1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 /// setGlobalVisibility - Set the visibility for the given LLVM 99 /// GlobalValue according to the given clang AST visibility value. 100 static void setGlobalVisibility(llvm::GlobalValue *GV, 101 VisibilityAttr::VisibilityTypes Vis) { 102 // Do not change the visibility of internal definitions. 103 if (GV->hasInternalLinkage()) 104 return; 105 106 switch (Vis) { 107 default: assert(0 && "Unknown visibility!"); 108 case VisibilityAttr::DefaultVisibility: 109 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 110 break; 111 case VisibilityAttr::HiddenVisibility: 112 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 113 break; 114 case VisibilityAttr::ProtectedVisibility: 115 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 116 break; 117 } 118 } 119 120 static void setGlobalOptionVisibility(llvm::GlobalValue *GV, 121 LangOptions::VisibilityMode Vis) { 122 // Do not change the visibility of internal definitions. 123 if (GV->hasInternalLinkage()) 124 return; 125 126 switch (Vis) { 127 default: assert(0 && "Unknown visibility!"); 128 case LangOptions::NonVisibility: 129 break; 130 case LangOptions::DefaultVisibility: 131 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 break; 133 case LangOptions::HiddenVisibility: 134 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 135 break; 136 case LangOptions::ProtectedVisibility: 137 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 138 break; 139 } 140 } 141 142 143 /// \brief Retrieves the mangled name for the given declaration. 144 /// 145 /// If the given declaration requires a mangled name, returns an 146 /// const char* containing the mangled name. Otherwise, returns 147 /// the unmangled name. 148 /// 149 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 150 // In C, functions with no attributes never need to be mangled. Fastpath them. 151 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 152 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 153 return ND->getNameAsCString(); 154 } 155 156 llvm::SmallString<256> Name; 157 llvm::raw_svector_ostream Out(Name); 158 if (!mangleName(ND, Context, Out)) { 159 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 160 return ND->getNameAsCString(); 161 } 162 163 Name += '\0'; 164 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 165 } 166 167 /// AddGlobalCtor - Add a function to the list that will be called before 168 /// main() runs. 169 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 170 // FIXME: Type coercion of void()* types. 171 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 172 } 173 174 /// AddGlobalDtor - Add a function to the list that will be called 175 /// when the module is unloaded. 176 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 177 // FIXME: Type coercion of void()* types. 178 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 179 } 180 181 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 182 // Ctor function type is void()*. 183 llvm::FunctionType* CtorFTy = 184 llvm::FunctionType::get(llvm::Type::VoidTy, 185 std::vector<const llvm::Type*>(), 186 false); 187 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 188 189 // Get the type of a ctor entry, { i32, void ()* }. 190 llvm::StructType* CtorStructTy = 191 llvm::StructType::get(llvm::Type::Int32Ty, 192 llvm::PointerType::getUnqual(CtorFTy), NULL); 193 194 // Construct the constructor and destructor arrays. 195 std::vector<llvm::Constant*> Ctors; 196 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 197 std::vector<llvm::Constant*> S; 198 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 199 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 200 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 201 } 202 203 if (!Ctors.empty()) { 204 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 205 new llvm::GlobalVariable(AT, false, 206 llvm::GlobalValue::AppendingLinkage, 207 llvm::ConstantArray::get(AT, Ctors), 208 GlobalName, 209 &TheModule); 210 } 211 } 212 213 void CodeGenModule::EmitAnnotations() { 214 if (Annotations.empty()) 215 return; 216 217 // Create a new global variable for the ConstantStruct in the Module. 218 llvm::Constant *Array = 219 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 220 Annotations.size()), 221 Annotations); 222 llvm::GlobalValue *gv = 223 new llvm::GlobalVariable(Array->getType(), false, 224 llvm::GlobalValue::AppendingLinkage, Array, 225 "llvm.global.annotations", &TheModule); 226 gv->setSection("llvm.metadata"); 227 } 228 229 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 230 bool IsInternal, 231 bool IsInline, 232 llvm::GlobalValue *GV, 233 bool ForDefinition) { 234 // FIXME: Set up linkage and many other things. Note, this is a simple 235 // approximation of what we really want. 236 if (!ForDefinition) { 237 // Only a few attributes are set on declarations. 238 if (D->getAttr<DLLImportAttr>()) { 239 // The dllimport attribute is overridden by a subsequent declaration as 240 // dllexport. 241 if (!D->getAttr<DLLExportAttr>()) { 242 // dllimport attribute can be applied only to function decls, not to 243 // definitions. 244 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 245 if (!FD->getBody()) 246 GV->setLinkage(llvm::Function::DLLImportLinkage); 247 } else 248 GV->setLinkage(llvm::Function::DLLImportLinkage); 249 } 250 } else if (D->getAttr<WeakAttr>() || 251 D->getAttr<WeakImportAttr>()) { 252 // "extern_weak" is overloaded in LLVM; we probably should have 253 // separate linkage types for this. 254 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 255 } 256 } else { 257 if (IsInternal) { 258 GV->setLinkage(llvm::Function::InternalLinkage); 259 } else { 260 if (D->getAttr<DLLExportAttr>()) { 261 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 262 // The dllexport attribute is ignored for undefined symbols. 263 if (FD->getBody()) 264 GV->setLinkage(llvm::Function::DLLExportLinkage); 265 } else 266 GV->setLinkage(llvm::Function::DLLExportLinkage); 267 } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() || 268 IsInline) 269 GV->setLinkage(llvm::Function::WeakAnyLinkage); 270 } 271 } 272 273 // FIXME: Figure out the relative priority of the attribute, 274 // -fvisibility, and private_extern. 275 if (ForDefinition) { 276 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 277 setGlobalVisibility(GV, attr->getVisibility()); 278 else 279 setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode()); 280 } 281 282 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 283 GV->setSection(SA->getName()); 284 285 // Only add to llvm.used when we see a definition, otherwise we 286 // might add multiple times or risk the value being replaced by a 287 // subsequent RAUW. 288 if (ForDefinition) { 289 if (D->getAttr<UsedAttr>()) 290 AddUsedGlobal(GV); 291 } 292 } 293 294 void CodeGenModule::SetFunctionAttributes(const Decl *D, 295 const CGFunctionInfo &Info, 296 llvm::Function *F) { 297 AttributeListType AttributeList; 298 ConstructAttributeList(Info, D, AttributeList); 299 300 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 301 AttributeList.size())); 302 303 // Set the appropriate calling convention for the Function. 304 if (D->getAttr<FastCallAttr>()) 305 F->setCallingConv(llvm::CallingConv::X86_FastCall); 306 307 if (D->getAttr<StdCallAttr>()) 308 F->setCallingConv(llvm::CallingConv::X86_StdCall); 309 } 310 311 /// SetFunctionAttributesForDefinition - Set function attributes 312 /// specific to a function definition. 313 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 314 llvm::Function *F) { 315 if (isa<ObjCMethodDecl>(D)) { 316 SetGlobalValueAttributes(D, true, false, F, true); 317 } else { 318 const FunctionDecl *FD = cast<FunctionDecl>(D); 319 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 320 FD->isInline(), F, true); 321 } 322 323 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 324 F->addFnAttr(llvm::Attribute::NoUnwind); 325 326 if (D->getAttr<AlwaysInlineAttr>()) 327 F->addFnAttr(llvm::Attribute::AlwaysInline); 328 329 if (D->getAttr<NoinlineAttr>()) 330 F->addFnAttr(llvm::Attribute::NoInline); 331 } 332 333 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 334 llvm::Function *F) { 335 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 336 337 SetFunctionAttributesForDefinition(MD, F); 338 } 339 340 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 341 llvm::Function *F) { 342 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 343 344 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 345 FD->isInline(), F, false); 346 } 347 348 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 349 assert(!GV->isDeclaration() && 350 "Only globals with definition can force usage."); 351 LLVMUsed.push_back(GV); 352 } 353 354 void CodeGenModule::EmitLLVMUsed() { 355 // Don't create llvm.used if there is no need. 356 if (LLVMUsed.empty()) 357 return; 358 359 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 360 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 361 362 // Convert LLVMUsed to what ConstantArray needs. 363 std::vector<llvm::Constant*> UsedArray; 364 UsedArray.resize(LLVMUsed.size()); 365 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 366 UsedArray[i] = 367 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 368 } 369 370 llvm::GlobalVariable *GV = 371 new llvm::GlobalVariable(ATy, false, 372 llvm::GlobalValue::AppendingLinkage, 373 llvm::ConstantArray::get(ATy, UsedArray), 374 "llvm.used", &getModule()); 375 376 GV->setSection("llvm.metadata"); 377 } 378 379 void CodeGenModule::EmitDeferred() { 380 // Emit code for any potentially referenced deferred decls. Since a 381 // previously unused static decl may become used during the generation of code 382 // for a static function, iterate until no changes are made. 383 while (!DeferredDeclsToEmit.empty()) { 384 const ValueDecl *D = DeferredDeclsToEmit.back(); 385 DeferredDeclsToEmit.pop_back(); 386 387 // The mangled name for the decl must have been emitted in GlobalDeclMap. 388 // Look it up to see if it was defined with a stronger definition (e.g. an 389 // extern inline function with a strong function redefinition). If so, 390 // just ignore the deferred decl. 391 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 392 assert(CGRef && "Deferred decl wasn't referenced?"); 393 394 if (!CGRef->isDeclaration()) 395 continue; 396 397 // Otherwise, emit the definition and move on to the next one. 398 EmitGlobalDefinition(D); 399 } 400 } 401 402 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 403 /// annotation information for a given GlobalValue. The annotation struct is 404 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 405 /// GlobalValue being annotated. The second field is the constant string 406 /// created from the AnnotateAttr's annotation. The third field is a constant 407 /// string containing the name of the translation unit. The fourth field is 408 /// the line number in the file of the annotated value declaration. 409 /// 410 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 411 /// appears to. 412 /// 413 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 414 const AnnotateAttr *AA, 415 unsigned LineNo) { 416 llvm::Module *M = &getModule(); 417 418 // get [N x i8] constants for the annotation string, and the filename string 419 // which are the 2nd and 3rd elements of the global annotation structure. 420 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 421 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 422 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 423 true); 424 425 // Get the two global values corresponding to the ConstantArrays we just 426 // created to hold the bytes of the strings. 427 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 428 llvm::GlobalValue *annoGV = 429 new llvm::GlobalVariable(anno->getType(), false, 430 llvm::GlobalValue::InternalLinkage, anno, 431 GV->getName() + StringPrefix, M); 432 // translation unit name string, emitted into the llvm.metadata section. 433 llvm::GlobalValue *unitGV = 434 new llvm::GlobalVariable(unit->getType(), false, 435 llvm::GlobalValue::InternalLinkage, unit, 436 StringPrefix, M); 437 438 // Create the ConstantStruct that is the global annotion. 439 llvm::Constant *Fields[4] = { 440 llvm::ConstantExpr::getBitCast(GV, SBP), 441 llvm::ConstantExpr::getBitCast(annoGV, SBP), 442 llvm::ConstantExpr::getBitCast(unitGV, SBP), 443 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 444 }; 445 return llvm::ConstantStruct::get(Fields, 4, false); 446 } 447 448 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 449 // Never defer when EmitAllDecls is specified or the decl has 450 // attribute used. 451 if (Features.EmitAllDecls || Global->getAttr<UsedAttr>()) 452 return false; 453 454 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 455 // Constructors and destructors should never be deferred. 456 if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>()) 457 return false; 458 459 // FIXME: What about inline, and/or extern inline? 460 if (FD->getStorageClass() != FunctionDecl::Static) 461 return false; 462 } else { 463 const VarDecl *VD = cast<VarDecl>(Global); 464 assert(VD->isFileVarDecl() && "Invalid decl"); 465 466 if (VD->getStorageClass() != VarDecl::Static) 467 return false; 468 } 469 470 return true; 471 } 472 473 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 474 // If this is an alias definition (which otherwise looks like a declaration) 475 // emit it now. 476 if (Global->getAttr<AliasAttr>()) 477 return EmitAliasDefinition(Global); 478 479 // Ignore declarations, they will be emitted on their first use. 480 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 481 // Forward declarations are emitted lazily on first use. 482 if (!FD->isThisDeclarationADefinition()) 483 return; 484 } else { 485 const VarDecl *VD = cast<VarDecl>(Global); 486 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 487 488 // Forward declarations are emitted lazily on first use. 489 if (!VD->getInit() && VD->hasExternalStorage()) 490 return; 491 } 492 493 // Defer code generation when possible if this is a static definition, inline 494 // function etc. These we only want to emit if they are used. 495 if (MayDeferGeneration(Global)) { 496 // If the value has already been used, add it directly to the 497 // DeferredDeclsToEmit list. 498 const char *MangledName = getMangledName(Global); 499 if (GlobalDeclMap.count(MangledName)) 500 DeferredDeclsToEmit.push_back(Global); 501 else { 502 // Otherwise, remember that we saw a deferred decl with this name. The 503 // first use of the mangled name will cause it to move into 504 // DeferredDeclsToEmit. 505 DeferredDecls[MangledName] = Global; 506 } 507 return; 508 } 509 510 // Otherwise emit the definition. 511 EmitGlobalDefinition(Global); 512 } 513 514 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 516 EmitGlobalFunctionDefinition(FD); 517 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 518 EmitGlobalVarDefinition(VD); 519 } else { 520 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 521 } 522 } 523 524 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 525 /// module, create and return an llvm Function with the specified type. If there 526 /// is something in the module with the specified name, return it potentially 527 /// bitcasted to the right type. 528 /// 529 /// If D is non-null, it specifies a decl that correspond to this. This is used 530 /// to set the attributes on the function when it is first created. 531 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 532 const llvm::Type *Ty, 533 const FunctionDecl *D) { 534 // Lookup the entry, lazily creating it if necessary. 535 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 536 if (Entry) { 537 if (Entry->getType()->getElementType() == Ty) 538 return Entry; 539 540 // Make sure the result is of the correct type. 541 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 542 return llvm::ConstantExpr::getBitCast(Entry, PTy); 543 } 544 545 // This is the first use or definition of a mangled name. If there is a 546 // deferred decl with this name, remember that we need to emit it at the end 547 // of the file. 548 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 549 DeferredDecls.find(MangledName); 550 if (DDI != DeferredDecls.end()) { 551 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 552 // list, and remove it from DeferredDecls (since we don't need it anymore). 553 DeferredDeclsToEmit.push_back(DDI->second); 554 DeferredDecls.erase(DDI); 555 } 556 557 // This function doesn't have a complete type (for example, the return 558 // type is an incomplete struct). Use a fake type instead, and make 559 // sure not to try to set attributes. 560 bool ShouldSetAttributes = true; 561 if (!isa<llvm::FunctionType>(Ty)) { 562 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 563 std::vector<const llvm::Type*>(), false); 564 ShouldSetAttributes = false; 565 } 566 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 567 llvm::Function::ExternalLinkage, 568 "", &getModule()); 569 F->setName(MangledName); 570 if (D && ShouldSetAttributes) 571 SetFunctionAttributes(D, F); 572 Entry = F; 573 return F; 574 } 575 576 /// GetAddrOfFunction - Return the address of the given function. If Ty is 577 /// non-null, then this function will use the specified type if it has to 578 /// create it (this occurs when we see a definition of the function). 579 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 580 const llvm::Type *Ty) { 581 // If there was no specific requested type, just convert it now. 582 if (!Ty) 583 Ty = getTypes().ConvertType(D->getType()); 584 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 585 } 586 587 /// CreateRuntimeFunction - Create a new runtime function with the specified 588 /// type and name. 589 llvm::Constant * 590 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 591 const char *Name) { 592 // Convert Name to be a uniqued string from the IdentifierInfo table. 593 Name = getContext().Idents.get(Name).getName(); 594 return GetOrCreateLLVMFunction(Name, FTy, 0); 595 } 596 597 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 598 /// create and return an llvm GlobalVariable with the specified type. If there 599 /// is something in the module with the specified name, return it potentially 600 /// bitcasted to the right type. 601 /// 602 /// If D is non-null, it specifies a decl that correspond to this. This is used 603 /// to set the attributes on the global when it is first created. 604 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 605 const llvm::PointerType*Ty, 606 const VarDecl *D) { 607 // Lookup the entry, lazily creating it if necessary. 608 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 609 if (Entry) { 610 if (Entry->getType() == Ty) 611 return Entry; 612 613 // Make sure the result is of the correct type. 614 return llvm::ConstantExpr::getBitCast(Entry, Ty); 615 } 616 617 // We don't support __thread yet. 618 if (D && D->isThreadSpecified()) 619 ErrorUnsupported(D, "thread local ('__thread') variable", true); 620 621 // This is the first use or definition of a mangled name. If there is a 622 // deferred decl with this name, remember that we need to emit it at the end 623 // of the file. 624 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 625 DeferredDecls.find(MangledName); 626 if (DDI != DeferredDecls.end()) { 627 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 628 // list, and remove it from DeferredDecls (since we don't need it anymore). 629 DeferredDeclsToEmit.push_back(DDI->second); 630 DeferredDecls.erase(DDI); 631 } 632 633 llvm::GlobalVariable *GV = 634 new llvm::GlobalVariable(Ty->getElementType(), false, 635 llvm::GlobalValue::ExternalLinkage, 636 0, "", &getModule(), 637 0, Ty->getAddressSpace()); 638 GV->setName(MangledName); 639 640 // Handle things which are present even on external declarations. 641 if (D) { 642 // FIXME: This code is overly simple and should be merged with 643 // other global handling. 644 GV->setConstant(D->getType().isConstant(Context)); 645 646 // FIXME: Merge with other attribute handling code. 647 if (D->getStorageClass() == VarDecl::PrivateExtern) 648 setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); 649 650 if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 651 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 652 } 653 654 return Entry = GV; 655 } 656 657 658 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 659 /// given global variable. If Ty is non-null and if the global doesn't exist, 660 /// then it will be greated with the specified type instead of whatever the 661 /// normal requested type would be. 662 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 663 const llvm::Type *Ty) { 664 assert(D->hasGlobalStorage() && "Not a global variable"); 665 QualType ASTTy = D->getType(); 666 if (Ty == 0) 667 Ty = getTypes().ConvertTypeForMem(ASTTy); 668 669 const llvm::PointerType *PTy = 670 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 671 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 672 } 673 674 /// CreateRuntimeVariable - Create a new runtime global variable with the 675 /// specified type and name. 676 llvm::Constant * 677 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 678 const char *Name) { 679 // Convert Name to be a uniqued string from the IdentifierInfo table. 680 Name = getContext().Idents.get(Name).getName(); 681 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 682 } 683 684 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 685 llvm::Constant *Init = 0; 686 QualType ASTTy = D->getType(); 687 688 if (D->getInit() == 0) { 689 // This is a tentative definition; tentative definitions are 690 // implicitly initialized with { 0 } 691 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 692 if (ASTTy->isIncompleteArrayType()) { 693 // An incomplete array is normally [ TYPE x 0 ], but we need 694 // to fix it to [ TYPE x 1 ]. 695 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 696 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 697 } 698 Init = llvm::Constant::getNullValue(InitTy); 699 } else { 700 Init = EmitConstantExpr(D->getInit(), D->getType()); 701 if (!Init) { 702 ErrorUnsupported(D, "static initializer"); 703 QualType T = D->getInit()->getType(); 704 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 705 } 706 } 707 708 const llvm::Type* InitType = Init->getType(); 709 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 710 711 // Strip off a bitcast if we got one back. 712 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 713 assert(CE->getOpcode() == llvm::Instruction::BitCast); 714 Entry = CE->getOperand(0); 715 } 716 717 // Entry is now either a Function or GlobalVariable. 718 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 719 720 // If we already have this global and it has an initializer, then 721 // we are in the rare situation where we emitted the defining 722 // declaration of the global and are now being asked to emit a 723 // definition which would be common. This occurs, for example, in 724 // the following situation because statics can be emitted out of 725 // order: 726 // 727 // static int x; 728 // static int *y = &x; 729 // static int x = 10; 730 // int **z = &y; 731 // 732 // Bail here so we don't blow away the definition. Note that if we 733 // can't distinguish here if we emitted a definition with a null 734 // initializer, but this case is safe. 735 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 736 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 737 return; 738 } 739 740 // We have a definition after a declaration with the wrong type. 741 // We must make a new GlobalVariable* and update everything that used OldGV 742 // (a declaration or tentative definition) with the new GlobalVariable* 743 // (which will be a definition). 744 // 745 // This happens if there is a prototype for a global (e.g. 746 // "extern int x[];") and then a definition of a different type (e.g. 747 // "int x[10];"). This also happens when an initializer has a different type 748 // from the type of the global (this happens with unions). 749 // 750 // FIXME: This also ends up happening if there's a definition followed by 751 // a tentative definition! (Although Sema rejects that construct 752 // at the moment.) 753 if (GV == 0 || 754 GV->getType()->getElementType() != InitType || 755 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 756 757 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 758 GlobalDeclMap.erase(getMangledName(D)); 759 760 // Make a new global with the correct type, this is now guaranteed to work. 761 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 762 GV->takeName(cast<llvm::GlobalValue>(Entry)); 763 764 // Replace all uses of the old global with the new global 765 llvm::Constant *NewPtrForOldDecl = 766 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 767 Entry->replaceAllUsesWith(NewPtrForOldDecl); 768 769 // Erase the old global, since it is no longer used. 770 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 771 } 772 773 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 774 SourceManager &SM = Context.getSourceManager(); 775 AddAnnotation(EmitAnnotateAttr(GV, AA, 776 SM.getInstantiationLineNumber(D->getLocation()))); 777 } 778 779 GV->setInitializer(Init); 780 GV->setConstant(D->getType().isConstant(Context)); 781 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 782 783 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 784 setGlobalVisibility(GV, attr->getVisibility()); 785 else 786 setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode()); 787 788 // Set the llvm linkage type as appropriate. 789 if (D->getStorageClass() == VarDecl::Static) 790 GV->setLinkage(llvm::Function::InternalLinkage); 791 else if (D->getAttr<DLLImportAttr>()) 792 GV->setLinkage(llvm::Function::DLLImportLinkage); 793 else if (D->getAttr<DLLExportAttr>()) 794 GV->setLinkage(llvm::Function::DLLExportLinkage); 795 else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 796 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 797 else { 798 // FIXME: This isn't right. This should handle common linkage and other 799 // stuff. 800 switch (D->getStorageClass()) { 801 case VarDecl::Static: assert(0 && "This case handled above"); 802 case VarDecl::Auto: 803 case VarDecl::Register: 804 assert(0 && "Can't have auto or register globals"); 805 case VarDecl::None: 806 if (!D->getInit() && !CompileOpts.NoCommon) 807 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 808 else 809 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 810 break; 811 case VarDecl::Extern: 812 // FIXME: common 813 break; 814 815 case VarDecl::PrivateExtern: 816 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 817 // FIXME: common 818 break; 819 } 820 } 821 822 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 823 GV->setSection(SA->getName()); 824 825 if (D->getAttr<UsedAttr>()) 826 AddUsedGlobal(GV); 827 828 // Emit global variable debug information. 829 if (CGDebugInfo *DI = getDebugInfo()) { 830 DI->setLocation(D->getLocation()); 831 DI->EmitGlobalVariable(GV, D); 832 } 833 } 834 835 836 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 837 const llvm::FunctionType *Ty; 838 839 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 840 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 841 842 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 843 } else { 844 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 845 846 // As a special case, make sure that definitions of K&R function 847 // "type foo()" aren't declared as varargs (which forces the backend 848 // to do unnecessary work). 849 if (D->getType()->isFunctionNoProtoType()) { 850 assert(Ty->isVarArg() && "Didn't lower type as expected"); 851 // Due to stret, the lowered function could have arguments. 852 // Just create the same type as was lowered by ConvertType 853 // but strip off the varargs bit. 854 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 855 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 856 } 857 } 858 859 // Get or create the prototype for teh function. 860 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 861 862 // Strip off a bitcast if we got one back. 863 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 864 assert(CE->getOpcode() == llvm::Instruction::BitCast); 865 Entry = CE->getOperand(0); 866 } 867 868 869 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 870 // If the types mismatch then we have to rewrite the definition. 871 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 872 "Shouldn't replace non-declaration"); 873 874 // F is the Function* for the one with the wrong type, we must make a new 875 // Function* and update everything that used F (a declaration) with the new 876 // Function* (which will be a definition). 877 // 878 // This happens if there is a prototype for a function 879 // (e.g. "int f()") and then a definition of a different type 880 // (e.g. "int f(int x)"). Start by making a new function of the 881 // correct type, RAUW, then steal the name. 882 GlobalDeclMap.erase(getMangledName(D)); 883 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 884 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 885 886 // Replace uses of F with the Function we will endow with a body. 887 llvm::Constant *NewPtrForOldDecl = 888 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 889 Entry->replaceAllUsesWith(NewPtrForOldDecl); 890 891 // Ok, delete the old function now, which is dead. 892 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 893 894 Entry = NewFn; 895 } 896 897 llvm::Function *Fn = cast<llvm::Function>(Entry); 898 899 CodeGenFunction(*this).GenerateCode(D, Fn); 900 901 SetFunctionAttributesForDefinition(D, Fn); 902 903 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 904 AddGlobalCtor(Fn, CA->getPriority()); 905 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 906 AddGlobalDtor(Fn, DA->getPriority()); 907 } 908 909 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 910 const AliasAttr *AA = D->getAttr<AliasAttr>(); 911 assert(AA && "Not an alias?"); 912 913 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 914 915 // Unique the name through the identifier table. 916 const char *AliaseeName = AA->getAliasee().c_str(); 917 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 918 919 // Create a reference to the named value. This ensures that it is emitted 920 // if a deferred decl. 921 llvm::Constant *Aliasee; 922 if (isa<llvm::FunctionType>(DeclTy)) 923 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 924 else 925 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 926 llvm::PointerType::getUnqual(DeclTy), 0); 927 928 // Create the new alias itself, but don't set a name yet. 929 llvm::GlobalValue *GA = 930 new llvm::GlobalAlias(Aliasee->getType(), 931 llvm::Function::ExternalLinkage, 932 "", Aliasee, &getModule()); 933 934 // See if there is already something with the alias' name in the module. 935 const char *MangledName = getMangledName(D); 936 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 937 938 if (Entry && !Entry->isDeclaration()) { 939 // If there is a definition in the module, then it wins over the alias. 940 // This is dubious, but allow it to be safe. Just ignore the alias. 941 GA->eraseFromParent(); 942 return; 943 } 944 945 if (Entry) { 946 // If there is a declaration in the module, then we had an extern followed 947 // by the alias, as in: 948 // extern int test6(); 949 // ... 950 // int test6() __attribute__((alias("test7"))); 951 // 952 // Remove it and replace uses of it with the alias. 953 954 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 955 Entry->getType())); 956 Entry->eraseFromParent(); 957 } 958 959 // Now we know that there is no conflict, set the name. 960 Entry = GA; 961 GA->setName(MangledName); 962 963 // Alias should never be internal or inline. 964 SetGlobalValueAttributes(D, false, false, GA, true); 965 } 966 967 /// getBuiltinLibFunction - Given a builtin id for a function like 968 /// "__builtin_fabsf", return a Function* for "fabsf". 969 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 970 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 971 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 972 "isn't a lib fn"); 973 974 // Get the name, skip over the __builtin_ prefix (if necessary). 975 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 976 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 977 Name += 10; 978 979 // Get the type for the builtin. 980 Builtin::Context::GetBuiltinTypeError Error; 981 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 982 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 983 984 const llvm::FunctionType *Ty = 985 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 986 987 // Unique the name through the identifier table. 988 Name = getContext().Idents.get(Name).getName(); 989 // FIXME: param attributes for sext/zext etc. 990 return GetOrCreateLLVMFunction(Name, Ty, 0); 991 } 992 993 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 994 unsigned NumTys) { 995 return llvm::Intrinsic::getDeclaration(&getModule(), 996 (llvm::Intrinsic::ID)IID, Tys, NumTys); 997 } 998 999 llvm::Function *CodeGenModule::getMemCpyFn() { 1000 if (MemCpyFn) return MemCpyFn; 1001 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1002 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1003 } 1004 1005 llvm::Function *CodeGenModule::getMemMoveFn() { 1006 if (MemMoveFn) return MemMoveFn; 1007 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1008 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1009 } 1010 1011 llvm::Function *CodeGenModule::getMemSetFn() { 1012 if (MemSetFn) return MemSetFn; 1013 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1014 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1015 } 1016 1017 static void appendFieldAndPadding(CodeGenModule &CGM, 1018 std::vector<llvm::Constant*>& Fields, 1019 FieldDecl *FieldD, FieldDecl *NextFieldD, 1020 llvm::Constant* Field, 1021 RecordDecl* RD, const llvm::StructType *STy) { 1022 // Append the field. 1023 Fields.push_back(Field); 1024 1025 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1026 1027 int NextStructFieldNo; 1028 if (!NextFieldD) { 1029 NextStructFieldNo = STy->getNumElements(); 1030 } else { 1031 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1032 } 1033 1034 // Append padding 1035 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1036 llvm::Constant *C = 1037 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1038 1039 Fields.push_back(C); 1040 } 1041 } 1042 1043 llvm::Constant *CodeGenModule:: 1044 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1045 std::string str; 1046 unsigned StringLength; 1047 1048 bool isUTF16 = false; 1049 if (Literal->containsNonAsciiOrNull()) { 1050 // Convert from UTF-8 to UTF-16. 1051 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1052 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1053 UTF16 *ToPtr = &ToBuf[0]; 1054 1055 ConversionResult Result; 1056 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1057 &ToPtr, ToPtr+Literal->getByteLength(), 1058 strictConversion); 1059 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1060 1061 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1062 // without doing more surgery to this routine. Since we aren't explicitly 1063 // checking for endianness here, it's also a bug (when generating code for 1064 // a target that doesn't match the host endianness). Modeling this as an i16 1065 // array is likely the cleanest solution. 1066 StringLength = ToPtr-&ToBuf[0]; 1067 str.assign((char *)&ToBuf[0], StringLength*2); // Twice as many UTF8 chars. 1068 isUTF16 = true; 1069 } else { 1070 str.assign(Literal->getStrData(), Literal->getByteLength()); 1071 StringLength = str.length(); 1072 } 1073 llvm::StringMapEntry<llvm::Constant *> &Entry = 1074 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1075 1076 if (llvm::Constant *C = Entry.getValue()) 1077 return C; 1078 1079 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1080 llvm::Constant *Zeros[] = { Zero, Zero }; 1081 1082 if (!CFConstantStringClassRef) { 1083 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1084 Ty = llvm::ArrayType::get(Ty, 0); 1085 1086 // FIXME: This is fairly broken if 1087 // __CFConstantStringClassReference is already defined, in that it 1088 // will get renamed and the user will most likely see an opaque 1089 // error message. This is a general issue with relying on 1090 // particular names. 1091 llvm::GlobalVariable *GV = 1092 new llvm::GlobalVariable(Ty, false, 1093 llvm::GlobalVariable::ExternalLinkage, 0, 1094 "__CFConstantStringClassReference", 1095 &getModule()); 1096 1097 // Decay array -> ptr 1098 CFConstantStringClassRef = 1099 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1100 } 1101 1102 QualType CFTy = getContext().getCFConstantStringType(); 1103 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1104 1105 const llvm::StructType *STy = 1106 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1107 1108 std::vector<llvm::Constant*> Fields; 1109 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1110 1111 // Class pointer. 1112 FieldDecl *CurField = *Field++; 1113 FieldDecl *NextField = *Field++; 1114 appendFieldAndPadding(*this, Fields, CurField, NextField, 1115 CFConstantStringClassRef, CFRD, STy); 1116 1117 // Flags. 1118 CurField = NextField; 1119 NextField = *Field++; 1120 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1121 appendFieldAndPadding(*this, Fields, CurField, NextField, 1122 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1123 : llvm::ConstantInt::get(Ty, 0x07C8), 1124 CFRD, STy); 1125 1126 // String pointer. 1127 CurField = NextField; 1128 NextField = *Field++; 1129 llvm::Constant *C = llvm::ConstantArray::get(str); 1130 1131 const char *Sect, *Prefix; 1132 bool isConstant; 1133 if (isUTF16) { 1134 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1135 Sect = getContext().Target.getUnicodeStringSection(); 1136 // FIXME: Why does GCC not set constant here? 1137 isConstant = false; 1138 } else { 1139 Prefix = getContext().Target.getStringSymbolPrefix(true); 1140 Sect = getContext().Target.getCFStringDataSection(); 1141 // FIXME: -fwritable-strings should probably affect this, but we 1142 // are following gcc here. 1143 isConstant = true; 1144 } 1145 llvm::GlobalVariable *GV = 1146 new llvm::GlobalVariable(C->getType(), isConstant, 1147 llvm::GlobalValue::InternalLinkage, 1148 C, Prefix, &getModule()); 1149 if (Sect) 1150 GV->setSection(Sect); 1151 if (isUTF16) { 1152 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1153 GV->setAlignment(Align); 1154 } 1155 appendFieldAndPadding(*this, Fields, CurField, NextField, 1156 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1157 CFRD, STy); 1158 1159 // String length. 1160 CurField = NextField; 1161 NextField = 0; 1162 Ty = getTypes().ConvertType(getContext().LongTy); 1163 appendFieldAndPadding(*this, Fields, CurField, NextField, 1164 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1165 1166 // The struct. 1167 C = llvm::ConstantStruct::get(STy, Fields); 1168 GV = new llvm::GlobalVariable(C->getType(), true, 1169 llvm::GlobalVariable::InternalLinkage, C, 1170 getContext().Target.getCFStringSymbolPrefix(), 1171 &getModule()); 1172 if (const char *Sect = getContext().Target.getCFStringSection()) 1173 GV->setSection(Sect); 1174 Entry.setValue(GV); 1175 1176 return GV; 1177 } 1178 1179 /// GetStringForStringLiteral - Return the appropriate bytes for a 1180 /// string literal, properly padded to match the literal type. 1181 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1182 const char *StrData = E->getStrData(); 1183 unsigned Len = E->getByteLength(); 1184 1185 const ConstantArrayType *CAT = 1186 getContext().getAsConstantArrayType(E->getType()); 1187 assert(CAT && "String isn't pointer or array!"); 1188 1189 // Resize the string to the right size. 1190 std::string Str(StrData, StrData+Len); 1191 uint64_t RealLen = CAT->getSize().getZExtValue(); 1192 1193 if (E->isWide()) 1194 RealLen *= getContext().Target.getWCharWidth()/8; 1195 1196 Str.resize(RealLen, '\0'); 1197 1198 return Str; 1199 } 1200 1201 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1202 /// constant array for the given string literal. 1203 llvm::Constant * 1204 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1205 // FIXME: This can be more efficient. 1206 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1207 } 1208 1209 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1210 /// array for the given ObjCEncodeExpr node. 1211 llvm::Constant * 1212 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1213 std::string Str; 1214 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1215 1216 return GetAddrOfConstantCString(Str); 1217 } 1218 1219 1220 /// GenerateWritableString -- Creates storage for a string literal. 1221 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1222 bool constant, 1223 CodeGenModule &CGM, 1224 const char *GlobalName) { 1225 // Create Constant for this string literal. Don't add a '\0'. 1226 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1227 1228 // Create a global variable for this string 1229 return new llvm::GlobalVariable(C->getType(), constant, 1230 llvm::GlobalValue::InternalLinkage, 1231 C, GlobalName, &CGM.getModule()); 1232 } 1233 1234 /// GetAddrOfConstantString - Returns a pointer to a character array 1235 /// containing the literal. This contents are exactly that of the 1236 /// given string, i.e. it will not be null terminated automatically; 1237 /// see GetAddrOfConstantCString. Note that whether the result is 1238 /// actually a pointer to an LLVM constant depends on 1239 /// Feature.WriteableStrings. 1240 /// 1241 /// The result has pointer to array type. 1242 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1243 const char *GlobalName) { 1244 bool IsConstant = !Features.WritableStrings; 1245 1246 // Get the default prefix if a name wasn't specified. 1247 if (!GlobalName) 1248 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1249 1250 // Don't share any string literals if strings aren't constant. 1251 if (!IsConstant) 1252 return GenerateStringLiteral(str, false, *this, GlobalName); 1253 1254 llvm::StringMapEntry<llvm::Constant *> &Entry = 1255 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1256 1257 if (Entry.getValue()) 1258 return Entry.getValue(); 1259 1260 // Create a global variable for this. 1261 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1262 Entry.setValue(C); 1263 return C; 1264 } 1265 1266 /// GetAddrOfConstantCString - Returns a pointer to a character 1267 /// array containing the literal and a terminating '\-' 1268 /// character. The result has pointer to array type. 1269 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1270 const char *GlobalName){ 1271 return GetAddrOfConstantString(str + '\0', GlobalName); 1272 } 1273 1274 /// EmitObjCPropertyImplementations - Emit information for synthesized 1275 /// properties for an implementation. 1276 void CodeGenModule::EmitObjCPropertyImplementations(const 1277 ObjCImplementationDecl *D) { 1278 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1279 e = D->propimpl_end(); i != e; ++i) { 1280 ObjCPropertyImplDecl *PID = *i; 1281 1282 // Dynamic is just for type-checking. 1283 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1284 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1285 1286 // Determine which methods need to be implemented, some may have 1287 // been overridden. Note that ::isSynthesized is not the method 1288 // we want, that just indicates if the decl came from a 1289 // property. What we want to know is if the method is defined in 1290 // this implementation. 1291 if (!D->getInstanceMethod(PD->getGetterName())) 1292 CodeGenFunction(*this).GenerateObjCGetter( 1293 const_cast<ObjCImplementationDecl *>(D), PID); 1294 if (!PD->isReadOnly() && 1295 !D->getInstanceMethod(PD->getSetterName())) 1296 CodeGenFunction(*this).GenerateObjCSetter( 1297 const_cast<ObjCImplementationDecl *>(D), PID); 1298 } 1299 } 1300 } 1301 1302 /// EmitNamespace - Emit all declarations in a namespace. 1303 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1304 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1305 E = ND->decls_end(getContext()); 1306 I != E; ++I) 1307 EmitTopLevelDecl(*I); 1308 } 1309 1310 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1311 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1312 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1313 ErrorUnsupported(LSD, "linkage spec"); 1314 return; 1315 } 1316 1317 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1318 E = LSD->decls_end(getContext()); 1319 I != E; ++I) 1320 EmitTopLevelDecl(*I); 1321 } 1322 1323 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1324 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1325 // If an error has occurred, stop code generation, but continue 1326 // parsing and semantic analysis (to ensure all warnings and errors 1327 // are emitted). 1328 if (Diags.hasErrorOccurred()) 1329 return; 1330 1331 switch (D->getKind()) { 1332 case Decl::CXXMethod: 1333 case Decl::Function: 1334 case Decl::Var: 1335 EmitGlobal(cast<ValueDecl>(D)); 1336 break; 1337 1338 case Decl::Namespace: 1339 EmitNamespace(cast<NamespaceDecl>(D)); 1340 break; 1341 1342 // Objective-C Decls 1343 1344 // Forward declarations, no (immediate) code generation. 1345 case Decl::ObjCClass: 1346 case Decl::ObjCForwardProtocol: 1347 case Decl::ObjCCategory: 1348 break; 1349 case Decl::ObjCInterface: 1350 // If we already laid out this interface due to an @class, and if we 1351 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1352 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1353 break; 1354 1355 case Decl::ObjCProtocol: 1356 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1357 break; 1358 1359 case Decl::ObjCCategoryImpl: 1360 // Categories have properties but don't support synthesize so we 1361 // can ignore them here. 1362 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1363 break; 1364 1365 case Decl::ObjCImplementation: { 1366 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1367 EmitObjCPropertyImplementations(OMD); 1368 Runtime->GenerateClass(OMD); 1369 break; 1370 } 1371 case Decl::ObjCMethod: { 1372 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1373 // If this is not a prototype, emit the body. 1374 if (OMD->getBody()) 1375 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1376 break; 1377 } 1378 case Decl::ObjCCompatibleAlias: 1379 // compatibility-alias is a directive and has no code gen. 1380 break; 1381 1382 case Decl::LinkageSpec: 1383 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1384 break; 1385 1386 case Decl::FileScopeAsm: { 1387 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1388 std::string AsmString(AD->getAsmString()->getStrData(), 1389 AD->getAsmString()->getByteLength()); 1390 1391 const std::string &S = getModule().getModuleInlineAsm(); 1392 if (S.empty()) 1393 getModule().setModuleInlineAsm(AsmString); 1394 else 1395 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1396 break; 1397 } 1398 1399 default: 1400 // Make sure we handled everything we should, every other kind is 1401 // a non-top-level decl. FIXME: Would be nice to have an 1402 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1403 // that easily. 1404 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1405 } 1406 } 1407