1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // Everything located semantically within an anonymous namespace is
251   // always internal.
252   if (FD->isInAnonymousNamespace())
253     return CodeGenModule::GVA_Internal;
254 
255   // The kind of external linkage this function will have, if it is not
256   // inline or static.
257   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
258   if (Context.getLangOptions().CPlusPlus &&
259       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
260     External = CodeGenModule::GVA_TemplateInstantiation;
261 
262   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
263     // C++ member functions defined inside the class are always inline.
264     if (MD->isInline() || !MD->isOutOfLine())
265       return CodeGenModule::GVA_CXXInline;
266 
267     return External;
268   }
269 
270   // "static" functions get internal linkage.
271   if (FD->getStorageClass() == FunctionDecl::Static)
272     return CodeGenModule::GVA_Internal;
273 
274   if (!FD->isInline())
275     return External;
276 
277   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
278     // GNU or C99 inline semantics. Determine whether this symbol should be
279     // externally visible.
280     if (FD->isInlineDefinitionExternallyVisible())
281       return External;
282 
283     // C99 inline semantics, where the symbol is not externally visible.
284     return CodeGenModule::GVA_C99Inline;
285   }
286 
287   // C++ inline semantics
288   assert(Features.CPlusPlus && "Must be in C++ mode");
289   return CodeGenModule::GVA_CXXInline;
290 }
291 
292 /// SetFunctionDefinitionAttributes - Set attributes for a global.
293 ///
294 /// FIXME: This is currently only done for aliases and functions, but not for
295 /// variables (these details are set in EmitGlobalVarDefinition for variables).
296 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
297                                                     llvm::GlobalValue *GV) {
298   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
299 
300   if (Linkage == GVA_Internal) {
301     GV->setLinkage(llvm::Function::InternalLinkage);
302   } else if (D->hasAttr<DLLExportAttr>()) {
303     GV->setLinkage(llvm::Function::DLLExportLinkage);
304   } else if (D->hasAttr<WeakAttr>()) {
305     GV->setLinkage(llvm::Function::WeakAnyLinkage);
306   } else if (Linkage == GVA_C99Inline) {
307     // In C99 mode, 'inline' functions are guaranteed to have a strong
308     // definition somewhere else, so we can use available_externally linkage.
309     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
310   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
311     // In C++, the compiler has to emit a definition in every translation unit
312     // that references the function.  We should use linkonce_odr because
313     // a) if all references in this translation unit are optimized away, we
314     // don't need to codegen it.  b) if the function persists, it needs to be
315     // merged with other definitions. c) C++ has the ODR, so we know the
316     // definition is dependable.
317     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
318   } else {
319     assert(Linkage == GVA_StrongExternal);
320     // Otherwise, we have strong external linkage.
321     GV->setLinkage(llvm::Function::ExternalLinkage);
322   }
323 
324   SetCommonAttributes(D, GV);
325 }
326 
327 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
328                                               const CGFunctionInfo &Info,
329                                               llvm::Function *F) {
330   unsigned CallingConv;
331   AttributeListType AttributeList;
332   ConstructAttributeList(Info, D, AttributeList, CallingConv);
333   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
334                                           AttributeList.size()));
335   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
336 }
337 
338 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
339                                                            llvm::Function *F) {
340   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
341     F->addFnAttr(llvm::Attribute::NoUnwind);
342 
343   if (D->hasAttr<AlwaysInlineAttr>())
344     F->addFnAttr(llvm::Attribute::AlwaysInline);
345 
346   if (D->hasAttr<NoInlineAttr>())
347     F->addFnAttr(llvm::Attribute::NoInline);
348 }
349 
350 void CodeGenModule::SetCommonAttributes(const Decl *D,
351                                         llvm::GlobalValue *GV) {
352   setGlobalVisibility(GV, D);
353 
354   if (D->hasAttr<UsedAttr>())
355     AddUsedGlobal(GV);
356 
357   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
358     GV->setSection(SA->getName());
359 }
360 
361 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
362                                                   llvm::Function *F,
363                                                   const CGFunctionInfo &FI) {
364   SetLLVMFunctionAttributes(D, FI, F);
365   SetLLVMFunctionAttributesForDefinition(D, F);
366 
367   F->setLinkage(llvm::Function::InternalLinkage);
368 
369   SetCommonAttributes(D, F);
370 }
371 
372 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
373                                           llvm::Function *F,
374                                           bool IsIncompleteFunction) {
375   if (!IsIncompleteFunction)
376     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
377 
378   // Only a few attributes are set on declarations; these may later be
379   // overridden by a definition.
380 
381   if (FD->hasAttr<DLLImportAttr>()) {
382     F->setLinkage(llvm::Function::DLLImportLinkage);
383   } else if (FD->hasAttr<WeakAttr>() ||
384              FD->hasAttr<WeakImportAttr>()) {
385     // "extern_weak" is overloaded in LLVM; we probably should have
386     // separate linkage types for this.
387     F->setLinkage(llvm::Function::ExternalWeakLinkage);
388   } else {
389     F->setLinkage(llvm::Function::ExternalLinkage);
390   }
391 
392   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
393     F->setSection(SA->getName());
394 }
395 
396 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
397   assert(!GV->isDeclaration() &&
398          "Only globals with definition can force usage.");
399   LLVMUsed.push_back(GV);
400 }
401 
402 void CodeGenModule::EmitLLVMUsed() {
403   // Don't create llvm.used if there is no need.
404   if (LLVMUsed.empty())
405     return;
406 
407   llvm::Type *i8PTy =
408       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
409 
410   // Convert LLVMUsed to what ConstantArray needs.
411   std::vector<llvm::Constant*> UsedArray;
412   UsedArray.resize(LLVMUsed.size());
413   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
414     UsedArray[i] =
415      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
416                                       i8PTy);
417   }
418 
419   if (UsedArray.empty())
420     return;
421   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
422 
423   llvm::GlobalVariable *GV =
424     new llvm::GlobalVariable(getModule(), ATy, false,
425                              llvm::GlobalValue::AppendingLinkage,
426                              llvm::ConstantArray::get(ATy, UsedArray),
427                              "llvm.used");
428 
429   GV->setSection("llvm.metadata");
430 }
431 
432 void CodeGenModule::EmitDeferred() {
433   // Emit code for any potentially referenced deferred decls.  Since a
434   // previously unused static decl may become used during the generation of code
435   // for a static function, iterate until no  changes are made.
436   while (!DeferredDeclsToEmit.empty()) {
437     GlobalDecl D = DeferredDeclsToEmit.back();
438     DeferredDeclsToEmit.pop_back();
439 
440     // The mangled name for the decl must have been emitted in GlobalDeclMap.
441     // Look it up to see if it was defined with a stronger definition (e.g. an
442     // extern inline function with a strong function redefinition).  If so,
443     // just ignore the deferred decl.
444     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
445     assert(CGRef && "Deferred decl wasn't referenced?");
446 
447     if (!CGRef->isDeclaration())
448       continue;
449 
450     // Otherwise, emit the definition and move on to the next one.
451     EmitGlobalDefinition(D);
452   }
453 }
454 
455 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
456 /// annotation information for a given GlobalValue.  The annotation struct is
457 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
458 /// GlobalValue being annotated.  The second field is the constant string
459 /// created from the AnnotateAttr's annotation.  The third field is a constant
460 /// string containing the name of the translation unit.  The fourth field is
461 /// the line number in the file of the annotated value declaration.
462 ///
463 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
464 ///        appears to.
465 ///
466 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
467                                                 const AnnotateAttr *AA,
468                                                 unsigned LineNo) {
469   llvm::Module *M = &getModule();
470 
471   // get [N x i8] constants for the annotation string, and the filename string
472   // which are the 2nd and 3rd elements of the global annotation structure.
473   const llvm::Type *SBP =
474       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
475   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
476                                                   AA->getAnnotation(), true);
477   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
478                                                   M->getModuleIdentifier(),
479                                                   true);
480 
481   // Get the two global values corresponding to the ConstantArrays we just
482   // created to hold the bytes of the strings.
483   llvm::GlobalValue *annoGV =
484     new llvm::GlobalVariable(*M, anno->getType(), false,
485                              llvm::GlobalValue::PrivateLinkage, anno,
486                              GV->getName());
487   // translation unit name string, emitted into the llvm.metadata section.
488   llvm::GlobalValue *unitGV =
489     new llvm::GlobalVariable(*M, unit->getType(), false,
490                              llvm::GlobalValue::PrivateLinkage, unit,
491                              ".str");
492 
493   // Create the ConstantStruct for the global annotation.
494   llvm::Constant *Fields[4] = {
495     llvm::ConstantExpr::getBitCast(GV, SBP),
496     llvm::ConstantExpr::getBitCast(annoGV, SBP),
497     llvm::ConstantExpr::getBitCast(unitGV, SBP),
498     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
499   };
500   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
501 }
502 
503 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
504   // Never defer when EmitAllDecls is specified or the decl has
505   // attribute used.
506   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
507     return false;
508 
509   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
510     // Constructors and destructors should never be deferred.
511     if (FD->hasAttr<ConstructorAttr>() ||
512         FD->hasAttr<DestructorAttr>())
513       return false;
514 
515     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
516 
517     // static, static inline, always_inline, and extern inline functions can
518     // always be deferred.  Normal inline functions can be deferred in C99/C++.
519     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
520         Linkage == GVA_CXXInline)
521       return true;
522     return false;
523   }
524 
525   const VarDecl *VD = cast<VarDecl>(Global);
526   assert(VD->isFileVarDecl() && "Invalid decl");
527 
528   return VD->getStorageClass() == VarDecl::Static;
529 }
530 
531 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
532   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
533 
534   // If this is an alias definition (which otherwise looks like a declaration)
535   // emit it now.
536   if (Global->hasAttr<AliasAttr>())
537     return EmitAliasDefinition(Global);
538 
539   // Ignore declarations, they will be emitted on their first use.
540   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
541     // Forward declarations are emitted lazily on first use.
542     if (!FD->isThisDeclarationADefinition())
543       return;
544   } else {
545     const VarDecl *VD = cast<VarDecl>(Global);
546     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
547 
548     // In C++, if this is marked "extern", defer code generation.
549     if (getLangOptions().CPlusPlus && !VD->getInit() &&
550         (VD->getStorageClass() == VarDecl::Extern ||
551          VD->isExternC()))
552       return;
553 
554     // In C, if this isn't a definition, defer code generation.
555     if (!getLangOptions().CPlusPlus && !VD->getInit())
556       return;
557   }
558 
559   // Defer code generation when possible if this is a static definition, inline
560   // function etc.  These we only want to emit if they are used.
561   if (MayDeferGeneration(Global)) {
562     // If the value has already been used, add it directly to the
563     // DeferredDeclsToEmit list.
564     const char *MangledName = getMangledName(GD);
565     if (GlobalDeclMap.count(MangledName))
566       DeferredDeclsToEmit.push_back(GD);
567     else {
568       // Otherwise, remember that we saw a deferred decl with this name.  The
569       // first use of the mangled name will cause it to move into
570       // DeferredDeclsToEmit.
571       DeferredDecls[MangledName] = GD;
572     }
573     return;
574   }
575 
576   // Otherwise emit the definition.
577   EmitGlobalDefinition(GD);
578 }
579 
580 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
581   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
582 
583   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
584     EmitCXXConstructor(CD, GD.getCtorType());
585   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
586     EmitCXXDestructor(DD, GD.getDtorType());
587   else if (isa<FunctionDecl>(D))
588     EmitGlobalFunctionDefinition(GD);
589   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
590     EmitGlobalVarDefinition(VD);
591   else {
592     assert(0 && "Invalid argument to EmitGlobalDefinition()");
593   }
594 }
595 
596 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
597 /// module, create and return an llvm Function with the specified type. If there
598 /// is something in the module with the specified name, return it potentially
599 /// bitcasted to the right type.
600 ///
601 /// If D is non-null, it specifies a decl that correspond to this.  This is used
602 /// to set the attributes on the function when it is first created.
603 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
604                                                        const llvm::Type *Ty,
605                                                        GlobalDecl D) {
606   // Lookup the entry, lazily creating it if necessary.
607   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
608   if (Entry) {
609     if (Entry->getType()->getElementType() == Ty)
610       return Entry;
611 
612     // Make sure the result is of the correct type.
613     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
614     return llvm::ConstantExpr::getBitCast(Entry, PTy);
615   }
616 
617   // This is the first use or definition of a mangled name.  If there is a
618   // deferred decl with this name, remember that we need to emit it at the end
619   // of the file.
620   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
621     DeferredDecls.find(MangledName);
622   if (DDI != DeferredDecls.end()) {
623     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
624     // list, and remove it from DeferredDecls (since we don't need it anymore).
625     DeferredDeclsToEmit.push_back(DDI->second);
626     DeferredDecls.erase(DDI);
627   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
628     // If this the first reference to a C++ inline function in a class, queue up
629     // the deferred function body for emission.  These are not seen as
630     // top-level declarations.
631     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
632       DeferredDeclsToEmit.push_back(D);
633     // A called constructor which has no definition or declaration need be
634     // synthesized.
635     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
636       const CXXRecordDecl *ClassDecl =
637         cast<CXXRecordDecl>(CD->getDeclContext());
638       if (CD->isCopyConstructor(getContext()))
639         DeferredCopyConstructorToEmit(D);
640       else if (!ClassDecl->hasUserDeclaredConstructor())
641         DeferredDeclsToEmit.push_back(D);
642     }
643     else if (isa<CXXDestructorDecl>(FD))
644        DeferredDestructorToEmit(D);
645     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
646            if (MD->isCopyAssignment())
647              DeferredCopyAssignmentToEmit(D);
648   }
649 
650   // This function doesn't have a complete type (for example, the return
651   // type is an incomplete struct). Use a fake type instead, and make
652   // sure not to try to set attributes.
653   bool IsIncompleteFunction = false;
654   if (!isa<llvm::FunctionType>(Ty)) {
655     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
656                                  std::vector<const llvm::Type*>(), false);
657     IsIncompleteFunction = true;
658   }
659   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
660                                              llvm::Function::ExternalLinkage,
661                                              "", &getModule());
662   F->setName(MangledName);
663   if (D.getDecl())
664     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
665                           IsIncompleteFunction);
666   Entry = F;
667   return F;
668 }
669 
670 /// Defer definition of copy constructor(s) which need be implicitly defined.
671 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
672   const CXXConstructorDecl *CD =
673     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
674   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
675   if (ClassDecl->hasTrivialCopyConstructor() ||
676       ClassDecl->hasUserDeclaredCopyConstructor())
677     return;
678 
679   // First make sure all direct base classes and virtual bases and non-static
680   // data mebers which need to have their copy constructors implicitly defined
681   // are defined. 12.8.p7
682   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
683        Base != ClassDecl->bases_end(); ++Base) {
684     CXXRecordDecl *BaseClassDecl
685       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
686     if (CXXConstructorDecl *BaseCopyCtor =
687         BaseClassDecl->getCopyConstructor(Context, 0))
688       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
689   }
690 
691   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
692        FieldEnd = ClassDecl->field_end();
693        Field != FieldEnd; ++Field) {
694     QualType FieldType = Context.getCanonicalType((*Field)->getType());
695     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
696       FieldType = Array->getElementType();
697     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
698       if ((*Field)->isAnonymousStructOrUnion())
699         continue;
700       CXXRecordDecl *FieldClassDecl
701         = cast<CXXRecordDecl>(FieldClassType->getDecl());
702       if (CXXConstructorDecl *FieldCopyCtor =
703           FieldClassDecl->getCopyConstructor(Context, 0))
704         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
705     }
706   }
707   DeferredDeclsToEmit.push_back(CopyCtorDecl);
708 }
709 
710 /// Defer definition of copy assignments which need be implicitly defined.
711 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
712   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
713   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
714 
715   if (ClassDecl->hasTrivialCopyAssignment() ||
716       ClassDecl->hasUserDeclaredCopyAssignment())
717     return;
718 
719   // First make sure all direct base classes and virtual bases and non-static
720   // data mebers which need to have their copy assignments implicitly defined
721   // are defined. 12.8.p12
722   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
723        Base != ClassDecl->bases_end(); ++Base) {
724     CXXRecordDecl *BaseClassDecl
725       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
726     const CXXMethodDecl *MD = 0;
727     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
728         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
729         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
730       GetAddrOfFunction(MD, 0);
731   }
732 
733   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
734        FieldEnd = ClassDecl->field_end();
735        Field != FieldEnd; ++Field) {
736     QualType FieldType = Context.getCanonicalType((*Field)->getType());
737     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
738       FieldType = Array->getElementType();
739     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
740       if ((*Field)->isAnonymousStructOrUnion())
741         continue;
742       CXXRecordDecl *FieldClassDecl
743         = cast<CXXRecordDecl>(FieldClassType->getDecl());
744       const CXXMethodDecl *MD = 0;
745       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
746           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
747           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
748           GetAddrOfFunction(MD, 0);
749     }
750   }
751   DeferredDeclsToEmit.push_back(CopyAssignDecl);
752 }
753 
754 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
755   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
756   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
757   if (ClassDecl->hasTrivialDestructor() ||
758       ClassDecl->hasUserDeclaredDestructor())
759     return;
760 
761   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
762        Base != ClassDecl->bases_end(); ++Base) {
763     CXXRecordDecl *BaseClassDecl
764       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
765     if (const CXXDestructorDecl *BaseDtor =
766           BaseClassDecl->getDestructor(Context))
767       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
768   }
769 
770   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
771        FieldEnd = ClassDecl->field_end();
772        Field != FieldEnd; ++Field) {
773     QualType FieldType = Context.getCanonicalType((*Field)->getType());
774     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
775       FieldType = Array->getElementType();
776     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
777       if ((*Field)->isAnonymousStructOrUnion())
778         continue;
779       CXXRecordDecl *FieldClassDecl
780         = cast<CXXRecordDecl>(FieldClassType->getDecl());
781       if (const CXXDestructorDecl *FieldDtor =
782             FieldClassDecl->getDestructor(Context))
783         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
784     }
785   }
786   DeferredDeclsToEmit.push_back(DtorDecl);
787 }
788 
789 
790 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
791 /// non-null, then this function will use the specified type if it has to
792 /// create it (this occurs when we see a definition of the function).
793 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
794                                                  const llvm::Type *Ty) {
795   // If there was no specific requested type, just convert it now.
796   if (!Ty)
797     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
798   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
799 }
800 
801 /// CreateRuntimeFunction - Create a new runtime function with the specified
802 /// type and name.
803 llvm::Constant *
804 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
805                                      const char *Name) {
806   // Convert Name to be a uniqued string from the IdentifierInfo table.
807   Name = getContext().Idents.get(Name).getName();
808   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
809 }
810 
811 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
812 /// create and return an llvm GlobalVariable with the specified type.  If there
813 /// is something in the module with the specified name, return it potentially
814 /// bitcasted to the right type.
815 ///
816 /// If D is non-null, it specifies a decl that correspond to this.  This is used
817 /// to set the attributes on the global when it is first created.
818 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
819                                                      const llvm::PointerType*Ty,
820                                                      const VarDecl *D) {
821   // Lookup the entry, lazily creating it if necessary.
822   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
823   if (Entry) {
824     if (Entry->getType() == Ty)
825       return Entry;
826 
827     // Make sure the result is of the correct type.
828     return llvm::ConstantExpr::getBitCast(Entry, Ty);
829   }
830 
831   // This is the first use or definition of a mangled name.  If there is a
832   // deferred decl with this name, remember that we need to emit it at the end
833   // of the file.
834   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
835     DeferredDecls.find(MangledName);
836   if (DDI != DeferredDecls.end()) {
837     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
838     // list, and remove it from DeferredDecls (since we don't need it anymore).
839     DeferredDeclsToEmit.push_back(DDI->second);
840     DeferredDecls.erase(DDI);
841   }
842 
843   llvm::GlobalVariable *GV =
844     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
845                              llvm::GlobalValue::ExternalLinkage,
846                              0, "", 0,
847                              false, Ty->getAddressSpace());
848   GV->setName(MangledName);
849 
850   // Handle things which are present even on external declarations.
851   if (D) {
852     // FIXME: This code is overly simple and should be merged with other global
853     // handling.
854     GV->setConstant(D->getType().isConstant(Context));
855 
856     // FIXME: Merge with other attribute handling code.
857     if (D->getStorageClass() == VarDecl::PrivateExtern)
858       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
859 
860     if (D->hasAttr<WeakAttr>() ||
861         D->hasAttr<WeakImportAttr>())
862       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
863 
864     GV->setThreadLocal(D->isThreadSpecified());
865   }
866 
867   return Entry = GV;
868 }
869 
870 
871 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
872 /// given global variable.  If Ty is non-null and if the global doesn't exist,
873 /// then it will be greated with the specified type instead of whatever the
874 /// normal requested type would be.
875 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
876                                                   const llvm::Type *Ty) {
877   assert(D->hasGlobalStorage() && "Not a global variable");
878   QualType ASTTy = D->getType();
879   if (Ty == 0)
880     Ty = getTypes().ConvertTypeForMem(ASTTy);
881 
882   const llvm::PointerType *PTy =
883     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
884   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
885 }
886 
887 /// CreateRuntimeVariable - Create a new runtime global variable with the
888 /// specified type and name.
889 llvm::Constant *
890 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
891                                      const char *Name) {
892   // Convert Name to be a uniqued string from the IdentifierInfo table.
893   Name = getContext().Idents.get(Name).getName();
894   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
895 }
896 
897 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
898   assert(!D->getInit() && "Cannot emit definite definitions here!");
899 
900   if (MayDeferGeneration(D)) {
901     // If we have not seen a reference to this variable yet, place it
902     // into the deferred declarations table to be emitted if needed
903     // later.
904     const char *MangledName = getMangledName(D);
905     if (GlobalDeclMap.count(MangledName) == 0) {
906       DeferredDecls[MangledName] = D;
907       return;
908     }
909   }
910 
911   // The tentative definition is the only definition.
912   EmitGlobalVarDefinition(D);
913 }
914 
915 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
916   llvm::Constant *Init = 0;
917   QualType ASTTy = D->getType();
918 
919   if (D->getInit() == 0) {
920     // This is a tentative definition; tentative definitions are
921     // implicitly initialized with { 0 }.
922     //
923     // Note that tentative definitions are only emitted at the end of
924     // a translation unit, so they should never have incomplete
925     // type. In addition, EmitTentativeDefinition makes sure that we
926     // never attempt to emit a tentative definition if a real one
927     // exists. A use may still exists, however, so we still may need
928     // to do a RAUW.
929     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
930     Init = EmitNullConstant(D->getType());
931   } else {
932     Init = EmitConstantExpr(D->getInit(), D->getType());
933 
934     if (!Init) {
935       QualType T = D->getInit()->getType();
936       if (getLangOptions().CPlusPlus) {
937         CXXGlobalInits.push_back(D);
938         Init = EmitNullConstant(T);
939       } else {
940         ErrorUnsupported(D, "static initializer");
941         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
942       }
943     }
944   }
945 
946   const llvm::Type* InitType = Init->getType();
947   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
948 
949   // Strip off a bitcast if we got one back.
950   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
951     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
952            // all zero index gep.
953            CE->getOpcode() == llvm::Instruction::GetElementPtr);
954     Entry = CE->getOperand(0);
955   }
956 
957   // Entry is now either a Function or GlobalVariable.
958   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
959 
960   // We have a definition after a declaration with the wrong type.
961   // We must make a new GlobalVariable* and update everything that used OldGV
962   // (a declaration or tentative definition) with the new GlobalVariable*
963   // (which will be a definition).
964   //
965   // This happens if there is a prototype for a global (e.g.
966   // "extern int x[];") and then a definition of a different type (e.g.
967   // "int x[10];"). This also happens when an initializer has a different type
968   // from the type of the global (this happens with unions).
969   if (GV == 0 ||
970       GV->getType()->getElementType() != InitType ||
971       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
972 
973     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
974     GlobalDeclMap.erase(getMangledName(D));
975 
976     // Make a new global with the correct type, this is now guaranteed to work.
977     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
978     GV->takeName(cast<llvm::GlobalValue>(Entry));
979 
980     // Replace all uses of the old global with the new global
981     llvm::Constant *NewPtrForOldDecl =
982         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
983     Entry->replaceAllUsesWith(NewPtrForOldDecl);
984 
985     // Erase the old global, since it is no longer used.
986     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
987   }
988 
989   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
990     SourceManager &SM = Context.getSourceManager();
991     AddAnnotation(EmitAnnotateAttr(GV, AA,
992                               SM.getInstantiationLineNumber(D->getLocation())));
993   }
994 
995   GV->setInitializer(Init);
996 
997   // If it is safe to mark the global 'constant', do so now.
998   GV->setConstant(false);
999   if (D->getType().isConstant(Context)) {
1000     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1001     // members, it cannot be declared "LLVM const".
1002     GV->setConstant(true);
1003   }
1004 
1005   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1006 
1007   // Set the llvm linkage type as appropriate.
1008   if (D->isInAnonymousNamespace())
1009     GV->setLinkage(llvm::Function::InternalLinkage);
1010   else if (D->getStorageClass() == VarDecl::Static)
1011     GV->setLinkage(llvm::Function::InternalLinkage);
1012   else if (D->hasAttr<DLLImportAttr>())
1013     GV->setLinkage(llvm::Function::DLLImportLinkage);
1014   else if (D->hasAttr<DLLExportAttr>())
1015     GV->setLinkage(llvm::Function::DLLExportLinkage);
1016   else if (D->hasAttr<WeakAttr>()) {
1017     if (GV->isConstant())
1018       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1019     else
1020       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1021   } else if (!CompileOpts.NoCommon &&
1022            !D->hasExternalStorage() && !D->getInit() &&
1023            !D->getAttr<SectionAttr>()) {
1024     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1025     // common vars aren't constant even if declared const.
1026     GV->setConstant(false);
1027   } else
1028     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1029 
1030   SetCommonAttributes(D, GV);
1031 
1032   // Emit global variable debug information.
1033   if (CGDebugInfo *DI = getDebugInfo()) {
1034     DI->setLocation(D->getLocation());
1035     DI->EmitGlobalVariable(GV, D);
1036   }
1037 }
1038 
1039 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1040 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1041 /// existing call uses of the old function in the module, this adjusts them to
1042 /// call the new function directly.
1043 ///
1044 /// This is not just a cleanup: the always_inline pass requires direct calls to
1045 /// functions to be able to inline them.  If there is a bitcast in the way, it
1046 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1047 /// run at -O0.
1048 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1049                                                       llvm::Function *NewFn) {
1050   // If we're redefining a global as a function, don't transform it.
1051   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1052   if (OldFn == 0) return;
1053 
1054   const llvm::Type *NewRetTy = NewFn->getReturnType();
1055   llvm::SmallVector<llvm::Value*, 4> ArgList;
1056 
1057   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1058        UI != E; ) {
1059     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1060     unsigned OpNo = UI.getOperandNo();
1061     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1062     if (!CI || OpNo != 0) continue;
1063 
1064     // If the return types don't match exactly, and if the call isn't dead, then
1065     // we can't transform this call.
1066     if (CI->getType() != NewRetTy && !CI->use_empty())
1067       continue;
1068 
1069     // If the function was passed too few arguments, don't transform.  If extra
1070     // arguments were passed, we silently drop them.  If any of the types
1071     // mismatch, we don't transform.
1072     unsigned ArgNo = 0;
1073     bool DontTransform = false;
1074     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1075          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1076       if (CI->getNumOperands()-1 == ArgNo ||
1077           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1078         DontTransform = true;
1079         break;
1080       }
1081     }
1082     if (DontTransform)
1083       continue;
1084 
1085     // Okay, we can transform this.  Create the new call instruction and copy
1086     // over the required information.
1087     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1088     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1089                                                      ArgList.end(), "", CI);
1090     ArgList.clear();
1091     if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext()))
1092       NewCall->takeName(CI);
1093     NewCall->setAttributes(CI->getAttributes());
1094     NewCall->setCallingConv(CI->getCallingConv());
1095 
1096     // Finally, remove the old call, replacing any uses with the new one.
1097     if (!CI->use_empty())
1098       CI->replaceAllUsesWith(NewCall);
1099     CI->eraseFromParent();
1100   }
1101 }
1102 
1103 
1104 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1105   const llvm::FunctionType *Ty;
1106   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1107 
1108   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1109     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1110 
1111     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1112   } else {
1113     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1114 
1115     // As a special case, make sure that definitions of K&R function
1116     // "type foo()" aren't declared as varargs (which forces the backend
1117     // to do unnecessary work).
1118     if (D->getType()->isFunctionNoProtoType()) {
1119       assert(Ty->isVarArg() && "Didn't lower type as expected");
1120       // Due to stret, the lowered function could have arguments.
1121       // Just create the same type as was lowered by ConvertType
1122       // but strip off the varargs bit.
1123       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1124       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1125     }
1126   }
1127 
1128   // Get or create the prototype for the function.
1129   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1130 
1131   // Strip off a bitcast if we got one back.
1132   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1133     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1134     Entry = CE->getOperand(0);
1135   }
1136 
1137 
1138   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1139     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1140 
1141     // If the types mismatch then we have to rewrite the definition.
1142     assert(OldFn->isDeclaration() &&
1143            "Shouldn't replace non-declaration");
1144 
1145     // F is the Function* for the one with the wrong type, we must make a new
1146     // Function* and update everything that used F (a declaration) with the new
1147     // Function* (which will be a definition).
1148     //
1149     // This happens if there is a prototype for a function
1150     // (e.g. "int f()") and then a definition of a different type
1151     // (e.g. "int f(int x)").  Start by making a new function of the
1152     // correct type, RAUW, then steal the name.
1153     GlobalDeclMap.erase(getMangledName(D));
1154     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1155     NewFn->takeName(OldFn);
1156 
1157     // If this is an implementation of a function without a prototype, try to
1158     // replace any existing uses of the function (which may be calls) with uses
1159     // of the new function
1160     if (D->getType()->isFunctionNoProtoType()) {
1161       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1162       OldFn->removeDeadConstantUsers();
1163     }
1164 
1165     // Replace uses of F with the Function we will endow with a body.
1166     if (!Entry->use_empty()) {
1167       llvm::Constant *NewPtrForOldDecl =
1168         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1169       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1170     }
1171 
1172     // Ok, delete the old function now, which is dead.
1173     OldFn->eraseFromParent();
1174 
1175     Entry = NewFn;
1176   }
1177 
1178   llvm::Function *Fn = cast<llvm::Function>(Entry);
1179 
1180   CodeGenFunction(*this).GenerateCode(D, Fn);
1181 
1182   SetFunctionDefinitionAttributes(D, Fn);
1183   SetLLVMFunctionAttributesForDefinition(D, Fn);
1184 
1185   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1186     AddGlobalCtor(Fn, CA->getPriority());
1187   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1188     AddGlobalDtor(Fn, DA->getPriority());
1189 }
1190 
1191 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1192   const AliasAttr *AA = D->getAttr<AliasAttr>();
1193   assert(AA && "Not an alias?");
1194 
1195   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1196 
1197   // Unique the name through the identifier table.
1198   const char *AliaseeName = AA->getAliasee().c_str();
1199   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1200 
1201   // Create a reference to the named value.  This ensures that it is emitted
1202   // if a deferred decl.
1203   llvm::Constant *Aliasee;
1204   if (isa<llvm::FunctionType>(DeclTy))
1205     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1206   else
1207     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1208                                     llvm::PointerType::getUnqual(DeclTy), 0);
1209 
1210   // Create the new alias itself, but don't set a name yet.
1211   llvm::GlobalValue *GA =
1212     new llvm::GlobalAlias(Aliasee->getType(),
1213                           llvm::Function::ExternalLinkage,
1214                           "", Aliasee, &getModule());
1215 
1216   // See if there is already something with the alias' name in the module.
1217   const char *MangledName = getMangledName(D);
1218   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1219 
1220   if (Entry && !Entry->isDeclaration()) {
1221     // If there is a definition in the module, then it wins over the alias.
1222     // This is dubious, but allow it to be safe.  Just ignore the alias.
1223     GA->eraseFromParent();
1224     return;
1225   }
1226 
1227   if (Entry) {
1228     // If there is a declaration in the module, then we had an extern followed
1229     // by the alias, as in:
1230     //   extern int test6();
1231     //   ...
1232     //   int test6() __attribute__((alias("test7")));
1233     //
1234     // Remove it and replace uses of it with the alias.
1235 
1236     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1237                                                           Entry->getType()));
1238     Entry->eraseFromParent();
1239   }
1240 
1241   // Now we know that there is no conflict, set the name.
1242   Entry = GA;
1243   GA->setName(MangledName);
1244 
1245   // Set attributes which are particular to an alias; this is a
1246   // specialization of the attributes which may be set on a global
1247   // variable/function.
1248   if (D->hasAttr<DLLExportAttr>()) {
1249     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1250       // The dllexport attribute is ignored for undefined symbols.
1251       if (FD->getBody())
1252         GA->setLinkage(llvm::Function::DLLExportLinkage);
1253     } else {
1254       GA->setLinkage(llvm::Function::DLLExportLinkage);
1255     }
1256   } else if (D->hasAttr<WeakAttr>() ||
1257              D->hasAttr<WeakImportAttr>()) {
1258     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1259   }
1260 
1261   SetCommonAttributes(D, GA);
1262 }
1263 
1264 /// getBuiltinLibFunction - Given a builtin id for a function like
1265 /// "__builtin_fabsf", return a Function* for "fabsf".
1266 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1267                                                   unsigned BuiltinID) {
1268   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1269           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1270          "isn't a lib fn");
1271 
1272   // Get the name, skip over the __builtin_ prefix (if necessary).
1273   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1274   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1275     Name += 10;
1276 
1277   // Get the type for the builtin.
1278   ASTContext::GetBuiltinTypeError Error;
1279   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1280   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1281 
1282   const llvm::FunctionType *Ty =
1283     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1284 
1285   // Unique the name through the identifier table.
1286   Name = getContext().Idents.get(Name).getName();
1287   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1288 }
1289 
1290 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1291                                             unsigned NumTys) {
1292   return llvm::Intrinsic::getDeclaration(&getModule(),
1293                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1294 }
1295 
1296 llvm::Function *CodeGenModule::getMemCpyFn() {
1297   if (MemCpyFn) return MemCpyFn;
1298   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1299   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1300 }
1301 
1302 llvm::Function *CodeGenModule::getMemMoveFn() {
1303   if (MemMoveFn) return MemMoveFn;
1304   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1305   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1306 }
1307 
1308 llvm::Function *CodeGenModule::getMemSetFn() {
1309   if (MemSetFn) return MemSetFn;
1310   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1311   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1312 }
1313 
1314 static llvm::StringMapEntry<llvm::Constant*> &
1315 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1316                          const StringLiteral *Literal,
1317                          bool TargetIsLSB,
1318                          bool &IsUTF16,
1319                          unsigned &StringLength) {
1320   unsigned NumBytes = Literal->getByteLength();
1321 
1322   // Check for simple case.
1323   if (!Literal->containsNonAsciiOrNull()) {
1324     StringLength = NumBytes;
1325     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1326                                                 StringLength));
1327   }
1328 
1329   // Otherwise, convert the UTF8 literals into a byte string.
1330   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1331   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1332   UTF16 *ToPtr = &ToBuf[0];
1333 
1334   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1335                                                &ToPtr, ToPtr + NumBytes,
1336                                                strictConversion);
1337 
1338   // Check for conversion failure.
1339   if (Result != conversionOK) {
1340     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1341     // this duplicate code.
1342     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1343     StringLength = NumBytes;
1344     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1345                                                 StringLength));
1346   }
1347 
1348   // ConvertUTF8toUTF16 returns the length in ToPtr.
1349   StringLength = ToPtr - &ToBuf[0];
1350 
1351   // Render the UTF-16 string into a byte array and convert to the target byte
1352   // order.
1353   //
1354   // FIXME: This isn't something we should need to do here.
1355   llvm::SmallString<128> AsBytes;
1356   AsBytes.reserve(StringLength * 2);
1357   for (unsigned i = 0; i != StringLength; ++i) {
1358     unsigned short Val = ToBuf[i];
1359     if (TargetIsLSB) {
1360       AsBytes.push_back(Val & 0xFF);
1361       AsBytes.push_back(Val >> 8);
1362     } else {
1363       AsBytes.push_back(Val >> 8);
1364       AsBytes.push_back(Val & 0xFF);
1365     }
1366   }
1367   // Append one extra null character, the second is automatically added by our
1368   // caller.
1369   AsBytes.push_back(0);
1370 
1371   IsUTF16 = true;
1372   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1373 }
1374 
1375 llvm::Constant *
1376 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1377   unsigned StringLength = 0;
1378   bool isUTF16 = false;
1379   llvm::StringMapEntry<llvm::Constant*> &Entry =
1380     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1381                              getTargetData().isLittleEndian(),
1382                              isUTF16, StringLength);
1383 
1384   if (llvm::Constant *C = Entry.getValue())
1385     return C;
1386 
1387   llvm::Constant *Zero =
1388       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1389   llvm::Constant *Zeros[] = { Zero, Zero };
1390 
1391   // If we don't already have it, get __CFConstantStringClassReference.
1392   if (!CFConstantStringClassRef) {
1393     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1394     Ty = llvm::ArrayType::get(Ty, 0);
1395     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1396                                            "__CFConstantStringClassReference");
1397     // Decay array -> ptr
1398     CFConstantStringClassRef =
1399       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1400   }
1401 
1402   QualType CFTy = getContext().getCFConstantStringType();
1403 
1404   const llvm::StructType *STy =
1405     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1406 
1407   std::vector<llvm::Constant*> Fields(4);
1408 
1409   // Class pointer.
1410   Fields[0] = CFConstantStringClassRef;
1411 
1412   // Flags.
1413   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1414   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1415     llvm::ConstantInt::get(Ty, 0x07C8);
1416 
1417   // String pointer.
1418   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1419 
1420   const char *Sect, *Prefix;
1421   bool isConstant;
1422   llvm::GlobalValue::LinkageTypes Linkage;
1423   if (isUTF16) {
1424     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1425     Sect = getContext().Target.getUnicodeStringSection();
1426     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1427     Linkage = llvm::GlobalValue::InternalLinkage;
1428     // FIXME: Why does GCC not set constant here?
1429     isConstant = false;
1430   } else {
1431     Prefix = ".str";
1432     Sect = getContext().Target.getCFStringDataSection();
1433     Linkage = llvm::GlobalValue::PrivateLinkage;
1434     // FIXME: -fwritable-strings should probably affect this, but we
1435     // are following gcc here.
1436     isConstant = true;
1437   }
1438   llvm::GlobalVariable *GV =
1439     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1440                              Linkage, C, Prefix);
1441   if (Sect)
1442     GV->setSection(Sect);
1443   if (isUTF16) {
1444     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1445     GV->setAlignment(Align);
1446   }
1447   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1448 
1449   // String length.
1450   Ty = getTypes().ConvertType(getContext().LongTy);
1451   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1452 
1453   // The struct.
1454   C = llvm::ConstantStruct::get(STy, Fields);
1455   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1456                                 llvm::GlobalVariable::PrivateLinkage, C,
1457                                 "_unnamed_cfstring_");
1458   if (const char *Sect = getContext().Target.getCFStringSection())
1459     GV->setSection(Sect);
1460   Entry.setValue(GV);
1461 
1462   return GV;
1463 }
1464 
1465 /// GetStringForStringLiteral - Return the appropriate bytes for a
1466 /// string literal, properly padded to match the literal type.
1467 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1468   const char *StrData = E->getStrData();
1469   unsigned Len = E->getByteLength();
1470 
1471   const ConstantArrayType *CAT =
1472     getContext().getAsConstantArrayType(E->getType());
1473   assert(CAT && "String isn't pointer or array!");
1474 
1475   // Resize the string to the right size.
1476   std::string Str(StrData, StrData+Len);
1477   uint64_t RealLen = CAT->getSize().getZExtValue();
1478 
1479   if (E->isWide())
1480     RealLen *= getContext().Target.getWCharWidth()/8;
1481 
1482   Str.resize(RealLen, '\0');
1483 
1484   return Str;
1485 }
1486 
1487 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1488 /// constant array for the given string literal.
1489 llvm::Constant *
1490 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1491   // FIXME: This can be more efficient.
1492   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1493 }
1494 
1495 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1496 /// array for the given ObjCEncodeExpr node.
1497 llvm::Constant *
1498 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1499   std::string Str;
1500   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1501 
1502   return GetAddrOfConstantCString(Str);
1503 }
1504 
1505 
1506 /// GenerateWritableString -- Creates storage for a string literal.
1507 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1508                                              bool constant,
1509                                              CodeGenModule &CGM,
1510                                              const char *GlobalName) {
1511   // Create Constant for this string literal. Don't add a '\0'.
1512   llvm::Constant *C =
1513       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1514 
1515   // Create a global variable for this string
1516   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1517                                   llvm::GlobalValue::PrivateLinkage,
1518                                   C, GlobalName);
1519 }
1520 
1521 /// GetAddrOfConstantString - Returns a pointer to a character array
1522 /// containing the literal. This contents are exactly that of the
1523 /// given string, i.e. it will not be null terminated automatically;
1524 /// see GetAddrOfConstantCString. Note that whether the result is
1525 /// actually a pointer to an LLVM constant depends on
1526 /// Feature.WriteableStrings.
1527 ///
1528 /// The result has pointer to array type.
1529 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1530                                                        const char *GlobalName) {
1531   bool IsConstant = !Features.WritableStrings;
1532 
1533   // Get the default prefix if a name wasn't specified.
1534   if (!GlobalName)
1535     GlobalName = ".str";
1536 
1537   // Don't share any string literals if strings aren't constant.
1538   if (!IsConstant)
1539     return GenerateStringLiteral(str, false, *this, GlobalName);
1540 
1541   llvm::StringMapEntry<llvm::Constant *> &Entry =
1542     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1543 
1544   if (Entry.getValue())
1545     return Entry.getValue();
1546 
1547   // Create a global variable for this.
1548   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1549   Entry.setValue(C);
1550   return C;
1551 }
1552 
1553 /// GetAddrOfConstantCString - Returns a pointer to a character
1554 /// array containing the literal and a terminating '\-'
1555 /// character. The result has pointer to array type.
1556 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1557                                                         const char *GlobalName){
1558   return GetAddrOfConstantString(str + '\0', GlobalName);
1559 }
1560 
1561 /// EmitObjCPropertyImplementations - Emit information for synthesized
1562 /// properties for an implementation.
1563 void CodeGenModule::EmitObjCPropertyImplementations(const
1564                                                     ObjCImplementationDecl *D) {
1565   for (ObjCImplementationDecl::propimpl_iterator
1566          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1567     ObjCPropertyImplDecl *PID = *i;
1568 
1569     // Dynamic is just for type-checking.
1570     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1571       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1572 
1573       // Determine which methods need to be implemented, some may have
1574       // been overridden. Note that ::isSynthesized is not the method
1575       // we want, that just indicates if the decl came from a
1576       // property. What we want to know is if the method is defined in
1577       // this implementation.
1578       if (!D->getInstanceMethod(PD->getGetterName()))
1579         CodeGenFunction(*this).GenerateObjCGetter(
1580                                  const_cast<ObjCImplementationDecl *>(D), PID);
1581       if (!PD->isReadOnly() &&
1582           !D->getInstanceMethod(PD->getSetterName()))
1583         CodeGenFunction(*this).GenerateObjCSetter(
1584                                  const_cast<ObjCImplementationDecl *>(D), PID);
1585     }
1586   }
1587 }
1588 
1589 /// EmitNamespace - Emit all declarations in a namespace.
1590 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1591   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1592        I != E; ++I)
1593     EmitTopLevelDecl(*I);
1594 }
1595 
1596 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1597 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1598   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1599       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1600     ErrorUnsupported(LSD, "linkage spec");
1601     return;
1602   }
1603 
1604   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1605        I != E; ++I)
1606     EmitTopLevelDecl(*I);
1607 }
1608 
1609 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1610 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1611   // If an error has occurred, stop code generation, but continue
1612   // parsing and semantic analysis (to ensure all warnings and errors
1613   // are emitted).
1614   if (Diags.hasErrorOccurred())
1615     return;
1616 
1617   // Ignore dependent declarations.
1618   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1619     return;
1620 
1621   switch (D->getKind()) {
1622   case Decl::CXXConversion:
1623   case Decl::CXXMethod:
1624   case Decl::Function:
1625     // Skip function templates
1626     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1627       return;
1628 
1629     EmitGlobal(cast<FunctionDecl>(D));
1630     break;
1631 
1632   case Decl::Var:
1633     EmitGlobal(cast<VarDecl>(D));
1634     break;
1635 
1636   // C++ Decls
1637   case Decl::Namespace:
1638     EmitNamespace(cast<NamespaceDecl>(D));
1639     break;
1640     // No code generation needed.
1641   case Decl::Using:
1642   case Decl::UsingDirective:
1643   case Decl::ClassTemplate:
1644   case Decl::FunctionTemplate:
1645   case Decl::NamespaceAlias:
1646     break;
1647   case Decl::CXXConstructor:
1648     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1649     break;
1650   case Decl::CXXDestructor:
1651     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1652     break;
1653 
1654   case Decl::StaticAssert:
1655     // Nothing to do.
1656     break;
1657 
1658   // Objective-C Decls
1659 
1660   // Forward declarations, no (immediate) code generation.
1661   case Decl::ObjCClass:
1662   case Decl::ObjCForwardProtocol:
1663   case Decl::ObjCCategory:
1664   case Decl::ObjCInterface:
1665     break;
1666 
1667   case Decl::ObjCProtocol:
1668     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1669     break;
1670 
1671   case Decl::ObjCCategoryImpl:
1672     // Categories have properties but don't support synthesize so we
1673     // can ignore them here.
1674     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1675     break;
1676 
1677   case Decl::ObjCImplementation: {
1678     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1679     EmitObjCPropertyImplementations(OMD);
1680     Runtime->GenerateClass(OMD);
1681     break;
1682   }
1683   case Decl::ObjCMethod: {
1684     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1685     // If this is not a prototype, emit the body.
1686     if (OMD->getBody())
1687       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1688     break;
1689   }
1690   case Decl::ObjCCompatibleAlias:
1691     // compatibility-alias is a directive and has no code gen.
1692     break;
1693 
1694   case Decl::LinkageSpec:
1695     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1696     break;
1697 
1698   case Decl::FileScopeAsm: {
1699     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1700     std::string AsmString(AD->getAsmString()->getStrData(),
1701                           AD->getAsmString()->getByteLength());
1702 
1703     const std::string &S = getModule().getModuleInlineAsm();
1704     if (S.empty())
1705       getModule().setModuleInlineAsm(AsmString);
1706     else
1707       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1708     break;
1709   }
1710 
1711   default:
1712     // Make sure we handled everything we should, every other kind is a
1713     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1714     // function. Need to recode Decl::Kind to do that easily.
1715     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1716   }
1717 }
1718