1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Support/ErrorHandling.h"
36 using namespace clang;
37 using namespace CodeGen;
38 
39 
40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
41                              llvm::Module &M, const llvm::TargetData &TD,
42                              Diagnostic &diags)
43   : BlockModule(C, M, TD, Types, *this), Context(C),
44     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
45     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
46     VtableInfo(*this), Runtime(0),
47     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
48     VMContext(M.getContext()) {
49 
50   if (!Features.ObjC1)
51     Runtime = 0;
52   else if (!Features.NeXTRuntime)
53     Runtime = CreateGNUObjCRuntime(*this);
54   else if (Features.ObjCNonFragileABI)
55     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
56   else
57     Runtime = CreateMacObjCRuntime(*this);
58 
59   // If debug info generation is enabled, create the CGDebugInfo object.
60   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
61 }
62 
63 CodeGenModule::~CodeGenModule() {
64   delete Runtime;
65   delete DebugInfo;
66 }
67 
68 void CodeGenModule::Release() {
69   EmitDeferred();
70   EmitCXXGlobalInitFunc();
71   if (Runtime)
72     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
73       AddGlobalCtor(ObjCInitFunction);
74   EmitCtorList(GlobalCtors, "llvm.global_ctors");
75   EmitCtorList(GlobalDtors, "llvm.global_dtors");
76   EmitAnnotations();
77   EmitLLVMUsed();
78 }
79 
80 /// ErrorUnsupported - Print out an error that codegen doesn't support the
81 /// specified stmt yet.
82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
83                                      bool OmitOnError) {
84   if (OmitOnError && getDiags().hasErrorOccurred())
85     return;
86   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
87                                                "cannot compile this %0 yet");
88   std::string Msg = Type;
89   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
90     << Msg << S->getSourceRange();
91 }
92 
93 /// ErrorUnsupported - Print out an error that codegen doesn't support the
94 /// specified decl yet.
95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
96                                      bool OmitOnError) {
97   if (OmitOnError && getDiags().hasErrorOccurred())
98     return;
99   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
100                                                "cannot compile this %0 yet");
101   std::string Msg = Type;
102   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
103 }
104 
105 LangOptions::VisibilityMode
106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
107   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
108     if (VD->getStorageClass() == VarDecl::PrivateExtern)
109       return LangOptions::Hidden;
110 
111   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
112     switch (attr->getVisibility()) {
113     default: assert(0 && "Unknown visibility!");
114     case VisibilityAttr::DefaultVisibility:
115       return LangOptions::Default;
116     case VisibilityAttr::HiddenVisibility:
117       return LangOptions::Hidden;
118     case VisibilityAttr::ProtectedVisibility:
119       return LangOptions::Protected;
120     }
121   }
122 
123   return getLangOptions().getVisibilityMode();
124 }
125 
126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
127                                         const Decl *D) const {
128   // Internal definitions always have default visibility.
129   if (GV->hasLocalLinkage()) {
130     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131     return;
132   }
133 
134   switch (getDeclVisibilityMode(D)) {
135   default: assert(0 && "Unknown visibility!");
136   case LangOptions::Default:
137     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
138   case LangOptions::Hidden:
139     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
140   case LangOptions::Protected:
141     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
142   }
143 }
144 
145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
146   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
147 
148   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
149     return getMangledCXXCtorName(D, GD.getCtorType());
150   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
151     return getMangledCXXDtorName(D, GD.getDtorType());
152 
153   return getMangledName(ND);
154 }
155 
156 /// \brief Retrieves the mangled name for the given declaration.
157 ///
158 /// If the given declaration requires a mangled name, returns an
159 /// const char* containing the mangled name.  Otherwise, returns
160 /// the unmangled name.
161 ///
162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
163   if (!getMangleContext().shouldMangleDeclName(ND)) {
164     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165     return ND->getNameAsCString();
166   }
167 
168   llvm::SmallString<256> Name;
169   getMangleContext().mangleName(ND, Name);
170   Name += '\0';
171   return UniqueMangledName(Name.begin(), Name.end());
172 }
173 
174 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                              const char *NameEnd) {
176   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177 
178   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179 }
180 
181 /// AddGlobalCtor - Add a function to the list that will be called before
182 /// main() runs.
183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184   // FIXME: Type coercion of void()* types.
185   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186 }
187 
188 /// AddGlobalDtor - Add a function to the list that will be called
189 /// when the module is unloaded.
190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191   // FIXME: Type coercion of void()* types.
192   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193 }
194 
195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196   // Ctor function type is void()*.
197   llvm::FunctionType* CtorFTy =
198     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
199                             std::vector<const llvm::Type*>(),
200                             false);
201   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202 
203   // Get the type of a ctor entry, { i32, void ()* }.
204   llvm::StructType* CtorStructTy =
205     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
206                           llvm::PointerType::getUnqual(CtorFTy), NULL);
207 
208   // Construct the constructor and destructor arrays.
209   std::vector<llvm::Constant*> Ctors;
210   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211     std::vector<llvm::Constant*> S;
212     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
213                 I->second, false));
214     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
215     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
216   }
217 
218   if (!Ctors.empty()) {
219     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
220     new llvm::GlobalVariable(TheModule, AT, false,
221                              llvm::GlobalValue::AppendingLinkage,
222                              llvm::ConstantArray::get(AT, Ctors),
223                              GlobalName);
224   }
225 }
226 
227 void CodeGenModule::EmitAnnotations() {
228   if (Annotations.empty())
229     return;
230 
231   // Create a new global variable for the ConstantStruct in the Module.
232   llvm::Constant *Array =
233   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                 Annotations.size()),
235                            Annotations);
236   llvm::GlobalValue *gv =
237   new llvm::GlobalVariable(TheModule, Array->getType(), false,
238                            llvm::GlobalValue::AppendingLinkage, Array,
239                            "llvm.global.annotations");
240   gv->setSection("llvm.metadata");
241 }
242 
243 static CodeGenModule::GVALinkage
244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
245                       const LangOptions &Features) {
246   // Everything located semantically within an anonymous namespace is
247   // always internal.
248   if (FD->isInAnonymousNamespace())
249     return CodeGenModule::GVA_Internal;
250 
251   // "static" functions get internal linkage.
252   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
253     return CodeGenModule::GVA_Internal;
254 
255   // The kind of external linkage this function will have, if it is not
256   // inline or static.
257   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
258   if (Context.getLangOptions().CPlusPlus) {
259     TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
260 
261     if (TSK == TSK_ExplicitInstantiationDefinition) {
262       // If a function has been explicitly instantiated, then it should
263       // always have strong external linkage.
264       return CodeGenModule::GVA_StrongExternal;
265     }
266 
267     if (TSK == TSK_ImplicitInstantiation)
268       External = CodeGenModule::GVA_TemplateInstantiation;
269   }
270 
271   if (!FD->isInlined())
272     return External;
273 
274   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
275     // GNU or C99 inline semantics. Determine whether this symbol should be
276     // externally visible.
277     if (FD->isInlineDefinitionExternallyVisible())
278       return External;
279 
280     // C99 inline semantics, where the symbol is not externally visible.
281     return CodeGenModule::GVA_C99Inline;
282   }
283 
284   // C++0x [temp.explicit]p9:
285   //   [ Note: The intent is that an inline function that is the subject of
286   //   an explicit instantiation declaration will still be implicitly
287   //   instantiated when used so that the body can be considered for
288   //   inlining, but that no out-of-line copy of the inline function would be
289   //   generated in the translation unit. -- end note ]
290   if (FD->getTemplateSpecializationKind()
291                                        == TSK_ExplicitInstantiationDeclaration)
292     return CodeGenModule::GVA_C99Inline;
293 
294   return CodeGenModule::GVA_CXXInline;
295 }
296 
297 /// SetFunctionDefinitionAttributes - Set attributes for a global.
298 ///
299 /// FIXME: This is currently only done for aliases and functions, but not for
300 /// variables (these details are set in EmitGlobalVarDefinition for variables).
301 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
302                                                     llvm::GlobalValue *GV) {
303   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
304 
305   if (Linkage == GVA_Internal) {
306     GV->setLinkage(llvm::Function::InternalLinkage);
307   } else if (D->hasAttr<DLLExportAttr>()) {
308     GV->setLinkage(llvm::Function::DLLExportLinkage);
309   } else if (D->hasAttr<WeakAttr>()) {
310     GV->setLinkage(llvm::Function::WeakAnyLinkage);
311   } else if (Linkage == GVA_C99Inline) {
312     // In C99 mode, 'inline' functions are guaranteed to have a strong
313     // definition somewhere else, so we can use available_externally linkage.
314     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
315   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
316     // In C++, the compiler has to emit a definition in every translation unit
317     // that references the function.  We should use linkonce_odr because
318     // a) if all references in this translation unit are optimized away, we
319     // don't need to codegen it.  b) if the function persists, it needs to be
320     // merged with other definitions. c) C++ has the ODR, so we know the
321     // definition is dependable.
322     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
323   } else {
324     assert(Linkage == GVA_StrongExternal);
325     // Otherwise, we have strong external linkage.
326     GV->setLinkage(llvm::Function::ExternalLinkage);
327   }
328 
329   SetCommonAttributes(D, GV);
330 }
331 
332 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
333                                               const CGFunctionInfo &Info,
334                                               llvm::Function *F) {
335   unsigned CallingConv;
336   AttributeListType AttributeList;
337   ConstructAttributeList(Info, D, AttributeList, CallingConv);
338   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
339                                           AttributeList.size()));
340   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
341 }
342 
343 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
344                                                            llvm::Function *F) {
345   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
346     F->addFnAttr(llvm::Attribute::NoUnwind);
347 
348   if (D->hasAttr<AlwaysInlineAttr>())
349     F->addFnAttr(llvm::Attribute::AlwaysInline);
350 
351   if (D->hasAttr<NoInlineAttr>())
352     F->addFnAttr(llvm::Attribute::NoInline);
353 
354   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
355     F->addFnAttr(llvm::Attribute::StackProtect);
356   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
357     F->addFnAttr(llvm::Attribute::StackProtectReq);
358 
359   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
360     unsigned width = Context.Target.getCharWidth();
361     F->setAlignment(AA->getAlignment() / width);
362     while ((AA = AA->getNext<AlignedAttr>()))
363       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
364   }
365   // C++ ABI requires 2-byte alignment for member functions.
366   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
367     F->setAlignment(2);
368 }
369 
370 void CodeGenModule::SetCommonAttributes(const Decl *D,
371                                         llvm::GlobalValue *GV) {
372   setGlobalVisibility(GV, D);
373 
374   if (D->hasAttr<UsedAttr>())
375     AddUsedGlobal(GV);
376 
377   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
378     GV->setSection(SA->getName());
379 }
380 
381 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
382                                                   llvm::Function *F,
383                                                   const CGFunctionInfo &FI) {
384   SetLLVMFunctionAttributes(D, FI, F);
385   SetLLVMFunctionAttributesForDefinition(D, F);
386 
387   F->setLinkage(llvm::Function::InternalLinkage);
388 
389   SetCommonAttributes(D, F);
390 }
391 
392 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
393                                           llvm::Function *F,
394                                           bool IsIncompleteFunction) {
395   if (!IsIncompleteFunction)
396     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
397 
398   // Only a few attributes are set on declarations; these may later be
399   // overridden by a definition.
400 
401   if (FD->hasAttr<DLLImportAttr>()) {
402     F->setLinkage(llvm::Function::DLLImportLinkage);
403   } else if (FD->hasAttr<WeakAttr>() ||
404              FD->hasAttr<WeakImportAttr>()) {
405     // "extern_weak" is overloaded in LLVM; we probably should have
406     // separate linkage types for this.
407     F->setLinkage(llvm::Function::ExternalWeakLinkage);
408   } else {
409     F->setLinkage(llvm::Function::ExternalLinkage);
410   }
411 
412   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
413     F->setSection(SA->getName());
414 }
415 
416 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
417   assert(!GV->isDeclaration() &&
418          "Only globals with definition can force usage.");
419   LLVMUsed.push_back(GV);
420 }
421 
422 void CodeGenModule::EmitLLVMUsed() {
423   // Don't create llvm.used if there is no need.
424   if (LLVMUsed.empty())
425     return;
426 
427   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
428 
429   // Convert LLVMUsed to what ConstantArray needs.
430   std::vector<llvm::Constant*> UsedArray;
431   UsedArray.resize(LLVMUsed.size());
432   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
433     UsedArray[i] =
434      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
435                                       i8PTy);
436   }
437 
438   if (UsedArray.empty())
439     return;
440   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
441 
442   llvm::GlobalVariable *GV =
443     new llvm::GlobalVariable(getModule(), ATy, false,
444                              llvm::GlobalValue::AppendingLinkage,
445                              llvm::ConstantArray::get(ATy, UsedArray),
446                              "llvm.used");
447 
448   GV->setSection("llvm.metadata");
449 }
450 
451 void CodeGenModule::EmitDeferred() {
452   // Emit code for any potentially referenced deferred decls.  Since a
453   // previously unused static decl may become used during the generation of code
454   // for a static function, iterate until no  changes are made.
455   while (!DeferredDeclsToEmit.empty()) {
456     GlobalDecl D = DeferredDeclsToEmit.back();
457     DeferredDeclsToEmit.pop_back();
458 
459     // The mangled name for the decl must have been emitted in GlobalDeclMap.
460     // Look it up to see if it was defined with a stronger definition (e.g. an
461     // extern inline function with a strong function redefinition).  If so,
462     // just ignore the deferred decl.
463     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
464     assert(CGRef && "Deferred decl wasn't referenced?");
465 
466     if (!CGRef->isDeclaration())
467       continue;
468 
469     // Skip available externally functions at -O0
470     // FIXME: these aren't instantiated yet, so we can't yet do this.
471     if (0 && getCodeGenOpts().OptimizationLevel == 0)
472       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D.getDecl())) {
473         GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
474 
475         if (Linkage == GVA_C99Inline)
476           continue;
477       }
478 
479     // Otherwise, emit the definition and move on to the next one.
480     EmitGlobalDefinition(D);
481   }
482 }
483 
484 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
485 /// annotation information for a given GlobalValue.  The annotation struct is
486 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
487 /// GlobalValue being annotated.  The second field is the constant string
488 /// created from the AnnotateAttr's annotation.  The third field is a constant
489 /// string containing the name of the translation unit.  The fourth field is
490 /// the line number in the file of the annotated value declaration.
491 ///
492 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
493 ///        appears to.
494 ///
495 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
496                                                 const AnnotateAttr *AA,
497                                                 unsigned LineNo) {
498   llvm::Module *M = &getModule();
499 
500   // get [N x i8] constants for the annotation string, and the filename string
501   // which are the 2nd and 3rd elements of the global annotation structure.
502   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
503   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
504                                                   AA->getAnnotation(), true);
505   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
506                                                   M->getModuleIdentifier(),
507                                                   true);
508 
509   // Get the two global values corresponding to the ConstantArrays we just
510   // created to hold the bytes of the strings.
511   llvm::GlobalValue *annoGV =
512     new llvm::GlobalVariable(*M, anno->getType(), false,
513                              llvm::GlobalValue::PrivateLinkage, anno,
514                              GV->getName());
515   // translation unit name string, emitted into the llvm.metadata section.
516   llvm::GlobalValue *unitGV =
517     new llvm::GlobalVariable(*M, unit->getType(), false,
518                              llvm::GlobalValue::PrivateLinkage, unit,
519                              ".str");
520 
521   // Create the ConstantStruct for the global annotation.
522   llvm::Constant *Fields[4] = {
523     llvm::ConstantExpr::getBitCast(GV, SBP),
524     llvm::ConstantExpr::getBitCast(annoGV, SBP),
525     llvm::ConstantExpr::getBitCast(unitGV, SBP),
526     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
527   };
528   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
529 }
530 
531 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
532   // Never defer when EmitAllDecls is specified or the decl has
533   // attribute used.
534   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
535     return false;
536 
537   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
538     // Constructors and destructors should never be deferred.
539     if (FD->hasAttr<ConstructorAttr>() ||
540         FD->hasAttr<DestructorAttr>())
541       return false;
542 
543     // The key function for a class must never be deferred.
544     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
545       const CXXRecordDecl *RD = MD->getParent();
546       if (MD->isOutOfLine() && RD->isDynamicClass()) {
547         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
548         if (KeyFunction &&
549             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
550           return false;
551       }
552     }
553 
554     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
555 
556     // static, static inline, always_inline, and extern inline functions can
557     // always be deferred.  Normal inline functions can be deferred in C99/C++.
558     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
559         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
560       return true;
561     return false;
562   }
563 
564   const VarDecl *VD = cast<VarDecl>(Global);
565   assert(VD->isFileVarDecl() && "Invalid decl");
566 
567   // We never want to defer structs that have non-trivial constructors or
568   // destructors.
569 
570   // FIXME: Handle references.
571   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
572     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
573       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
574         return false;
575     }
576   }
577 
578   // Static data may be deferred, but out-of-line static data members
579   // cannot be.
580   if (VD->isInAnonymousNamespace())
581     return true;
582   if (VD->getLinkage() == VarDecl::InternalLinkage) {
583     // Initializer has side effects?
584     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
585       return false;
586     return !(VD->isStaticDataMember() && VD->isOutOfLine());
587   }
588   return false;
589 }
590 
591 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
592   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
593 
594   // If this is an alias definition (which otherwise looks like a declaration)
595   // emit it now.
596   if (Global->hasAttr<AliasAttr>())
597     return EmitAliasDefinition(Global);
598 
599   // Ignore declarations, they will be emitted on their first use.
600   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
601     // Forward declarations are emitted lazily on first use.
602     if (!FD->isThisDeclarationADefinition())
603       return;
604   } else {
605     const VarDecl *VD = cast<VarDecl>(Global);
606     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
607 
608     if (getLangOptions().CPlusPlus && !VD->getInit()) {
609       // In C++, if this is marked "extern", defer code generation.
610       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
611         return;
612 
613       // If this is a declaration of an explicit specialization of a static
614       // data member in a class template, don't emit it.
615       if (VD->isStaticDataMember() &&
616           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
617         return;
618     }
619 
620     // In C, if this isn't a definition, defer code generation.
621     if (!getLangOptions().CPlusPlus && !VD->getInit())
622       return;
623   }
624 
625   // Defer code generation when possible if this is a static definition, inline
626   // function etc.  These we only want to emit if they are used.
627   if (MayDeferGeneration(Global)) {
628     // If the value has already been used, add it directly to the
629     // DeferredDeclsToEmit list.
630     const char *MangledName = getMangledName(GD);
631     if (GlobalDeclMap.count(MangledName))
632       DeferredDeclsToEmit.push_back(GD);
633     else {
634       // Otherwise, remember that we saw a deferred decl with this name.  The
635       // first use of the mangled name will cause it to move into
636       // DeferredDeclsToEmit.
637       DeferredDecls[MangledName] = GD;
638     }
639     return;
640   }
641 
642   // Otherwise emit the definition.
643   EmitGlobalDefinition(GD);
644 }
645 
646 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
647   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
648 
649   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
650                                  Context.getSourceManager(),
651                                  "Generating code for declaration");
652 
653   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
654     getVtableInfo().MaybeEmitVtable(GD);
655     if (MD->isVirtual() && MD->isOutOfLine() &&
656         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
657       if (isa<CXXDestructorDecl>(D)) {
658         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
659                            GD.getDtorType());
660         BuildThunksForVirtual(CanonGD);
661       } else {
662         BuildThunksForVirtual(MD->getCanonicalDecl());
663       }
664     }
665   }
666 
667   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
668     EmitCXXConstructor(CD, GD.getCtorType());
669   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
670     EmitCXXDestructor(DD, GD.getDtorType());
671   else if (isa<FunctionDecl>(D))
672     EmitGlobalFunctionDefinition(GD);
673   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
674     EmitGlobalVarDefinition(VD);
675   else {
676     assert(0 && "Invalid argument to EmitGlobalDefinition()");
677   }
678 }
679 
680 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
681 /// module, create and return an llvm Function with the specified type. If there
682 /// is something in the module with the specified name, return it potentially
683 /// bitcasted to the right type.
684 ///
685 /// If D is non-null, it specifies a decl that correspond to this.  This is used
686 /// to set the attributes on the function when it is first created.
687 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
688                                                        const llvm::Type *Ty,
689                                                        GlobalDecl D) {
690   // Lookup the entry, lazily creating it if necessary.
691   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
692   if (Entry) {
693     if (Entry->getType()->getElementType() == Ty)
694       return Entry;
695 
696     // Make sure the result is of the correct type.
697     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
698     return llvm::ConstantExpr::getBitCast(Entry, PTy);
699   }
700 
701   // This function doesn't have a complete type (for example, the return
702   // type is an incomplete struct). Use a fake type instead, and make
703   // sure not to try to set attributes.
704   bool IsIncompleteFunction = false;
705   if (!isa<llvm::FunctionType>(Ty)) {
706     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
707                                  std::vector<const llvm::Type*>(), false);
708     IsIncompleteFunction = true;
709   }
710   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
711                                              llvm::Function::ExternalLinkage,
712                                              "", &getModule());
713   F->setName(MangledName);
714   if (D.getDecl())
715     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
716                           IsIncompleteFunction);
717   Entry = F;
718 
719   // This is the first use or definition of a mangled name.  If there is a
720   // deferred decl with this name, remember that we need to emit it at the end
721   // of the file.
722   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
723     DeferredDecls.find(MangledName);
724   if (DDI != DeferredDecls.end()) {
725     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
726     // list, and remove it from DeferredDecls (since we don't need it anymore).
727     DeferredDeclsToEmit.push_back(DDI->second);
728     DeferredDecls.erase(DDI);
729   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
730     // If this the first reference to a C++ inline function in a class, queue up
731     // the deferred function body for emission.  These are not seen as
732     // top-level declarations.
733     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
734       DeferredDeclsToEmit.push_back(D);
735     // A called constructor which has no definition or declaration need be
736     // synthesized.
737     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
738       if (CD->isImplicit())
739         DeferredDeclsToEmit.push_back(D);
740     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
741       if (DD->isImplicit())
742         DeferredDeclsToEmit.push_back(D);
743     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
744       if (MD->isCopyAssignment() && MD->isImplicit())
745         DeferredDeclsToEmit.push_back(D);
746     }
747   }
748 
749   return F;
750 }
751 
752 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
753 /// non-null, then this function will use the specified type if it has to
754 /// create it (this occurs when we see a definition of the function).
755 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
756                                                  const llvm::Type *Ty) {
757   // If there was no specific requested type, just convert it now.
758   if (!Ty)
759     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
760   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
761 }
762 
763 /// CreateRuntimeFunction - Create a new runtime function with the specified
764 /// type and name.
765 llvm::Constant *
766 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
767                                      const char *Name) {
768   // Convert Name to be a uniqued string from the IdentifierInfo table.
769   Name = getContext().Idents.get(Name).getNameStart();
770   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
771 }
772 
773 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
774   if (!D->getType().isConstant(Context))
775     return false;
776   if (Context.getLangOptions().CPlusPlus &&
777       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
778     // FIXME: We should do something fancier here!
779     return false;
780   }
781   return true;
782 }
783 
784 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
785 /// create and return an llvm GlobalVariable with the specified type.  If there
786 /// is something in the module with the specified name, return it potentially
787 /// bitcasted to the right type.
788 ///
789 /// If D is non-null, it specifies a decl that correspond to this.  This is used
790 /// to set the attributes on the global when it is first created.
791 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
792                                                      const llvm::PointerType*Ty,
793                                                      const VarDecl *D) {
794   // Lookup the entry, lazily creating it if necessary.
795   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
796   if (Entry) {
797     if (Entry->getType() == Ty)
798       return Entry;
799 
800     // Make sure the result is of the correct type.
801     return llvm::ConstantExpr::getBitCast(Entry, Ty);
802   }
803 
804   // This is the first use or definition of a mangled name.  If there is a
805   // deferred decl with this name, remember that we need to emit it at the end
806   // of the file.
807   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
808     DeferredDecls.find(MangledName);
809   if (DDI != DeferredDecls.end()) {
810     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
811     // list, and remove it from DeferredDecls (since we don't need it anymore).
812     DeferredDeclsToEmit.push_back(DDI->second);
813     DeferredDecls.erase(DDI);
814   }
815 
816   llvm::GlobalVariable *GV =
817     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
818                              llvm::GlobalValue::ExternalLinkage,
819                              0, "", 0,
820                              false, Ty->getAddressSpace());
821   GV->setName(MangledName);
822 
823   // Handle things which are present even on external declarations.
824   if (D) {
825     // FIXME: This code is overly simple and should be merged with other global
826     // handling.
827     GV->setConstant(DeclIsConstantGlobal(Context, D));
828 
829     // FIXME: Merge with other attribute handling code.
830     if (D->getStorageClass() == VarDecl::PrivateExtern)
831       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
832 
833     if (D->hasAttr<WeakAttr>() ||
834         D->hasAttr<WeakImportAttr>())
835       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
836 
837     GV->setThreadLocal(D->isThreadSpecified());
838   }
839 
840   return Entry = GV;
841 }
842 
843 
844 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
845 /// given global variable.  If Ty is non-null and if the global doesn't exist,
846 /// then it will be greated with the specified type instead of whatever the
847 /// normal requested type would be.
848 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
849                                                   const llvm::Type *Ty) {
850   assert(D->hasGlobalStorage() && "Not a global variable");
851   QualType ASTTy = D->getType();
852   if (Ty == 0)
853     Ty = getTypes().ConvertTypeForMem(ASTTy);
854 
855   const llvm::PointerType *PTy =
856     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
857   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
858 }
859 
860 /// CreateRuntimeVariable - Create a new runtime global variable with the
861 /// specified type and name.
862 llvm::Constant *
863 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
864                                      const char *Name) {
865   // Convert Name to be a uniqued string from the IdentifierInfo table.
866   Name = getContext().Idents.get(Name).getNameStart();
867   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
868 }
869 
870 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
871   assert(!D->getInit() && "Cannot emit definite definitions here!");
872 
873   if (MayDeferGeneration(D)) {
874     // If we have not seen a reference to this variable yet, place it
875     // into the deferred declarations table to be emitted if needed
876     // later.
877     const char *MangledName = getMangledName(D);
878     if (GlobalDeclMap.count(MangledName) == 0) {
879       DeferredDecls[MangledName] = D;
880       return;
881     }
882   }
883 
884   // The tentative definition is the only definition.
885   EmitGlobalVarDefinition(D);
886 }
887 
888 llvm::GlobalVariable::LinkageTypes
889 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
890   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
891     return llvm::GlobalVariable::InternalLinkage;
892 
893   if (const CXXMethodDecl *KeyFunction
894                                     = RD->getASTContext().getKeyFunction(RD)) {
895     // If this class has a key function, use that to determine the linkage of
896     // the vtable.
897     const FunctionDecl *Def = 0;
898     if (KeyFunction->getBody(Def))
899       KeyFunction = cast<CXXMethodDecl>(Def);
900 
901     switch (KeyFunction->getTemplateSpecializationKind()) {
902       case TSK_Undeclared:
903       case TSK_ExplicitSpecialization:
904         if (KeyFunction->isInlined())
905           return llvm::GlobalVariable::WeakODRLinkage;
906 
907         return llvm::GlobalVariable::ExternalLinkage;
908 
909       case TSK_ImplicitInstantiation:
910       case TSK_ExplicitInstantiationDefinition:
911         return llvm::GlobalVariable::WeakODRLinkage;
912 
913       case TSK_ExplicitInstantiationDeclaration:
914         // FIXME: Use available_externally linkage. However, this currently
915         // breaks LLVM's build due to undefined symbols.
916         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
917         return llvm::GlobalVariable::WeakODRLinkage;
918     }
919   }
920 
921   switch (RD->getTemplateSpecializationKind()) {
922   case TSK_Undeclared:
923   case TSK_ExplicitSpecialization:
924   case TSK_ImplicitInstantiation:
925   case TSK_ExplicitInstantiationDefinition:
926     return llvm::GlobalVariable::WeakODRLinkage;
927 
928   case TSK_ExplicitInstantiationDeclaration:
929     // FIXME: Use available_externally linkage. However, this currently
930     // breaks LLVM's build due to undefined symbols.
931     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
932     return llvm::GlobalVariable::WeakODRLinkage;
933   }
934 
935   // Silence GCC warning.
936   return llvm::GlobalVariable::WeakODRLinkage;
937 }
938 
939 static CodeGenModule::GVALinkage
940 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
941   // Everything located semantically within an anonymous namespace is
942   // always internal.
943   if (VD->isInAnonymousNamespace())
944     return CodeGenModule::GVA_Internal;
945 
946   // Handle linkage for static data members.
947   if (VD->isStaticDataMember()) {
948     switch (VD->getTemplateSpecializationKind()) {
949     case TSK_Undeclared:
950     case TSK_ExplicitSpecialization:
951     case TSK_ExplicitInstantiationDefinition:
952       return CodeGenModule::GVA_StrongExternal;
953 
954     case TSK_ExplicitInstantiationDeclaration:
955       llvm_unreachable("Variable should not be instantiated");
956       // Fall through to treat this like any other instantiation.
957 
958     case TSK_ImplicitInstantiation:
959       return CodeGenModule::GVA_TemplateInstantiation;
960     }
961   }
962 
963   if (VD->getLinkage() == VarDecl::InternalLinkage)
964     return CodeGenModule::GVA_Internal;
965 
966   return CodeGenModule::GVA_StrongExternal;
967 }
968 
969 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
970   llvm::Constant *Init = 0;
971   QualType ASTTy = D->getType();
972   bool NonConstInit = false;
973 
974   if (D->getInit() == 0) {
975     // This is a tentative definition; tentative definitions are
976     // implicitly initialized with { 0 }.
977     //
978     // Note that tentative definitions are only emitted at the end of
979     // a translation unit, so they should never have incomplete
980     // type. In addition, EmitTentativeDefinition makes sure that we
981     // never attempt to emit a tentative definition if a real one
982     // exists. A use may still exists, however, so we still may need
983     // to do a RAUW.
984     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
985     Init = EmitNullConstant(D->getType());
986   } else {
987     Init = EmitConstantExpr(D->getInit(), D->getType());
988 
989     if (!Init) {
990       QualType T = D->getInit()->getType();
991       if (getLangOptions().CPlusPlus) {
992         EmitCXXGlobalVarDeclInitFunc(D);
993         Init = EmitNullConstant(T);
994         NonConstInit = true;
995       } else {
996         ErrorUnsupported(D, "static initializer");
997         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
998       }
999     }
1000   }
1001 
1002   const llvm::Type* InitType = Init->getType();
1003   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1004 
1005   // Strip off a bitcast if we got one back.
1006   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1007     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1008            // all zero index gep.
1009            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1010     Entry = CE->getOperand(0);
1011   }
1012 
1013   // Entry is now either a Function or GlobalVariable.
1014   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1015 
1016   // We have a definition after a declaration with the wrong type.
1017   // We must make a new GlobalVariable* and update everything that used OldGV
1018   // (a declaration or tentative definition) with the new GlobalVariable*
1019   // (which will be a definition).
1020   //
1021   // This happens if there is a prototype for a global (e.g.
1022   // "extern int x[];") and then a definition of a different type (e.g.
1023   // "int x[10];"). This also happens when an initializer has a different type
1024   // from the type of the global (this happens with unions).
1025   if (GV == 0 ||
1026       GV->getType()->getElementType() != InitType ||
1027       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1028 
1029     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1030     GlobalDeclMap.erase(getMangledName(D));
1031 
1032     // Make a new global with the correct type, this is now guaranteed to work.
1033     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1034     GV->takeName(cast<llvm::GlobalValue>(Entry));
1035 
1036     // Replace all uses of the old global with the new global
1037     llvm::Constant *NewPtrForOldDecl =
1038         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1039     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1040 
1041     // Erase the old global, since it is no longer used.
1042     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1043   }
1044 
1045   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1046     SourceManager &SM = Context.getSourceManager();
1047     AddAnnotation(EmitAnnotateAttr(GV, AA,
1048                               SM.getInstantiationLineNumber(D->getLocation())));
1049   }
1050 
1051   GV->setInitializer(Init);
1052 
1053   // If it is safe to mark the global 'constant', do so now.
1054   GV->setConstant(false);
1055   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1056     GV->setConstant(true);
1057 
1058   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1059 
1060   // Set the llvm linkage type as appropriate.
1061   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1062   if (Linkage == GVA_Internal)
1063     GV->setLinkage(llvm::Function::InternalLinkage);
1064   else if (D->hasAttr<DLLImportAttr>())
1065     GV->setLinkage(llvm::Function::DLLImportLinkage);
1066   else if (D->hasAttr<DLLExportAttr>())
1067     GV->setLinkage(llvm::Function::DLLExportLinkage);
1068   else if (D->hasAttr<WeakAttr>()) {
1069     if (GV->isConstant())
1070       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1071     else
1072       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1073   } else if (Linkage == GVA_TemplateInstantiation)
1074     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1075   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1076            !D->hasExternalStorage() && !D->getInit() &&
1077            !D->getAttr<SectionAttr>()) {
1078     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1079     // common vars aren't constant even if declared const.
1080     GV->setConstant(false);
1081   } else
1082     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1083 
1084   SetCommonAttributes(D, GV);
1085 
1086   // Emit global variable debug information.
1087   if (CGDebugInfo *DI = getDebugInfo()) {
1088     DI->setLocation(D->getLocation());
1089     DI->EmitGlobalVariable(GV, D);
1090   }
1091 }
1092 
1093 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1094 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1095 /// existing call uses of the old function in the module, this adjusts them to
1096 /// call the new function directly.
1097 ///
1098 /// This is not just a cleanup: the always_inline pass requires direct calls to
1099 /// functions to be able to inline them.  If there is a bitcast in the way, it
1100 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1101 /// run at -O0.
1102 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1103                                                       llvm::Function *NewFn) {
1104   // If we're redefining a global as a function, don't transform it.
1105   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1106   if (OldFn == 0) return;
1107 
1108   const llvm::Type *NewRetTy = NewFn->getReturnType();
1109   llvm::SmallVector<llvm::Value*, 4> ArgList;
1110 
1111   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1112        UI != E; ) {
1113     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1114     unsigned OpNo = UI.getOperandNo();
1115     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1116     if (!CI || OpNo != 0) continue;
1117 
1118     // If the return types don't match exactly, and if the call isn't dead, then
1119     // we can't transform this call.
1120     if (CI->getType() != NewRetTy && !CI->use_empty())
1121       continue;
1122 
1123     // If the function was passed too few arguments, don't transform.  If extra
1124     // arguments were passed, we silently drop them.  If any of the types
1125     // mismatch, we don't transform.
1126     unsigned ArgNo = 0;
1127     bool DontTransform = false;
1128     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1129          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1130       if (CI->getNumOperands()-1 == ArgNo ||
1131           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1132         DontTransform = true;
1133         break;
1134       }
1135     }
1136     if (DontTransform)
1137       continue;
1138 
1139     // Okay, we can transform this.  Create the new call instruction and copy
1140     // over the required information.
1141     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1142     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1143                                                      ArgList.end(), "", CI);
1144     ArgList.clear();
1145     if (!NewCall->getType()->isVoidTy())
1146       NewCall->takeName(CI);
1147     NewCall->setAttributes(CI->getAttributes());
1148     NewCall->setCallingConv(CI->getCallingConv());
1149 
1150     // Finally, remove the old call, replacing any uses with the new one.
1151     if (!CI->use_empty())
1152       CI->replaceAllUsesWith(NewCall);
1153 
1154     // Copy any custom metadata attached with CI.
1155     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1156       NewCall->setMetadata("dbg", DbgNode);
1157     CI->eraseFromParent();
1158   }
1159 }
1160 
1161 
1162 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1163   const llvm::FunctionType *Ty;
1164   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1165 
1166   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1167     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1168 
1169     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1170   } else {
1171     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1172 
1173     // As a special case, make sure that definitions of K&R function
1174     // "type foo()" aren't declared as varargs (which forces the backend
1175     // to do unnecessary work).
1176     if (D->getType()->isFunctionNoProtoType()) {
1177       assert(Ty->isVarArg() && "Didn't lower type as expected");
1178       // Due to stret, the lowered function could have arguments.
1179       // Just create the same type as was lowered by ConvertType
1180       // but strip off the varargs bit.
1181       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1182       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1183     }
1184   }
1185 
1186   // Get or create the prototype for the function.
1187   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1188 
1189   // Strip off a bitcast if we got one back.
1190   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1191     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1192     Entry = CE->getOperand(0);
1193   }
1194 
1195 
1196   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1197     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1198 
1199     // If the types mismatch then we have to rewrite the definition.
1200     assert(OldFn->isDeclaration() &&
1201            "Shouldn't replace non-declaration");
1202 
1203     // F is the Function* for the one with the wrong type, we must make a new
1204     // Function* and update everything that used F (a declaration) with the new
1205     // Function* (which will be a definition).
1206     //
1207     // This happens if there is a prototype for a function
1208     // (e.g. "int f()") and then a definition of a different type
1209     // (e.g. "int f(int x)").  Start by making a new function of the
1210     // correct type, RAUW, then steal the name.
1211     GlobalDeclMap.erase(getMangledName(D));
1212     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1213     NewFn->takeName(OldFn);
1214 
1215     // If this is an implementation of a function without a prototype, try to
1216     // replace any existing uses of the function (which may be calls) with uses
1217     // of the new function
1218     if (D->getType()->isFunctionNoProtoType()) {
1219       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1220       OldFn->removeDeadConstantUsers();
1221     }
1222 
1223     // Replace uses of F with the Function we will endow with a body.
1224     if (!Entry->use_empty()) {
1225       llvm::Constant *NewPtrForOldDecl =
1226         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1227       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1228     }
1229 
1230     // Ok, delete the old function now, which is dead.
1231     OldFn->eraseFromParent();
1232 
1233     Entry = NewFn;
1234   }
1235 
1236   llvm::Function *Fn = cast<llvm::Function>(Entry);
1237 
1238   CodeGenFunction(*this).GenerateCode(D, Fn);
1239 
1240   SetFunctionDefinitionAttributes(D, Fn);
1241   SetLLVMFunctionAttributesForDefinition(D, Fn);
1242 
1243   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1244     AddGlobalCtor(Fn, CA->getPriority());
1245   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1246     AddGlobalDtor(Fn, DA->getPriority());
1247 }
1248 
1249 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1250   const AliasAttr *AA = D->getAttr<AliasAttr>();
1251   assert(AA && "Not an alias?");
1252 
1253   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1254 
1255   // Unique the name through the identifier table.
1256   const char *AliaseeName = AA->getAliasee().c_str();
1257   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1258 
1259   // Create a reference to the named value.  This ensures that it is emitted
1260   // if a deferred decl.
1261   llvm::Constant *Aliasee;
1262   if (isa<llvm::FunctionType>(DeclTy))
1263     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1264   else
1265     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1266                                     llvm::PointerType::getUnqual(DeclTy), 0);
1267 
1268   // Create the new alias itself, but don't set a name yet.
1269   llvm::GlobalValue *GA =
1270     new llvm::GlobalAlias(Aliasee->getType(),
1271                           llvm::Function::ExternalLinkage,
1272                           "", Aliasee, &getModule());
1273 
1274   // See if there is already something with the alias' name in the module.
1275   const char *MangledName = getMangledName(D);
1276   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1277 
1278   if (Entry && !Entry->isDeclaration()) {
1279     // If there is a definition in the module, then it wins over the alias.
1280     // This is dubious, but allow it to be safe.  Just ignore the alias.
1281     GA->eraseFromParent();
1282     return;
1283   }
1284 
1285   if (Entry) {
1286     // If there is a declaration in the module, then we had an extern followed
1287     // by the alias, as in:
1288     //   extern int test6();
1289     //   ...
1290     //   int test6() __attribute__((alias("test7")));
1291     //
1292     // Remove it and replace uses of it with the alias.
1293 
1294     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1295                                                           Entry->getType()));
1296     Entry->eraseFromParent();
1297   }
1298 
1299   // Now we know that there is no conflict, set the name.
1300   Entry = GA;
1301   GA->setName(MangledName);
1302 
1303   // Set attributes which are particular to an alias; this is a
1304   // specialization of the attributes which may be set on a global
1305   // variable/function.
1306   if (D->hasAttr<DLLExportAttr>()) {
1307     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1308       // The dllexport attribute is ignored for undefined symbols.
1309       if (FD->getBody())
1310         GA->setLinkage(llvm::Function::DLLExportLinkage);
1311     } else {
1312       GA->setLinkage(llvm::Function::DLLExportLinkage);
1313     }
1314   } else if (D->hasAttr<WeakAttr>() ||
1315              D->hasAttr<WeakImportAttr>()) {
1316     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1317   }
1318 
1319   SetCommonAttributes(D, GA);
1320 }
1321 
1322 /// getBuiltinLibFunction - Given a builtin id for a function like
1323 /// "__builtin_fabsf", return a Function* for "fabsf".
1324 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1325                                                   unsigned BuiltinID) {
1326   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1327           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1328          "isn't a lib fn");
1329 
1330   // Get the name, skip over the __builtin_ prefix (if necessary).
1331   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1332   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1333     Name += 10;
1334 
1335   const llvm::FunctionType *Ty =
1336     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1337 
1338   // Unique the name through the identifier table.
1339   Name = getContext().Idents.get(Name).getNameStart();
1340   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1341 }
1342 
1343 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1344                                             unsigned NumTys) {
1345   return llvm::Intrinsic::getDeclaration(&getModule(),
1346                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1347 }
1348 
1349 llvm::Function *CodeGenModule::getMemCpyFn() {
1350   if (MemCpyFn) return MemCpyFn;
1351   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1352   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1353 }
1354 
1355 llvm::Function *CodeGenModule::getMemMoveFn() {
1356   if (MemMoveFn) return MemMoveFn;
1357   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1358   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1359 }
1360 
1361 llvm::Function *CodeGenModule::getMemSetFn() {
1362   if (MemSetFn) return MemSetFn;
1363   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1364   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1365 }
1366 
1367 static llvm::StringMapEntry<llvm::Constant*> &
1368 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1369                          const StringLiteral *Literal,
1370                          bool TargetIsLSB,
1371                          bool &IsUTF16,
1372                          unsigned &StringLength) {
1373   unsigned NumBytes = Literal->getByteLength();
1374 
1375   // Check for simple case.
1376   if (!Literal->containsNonAsciiOrNull()) {
1377     StringLength = NumBytes;
1378     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1379                                                 StringLength));
1380   }
1381 
1382   // Otherwise, convert the UTF8 literals into a byte string.
1383   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1384   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1385   UTF16 *ToPtr = &ToBuf[0];
1386 
1387   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1388                                                &ToPtr, ToPtr + NumBytes,
1389                                                strictConversion);
1390 
1391   // Check for conversion failure.
1392   if (Result != conversionOK) {
1393     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1394     // this duplicate code.
1395     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1396     StringLength = NumBytes;
1397     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1398                                                 StringLength));
1399   }
1400 
1401   // ConvertUTF8toUTF16 returns the length in ToPtr.
1402   StringLength = ToPtr - &ToBuf[0];
1403 
1404   // Render the UTF-16 string into a byte array and convert to the target byte
1405   // order.
1406   //
1407   // FIXME: This isn't something we should need to do here.
1408   llvm::SmallString<128> AsBytes;
1409   AsBytes.reserve(StringLength * 2);
1410   for (unsigned i = 0; i != StringLength; ++i) {
1411     unsigned short Val = ToBuf[i];
1412     if (TargetIsLSB) {
1413       AsBytes.push_back(Val & 0xFF);
1414       AsBytes.push_back(Val >> 8);
1415     } else {
1416       AsBytes.push_back(Val >> 8);
1417       AsBytes.push_back(Val & 0xFF);
1418     }
1419   }
1420   // Append one extra null character, the second is automatically added by our
1421   // caller.
1422   AsBytes.push_back(0);
1423 
1424   IsUTF16 = true;
1425   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1426 }
1427 
1428 llvm::Constant *
1429 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1430   unsigned StringLength = 0;
1431   bool isUTF16 = false;
1432   llvm::StringMapEntry<llvm::Constant*> &Entry =
1433     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1434                              getTargetData().isLittleEndian(),
1435                              isUTF16, StringLength);
1436 
1437   if (llvm::Constant *C = Entry.getValue())
1438     return C;
1439 
1440   llvm::Constant *Zero =
1441       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1442   llvm::Constant *Zeros[] = { Zero, Zero };
1443 
1444   // If we don't already have it, get __CFConstantStringClassReference.
1445   if (!CFConstantStringClassRef) {
1446     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1447     Ty = llvm::ArrayType::get(Ty, 0);
1448     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1449                                            "__CFConstantStringClassReference");
1450     // Decay array -> ptr
1451     CFConstantStringClassRef =
1452       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1453   }
1454 
1455   QualType CFTy = getContext().getCFConstantStringType();
1456 
1457   const llvm::StructType *STy =
1458     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1459 
1460   std::vector<llvm::Constant*> Fields(4);
1461 
1462   // Class pointer.
1463   Fields[0] = CFConstantStringClassRef;
1464 
1465   // Flags.
1466   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1467   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1468     llvm::ConstantInt::get(Ty, 0x07C8);
1469 
1470   // String pointer.
1471   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1472 
1473   const char *Sect = 0;
1474   llvm::GlobalValue::LinkageTypes Linkage;
1475   bool isConstant;
1476   if (isUTF16) {
1477     Sect = getContext().Target.getUnicodeStringSection();
1478     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1479     Linkage = llvm::GlobalValue::InternalLinkage;
1480     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1481     // does make plain ascii ones writable.
1482     isConstant = true;
1483   } else {
1484     Linkage = llvm::GlobalValue::PrivateLinkage;
1485     isConstant = !Features.WritableStrings;
1486   }
1487 
1488   llvm::GlobalVariable *GV =
1489     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1490                              ".str");
1491   if (Sect)
1492     GV->setSection(Sect);
1493   if (isUTF16) {
1494     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1495     GV->setAlignment(Align);
1496   }
1497   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1498 
1499   // String length.
1500   Ty = getTypes().ConvertType(getContext().LongTy);
1501   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1502 
1503   // The struct.
1504   C = llvm::ConstantStruct::get(STy, Fields);
1505   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1506                                 llvm::GlobalVariable::PrivateLinkage, C,
1507                                 "_unnamed_cfstring_");
1508   if (const char *Sect = getContext().Target.getCFStringSection())
1509     GV->setSection(Sect);
1510   Entry.setValue(GV);
1511 
1512   return GV;
1513 }
1514 
1515 /// GetStringForStringLiteral - Return the appropriate bytes for a
1516 /// string literal, properly padded to match the literal type.
1517 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1518   const char *StrData = E->getStrData();
1519   unsigned Len = E->getByteLength();
1520 
1521   const ConstantArrayType *CAT =
1522     getContext().getAsConstantArrayType(E->getType());
1523   assert(CAT && "String isn't pointer or array!");
1524 
1525   // Resize the string to the right size.
1526   std::string Str(StrData, StrData+Len);
1527   uint64_t RealLen = CAT->getSize().getZExtValue();
1528 
1529   if (E->isWide())
1530     RealLen *= getContext().Target.getWCharWidth()/8;
1531 
1532   Str.resize(RealLen, '\0');
1533 
1534   return Str;
1535 }
1536 
1537 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1538 /// constant array for the given string literal.
1539 llvm::Constant *
1540 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1541   // FIXME: This can be more efficient.
1542   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1543   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1544   if (S->isWide()) {
1545     llvm::Type *DestTy =
1546         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1547     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1548   }
1549   return C;
1550 }
1551 
1552 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1553 /// array for the given ObjCEncodeExpr node.
1554 llvm::Constant *
1555 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1556   std::string Str;
1557   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1558 
1559   return GetAddrOfConstantCString(Str);
1560 }
1561 
1562 
1563 /// GenerateWritableString -- Creates storage for a string literal.
1564 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1565                                              bool constant,
1566                                              CodeGenModule &CGM,
1567                                              const char *GlobalName) {
1568   // Create Constant for this string literal. Don't add a '\0'.
1569   llvm::Constant *C =
1570       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1571 
1572   // Create a global variable for this string
1573   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1574                                   llvm::GlobalValue::PrivateLinkage,
1575                                   C, GlobalName);
1576 }
1577 
1578 /// GetAddrOfConstantString - Returns a pointer to a character array
1579 /// containing the literal. This contents are exactly that of the
1580 /// given string, i.e. it will not be null terminated automatically;
1581 /// see GetAddrOfConstantCString. Note that whether the result is
1582 /// actually a pointer to an LLVM constant depends on
1583 /// Feature.WriteableStrings.
1584 ///
1585 /// The result has pointer to array type.
1586 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1587                                                        const char *GlobalName) {
1588   bool IsConstant = !Features.WritableStrings;
1589 
1590   // Get the default prefix if a name wasn't specified.
1591   if (!GlobalName)
1592     GlobalName = ".str";
1593 
1594   // Don't share any string literals if strings aren't constant.
1595   if (!IsConstant)
1596     return GenerateStringLiteral(str, false, *this, GlobalName);
1597 
1598   llvm::StringMapEntry<llvm::Constant *> &Entry =
1599     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1600 
1601   if (Entry.getValue())
1602     return Entry.getValue();
1603 
1604   // Create a global variable for this.
1605   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1606   Entry.setValue(C);
1607   return C;
1608 }
1609 
1610 /// GetAddrOfConstantCString - Returns a pointer to a character
1611 /// array containing the literal and a terminating '\-'
1612 /// character. The result has pointer to array type.
1613 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1614                                                         const char *GlobalName){
1615   return GetAddrOfConstantString(str + '\0', GlobalName);
1616 }
1617 
1618 /// EmitObjCPropertyImplementations - Emit information for synthesized
1619 /// properties for an implementation.
1620 void CodeGenModule::EmitObjCPropertyImplementations(const
1621                                                     ObjCImplementationDecl *D) {
1622   for (ObjCImplementationDecl::propimpl_iterator
1623          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1624     ObjCPropertyImplDecl *PID = *i;
1625 
1626     // Dynamic is just for type-checking.
1627     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1628       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1629 
1630       // Determine which methods need to be implemented, some may have
1631       // been overridden. Note that ::isSynthesized is not the method
1632       // we want, that just indicates if the decl came from a
1633       // property. What we want to know is if the method is defined in
1634       // this implementation.
1635       if (!D->getInstanceMethod(PD->getGetterName()))
1636         CodeGenFunction(*this).GenerateObjCGetter(
1637                                  const_cast<ObjCImplementationDecl *>(D), PID);
1638       if (!PD->isReadOnly() &&
1639           !D->getInstanceMethod(PD->getSetterName()))
1640         CodeGenFunction(*this).GenerateObjCSetter(
1641                                  const_cast<ObjCImplementationDecl *>(D), PID);
1642     }
1643   }
1644 }
1645 
1646 /// EmitNamespace - Emit all declarations in a namespace.
1647 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1648   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1649        I != E; ++I)
1650     EmitTopLevelDecl(*I);
1651 }
1652 
1653 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1654 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1655   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1656       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1657     ErrorUnsupported(LSD, "linkage spec");
1658     return;
1659   }
1660 
1661   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1662        I != E; ++I)
1663     EmitTopLevelDecl(*I);
1664 }
1665 
1666 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1667 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1668   // If an error has occurred, stop code generation, but continue
1669   // parsing and semantic analysis (to ensure all warnings and errors
1670   // are emitted).
1671   if (Diags.hasErrorOccurred())
1672     return;
1673 
1674   // Ignore dependent declarations.
1675   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1676     return;
1677 
1678   switch (D->getKind()) {
1679   case Decl::CXXConversion:
1680   case Decl::CXXMethod:
1681   case Decl::Function:
1682     // Skip function templates
1683     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1684       return;
1685 
1686     EmitGlobal(cast<FunctionDecl>(D));
1687     break;
1688 
1689   case Decl::Var:
1690     EmitGlobal(cast<VarDecl>(D));
1691     break;
1692 
1693   // C++ Decls
1694   case Decl::Namespace:
1695     EmitNamespace(cast<NamespaceDecl>(D));
1696     break;
1697     // No code generation needed.
1698   case Decl::UsingShadow:
1699   case Decl::Using:
1700   case Decl::UsingDirective:
1701   case Decl::ClassTemplate:
1702   case Decl::FunctionTemplate:
1703   case Decl::NamespaceAlias:
1704     break;
1705   case Decl::CXXConstructor:
1706     // Skip function templates
1707     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1708       return;
1709 
1710     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1711     break;
1712   case Decl::CXXDestructor:
1713     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1714     break;
1715 
1716   case Decl::StaticAssert:
1717     // Nothing to do.
1718     break;
1719 
1720   // Objective-C Decls
1721 
1722   // Forward declarations, no (immediate) code generation.
1723   case Decl::ObjCClass:
1724   case Decl::ObjCForwardProtocol:
1725   case Decl::ObjCCategory:
1726   case Decl::ObjCInterface:
1727     break;
1728 
1729   case Decl::ObjCProtocol:
1730     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1731     break;
1732 
1733   case Decl::ObjCCategoryImpl:
1734     // Categories have properties but don't support synthesize so we
1735     // can ignore them here.
1736     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1737     break;
1738 
1739   case Decl::ObjCImplementation: {
1740     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1741     EmitObjCPropertyImplementations(OMD);
1742     Runtime->GenerateClass(OMD);
1743     break;
1744   }
1745   case Decl::ObjCMethod: {
1746     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1747     // If this is not a prototype, emit the body.
1748     if (OMD->getBody())
1749       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1750     break;
1751   }
1752   case Decl::ObjCCompatibleAlias:
1753     // compatibility-alias is a directive and has no code gen.
1754     break;
1755 
1756   case Decl::LinkageSpec:
1757     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1758     break;
1759 
1760   case Decl::FileScopeAsm: {
1761     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1762     llvm::StringRef AsmString = AD->getAsmString()->getString();
1763 
1764     const std::string &S = getModule().getModuleInlineAsm();
1765     if (S.empty())
1766       getModule().setModuleInlineAsm(AsmString);
1767     else
1768       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1769     break;
1770   }
1771 
1772   default:
1773     // Make sure we handled everything we should, every other kind is a
1774     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1775     // function. Need to recode Decl::Kind to do that easily.
1776     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1777   }
1778 }
1779