1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/Basic/Builtins.h" 27 #include "clang/Basic/Diagnostic.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Basic/ConvertUTF.h" 31 #include "llvm/CallingConv.h" 32 #include "llvm/Module.h" 33 #include "llvm/Intrinsics.h" 34 #include "llvm/LLVMContext.h" 35 #include "llvm/Target/TargetData.h" 36 #include "llvm/Support/ErrorHandling.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 41 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 42 llvm::Module &M, const llvm::TargetData &TD, 43 Diagnostic &diags) 44 : BlockModule(C, M, TD, Types, *this), Context(C), 45 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 46 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 47 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 48 MangleCtx(C), VtableInfo(*this), Runtime(0), 49 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 50 VMContext(M.getContext()) { 51 52 if (!Features.ObjC1) 53 Runtime = 0; 54 else if (!Features.NeXTRuntime) 55 Runtime = CreateGNUObjCRuntime(*this); 56 else if (Features.ObjCNonFragileABI) 57 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 58 else 59 Runtime = CreateMacObjCRuntime(*this); 60 61 // If debug info generation is enabled, create the CGDebugInfo object. 62 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 63 } 64 65 CodeGenModule::~CodeGenModule() { 66 delete Runtime; 67 delete DebugInfo; 68 } 69 70 void CodeGenModule::Release() { 71 EmitDeferred(); 72 EmitCXXGlobalInitFunc(); 73 if (Runtime) 74 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 75 AddGlobalCtor(ObjCInitFunction); 76 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 77 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 78 EmitAnnotations(); 79 EmitLLVMUsed(); 80 } 81 82 /// ErrorUnsupported - Print out an error that codegen doesn't support the 83 /// specified stmt yet. 84 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 85 bool OmitOnError) { 86 if (OmitOnError && getDiags().hasErrorOccurred()) 87 return; 88 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 89 "cannot compile this %0 yet"); 90 std::string Msg = Type; 91 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 92 << Msg << S->getSourceRange(); 93 } 94 95 /// ErrorUnsupported - Print out an error that codegen doesn't support the 96 /// specified decl yet. 97 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 98 bool OmitOnError) { 99 if (OmitOnError && getDiags().hasErrorOccurred()) 100 return; 101 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 102 "cannot compile this %0 yet"); 103 std::string Msg = Type; 104 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 105 } 106 107 LangOptions::VisibilityMode 108 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 109 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 110 if (VD->getStorageClass() == VarDecl::PrivateExtern) 111 return LangOptions::Hidden; 112 113 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 114 switch (attr->getVisibility()) { 115 default: assert(0 && "Unknown visibility!"); 116 case VisibilityAttr::DefaultVisibility: 117 return LangOptions::Default; 118 case VisibilityAttr::HiddenVisibility: 119 return LangOptions::Hidden; 120 case VisibilityAttr::ProtectedVisibility: 121 return LangOptions::Protected; 122 } 123 } 124 125 return getLangOptions().getVisibilityMode(); 126 } 127 128 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 129 const Decl *D) const { 130 // Internal definitions always have default visibility. 131 if (GV->hasLocalLinkage()) { 132 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 133 return; 134 } 135 136 switch (getDeclVisibilityMode(D)) { 137 default: assert(0 && "Unknown visibility!"); 138 case LangOptions::Default: 139 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 140 case LangOptions::Hidden: 141 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 142 case LangOptions::Protected: 143 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 144 } 145 } 146 147 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 148 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 149 150 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 151 return getMangledCXXCtorName(D, GD.getCtorType()); 152 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 153 return getMangledCXXDtorName(D, GD.getDtorType()); 154 155 return getMangledName(ND); 156 } 157 158 /// \brief Retrieves the mangled name for the given declaration. 159 /// 160 /// If the given declaration requires a mangled name, returns an 161 /// const char* containing the mangled name. Otherwise, returns 162 /// the unmangled name. 163 /// 164 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 165 if (!getMangleContext().shouldMangleDeclName(ND)) { 166 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 167 return ND->getNameAsCString(); 168 } 169 170 llvm::SmallString<256> Name; 171 getMangleContext().mangleName(ND, Name); 172 Name += '\0'; 173 return UniqueMangledName(Name.begin(), Name.end()); 174 } 175 176 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 177 const char *NameEnd) { 178 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 179 180 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 181 } 182 183 /// AddGlobalCtor - Add a function to the list that will be called before 184 /// main() runs. 185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 186 // FIXME: Type coercion of void()* types. 187 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 188 } 189 190 /// AddGlobalDtor - Add a function to the list that will be called 191 /// when the module is unloaded. 192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 193 // FIXME: Type coercion of void()* types. 194 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 195 } 196 197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 198 // Ctor function type is void()*. 199 llvm::FunctionType* CtorFTy = 200 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 201 std::vector<const llvm::Type*>(), 202 false); 203 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 204 205 // Get the type of a ctor entry, { i32, void ()* }. 206 llvm::StructType* CtorStructTy = 207 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 208 llvm::PointerType::getUnqual(CtorFTy), NULL); 209 210 // Construct the constructor and destructor arrays. 211 std::vector<llvm::Constant*> Ctors; 212 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 213 std::vector<llvm::Constant*> S; 214 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 215 I->second, false)); 216 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 217 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 218 } 219 220 if (!Ctors.empty()) { 221 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 222 new llvm::GlobalVariable(TheModule, AT, false, 223 llvm::GlobalValue::AppendingLinkage, 224 llvm::ConstantArray::get(AT, Ctors), 225 GlobalName); 226 } 227 } 228 229 void CodeGenModule::EmitAnnotations() { 230 if (Annotations.empty()) 231 return; 232 233 // Create a new global variable for the ConstantStruct in the Module. 234 llvm::Constant *Array = 235 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 236 Annotations.size()), 237 Annotations); 238 llvm::GlobalValue *gv = 239 new llvm::GlobalVariable(TheModule, Array->getType(), false, 240 llvm::GlobalValue::AppendingLinkage, Array, 241 "llvm.global.annotations"); 242 gv->setSection("llvm.metadata"); 243 } 244 245 static CodeGenModule::GVALinkage 246 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 247 const LangOptions &Features) { 248 // Everything located semantically within an anonymous namespace is 249 // always internal. 250 if (FD->isInAnonymousNamespace()) 251 return CodeGenModule::GVA_Internal; 252 253 // "static" functions get internal linkage. 254 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 255 return CodeGenModule::GVA_Internal; 256 257 // The kind of external linkage this function will have, if it is not 258 // inline or static. 259 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 260 if (Context.getLangOptions().CPlusPlus) { 261 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 262 263 if (TSK == TSK_ExplicitInstantiationDefinition) { 264 // If a function has been explicitly instantiated, then it should 265 // always have strong external linkage. 266 return CodeGenModule::GVA_StrongExternal; 267 } 268 269 if (TSK == TSK_ImplicitInstantiation) 270 External = CodeGenModule::GVA_TemplateInstantiation; 271 } 272 273 if (!FD->isInlined()) 274 return External; 275 276 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 277 // GNU or C99 inline semantics. Determine whether this symbol should be 278 // externally visible. 279 if (FD->isInlineDefinitionExternallyVisible()) 280 return External; 281 282 // C99 inline semantics, where the symbol is not externally visible. 283 return CodeGenModule::GVA_C99Inline; 284 } 285 286 // C++0x [temp.explicit]p9: 287 // [ Note: The intent is that an inline function that is the subject of 288 // an explicit instantiation declaration will still be implicitly 289 // instantiated when used so that the body can be considered for 290 // inlining, but that no out-of-line copy of the inline function would be 291 // generated in the translation unit. -- end note ] 292 if (FD->getTemplateSpecializationKind() 293 == TSK_ExplicitInstantiationDeclaration) 294 return CodeGenModule::GVA_C99Inline; 295 296 return CodeGenModule::GVA_CXXInline; 297 } 298 299 /// SetFunctionDefinitionAttributes - Set attributes for a global. 300 /// 301 /// FIXME: This is currently only done for aliases and functions, but not for 302 /// variables (these details are set in EmitGlobalVarDefinition for variables). 303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 304 llvm::GlobalValue *GV) { 305 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 306 307 if (Linkage == GVA_Internal) { 308 GV->setLinkage(llvm::Function::InternalLinkage); 309 } else if (D->hasAttr<DLLExportAttr>()) { 310 GV->setLinkage(llvm::Function::DLLExportLinkage); 311 } else if (D->hasAttr<WeakAttr>()) { 312 GV->setLinkage(llvm::Function::WeakAnyLinkage); 313 } else if (Linkage == GVA_C99Inline) { 314 // In C99 mode, 'inline' functions are guaranteed to have a strong 315 // definition somewhere else, so we can use available_externally linkage. 316 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 317 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 318 // In C++, the compiler has to emit a definition in every translation unit 319 // that references the function. We should use linkonce_odr because 320 // a) if all references in this translation unit are optimized away, we 321 // don't need to codegen it. b) if the function persists, it needs to be 322 // merged with other definitions. c) C++ has the ODR, so we know the 323 // definition is dependable. 324 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 325 } else { 326 assert(Linkage == GVA_StrongExternal); 327 // Otherwise, we have strong external linkage. 328 GV->setLinkage(llvm::Function::ExternalLinkage); 329 } 330 331 SetCommonAttributes(D, GV); 332 } 333 334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 335 const CGFunctionInfo &Info, 336 llvm::Function *F) { 337 unsigned CallingConv; 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList, CallingConv); 340 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 341 AttributeList.size())); 342 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 343 } 344 345 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 346 llvm::Function *F) { 347 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 348 F->addFnAttr(llvm::Attribute::NoUnwind); 349 350 if (D->hasAttr<AlwaysInlineAttr>()) 351 F->addFnAttr(llvm::Attribute::AlwaysInline); 352 353 if (D->hasAttr<NoInlineAttr>()) 354 F->addFnAttr(llvm::Attribute::NoInline); 355 356 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 357 F->addFnAttr(llvm::Attribute::StackProtect); 358 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 359 F->addFnAttr(llvm::Attribute::StackProtectReq); 360 361 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 362 unsigned width = Context.Target.getCharWidth(); 363 F->setAlignment(AA->getAlignment() / width); 364 while ((AA = AA->getNext<AlignedAttr>())) 365 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 366 } 367 // C++ ABI requires 2-byte alignment for member functions. 368 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 369 F->setAlignment(2); 370 } 371 372 void CodeGenModule::SetCommonAttributes(const Decl *D, 373 llvm::GlobalValue *GV) { 374 setGlobalVisibility(GV, D); 375 376 if (D->hasAttr<UsedAttr>()) 377 AddUsedGlobal(GV); 378 379 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 380 GV->setSection(SA->getName()); 381 382 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 383 } 384 385 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 386 llvm::Function *F, 387 const CGFunctionInfo &FI) { 388 SetLLVMFunctionAttributes(D, FI, F); 389 SetLLVMFunctionAttributesForDefinition(D, F); 390 391 F->setLinkage(llvm::Function::InternalLinkage); 392 393 SetCommonAttributes(D, F); 394 } 395 396 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 397 llvm::Function *F, 398 bool IsIncompleteFunction) { 399 if (!IsIncompleteFunction) 400 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 401 402 // Only a few attributes are set on declarations; these may later be 403 // overridden by a definition. 404 405 if (FD->hasAttr<DLLImportAttr>()) { 406 F->setLinkage(llvm::Function::DLLImportLinkage); 407 } else if (FD->hasAttr<WeakAttr>() || 408 FD->hasAttr<WeakImportAttr>()) { 409 // "extern_weak" is overloaded in LLVM; we probably should have 410 // separate linkage types for this. 411 F->setLinkage(llvm::Function::ExternalWeakLinkage); 412 } else { 413 F->setLinkage(llvm::Function::ExternalLinkage); 414 } 415 416 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 417 F->setSection(SA->getName()); 418 } 419 420 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 421 assert(!GV->isDeclaration() && 422 "Only globals with definition can force usage."); 423 LLVMUsed.push_back(GV); 424 } 425 426 void CodeGenModule::EmitLLVMUsed() { 427 // Don't create llvm.used if there is no need. 428 if (LLVMUsed.empty()) 429 return; 430 431 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 432 433 // Convert LLVMUsed to what ConstantArray needs. 434 std::vector<llvm::Constant*> UsedArray; 435 UsedArray.resize(LLVMUsed.size()); 436 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 437 UsedArray[i] = 438 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 439 i8PTy); 440 } 441 442 if (UsedArray.empty()) 443 return; 444 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 445 446 llvm::GlobalVariable *GV = 447 new llvm::GlobalVariable(getModule(), ATy, false, 448 llvm::GlobalValue::AppendingLinkage, 449 llvm::ConstantArray::get(ATy, UsedArray), 450 "llvm.used"); 451 452 GV->setSection("llvm.metadata"); 453 } 454 455 void CodeGenModule::EmitDeferred() { 456 // Emit code for any potentially referenced deferred decls. Since a 457 // previously unused static decl may become used during the generation of code 458 // for a static function, iterate until no changes are made. 459 while (!DeferredDeclsToEmit.empty()) { 460 GlobalDecl D = DeferredDeclsToEmit.back(); 461 DeferredDeclsToEmit.pop_back(); 462 463 // The mangled name for the decl must have been emitted in GlobalDeclMap. 464 // Look it up to see if it was defined with a stronger definition (e.g. an 465 // extern inline function with a strong function redefinition). If so, 466 // just ignore the deferred decl. 467 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 468 assert(CGRef && "Deferred decl wasn't referenced?"); 469 470 if (!CGRef->isDeclaration()) 471 continue; 472 473 // Otherwise, emit the definition and move on to the next one. 474 EmitGlobalDefinition(D); 475 } 476 } 477 478 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 479 /// annotation information for a given GlobalValue. The annotation struct is 480 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 481 /// GlobalValue being annotated. The second field is the constant string 482 /// created from the AnnotateAttr's annotation. The third field is a constant 483 /// string containing the name of the translation unit. The fourth field is 484 /// the line number in the file of the annotated value declaration. 485 /// 486 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 487 /// appears to. 488 /// 489 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 490 const AnnotateAttr *AA, 491 unsigned LineNo) { 492 llvm::Module *M = &getModule(); 493 494 // get [N x i8] constants for the annotation string, and the filename string 495 // which are the 2nd and 3rd elements of the global annotation structure. 496 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 497 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 498 AA->getAnnotation(), true); 499 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 500 M->getModuleIdentifier(), 501 true); 502 503 // Get the two global values corresponding to the ConstantArrays we just 504 // created to hold the bytes of the strings. 505 llvm::GlobalValue *annoGV = 506 new llvm::GlobalVariable(*M, anno->getType(), false, 507 llvm::GlobalValue::PrivateLinkage, anno, 508 GV->getName()); 509 // translation unit name string, emitted into the llvm.metadata section. 510 llvm::GlobalValue *unitGV = 511 new llvm::GlobalVariable(*M, unit->getType(), false, 512 llvm::GlobalValue::PrivateLinkage, unit, 513 ".str"); 514 515 // Create the ConstantStruct for the global annotation. 516 llvm::Constant *Fields[4] = { 517 llvm::ConstantExpr::getBitCast(GV, SBP), 518 llvm::ConstantExpr::getBitCast(annoGV, SBP), 519 llvm::ConstantExpr::getBitCast(unitGV, SBP), 520 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 521 }; 522 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 523 } 524 525 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 526 // Never defer when EmitAllDecls is specified or the decl has 527 // attribute used. 528 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 529 return false; 530 531 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 532 // Constructors and destructors should never be deferred. 533 if (FD->hasAttr<ConstructorAttr>() || 534 FD->hasAttr<DestructorAttr>()) 535 return false; 536 537 // The key function for a class must never be deferred. 538 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 539 const CXXRecordDecl *RD = MD->getParent(); 540 if (MD->isOutOfLine() && RD->isDynamicClass()) { 541 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 542 if (KeyFunction && 543 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 544 return false; 545 } 546 } 547 548 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 549 550 // static, static inline, always_inline, and extern inline functions can 551 // always be deferred. Normal inline functions can be deferred in C99/C++. 552 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 553 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 554 return true; 555 return false; 556 } 557 558 const VarDecl *VD = cast<VarDecl>(Global); 559 assert(VD->isFileVarDecl() && "Invalid decl"); 560 561 // We never want to defer structs that have non-trivial constructors or 562 // destructors. 563 564 // FIXME: Handle references. 565 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 566 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 567 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 568 return false; 569 } 570 } 571 572 // Static data may be deferred, but out-of-line static data members 573 // cannot be. 574 if (VD->isInAnonymousNamespace()) 575 return true; 576 if (VD->getLinkage() == VarDecl::InternalLinkage) { 577 // Initializer has side effects? 578 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 579 return false; 580 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 581 } 582 return false; 583 } 584 585 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 586 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 587 588 // If this is an alias definition (which otherwise looks like a declaration) 589 // emit it now. 590 if (Global->hasAttr<AliasAttr>()) 591 return EmitAliasDefinition(Global); 592 593 // Ignore declarations, they will be emitted on their first use. 594 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 595 // Forward declarations are emitted lazily on first use. 596 if (!FD->isThisDeclarationADefinition()) 597 return; 598 } else { 599 const VarDecl *VD = cast<VarDecl>(Global); 600 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 601 602 if (getLangOptions().CPlusPlus && !VD->getInit()) { 603 // In C++, if this is marked "extern", defer code generation. 604 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 605 return; 606 607 // If this is a declaration of an explicit specialization of a static 608 // data member in a class template, don't emit it. 609 if (VD->isStaticDataMember() && 610 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 611 return; 612 } 613 614 // In C, if this isn't a definition, defer code generation. 615 if (!getLangOptions().CPlusPlus && !VD->getInit()) 616 return; 617 } 618 619 // Defer code generation when possible if this is a static definition, inline 620 // function etc. These we only want to emit if they are used. 621 if (MayDeferGeneration(Global)) { 622 // If the value has already been used, add it directly to the 623 // DeferredDeclsToEmit list. 624 const char *MangledName = getMangledName(GD); 625 if (GlobalDeclMap.count(MangledName)) 626 DeferredDeclsToEmit.push_back(GD); 627 else { 628 // Otherwise, remember that we saw a deferred decl with this name. The 629 // first use of the mangled name will cause it to move into 630 // DeferredDeclsToEmit. 631 DeferredDecls[MangledName] = GD; 632 } 633 return; 634 } 635 636 // Otherwise emit the definition. 637 EmitGlobalDefinition(GD); 638 } 639 640 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 641 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 642 643 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 644 Context.getSourceManager(), 645 "Generating code for declaration"); 646 647 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 648 getVtableInfo().MaybeEmitVtable(GD); 649 if (MD->isVirtual() && MD->isOutOfLine() && 650 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 651 if (isa<CXXDestructorDecl>(D)) { 652 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 653 GD.getDtorType()); 654 BuildThunksForVirtual(CanonGD); 655 } else { 656 BuildThunksForVirtual(MD->getCanonicalDecl()); 657 } 658 } 659 } 660 661 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 662 EmitCXXConstructor(CD, GD.getCtorType()); 663 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 664 EmitCXXDestructor(DD, GD.getDtorType()); 665 else if (isa<FunctionDecl>(D)) 666 EmitGlobalFunctionDefinition(GD); 667 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 668 EmitGlobalVarDefinition(VD); 669 else { 670 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 671 } 672 } 673 674 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 675 /// module, create and return an llvm Function with the specified type. If there 676 /// is something in the module with the specified name, return it potentially 677 /// bitcasted to the right type. 678 /// 679 /// If D is non-null, it specifies a decl that correspond to this. This is used 680 /// to set the attributes on the function when it is first created. 681 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 682 const llvm::Type *Ty, 683 GlobalDecl D) { 684 // Lookup the entry, lazily creating it if necessary. 685 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 686 if (Entry) { 687 if (Entry->getType()->getElementType() == Ty) 688 return Entry; 689 690 // Make sure the result is of the correct type. 691 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 692 return llvm::ConstantExpr::getBitCast(Entry, PTy); 693 } 694 695 // This function doesn't have a complete type (for example, the return 696 // type is an incomplete struct). Use a fake type instead, and make 697 // sure not to try to set attributes. 698 bool IsIncompleteFunction = false; 699 if (!isa<llvm::FunctionType>(Ty)) { 700 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 701 std::vector<const llvm::Type*>(), false); 702 IsIncompleteFunction = true; 703 } 704 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 705 llvm::Function::ExternalLinkage, 706 "", &getModule()); 707 F->setName(MangledName); 708 if (D.getDecl()) 709 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 710 IsIncompleteFunction); 711 Entry = F; 712 713 // This is the first use or definition of a mangled name. If there is a 714 // deferred decl with this name, remember that we need to emit it at the end 715 // of the file. 716 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 717 DeferredDecls.find(MangledName); 718 if (DDI != DeferredDecls.end()) { 719 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 720 // list, and remove it from DeferredDecls (since we don't need it anymore). 721 DeferredDeclsToEmit.push_back(DDI->second); 722 DeferredDecls.erase(DDI); 723 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 724 // If this the first reference to a C++ inline function in a class, queue up 725 // the deferred function body for emission. These are not seen as 726 // top-level declarations. 727 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 728 DeferredDeclsToEmit.push_back(D); 729 // A called constructor which has no definition or declaration need be 730 // synthesized. 731 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 732 if (CD->isImplicit()) 733 DeferredDeclsToEmit.push_back(D); 734 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 735 if (DD->isImplicit()) 736 DeferredDeclsToEmit.push_back(D); 737 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 738 if (MD->isCopyAssignment() && MD->isImplicit()) 739 DeferredDeclsToEmit.push_back(D); 740 } 741 } 742 743 return F; 744 } 745 746 /// GetAddrOfFunction - Return the address of the given function. If Ty is 747 /// non-null, then this function will use the specified type if it has to 748 /// create it (this occurs when we see a definition of the function). 749 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 750 const llvm::Type *Ty) { 751 // If there was no specific requested type, just convert it now. 752 if (!Ty) 753 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 754 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 755 } 756 757 /// CreateRuntimeFunction - Create a new runtime function with the specified 758 /// type and name. 759 llvm::Constant * 760 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 761 const char *Name) { 762 // Convert Name to be a uniqued string from the IdentifierInfo table. 763 Name = getContext().Idents.get(Name).getNameStart(); 764 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 765 } 766 767 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 768 if (!D->getType().isConstant(Context)) 769 return false; 770 if (Context.getLangOptions().CPlusPlus && 771 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 772 // FIXME: We should do something fancier here! 773 return false; 774 } 775 return true; 776 } 777 778 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 779 /// create and return an llvm GlobalVariable with the specified type. If there 780 /// is something in the module with the specified name, return it potentially 781 /// bitcasted to the right type. 782 /// 783 /// If D is non-null, it specifies a decl that correspond to this. This is used 784 /// to set the attributes on the global when it is first created. 785 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 786 const llvm::PointerType*Ty, 787 const VarDecl *D) { 788 // Lookup the entry, lazily creating it if necessary. 789 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 790 if (Entry) { 791 if (Entry->getType() == Ty) 792 return Entry; 793 794 // Make sure the result is of the correct type. 795 return llvm::ConstantExpr::getBitCast(Entry, Ty); 796 } 797 798 // This is the first use or definition of a mangled name. If there is a 799 // deferred decl with this name, remember that we need to emit it at the end 800 // of the file. 801 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 802 DeferredDecls.find(MangledName); 803 if (DDI != DeferredDecls.end()) { 804 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 805 // list, and remove it from DeferredDecls (since we don't need it anymore). 806 DeferredDeclsToEmit.push_back(DDI->second); 807 DeferredDecls.erase(DDI); 808 } 809 810 llvm::GlobalVariable *GV = 811 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 812 llvm::GlobalValue::ExternalLinkage, 813 0, "", 0, 814 false, Ty->getAddressSpace()); 815 GV->setName(MangledName); 816 817 // Handle things which are present even on external declarations. 818 if (D) { 819 // FIXME: This code is overly simple and should be merged with other global 820 // handling. 821 GV->setConstant(DeclIsConstantGlobal(Context, D)); 822 823 // FIXME: Merge with other attribute handling code. 824 if (D->getStorageClass() == VarDecl::PrivateExtern) 825 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 826 827 if (D->hasAttr<WeakAttr>() || 828 D->hasAttr<WeakImportAttr>()) 829 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 830 831 GV->setThreadLocal(D->isThreadSpecified()); 832 } 833 834 return Entry = GV; 835 } 836 837 838 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 839 /// given global variable. If Ty is non-null and if the global doesn't exist, 840 /// then it will be greated with the specified type instead of whatever the 841 /// normal requested type would be. 842 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 843 const llvm::Type *Ty) { 844 assert(D->hasGlobalStorage() && "Not a global variable"); 845 QualType ASTTy = D->getType(); 846 if (Ty == 0) 847 Ty = getTypes().ConvertTypeForMem(ASTTy); 848 849 const llvm::PointerType *PTy = 850 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 851 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 852 } 853 854 /// CreateRuntimeVariable - Create a new runtime global variable with the 855 /// specified type and name. 856 llvm::Constant * 857 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 858 const char *Name) { 859 // Convert Name to be a uniqued string from the IdentifierInfo table. 860 Name = getContext().Idents.get(Name).getNameStart(); 861 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 862 } 863 864 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 865 assert(!D->getInit() && "Cannot emit definite definitions here!"); 866 867 if (MayDeferGeneration(D)) { 868 // If we have not seen a reference to this variable yet, place it 869 // into the deferred declarations table to be emitted if needed 870 // later. 871 const char *MangledName = getMangledName(D); 872 if (GlobalDeclMap.count(MangledName) == 0) { 873 DeferredDecls[MangledName] = D; 874 return; 875 } 876 } 877 878 // The tentative definition is the only definition. 879 EmitGlobalVarDefinition(D); 880 } 881 882 llvm::GlobalVariable::LinkageTypes 883 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) { 884 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 885 return llvm::GlobalVariable::InternalLinkage; 886 887 if (const CXXMethodDecl *KeyFunction 888 = RD->getASTContext().getKeyFunction(RD)) { 889 // If this class has a key function, use that to determine the linkage of 890 // the vtable. 891 const FunctionDecl *Def = 0; 892 if (KeyFunction->getBody(Def)) 893 KeyFunction = cast<CXXMethodDecl>(Def); 894 895 switch (KeyFunction->getTemplateSpecializationKind()) { 896 case TSK_Undeclared: 897 case TSK_ExplicitSpecialization: 898 if (KeyFunction->isInlined()) 899 return llvm::GlobalVariable::WeakODRLinkage; 900 901 return llvm::GlobalVariable::ExternalLinkage; 902 903 case TSK_ImplicitInstantiation: 904 case TSK_ExplicitInstantiationDefinition: 905 return llvm::GlobalVariable::WeakODRLinkage; 906 907 case TSK_ExplicitInstantiationDeclaration: 908 // FIXME: Use available_externally linkage. However, this currently 909 // breaks LLVM's build due to undefined symbols. 910 // return llvm::GlobalVariable::AvailableExternallyLinkage; 911 return llvm::GlobalVariable::WeakODRLinkage; 912 } 913 } 914 915 switch (RD->getTemplateSpecializationKind()) { 916 case TSK_Undeclared: 917 case TSK_ExplicitSpecialization: 918 case TSK_ImplicitInstantiation: 919 case TSK_ExplicitInstantiationDefinition: 920 return llvm::GlobalVariable::WeakODRLinkage; 921 922 case TSK_ExplicitInstantiationDeclaration: 923 // FIXME: Use available_externally linkage. However, this currently 924 // breaks LLVM's build due to undefined symbols. 925 // return llvm::GlobalVariable::AvailableExternallyLinkage; 926 return llvm::GlobalVariable::WeakODRLinkage; 927 } 928 929 // Silence GCC warning. 930 return llvm::GlobalVariable::WeakODRLinkage; 931 } 932 933 static CodeGenModule::GVALinkage 934 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 935 // Everything located semantically within an anonymous namespace is 936 // always internal. 937 if (VD->isInAnonymousNamespace()) 938 return CodeGenModule::GVA_Internal; 939 940 // Handle linkage for static data members. 941 if (VD->isStaticDataMember()) { 942 switch (VD->getTemplateSpecializationKind()) { 943 case TSK_Undeclared: 944 case TSK_ExplicitSpecialization: 945 case TSK_ExplicitInstantiationDefinition: 946 return CodeGenModule::GVA_StrongExternal; 947 948 case TSK_ExplicitInstantiationDeclaration: 949 llvm_unreachable("Variable should not be instantiated"); 950 // Fall through to treat this like any other instantiation. 951 952 case TSK_ImplicitInstantiation: 953 return CodeGenModule::GVA_TemplateInstantiation; 954 } 955 } 956 957 if (VD->getLinkage() == VarDecl::InternalLinkage) 958 return CodeGenModule::GVA_Internal; 959 960 return CodeGenModule::GVA_StrongExternal; 961 } 962 963 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 964 llvm::Constant *Init = 0; 965 QualType ASTTy = D->getType(); 966 bool NonConstInit = false; 967 968 if (D->getInit() == 0) { 969 // This is a tentative definition; tentative definitions are 970 // implicitly initialized with { 0 }. 971 // 972 // Note that tentative definitions are only emitted at the end of 973 // a translation unit, so they should never have incomplete 974 // type. In addition, EmitTentativeDefinition makes sure that we 975 // never attempt to emit a tentative definition if a real one 976 // exists. A use may still exists, however, so we still may need 977 // to do a RAUW. 978 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 979 Init = EmitNullConstant(D->getType()); 980 } else { 981 Init = EmitConstantExpr(D->getInit(), D->getType()); 982 983 if (!Init) { 984 QualType T = D->getInit()->getType(); 985 if (getLangOptions().CPlusPlus) { 986 EmitCXXGlobalVarDeclInitFunc(D); 987 Init = EmitNullConstant(T); 988 NonConstInit = true; 989 } else { 990 ErrorUnsupported(D, "static initializer"); 991 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 992 } 993 } 994 } 995 996 const llvm::Type* InitType = Init->getType(); 997 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 998 999 // Strip off a bitcast if we got one back. 1000 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1001 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1002 // all zero index gep. 1003 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1004 Entry = CE->getOperand(0); 1005 } 1006 1007 // Entry is now either a Function or GlobalVariable. 1008 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1009 1010 // We have a definition after a declaration with the wrong type. 1011 // We must make a new GlobalVariable* and update everything that used OldGV 1012 // (a declaration or tentative definition) with the new GlobalVariable* 1013 // (which will be a definition). 1014 // 1015 // This happens if there is a prototype for a global (e.g. 1016 // "extern int x[];") and then a definition of a different type (e.g. 1017 // "int x[10];"). This also happens when an initializer has a different type 1018 // from the type of the global (this happens with unions). 1019 if (GV == 0 || 1020 GV->getType()->getElementType() != InitType || 1021 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1022 1023 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1024 GlobalDeclMap.erase(getMangledName(D)); 1025 1026 // Make a new global with the correct type, this is now guaranteed to work. 1027 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1028 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1029 1030 // Replace all uses of the old global with the new global 1031 llvm::Constant *NewPtrForOldDecl = 1032 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1033 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1034 1035 // Erase the old global, since it is no longer used. 1036 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1037 } 1038 1039 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1040 SourceManager &SM = Context.getSourceManager(); 1041 AddAnnotation(EmitAnnotateAttr(GV, AA, 1042 SM.getInstantiationLineNumber(D->getLocation()))); 1043 } 1044 1045 GV->setInitializer(Init); 1046 1047 // If it is safe to mark the global 'constant', do so now. 1048 GV->setConstant(false); 1049 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1050 GV->setConstant(true); 1051 1052 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1053 1054 // Set the llvm linkage type as appropriate. 1055 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1056 if (Linkage == GVA_Internal) 1057 GV->setLinkage(llvm::Function::InternalLinkage); 1058 else if (D->hasAttr<DLLImportAttr>()) 1059 GV->setLinkage(llvm::Function::DLLImportLinkage); 1060 else if (D->hasAttr<DLLExportAttr>()) 1061 GV->setLinkage(llvm::Function::DLLExportLinkage); 1062 else if (D->hasAttr<WeakAttr>()) { 1063 if (GV->isConstant()) 1064 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1065 else 1066 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1067 } else if (Linkage == GVA_TemplateInstantiation) 1068 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1069 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1070 !D->hasExternalStorage() && !D->getInit() && 1071 !D->getAttr<SectionAttr>()) { 1072 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1073 // common vars aren't constant even if declared const. 1074 GV->setConstant(false); 1075 } else 1076 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1077 1078 SetCommonAttributes(D, GV); 1079 1080 // Emit global variable debug information. 1081 if (CGDebugInfo *DI = getDebugInfo()) { 1082 DI->setLocation(D->getLocation()); 1083 DI->EmitGlobalVariable(GV, D); 1084 } 1085 } 1086 1087 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1088 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1089 /// existing call uses of the old function in the module, this adjusts them to 1090 /// call the new function directly. 1091 /// 1092 /// This is not just a cleanup: the always_inline pass requires direct calls to 1093 /// functions to be able to inline them. If there is a bitcast in the way, it 1094 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1095 /// run at -O0. 1096 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1097 llvm::Function *NewFn) { 1098 // If we're redefining a global as a function, don't transform it. 1099 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1100 if (OldFn == 0) return; 1101 1102 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1103 llvm::SmallVector<llvm::Value*, 4> ArgList; 1104 1105 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1106 UI != E; ) { 1107 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1108 unsigned OpNo = UI.getOperandNo(); 1109 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1110 if (!CI || OpNo != 0) continue; 1111 1112 // If the return types don't match exactly, and if the call isn't dead, then 1113 // we can't transform this call. 1114 if (CI->getType() != NewRetTy && !CI->use_empty()) 1115 continue; 1116 1117 // If the function was passed too few arguments, don't transform. If extra 1118 // arguments were passed, we silently drop them. If any of the types 1119 // mismatch, we don't transform. 1120 unsigned ArgNo = 0; 1121 bool DontTransform = false; 1122 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1123 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1124 if (CI->getNumOperands()-1 == ArgNo || 1125 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1126 DontTransform = true; 1127 break; 1128 } 1129 } 1130 if (DontTransform) 1131 continue; 1132 1133 // Okay, we can transform this. Create the new call instruction and copy 1134 // over the required information. 1135 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1136 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1137 ArgList.end(), "", CI); 1138 ArgList.clear(); 1139 if (!NewCall->getType()->isVoidTy()) 1140 NewCall->takeName(CI); 1141 NewCall->setAttributes(CI->getAttributes()); 1142 NewCall->setCallingConv(CI->getCallingConv()); 1143 1144 // Finally, remove the old call, replacing any uses with the new one. 1145 if (!CI->use_empty()) 1146 CI->replaceAllUsesWith(NewCall); 1147 1148 // Copy any custom metadata attached with CI. 1149 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1150 NewCall->setMetadata("dbg", DbgNode); 1151 CI->eraseFromParent(); 1152 } 1153 } 1154 1155 1156 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1157 const llvm::FunctionType *Ty; 1158 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1159 1160 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1161 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1162 1163 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1164 } else { 1165 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1166 1167 // As a special case, make sure that definitions of K&R function 1168 // "type foo()" aren't declared as varargs (which forces the backend 1169 // to do unnecessary work). 1170 if (D->getType()->isFunctionNoProtoType()) { 1171 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1172 // Due to stret, the lowered function could have arguments. 1173 // Just create the same type as was lowered by ConvertType 1174 // but strip off the varargs bit. 1175 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1176 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1177 } 1178 } 1179 1180 // Get or create the prototype for the function. 1181 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1182 1183 // Strip off a bitcast if we got one back. 1184 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1185 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1186 Entry = CE->getOperand(0); 1187 } 1188 1189 1190 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1191 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1192 1193 // If the types mismatch then we have to rewrite the definition. 1194 assert(OldFn->isDeclaration() && 1195 "Shouldn't replace non-declaration"); 1196 1197 // F is the Function* for the one with the wrong type, we must make a new 1198 // Function* and update everything that used F (a declaration) with the new 1199 // Function* (which will be a definition). 1200 // 1201 // This happens if there is a prototype for a function 1202 // (e.g. "int f()") and then a definition of a different type 1203 // (e.g. "int f(int x)"). Start by making a new function of the 1204 // correct type, RAUW, then steal the name. 1205 GlobalDeclMap.erase(getMangledName(D)); 1206 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1207 NewFn->takeName(OldFn); 1208 1209 // If this is an implementation of a function without a prototype, try to 1210 // replace any existing uses of the function (which may be calls) with uses 1211 // of the new function 1212 if (D->getType()->isFunctionNoProtoType()) { 1213 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1214 OldFn->removeDeadConstantUsers(); 1215 } 1216 1217 // Replace uses of F with the Function we will endow with a body. 1218 if (!Entry->use_empty()) { 1219 llvm::Constant *NewPtrForOldDecl = 1220 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1221 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1222 } 1223 1224 // Ok, delete the old function now, which is dead. 1225 OldFn->eraseFromParent(); 1226 1227 Entry = NewFn; 1228 } 1229 1230 llvm::Function *Fn = cast<llvm::Function>(Entry); 1231 1232 CodeGenFunction(*this).GenerateCode(D, Fn); 1233 1234 SetFunctionDefinitionAttributes(D, Fn); 1235 SetLLVMFunctionAttributesForDefinition(D, Fn); 1236 1237 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1238 AddGlobalCtor(Fn, CA->getPriority()); 1239 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1240 AddGlobalDtor(Fn, DA->getPriority()); 1241 } 1242 1243 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1244 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1245 assert(AA && "Not an alias?"); 1246 1247 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1248 1249 // Unique the name through the identifier table. 1250 const char *AliaseeName = AA->getAliasee().c_str(); 1251 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1252 1253 // Create a reference to the named value. This ensures that it is emitted 1254 // if a deferred decl. 1255 llvm::Constant *Aliasee; 1256 if (isa<llvm::FunctionType>(DeclTy)) 1257 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1258 else 1259 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1260 llvm::PointerType::getUnqual(DeclTy), 0); 1261 1262 // Create the new alias itself, but don't set a name yet. 1263 llvm::GlobalValue *GA = 1264 new llvm::GlobalAlias(Aliasee->getType(), 1265 llvm::Function::ExternalLinkage, 1266 "", Aliasee, &getModule()); 1267 1268 // See if there is already something with the alias' name in the module. 1269 const char *MangledName = getMangledName(D); 1270 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1271 1272 if (Entry && !Entry->isDeclaration()) { 1273 // If there is a definition in the module, then it wins over the alias. 1274 // This is dubious, but allow it to be safe. Just ignore the alias. 1275 GA->eraseFromParent(); 1276 return; 1277 } 1278 1279 if (Entry) { 1280 // If there is a declaration in the module, then we had an extern followed 1281 // by the alias, as in: 1282 // extern int test6(); 1283 // ... 1284 // int test6() __attribute__((alias("test7"))); 1285 // 1286 // Remove it and replace uses of it with the alias. 1287 1288 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1289 Entry->getType())); 1290 Entry->eraseFromParent(); 1291 } 1292 1293 // Now we know that there is no conflict, set the name. 1294 Entry = GA; 1295 GA->setName(MangledName); 1296 1297 // Set attributes which are particular to an alias; this is a 1298 // specialization of the attributes which may be set on a global 1299 // variable/function. 1300 if (D->hasAttr<DLLExportAttr>()) { 1301 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1302 // The dllexport attribute is ignored for undefined symbols. 1303 if (FD->getBody()) 1304 GA->setLinkage(llvm::Function::DLLExportLinkage); 1305 } else { 1306 GA->setLinkage(llvm::Function::DLLExportLinkage); 1307 } 1308 } else if (D->hasAttr<WeakAttr>() || 1309 D->hasAttr<WeakImportAttr>()) { 1310 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1311 } 1312 1313 SetCommonAttributes(D, GA); 1314 } 1315 1316 /// getBuiltinLibFunction - Given a builtin id for a function like 1317 /// "__builtin_fabsf", return a Function* for "fabsf". 1318 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1319 unsigned BuiltinID) { 1320 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1321 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1322 "isn't a lib fn"); 1323 1324 // Get the name, skip over the __builtin_ prefix (if necessary). 1325 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1326 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1327 Name += 10; 1328 1329 const llvm::FunctionType *Ty = 1330 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1331 1332 // Unique the name through the identifier table. 1333 Name = getContext().Idents.get(Name).getNameStart(); 1334 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1335 } 1336 1337 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1338 unsigned NumTys) { 1339 return llvm::Intrinsic::getDeclaration(&getModule(), 1340 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1341 } 1342 1343 llvm::Function *CodeGenModule::getMemCpyFn() { 1344 if (MemCpyFn) return MemCpyFn; 1345 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1346 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1347 } 1348 1349 llvm::Function *CodeGenModule::getMemMoveFn() { 1350 if (MemMoveFn) return MemMoveFn; 1351 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1352 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1353 } 1354 1355 llvm::Function *CodeGenModule::getMemSetFn() { 1356 if (MemSetFn) return MemSetFn; 1357 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1358 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1359 } 1360 1361 static llvm::StringMapEntry<llvm::Constant*> & 1362 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1363 const StringLiteral *Literal, 1364 bool TargetIsLSB, 1365 bool &IsUTF16, 1366 unsigned &StringLength) { 1367 unsigned NumBytes = Literal->getByteLength(); 1368 1369 // Check for simple case. 1370 if (!Literal->containsNonAsciiOrNull()) { 1371 StringLength = NumBytes; 1372 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1373 StringLength)); 1374 } 1375 1376 // Otherwise, convert the UTF8 literals into a byte string. 1377 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1378 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1379 UTF16 *ToPtr = &ToBuf[0]; 1380 1381 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1382 &ToPtr, ToPtr + NumBytes, 1383 strictConversion); 1384 1385 // Check for conversion failure. 1386 if (Result != conversionOK) { 1387 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1388 // this duplicate code. 1389 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1390 StringLength = NumBytes; 1391 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1392 StringLength)); 1393 } 1394 1395 // ConvertUTF8toUTF16 returns the length in ToPtr. 1396 StringLength = ToPtr - &ToBuf[0]; 1397 1398 // Render the UTF-16 string into a byte array and convert to the target byte 1399 // order. 1400 // 1401 // FIXME: This isn't something we should need to do here. 1402 llvm::SmallString<128> AsBytes; 1403 AsBytes.reserve(StringLength * 2); 1404 for (unsigned i = 0; i != StringLength; ++i) { 1405 unsigned short Val = ToBuf[i]; 1406 if (TargetIsLSB) { 1407 AsBytes.push_back(Val & 0xFF); 1408 AsBytes.push_back(Val >> 8); 1409 } else { 1410 AsBytes.push_back(Val >> 8); 1411 AsBytes.push_back(Val & 0xFF); 1412 } 1413 } 1414 // Append one extra null character, the second is automatically added by our 1415 // caller. 1416 AsBytes.push_back(0); 1417 1418 IsUTF16 = true; 1419 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1420 } 1421 1422 llvm::Constant * 1423 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1424 unsigned StringLength = 0; 1425 bool isUTF16 = false; 1426 llvm::StringMapEntry<llvm::Constant*> &Entry = 1427 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1428 getTargetData().isLittleEndian(), 1429 isUTF16, StringLength); 1430 1431 if (llvm::Constant *C = Entry.getValue()) 1432 return C; 1433 1434 llvm::Constant *Zero = 1435 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1436 llvm::Constant *Zeros[] = { Zero, Zero }; 1437 1438 // If we don't already have it, get __CFConstantStringClassReference. 1439 if (!CFConstantStringClassRef) { 1440 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1441 Ty = llvm::ArrayType::get(Ty, 0); 1442 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1443 "__CFConstantStringClassReference"); 1444 // Decay array -> ptr 1445 CFConstantStringClassRef = 1446 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1447 } 1448 1449 QualType CFTy = getContext().getCFConstantStringType(); 1450 1451 const llvm::StructType *STy = 1452 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1453 1454 std::vector<llvm::Constant*> Fields(4); 1455 1456 // Class pointer. 1457 Fields[0] = CFConstantStringClassRef; 1458 1459 // Flags. 1460 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1461 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1462 llvm::ConstantInt::get(Ty, 0x07C8); 1463 1464 // String pointer. 1465 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1466 1467 const char *Sect = 0; 1468 llvm::GlobalValue::LinkageTypes Linkage; 1469 bool isConstant; 1470 if (isUTF16) { 1471 Sect = getContext().Target.getUnicodeStringSection(); 1472 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1473 Linkage = llvm::GlobalValue::InternalLinkage; 1474 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1475 // does make plain ascii ones writable. 1476 isConstant = true; 1477 } else { 1478 Linkage = llvm::GlobalValue::PrivateLinkage; 1479 isConstant = !Features.WritableStrings; 1480 } 1481 1482 llvm::GlobalVariable *GV = 1483 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1484 ".str"); 1485 if (Sect) 1486 GV->setSection(Sect); 1487 if (isUTF16) { 1488 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1489 GV->setAlignment(Align); 1490 } 1491 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1492 1493 // String length. 1494 Ty = getTypes().ConvertType(getContext().LongTy); 1495 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1496 1497 // The struct. 1498 C = llvm::ConstantStruct::get(STy, Fields); 1499 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1500 llvm::GlobalVariable::PrivateLinkage, C, 1501 "_unnamed_cfstring_"); 1502 if (const char *Sect = getContext().Target.getCFStringSection()) 1503 GV->setSection(Sect); 1504 Entry.setValue(GV); 1505 1506 return GV; 1507 } 1508 1509 /// GetStringForStringLiteral - Return the appropriate bytes for a 1510 /// string literal, properly padded to match the literal type. 1511 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1512 const char *StrData = E->getStrData(); 1513 unsigned Len = E->getByteLength(); 1514 1515 const ConstantArrayType *CAT = 1516 getContext().getAsConstantArrayType(E->getType()); 1517 assert(CAT && "String isn't pointer or array!"); 1518 1519 // Resize the string to the right size. 1520 std::string Str(StrData, StrData+Len); 1521 uint64_t RealLen = CAT->getSize().getZExtValue(); 1522 1523 if (E->isWide()) 1524 RealLen *= getContext().Target.getWCharWidth()/8; 1525 1526 Str.resize(RealLen, '\0'); 1527 1528 return Str; 1529 } 1530 1531 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1532 /// constant array for the given string literal. 1533 llvm::Constant * 1534 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1535 // FIXME: This can be more efficient. 1536 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1537 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1538 if (S->isWide()) { 1539 llvm::Type *DestTy = 1540 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1541 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1542 } 1543 return C; 1544 } 1545 1546 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1547 /// array for the given ObjCEncodeExpr node. 1548 llvm::Constant * 1549 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1550 std::string Str; 1551 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1552 1553 return GetAddrOfConstantCString(Str); 1554 } 1555 1556 1557 /// GenerateWritableString -- Creates storage for a string literal. 1558 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1559 bool constant, 1560 CodeGenModule &CGM, 1561 const char *GlobalName) { 1562 // Create Constant for this string literal. Don't add a '\0'. 1563 llvm::Constant *C = 1564 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1565 1566 // Create a global variable for this string 1567 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1568 llvm::GlobalValue::PrivateLinkage, 1569 C, GlobalName); 1570 } 1571 1572 /// GetAddrOfConstantString - Returns a pointer to a character array 1573 /// containing the literal. This contents are exactly that of the 1574 /// given string, i.e. it will not be null terminated automatically; 1575 /// see GetAddrOfConstantCString. Note that whether the result is 1576 /// actually a pointer to an LLVM constant depends on 1577 /// Feature.WriteableStrings. 1578 /// 1579 /// The result has pointer to array type. 1580 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1581 const char *GlobalName) { 1582 bool IsConstant = !Features.WritableStrings; 1583 1584 // Get the default prefix if a name wasn't specified. 1585 if (!GlobalName) 1586 GlobalName = ".str"; 1587 1588 // Don't share any string literals if strings aren't constant. 1589 if (!IsConstant) 1590 return GenerateStringLiteral(str, false, *this, GlobalName); 1591 1592 llvm::StringMapEntry<llvm::Constant *> &Entry = 1593 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1594 1595 if (Entry.getValue()) 1596 return Entry.getValue(); 1597 1598 // Create a global variable for this. 1599 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1600 Entry.setValue(C); 1601 return C; 1602 } 1603 1604 /// GetAddrOfConstantCString - Returns a pointer to a character 1605 /// array containing the literal and a terminating '\-' 1606 /// character. The result has pointer to array type. 1607 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1608 const char *GlobalName){ 1609 return GetAddrOfConstantString(str + '\0', GlobalName); 1610 } 1611 1612 /// EmitObjCPropertyImplementations - Emit information for synthesized 1613 /// properties for an implementation. 1614 void CodeGenModule::EmitObjCPropertyImplementations(const 1615 ObjCImplementationDecl *D) { 1616 for (ObjCImplementationDecl::propimpl_iterator 1617 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1618 ObjCPropertyImplDecl *PID = *i; 1619 1620 // Dynamic is just for type-checking. 1621 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1622 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1623 1624 // Determine which methods need to be implemented, some may have 1625 // been overridden. Note that ::isSynthesized is not the method 1626 // we want, that just indicates if the decl came from a 1627 // property. What we want to know is if the method is defined in 1628 // this implementation. 1629 if (!D->getInstanceMethod(PD->getGetterName())) 1630 CodeGenFunction(*this).GenerateObjCGetter( 1631 const_cast<ObjCImplementationDecl *>(D), PID); 1632 if (!PD->isReadOnly() && 1633 !D->getInstanceMethod(PD->getSetterName())) 1634 CodeGenFunction(*this).GenerateObjCSetter( 1635 const_cast<ObjCImplementationDecl *>(D), PID); 1636 } 1637 } 1638 } 1639 1640 /// EmitNamespace - Emit all declarations in a namespace. 1641 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1642 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1643 I != E; ++I) 1644 EmitTopLevelDecl(*I); 1645 } 1646 1647 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1648 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1649 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1650 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1651 ErrorUnsupported(LSD, "linkage spec"); 1652 return; 1653 } 1654 1655 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1656 I != E; ++I) 1657 EmitTopLevelDecl(*I); 1658 } 1659 1660 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1661 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1662 // If an error has occurred, stop code generation, but continue 1663 // parsing and semantic analysis (to ensure all warnings and errors 1664 // are emitted). 1665 if (Diags.hasErrorOccurred()) 1666 return; 1667 1668 // Ignore dependent declarations. 1669 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1670 return; 1671 1672 switch (D->getKind()) { 1673 case Decl::CXXConversion: 1674 case Decl::CXXMethod: 1675 case Decl::Function: 1676 // Skip function templates 1677 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1678 return; 1679 1680 EmitGlobal(cast<FunctionDecl>(D)); 1681 break; 1682 1683 case Decl::Var: 1684 EmitGlobal(cast<VarDecl>(D)); 1685 break; 1686 1687 // C++ Decls 1688 case Decl::Namespace: 1689 EmitNamespace(cast<NamespaceDecl>(D)); 1690 break; 1691 // No code generation needed. 1692 case Decl::UsingShadow: 1693 case Decl::Using: 1694 case Decl::UsingDirective: 1695 case Decl::ClassTemplate: 1696 case Decl::FunctionTemplate: 1697 case Decl::NamespaceAlias: 1698 break; 1699 case Decl::CXXConstructor: 1700 // Skip function templates 1701 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1702 return; 1703 1704 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1705 break; 1706 case Decl::CXXDestructor: 1707 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1708 break; 1709 1710 case Decl::StaticAssert: 1711 // Nothing to do. 1712 break; 1713 1714 // Objective-C Decls 1715 1716 // Forward declarations, no (immediate) code generation. 1717 case Decl::ObjCClass: 1718 case Decl::ObjCForwardProtocol: 1719 case Decl::ObjCCategory: 1720 case Decl::ObjCInterface: 1721 break; 1722 1723 case Decl::ObjCProtocol: 1724 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1725 break; 1726 1727 case Decl::ObjCCategoryImpl: 1728 // Categories have properties but don't support synthesize so we 1729 // can ignore them here. 1730 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1731 break; 1732 1733 case Decl::ObjCImplementation: { 1734 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1735 EmitObjCPropertyImplementations(OMD); 1736 Runtime->GenerateClass(OMD); 1737 break; 1738 } 1739 case Decl::ObjCMethod: { 1740 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1741 // If this is not a prototype, emit the body. 1742 if (OMD->getBody()) 1743 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1744 break; 1745 } 1746 case Decl::ObjCCompatibleAlias: 1747 // compatibility-alias is a directive and has no code gen. 1748 break; 1749 1750 case Decl::LinkageSpec: 1751 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1752 break; 1753 1754 case Decl::FileScopeAsm: { 1755 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1756 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1757 1758 const std::string &S = getModule().getModuleInlineAsm(); 1759 if (S.empty()) 1760 getModule().setModuleInlineAsm(AsmString); 1761 else 1762 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1763 break; 1764 } 1765 1766 default: 1767 // Make sure we handled everything we should, every other kind is a 1768 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1769 // function. Need to recode Decl::Kind to do that easily. 1770 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1771 } 1772 } 1773