsIncompleteFunction = true; 709 } 710 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 711 llvm::Function::ExternalLinkage, 712 "", &getModule()); 713 F->setName(MangledName); 714 if (D.getDecl()) 715 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 716 IsIncompleteFunction); 717 Entry = F; 718 719 // This is the first use or definition of a mangled name. If there is a 720 // deferred decl with this name, remember that we need to emit it at the end 721 // of the file. 722 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 723 DeferredDecls.find(MangledName); 724 if (DDI != DeferredDecls.end()) { 725 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 726 // list, and remove it from DeferredDecls (since we don't need it anymore). 727 DeferredDeclsToEmit.push_back(DDI->second); 728 DeferredDecls.erase(DDI); 729 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 730 // If this the first reference to a C++ inline function in a class, queue up 731 // the deferred function body for emission. These are not seen as 732 // top-level declarations. 733 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 734 DeferredDeclsToEmit.push_back(D); 735 // A called constructor which has no definition or declaration need be 736 // synthesized. 737 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 738 if (CD->isImplicit()) 739 DeferredDeclsToEmit.push_back(D); 740 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 741 if (DD->isImplicit()) 742 DeferredDeclsToEmit.push_back(D); 743 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 744 if (MD->isCopyAssignment() && MD->isImplicit()) 745 DeferredDeclsToEmit.push_back(D); 746 } 747 } 748 749 return F; 750 } 751 752 /// GetAddrOfFunction - Return the address of the given function. If Ty is 753 /// non-null, then this function will use the specified type if it has to 754 /// create it (this occurs when we see a definition of the function). 755 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 756 const llvm::Type *Ty) { 757 // If there was no specific requested type, just convert it now. 758 if (!Ty) 759 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 760 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 761 } 762 763 /// CreateRuntimeFunction - Create a new runtime function with the specified 764 /// type and name. 765 llvm::Constant * 766 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 767 const char *Name) { 768 // Convert Name to be a uniqued string from the IdentifierInfo table. 769 Name = getContext().Idents.get(Name).getNameStart(); 770 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 771 } 772 773 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 774 if (!D->getType().isConstant(Context)) 775 return false; 776 if (Context.getLangOptions().CPlusPlus && 777 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 778 // FIXME: We should do something fancier here! 779 return false; 780 } 781 return true; 782 } 783 784 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 785 /// create and return an llvm GlobalVariable with the specified type. If there 786 /// is something in the module with the specified name, return it potentially 787 /// bitcasted to the right type. 788 /// 789 /// If D is non-null, it specifies a decl that correspond to this. This is used 790 /// to set the attributes on the global when it is first created. 791 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 792 const llvm::PointerType*Ty, 793 const VarDecl *D) { 794 // Lookup the entry, lazily creating it if necessary. 795 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 796 if (Entry) { 797 if (Entry->getType() == Ty) 798 return Entry; 799 800 // Make sure the result is of the correct type. 801 return llvm::ConstantExpr::getBitCast(Entry, Ty); 802 } 803 804 // This is the first use or definition of a mangled name. If there is a 805 // deferred decl with this name, remember that we need to emit it at the end 806 // of the file. 807 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 808 DeferredDecls.find(MangledName); 809 if (DDI != DeferredDecls.end()) { 810 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 811 // list, and remove it from DeferredDecls (since we don't need it anymore). 812 DeferredDeclsToEmit.push_back(DDI->second); 813 DeferredDecls.erase(DDI); 814 } 815 816 llvm::GlobalVariable *GV = 817 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 818 llvm::GlobalValue::ExternalLinkage, 819 0, "", 0, 820 false, Ty->getAddressSpace()); 821 GV->setName(MangledName); 822 823 // Handle things which are present even on external declarations. 824 if (D) { 825 // FIXME: This code is overly simple and should be merged with other global 826 // handling. 827 GV->setConstant(DeclIsConstantGlobal(Context, D)); 828 829 // FIXME: Merge with other attribute handling code. 830 if (D->getStorageClass() == VarDecl::PrivateExtern) 831 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 832 833 if (D->hasAttr<WeakAttr>() || 834 D->hasAttr<WeakImportAttr>()) 835 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 836 837 GV->setThreadLocal(D->isThreadSpecified()); 838 } 839 840 return Entry = GV; 841 } 842 843 844 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 845 /// given global variable. If Ty is non-null and if the global doesn't exist, 846 /// then it will be greated with the specified type instead of whatever the 847 /// normal requested type would be. 848 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 849 const llvm::Type *Ty) { 850 assert(D->hasGlobalStorage() && "Not a global variable"); 851 QualType ASTTy = D->getType(); 852 if (Ty == 0) 853 Ty = getTypes().ConvertTypeForMem(ASTTy); 854 855 const llvm::PointerType *PTy = 856 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 857 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 858 } 859 860 /// CreateRuntimeVariable - Create a new runtime global variable with the 861 /// specified type and name. 862 llvm::Constant * 863 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 864 const char *Name) { 865 // Convert Name to be a uniqued string from the IdentifierInfo table. 866 Name = getContext().Idents.get(Name).getNameStart(); 867 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 868 } 869 870 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 871 assert(!D->getInit() && "Cannot emit definite definitions here!"); 872 873 if (MayDeferGeneration(D)) { 874 // If we have not seen a reference to this variable yet, place it 875 // into the deferred declarations table to be emitted if needed 876 // later. 877 const char *MangledName = getMangledName(D); 878 if (GlobalDeclMap.count(MangledName) == 0) { 879 DeferredDecls[MangledName] = D; 880 return; 881 } 882 } 883 884 // The tentative definition is the only definition. 885 EmitGlobalVarDefinition(D); 886 } 887 888 llvm::GlobalVariable::LinkageTypes 889 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) { 890 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 891 return llvm::GlobalVariable::InternalLinkage; 892 893 if (const CXXMethodDecl *KeyFunction 894 = RD->getASTContext().getKeyFunction(RD)) { 895 // If this class has a key function, use that to determine the linkage of 896 // the vtable. 897 const FunctionDecl *Def = 0; 898 if (KeyFunction->getBody(Def)) 899 KeyFunction = cast<CXXMethodDecl>(Def); 900 901 switch (KeyFunction->getTemplateSpecializationKind()) { 902 case TSK_Undeclared: 903 case TSK_ExplicitSpecialization: 904 if (KeyFunction->isInlined()) 905 return llvm::GlobalVariable::WeakODRLinkage; 906 907 return llvm::GlobalVariable::ExternalLinkage; 908 909 case TSK_ImplicitInstantiation: 910 case TSK_ExplicitInstantiationDefinition: 911 return llvm::GlobalVariable::WeakODRLinkage; 912 913 case TSK_ExplicitInstantiationDeclaration: 914 // FIXME: Use available_externally linkage. However, this currently 915 // breaks LLVM's build due to undefined symbols. 916 // return llvm::GlobalVariable::AvailableExternallyLinkage; 917 return llvm::GlobalVariable::WeakODRLinkage; 918 } 919 } 920 921 switch (RD->getTemplateSpecializationKind()) { 922 case TSK_Undeclared: 923 case TSK_ExplicitSpecialization: 924 case TSK_ImplicitInstantiation: 925 case TSK_ExplicitInstantiationDefinition: 926 return llvm::GlobalVariable::WeakODRLinkage; 927 928 case TSK_ExplicitInstantiationDeclaration: 929 // FIXME: Use available_externally linkage. However, this currently 930 // breaks LLVM's build due to undefined symbols. 931 // return llvm::GlobalVariable::AvailableExternallyLinkage; 932 return llvm::GlobalVariable::WeakODRLinkage; 933 } 934 935 // Silence GCC warning. 936 return llvm::GlobalVariable::WeakODRLinkage; 937 } 938 939 static CodeGenModule::GVALinkage 940 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 941 // Everything located semantically within an anonymous namespace is 942 // always internal. 943 if (VD->isInAnonymousNamespace()) 944 return CodeGenModule::GVA_Internal; 945 946 // Handle linkage for static data members. 947 if (VD->isStaticDataMember()) { 948 switch (VD->getTemplateSpecializationKind()) { 949 case TSK_Undeclared: 950 case TSK_ExplicitSpecialization: 951 case TSK_ExplicitInstantiationDefinition: 952 return CodeGenModule::GVA_StrongExternal; 953 954 case TSK_ExplicitInstantiationDeclaration: 955 llvm_unreachable("Variable should not be instantiated"); 956 // Fall through to treat this like any other instantiation. 957 958 case TSK_ImplicitInstantiation: 959 return CodeGenModule::GVA_TemplateInstantiation; 960 } 961 } 962 963 if (VD->getLinkage() == VarDecl::InternalLinkage) 964 return CodeGenModule::GVA_Internal; 965 966 return CodeGenModule::GVA_StrongExternal; 967 } 968 969 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 970 llvm::Constant *Init = 0; 971 QualType ASTTy = D->getType(); 972 bool NonConstInit = false; 973 974 if (D->getInit() == 0) { 975 // This is a tentative definition; tentative definitions are 976 // implicitly initialized with { 0 }. 977 // 978 // Note that tentative definitions are only emitted at the end of 979 // a translation unit, so they should never have incomplete 980 // type. In addition, EmitTentativeDefinition makes sure that we 981 // never attempt to emit a tentative definition if a real one 982 // exists. A use may still exists, however, so we still may need 983 // to do a RAUW. 984 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 985 Init = EmitNullConstant(D->getType()); 986 } else { 987 Init = EmitConstantExpr(D->getInit(), D->getType()); 988 989 if (!Init) { 990 QualType T = D->getInit()->getType(); 991 if (getLangOptions().CPlusPlus) { 992 EmitCXXGlobalVarDeclInitFunc(D); 993 Init = EmitNullConstant(T); 994 NonConstInit = true; 995 } else { 996 ErrorUnsupported(D, "static initializer"); 997 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 998 } 999 } 1000 } 1001 1002 const llvm::Type* InitType = Init->getType(); 1003 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1004 1005 // Strip off a bitcast if we got one back. 1006 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1007 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1008 // all zero index gep. 1009 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1010 Entry = CE->getOperand(0); 1011 } 1012 1013 // Entry is now either a Function or GlobalVariable. 1014 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1015 1016 // We have a definition after a declaration with the wrong type. 1017 // We must make a new GlobalVariable* and update everything that used OldGV 1018 // (a declaration or tentative definition) with the new GlobalVariable* 1019 // (which will be a definition). 1020 // 1021 // This happens if there is a prototype for a global (e.g. 1022 // "extern int x[];") and then a definition of a different type (e.g. 1023 // "int x[10];"). This also happens when an initializer has a different type 1024 // from the type of the global (this happens with unions). 1025 if (GV == 0 || 1026 GV->getType()->getElementType() != InitType || 1027 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1028 1029 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1030 GlobalDeclMap.erase(getMangledName(D)); 1031 1032 // Make a new global with the correct type, this is now guaranteed to work. 1033 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1034 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1035 1036 // Replace all uses of the old global with the new global 1037 llvm::Constant *NewPtrForOldDecl = 1038 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1039 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1040 1041 // Erase the old global, since it is no longer used. 1042 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1043 } 1044 1045 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1046 SourceManager &SM = Context.getSourceManager(); 1047 AddAnnotation(EmitAnnotateAttr(GV, AA, 1048 SM.getInstantiationLineNumber(D->getLocation()))); 1049 } 1050 1051 GV->setInitializer(Init); 1052 1053 // If it is safe to mark the global 'constant', do so now. 1054 GV->setConstant(false); 1055 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1056 GV->setConstant(true); 1057 1058 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1059 1060 // Set the llvm linkage type as appropriate. 1061 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1062 if (Linkage == GVA_Internal) 1063 GV->setLinkage(llvm::Function::InternalLinkage); 1064 else if (D->hasAttr<DLLImportAttr>()) 1065 GV->setLinkage(llvm::Function::DLLImportLinkage); 1066 else if (D->hasAttr<DLLExportAttr>()) 1067 GV->setLinkage(llvm::Function::DLLExportLinkage); 1068 else if (D->hasAttr<WeakAttr>()) { 1069 if (GV->isConstant()) 1070 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1071 else 1072 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1073 } else if (Linkage == GVA_TemplateInstantiation) 1074 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1075 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1076 !D->hasExternalStorage() && !D->getInit() && 1077 !D->getAttr<SectionAttr>()) { 1078 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1079 // common vars aren't constant even if declared const. 1080 GV->setConstant(false); 1081 } else 1082 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1083 1084 SetCommonAttributes(D, GV); 1085 1086 // Emit global variable debug information. 1087 if (CGDebugInfo *DI = getDebugInfo()) { 1088 DI->setLocation(D->getLocation()); 1089 DI->EmitGlobalVariable(GV, D); 1090 } 1091 } 1092 1093 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1094 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1095 /// existing call uses of the old function in the module, this adjusts them to 1096 /// call the new function directly. 1097 /// 1098 /// This is not just a cleanup: the always_inline pass requires direct calls to 1099 /// functions to be able to inline them. If there is a bitcast in the way, it 1100 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1101 /// run at -O0. 1102 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1103 llvm::Function *NewFn) { 1104 // If we're redefining a global as a function, don't transform it. 1105 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1106 if (OldFn == 0) return; 1107 1108 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1109 llvm::SmallVector<llvm::Value*, 4> ArgList; 1110 1111 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1112 UI != E; ) { 1113 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1114 unsigned OpNo = UI.getOperandNo(); 1115 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1116 if (!CI || OpNo != 0) continue; 1117 1118 // If the return types don't match exactly, and if the call isn't dead, then 1119 // we can't transform this call. 1120 if (CI->getType() != NewRetTy && !CI->use_empty()) 1121 continue; 1122 1123 // If the function was passed too few arguments, don't transform. If extra 1124 // arguments were passed, we silently drop them. If any of the types 1125 // mismatch, we don't transform. 1126 unsigned ArgNo = 0; 1127 bool DontTransform = false; 1128 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1129 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1130 if (CI->getNumOperands()-1 == ArgNo || 1131 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1132 DontTransform = true; 1133 break; 1134 } 1135 } 1136 if (DontTransform) 1137 continue; 1138 1139 // Okay, we can transform this. Create the new call instruction and copy 1140 // over the required information. 1141 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1142 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1143 ArgList.end(), "", CI); 1144 ArgList.clear(); 1145 if (!NewCall->getType()->isVoidTy()) 1146 NewCall->takeName(CI); 1147 NewCall->setAttributes(CI->getAttributes()); 1148 NewCall->setCallingConv(CI->getCallingConv()); 1149 1150 // Finally, remove the old call, replacing any uses with the new one. 1151 if (!CI->use_empty()) 1152 CI->replaceAllUsesWith(NewCall); 1153 1154 // Copy any custom metadata attached with CI. 1155 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1156 NewCall->setMetadata("dbg", DbgNode); 1157 CI->eraseFromParent(); 1158 } 1159 } 1160 1161 1162 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1163 const llvm::FunctionType *Ty; 1164 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1165 1166 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1167 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1168 1169 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1170 } else { 1171 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1172 1173 // As a special case, make sure that definitions of K&R function 1174 // "type foo()" aren't declared as varargs (which forces the backend 1175 // to do unnecessary work). 1176 if (D->getType()->isFunctionNoProtoType()) { 1177 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1178 // Due to stret, the lowered function could have arguments. 1179 // Just create the same type as was lowered by ConvertType 1180 // but strip off the varargs bit. 1181 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1182 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1183 } 1184 } 1185 1186 // Get or create the prototype for the function. 1187 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1188 1189 // Strip off a bitcast if we got one back. 1190 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1191 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1192 Entry = CE->getOperand(0); 1193 } 1194 1195 1196 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1197 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1198 1199 // If the types mismatch then we have to rewrite the definition. 1200 assert(OldFn->isDeclaration() && 1201 "Shouldn't replace non-declaration"); 1202 1203 // F is the Function* for the one with the wrong type, we must make a new 1204 // Function* and update everything that used F (a declaration) with the new 1205 // Function* (which will be a definition). 1206 // 1207 // This happens if there is a prototype for a function 1208 // (e.g. "int f()") and then a definition of a different type 1209 // (e.g. "int f(int x)"). Start by making a new function of the 1210 // correct type, RAUW, then steal the name. 1211 GlobalDeclMap.erase(getMangledName(D)); 1212 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1213 NewFn->takeName(OldFn); 1214 1215 // If this is an implementation of a function without a prototype, try to 1216 // replace any existing uses of the function (which may be calls) with uses 1217 // of the new function 1218 if (D->getType()->isFunctionNoProtoType()) { 1219 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1220 OldFn->removeDeadConstantUsers(); 1221 } 1222 1223 // Replace uses of F with the Function we will endow with a body. 1224 if (!Entry->use_empty()) { 1225 llvm::Constant *NewPtrForOldDecl = 1226 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1227 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1228 } 1229 1230 // Ok, delete the old function now, which is dead. 1231 OldFn->eraseFromParent(); 1232 1233 Entry = NewFn; 1234 } 1235 1236 llvm::Function *Fn = cast<llvm::Function>(Entry); 1237 1238 CodeGenFunction(*this).GenerateCode(D, Fn); 1239 1240 SetFunctionDefinitionAttributes(D, Fn); 1241 SetLLVMFunctionAttributesForDefinition(D, Fn); 1242 1243 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1244 AddGlobalCtor(Fn, CA->getPriority()); 1245 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1246 AddGlobalDtor(Fn, DA->getPriority()); 1247 } 1248 1249 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1250 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1251 assert(AA && "Not an alias?"); 1252 1253 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1254 1255 // Unique the name through the identifier table. 1256 const char *AliaseeName = AA->getAliasee().c_str(); 1257 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1258 1259 // Create a reference to the named value. This ensures that it is emitted 1260 // if a deferred decl. 1261 llvm::Constant *Aliasee; 1262 if (isa<llvm::FunctionType>(DeclTy)) 1263 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1264 else 1265 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1266 llvm::PointerType::getUnqual(DeclTy), 0); 1267 1268 // Create the new alias itself, but don't set a name yet. 1269 llvm::GlobalValue *GA = 1270 new llvm::GlobalAlias(Aliasee->getType(), 1271 llvm::Function::ExternalLinkage, 1272 "", Aliasee, &getModule()); 1273 1274 // See if there is already something with the alias' name in the module. 1275 const char *MangledName = getMangledName(D); 1276 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1277 1278 if (Entry && !Entry->isDeclaration()) { 1279 // If there is a definition in the module, then it wins over the alias. 1280 // This is dubious, but allow it to be safe. Just ignore the alias. 1281 GA->eraseFromParent(); 1282 return; 1283 } 1284 1285 if (Entry) { 1286 // If there is a declaration in the module, then we had an extern followed 1287 // by the alias, as in: 1288 // extern int test6(); 1289 // ... 1290 // int test6() __attribute__((alias("test7"))); 1291 // 1292 // Remove it and replace uses of it with the alias. 1293 1294 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1295 Entry->getType())); 1296 Entry->eraseFromParent(); 1297 } 1298 1299 // Now we know that there is no conflict, set the name. 1300 Entry = GA; 1301 GA->setName(MangledName); 1302 1303 // Set attributes which are particular to an alias; this is a 1304 // specialization of the attributes which may be set on a global 1305 // variable/function. 1306 if (D->hasAttr<DLLExportAttr>()) { 1307 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1308 // The dllexport attribute is ignored for undefined symbols. 1309 if (FD->getBody()) 1310 GA->setLinkage(llvm::Function::DLLExportLinkage); 1311 } else { 1312 GA->setLinkage(llvm::Function::DLLExportLinkage); 1313 } 1314 } else if (D->hasAttr<WeakAttr>() || 1315 D->hasAttr<WeakImportAttr>()) { 1316 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1317 } 1318 1319 SetCommonAttributes(D, GA); 1320 } 1321 1322 /// getBuiltinLibFunction - Given a builtin id for a function like 1323 /// "__builtin_fabsf", return a Function* for "fabsf". 1324 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1325 unsigned BuiltinID) { 1326 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1327 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1328 "isn't a lib fn"); 1329 1330 // Get the name, skip over the __builtin_ prefix (if necessary). 1331 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1332 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1333 Name += 10; 1334 1335 const llvm::FunctionType *Ty = 1336 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1337 1338 // Unique the name through the identifier table. 1339 Name = getContext().Idents.get(Name).getNameStart(); 1340 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1341 } 1342 1343 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1344 unsigned NumTys) { 1345 return llvm::Intrinsic::getDeclaration(&getModule(), 1346 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1347 } 1348 1349 llvm::Function *CodeGenModule::getMemCpyFn() { 1350 if (MemCpyFn) return MemCpyFn; 1351 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1352 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1353 } 1354 1355 llvm::Function *CodeGenModule::getMemMoveFn() { 1356 if (MemMoveFn) return MemMoveFn; 1357 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1358 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1359 } 1360 1361 llvm::Function *CodeGenModule::getMemSetFn() { 1362 if (MemSetFn) return MemSetFn; 1363 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1364 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1365 } 1366 1367 static llvm::StringMapEntry<llvm::Constant*> & 1368 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1369 const StringLiteral *Literal, 1370 bool TargetIsLSB, 1371 bool &IsUTF16, 1372 unsigned &StringLength) { 1373 unsigned NumBytes = Literal->getByteLength(); 1374 1375 // Check for simple case. 1376 if (!Literal->containsNonAsciiOrNull()) { 1377 StringLength = NumBytes; 1378 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1379 StringLength)); 1380 } 1381 1382 // Otherwise, convert the UTF8 literals into a byte string. 1383 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1384 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1385 UTF16 *ToPtr = &ToBuf[0]; 1386 1387 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1388 &ToPtr, ToPtr + NumBytes, 1389 strictConversion); 1390 1391 // Check for conversion failure. 1392 if (Result != conversionOK) { 1393 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1394 // this duplicate code. 1395 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1396 StringLength = NumBytes; 1397 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1398 StringLength)); 1399 } 1400 1401 // ConvertUTF8toUTF16 returns the length in ToPtr. 1402 StringLength = ToPtr - &ToBuf[0]; 1403 1404 // Render the UTF-16 string into a byte array and convert to the target byte 1405 // order. 1406 // 1407 // FIXME: This isn't something we should need to do here. 1408 llvm::SmallString<128> AsBytes; 1409 AsBytes.reserve(StringLength * 2); 1410 for (unsigned i = 0; i != StringLength; ++i) { 1411 unsigned short Val = ToBuf[i]; 1412 if (TargetIsLSB) { 1413 AsBytes.push_back(Val & 0xFF); 1414 AsBytes.push_back(Val >> 8); 1415 } else { 1416 AsBytes.push_back(Val >> 8); 1417 AsBytes.push_back(Val & 0xFF); 1418 } 1419 } 1420 // Append one extra null character, the second is automatically added by our 1421 // caller. 1422 AsBytes.push_back(0); 1423 1424 IsUTF16 = true; 1425 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1426 } 1427 1428 llvm::Constant * 1429 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1430 unsigned StringLength = 0; 1431 bool isUTF16 = false; 1432 llvm::StringMapEntry<llvm::Constant*> &Entry = 1433 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1434 getTargetData().isLittleEndian(), 1435 isUTF16, StringLength); 1436 1437 if (llvm::Constant *C = Entry.getValue()) 1438 return C; 1439 1440 llvm::Constant *Zero = 1441 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1442 llvm::Constant *Zeros[] = { Zero, Zero }; 1443 1444 // If we don't already have it, get __CFConstantStringClassReference. 1445 if (!CFConstantStringClassRef) { 1446 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1447 Ty = llvm::ArrayType::get(Ty, 0); 1448 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1449 "__CFConstantStringClassReference"); 1450 // Decay array -> ptr 1451 CFConstantStringClassRef = 1452 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1453 } 1454 1455 QualType CFTy = getContext().getCFConstantStringType(); 1456 1457 const llvm::StructType *STy = 1458 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1459 1460 std::vector<llvm::Constant*> Fields(4); 1461 1462 // Class pointer. 1463 Fields[0] = CFConstantStringClassRef; 1464 1465 // Flags. 1466 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1467 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1468 llvm::ConstantInt::get(Ty, 0x07C8); 1469 1470 // String pointer. 1471 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1472 1473 const char *Sect = 0; 1474 llvm::GlobalValue::LinkageTypes Linkage; 1475 bool isConstant; 1476 if (isUTF16) { 1477 Sect = getContext().Target.getUnicodeStringSection(); 1478 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1479 Linkage = llvm::GlobalValue::InternalLinkage; 1480 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1481 // does make plain ascii ones writable. 1482 isConstant = true; 1483 } else { 1484 Linkage = llvm::GlobalValue::PrivateLinkage; 1485 isConstant = !Features.WritableStrings; 1486 } 1487 1488 llvm::GlobalVariable *GV = 1489 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1490 ".str"); 1491 if (Sect) 1492 GV->setSection(Sect); 1493 if (isUTF16) { 1494 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1495 GV->setAlignment(Align); 1496 } 1497 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1498 1499 // String length. 1500 Ty = getTypes().ConvertType(getContext().LongTy); 1501 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1502 1503 // The struct. 1504 C = llvm::ConstantStruct::get(STy, Fields); 1505 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1506 llvm::GlobalVariable::PrivateLinkage, C, 1507 "_unnamed_cfstring_"); 1508 if (const char *Sect = getContext().Target.getCFStringSection()) 1509 GV->setSection(Sect); 1510 Entry.setValue(GV); 1511 1512 return GV; 1513 } 1514 1515 /// GetStringForStringLiteral - Return the appropriate bytes for a 1516 /// string literal, properly padded to match the literal type. 1517 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1518 const char *StrData = E->getStrData(); 1519 unsigned Len = E->getByteLength(); 1520 1521 const ConstantArrayType *CAT = 1522 getContext().getAsConstantArrayType(E->getType()); 1523 assert(CAT && "String isn't pointer or array!"); 1524 1525 // Resize the string to the right size. 1526 std::string Str(StrData, StrData+Len); 1527 uint64_t RealLen = CAT->getSize().getZExtValue(); 1528 1529 if (E->isWide()) 1530 RealLen *= getContext().Target.getWCharWidth()/8; 1531 1532 Str.resize(RealLen, '\0'); 1533 1534 return Str; 1535 } 1536 1537 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1538 /// constant array for the given string literal. 1539 llvm::Constant * 1540 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1541 // FIXME: This can be more efficient. 1542 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1543 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1544 if (S->isWide()) { 1545 llvm::Type *DestTy = 1546 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1547 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1548 } 1549 return C; 1550 } 1551 1552 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1553 /// array for the given ObjCEncodeExpr node. 1554 llvm::Constant * 1555 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1556 std::string Str; 1557 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1558 1559 return GetAddrOfConstantCString(Str); 1560 } 1561 1562 1563 /// GenerateWritableString -- Creates storage for a string literal. 1564 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1565 bool constant, 1566 CodeGenModule &CGM, 1567 const char *GlobalName) { 1568 // Create Constant for this string literal. Don't add a '\0'. 1569 llvm::Constant *C = 1570 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1571 1572 // Create a global variable for this string 1573 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1574 llvm::GlobalValue::PrivateLinkage, 1575 C, GlobalName); 1576 } 1577 1578 /// GetAddrOfConstantString - Returns a pointer to a character array 1579 /// containing the literal. This contents are exactly that of the 1580 /// given string, i.e. it will not be null terminated automatically; 1581 /// see GetAddrOfConstantCString. Note that whether the result is 1582 /// actually a pointer to an LLVM constant depends on 1583 /// Feature.WriteableStrings. 1584 /// 1585 /// The result has pointer to array type. 1586 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1587 const char *GlobalName) { 1588 bool IsConstant = !Features.WritableStrings; 1589 1590 // Get the default prefix if a name wasn't specified. 1591 if (!GlobalName) 1592 GlobalName = ".str"; 1593 1594 // Don't share any string literals if strings aren't constant. 1595 if (!IsConstant) 1596 return GenerateStringLiteral(str, false, *this, GlobalName); 1597 1598 llvm::StringMapEntry<llvm::Constant *> &Entry = 1599 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1600 1601 if (Entry.getValue()) 1602 return Entry.getValue(); 1603 1604 // Create a global variable for this. 1605 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1606 Entry.setValue(C); 1607 return C; 1608 } 1609 1610 /// GetAddrOfConstantCString - Returns a pointer to a character 1611 /// array containing the literal and a terminating '\-' 1612 /// character. The result has pointer to array type. 1613 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1614 const char *GlobalName){ 1615 return GetAddrOfConstantString(str + '\0', GlobalName); 1616 } 1617 1618 /// EmitObjCPropertyImplementations - Emit information for synthesized 1619 /// properties for an implementation. 1620 void CodeGenModule::EmitObjCPropertyImplementations(const 1621 ObjCImplementationDecl *D) { 1622 for (ObjCImplementationDecl::propimpl_iterator 1623 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1624 ObjCPropertyImplDecl *PID = *i; 1625 1626 // Dynamic is just for type-checking. 1627 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1628 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1629 1630 // Determine which methods need to be implemented, some may have 1631 // been overridden. Note that ::isSynthesized is not the method 1632 // we want, that just indicates if the decl came from a 1633 // property. What we want to know is if the method is defined in 1634 // this implementation. 1635 if (!D->getInstanceMethod(PD->getGetterName())) 1636 CodeGenFunction(*this).GenerateObjCGetter( 1637 const_cast<ObjCImplementationDecl *>(D), PID); 1638 if (!PD->isReadOnly() && 1639 !D->getInstanceMethod(PD->getSetterName())) 1640 CodeGenFunction(*this).GenerateObjCSetter( 1641 const_cast<ObjCImplementationDecl *>(D), PID); 1642 } 1643 } 1644 } 1645 1646 /// EmitNamespace - Emit all declarations in a namespace. 1647 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1648 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1649 I != E; ++I) 1650 EmitTopLevelDecl(*I); 1651 } 1652 1653 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1654 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1655 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1656 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1657 ErrorUnsupported(LSD, "linkage spec"); 1658 return; 1659 } 1660 1661 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1662 I != E; ++I) 1663 EmitTopLevelDecl(*I); 1664 } 1665 1666 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1667 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1668 // If an error has occurred, stop code generation, but continue 1669 // parsing and semantic analysis (to ensure all warnings and errors 1670 // are emitted). 1671 if (Diags.hasErrorOccurred()) 1672 return; 1673 1674 // Ignore dependent declarations. 1675 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1676 return; 1677 1678 switch (D->getKind()) { 1679 case Decl::CXXConversion: 1680 case Decl::CXXMethod: 1681 case Decl::Function: 1682 // Skip function templates 1683 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1684 return; 1685 1686 EmitGlobal(cast<FunctionDecl>(D)); 1687 break; 1688 1689 case Decl::Var: 1690 EmitGlobal(cast<VarDecl>(D)); 1691 break; 1692 1693 // C++ Decls 1694 case Decl::Namespace: 1695 EmitNamespace(cast<NamespaceDecl>(D)); 1696 break; 1697 // No code generation needed. 1698 case Decl::UsingShadow: 1699 case Decl::Using: 1700 case Decl::UsingDirective: 1701 case Decl::ClassTemplate: 1702 case Decl::FunctionTemplate: 1703 case Decl::NamespaceAlias: 1704 break; 1705 case Decl::CXXConstructor: 1706 // Skip function templates 1707 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1708 return; 1709 1710 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1711 break; 1712 case Decl::CXXDestructor: 1713 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1714 break; 1715 1716 case Decl::StaticAssert: 1717 // Nothing to do. 1718 break; 1719 1720 // Objective-C Decls 1721 1722 // Forward declarations, no (immediate) code generation. 1723 case Decl::ObjCClass: 1724 case Decl::ObjCForwardProtocol: 1725 case Decl::ObjCCategory: 1726 case Decl::ObjCInterface: 1727 break; 1728 1729 case Decl::ObjCProtocol: 1730 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1731 break; 1732 1733 case Decl::ObjCCategoryImpl: 1734 // Categories have properties but don't support synthesize so we 1735 // can ignore them here. 1736 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1737 break; 1738 1739 case Decl::ObjCImplementation: { 1740 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1741 EmitObjCPropertyImplementations(OMD); 1742 Runtime->GenerateClass(OMD); 1743 break; 1744 } 1745 case Decl::ObjCMethod: { 1746 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1747 // If this is not a prototype, emit the body. 1748 if (OMD->getBody()) 1749 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1750 break; 1751 } 1752 case Decl::ObjCCompatibleAlias: 1753 // compatibility-alias is a directive and has no code gen. 1754 break; 1755 1756 case Decl::LinkageSpec: 1757 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1758 break; 1759 1760 case Decl::FileScopeAsm: { 1761 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1762 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1763 1764 const std::string &S = getModule().getModuleInlineAsm(); 1765 if (S.empty()) 1766 getModule().setModuleInlineAsm(AsmString); 1767 else 1768 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1769 break; 1770 } 1771 1772 default: 1773 // Make sure we handled everything we should, every other kind is a 1774 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1775 // function. Need to recode Decl::Kind to do that easily. 1776 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1777 } 1778 } 1779