1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/APSInt.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext())); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 134 DebugInfo.reset(new CGDebugInfo(*this)); 135 136 Block.GlobalUniqueCount = 0; 137 138 if (C.getLangOpts().ObjC1) 139 ObjCData.reset(new ObjCEntrypoints()); 140 141 if (CodeGenOpts.hasProfileClangUse()) { 142 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.ProfileInstrumentUsePath); 144 if (auto E = ReaderOrErr.takeError()) { 145 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 146 "Could not read profile %0: %1"); 147 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 148 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 149 << EI.message(); 150 }); 151 } else 152 PGOReader = std::move(ReaderOrErr.get()); 153 } 154 155 // If coverage mapping generation is enabled, create the 156 // CoverageMappingModuleGen object. 157 if (CodeGenOpts.CoverageMapping) 158 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 159 } 160 161 CodeGenModule::~CodeGenModule() {} 162 163 void CodeGenModule::createObjCRuntime() { 164 // This is just isGNUFamily(), but we want to force implementors of 165 // new ABIs to decide how best to do this. 166 switch (LangOpts.ObjCRuntime.getKind()) { 167 case ObjCRuntime::GNUstep: 168 case ObjCRuntime::GCC: 169 case ObjCRuntime::ObjFW: 170 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 171 return; 172 173 case ObjCRuntime::FragileMacOSX: 174 case ObjCRuntime::MacOSX: 175 case ObjCRuntime::iOS: 176 case ObjCRuntime::WatchOS: 177 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 178 return; 179 } 180 llvm_unreachable("bad runtime kind"); 181 } 182 183 void CodeGenModule::createOpenCLRuntime() { 184 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 185 } 186 187 void CodeGenModule::createOpenMPRuntime() { 188 // Select a specialized code generation class based on the target, if any. 189 // If it does not exist use the default implementation. 190 switch (getTarget().getTriple().getArch()) { 191 192 case llvm::Triple::nvptx: 193 case llvm::Triple::nvptx64: 194 assert(getLangOpts().OpenMPIsDevice && 195 "OpenMP NVPTX is only prepared to deal with device code."); 196 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 197 break; 198 default: 199 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 200 break; 201 } 202 } 203 204 void CodeGenModule::createCUDARuntime() { 205 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 206 } 207 208 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 209 Replacements[Name] = C; 210 } 211 212 void CodeGenModule::applyReplacements() { 213 for (auto &I : Replacements) { 214 StringRef MangledName = I.first(); 215 llvm::Constant *Replacement = I.second; 216 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 217 if (!Entry) 218 continue; 219 auto *OldF = cast<llvm::Function>(Entry); 220 auto *NewF = dyn_cast<llvm::Function>(Replacement); 221 if (!NewF) { 222 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 223 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 224 } else { 225 auto *CE = cast<llvm::ConstantExpr>(Replacement); 226 assert(CE->getOpcode() == llvm::Instruction::BitCast || 227 CE->getOpcode() == llvm::Instruction::GetElementPtr); 228 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 229 } 230 } 231 232 // Replace old with new, but keep the old order. 233 OldF->replaceAllUsesWith(Replacement); 234 if (NewF) { 235 NewF->removeFromParent(); 236 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 237 NewF); 238 } 239 OldF->eraseFromParent(); 240 } 241 } 242 243 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 244 GlobalValReplacements.push_back(std::make_pair(GV, C)); 245 } 246 247 void CodeGenModule::applyGlobalValReplacements() { 248 for (auto &I : GlobalValReplacements) { 249 llvm::GlobalValue *GV = I.first; 250 llvm::Constant *C = I.second; 251 252 GV->replaceAllUsesWith(C); 253 GV->eraseFromParent(); 254 } 255 } 256 257 // This is only used in aliases that we created and we know they have a 258 // linear structure. 259 static const llvm::GlobalObject *getAliasedGlobal( 260 const llvm::GlobalIndirectSymbol &GIS) { 261 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 262 const llvm::Constant *C = &GIS; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 269 if (!GIS2) 270 return nullptr; 271 if (!Visited.insert(GIS2).second) 272 return nullptr; 273 C = GIS2->getIndirectSymbol(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 SourceLocation Location; 286 bool IsIFunc = D->hasAttr<IFuncAttr>(); 287 if (const Attr *A = D->getDefiningAttr()) 288 Location = A->getLocation(); 289 else 290 llvm_unreachable("Not an alias or ifunc?"); 291 StringRef MangledName = getMangledName(GD); 292 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 293 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 294 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 295 if (!GV) { 296 Error = true; 297 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 298 } else if (GV->isDeclaration()) { 299 Error = true; 300 Diags.Report(Location, diag::err_alias_to_undefined) 301 << IsIFunc << IsIFunc; 302 } else if (IsIFunc) { 303 // Check resolver function type. 304 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 305 GV->getType()->getPointerElementType()); 306 assert(FTy); 307 if (!FTy->getReturnType()->isPointerTy()) 308 Diags.Report(Location, diag::err_ifunc_resolver_return); 309 if (FTy->getNumParams()) 310 Diags.Report(Location, diag::err_ifunc_resolver_params); 311 } 312 313 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 314 llvm::GlobalValue *AliaseeGV; 315 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 316 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 317 else 318 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 319 320 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 321 StringRef AliasSection = SA->getName(); 322 if (AliasSection != AliaseeGV->getSection()) 323 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 324 << AliasSection << IsIFunc << IsIFunc; 325 } 326 327 // We have to handle alias to weak aliases in here. LLVM itself disallows 328 // this since the object semantics would not match the IL one. For 329 // compatibility with gcc we implement it by just pointing the alias 330 // to its aliasee's aliasee. We also warn, since the user is probably 331 // expecting the link to be weak. 332 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 333 if (GA->isInterposable()) { 334 Diags.Report(Location, diag::warn_alias_to_weak_alias) 335 << GV->getName() << GA->getName() << IsIFunc; 336 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 337 GA->getIndirectSymbol(), Alias->getType()); 338 Alias->setIndirectSymbol(Aliasee); 339 } 340 } 341 } 342 if (!Error) 343 return; 344 345 for (const GlobalDecl &GD : Aliases) { 346 StringRef MangledName = getMangledName(GD); 347 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 348 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 349 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 350 Alias->eraseFromParent(); 351 } 352 } 353 354 void CodeGenModule::clear() { 355 DeferredDeclsToEmit.clear(); 356 if (OpenMPRuntime) 357 OpenMPRuntime->clear(); 358 } 359 360 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 361 StringRef MainFile) { 362 if (!hasDiagnostics()) 363 return; 364 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 365 if (MainFile.empty()) 366 MainFile = "<stdin>"; 367 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 368 } else 369 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 370 << Mismatched; 371 } 372 373 void CodeGenModule::Release() { 374 EmitDeferred(); 375 applyGlobalValReplacements(); 376 applyReplacements(); 377 checkAliases(); 378 EmitCXXGlobalInitFunc(); 379 EmitCXXGlobalDtorFunc(); 380 EmitCXXThreadLocalInitFunc(); 381 if (ObjCRuntime) 382 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 383 AddGlobalCtor(ObjCInitFunction); 384 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 385 CUDARuntime) { 386 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 387 AddGlobalCtor(CudaCtorFunction); 388 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 389 AddGlobalDtor(CudaDtorFunction); 390 } 391 if (OpenMPRuntime) 392 if (llvm::Function *OpenMPRegistrationFunction = 393 OpenMPRuntime->emitRegistrationFunction()) 394 AddGlobalCtor(OpenMPRegistrationFunction, 0); 395 if (PGOReader) { 396 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 397 if (PGOStats.hasDiagnostics()) 398 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 399 } 400 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 401 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 402 EmitGlobalAnnotations(); 403 EmitStaticExternCAliases(); 404 EmitDeferredUnusedCoverageMappings(); 405 if (CoverageMapping) 406 CoverageMapping->emit(); 407 if (CodeGenOpts.SanitizeCfiCrossDso) 408 CodeGenFunction(*this).EmitCfiCheckFail(); 409 emitLLVMUsed(); 410 if (SanStats) 411 SanStats->finish(); 412 413 if (CodeGenOpts.Autolink && 414 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 415 EmitModuleLinkOptions(); 416 } 417 if (CodeGenOpts.DwarfVersion) { 418 // We actually want the latest version when there are conflicts. 419 // We can change from Warning to Latest if such mode is supported. 420 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 421 CodeGenOpts.DwarfVersion); 422 } 423 if (CodeGenOpts.EmitCodeView) { 424 // Indicate that we want CodeView in the metadata. 425 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 426 } 427 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 428 // We don't support LTO with 2 with different StrictVTablePointers 429 // FIXME: we could support it by stripping all the information introduced 430 // by StrictVTablePointers. 431 432 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 433 434 llvm::Metadata *Ops[2] = { 435 llvm::MDString::get(VMContext, "StrictVTablePointers"), 436 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 437 llvm::Type::getInt32Ty(VMContext), 1))}; 438 439 getModule().addModuleFlag(llvm::Module::Require, 440 "StrictVTablePointersRequirement", 441 llvm::MDNode::get(VMContext, Ops)); 442 } 443 if (DebugInfo) 444 // We support a single version in the linked module. The LLVM 445 // parser will drop debug info with a different version number 446 // (and warn about it, too). 447 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 448 llvm::DEBUG_METADATA_VERSION); 449 450 // We need to record the widths of enums and wchar_t, so that we can generate 451 // the correct build attributes in the ARM backend. 452 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 453 if ( Arch == llvm::Triple::arm 454 || Arch == llvm::Triple::armeb 455 || Arch == llvm::Triple::thumb 456 || Arch == llvm::Triple::thumbeb) { 457 // Width of wchar_t in bytes 458 uint64_t WCharWidth = 459 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 460 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 461 462 // The minimum width of an enum in bytes 463 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 464 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 465 } 466 467 if (CodeGenOpts.SanitizeCfiCrossDso) { 468 // Indicate that we want cross-DSO control flow integrity checks. 469 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 470 } 471 472 if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) { 473 // Indicate whether __nvvm_reflect should be configured to flush denormal 474 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 475 // property.) 476 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 477 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 478 } 479 480 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 481 assert(PLevel < 3 && "Invalid PIC Level"); 482 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 483 if (Context.getLangOpts().PIE) 484 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 485 } 486 487 SimplifyPersonality(); 488 489 if (getCodeGenOpts().EmitDeclMetadata) 490 EmitDeclMetadata(); 491 492 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 493 EmitCoverageFile(); 494 495 if (DebugInfo) 496 DebugInfo->finalize(); 497 498 EmitVersionIdentMetadata(); 499 500 EmitTargetMetadata(); 501 } 502 503 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 504 // Make sure that this type is translated. 505 Types.UpdateCompletedType(TD); 506 } 507 508 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 509 // Make sure that this type is translated. 510 Types.RefreshTypeCacheForClass(RD); 511 } 512 513 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 514 if (!TBAA) 515 return nullptr; 516 return TBAA->getTBAAInfo(QTy); 517 } 518 519 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 520 if (!TBAA) 521 return nullptr; 522 return TBAA->getTBAAInfoForVTablePtr(); 523 } 524 525 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 526 if (!TBAA) 527 return nullptr; 528 return TBAA->getTBAAStructInfo(QTy); 529 } 530 531 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 532 llvm::MDNode *AccessN, 533 uint64_t O) { 534 if (!TBAA) 535 return nullptr; 536 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 537 } 538 539 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 540 /// and struct-path aware TBAA, the tag has the same format: 541 /// base type, access type and offset. 542 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 543 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 544 llvm::MDNode *TBAAInfo, 545 bool ConvertTypeToTag) { 546 if (ConvertTypeToTag && TBAA) 547 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 548 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 549 else 550 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 551 } 552 553 void CodeGenModule::DecorateInstructionWithInvariantGroup( 554 llvm::Instruction *I, const CXXRecordDecl *RD) { 555 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 556 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 557 // Check if we have to wrap MDString in MDNode. 558 if (!MetaDataNode) 559 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 560 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 561 } 562 563 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 564 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 565 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 566 } 567 568 /// ErrorUnsupported - Print out an error that codegen doesn't support the 569 /// specified stmt yet. 570 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 571 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 572 "cannot compile this %0 yet"); 573 std::string Msg = Type; 574 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 575 << Msg << S->getSourceRange(); 576 } 577 578 /// ErrorUnsupported - Print out an error that codegen doesn't support the 579 /// specified decl yet. 580 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 581 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 582 "cannot compile this %0 yet"); 583 std::string Msg = Type; 584 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 585 } 586 587 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 588 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 589 } 590 591 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 592 const NamedDecl *D) const { 593 // Internal definitions always have default visibility. 594 if (GV->hasLocalLinkage()) { 595 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 596 return; 597 } 598 599 // Set visibility for definitions. 600 LinkageInfo LV = D->getLinkageAndVisibility(); 601 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 602 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 603 } 604 605 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 606 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 607 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 608 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 609 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 610 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 611 } 612 613 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 614 CodeGenOptions::TLSModel M) { 615 switch (M) { 616 case CodeGenOptions::GeneralDynamicTLSModel: 617 return llvm::GlobalVariable::GeneralDynamicTLSModel; 618 case CodeGenOptions::LocalDynamicTLSModel: 619 return llvm::GlobalVariable::LocalDynamicTLSModel; 620 case CodeGenOptions::InitialExecTLSModel: 621 return llvm::GlobalVariable::InitialExecTLSModel; 622 case CodeGenOptions::LocalExecTLSModel: 623 return llvm::GlobalVariable::LocalExecTLSModel; 624 } 625 llvm_unreachable("Invalid TLS model!"); 626 } 627 628 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 629 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 630 631 llvm::GlobalValue::ThreadLocalMode TLM; 632 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 633 634 // Override the TLS model if it is explicitly specified. 635 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 636 TLM = GetLLVMTLSModel(Attr->getModel()); 637 } 638 639 GV->setThreadLocalMode(TLM); 640 } 641 642 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 643 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 644 645 // Some ABIs don't have constructor variants. Make sure that base and 646 // complete constructors get mangled the same. 647 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 648 if (!getTarget().getCXXABI().hasConstructorVariants()) { 649 CXXCtorType OrigCtorType = GD.getCtorType(); 650 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 651 if (OrigCtorType == Ctor_Base) 652 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 653 } 654 } 655 656 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 657 if (!FoundStr.empty()) 658 return FoundStr; 659 660 const auto *ND = cast<NamedDecl>(GD.getDecl()); 661 SmallString<256> Buffer; 662 StringRef Str; 663 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 664 llvm::raw_svector_ostream Out(Buffer); 665 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 666 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 667 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 668 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 669 else 670 getCXXABI().getMangleContext().mangleName(ND, Out); 671 Str = Out.str(); 672 } else { 673 IdentifierInfo *II = ND->getIdentifier(); 674 assert(II && "Attempt to mangle unnamed decl."); 675 Str = II->getName(); 676 } 677 678 // Keep the first result in the case of a mangling collision. 679 auto Result = Manglings.insert(std::make_pair(Str, GD)); 680 return FoundStr = Result.first->first(); 681 } 682 683 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 684 const BlockDecl *BD) { 685 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 686 const Decl *D = GD.getDecl(); 687 688 SmallString<256> Buffer; 689 llvm::raw_svector_ostream Out(Buffer); 690 if (!D) 691 MangleCtx.mangleGlobalBlock(BD, 692 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 693 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 694 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 695 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 696 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 697 else 698 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 699 700 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 701 return Result.first->first(); 702 } 703 704 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 705 return getModule().getNamedValue(Name); 706 } 707 708 /// AddGlobalCtor - Add a function to the list that will be called before 709 /// main() runs. 710 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 711 llvm::Constant *AssociatedData) { 712 // FIXME: Type coercion of void()* types. 713 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 714 } 715 716 /// AddGlobalDtor - Add a function to the list that will be called 717 /// when the module is unloaded. 718 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 719 // FIXME: Type coercion of void()* types. 720 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 721 } 722 723 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 724 // Ctor function type is void()*. 725 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 726 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 727 728 // Get the type of a ctor entry, { i32, void ()*, i8* }. 729 llvm::StructType *CtorStructTy = llvm::StructType::get( 730 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 731 732 // Construct the constructor and destructor arrays. 733 SmallVector<llvm::Constant *, 8> Ctors; 734 for (const auto &I : Fns) { 735 llvm::Constant *S[] = { 736 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 737 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 738 (I.AssociatedData 739 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 740 : llvm::Constant::getNullValue(VoidPtrTy))}; 741 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 742 } 743 744 if (!Ctors.empty()) { 745 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 746 new llvm::GlobalVariable(TheModule, AT, false, 747 llvm::GlobalValue::AppendingLinkage, 748 llvm::ConstantArray::get(AT, Ctors), 749 GlobalName); 750 } 751 } 752 753 llvm::GlobalValue::LinkageTypes 754 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 755 const auto *D = cast<FunctionDecl>(GD.getDecl()); 756 757 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 758 759 if (isa<CXXDestructorDecl>(D) && 760 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 761 GD.getDtorType())) { 762 // Destructor variants in the Microsoft C++ ABI are always internal or 763 // linkonce_odr thunks emitted on an as-needed basis. 764 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 765 : llvm::GlobalValue::LinkOnceODRLinkage; 766 } 767 768 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 769 } 770 771 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 772 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 773 774 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 775 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 776 // Don't dllexport/import destructor thunks. 777 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 778 return; 779 } 780 } 781 782 if (FD->hasAttr<DLLImportAttr>()) 783 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 784 else if (FD->hasAttr<DLLExportAttr>()) 785 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 786 else 787 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 788 } 789 790 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 791 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 792 if (!MDS) return nullptr; 793 794 llvm::MD5 md5; 795 llvm::MD5::MD5Result result; 796 md5.update(MDS->getString()); 797 md5.final(result); 798 uint64_t id = 0; 799 for (int i = 0; i < 8; ++i) 800 id |= static_cast<uint64_t>(result[i]) << (i * 8); 801 return llvm::ConstantInt::get(Int64Ty, id); 802 } 803 804 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 805 llvm::Function *F) { 806 setNonAliasAttributes(D, F); 807 } 808 809 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 810 const CGFunctionInfo &Info, 811 llvm::Function *F) { 812 unsigned CallingConv; 813 AttributeListType AttributeList; 814 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 815 false); 816 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 817 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 818 } 819 820 /// Determines whether the language options require us to model 821 /// unwind exceptions. We treat -fexceptions as mandating this 822 /// except under the fragile ObjC ABI with only ObjC exceptions 823 /// enabled. This means, for example, that C with -fexceptions 824 /// enables this. 825 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 826 // If exceptions are completely disabled, obviously this is false. 827 if (!LangOpts.Exceptions) return false; 828 829 // If C++ exceptions are enabled, this is true. 830 if (LangOpts.CXXExceptions) return true; 831 832 // If ObjC exceptions are enabled, this depends on the ABI. 833 if (LangOpts.ObjCExceptions) { 834 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 835 } 836 837 return true; 838 } 839 840 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 841 llvm::Function *F) { 842 llvm::AttrBuilder B; 843 844 if (CodeGenOpts.UnwindTables) 845 B.addAttribute(llvm::Attribute::UWTable); 846 847 if (!hasUnwindExceptions(LangOpts)) 848 B.addAttribute(llvm::Attribute::NoUnwind); 849 850 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 851 B.addAttribute(llvm::Attribute::StackProtect); 852 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 853 B.addAttribute(llvm::Attribute::StackProtectStrong); 854 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 855 B.addAttribute(llvm::Attribute::StackProtectReq); 856 857 if (!D) { 858 F->addAttributes(llvm::AttributeSet::FunctionIndex, 859 llvm::AttributeSet::get( 860 F->getContext(), 861 llvm::AttributeSet::FunctionIndex, B)); 862 return; 863 } 864 865 if (D->hasAttr<NakedAttr>()) { 866 // Naked implies noinline: we should not be inlining such functions. 867 B.addAttribute(llvm::Attribute::Naked); 868 B.addAttribute(llvm::Attribute::NoInline); 869 } else if (D->hasAttr<NoDuplicateAttr>()) { 870 B.addAttribute(llvm::Attribute::NoDuplicate); 871 } else if (D->hasAttr<NoInlineAttr>()) { 872 B.addAttribute(llvm::Attribute::NoInline); 873 } else if (D->hasAttr<AlwaysInlineAttr>() && 874 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 875 llvm::Attribute::NoInline)) { 876 // (noinline wins over always_inline, and we can't specify both in IR) 877 B.addAttribute(llvm::Attribute::AlwaysInline); 878 } 879 880 if (D->hasAttr<ColdAttr>()) { 881 if (!D->hasAttr<OptimizeNoneAttr>()) 882 B.addAttribute(llvm::Attribute::OptimizeForSize); 883 B.addAttribute(llvm::Attribute::Cold); 884 } 885 886 if (D->hasAttr<MinSizeAttr>()) 887 B.addAttribute(llvm::Attribute::MinSize); 888 889 F->addAttributes(llvm::AttributeSet::FunctionIndex, 890 llvm::AttributeSet::get( 891 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 892 893 if (D->hasAttr<OptimizeNoneAttr>()) { 894 // OptimizeNone implies noinline; we should not be inlining such functions. 895 F->addFnAttr(llvm::Attribute::OptimizeNone); 896 F->addFnAttr(llvm::Attribute::NoInline); 897 898 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 899 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 900 F->removeFnAttr(llvm::Attribute::MinSize); 901 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 902 "OptimizeNone and AlwaysInline on same function!"); 903 904 // Attribute 'inlinehint' has no effect on 'optnone' functions. 905 // Explicitly remove it from the set of function attributes. 906 F->removeFnAttr(llvm::Attribute::InlineHint); 907 } 908 909 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 910 if (alignment) 911 F->setAlignment(alignment); 912 913 // Some C++ ABIs require 2-byte alignment for member functions, in order to 914 // reserve a bit for differentiating between virtual and non-virtual member 915 // functions. If the current target's C++ ABI requires this and this is a 916 // member function, set its alignment accordingly. 917 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 918 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 919 F->setAlignment(2); 920 } 921 } 922 923 void CodeGenModule::SetCommonAttributes(const Decl *D, 924 llvm::GlobalValue *GV) { 925 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 926 setGlobalVisibility(GV, ND); 927 else 928 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 929 930 if (D && D->hasAttr<UsedAttr>()) 931 addUsedGlobal(GV); 932 } 933 934 void CodeGenModule::setAliasAttributes(const Decl *D, 935 llvm::GlobalValue *GV) { 936 SetCommonAttributes(D, GV); 937 938 // Process the dllexport attribute based on whether the original definition 939 // (not necessarily the aliasee) was exported. 940 if (D->hasAttr<DLLExportAttr>()) 941 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 942 } 943 944 void CodeGenModule::setNonAliasAttributes(const Decl *D, 945 llvm::GlobalObject *GO) { 946 SetCommonAttributes(D, GO); 947 948 if (D) 949 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 950 GO->setSection(SA->getName()); 951 952 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 953 } 954 955 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 956 llvm::Function *F, 957 const CGFunctionInfo &FI) { 958 SetLLVMFunctionAttributes(D, FI, F); 959 SetLLVMFunctionAttributesForDefinition(D, F); 960 961 F->setLinkage(llvm::Function::InternalLinkage); 962 963 setNonAliasAttributes(D, F); 964 } 965 966 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 967 const NamedDecl *ND) { 968 // Set linkage and visibility in case we never see a definition. 969 LinkageInfo LV = ND->getLinkageAndVisibility(); 970 if (LV.getLinkage() != ExternalLinkage) { 971 // Don't set internal linkage on declarations. 972 } else { 973 if (ND->hasAttr<DLLImportAttr>()) { 974 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 975 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 976 } else if (ND->hasAttr<DLLExportAttr>()) { 977 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 978 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 979 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 980 // "extern_weak" is overloaded in LLVM; we probably should have 981 // separate linkage types for this. 982 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 983 } 984 985 // Set visibility on a declaration only if it's explicit. 986 if (LV.isVisibilityExplicit()) 987 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 988 } 989 } 990 991 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 992 llvm::Function *F) { 993 // Only if we are checking indirect calls. 994 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 995 return; 996 997 // Non-static class methods are handled via vtable pointer checks elsewhere. 998 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 999 return; 1000 1001 // Additionally, if building with cross-DSO support... 1002 if (CodeGenOpts.SanitizeCfiCrossDso) { 1003 // Don't emit entries for function declarations. In cross-DSO mode these are 1004 // handled with better precision at run time. 1005 if (!FD->hasBody()) 1006 return; 1007 // Skip available_externally functions. They won't be codegen'ed in the 1008 // current module anyway. 1009 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1010 return; 1011 } 1012 1013 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1014 F->addTypeMetadata(0, MD); 1015 1016 // Emit a hash-based bit set entry for cross-DSO calls. 1017 if (CodeGenOpts.SanitizeCfiCrossDso) 1018 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1019 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1020 } 1021 1022 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1023 bool IsIncompleteFunction, 1024 bool IsThunk) { 1025 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1026 // If this is an intrinsic function, set the function's attributes 1027 // to the intrinsic's attributes. 1028 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1029 return; 1030 } 1031 1032 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1033 1034 if (!IsIncompleteFunction) 1035 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1036 1037 // Add the Returned attribute for "this", except for iOS 5 and earlier 1038 // where substantial code, including the libstdc++ dylib, was compiled with 1039 // GCC and does not actually return "this". 1040 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1041 !(getTarget().getTriple().isiOS() && 1042 getTarget().getTriple().isOSVersionLT(6))) { 1043 assert(!F->arg_empty() && 1044 F->arg_begin()->getType() 1045 ->canLosslesslyBitCastTo(F->getReturnType()) && 1046 "unexpected this return"); 1047 F->addAttribute(1, llvm::Attribute::Returned); 1048 } 1049 1050 // Only a few attributes are set on declarations; these may later be 1051 // overridden by a definition. 1052 1053 setLinkageAndVisibilityForGV(F, FD); 1054 1055 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1056 F->setSection(SA->getName()); 1057 1058 if (FD->isReplaceableGlobalAllocationFunction()) { 1059 // A replaceable global allocation function does not act like a builtin by 1060 // default, only if it is invoked by a new-expression or delete-expression. 1061 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1062 llvm::Attribute::NoBuiltin); 1063 1064 // A sane operator new returns a non-aliasing pointer. 1065 // FIXME: Also add NonNull attribute to the return value 1066 // for the non-nothrow forms? 1067 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1068 if (getCodeGenOpts().AssumeSaneOperatorNew && 1069 (Kind == OO_New || Kind == OO_Array_New)) 1070 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1071 llvm::Attribute::NoAlias); 1072 } 1073 1074 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1075 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1076 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1077 if (MD->isVirtual()) 1078 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1079 1080 CreateFunctionTypeMetadata(FD, F); 1081 } 1082 1083 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1084 assert(!GV->isDeclaration() && 1085 "Only globals with definition can force usage."); 1086 LLVMUsed.emplace_back(GV); 1087 } 1088 1089 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1090 assert(!GV->isDeclaration() && 1091 "Only globals with definition can force usage."); 1092 LLVMCompilerUsed.emplace_back(GV); 1093 } 1094 1095 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1096 std::vector<llvm::WeakVH> &List) { 1097 // Don't create llvm.used if there is no need. 1098 if (List.empty()) 1099 return; 1100 1101 // Convert List to what ConstantArray needs. 1102 SmallVector<llvm::Constant*, 8> UsedArray; 1103 UsedArray.resize(List.size()); 1104 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1105 UsedArray[i] = 1106 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1107 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1108 } 1109 1110 if (UsedArray.empty()) 1111 return; 1112 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1113 1114 auto *GV = new llvm::GlobalVariable( 1115 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1116 llvm::ConstantArray::get(ATy, UsedArray), Name); 1117 1118 GV->setSection("llvm.metadata"); 1119 } 1120 1121 void CodeGenModule::emitLLVMUsed() { 1122 emitUsed(*this, "llvm.used", LLVMUsed); 1123 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1124 } 1125 1126 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1127 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1128 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1129 } 1130 1131 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1132 llvm::SmallString<32> Opt; 1133 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1134 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1135 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1136 } 1137 1138 void CodeGenModule::AddDependentLib(StringRef Lib) { 1139 llvm::SmallString<24> Opt; 1140 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1141 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1142 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1143 } 1144 1145 /// \brief Add link options implied by the given module, including modules 1146 /// it depends on, using a postorder walk. 1147 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1148 SmallVectorImpl<llvm::Metadata *> &Metadata, 1149 llvm::SmallPtrSet<Module *, 16> &Visited) { 1150 // Import this module's parent. 1151 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1152 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1153 } 1154 1155 // Import this module's dependencies. 1156 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1157 if (Visited.insert(Mod->Imports[I - 1]).second) 1158 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1159 } 1160 1161 // Add linker options to link against the libraries/frameworks 1162 // described by this module. 1163 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1164 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1165 // Link against a framework. Frameworks are currently Darwin only, so we 1166 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1167 if (Mod->LinkLibraries[I-1].IsFramework) { 1168 llvm::Metadata *Args[2] = { 1169 llvm::MDString::get(Context, "-framework"), 1170 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1171 1172 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1173 continue; 1174 } 1175 1176 // Link against a library. 1177 llvm::SmallString<24> Opt; 1178 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1179 Mod->LinkLibraries[I-1].Library, Opt); 1180 auto *OptString = llvm::MDString::get(Context, Opt); 1181 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1182 } 1183 } 1184 1185 void CodeGenModule::EmitModuleLinkOptions() { 1186 // Collect the set of all of the modules we want to visit to emit link 1187 // options, which is essentially the imported modules and all of their 1188 // non-explicit child modules. 1189 llvm::SetVector<clang::Module *> LinkModules; 1190 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1191 SmallVector<clang::Module *, 16> Stack; 1192 1193 // Seed the stack with imported modules. 1194 for (Module *M : ImportedModules) 1195 if (Visited.insert(M).second) 1196 Stack.push_back(M); 1197 1198 // Find all of the modules to import, making a little effort to prune 1199 // non-leaf modules. 1200 while (!Stack.empty()) { 1201 clang::Module *Mod = Stack.pop_back_val(); 1202 1203 bool AnyChildren = false; 1204 1205 // Visit the submodules of this module. 1206 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1207 SubEnd = Mod->submodule_end(); 1208 Sub != SubEnd; ++Sub) { 1209 // Skip explicit children; they need to be explicitly imported to be 1210 // linked against. 1211 if ((*Sub)->IsExplicit) 1212 continue; 1213 1214 if (Visited.insert(*Sub).second) { 1215 Stack.push_back(*Sub); 1216 AnyChildren = true; 1217 } 1218 } 1219 1220 // We didn't find any children, so add this module to the list of 1221 // modules to link against. 1222 if (!AnyChildren) { 1223 LinkModules.insert(Mod); 1224 } 1225 } 1226 1227 // Add link options for all of the imported modules in reverse topological 1228 // order. We don't do anything to try to order import link flags with respect 1229 // to linker options inserted by things like #pragma comment(). 1230 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1231 Visited.clear(); 1232 for (Module *M : LinkModules) 1233 if (Visited.insert(M).second) 1234 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1235 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1236 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1237 1238 // Add the linker options metadata flag. 1239 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1240 llvm::MDNode::get(getLLVMContext(), 1241 LinkerOptionsMetadata)); 1242 } 1243 1244 void CodeGenModule::EmitDeferred() { 1245 // Emit code for any potentially referenced deferred decls. Since a 1246 // previously unused static decl may become used during the generation of code 1247 // for a static function, iterate until no changes are made. 1248 1249 if (!DeferredVTables.empty()) { 1250 EmitDeferredVTables(); 1251 1252 // Emitting a vtable doesn't directly cause more vtables to 1253 // become deferred, although it can cause functions to be 1254 // emitted that then need those vtables. 1255 assert(DeferredVTables.empty()); 1256 } 1257 1258 // Stop if we're out of both deferred vtables and deferred declarations. 1259 if (DeferredDeclsToEmit.empty()) 1260 return; 1261 1262 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1263 // work, it will not interfere with this. 1264 std::vector<DeferredGlobal> CurDeclsToEmit; 1265 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1266 1267 for (DeferredGlobal &G : CurDeclsToEmit) { 1268 GlobalDecl D = G.GD; 1269 G.GV = nullptr; 1270 1271 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1272 // to get GlobalValue with exactly the type we need, not something that 1273 // might had been created for another decl with the same mangled name but 1274 // different type. 1275 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1276 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1277 1278 // In case of different address spaces, we may still get a cast, even with 1279 // IsForDefinition equal to true. Query mangled names table to get 1280 // GlobalValue. 1281 if (!GV) 1282 GV = GetGlobalValue(getMangledName(D)); 1283 1284 // Make sure GetGlobalValue returned non-null. 1285 assert(GV); 1286 1287 // Check to see if we've already emitted this. This is necessary 1288 // for a couple of reasons: first, decls can end up in the 1289 // deferred-decls queue multiple times, and second, decls can end 1290 // up with definitions in unusual ways (e.g. by an extern inline 1291 // function acquiring a strong function redefinition). Just 1292 // ignore these cases. 1293 if (!GV->isDeclaration()) 1294 continue; 1295 1296 // Otherwise, emit the definition and move on to the next one. 1297 EmitGlobalDefinition(D, GV); 1298 1299 // If we found out that we need to emit more decls, do that recursively. 1300 // This has the advantage that the decls are emitted in a DFS and related 1301 // ones are close together, which is convenient for testing. 1302 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1303 EmitDeferred(); 1304 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1305 } 1306 } 1307 } 1308 1309 void CodeGenModule::EmitGlobalAnnotations() { 1310 if (Annotations.empty()) 1311 return; 1312 1313 // Create a new global variable for the ConstantStruct in the Module. 1314 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1315 Annotations[0]->getType(), Annotations.size()), Annotations); 1316 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1317 llvm::GlobalValue::AppendingLinkage, 1318 Array, "llvm.global.annotations"); 1319 gv->setSection(AnnotationSection); 1320 } 1321 1322 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1323 llvm::Constant *&AStr = AnnotationStrings[Str]; 1324 if (AStr) 1325 return AStr; 1326 1327 // Not found yet, create a new global. 1328 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1329 auto *gv = 1330 new llvm::GlobalVariable(getModule(), s->getType(), true, 1331 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1332 gv->setSection(AnnotationSection); 1333 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1334 AStr = gv; 1335 return gv; 1336 } 1337 1338 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1339 SourceManager &SM = getContext().getSourceManager(); 1340 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1341 if (PLoc.isValid()) 1342 return EmitAnnotationString(PLoc.getFilename()); 1343 return EmitAnnotationString(SM.getBufferName(Loc)); 1344 } 1345 1346 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1347 SourceManager &SM = getContext().getSourceManager(); 1348 PresumedLoc PLoc = SM.getPresumedLoc(L); 1349 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1350 SM.getExpansionLineNumber(L); 1351 return llvm::ConstantInt::get(Int32Ty, LineNo); 1352 } 1353 1354 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1355 const AnnotateAttr *AA, 1356 SourceLocation L) { 1357 // Get the globals for file name, annotation, and the line number. 1358 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1359 *UnitGV = EmitAnnotationUnit(L), 1360 *LineNoCst = EmitAnnotationLineNo(L); 1361 1362 // Create the ConstantStruct for the global annotation. 1363 llvm::Constant *Fields[4] = { 1364 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1365 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1366 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1367 LineNoCst 1368 }; 1369 return llvm::ConstantStruct::getAnon(Fields); 1370 } 1371 1372 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1373 llvm::GlobalValue *GV) { 1374 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1375 // Get the struct elements for these annotations. 1376 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1377 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1378 } 1379 1380 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1381 SourceLocation Loc) const { 1382 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1383 // Blacklist by function name. 1384 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1385 return true; 1386 // Blacklist by location. 1387 if (Loc.isValid()) 1388 return SanitizerBL.isBlacklistedLocation(Loc); 1389 // If location is unknown, this may be a compiler-generated function. Assume 1390 // it's located in the main file. 1391 auto &SM = Context.getSourceManager(); 1392 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1393 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1394 } 1395 return false; 1396 } 1397 1398 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1399 SourceLocation Loc, QualType Ty, 1400 StringRef Category) const { 1401 // For now globals can be blacklisted only in ASan and KASan. 1402 if (!LangOpts.Sanitize.hasOneOf( 1403 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1404 return false; 1405 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1406 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1407 return true; 1408 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1409 return true; 1410 // Check global type. 1411 if (!Ty.isNull()) { 1412 // Drill down the array types: if global variable of a fixed type is 1413 // blacklisted, we also don't instrument arrays of them. 1414 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1415 Ty = AT->getElementType(); 1416 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1417 // We allow to blacklist only record types (classes, structs etc.) 1418 if (Ty->isRecordType()) { 1419 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1420 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1421 return true; 1422 } 1423 } 1424 return false; 1425 } 1426 1427 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1428 // Never defer when EmitAllDecls is specified. 1429 if (LangOpts.EmitAllDecls) 1430 return true; 1431 1432 return getContext().DeclMustBeEmitted(Global); 1433 } 1434 1435 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1436 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1437 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1438 // Implicit template instantiations may change linkage if they are later 1439 // explicitly instantiated, so they should not be emitted eagerly. 1440 return false; 1441 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1442 // codegen for global variables, because they may be marked as threadprivate. 1443 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1444 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1445 return false; 1446 1447 return true; 1448 } 1449 1450 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1451 const CXXUuidofExpr* E) { 1452 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1453 // well-formed. 1454 StringRef Uuid = E->getUuidStr(); 1455 std::string Name = "_GUID_" + Uuid.lower(); 1456 std::replace(Name.begin(), Name.end(), '-', '_'); 1457 1458 // The UUID descriptor should be pointer aligned. 1459 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1460 1461 // Look for an existing global. 1462 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1463 return ConstantAddress(GV, Alignment); 1464 1465 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1466 assert(Init && "failed to initialize as constant"); 1467 1468 auto *GV = new llvm::GlobalVariable( 1469 getModule(), Init->getType(), 1470 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1471 if (supportsCOMDAT()) 1472 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1473 return ConstantAddress(GV, Alignment); 1474 } 1475 1476 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1477 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1478 assert(AA && "No alias?"); 1479 1480 CharUnits Alignment = getContext().getDeclAlign(VD); 1481 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1482 1483 // See if there is already something with the target's name in the module. 1484 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1485 if (Entry) { 1486 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1487 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1488 return ConstantAddress(Ptr, Alignment); 1489 } 1490 1491 llvm::Constant *Aliasee; 1492 if (isa<llvm::FunctionType>(DeclTy)) 1493 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1494 GlobalDecl(cast<FunctionDecl>(VD)), 1495 /*ForVTable=*/false); 1496 else 1497 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1498 llvm::PointerType::getUnqual(DeclTy), 1499 nullptr); 1500 1501 auto *F = cast<llvm::GlobalValue>(Aliasee); 1502 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1503 WeakRefReferences.insert(F); 1504 1505 return ConstantAddress(Aliasee, Alignment); 1506 } 1507 1508 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1509 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1510 1511 // Weak references don't produce any output by themselves. 1512 if (Global->hasAttr<WeakRefAttr>()) 1513 return; 1514 1515 // If this is an alias definition (which otherwise looks like a declaration) 1516 // emit it now. 1517 if (Global->hasAttr<AliasAttr>()) 1518 return EmitAliasDefinition(GD); 1519 1520 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1521 if (Global->hasAttr<IFuncAttr>()) 1522 return emitIFuncDefinition(GD); 1523 1524 // If this is CUDA, be selective about which declarations we emit. 1525 if (LangOpts.CUDA) { 1526 if (LangOpts.CUDAIsDevice) { 1527 if (!Global->hasAttr<CUDADeviceAttr>() && 1528 !Global->hasAttr<CUDAGlobalAttr>() && 1529 !Global->hasAttr<CUDAConstantAttr>() && 1530 !Global->hasAttr<CUDASharedAttr>()) 1531 return; 1532 } else { 1533 // We need to emit host-side 'shadows' for all global 1534 // device-side variables because the CUDA runtime needs their 1535 // size and host-side address in order to provide access to 1536 // their device-side incarnations. 1537 1538 // So device-only functions are the only things we skip. 1539 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1540 Global->hasAttr<CUDADeviceAttr>()) 1541 return; 1542 1543 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1544 "Expected Variable or Function"); 1545 } 1546 } 1547 1548 if (LangOpts.OpenMP) { 1549 // If this is OpenMP device, check if it is legal to emit this global 1550 // normally. 1551 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1552 return; 1553 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1554 if (MustBeEmitted(Global)) 1555 EmitOMPDeclareReduction(DRD); 1556 return; 1557 } 1558 } 1559 1560 // Ignore declarations, they will be emitted on their first use. 1561 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1562 // Forward declarations are emitted lazily on first use. 1563 if (!FD->doesThisDeclarationHaveABody()) { 1564 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1565 return; 1566 1567 StringRef MangledName = getMangledName(GD); 1568 1569 // Compute the function info and LLVM type. 1570 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1571 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1572 1573 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1574 /*DontDefer=*/false); 1575 return; 1576 } 1577 } else { 1578 const auto *VD = cast<VarDecl>(Global); 1579 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1580 // We need to emit device-side global CUDA variables even if a 1581 // variable does not have a definition -- we still need to define 1582 // host-side shadow for it. 1583 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1584 !VD->hasDefinition() && 1585 (VD->hasAttr<CUDAConstantAttr>() || 1586 VD->hasAttr<CUDADeviceAttr>()); 1587 if (!MustEmitForCuda && 1588 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1589 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1590 return; 1591 } 1592 1593 // Defer code generation to first use when possible, e.g. if this is an inline 1594 // function. If the global must always be emitted, do it eagerly if possible 1595 // to benefit from cache locality. 1596 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1597 // Emit the definition if it can't be deferred. 1598 EmitGlobalDefinition(GD); 1599 return; 1600 } 1601 1602 // If we're deferring emission of a C++ variable with an 1603 // initializer, remember the order in which it appeared in the file. 1604 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1605 cast<VarDecl>(Global)->hasInit()) { 1606 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1607 CXXGlobalInits.push_back(nullptr); 1608 } 1609 1610 StringRef MangledName = getMangledName(GD); 1611 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1612 // The value has already been used and should therefore be emitted. 1613 addDeferredDeclToEmit(GV, GD); 1614 } else if (MustBeEmitted(Global)) { 1615 // The value must be emitted, but cannot be emitted eagerly. 1616 assert(!MayBeEmittedEagerly(Global)); 1617 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1618 } else { 1619 // Otherwise, remember that we saw a deferred decl with this name. The 1620 // first use of the mangled name will cause it to move into 1621 // DeferredDeclsToEmit. 1622 DeferredDecls[MangledName] = GD; 1623 } 1624 } 1625 1626 namespace { 1627 struct FunctionIsDirectlyRecursive : 1628 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1629 const StringRef Name; 1630 const Builtin::Context &BI; 1631 bool Result; 1632 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1633 Name(N), BI(C), Result(false) { 1634 } 1635 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1636 1637 bool TraverseCallExpr(CallExpr *E) { 1638 const FunctionDecl *FD = E->getDirectCallee(); 1639 if (!FD) 1640 return true; 1641 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1642 if (Attr && Name == Attr->getLabel()) { 1643 Result = true; 1644 return false; 1645 } 1646 unsigned BuiltinID = FD->getBuiltinID(); 1647 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1648 return true; 1649 StringRef BuiltinName = BI.getName(BuiltinID); 1650 if (BuiltinName.startswith("__builtin_") && 1651 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1652 Result = true; 1653 return false; 1654 } 1655 return true; 1656 } 1657 }; 1658 1659 struct DLLImportFunctionVisitor 1660 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1661 bool SafeToInline = true; 1662 1663 bool VisitVarDecl(VarDecl *VD) { 1664 // A thread-local variable cannot be imported. 1665 SafeToInline = !VD->getTLSKind(); 1666 return SafeToInline; 1667 } 1668 1669 // Make sure we're not referencing non-imported vars or functions. 1670 bool VisitDeclRefExpr(DeclRefExpr *E) { 1671 ValueDecl *VD = E->getDecl(); 1672 if (isa<FunctionDecl>(VD)) 1673 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1674 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1675 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1676 return SafeToInline; 1677 } 1678 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1679 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1680 return SafeToInline; 1681 } 1682 bool VisitCXXNewExpr(CXXNewExpr *E) { 1683 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1684 return SafeToInline; 1685 } 1686 }; 1687 } 1688 1689 // isTriviallyRecursive - Check if this function calls another 1690 // decl that, because of the asm attribute or the other decl being a builtin, 1691 // ends up pointing to itself. 1692 bool 1693 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1694 StringRef Name; 1695 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1696 // asm labels are a special kind of mangling we have to support. 1697 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1698 if (!Attr) 1699 return false; 1700 Name = Attr->getLabel(); 1701 } else { 1702 Name = FD->getName(); 1703 } 1704 1705 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1706 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1707 return Walker.Result; 1708 } 1709 1710 bool 1711 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1712 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1713 return true; 1714 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1715 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1716 return false; 1717 1718 if (F->hasAttr<DLLImportAttr>()) { 1719 // Check whether it would be safe to inline this dllimport function. 1720 DLLImportFunctionVisitor Visitor; 1721 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1722 if (!Visitor.SafeToInline) 1723 return false; 1724 } 1725 1726 // PR9614. Avoid cases where the source code is lying to us. An available 1727 // externally function should have an equivalent function somewhere else, 1728 // but a function that calls itself is clearly not equivalent to the real 1729 // implementation. 1730 // This happens in glibc's btowc and in some configure checks. 1731 return !isTriviallyRecursive(F); 1732 } 1733 1734 /// If the type for the method's class was generated by 1735 /// CGDebugInfo::createContextChain(), the cache contains only a 1736 /// limited DIType without any declarations. Since EmitFunctionStart() 1737 /// needs to find the canonical declaration for each method, we need 1738 /// to construct the complete type prior to emitting the method. 1739 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1740 if (!D->isInstance()) 1741 return; 1742 1743 if (CGDebugInfo *DI = getModuleDebugInfo()) 1744 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1745 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1746 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1747 } 1748 } 1749 1750 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1751 const auto *D = cast<ValueDecl>(GD.getDecl()); 1752 1753 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1754 Context.getSourceManager(), 1755 "Generating code for declaration"); 1756 1757 if (isa<FunctionDecl>(D)) { 1758 // At -O0, don't generate IR for functions with available_externally 1759 // linkage. 1760 if (!shouldEmitFunction(GD)) 1761 return; 1762 1763 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1764 CompleteDIClassType(Method); 1765 // Make sure to emit the definition(s) before we emit the thunks. 1766 // This is necessary for the generation of certain thunks. 1767 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1768 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1769 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1770 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1771 else 1772 EmitGlobalFunctionDefinition(GD, GV); 1773 1774 if (Method->isVirtual()) 1775 getVTables().EmitThunks(GD); 1776 1777 return; 1778 } 1779 1780 return EmitGlobalFunctionDefinition(GD, GV); 1781 } 1782 1783 if (const auto *VD = dyn_cast<VarDecl>(D)) 1784 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1785 1786 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1787 } 1788 1789 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1790 llvm::Function *NewFn); 1791 1792 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1793 /// module, create and return an llvm Function with the specified type. If there 1794 /// is something in the module with the specified name, return it potentially 1795 /// bitcasted to the right type. 1796 /// 1797 /// If D is non-null, it specifies a decl that correspond to this. This is used 1798 /// to set the attributes on the function when it is first created. 1799 llvm::Constant * 1800 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1801 llvm::Type *Ty, 1802 GlobalDecl GD, bool ForVTable, 1803 bool DontDefer, bool IsThunk, 1804 llvm::AttributeSet ExtraAttrs, 1805 bool IsForDefinition) { 1806 const Decl *D = GD.getDecl(); 1807 1808 // Lookup the entry, lazily creating it if necessary. 1809 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1810 if (Entry) { 1811 if (WeakRefReferences.erase(Entry)) { 1812 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1813 if (FD && !FD->hasAttr<WeakAttr>()) 1814 Entry->setLinkage(llvm::Function::ExternalLinkage); 1815 } 1816 1817 // Handle dropped DLL attributes. 1818 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1819 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1820 1821 // If there are two attempts to define the same mangled name, issue an 1822 // error. 1823 if (IsForDefinition && !Entry->isDeclaration()) { 1824 GlobalDecl OtherGD; 1825 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1826 // to make sure that we issue an error only once. 1827 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1828 (GD.getCanonicalDecl().getDecl() != 1829 OtherGD.getCanonicalDecl().getDecl()) && 1830 DiagnosedConflictingDefinitions.insert(GD).second) { 1831 getDiags().Report(D->getLocation(), 1832 diag::err_duplicate_mangled_name); 1833 getDiags().Report(OtherGD.getDecl()->getLocation(), 1834 diag::note_previous_definition); 1835 } 1836 } 1837 1838 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1839 (Entry->getType()->getElementType() == Ty)) { 1840 return Entry; 1841 } 1842 1843 // Make sure the result is of the correct type. 1844 // (If function is requested for a definition, we always need to create a new 1845 // function, not just return a bitcast.) 1846 if (!IsForDefinition) 1847 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1848 } 1849 1850 // This function doesn't have a complete type (for example, the return 1851 // type is an incomplete struct). Use a fake type instead, and make 1852 // sure not to try to set attributes. 1853 bool IsIncompleteFunction = false; 1854 1855 llvm::FunctionType *FTy; 1856 if (isa<llvm::FunctionType>(Ty)) { 1857 FTy = cast<llvm::FunctionType>(Ty); 1858 } else { 1859 FTy = llvm::FunctionType::get(VoidTy, false); 1860 IsIncompleteFunction = true; 1861 } 1862 1863 llvm::Function *F = 1864 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1865 Entry ? StringRef() : MangledName, &getModule()); 1866 1867 // If we already created a function with the same mangled name (but different 1868 // type) before, take its name and add it to the list of functions to be 1869 // replaced with F at the end of CodeGen. 1870 // 1871 // This happens if there is a prototype for a function (e.g. "int f()") and 1872 // then a definition of a different type (e.g. "int f(int x)"). 1873 if (Entry) { 1874 F->takeName(Entry); 1875 1876 // This might be an implementation of a function without a prototype, in 1877 // which case, try to do special replacement of calls which match the new 1878 // prototype. The really key thing here is that we also potentially drop 1879 // arguments from the call site so as to make a direct call, which makes the 1880 // inliner happier and suppresses a number of optimizer warnings (!) about 1881 // dropping arguments. 1882 if (!Entry->use_empty()) { 1883 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1884 Entry->removeDeadConstantUsers(); 1885 } 1886 1887 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1888 F, Entry->getType()->getElementType()->getPointerTo()); 1889 addGlobalValReplacement(Entry, BC); 1890 } 1891 1892 assert(F->getName() == MangledName && "name was uniqued!"); 1893 if (D) 1894 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1895 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1896 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1897 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1898 llvm::AttributeSet::get(VMContext, 1899 llvm::AttributeSet::FunctionIndex, 1900 B)); 1901 } 1902 1903 if (!DontDefer) { 1904 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1905 // each other bottoming out with the base dtor. Therefore we emit non-base 1906 // dtors on usage, even if there is no dtor definition in the TU. 1907 if (D && isa<CXXDestructorDecl>(D) && 1908 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1909 GD.getDtorType())) 1910 addDeferredDeclToEmit(F, GD); 1911 1912 // This is the first use or definition of a mangled name. If there is a 1913 // deferred decl with this name, remember that we need to emit it at the end 1914 // of the file. 1915 auto DDI = DeferredDecls.find(MangledName); 1916 if (DDI != DeferredDecls.end()) { 1917 // Move the potentially referenced deferred decl to the 1918 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1919 // don't need it anymore). 1920 addDeferredDeclToEmit(F, DDI->second); 1921 DeferredDecls.erase(DDI); 1922 1923 // Otherwise, there are cases we have to worry about where we're 1924 // using a declaration for which we must emit a definition but where 1925 // we might not find a top-level definition: 1926 // - member functions defined inline in their classes 1927 // - friend functions defined inline in some class 1928 // - special member functions with implicit definitions 1929 // If we ever change our AST traversal to walk into class methods, 1930 // this will be unnecessary. 1931 // 1932 // We also don't emit a definition for a function if it's going to be an 1933 // entry in a vtable, unless it's already marked as used. 1934 } else if (getLangOpts().CPlusPlus && D) { 1935 // Look for a declaration that's lexically in a record. 1936 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1937 FD = FD->getPreviousDecl()) { 1938 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1939 if (FD->doesThisDeclarationHaveABody()) { 1940 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1941 break; 1942 } 1943 } 1944 } 1945 } 1946 } 1947 1948 // Make sure the result is of the requested type. 1949 if (!IsIncompleteFunction) { 1950 assert(F->getType()->getElementType() == Ty); 1951 return F; 1952 } 1953 1954 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1955 return llvm::ConstantExpr::getBitCast(F, PTy); 1956 } 1957 1958 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1959 /// non-null, then this function will use the specified type if it has to 1960 /// create it (this occurs when we see a definition of the function). 1961 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1962 llvm::Type *Ty, 1963 bool ForVTable, 1964 bool DontDefer, 1965 bool IsForDefinition) { 1966 // If there was no specific requested type, just convert it now. 1967 if (!Ty) { 1968 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1969 auto CanonTy = Context.getCanonicalType(FD->getType()); 1970 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1971 } 1972 1973 StringRef MangledName = getMangledName(GD); 1974 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1975 /*IsThunk=*/false, llvm::AttributeSet(), 1976 IsForDefinition); 1977 } 1978 1979 /// CreateRuntimeFunction - Create a new runtime function with the specified 1980 /// type and name. 1981 llvm::Constant * 1982 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1983 StringRef Name, 1984 llvm::AttributeSet ExtraAttrs) { 1985 llvm::Constant *C = 1986 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1987 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1988 if (auto *F = dyn_cast<llvm::Function>(C)) 1989 if (F->empty()) 1990 F->setCallingConv(getRuntimeCC()); 1991 return C; 1992 } 1993 1994 /// CreateBuiltinFunction - Create a new builtin function with the specified 1995 /// type and name. 1996 llvm::Constant * 1997 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1998 StringRef Name, 1999 llvm::AttributeSet ExtraAttrs) { 2000 llvm::Constant *C = 2001 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2002 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2003 if (auto *F = dyn_cast<llvm::Function>(C)) 2004 if (F->empty()) 2005 F->setCallingConv(getBuiltinCC()); 2006 return C; 2007 } 2008 2009 /// isTypeConstant - Determine whether an object of this type can be emitted 2010 /// as a constant. 2011 /// 2012 /// If ExcludeCtor is true, the duration when the object's constructor runs 2013 /// will not be considered. The caller will need to verify that the object is 2014 /// not written to during its construction. 2015 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2016 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2017 return false; 2018 2019 if (Context.getLangOpts().CPlusPlus) { 2020 if (const CXXRecordDecl *Record 2021 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2022 return ExcludeCtor && !Record->hasMutableFields() && 2023 Record->hasTrivialDestructor(); 2024 } 2025 2026 return true; 2027 } 2028 2029 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2030 /// create and return an llvm GlobalVariable with the specified type. If there 2031 /// is something in the module with the specified name, return it potentially 2032 /// bitcasted to the right type. 2033 /// 2034 /// If D is non-null, it specifies a decl that correspond to this. This is used 2035 /// to set the attributes on the global when it is first created. 2036 /// 2037 /// If IsForDefinition is true, it is guranteed that an actual global with 2038 /// type Ty will be returned, not conversion of a variable with the same 2039 /// mangled name but some other type. 2040 llvm::Constant * 2041 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2042 llvm::PointerType *Ty, 2043 const VarDecl *D, 2044 bool IsForDefinition) { 2045 // Lookup the entry, lazily creating it if necessary. 2046 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2047 if (Entry) { 2048 if (WeakRefReferences.erase(Entry)) { 2049 if (D && !D->hasAttr<WeakAttr>()) 2050 Entry->setLinkage(llvm::Function::ExternalLinkage); 2051 } 2052 2053 // Handle dropped DLL attributes. 2054 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2055 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2056 2057 if (Entry->getType() == Ty) 2058 return Entry; 2059 2060 // If there are two attempts to define the same mangled name, issue an 2061 // error. 2062 if (IsForDefinition && !Entry->isDeclaration()) { 2063 GlobalDecl OtherGD; 2064 const VarDecl *OtherD; 2065 2066 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2067 // to make sure that we issue an error only once. 2068 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2069 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2070 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2071 OtherD->hasInit() && 2072 DiagnosedConflictingDefinitions.insert(D).second) { 2073 getDiags().Report(D->getLocation(), 2074 diag::err_duplicate_mangled_name); 2075 getDiags().Report(OtherGD.getDecl()->getLocation(), 2076 diag::note_previous_definition); 2077 } 2078 } 2079 2080 // Make sure the result is of the correct type. 2081 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2082 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2083 2084 // (If global is requested for a definition, we always need to create a new 2085 // global, not just return a bitcast.) 2086 if (!IsForDefinition) 2087 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2088 } 2089 2090 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2091 auto *GV = new llvm::GlobalVariable( 2092 getModule(), Ty->getElementType(), false, 2093 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2094 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2095 2096 // If we already created a global with the same mangled name (but different 2097 // type) before, take its name and remove it from its parent. 2098 if (Entry) { 2099 GV->takeName(Entry); 2100 2101 if (!Entry->use_empty()) { 2102 llvm::Constant *NewPtrForOldDecl = 2103 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2104 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2105 } 2106 2107 Entry->eraseFromParent(); 2108 } 2109 2110 // This is the first use or definition of a mangled name. If there is a 2111 // deferred decl with this name, remember that we need to emit it at the end 2112 // of the file. 2113 auto DDI = DeferredDecls.find(MangledName); 2114 if (DDI != DeferredDecls.end()) { 2115 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2116 // list, and remove it from DeferredDecls (since we don't need it anymore). 2117 addDeferredDeclToEmit(GV, DDI->second); 2118 DeferredDecls.erase(DDI); 2119 } 2120 2121 // Handle things which are present even on external declarations. 2122 if (D) { 2123 // FIXME: This code is overly simple and should be merged with other global 2124 // handling. 2125 GV->setConstant(isTypeConstant(D->getType(), false)); 2126 2127 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2128 2129 setLinkageAndVisibilityForGV(GV, D); 2130 2131 if (D->getTLSKind()) { 2132 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2133 CXXThreadLocals.push_back(D); 2134 setTLSMode(GV, *D); 2135 } 2136 2137 // If required by the ABI, treat declarations of static data members with 2138 // inline initializers as definitions. 2139 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2140 EmitGlobalVarDefinition(D); 2141 } 2142 2143 // Handle XCore specific ABI requirements. 2144 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2145 D->getLanguageLinkage() == CLanguageLinkage && 2146 D->getType().isConstant(Context) && 2147 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2148 GV->setSection(".cp.rodata"); 2149 } 2150 2151 if (AddrSpace != Ty->getAddressSpace()) 2152 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2153 2154 return GV; 2155 } 2156 2157 llvm::Constant * 2158 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2159 bool IsForDefinition) { 2160 if (isa<CXXConstructorDecl>(GD.getDecl())) 2161 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2162 getFromCtorType(GD.getCtorType()), 2163 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2164 /*DontDefer=*/false, IsForDefinition); 2165 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2166 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2167 getFromDtorType(GD.getDtorType()), 2168 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2169 /*DontDefer=*/false, IsForDefinition); 2170 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2171 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2172 cast<CXXMethodDecl>(GD.getDecl())); 2173 auto Ty = getTypes().GetFunctionType(*FInfo); 2174 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2175 IsForDefinition); 2176 } else if (isa<FunctionDecl>(GD.getDecl())) { 2177 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2178 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2179 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2180 IsForDefinition); 2181 } else 2182 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2183 IsForDefinition); 2184 } 2185 2186 llvm::GlobalVariable * 2187 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2188 llvm::Type *Ty, 2189 llvm::GlobalValue::LinkageTypes Linkage) { 2190 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2191 llvm::GlobalVariable *OldGV = nullptr; 2192 2193 if (GV) { 2194 // Check if the variable has the right type. 2195 if (GV->getType()->getElementType() == Ty) 2196 return GV; 2197 2198 // Because C++ name mangling, the only way we can end up with an already 2199 // existing global with the same name is if it has been declared extern "C". 2200 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2201 OldGV = GV; 2202 } 2203 2204 // Create a new variable. 2205 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2206 Linkage, nullptr, Name); 2207 2208 if (OldGV) { 2209 // Replace occurrences of the old variable if needed. 2210 GV->takeName(OldGV); 2211 2212 if (!OldGV->use_empty()) { 2213 llvm::Constant *NewPtrForOldDecl = 2214 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2215 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2216 } 2217 2218 OldGV->eraseFromParent(); 2219 } 2220 2221 if (supportsCOMDAT() && GV->isWeakForLinker() && 2222 !GV->hasAvailableExternallyLinkage()) 2223 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2224 2225 return GV; 2226 } 2227 2228 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2229 /// given global variable. If Ty is non-null and if the global doesn't exist, 2230 /// then it will be created with the specified type instead of whatever the 2231 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2232 /// that an actual global with type Ty will be returned, not conversion of a 2233 /// variable with the same mangled name but some other type. 2234 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2235 llvm::Type *Ty, 2236 bool IsForDefinition) { 2237 assert(D->hasGlobalStorage() && "Not a global variable"); 2238 QualType ASTTy = D->getType(); 2239 if (!Ty) 2240 Ty = getTypes().ConvertTypeForMem(ASTTy); 2241 2242 llvm::PointerType *PTy = 2243 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2244 2245 StringRef MangledName = getMangledName(D); 2246 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2247 } 2248 2249 /// CreateRuntimeVariable - Create a new runtime global variable with the 2250 /// specified type and name. 2251 llvm::Constant * 2252 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2253 StringRef Name) { 2254 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2255 } 2256 2257 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2258 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2259 2260 StringRef MangledName = getMangledName(D); 2261 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2262 2263 // We already have a definition, not declaration, with the same mangled name. 2264 // Emitting of declaration is not required (and actually overwrites emitted 2265 // definition). 2266 if (GV && !GV->isDeclaration()) 2267 return; 2268 2269 // If we have not seen a reference to this variable yet, place it into the 2270 // deferred declarations table to be emitted if needed later. 2271 if (!MustBeEmitted(D) && !GV) { 2272 DeferredDecls[MangledName] = D; 2273 return; 2274 } 2275 2276 // The tentative definition is the only definition. 2277 EmitGlobalVarDefinition(D); 2278 } 2279 2280 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2281 return Context.toCharUnitsFromBits( 2282 getDataLayout().getTypeStoreSizeInBits(Ty)); 2283 } 2284 2285 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2286 unsigned AddrSpace) { 2287 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2288 if (D->hasAttr<CUDAConstantAttr>()) 2289 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2290 else if (D->hasAttr<CUDASharedAttr>()) 2291 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2292 else 2293 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2294 } 2295 2296 return AddrSpace; 2297 } 2298 2299 template<typename SomeDecl> 2300 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2301 llvm::GlobalValue *GV) { 2302 if (!getLangOpts().CPlusPlus) 2303 return; 2304 2305 // Must have 'used' attribute, or else inline assembly can't rely on 2306 // the name existing. 2307 if (!D->template hasAttr<UsedAttr>()) 2308 return; 2309 2310 // Must have internal linkage and an ordinary name. 2311 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2312 return; 2313 2314 // Must be in an extern "C" context. Entities declared directly within 2315 // a record are not extern "C" even if the record is in such a context. 2316 const SomeDecl *First = D->getFirstDecl(); 2317 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2318 return; 2319 2320 // OK, this is an internal linkage entity inside an extern "C" linkage 2321 // specification. Make a note of that so we can give it the "expected" 2322 // mangled name if nothing else is using that name. 2323 std::pair<StaticExternCMap::iterator, bool> R = 2324 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2325 2326 // If we have multiple internal linkage entities with the same name 2327 // in extern "C" regions, none of them gets that name. 2328 if (!R.second) 2329 R.first->second = nullptr; 2330 } 2331 2332 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2333 if (!CGM.supportsCOMDAT()) 2334 return false; 2335 2336 if (D.hasAttr<SelectAnyAttr>()) 2337 return true; 2338 2339 GVALinkage Linkage; 2340 if (auto *VD = dyn_cast<VarDecl>(&D)) 2341 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2342 else 2343 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2344 2345 switch (Linkage) { 2346 case GVA_Internal: 2347 case GVA_AvailableExternally: 2348 case GVA_StrongExternal: 2349 return false; 2350 case GVA_DiscardableODR: 2351 case GVA_StrongODR: 2352 return true; 2353 } 2354 llvm_unreachable("No such linkage"); 2355 } 2356 2357 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2358 llvm::GlobalObject &GO) { 2359 if (!shouldBeInCOMDAT(*this, D)) 2360 return; 2361 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2362 } 2363 2364 /// Pass IsTentative as true if you want to create a tentative definition. 2365 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2366 bool IsTentative) { 2367 llvm::Constant *Init = nullptr; 2368 QualType ASTTy = D->getType(); 2369 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2370 bool NeedsGlobalCtor = false; 2371 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2372 2373 const VarDecl *InitDecl; 2374 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2375 2376 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2377 // as part of their declaration." Sema has already checked for 2378 // error cases, so we just need to set Init to UndefValue. 2379 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2380 D->hasAttr<CUDASharedAttr>()) 2381 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2382 else if (!InitExpr) { 2383 // This is a tentative definition; tentative definitions are 2384 // implicitly initialized with { 0 }. 2385 // 2386 // Note that tentative definitions are only emitted at the end of 2387 // a translation unit, so they should never have incomplete 2388 // type. In addition, EmitTentativeDefinition makes sure that we 2389 // never attempt to emit a tentative definition if a real one 2390 // exists. A use may still exists, however, so we still may need 2391 // to do a RAUW. 2392 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2393 Init = EmitNullConstant(D->getType()); 2394 } else { 2395 initializedGlobalDecl = GlobalDecl(D); 2396 Init = EmitConstantInit(*InitDecl); 2397 2398 if (!Init) { 2399 QualType T = InitExpr->getType(); 2400 if (D->getType()->isReferenceType()) 2401 T = D->getType(); 2402 2403 if (getLangOpts().CPlusPlus) { 2404 Init = EmitNullConstant(T); 2405 NeedsGlobalCtor = true; 2406 } else { 2407 ErrorUnsupported(D, "static initializer"); 2408 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2409 } 2410 } else { 2411 // We don't need an initializer, so remove the entry for the delayed 2412 // initializer position (just in case this entry was delayed) if we 2413 // also don't need to register a destructor. 2414 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2415 DelayedCXXInitPosition.erase(D); 2416 } 2417 } 2418 2419 llvm::Type* InitType = Init->getType(); 2420 llvm::Constant *Entry = 2421 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2422 2423 // Strip off a bitcast if we got one back. 2424 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2425 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2426 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2427 // All zero index gep. 2428 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2429 Entry = CE->getOperand(0); 2430 } 2431 2432 // Entry is now either a Function or GlobalVariable. 2433 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2434 2435 // We have a definition after a declaration with the wrong type. 2436 // We must make a new GlobalVariable* and update everything that used OldGV 2437 // (a declaration or tentative definition) with the new GlobalVariable* 2438 // (which will be a definition). 2439 // 2440 // This happens if there is a prototype for a global (e.g. 2441 // "extern int x[];") and then a definition of a different type (e.g. 2442 // "int x[10];"). This also happens when an initializer has a different type 2443 // from the type of the global (this happens with unions). 2444 if (!GV || 2445 GV->getType()->getElementType() != InitType || 2446 GV->getType()->getAddressSpace() != 2447 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2448 2449 // Move the old entry aside so that we'll create a new one. 2450 Entry->setName(StringRef()); 2451 2452 // Make a new global with the correct type, this is now guaranteed to work. 2453 GV = cast<llvm::GlobalVariable>( 2454 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2455 2456 // Replace all uses of the old global with the new global 2457 llvm::Constant *NewPtrForOldDecl = 2458 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2459 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2460 2461 // Erase the old global, since it is no longer used. 2462 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2463 } 2464 2465 MaybeHandleStaticInExternC(D, GV); 2466 2467 if (D->hasAttr<AnnotateAttr>()) 2468 AddGlobalAnnotations(D, GV); 2469 2470 // Set the llvm linkage type as appropriate. 2471 llvm::GlobalValue::LinkageTypes Linkage = 2472 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2473 2474 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2475 // the device. [...]" 2476 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2477 // __device__, declares a variable that: [...] 2478 // Is accessible from all the threads within the grid and from the host 2479 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2480 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2481 if (GV && LangOpts.CUDA) { 2482 if (LangOpts.CUDAIsDevice) { 2483 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2484 GV->setExternallyInitialized(true); 2485 } else { 2486 // Host-side shadows of external declarations of device-side 2487 // global variables become internal definitions. These have to 2488 // be internal in order to prevent name conflicts with global 2489 // host variables with the same name in a different TUs. 2490 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2491 Linkage = llvm::GlobalValue::InternalLinkage; 2492 2493 // Shadow variables and their properties must be registered 2494 // with CUDA runtime. 2495 unsigned Flags = 0; 2496 if (!D->hasDefinition()) 2497 Flags |= CGCUDARuntime::ExternDeviceVar; 2498 if (D->hasAttr<CUDAConstantAttr>()) 2499 Flags |= CGCUDARuntime::ConstantDeviceVar; 2500 getCUDARuntime().registerDeviceVar(*GV, Flags); 2501 } else if (D->hasAttr<CUDASharedAttr>()) 2502 // __shared__ variables are odd. Shadows do get created, but 2503 // they are not registered with the CUDA runtime, so they 2504 // can't really be used to access their device-side 2505 // counterparts. It's not clear yet whether it's nvcc's bug or 2506 // a feature, but we've got to do the same for compatibility. 2507 Linkage = llvm::GlobalValue::InternalLinkage; 2508 } 2509 } 2510 GV->setInitializer(Init); 2511 2512 // If it is safe to mark the global 'constant', do so now. 2513 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2514 isTypeConstant(D->getType(), true)); 2515 2516 // If it is in a read-only section, mark it 'constant'. 2517 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2518 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2519 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2520 GV->setConstant(true); 2521 } 2522 2523 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2524 2525 2526 // On Darwin, if the normal linkage of a C++ thread_local variable is 2527 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2528 // copies within a linkage unit; otherwise, the backing variable has 2529 // internal linkage and all accesses should just be calls to the 2530 // Itanium-specified entry point, which has the normal linkage of the 2531 // variable. This is to preserve the ability to change the implementation 2532 // behind the scenes. 2533 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2534 Context.getTargetInfo().getTriple().isOSDarwin() && 2535 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2536 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2537 Linkage = llvm::GlobalValue::InternalLinkage; 2538 2539 GV->setLinkage(Linkage); 2540 if (D->hasAttr<DLLImportAttr>()) 2541 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2542 else if (D->hasAttr<DLLExportAttr>()) 2543 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2544 else 2545 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2546 2547 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2548 // common vars aren't constant even if declared const. 2549 GV->setConstant(false); 2550 2551 setNonAliasAttributes(D, GV); 2552 2553 if (D->getTLSKind() && !GV->isThreadLocal()) { 2554 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2555 CXXThreadLocals.push_back(D); 2556 setTLSMode(GV, *D); 2557 } 2558 2559 maybeSetTrivialComdat(*D, *GV); 2560 2561 // Emit the initializer function if necessary. 2562 if (NeedsGlobalCtor || NeedsGlobalDtor) 2563 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2564 2565 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2566 2567 // Emit global variable debug information. 2568 if (CGDebugInfo *DI = getModuleDebugInfo()) 2569 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2570 DI->EmitGlobalVariable(GV, D); 2571 } 2572 2573 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2574 CodeGenModule &CGM, const VarDecl *D, 2575 bool NoCommon) { 2576 // Don't give variables common linkage if -fno-common was specified unless it 2577 // was overridden by a NoCommon attribute. 2578 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2579 return true; 2580 2581 // C11 6.9.2/2: 2582 // A declaration of an identifier for an object that has file scope without 2583 // an initializer, and without a storage-class specifier or with the 2584 // storage-class specifier static, constitutes a tentative definition. 2585 if (D->getInit() || D->hasExternalStorage()) 2586 return true; 2587 2588 // A variable cannot be both common and exist in a section. 2589 if (D->hasAttr<SectionAttr>()) 2590 return true; 2591 2592 // Thread local vars aren't considered common linkage. 2593 if (D->getTLSKind()) 2594 return true; 2595 2596 // Tentative definitions marked with WeakImportAttr are true definitions. 2597 if (D->hasAttr<WeakImportAttr>()) 2598 return true; 2599 2600 // A variable cannot be both common and exist in a comdat. 2601 if (shouldBeInCOMDAT(CGM, *D)) 2602 return true; 2603 2604 // Declarations with a required alignment do not have common linakge in MSVC 2605 // mode. 2606 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2607 if (D->hasAttr<AlignedAttr>()) 2608 return true; 2609 QualType VarType = D->getType(); 2610 if (Context.isAlignmentRequired(VarType)) 2611 return true; 2612 2613 if (const auto *RT = VarType->getAs<RecordType>()) { 2614 const RecordDecl *RD = RT->getDecl(); 2615 for (const FieldDecl *FD : RD->fields()) { 2616 if (FD->isBitField()) 2617 continue; 2618 if (FD->hasAttr<AlignedAttr>()) 2619 return true; 2620 if (Context.isAlignmentRequired(FD->getType())) 2621 return true; 2622 } 2623 } 2624 } 2625 2626 return false; 2627 } 2628 2629 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2630 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2631 if (Linkage == GVA_Internal) 2632 return llvm::Function::InternalLinkage; 2633 2634 if (D->hasAttr<WeakAttr>()) { 2635 if (IsConstantVariable) 2636 return llvm::GlobalVariable::WeakODRLinkage; 2637 else 2638 return llvm::GlobalVariable::WeakAnyLinkage; 2639 } 2640 2641 // We are guaranteed to have a strong definition somewhere else, 2642 // so we can use available_externally linkage. 2643 if (Linkage == GVA_AvailableExternally) 2644 return llvm::Function::AvailableExternallyLinkage; 2645 2646 // Note that Apple's kernel linker doesn't support symbol 2647 // coalescing, so we need to avoid linkonce and weak linkages there. 2648 // Normally, this means we just map to internal, but for explicit 2649 // instantiations we'll map to external. 2650 2651 // In C++, the compiler has to emit a definition in every translation unit 2652 // that references the function. We should use linkonce_odr because 2653 // a) if all references in this translation unit are optimized away, we 2654 // don't need to codegen it. b) if the function persists, it needs to be 2655 // merged with other definitions. c) C++ has the ODR, so we know the 2656 // definition is dependable. 2657 if (Linkage == GVA_DiscardableODR) 2658 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2659 : llvm::Function::InternalLinkage; 2660 2661 // An explicit instantiation of a template has weak linkage, since 2662 // explicit instantiations can occur in multiple translation units 2663 // and must all be equivalent. However, we are not allowed to 2664 // throw away these explicit instantiations. 2665 if (Linkage == GVA_StrongODR) 2666 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2667 : llvm::Function::ExternalLinkage; 2668 2669 // C++ doesn't have tentative definitions and thus cannot have common 2670 // linkage. 2671 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2672 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2673 CodeGenOpts.NoCommon)) 2674 return llvm::GlobalVariable::CommonLinkage; 2675 2676 // selectany symbols are externally visible, so use weak instead of 2677 // linkonce. MSVC optimizes away references to const selectany globals, so 2678 // all definitions should be the same and ODR linkage should be used. 2679 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2680 if (D->hasAttr<SelectAnyAttr>()) 2681 return llvm::GlobalVariable::WeakODRLinkage; 2682 2683 // Otherwise, we have strong external linkage. 2684 assert(Linkage == GVA_StrongExternal); 2685 return llvm::GlobalVariable::ExternalLinkage; 2686 } 2687 2688 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2689 const VarDecl *VD, bool IsConstant) { 2690 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2691 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2692 } 2693 2694 /// Replace the uses of a function that was declared with a non-proto type. 2695 /// We want to silently drop extra arguments from call sites 2696 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2697 llvm::Function *newFn) { 2698 // Fast path. 2699 if (old->use_empty()) return; 2700 2701 llvm::Type *newRetTy = newFn->getReturnType(); 2702 SmallVector<llvm::Value*, 4> newArgs; 2703 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2704 2705 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2706 ui != ue; ) { 2707 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2708 llvm::User *user = use->getUser(); 2709 2710 // Recognize and replace uses of bitcasts. Most calls to 2711 // unprototyped functions will use bitcasts. 2712 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2713 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2714 replaceUsesOfNonProtoConstant(bitcast, newFn); 2715 continue; 2716 } 2717 2718 // Recognize calls to the function. 2719 llvm::CallSite callSite(user); 2720 if (!callSite) continue; 2721 if (!callSite.isCallee(&*use)) continue; 2722 2723 // If the return types don't match exactly, then we can't 2724 // transform this call unless it's dead. 2725 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2726 continue; 2727 2728 // Get the call site's attribute list. 2729 SmallVector<llvm::AttributeSet, 8> newAttrs; 2730 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2731 2732 // Collect any return attributes from the call. 2733 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2734 newAttrs.push_back( 2735 llvm::AttributeSet::get(newFn->getContext(), 2736 oldAttrs.getRetAttributes())); 2737 2738 // If the function was passed too few arguments, don't transform. 2739 unsigned newNumArgs = newFn->arg_size(); 2740 if (callSite.arg_size() < newNumArgs) continue; 2741 2742 // If extra arguments were passed, we silently drop them. 2743 // If any of the types mismatch, we don't transform. 2744 unsigned argNo = 0; 2745 bool dontTransform = false; 2746 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2747 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2748 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2749 dontTransform = true; 2750 break; 2751 } 2752 2753 // Add any parameter attributes. 2754 if (oldAttrs.hasAttributes(argNo + 1)) 2755 newAttrs. 2756 push_back(llvm:: 2757 AttributeSet::get(newFn->getContext(), 2758 oldAttrs.getParamAttributes(argNo + 1))); 2759 } 2760 if (dontTransform) 2761 continue; 2762 2763 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2764 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2765 oldAttrs.getFnAttributes())); 2766 2767 // Okay, we can transform this. Create the new call instruction and copy 2768 // over the required information. 2769 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2770 2771 // Copy over any operand bundles. 2772 callSite.getOperandBundlesAsDefs(newBundles); 2773 2774 llvm::CallSite newCall; 2775 if (callSite.isCall()) { 2776 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2777 callSite.getInstruction()); 2778 } else { 2779 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2780 newCall = llvm::InvokeInst::Create(newFn, 2781 oldInvoke->getNormalDest(), 2782 oldInvoke->getUnwindDest(), 2783 newArgs, newBundles, "", 2784 callSite.getInstruction()); 2785 } 2786 newArgs.clear(); // for the next iteration 2787 2788 if (!newCall->getType()->isVoidTy()) 2789 newCall->takeName(callSite.getInstruction()); 2790 newCall.setAttributes( 2791 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2792 newCall.setCallingConv(callSite.getCallingConv()); 2793 2794 // Finally, remove the old call, replacing any uses with the new one. 2795 if (!callSite->use_empty()) 2796 callSite->replaceAllUsesWith(newCall.getInstruction()); 2797 2798 // Copy debug location attached to CI. 2799 if (callSite->getDebugLoc()) 2800 newCall->setDebugLoc(callSite->getDebugLoc()); 2801 2802 callSite->eraseFromParent(); 2803 } 2804 } 2805 2806 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2807 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2808 /// existing call uses of the old function in the module, this adjusts them to 2809 /// call the new function directly. 2810 /// 2811 /// This is not just a cleanup: the always_inline pass requires direct calls to 2812 /// functions to be able to inline them. If there is a bitcast in the way, it 2813 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2814 /// run at -O0. 2815 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2816 llvm::Function *NewFn) { 2817 // If we're redefining a global as a function, don't transform it. 2818 if (!isa<llvm::Function>(Old)) return; 2819 2820 replaceUsesOfNonProtoConstant(Old, NewFn); 2821 } 2822 2823 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2824 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2825 // If we have a definition, this might be a deferred decl. If the 2826 // instantiation is explicit, make sure we emit it at the end. 2827 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2828 GetAddrOfGlobalVar(VD); 2829 2830 EmitTopLevelDecl(VD); 2831 } 2832 2833 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2834 llvm::GlobalValue *GV) { 2835 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2836 2837 // Compute the function info and LLVM type. 2838 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2839 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2840 2841 // Get or create the prototype for the function. 2842 if (!GV || (GV->getType()->getElementType() != Ty)) 2843 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2844 /*DontDefer=*/true, 2845 /*IsForDefinition=*/true)); 2846 2847 // Already emitted. 2848 if (!GV->isDeclaration()) 2849 return; 2850 2851 // We need to set linkage and visibility on the function before 2852 // generating code for it because various parts of IR generation 2853 // want to propagate this information down (e.g. to local static 2854 // declarations). 2855 auto *Fn = cast<llvm::Function>(GV); 2856 setFunctionLinkage(GD, Fn); 2857 setFunctionDLLStorageClass(GD, Fn); 2858 2859 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2860 setGlobalVisibility(Fn, D); 2861 2862 MaybeHandleStaticInExternC(D, Fn); 2863 2864 maybeSetTrivialComdat(*D, *Fn); 2865 2866 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2867 2868 setFunctionDefinitionAttributes(D, Fn); 2869 SetLLVMFunctionAttributesForDefinition(D, Fn); 2870 2871 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2872 AddGlobalCtor(Fn, CA->getPriority()); 2873 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2874 AddGlobalDtor(Fn, DA->getPriority()); 2875 if (D->hasAttr<AnnotateAttr>()) 2876 AddGlobalAnnotations(D, Fn); 2877 } 2878 2879 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2880 const auto *D = cast<ValueDecl>(GD.getDecl()); 2881 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2882 assert(AA && "Not an alias?"); 2883 2884 StringRef MangledName = getMangledName(GD); 2885 2886 if (AA->getAliasee() == MangledName) { 2887 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2888 return; 2889 } 2890 2891 // If there is a definition in the module, then it wins over the alias. 2892 // This is dubious, but allow it to be safe. Just ignore the alias. 2893 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2894 if (Entry && !Entry->isDeclaration()) 2895 return; 2896 2897 Aliases.push_back(GD); 2898 2899 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2900 2901 // Create a reference to the named value. This ensures that it is emitted 2902 // if a deferred decl. 2903 llvm::Constant *Aliasee; 2904 if (isa<llvm::FunctionType>(DeclTy)) 2905 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2906 /*ForVTable=*/false); 2907 else 2908 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2909 llvm::PointerType::getUnqual(DeclTy), 2910 /*D=*/nullptr); 2911 2912 // Create the new alias itself, but don't set a name yet. 2913 auto *GA = llvm::GlobalAlias::create( 2914 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2915 2916 if (Entry) { 2917 if (GA->getAliasee() == Entry) { 2918 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2919 return; 2920 } 2921 2922 assert(Entry->isDeclaration()); 2923 2924 // If there is a declaration in the module, then we had an extern followed 2925 // by the alias, as in: 2926 // extern int test6(); 2927 // ... 2928 // int test6() __attribute__((alias("test7"))); 2929 // 2930 // Remove it and replace uses of it with the alias. 2931 GA->takeName(Entry); 2932 2933 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2934 Entry->getType())); 2935 Entry->eraseFromParent(); 2936 } else { 2937 GA->setName(MangledName); 2938 } 2939 2940 // Set attributes which are particular to an alias; this is a 2941 // specialization of the attributes which may be set on a global 2942 // variable/function. 2943 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2944 D->isWeakImported()) { 2945 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2946 } 2947 2948 if (const auto *VD = dyn_cast<VarDecl>(D)) 2949 if (VD->getTLSKind()) 2950 setTLSMode(GA, *VD); 2951 2952 setAliasAttributes(D, GA); 2953 } 2954 2955 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 2956 const auto *D = cast<ValueDecl>(GD.getDecl()); 2957 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 2958 assert(IFA && "Not an ifunc?"); 2959 2960 StringRef MangledName = getMangledName(GD); 2961 2962 if (IFA->getResolver() == MangledName) { 2963 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 2964 return; 2965 } 2966 2967 // Report an error if some definition overrides ifunc. 2968 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2969 if (Entry && !Entry->isDeclaration()) { 2970 GlobalDecl OtherGD; 2971 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2972 DiagnosedConflictingDefinitions.insert(GD).second) { 2973 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 2974 Diags.Report(OtherGD.getDecl()->getLocation(), 2975 diag::note_previous_definition); 2976 } 2977 return; 2978 } 2979 2980 Aliases.push_back(GD); 2981 2982 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2983 llvm::Constant *Resolver = 2984 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 2985 /*ForVTable=*/false); 2986 llvm::GlobalIFunc *GIF = 2987 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 2988 "", Resolver, &getModule()); 2989 if (Entry) { 2990 if (GIF->getResolver() == Entry) { 2991 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 2992 return; 2993 } 2994 assert(Entry->isDeclaration()); 2995 2996 // If there is a declaration in the module, then we had an extern followed 2997 // by the ifunc, as in: 2998 // extern int test(); 2999 // ... 3000 // int test() __attribute__((ifunc("resolver"))); 3001 // 3002 // Remove it and replace uses of it with the ifunc. 3003 GIF->takeName(Entry); 3004 3005 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3006 Entry->getType())); 3007 Entry->eraseFromParent(); 3008 } else 3009 GIF->setName(MangledName); 3010 3011 SetCommonAttributes(D, GIF); 3012 } 3013 3014 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3015 ArrayRef<llvm::Type*> Tys) { 3016 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3017 Tys); 3018 } 3019 3020 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3021 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3022 const StringLiteral *Literal, bool TargetIsLSB, 3023 bool &IsUTF16, unsigned &StringLength) { 3024 StringRef String = Literal->getString(); 3025 unsigned NumBytes = String.size(); 3026 3027 // Check for simple case. 3028 if (!Literal->containsNonAsciiOrNull()) { 3029 StringLength = NumBytes; 3030 return *Map.insert(std::make_pair(String, nullptr)).first; 3031 } 3032 3033 // Otherwise, convert the UTF8 literals into a string of shorts. 3034 IsUTF16 = true; 3035 3036 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3037 const UTF8 *FromPtr = (const UTF8 *)String.data(); 3038 UTF16 *ToPtr = &ToBuf[0]; 3039 3040 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 3041 &ToPtr, ToPtr + NumBytes, 3042 strictConversion); 3043 3044 // ConvertUTF8toUTF16 returns the length in ToPtr. 3045 StringLength = ToPtr - &ToBuf[0]; 3046 3047 // Add an explicit null. 3048 *ToPtr = 0; 3049 return *Map.insert(std::make_pair( 3050 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3051 (StringLength + 1) * 2), 3052 nullptr)).first; 3053 } 3054 3055 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3056 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3057 const StringLiteral *Literal, unsigned &StringLength) { 3058 StringRef String = Literal->getString(); 3059 StringLength = String.size(); 3060 return *Map.insert(std::make_pair(String, nullptr)).first; 3061 } 3062 3063 ConstantAddress 3064 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3065 unsigned StringLength = 0; 3066 bool isUTF16 = false; 3067 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3068 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3069 getDataLayout().isLittleEndian(), isUTF16, 3070 StringLength); 3071 3072 if (auto *C = Entry.second) 3073 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3074 3075 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3076 llvm::Constant *Zeros[] = { Zero, Zero }; 3077 llvm::Value *V; 3078 3079 // If we don't already have it, get __CFConstantStringClassReference. 3080 if (!CFConstantStringClassRef) { 3081 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3082 Ty = llvm::ArrayType::get(Ty, 0); 3083 llvm::Constant *GV = 3084 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3085 3086 if (getTarget().getTriple().isOSBinFormatCOFF()) { 3087 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3088 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3089 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3090 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3091 3092 const VarDecl *VD = nullptr; 3093 for (const auto &Result : DC->lookup(&II)) 3094 if ((VD = dyn_cast<VarDecl>(Result))) 3095 break; 3096 3097 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3098 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3099 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3100 } else { 3101 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3102 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3103 } 3104 } 3105 3106 // Decay array -> ptr 3107 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3108 CFConstantStringClassRef = V; 3109 } else { 3110 V = CFConstantStringClassRef; 3111 } 3112 3113 QualType CFTy = getContext().getCFConstantStringType(); 3114 3115 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3116 3117 llvm::Constant *Fields[4]; 3118 3119 // Class pointer. 3120 Fields[0] = cast<llvm::ConstantExpr>(V); 3121 3122 // Flags. 3123 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3124 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 3125 : llvm::ConstantInt::get(Ty, 0x07C8); 3126 3127 // String pointer. 3128 llvm::Constant *C = nullptr; 3129 if (isUTF16) { 3130 auto Arr = llvm::makeArrayRef( 3131 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3132 Entry.first().size() / 2); 3133 C = llvm::ConstantDataArray::get(VMContext, Arr); 3134 } else { 3135 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3136 } 3137 3138 // Note: -fwritable-strings doesn't make the backing store strings of 3139 // CFStrings writable. (See <rdar://problem/10657500>) 3140 auto *GV = 3141 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3142 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3143 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3144 // Don't enforce the target's minimum global alignment, since the only use 3145 // of the string is via this class initializer. 3146 CharUnits Align = isUTF16 3147 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3148 : getContext().getTypeAlignInChars(getContext().CharTy); 3149 GV->setAlignment(Align.getQuantity()); 3150 3151 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3152 // Without it LLVM can merge the string with a non unnamed_addr one during 3153 // LTO. Doing that changes the section it ends in, which surprises ld64. 3154 if (getTarget().getTriple().isOSBinFormatMachO()) 3155 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3156 : "__TEXT,__cstring,cstring_literals"); 3157 3158 // String. 3159 Fields[2] = 3160 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3161 3162 if (isUTF16) 3163 // Cast the UTF16 string to the correct type. 3164 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3165 3166 // String length. 3167 Ty = getTypes().ConvertType(getContext().LongTy); 3168 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3169 3170 CharUnits Alignment = getPointerAlign(); 3171 3172 // The struct. 3173 C = llvm::ConstantStruct::get(STy, Fields); 3174 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3175 llvm::GlobalVariable::PrivateLinkage, C, 3176 "_unnamed_cfstring_"); 3177 GV->setAlignment(Alignment.getQuantity()); 3178 switch (getTarget().getTriple().getObjectFormat()) { 3179 case llvm::Triple::UnknownObjectFormat: 3180 llvm_unreachable("unknown file format"); 3181 case llvm::Triple::COFF: 3182 GV->setSection(".rdata.cfstring"); 3183 break; 3184 case llvm::Triple::ELF: 3185 GV->setSection(".rodata.cfstring"); 3186 break; 3187 case llvm::Triple::MachO: 3188 GV->setSection("__DATA,__cfstring"); 3189 break; 3190 } 3191 Entry.second = GV; 3192 3193 return ConstantAddress(GV, Alignment); 3194 } 3195 3196 ConstantAddress 3197 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3198 unsigned StringLength = 0; 3199 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3200 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3201 3202 if (auto *C = Entry.second) 3203 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3204 3205 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3206 llvm::Constant *Zeros[] = { Zero, Zero }; 3207 llvm::Value *V; 3208 // If we don't already have it, get _NSConstantStringClassReference. 3209 if (!ConstantStringClassRef) { 3210 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3211 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3212 llvm::Constant *GV; 3213 if (LangOpts.ObjCRuntime.isNonFragile()) { 3214 std::string str = 3215 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3216 : "OBJC_CLASS_$_" + StringClass; 3217 GV = getObjCRuntime().GetClassGlobal(str); 3218 // Make sure the result is of the correct type. 3219 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3220 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3221 ConstantStringClassRef = V; 3222 } else { 3223 std::string str = 3224 StringClass.empty() ? "_NSConstantStringClassReference" 3225 : "_" + StringClass + "ClassReference"; 3226 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3227 GV = CreateRuntimeVariable(PTy, str); 3228 // Decay array -> ptr 3229 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3230 ConstantStringClassRef = V; 3231 } 3232 } else 3233 V = ConstantStringClassRef; 3234 3235 if (!NSConstantStringType) { 3236 // Construct the type for a constant NSString. 3237 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3238 D->startDefinition(); 3239 3240 QualType FieldTypes[3]; 3241 3242 // const int *isa; 3243 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3244 // const char *str; 3245 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3246 // unsigned int length; 3247 FieldTypes[2] = Context.UnsignedIntTy; 3248 3249 // Create fields 3250 for (unsigned i = 0; i < 3; ++i) { 3251 FieldDecl *Field = FieldDecl::Create(Context, D, 3252 SourceLocation(), 3253 SourceLocation(), nullptr, 3254 FieldTypes[i], /*TInfo=*/nullptr, 3255 /*BitWidth=*/nullptr, 3256 /*Mutable=*/false, 3257 ICIS_NoInit); 3258 Field->setAccess(AS_public); 3259 D->addDecl(Field); 3260 } 3261 3262 D->completeDefinition(); 3263 QualType NSTy = Context.getTagDeclType(D); 3264 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3265 } 3266 3267 llvm::Constant *Fields[3]; 3268 3269 // Class pointer. 3270 Fields[0] = cast<llvm::ConstantExpr>(V); 3271 3272 // String pointer. 3273 llvm::Constant *C = 3274 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3275 3276 llvm::GlobalValue::LinkageTypes Linkage; 3277 bool isConstant; 3278 Linkage = llvm::GlobalValue::PrivateLinkage; 3279 isConstant = !LangOpts.WritableStrings; 3280 3281 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3282 Linkage, C, ".str"); 3283 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3284 // Don't enforce the target's minimum global alignment, since the only use 3285 // of the string is via this class initializer. 3286 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3287 GV->setAlignment(Align.getQuantity()); 3288 Fields[1] = 3289 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3290 3291 // String length. 3292 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3293 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3294 3295 // The struct. 3296 CharUnits Alignment = getPointerAlign(); 3297 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3298 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3299 llvm::GlobalVariable::PrivateLinkage, C, 3300 "_unnamed_nsstring_"); 3301 GV->setAlignment(Alignment.getQuantity()); 3302 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3303 const char *NSStringNonFragileABISection = 3304 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3305 // FIXME. Fix section. 3306 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3307 ? NSStringNonFragileABISection 3308 : NSStringSection); 3309 Entry.second = GV; 3310 3311 return ConstantAddress(GV, Alignment); 3312 } 3313 3314 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3315 if (ObjCFastEnumerationStateType.isNull()) { 3316 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3317 D->startDefinition(); 3318 3319 QualType FieldTypes[] = { 3320 Context.UnsignedLongTy, 3321 Context.getPointerType(Context.getObjCIdType()), 3322 Context.getPointerType(Context.UnsignedLongTy), 3323 Context.getConstantArrayType(Context.UnsignedLongTy, 3324 llvm::APInt(32, 5), ArrayType::Normal, 0) 3325 }; 3326 3327 for (size_t i = 0; i < 4; ++i) { 3328 FieldDecl *Field = FieldDecl::Create(Context, 3329 D, 3330 SourceLocation(), 3331 SourceLocation(), nullptr, 3332 FieldTypes[i], /*TInfo=*/nullptr, 3333 /*BitWidth=*/nullptr, 3334 /*Mutable=*/false, 3335 ICIS_NoInit); 3336 Field->setAccess(AS_public); 3337 D->addDecl(Field); 3338 } 3339 3340 D->completeDefinition(); 3341 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3342 } 3343 3344 return ObjCFastEnumerationStateType; 3345 } 3346 3347 llvm::Constant * 3348 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3349 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3350 3351 // Don't emit it as the address of the string, emit the string data itself 3352 // as an inline array. 3353 if (E->getCharByteWidth() == 1) { 3354 SmallString<64> Str(E->getString()); 3355 3356 // Resize the string to the right size, which is indicated by its type. 3357 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3358 Str.resize(CAT->getSize().getZExtValue()); 3359 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3360 } 3361 3362 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3363 llvm::Type *ElemTy = AType->getElementType(); 3364 unsigned NumElements = AType->getNumElements(); 3365 3366 // Wide strings have either 2-byte or 4-byte elements. 3367 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3368 SmallVector<uint16_t, 32> Elements; 3369 Elements.reserve(NumElements); 3370 3371 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3372 Elements.push_back(E->getCodeUnit(i)); 3373 Elements.resize(NumElements); 3374 return llvm::ConstantDataArray::get(VMContext, Elements); 3375 } 3376 3377 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3378 SmallVector<uint32_t, 32> Elements; 3379 Elements.reserve(NumElements); 3380 3381 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3382 Elements.push_back(E->getCodeUnit(i)); 3383 Elements.resize(NumElements); 3384 return llvm::ConstantDataArray::get(VMContext, Elements); 3385 } 3386 3387 static llvm::GlobalVariable * 3388 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3389 CodeGenModule &CGM, StringRef GlobalName, 3390 CharUnits Alignment) { 3391 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3392 unsigned AddrSpace = 0; 3393 if (CGM.getLangOpts().OpenCL) 3394 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3395 3396 llvm::Module &M = CGM.getModule(); 3397 // Create a global variable for this string 3398 auto *GV = new llvm::GlobalVariable( 3399 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3400 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3401 GV->setAlignment(Alignment.getQuantity()); 3402 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3403 if (GV->isWeakForLinker()) { 3404 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3405 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3406 } 3407 3408 return GV; 3409 } 3410 3411 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3412 /// constant array for the given string literal. 3413 ConstantAddress 3414 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3415 StringRef Name) { 3416 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3417 3418 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3419 llvm::GlobalVariable **Entry = nullptr; 3420 if (!LangOpts.WritableStrings) { 3421 Entry = &ConstantStringMap[C]; 3422 if (auto GV = *Entry) { 3423 if (Alignment.getQuantity() > GV->getAlignment()) 3424 GV->setAlignment(Alignment.getQuantity()); 3425 return ConstantAddress(GV, Alignment); 3426 } 3427 } 3428 3429 SmallString<256> MangledNameBuffer; 3430 StringRef GlobalVariableName; 3431 llvm::GlobalValue::LinkageTypes LT; 3432 3433 // Mangle the string literal if the ABI allows for it. However, we cannot 3434 // do this if we are compiling with ASan or -fwritable-strings because they 3435 // rely on strings having normal linkage. 3436 if (!LangOpts.WritableStrings && 3437 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3438 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3439 llvm::raw_svector_ostream Out(MangledNameBuffer); 3440 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3441 3442 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3443 GlobalVariableName = MangledNameBuffer; 3444 } else { 3445 LT = llvm::GlobalValue::PrivateLinkage; 3446 GlobalVariableName = Name; 3447 } 3448 3449 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3450 if (Entry) 3451 *Entry = GV; 3452 3453 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3454 QualType()); 3455 return ConstantAddress(GV, Alignment); 3456 } 3457 3458 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3459 /// array for the given ObjCEncodeExpr node. 3460 ConstantAddress 3461 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3462 std::string Str; 3463 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3464 3465 return GetAddrOfConstantCString(Str); 3466 } 3467 3468 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3469 /// the literal and a terminating '\0' character. 3470 /// The result has pointer to array type. 3471 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3472 const std::string &Str, const char *GlobalName) { 3473 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3474 CharUnits Alignment = 3475 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3476 3477 llvm::Constant *C = 3478 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3479 3480 // Don't share any string literals if strings aren't constant. 3481 llvm::GlobalVariable **Entry = nullptr; 3482 if (!LangOpts.WritableStrings) { 3483 Entry = &ConstantStringMap[C]; 3484 if (auto GV = *Entry) { 3485 if (Alignment.getQuantity() > GV->getAlignment()) 3486 GV->setAlignment(Alignment.getQuantity()); 3487 return ConstantAddress(GV, Alignment); 3488 } 3489 } 3490 3491 // Get the default prefix if a name wasn't specified. 3492 if (!GlobalName) 3493 GlobalName = ".str"; 3494 // Create a global variable for this. 3495 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3496 GlobalName, Alignment); 3497 if (Entry) 3498 *Entry = GV; 3499 return ConstantAddress(GV, Alignment); 3500 } 3501 3502 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3503 const MaterializeTemporaryExpr *E, const Expr *Init) { 3504 assert((E->getStorageDuration() == SD_Static || 3505 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3506 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3507 3508 // If we're not materializing a subobject of the temporary, keep the 3509 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3510 QualType MaterializedType = Init->getType(); 3511 if (Init == E->GetTemporaryExpr()) 3512 MaterializedType = E->getType(); 3513 3514 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3515 3516 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3517 return ConstantAddress(Slot, Align); 3518 3519 // FIXME: If an externally-visible declaration extends multiple temporaries, 3520 // we need to give each temporary the same name in every translation unit (and 3521 // we also need to make the temporaries externally-visible). 3522 SmallString<256> Name; 3523 llvm::raw_svector_ostream Out(Name); 3524 getCXXABI().getMangleContext().mangleReferenceTemporary( 3525 VD, E->getManglingNumber(), Out); 3526 3527 APValue *Value = nullptr; 3528 if (E->getStorageDuration() == SD_Static) { 3529 // We might have a cached constant initializer for this temporary. Note 3530 // that this might have a different value from the value computed by 3531 // evaluating the initializer if the surrounding constant expression 3532 // modifies the temporary. 3533 Value = getContext().getMaterializedTemporaryValue(E, false); 3534 if (Value && Value->isUninit()) 3535 Value = nullptr; 3536 } 3537 3538 // Try evaluating it now, it might have a constant initializer. 3539 Expr::EvalResult EvalResult; 3540 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3541 !EvalResult.hasSideEffects()) 3542 Value = &EvalResult.Val; 3543 3544 llvm::Constant *InitialValue = nullptr; 3545 bool Constant = false; 3546 llvm::Type *Type; 3547 if (Value) { 3548 // The temporary has a constant initializer, use it. 3549 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3550 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3551 Type = InitialValue->getType(); 3552 } else { 3553 // No initializer, the initialization will be provided when we 3554 // initialize the declaration which performed lifetime extension. 3555 Type = getTypes().ConvertTypeForMem(MaterializedType); 3556 } 3557 3558 // Create a global variable for this lifetime-extended temporary. 3559 llvm::GlobalValue::LinkageTypes Linkage = 3560 getLLVMLinkageVarDefinition(VD, Constant); 3561 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3562 const VarDecl *InitVD; 3563 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3564 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3565 // Temporaries defined inside a class get linkonce_odr linkage because the 3566 // class can be defined in multipe translation units. 3567 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3568 } else { 3569 // There is no need for this temporary to have external linkage if the 3570 // VarDecl has external linkage. 3571 Linkage = llvm::GlobalVariable::InternalLinkage; 3572 } 3573 } 3574 unsigned AddrSpace = GetGlobalVarAddressSpace( 3575 VD, getContext().getTargetAddressSpace(MaterializedType)); 3576 auto *GV = new llvm::GlobalVariable( 3577 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3578 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3579 AddrSpace); 3580 setGlobalVisibility(GV, VD); 3581 GV->setAlignment(Align.getQuantity()); 3582 if (supportsCOMDAT() && GV->isWeakForLinker()) 3583 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3584 if (VD->getTLSKind()) 3585 setTLSMode(GV, *VD); 3586 MaterializedGlobalTemporaryMap[E] = GV; 3587 return ConstantAddress(GV, Align); 3588 } 3589 3590 /// EmitObjCPropertyImplementations - Emit information for synthesized 3591 /// properties for an implementation. 3592 void CodeGenModule::EmitObjCPropertyImplementations(const 3593 ObjCImplementationDecl *D) { 3594 for (const auto *PID : D->property_impls()) { 3595 // Dynamic is just for type-checking. 3596 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3597 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3598 3599 // Determine which methods need to be implemented, some may have 3600 // been overridden. Note that ::isPropertyAccessor is not the method 3601 // we want, that just indicates if the decl came from a 3602 // property. What we want to know is if the method is defined in 3603 // this implementation. 3604 if (!D->getInstanceMethod(PD->getGetterName())) 3605 CodeGenFunction(*this).GenerateObjCGetter( 3606 const_cast<ObjCImplementationDecl *>(D), PID); 3607 if (!PD->isReadOnly() && 3608 !D->getInstanceMethod(PD->getSetterName())) 3609 CodeGenFunction(*this).GenerateObjCSetter( 3610 const_cast<ObjCImplementationDecl *>(D), PID); 3611 } 3612 } 3613 } 3614 3615 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3616 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3617 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3618 ivar; ivar = ivar->getNextIvar()) 3619 if (ivar->getType().isDestructedType()) 3620 return true; 3621 3622 return false; 3623 } 3624 3625 static bool AllTrivialInitializers(CodeGenModule &CGM, 3626 ObjCImplementationDecl *D) { 3627 CodeGenFunction CGF(CGM); 3628 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3629 E = D->init_end(); B != E; ++B) { 3630 CXXCtorInitializer *CtorInitExp = *B; 3631 Expr *Init = CtorInitExp->getInit(); 3632 if (!CGF.isTrivialInitializer(Init)) 3633 return false; 3634 } 3635 return true; 3636 } 3637 3638 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3639 /// for an implementation. 3640 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3641 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3642 if (needsDestructMethod(D)) { 3643 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3644 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3645 ObjCMethodDecl *DTORMethod = 3646 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3647 cxxSelector, getContext().VoidTy, nullptr, D, 3648 /*isInstance=*/true, /*isVariadic=*/false, 3649 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3650 /*isDefined=*/false, ObjCMethodDecl::Required); 3651 D->addInstanceMethod(DTORMethod); 3652 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3653 D->setHasDestructors(true); 3654 } 3655 3656 // If the implementation doesn't have any ivar initializers, we don't need 3657 // a .cxx_construct. 3658 if (D->getNumIvarInitializers() == 0 || 3659 AllTrivialInitializers(*this, D)) 3660 return; 3661 3662 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3663 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3664 // The constructor returns 'self'. 3665 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3666 D->getLocation(), 3667 D->getLocation(), 3668 cxxSelector, 3669 getContext().getObjCIdType(), 3670 nullptr, D, /*isInstance=*/true, 3671 /*isVariadic=*/false, 3672 /*isPropertyAccessor=*/true, 3673 /*isImplicitlyDeclared=*/true, 3674 /*isDefined=*/false, 3675 ObjCMethodDecl::Required); 3676 D->addInstanceMethod(CTORMethod); 3677 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3678 D->setHasNonZeroConstructors(true); 3679 } 3680 3681 /// EmitNamespace - Emit all declarations in a namespace. 3682 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3683 for (auto *I : ND->decls()) { 3684 if (const auto *VD = dyn_cast<VarDecl>(I)) 3685 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3686 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3687 continue; 3688 EmitTopLevelDecl(I); 3689 } 3690 } 3691 3692 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3693 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3694 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3695 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3696 ErrorUnsupported(LSD, "linkage spec"); 3697 return; 3698 } 3699 3700 for (auto *I : LSD->decls()) { 3701 // Meta-data for ObjC class includes references to implemented methods. 3702 // Generate class's method definitions first. 3703 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3704 for (auto *M : OID->methods()) 3705 EmitTopLevelDecl(M); 3706 } 3707 EmitTopLevelDecl(I); 3708 } 3709 } 3710 3711 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3712 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3713 // Ignore dependent declarations. 3714 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3715 return; 3716 3717 switch (D->getKind()) { 3718 case Decl::CXXConversion: 3719 case Decl::CXXMethod: 3720 case Decl::Function: 3721 // Skip function templates 3722 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3723 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3724 return; 3725 3726 EmitGlobal(cast<FunctionDecl>(D)); 3727 // Always provide some coverage mapping 3728 // even for the functions that aren't emitted. 3729 AddDeferredUnusedCoverageMapping(D); 3730 break; 3731 3732 case Decl::Var: 3733 // Skip variable templates 3734 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3735 return; 3736 case Decl::VarTemplateSpecialization: 3737 EmitGlobal(cast<VarDecl>(D)); 3738 break; 3739 3740 // Indirect fields from global anonymous structs and unions can be 3741 // ignored; only the actual variable requires IR gen support. 3742 case Decl::IndirectField: 3743 break; 3744 3745 // C++ Decls 3746 case Decl::Namespace: 3747 EmitNamespace(cast<NamespaceDecl>(D)); 3748 break; 3749 case Decl::CXXRecord: 3750 // Emit any static data members, they may be definitions. 3751 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3752 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3753 EmitTopLevelDecl(I); 3754 break; 3755 // No code generation needed. 3756 case Decl::UsingShadow: 3757 case Decl::ClassTemplate: 3758 case Decl::VarTemplate: 3759 case Decl::VarTemplatePartialSpecialization: 3760 case Decl::FunctionTemplate: 3761 case Decl::TypeAliasTemplate: 3762 case Decl::Block: 3763 case Decl::Empty: 3764 break; 3765 case Decl::Using: // using X; [C++] 3766 if (CGDebugInfo *DI = getModuleDebugInfo()) 3767 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3768 return; 3769 case Decl::NamespaceAlias: 3770 if (CGDebugInfo *DI = getModuleDebugInfo()) 3771 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3772 return; 3773 case Decl::UsingDirective: // using namespace X; [C++] 3774 if (CGDebugInfo *DI = getModuleDebugInfo()) 3775 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3776 return; 3777 case Decl::CXXConstructor: 3778 // Skip function templates 3779 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3780 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3781 return; 3782 3783 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3784 break; 3785 case Decl::CXXDestructor: 3786 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3787 return; 3788 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3789 break; 3790 3791 case Decl::StaticAssert: 3792 // Nothing to do. 3793 break; 3794 3795 // Objective-C Decls 3796 3797 // Forward declarations, no (immediate) code generation. 3798 case Decl::ObjCInterface: 3799 case Decl::ObjCCategory: 3800 break; 3801 3802 case Decl::ObjCProtocol: { 3803 auto *Proto = cast<ObjCProtocolDecl>(D); 3804 if (Proto->isThisDeclarationADefinition()) 3805 ObjCRuntime->GenerateProtocol(Proto); 3806 break; 3807 } 3808 3809 case Decl::ObjCCategoryImpl: 3810 // Categories have properties but don't support synthesize so we 3811 // can ignore them here. 3812 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3813 break; 3814 3815 case Decl::ObjCImplementation: { 3816 auto *OMD = cast<ObjCImplementationDecl>(D); 3817 EmitObjCPropertyImplementations(OMD); 3818 EmitObjCIvarInitializations(OMD); 3819 ObjCRuntime->GenerateClass(OMD); 3820 // Emit global variable debug information. 3821 if (CGDebugInfo *DI = getModuleDebugInfo()) 3822 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3823 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3824 OMD->getClassInterface()), OMD->getLocation()); 3825 break; 3826 } 3827 case Decl::ObjCMethod: { 3828 auto *OMD = cast<ObjCMethodDecl>(D); 3829 // If this is not a prototype, emit the body. 3830 if (OMD->getBody()) 3831 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3832 break; 3833 } 3834 case Decl::ObjCCompatibleAlias: 3835 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3836 break; 3837 3838 case Decl::PragmaComment: { 3839 const auto *PCD = cast<PragmaCommentDecl>(D); 3840 switch (PCD->getCommentKind()) { 3841 case PCK_Unknown: 3842 llvm_unreachable("unexpected pragma comment kind"); 3843 case PCK_Linker: 3844 AppendLinkerOptions(PCD->getArg()); 3845 break; 3846 case PCK_Lib: 3847 AddDependentLib(PCD->getArg()); 3848 break; 3849 case PCK_Compiler: 3850 case PCK_ExeStr: 3851 case PCK_User: 3852 break; // We ignore all of these. 3853 } 3854 break; 3855 } 3856 3857 case Decl::PragmaDetectMismatch: { 3858 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3859 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3860 break; 3861 } 3862 3863 case Decl::LinkageSpec: 3864 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3865 break; 3866 3867 case Decl::FileScopeAsm: { 3868 // File-scope asm is ignored during device-side CUDA compilation. 3869 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3870 break; 3871 // File-scope asm is ignored during device-side OpenMP compilation. 3872 if (LangOpts.OpenMPIsDevice) 3873 break; 3874 auto *AD = cast<FileScopeAsmDecl>(D); 3875 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3876 break; 3877 } 3878 3879 case Decl::Import: { 3880 auto *Import = cast<ImportDecl>(D); 3881 3882 // Ignore import declarations that come from imported modules. 3883 if (Import->getImportedOwningModule()) 3884 break; 3885 if (CGDebugInfo *DI = getModuleDebugInfo()) 3886 DI->EmitImportDecl(*Import); 3887 3888 ImportedModules.insert(Import->getImportedModule()); 3889 break; 3890 } 3891 3892 case Decl::OMPThreadPrivate: 3893 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3894 break; 3895 3896 case Decl::ClassTemplateSpecialization: { 3897 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3898 if (DebugInfo && 3899 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3900 Spec->hasDefinition()) 3901 DebugInfo->completeTemplateDefinition(*Spec); 3902 break; 3903 } 3904 3905 case Decl::OMPDeclareReduction: 3906 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3907 break; 3908 3909 default: 3910 // Make sure we handled everything we should, every other kind is a 3911 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3912 // function. Need to recode Decl::Kind to do that easily. 3913 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3914 break; 3915 } 3916 } 3917 3918 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3919 // Do we need to generate coverage mapping? 3920 if (!CodeGenOpts.CoverageMapping) 3921 return; 3922 switch (D->getKind()) { 3923 case Decl::CXXConversion: 3924 case Decl::CXXMethod: 3925 case Decl::Function: 3926 case Decl::ObjCMethod: 3927 case Decl::CXXConstructor: 3928 case Decl::CXXDestructor: { 3929 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3930 return; 3931 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3932 if (I == DeferredEmptyCoverageMappingDecls.end()) 3933 DeferredEmptyCoverageMappingDecls[D] = true; 3934 break; 3935 } 3936 default: 3937 break; 3938 }; 3939 } 3940 3941 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3942 // Do we need to generate coverage mapping? 3943 if (!CodeGenOpts.CoverageMapping) 3944 return; 3945 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3946 if (Fn->isTemplateInstantiation()) 3947 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3948 } 3949 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3950 if (I == DeferredEmptyCoverageMappingDecls.end()) 3951 DeferredEmptyCoverageMappingDecls[D] = false; 3952 else 3953 I->second = false; 3954 } 3955 3956 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3957 std::vector<const Decl *> DeferredDecls; 3958 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3959 if (!I.second) 3960 continue; 3961 DeferredDecls.push_back(I.first); 3962 } 3963 // Sort the declarations by their location to make sure that the tests get a 3964 // predictable order for the coverage mapping for the unused declarations. 3965 if (CodeGenOpts.DumpCoverageMapping) 3966 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3967 [] (const Decl *LHS, const Decl *RHS) { 3968 return LHS->getLocStart() < RHS->getLocStart(); 3969 }); 3970 for (const auto *D : DeferredDecls) { 3971 switch (D->getKind()) { 3972 case Decl::CXXConversion: 3973 case Decl::CXXMethod: 3974 case Decl::Function: 3975 case Decl::ObjCMethod: { 3976 CodeGenPGO PGO(*this); 3977 GlobalDecl GD(cast<FunctionDecl>(D)); 3978 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3979 getFunctionLinkage(GD)); 3980 break; 3981 } 3982 case Decl::CXXConstructor: { 3983 CodeGenPGO PGO(*this); 3984 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3985 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3986 getFunctionLinkage(GD)); 3987 break; 3988 } 3989 case Decl::CXXDestructor: { 3990 CodeGenPGO PGO(*this); 3991 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3992 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3993 getFunctionLinkage(GD)); 3994 break; 3995 } 3996 default: 3997 break; 3998 }; 3999 } 4000 } 4001 4002 /// Turns the given pointer into a constant. 4003 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4004 const void *Ptr) { 4005 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4006 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4007 return llvm::ConstantInt::get(i64, PtrInt); 4008 } 4009 4010 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4011 llvm::NamedMDNode *&GlobalMetadata, 4012 GlobalDecl D, 4013 llvm::GlobalValue *Addr) { 4014 if (!GlobalMetadata) 4015 GlobalMetadata = 4016 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4017 4018 // TODO: should we report variant information for ctors/dtors? 4019 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4020 llvm::ConstantAsMetadata::get(GetPointerConstant( 4021 CGM.getLLVMContext(), D.getDecl()))}; 4022 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4023 } 4024 4025 /// For each function which is declared within an extern "C" region and marked 4026 /// as 'used', but has internal linkage, create an alias from the unmangled 4027 /// name to the mangled name if possible. People expect to be able to refer 4028 /// to such functions with an unmangled name from inline assembly within the 4029 /// same translation unit. 4030 void CodeGenModule::EmitStaticExternCAliases() { 4031 // Don't do anything if we're generating CUDA device code -- the NVPTX 4032 // assembly target doesn't support aliases. 4033 if (Context.getTargetInfo().getTriple().isNVPTX()) 4034 return; 4035 for (auto &I : StaticExternCValues) { 4036 IdentifierInfo *Name = I.first; 4037 llvm::GlobalValue *Val = I.second; 4038 if (Val && !getModule().getNamedValue(Name->getName())) 4039 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4040 } 4041 } 4042 4043 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4044 GlobalDecl &Result) const { 4045 auto Res = Manglings.find(MangledName); 4046 if (Res == Manglings.end()) 4047 return false; 4048 Result = Res->getValue(); 4049 return true; 4050 } 4051 4052 /// Emits metadata nodes associating all the global values in the 4053 /// current module with the Decls they came from. This is useful for 4054 /// projects using IR gen as a subroutine. 4055 /// 4056 /// Since there's currently no way to associate an MDNode directly 4057 /// with an llvm::GlobalValue, we create a global named metadata 4058 /// with the name 'clang.global.decl.ptrs'. 4059 void CodeGenModule::EmitDeclMetadata() { 4060 llvm::NamedMDNode *GlobalMetadata = nullptr; 4061 4062 for (auto &I : MangledDeclNames) { 4063 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4064 // Some mangled names don't necessarily have an associated GlobalValue 4065 // in this module, e.g. if we mangled it for DebugInfo. 4066 if (Addr) 4067 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4068 } 4069 } 4070 4071 /// Emits metadata nodes for all the local variables in the current 4072 /// function. 4073 void CodeGenFunction::EmitDeclMetadata() { 4074 if (LocalDeclMap.empty()) return; 4075 4076 llvm::LLVMContext &Context = getLLVMContext(); 4077 4078 // Find the unique metadata ID for this name. 4079 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4080 4081 llvm::NamedMDNode *GlobalMetadata = nullptr; 4082 4083 for (auto &I : LocalDeclMap) { 4084 const Decl *D = I.first; 4085 llvm::Value *Addr = I.second.getPointer(); 4086 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4087 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4088 Alloca->setMetadata( 4089 DeclPtrKind, llvm::MDNode::get( 4090 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4091 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4092 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4093 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4094 } 4095 } 4096 } 4097 4098 void CodeGenModule::EmitVersionIdentMetadata() { 4099 llvm::NamedMDNode *IdentMetadata = 4100 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4101 std::string Version = getClangFullVersion(); 4102 llvm::LLVMContext &Ctx = TheModule.getContext(); 4103 4104 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4105 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4106 } 4107 4108 void CodeGenModule::EmitTargetMetadata() { 4109 // Warning, new MangledDeclNames may be appended within this loop. 4110 // We rely on MapVector insertions adding new elements to the end 4111 // of the container. 4112 // FIXME: Move this loop into the one target that needs it, and only 4113 // loop over those declarations for which we couldn't emit the target 4114 // metadata when we emitted the declaration. 4115 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4116 auto Val = *(MangledDeclNames.begin() + I); 4117 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4118 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4119 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4120 } 4121 } 4122 4123 void CodeGenModule::EmitCoverageFile() { 4124 if (!getCodeGenOpts().CoverageFile.empty()) { 4125 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 4126 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4127 llvm::LLVMContext &Ctx = TheModule.getContext(); 4128 llvm::MDString *CoverageFile = 4129 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 4130 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4131 llvm::MDNode *CU = CUNode->getOperand(i); 4132 llvm::Metadata *Elts[] = {CoverageFile, CU}; 4133 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4134 } 4135 } 4136 } 4137 } 4138 4139 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4140 // Sema has checked that all uuid strings are of the form 4141 // "12345678-1234-1234-1234-1234567890ab". 4142 assert(Uuid.size() == 36); 4143 for (unsigned i = 0; i < 36; ++i) { 4144 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4145 else assert(isHexDigit(Uuid[i])); 4146 } 4147 4148 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4149 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4150 4151 llvm::Constant *Field3[8]; 4152 for (unsigned Idx = 0; Idx < 8; ++Idx) 4153 Field3[Idx] = llvm::ConstantInt::get( 4154 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4155 4156 llvm::Constant *Fields[4] = { 4157 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4158 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4159 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4160 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4161 }; 4162 4163 return llvm::ConstantStruct::getAnon(Fields); 4164 } 4165 4166 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4167 bool ForEH) { 4168 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4169 // FIXME: should we even be calling this method if RTTI is disabled 4170 // and it's not for EH? 4171 if (!ForEH && !getLangOpts().RTTI) 4172 return llvm::Constant::getNullValue(Int8PtrTy); 4173 4174 if (ForEH && Ty->isObjCObjectPointerType() && 4175 LangOpts.ObjCRuntime.isGNUFamily()) 4176 return ObjCRuntime->GetEHType(Ty); 4177 4178 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4179 } 4180 4181 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4182 for (auto RefExpr : D->varlists()) { 4183 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4184 bool PerformInit = 4185 VD->getAnyInitializer() && 4186 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4187 /*ForRef=*/false); 4188 4189 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4190 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4191 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4192 CXXGlobalInits.push_back(InitFunction); 4193 } 4194 } 4195 4196 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4197 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4198 if (InternalId) 4199 return InternalId; 4200 4201 if (isExternallyVisible(T->getLinkage())) { 4202 std::string OutName; 4203 llvm::raw_string_ostream Out(OutName); 4204 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4205 4206 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4207 } else { 4208 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4209 llvm::ArrayRef<llvm::Metadata *>()); 4210 } 4211 4212 return InternalId; 4213 } 4214 4215 /// Returns whether this module needs the "all-vtables" type identifier. 4216 bool CodeGenModule::NeedAllVtablesTypeId() const { 4217 // Returns true if at least one of vtable-based CFI checkers is enabled and 4218 // is not in the trapping mode. 4219 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4220 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4221 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4222 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4223 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4224 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4225 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4226 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4227 } 4228 4229 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4230 CharUnits Offset, 4231 const CXXRecordDecl *RD) { 4232 llvm::Metadata *MD = 4233 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4234 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4235 4236 if (CodeGenOpts.SanitizeCfiCrossDso) 4237 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4238 VTable->addTypeMetadata(Offset.getQuantity(), 4239 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4240 4241 if (NeedAllVtablesTypeId()) { 4242 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4243 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4244 } 4245 } 4246 4247 // Fills in the supplied string map with the set of target features for the 4248 // passed in function. 4249 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4250 const FunctionDecl *FD) { 4251 StringRef TargetCPU = Target.getTargetOpts().CPU; 4252 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4253 // If we have a TargetAttr build up the feature map based on that. 4254 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4255 4256 // Make a copy of the features as passed on the command line into the 4257 // beginning of the additional features from the function to override. 4258 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4259 Target.getTargetOpts().FeaturesAsWritten.begin(), 4260 Target.getTargetOpts().FeaturesAsWritten.end()); 4261 4262 if (ParsedAttr.second != "") 4263 TargetCPU = ParsedAttr.second; 4264 4265 // Now populate the feature map, first with the TargetCPU which is either 4266 // the default or a new one from the target attribute string. Then we'll use 4267 // the passed in features (FeaturesAsWritten) along with the new ones from 4268 // the attribute. 4269 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4270 } else { 4271 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4272 Target.getTargetOpts().Features); 4273 } 4274 } 4275 4276 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4277 if (!SanStats) 4278 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4279 4280 return *SanStats; 4281 } 4282