1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Support/ErrorHandling.h"
35 using namespace clang;
36 using namespace CodeGen;
37 
38 
39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
40                              llvm::Module &M, const llvm::TargetData &TD,
41                              Diagnostic &diags)
42   : BlockModule(C, M, TD, Types, *this), Context(C),
43     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
44     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
45     VtableInfo(*this), Runtime(0),
46     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
47     VMContext(M.getContext()) {
48 
49   if (!Features.ObjC1)
50     Runtime = 0;
51   else if (!Features.NeXTRuntime)
52     Runtime = CreateGNUObjCRuntime(*this);
53   else if (Features.ObjCNonFragileABI)
54     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
55   else
56     Runtime = CreateMacObjCRuntime(*this);
57 
58   // If debug info generation is enabled, create the CGDebugInfo object.
59   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
60 }
61 
62 CodeGenModule::~CodeGenModule() {
63   delete Runtime;
64   delete DebugInfo;
65 }
66 
67 void CodeGenModule::Release() {
68   // We need to call this first because it can add deferred declarations.
69   EmitCXXGlobalInitFunc();
70 
71   EmitDeferred();
72   if (Runtime)
73     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
74       AddGlobalCtor(ObjCInitFunction);
75   EmitCtorList(GlobalCtors, "llvm.global_ctors");
76   EmitCtorList(GlobalDtors, "llvm.global_dtors");
77   EmitAnnotations();
78   EmitLLVMUsed();
79 }
80 
81 /// ErrorUnsupported - Print out an error that codegen doesn't support the
82 /// specified stmt yet.
83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
84                                      bool OmitOnError) {
85   if (OmitOnError && getDiags().hasErrorOccurred())
86     return;
87   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
88                                                "cannot compile this %0 yet");
89   std::string Msg = Type;
90   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
91     << Msg << S->getSourceRange();
92 }
93 
94 /// ErrorUnsupported - Print out an error that codegen doesn't support the
95 /// specified decl yet.
96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
97                                      bool OmitOnError) {
98   if (OmitOnError && getDiags().hasErrorOccurred())
99     return;
100   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
101                                                "cannot compile this %0 yet");
102   std::string Msg = Type;
103   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
104 }
105 
106 LangOptions::VisibilityMode
107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
108   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
109     if (VD->getStorageClass() == VarDecl::PrivateExtern)
110       return LangOptions::Hidden;
111 
112   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
113     switch (attr->getVisibility()) {
114     default: assert(0 && "Unknown visibility!");
115     case VisibilityAttr::DefaultVisibility:
116       return LangOptions::Default;
117     case VisibilityAttr::HiddenVisibility:
118       return LangOptions::Hidden;
119     case VisibilityAttr::ProtectedVisibility:
120       return LangOptions::Protected;
121     }
122   }
123 
124   return getLangOptions().getVisibilityMode();
125 }
126 
127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
128                                         const Decl *D) const {
129   // Internal definitions always have default visibility.
130   if (GV->hasLocalLinkage()) {
131     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132     return;
133   }
134 
135   switch (getDeclVisibilityMode(D)) {
136   default: assert(0 && "Unknown visibility!");
137   case LangOptions::Default:
138     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
139   case LangOptions::Hidden:
140     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
141   case LangOptions::Protected:
142     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
143   }
144 }
145 
146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
147   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
148 
149   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
150     return getMangledCXXCtorName(D, GD.getCtorType());
151   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
152     return getMangledCXXDtorName(D, GD.getDtorType());
153 
154   return getMangledName(ND);
155 }
156 
157 /// \brief Retrieves the mangled name for the given declaration.
158 ///
159 /// If the given declaration requires a mangled name, returns an
160 /// const char* containing the mangled name.  Otherwise, returns
161 /// the unmangled name.
162 ///
163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
164   if (!getMangleContext().shouldMangleDeclName(ND)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   getMangleContext().mangleName(ND, Name);
171   Name += '\0';
172   return UniqueMangledName(Name.begin(), Name.end());
173 }
174 
175 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                              const char *NameEnd) {
177   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178 
179   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180 }
181 
182 /// AddGlobalCtor - Add a function to the list that will be called before
183 /// main() runs.
184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185   // FIXME: Type coercion of void()* types.
186   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187 }
188 
189 /// AddGlobalDtor - Add a function to the list that will be called
190 /// when the module is unloaded.
191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192   // FIXME: Type coercion of void()* types.
193   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194 }
195 
196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197   // Ctor function type is void()*.
198   llvm::FunctionType* CtorFTy =
199     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
200                             std::vector<const llvm::Type*>(),
201                             false);
202   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203 
204   // Get the type of a ctor entry, { i32, void ()* }.
205   llvm::StructType* CtorStructTy =
206     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
207                           llvm::PointerType::getUnqual(CtorFTy), NULL);
208 
209   // Construct the constructor and destructor arrays.
210   std::vector<llvm::Constant*> Ctors;
211   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212     std::vector<llvm::Constant*> S;
213     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
214                 I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // Everything located semantically within an anonymous namespace is
248   // always internal.
249   if (FD->isInAnonymousNamespace())
250     return CodeGenModule::GVA_Internal;
251 
252   // "static" functions get internal linkage.
253   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus &&
260       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261     External = CodeGenModule::GVA_TemplateInstantiation;
262 
263   if (!FD->isInlined())
264     return External;
265 
266   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
267     // GNU or C99 inline semantics. Determine whether this symbol should be
268     // externally visible.
269     if (FD->isInlineDefinitionExternallyVisible())
270       return External;
271 
272     // C99 inline semantics, where the symbol is not externally visible.
273     return CodeGenModule::GVA_C99Inline;
274   }
275 
276   // C++0x [temp.explicit]p9:
277   //   [ Note: The intent is that an inline function that is the subject of
278   //   an explicit instantiation declaration will still be implicitly
279   //   instantiated when used so that the body can be considered for
280   //   inlining, but that no out-of-line copy of the inline function would be
281   //   generated in the translation unit. -- end note ]
282   if (FD->getTemplateSpecializationKind()
283                                        == TSK_ExplicitInstantiationDeclaration)
284     return CodeGenModule::GVA_C99Inline;
285 
286   return CodeGenModule::GVA_CXXInline;
287 }
288 
289 /// SetFunctionDefinitionAttributes - Set attributes for a global.
290 ///
291 /// FIXME: This is currently only done for aliases and functions, but not for
292 /// variables (these details are set in EmitGlobalVarDefinition for variables).
293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
294                                                     llvm::GlobalValue *GV) {
295   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
296 
297   if (Linkage == GVA_Internal) {
298     GV->setLinkage(llvm::Function::InternalLinkage);
299   } else if (D->hasAttr<DLLExportAttr>()) {
300     GV->setLinkage(llvm::Function::DLLExportLinkage);
301   } else if (D->hasAttr<WeakAttr>()) {
302     GV->setLinkage(llvm::Function::WeakAnyLinkage);
303   } else if (Linkage == GVA_C99Inline) {
304     // In C99 mode, 'inline' functions are guaranteed to have a strong
305     // definition somewhere else, so we can use available_externally linkage.
306     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
307   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
308     // In C++, the compiler has to emit a definition in every translation unit
309     // that references the function.  We should use linkonce_odr because
310     // a) if all references in this translation unit are optimized away, we
311     // don't need to codegen it.  b) if the function persists, it needs to be
312     // merged with other definitions. c) C++ has the ODR, so we know the
313     // definition is dependable.
314     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
315   } else {
316     assert(Linkage == GVA_StrongExternal);
317     // Otherwise, we have strong external linkage.
318     GV->setLinkage(llvm::Function::ExternalLinkage);
319   }
320 
321   SetCommonAttributes(D, GV);
322 }
323 
324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
325                                               const CGFunctionInfo &Info,
326                                               llvm::Function *F) {
327   unsigned CallingConv;
328   AttributeListType AttributeList;
329   ConstructAttributeList(Info, D, AttributeList, CallingConv);
330   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
331                                           AttributeList.size()));
332   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
333 }
334 
335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
336                                                            llvm::Function *F) {
337   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
338     F->addFnAttr(llvm::Attribute::NoUnwind);
339 
340   if (D->hasAttr<AlwaysInlineAttr>())
341     F->addFnAttr(llvm::Attribute::AlwaysInline);
342 
343   if (D->hasAttr<NoInlineAttr>())
344     F->addFnAttr(llvm::Attribute::NoInline);
345 
346   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
347     F->addFnAttr(llvm::Attribute::StackProtect);
348   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
349     F->addFnAttr(llvm::Attribute::StackProtectReq);
350 
351   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
352     unsigned width = Context.Target.getCharWidth();
353     F->setAlignment(AA->getAlignment() / width);
354     while ((AA = AA->getNext<AlignedAttr>()))
355       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
356   }
357   // C++ ABI requires 2-byte alignment for member functions.
358   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
359     F->setAlignment(2);
360 }
361 
362 void CodeGenModule::SetCommonAttributes(const Decl *D,
363                                         llvm::GlobalValue *GV) {
364   setGlobalVisibility(GV, D);
365 
366   if (D->hasAttr<UsedAttr>())
367     AddUsedGlobal(GV);
368 
369   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
370     GV->setSection(SA->getName());
371 }
372 
373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
374                                                   llvm::Function *F,
375                                                   const CGFunctionInfo &FI) {
376   SetLLVMFunctionAttributes(D, FI, F);
377   SetLLVMFunctionAttributesForDefinition(D, F);
378 
379   F->setLinkage(llvm::Function::InternalLinkage);
380 
381   SetCommonAttributes(D, F);
382 }
383 
384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
385                                           llvm::Function *F,
386                                           bool IsIncompleteFunction) {
387   if (!IsIncompleteFunction)
388     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
389 
390   // Only a few attributes are set on declarations; these may later be
391   // overridden by a definition.
392 
393   if (FD->hasAttr<DLLImportAttr>()) {
394     F->setLinkage(llvm::Function::DLLImportLinkage);
395   } else if (FD->hasAttr<WeakAttr>() ||
396              FD->hasAttr<WeakImportAttr>()) {
397     // "extern_weak" is overloaded in LLVM; we probably should have
398     // separate linkage types for this.
399     F->setLinkage(llvm::Function::ExternalWeakLinkage);
400   } else {
401     F->setLinkage(llvm::Function::ExternalLinkage);
402   }
403 
404   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
405     F->setSection(SA->getName());
406 }
407 
408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
409   assert(!GV->isDeclaration() &&
410          "Only globals with definition can force usage.");
411   LLVMUsed.push_back(GV);
412 }
413 
414 void CodeGenModule::EmitLLVMUsed() {
415   // Don't create llvm.used if there is no need.
416   if (LLVMUsed.empty())
417     return;
418 
419   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
420 
421   // Convert LLVMUsed to what ConstantArray needs.
422   std::vector<llvm::Constant*> UsedArray;
423   UsedArray.resize(LLVMUsed.size());
424   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
425     UsedArray[i] =
426      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
427                                       i8PTy);
428   }
429 
430   if (UsedArray.empty())
431     return;
432   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
433 
434   llvm::GlobalVariable *GV =
435     new llvm::GlobalVariable(getModule(), ATy, false,
436                              llvm::GlobalValue::AppendingLinkage,
437                              llvm::ConstantArray::get(ATy, UsedArray),
438                              "llvm.used");
439 
440   GV->setSection("llvm.metadata");
441 }
442 
443 void CodeGenModule::EmitDeferred() {
444   // Emit code for any potentially referenced deferred decls.  Since a
445   // previously unused static decl may become used during the generation of code
446   // for a static function, iterate until no  changes are made.
447   while (!DeferredDeclsToEmit.empty()) {
448     GlobalDecl D = DeferredDeclsToEmit.back();
449     DeferredDeclsToEmit.pop_back();
450 
451     // The mangled name for the decl must have been emitted in GlobalDeclMap.
452     // Look it up to see if it was defined with a stronger definition (e.g. an
453     // extern inline function with a strong function redefinition).  If so,
454     // just ignore the deferred decl.
455     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
456     assert(CGRef && "Deferred decl wasn't referenced?");
457 
458     if (!CGRef->isDeclaration())
459       continue;
460 
461     // Otherwise, emit the definition and move on to the next one.
462     EmitGlobalDefinition(D);
463   }
464 }
465 
466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
467 /// annotation information for a given GlobalValue.  The annotation struct is
468 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
469 /// GlobalValue being annotated.  The second field is the constant string
470 /// created from the AnnotateAttr's annotation.  The third field is a constant
471 /// string containing the name of the translation unit.  The fourth field is
472 /// the line number in the file of the annotated value declaration.
473 ///
474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
475 ///        appears to.
476 ///
477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
478                                                 const AnnotateAttr *AA,
479                                                 unsigned LineNo) {
480   llvm::Module *M = &getModule();
481 
482   // get [N x i8] constants for the annotation string, and the filename string
483   // which are the 2nd and 3rd elements of the global annotation structure.
484   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
485   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
486                                                   AA->getAnnotation(), true);
487   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
488                                                   M->getModuleIdentifier(),
489                                                   true);
490 
491   // Get the two global values corresponding to the ConstantArrays we just
492   // created to hold the bytes of the strings.
493   llvm::GlobalValue *annoGV =
494     new llvm::GlobalVariable(*M, anno->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, anno,
496                              GV->getName());
497   // translation unit name string, emitted into the llvm.metadata section.
498   llvm::GlobalValue *unitGV =
499     new llvm::GlobalVariable(*M, unit->getType(), false,
500                              llvm::GlobalValue::PrivateLinkage, unit,
501                              ".str");
502 
503   // Create the ConstantStruct for the global annotation.
504   llvm::Constant *Fields[4] = {
505     llvm::ConstantExpr::getBitCast(GV, SBP),
506     llvm::ConstantExpr::getBitCast(annoGV, SBP),
507     llvm::ConstantExpr::getBitCast(unitGV, SBP),
508     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
509   };
510   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
511 }
512 
513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
514   // Never defer when EmitAllDecls is specified or the decl has
515   // attribute used.
516   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
517     return false;
518 
519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
520     // Constructors and destructors should never be deferred.
521     if (FD->hasAttr<ConstructorAttr>() ||
522         FD->hasAttr<DestructorAttr>())
523       return false;
524 
525     // The key function for a class must never be deferred.
526     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
527       const CXXRecordDecl *RD = MD->getParent();
528       if (MD->isOutOfLine() && RD->isDynamicClass()) {
529         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
530         if (KeyFunction == MD->getCanonicalDecl())
531           return false;
532       }
533     }
534 
535     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
536 
537     // static, static inline, always_inline, and extern inline functions can
538     // always be deferred.  Normal inline functions can be deferred in C99/C++.
539     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
540         Linkage == GVA_CXXInline)
541       return true;
542     return false;
543   }
544 
545   const VarDecl *VD = cast<VarDecl>(Global);
546   assert(VD->isFileVarDecl() && "Invalid decl");
547 
548   // We never want to defer structs that have non-trivial constructors or
549   // destructors.
550 
551   // FIXME: Handle references.
552   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
553     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
554       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
555         return false;
556     }
557   }
558 
559   // Static data may be deferred, but out-of-line static data members
560   // cannot be.
561   if (VD->isInAnonymousNamespace())
562     return true;
563   if (VD->getLinkage() == VarDecl::InternalLinkage) {
564     // Initializer has side effects?
565     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
566       return false;
567     return !(VD->isStaticDataMember() && VD->isOutOfLine());
568   }
569   return false;
570 }
571 
572 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
573   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
574 
575   // If this is an alias definition (which otherwise looks like a declaration)
576   // emit it now.
577   if (Global->hasAttr<AliasAttr>())
578     return EmitAliasDefinition(Global);
579 
580   // Ignore declarations, they will be emitted on their first use.
581   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
582     // Forward declarations are emitted lazily on first use.
583     if (!FD->isThisDeclarationADefinition())
584       return;
585   } else {
586     const VarDecl *VD = cast<VarDecl>(Global);
587     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
588 
589     if (getLangOptions().CPlusPlus && !VD->getInit()) {
590       // In C++, if this is marked "extern", defer code generation.
591       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
592         return;
593 
594       // If this is a declaration of an explicit specialization of a static
595       // data member in a class template, don't emit it.
596       if (VD->isStaticDataMember() &&
597           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
598         return;
599     }
600 
601     // In C, if this isn't a definition, defer code generation.
602     if (!getLangOptions().CPlusPlus && !VD->getInit())
603       return;
604   }
605 
606   // Defer code generation when possible if this is a static definition, inline
607   // function etc.  These we only want to emit if they are used.
608   if (MayDeferGeneration(Global)) {
609     // If the value has already been used, add it directly to the
610     // DeferredDeclsToEmit list.
611     const char *MangledName = getMangledName(GD);
612     if (GlobalDeclMap.count(MangledName))
613       DeferredDeclsToEmit.push_back(GD);
614     else {
615       // Otherwise, remember that we saw a deferred decl with this name.  The
616       // first use of the mangled name will cause it to move into
617       // DeferredDeclsToEmit.
618       DeferredDecls[MangledName] = GD;
619     }
620     return;
621   }
622 
623   // Otherwise emit the definition.
624   EmitGlobalDefinition(GD);
625 }
626 
627 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
628   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
629 
630   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
631                                  Context.getSourceManager(),
632                                  "Generating code for declaration");
633 
634   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
635     getVtableInfo().MaybeEmitVtable(GD);
636     if (MD->isVirtual() && MD->isOutOfLine() &&
637         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
638       if (isa<CXXDestructorDecl>(D)) {
639         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
640                            GD.getDtorType());
641         BuildThunksForVirtual(CanonGD);
642       } else {
643         BuildThunksForVirtual(MD->getCanonicalDecl());
644       }
645     }
646   }
647 
648   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
649     EmitCXXConstructor(CD, GD.getCtorType());
650   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
651     EmitCXXDestructor(DD, GD.getDtorType());
652   else if (isa<FunctionDecl>(D))
653     EmitGlobalFunctionDefinition(GD);
654   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
655     EmitGlobalVarDefinition(VD);
656   else {
657     assert(0 && "Invalid argument to EmitGlobalDefinition()");
658   }
659 }
660 
661 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
662 /// module, create and return an llvm Function with the specified type. If there
663 /// is something in the module with the specified name, return it potentially
664 /// bitcasted to the right type.
665 ///
666 /// If D is non-null, it specifies a decl that correspond to this.  This is used
667 /// to set the attributes on the function when it is first created.
668 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
669                                                        const llvm::Type *Ty,
670                                                        GlobalDecl D) {
671   // Lookup the entry, lazily creating it if necessary.
672   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
673   if (Entry) {
674     if (Entry->getType()->getElementType() == Ty)
675       return Entry;
676 
677     // Make sure the result is of the correct type.
678     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
679     return llvm::ConstantExpr::getBitCast(Entry, PTy);
680   }
681 
682   // This function doesn't have a complete type (for example, the return
683   // type is an incomplete struct). Use a fake type instead, and make
684   // sure not to try to set attributes.
685   bool IsIncompleteFunction = false;
686   if (!isa<llvm::FunctionType>(Ty)) {
687     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
688                                  std::vector<const llvm::Type*>(), false);
689     IsIncompleteFunction = true;
690   }
691   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
692                                              llvm::Function::ExternalLinkage,
693                                              "", &getModule());
694   F->setName(MangledName);
695   if (D.getDecl())
696     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
697                           IsIncompleteFunction);
698   Entry = F;
699 
700   // This is the first use or definition of a mangled name.  If there is a
701   // deferred decl with this name, remember that we need to emit it at the end
702   // of the file.
703   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
704     DeferredDecls.find(MangledName);
705   if (DDI != DeferredDecls.end()) {
706     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
707     // list, and remove it from DeferredDecls (since we don't need it anymore).
708     DeferredDeclsToEmit.push_back(DDI->second);
709     DeferredDecls.erase(DDI);
710   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
711     // If this the first reference to a C++ inline function in a class, queue up
712     // the deferred function body for emission.  These are not seen as
713     // top-level declarations.
714     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
715       DeferredDeclsToEmit.push_back(D);
716     // A called constructor which has no definition or declaration need be
717     // synthesized.
718     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
719       if (CD->isImplicit())
720         DeferredDeclsToEmit.push_back(D);
721     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
722       if (DD->isImplicit())
723         DeferredDeclsToEmit.push_back(D);
724     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
725       if (MD->isCopyAssignment() && MD->isImplicit())
726         DeferredDeclsToEmit.push_back(D);
727     }
728   }
729 
730   return F;
731 }
732 
733 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
734 /// non-null, then this function will use the specified type if it has to
735 /// create it (this occurs when we see a definition of the function).
736 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
737                                                  const llvm::Type *Ty) {
738   // If there was no specific requested type, just convert it now.
739   if (!Ty)
740     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
741   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
742 }
743 
744 /// CreateRuntimeFunction - Create a new runtime function with the specified
745 /// type and name.
746 llvm::Constant *
747 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
748                                      const char *Name) {
749   // Convert Name to be a uniqued string from the IdentifierInfo table.
750   Name = getContext().Idents.get(Name).getNameStart();
751   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
752 }
753 
754 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
755 /// create and return an llvm GlobalVariable with the specified type.  If there
756 /// is something in the module with the specified name, return it potentially
757 /// bitcasted to the right type.
758 ///
759 /// If D is non-null, it specifies a decl that correspond to this.  This is used
760 /// to set the attributes on the global when it is first created.
761 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
762                                                      const llvm::PointerType*Ty,
763                                                      const VarDecl *D) {
764   // Lookup the entry, lazily creating it if necessary.
765   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
766   if (Entry) {
767     if (Entry->getType() == Ty)
768       return Entry;
769 
770     // Make sure the result is of the correct type.
771     return llvm::ConstantExpr::getBitCast(Entry, Ty);
772   }
773 
774   // This is the first use or definition of a mangled name.  If there is a
775   // deferred decl with this name, remember that we need to emit it at the end
776   // of the file.
777   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
778     DeferredDecls.find(MangledName);
779   if (DDI != DeferredDecls.end()) {
780     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
781     // list, and remove it from DeferredDecls (since we don't need it anymore).
782     DeferredDeclsToEmit.push_back(DDI->second);
783     DeferredDecls.erase(DDI);
784   }
785 
786   llvm::GlobalVariable *GV =
787     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
788                              llvm::GlobalValue::ExternalLinkage,
789                              0, "", 0,
790                              false, Ty->getAddressSpace());
791   GV->setName(MangledName);
792 
793   // Handle things which are present even on external declarations.
794   if (D) {
795     // FIXME: This code is overly simple and should be merged with other global
796     // handling.
797     GV->setConstant(D->getType().isConstant(Context));
798 
799     // FIXME: Merge with other attribute handling code.
800     if (D->getStorageClass() == VarDecl::PrivateExtern)
801       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
802 
803     if (D->hasAttr<WeakAttr>() ||
804         D->hasAttr<WeakImportAttr>())
805       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
806 
807     GV->setThreadLocal(D->isThreadSpecified());
808   }
809 
810   return Entry = GV;
811 }
812 
813 
814 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
815 /// given global variable.  If Ty is non-null and if the global doesn't exist,
816 /// then it will be greated with the specified type instead of whatever the
817 /// normal requested type would be.
818 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
819                                                   const llvm::Type *Ty) {
820   assert(D->hasGlobalStorage() && "Not a global variable");
821   QualType ASTTy = D->getType();
822   if (Ty == 0)
823     Ty = getTypes().ConvertTypeForMem(ASTTy);
824 
825   const llvm::PointerType *PTy =
826     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
827   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
828 }
829 
830 /// CreateRuntimeVariable - Create a new runtime global variable with the
831 /// specified type and name.
832 llvm::Constant *
833 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
834                                      const char *Name) {
835   // Convert Name to be a uniqued string from the IdentifierInfo table.
836   Name = getContext().Idents.get(Name).getNameStart();
837   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
838 }
839 
840 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
841   assert(!D->getInit() && "Cannot emit definite definitions here!");
842 
843   if (MayDeferGeneration(D)) {
844     // If we have not seen a reference to this variable yet, place it
845     // into the deferred declarations table to be emitted if needed
846     // later.
847     const char *MangledName = getMangledName(D);
848     if (GlobalDeclMap.count(MangledName) == 0) {
849       DeferredDecls[MangledName] = D;
850       return;
851     }
852   }
853 
854   // The tentative definition is the only definition.
855   EmitGlobalVarDefinition(D);
856 }
857 
858 static CodeGenModule::GVALinkage
859 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
860   // Everything located semantically within an anonymous namespace is
861   // always internal.
862   if (VD->isInAnonymousNamespace())
863     return CodeGenModule::GVA_Internal;
864 
865   // Handle linkage for static data members.
866   if (VD->isStaticDataMember()) {
867     switch (VD->getTemplateSpecializationKind()) {
868     case TSK_Undeclared:
869     case TSK_ExplicitSpecialization:
870     case TSK_ExplicitInstantiationDefinition:
871       return CodeGenModule::GVA_StrongExternal;
872 
873     case TSK_ExplicitInstantiationDeclaration:
874       llvm::llvm_unreachable("Variable should not be instantiated");
875       // Fall through to treat this like any other instantiation.
876 
877     case TSK_ImplicitInstantiation:
878       return CodeGenModule::GVA_TemplateInstantiation;
879     }
880   }
881 
882   if (VD->getLinkage() == VarDecl::InternalLinkage)
883     return CodeGenModule::GVA_Internal;
884 
885   return CodeGenModule::GVA_StrongExternal;
886 }
887 
888 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
889   llvm::Constant *Init = 0;
890   QualType ASTTy = D->getType();
891 
892   if (D->getInit() == 0) {
893     // This is a tentative definition; tentative definitions are
894     // implicitly initialized with { 0 }.
895     //
896     // Note that tentative definitions are only emitted at the end of
897     // a translation unit, so they should never have incomplete
898     // type. In addition, EmitTentativeDefinition makes sure that we
899     // never attempt to emit a tentative definition if a real one
900     // exists. A use may still exists, however, so we still may need
901     // to do a RAUW.
902     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
903     Init = EmitNullConstant(D->getType());
904   } else {
905     Init = EmitConstantExpr(D->getInit(), D->getType());
906 
907     if (!Init) {
908       QualType T = D->getInit()->getType();
909       if (getLangOptions().CPlusPlus) {
910         CXXGlobalInits.push_back(D);
911         Init = EmitNullConstant(T);
912       } else {
913         ErrorUnsupported(D, "static initializer");
914         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
915       }
916     }
917   }
918 
919   const llvm::Type* InitType = Init->getType();
920   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
921 
922   // Strip off a bitcast if we got one back.
923   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
924     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
925            // all zero index gep.
926            CE->getOpcode() == llvm::Instruction::GetElementPtr);
927     Entry = CE->getOperand(0);
928   }
929 
930   // Entry is now either a Function or GlobalVariable.
931   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
932 
933   // We have a definition after a declaration with the wrong type.
934   // We must make a new GlobalVariable* and update everything that used OldGV
935   // (a declaration or tentative definition) with the new GlobalVariable*
936   // (which will be a definition).
937   //
938   // This happens if there is a prototype for a global (e.g.
939   // "extern int x[];") and then a definition of a different type (e.g.
940   // "int x[10];"). This also happens when an initializer has a different type
941   // from the type of the global (this happens with unions).
942   if (GV == 0 ||
943       GV->getType()->getElementType() != InitType ||
944       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
945 
946     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
947     GlobalDeclMap.erase(getMangledName(D));
948 
949     // Make a new global with the correct type, this is now guaranteed to work.
950     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
951     GV->takeName(cast<llvm::GlobalValue>(Entry));
952 
953     // Replace all uses of the old global with the new global
954     llvm::Constant *NewPtrForOldDecl =
955         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
956     Entry->replaceAllUsesWith(NewPtrForOldDecl);
957 
958     // Erase the old global, since it is no longer used.
959     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
960   }
961 
962   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
963     SourceManager &SM = Context.getSourceManager();
964     AddAnnotation(EmitAnnotateAttr(GV, AA,
965                               SM.getInstantiationLineNumber(D->getLocation())));
966   }
967 
968   GV->setInitializer(Init);
969 
970   // If it is safe to mark the global 'constant', do so now.
971   GV->setConstant(false);
972   if (D->getType().isConstant(Context)) {
973     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
974     // members, it cannot be declared "LLVM const".
975     GV->setConstant(true);
976   }
977 
978   GV->setAlignment(getContext().getDeclAlignInBytes(D));
979 
980   // Set the llvm linkage type as appropriate.
981   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
982   if (Linkage == GVA_Internal)
983     GV->setLinkage(llvm::Function::InternalLinkage);
984   else if (D->hasAttr<DLLImportAttr>())
985     GV->setLinkage(llvm::Function::DLLImportLinkage);
986   else if (D->hasAttr<DLLExportAttr>())
987     GV->setLinkage(llvm::Function::DLLExportLinkage);
988   else if (D->hasAttr<WeakAttr>()) {
989     if (GV->isConstant())
990       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
991     else
992       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
993   } else if (Linkage == GVA_TemplateInstantiation)
994     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
995   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
996            !D->hasExternalStorage() && !D->getInit() &&
997            !D->getAttr<SectionAttr>()) {
998     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
999     // common vars aren't constant even if declared const.
1000     GV->setConstant(false);
1001   } else
1002     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1003 
1004   SetCommonAttributes(D, GV);
1005 
1006   // Emit global variable debug information.
1007   if (CGDebugInfo *DI = getDebugInfo()) {
1008     DI->setLocation(D->getLocation());
1009     DI->EmitGlobalVariable(GV, D);
1010   }
1011 }
1012 
1013 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1014 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1015 /// existing call uses of the old function in the module, this adjusts them to
1016 /// call the new function directly.
1017 ///
1018 /// This is not just a cleanup: the always_inline pass requires direct calls to
1019 /// functions to be able to inline them.  If there is a bitcast in the way, it
1020 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1021 /// run at -O0.
1022 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1023                                                       llvm::Function *NewFn) {
1024   // If we're redefining a global as a function, don't transform it.
1025   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1026   if (OldFn == 0) return;
1027 
1028   const llvm::Type *NewRetTy = NewFn->getReturnType();
1029   llvm::SmallVector<llvm::Value*, 4> ArgList;
1030 
1031   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1032        UI != E; ) {
1033     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1034     unsigned OpNo = UI.getOperandNo();
1035     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1036     if (!CI || OpNo != 0) continue;
1037 
1038     // If the return types don't match exactly, and if the call isn't dead, then
1039     // we can't transform this call.
1040     if (CI->getType() != NewRetTy && !CI->use_empty())
1041       continue;
1042 
1043     // If the function was passed too few arguments, don't transform.  If extra
1044     // arguments were passed, we silently drop them.  If any of the types
1045     // mismatch, we don't transform.
1046     unsigned ArgNo = 0;
1047     bool DontTransform = false;
1048     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1049          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1050       if (CI->getNumOperands()-1 == ArgNo ||
1051           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1052         DontTransform = true;
1053         break;
1054       }
1055     }
1056     if (DontTransform)
1057       continue;
1058 
1059     // Okay, we can transform this.  Create the new call instruction and copy
1060     // over the required information.
1061     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1062     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1063                                                      ArgList.end(), "", CI);
1064     ArgList.clear();
1065     if (!NewCall->getType()->isVoidTy())
1066       NewCall->takeName(CI);
1067     NewCall->setAttributes(CI->getAttributes());
1068     NewCall->setCallingConv(CI->getCallingConv());
1069 
1070     // Finally, remove the old call, replacing any uses with the new one.
1071     if (!CI->use_empty())
1072       CI->replaceAllUsesWith(NewCall);
1073 
1074     // Copy any custom metadata attached with CI.
1075     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1076     TheMetadata.copyMD(CI, NewCall);
1077 
1078     CI->eraseFromParent();
1079   }
1080 }
1081 
1082 
1083 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1084   const llvm::FunctionType *Ty;
1085   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1086 
1087   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1088     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1089 
1090     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1091   } else {
1092     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1093 
1094     // As a special case, make sure that definitions of K&R function
1095     // "type foo()" aren't declared as varargs (which forces the backend
1096     // to do unnecessary work).
1097     if (D->getType()->isFunctionNoProtoType()) {
1098       assert(Ty->isVarArg() && "Didn't lower type as expected");
1099       // Due to stret, the lowered function could have arguments.
1100       // Just create the same type as was lowered by ConvertType
1101       // but strip off the varargs bit.
1102       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1103       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1104     }
1105   }
1106 
1107   // Get or create the prototype for the function.
1108   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1109 
1110   // Strip off a bitcast if we got one back.
1111   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1112     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1113     Entry = CE->getOperand(0);
1114   }
1115 
1116 
1117   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1118     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1119 
1120     // If the types mismatch then we have to rewrite the definition.
1121     assert(OldFn->isDeclaration() &&
1122            "Shouldn't replace non-declaration");
1123 
1124     // F is the Function* for the one with the wrong type, we must make a new
1125     // Function* and update everything that used F (a declaration) with the new
1126     // Function* (which will be a definition).
1127     //
1128     // This happens if there is a prototype for a function
1129     // (e.g. "int f()") and then a definition of a different type
1130     // (e.g. "int f(int x)").  Start by making a new function of the
1131     // correct type, RAUW, then steal the name.
1132     GlobalDeclMap.erase(getMangledName(D));
1133     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1134     NewFn->takeName(OldFn);
1135 
1136     // If this is an implementation of a function without a prototype, try to
1137     // replace any existing uses of the function (which may be calls) with uses
1138     // of the new function
1139     if (D->getType()->isFunctionNoProtoType()) {
1140       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1141       OldFn->removeDeadConstantUsers();
1142     }
1143 
1144     // Replace uses of F with the Function we will endow with a body.
1145     if (!Entry->use_empty()) {
1146       llvm::Constant *NewPtrForOldDecl =
1147         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1148       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1149     }
1150 
1151     // Ok, delete the old function now, which is dead.
1152     OldFn->eraseFromParent();
1153 
1154     Entry = NewFn;
1155   }
1156 
1157   llvm::Function *Fn = cast<llvm::Function>(Entry);
1158 
1159   CodeGenFunction(*this).GenerateCode(D, Fn);
1160 
1161   SetFunctionDefinitionAttributes(D, Fn);
1162   SetLLVMFunctionAttributesForDefinition(D, Fn);
1163 
1164   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1165     AddGlobalCtor(Fn, CA->getPriority());
1166   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1167     AddGlobalDtor(Fn, DA->getPriority());
1168 }
1169 
1170 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1171   const AliasAttr *AA = D->getAttr<AliasAttr>();
1172   assert(AA && "Not an alias?");
1173 
1174   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1175 
1176   // Unique the name through the identifier table.
1177   const char *AliaseeName = AA->getAliasee().c_str();
1178   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1179 
1180   // Create a reference to the named value.  This ensures that it is emitted
1181   // if a deferred decl.
1182   llvm::Constant *Aliasee;
1183   if (isa<llvm::FunctionType>(DeclTy))
1184     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1185   else
1186     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1187                                     llvm::PointerType::getUnqual(DeclTy), 0);
1188 
1189   // Create the new alias itself, but don't set a name yet.
1190   llvm::GlobalValue *GA =
1191     new llvm::GlobalAlias(Aliasee->getType(),
1192                           llvm::Function::ExternalLinkage,
1193                           "", Aliasee, &getModule());
1194 
1195   // See if there is already something with the alias' name in the module.
1196   const char *MangledName = getMangledName(D);
1197   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1198 
1199   if (Entry && !Entry->isDeclaration()) {
1200     // If there is a definition in the module, then it wins over the alias.
1201     // This is dubious, but allow it to be safe.  Just ignore the alias.
1202     GA->eraseFromParent();
1203     return;
1204   }
1205 
1206   if (Entry) {
1207     // If there is a declaration in the module, then we had an extern followed
1208     // by the alias, as in:
1209     //   extern int test6();
1210     //   ...
1211     //   int test6() __attribute__((alias("test7")));
1212     //
1213     // Remove it and replace uses of it with the alias.
1214 
1215     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1216                                                           Entry->getType()));
1217     Entry->eraseFromParent();
1218   }
1219 
1220   // Now we know that there is no conflict, set the name.
1221   Entry = GA;
1222   GA->setName(MangledName);
1223 
1224   // Set attributes which are particular to an alias; this is a
1225   // specialization of the attributes which may be set on a global
1226   // variable/function.
1227   if (D->hasAttr<DLLExportAttr>()) {
1228     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1229       // The dllexport attribute is ignored for undefined symbols.
1230       if (FD->getBody())
1231         GA->setLinkage(llvm::Function::DLLExportLinkage);
1232     } else {
1233       GA->setLinkage(llvm::Function::DLLExportLinkage);
1234     }
1235   } else if (D->hasAttr<WeakAttr>() ||
1236              D->hasAttr<WeakImportAttr>()) {
1237     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1238   }
1239 
1240   SetCommonAttributes(D, GA);
1241 }
1242 
1243 /// getBuiltinLibFunction - Given a builtin id for a function like
1244 /// "__builtin_fabsf", return a Function* for "fabsf".
1245 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1246                                                   unsigned BuiltinID) {
1247   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1248           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1249          "isn't a lib fn");
1250 
1251   // Get the name, skip over the __builtin_ prefix (if necessary).
1252   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1253   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1254     Name += 10;
1255 
1256   const llvm::FunctionType *Ty =
1257     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1258 
1259   // Unique the name through the identifier table.
1260   Name = getContext().Idents.get(Name).getNameStart();
1261   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1262 }
1263 
1264 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1265                                             unsigned NumTys) {
1266   return llvm::Intrinsic::getDeclaration(&getModule(),
1267                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1268 }
1269 
1270 llvm::Function *CodeGenModule::getMemCpyFn() {
1271   if (MemCpyFn) return MemCpyFn;
1272   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1273   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1274 }
1275 
1276 llvm::Function *CodeGenModule::getMemMoveFn() {
1277   if (MemMoveFn) return MemMoveFn;
1278   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1279   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1280 }
1281 
1282 llvm::Function *CodeGenModule::getMemSetFn() {
1283   if (MemSetFn) return MemSetFn;
1284   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1285   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1286 }
1287 
1288 static llvm::StringMapEntry<llvm::Constant*> &
1289 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1290                          const StringLiteral *Literal,
1291                          bool TargetIsLSB,
1292                          bool &IsUTF16,
1293                          unsigned &StringLength) {
1294   unsigned NumBytes = Literal->getByteLength();
1295 
1296   // Check for simple case.
1297   if (!Literal->containsNonAsciiOrNull()) {
1298     StringLength = NumBytes;
1299     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1300                                                 StringLength));
1301   }
1302 
1303   // Otherwise, convert the UTF8 literals into a byte string.
1304   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1305   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1306   UTF16 *ToPtr = &ToBuf[0];
1307 
1308   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1309                                                &ToPtr, ToPtr + NumBytes,
1310                                                strictConversion);
1311 
1312   // Check for conversion failure.
1313   if (Result != conversionOK) {
1314     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1315     // this duplicate code.
1316     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1317     StringLength = NumBytes;
1318     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1319                                                 StringLength));
1320   }
1321 
1322   // ConvertUTF8toUTF16 returns the length in ToPtr.
1323   StringLength = ToPtr - &ToBuf[0];
1324 
1325   // Render the UTF-16 string into a byte array and convert to the target byte
1326   // order.
1327   //
1328   // FIXME: This isn't something we should need to do here.
1329   llvm::SmallString<128> AsBytes;
1330   AsBytes.reserve(StringLength * 2);
1331   for (unsigned i = 0; i != StringLength; ++i) {
1332     unsigned short Val = ToBuf[i];
1333     if (TargetIsLSB) {
1334       AsBytes.push_back(Val & 0xFF);
1335       AsBytes.push_back(Val >> 8);
1336     } else {
1337       AsBytes.push_back(Val >> 8);
1338       AsBytes.push_back(Val & 0xFF);
1339     }
1340   }
1341   // Append one extra null character, the second is automatically added by our
1342   // caller.
1343   AsBytes.push_back(0);
1344 
1345   IsUTF16 = true;
1346   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1347 }
1348 
1349 llvm::Constant *
1350 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1351   unsigned StringLength = 0;
1352   bool isUTF16 = false;
1353   llvm::StringMapEntry<llvm::Constant*> &Entry =
1354     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1355                              getTargetData().isLittleEndian(),
1356                              isUTF16, StringLength);
1357 
1358   if (llvm::Constant *C = Entry.getValue())
1359     return C;
1360 
1361   llvm::Constant *Zero =
1362       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1363   llvm::Constant *Zeros[] = { Zero, Zero };
1364 
1365   // If we don't already have it, get __CFConstantStringClassReference.
1366   if (!CFConstantStringClassRef) {
1367     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1368     Ty = llvm::ArrayType::get(Ty, 0);
1369     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1370                                            "__CFConstantStringClassReference");
1371     // Decay array -> ptr
1372     CFConstantStringClassRef =
1373       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1374   }
1375 
1376   QualType CFTy = getContext().getCFConstantStringType();
1377 
1378   const llvm::StructType *STy =
1379     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1380 
1381   std::vector<llvm::Constant*> Fields(4);
1382 
1383   // Class pointer.
1384   Fields[0] = CFConstantStringClassRef;
1385 
1386   // Flags.
1387   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1388   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1389     llvm::ConstantInt::get(Ty, 0x07C8);
1390 
1391   // String pointer.
1392   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1393 
1394   const char *Sect = 0;
1395   llvm::GlobalValue::LinkageTypes Linkage;
1396   bool isConstant;
1397   if (isUTF16) {
1398     Sect = getContext().Target.getUnicodeStringSection();
1399     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1400     Linkage = llvm::GlobalValue::InternalLinkage;
1401     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1402     // does make plain ascii ones writable.
1403     isConstant = true;
1404   } else {
1405     Linkage = llvm::GlobalValue::PrivateLinkage;
1406     isConstant = !Features.WritableStrings;
1407   }
1408 
1409   llvm::GlobalVariable *GV =
1410     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1411                              ".str");
1412   if (Sect)
1413     GV->setSection(Sect);
1414   if (isUTF16) {
1415     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1416     GV->setAlignment(Align);
1417   }
1418   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1419 
1420   // String length.
1421   Ty = getTypes().ConvertType(getContext().LongTy);
1422   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1423 
1424   // The struct.
1425   C = llvm::ConstantStruct::get(STy, Fields);
1426   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1427                                 llvm::GlobalVariable::PrivateLinkage, C,
1428                                 "_unnamed_cfstring_");
1429   if (const char *Sect = getContext().Target.getCFStringSection())
1430     GV->setSection(Sect);
1431   Entry.setValue(GV);
1432 
1433   return GV;
1434 }
1435 
1436 /// GetStringForStringLiteral - Return the appropriate bytes for a
1437 /// string literal, properly padded to match the literal type.
1438 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1439   const char *StrData = E->getStrData();
1440   unsigned Len = E->getByteLength();
1441 
1442   const ConstantArrayType *CAT =
1443     getContext().getAsConstantArrayType(E->getType());
1444   assert(CAT && "String isn't pointer or array!");
1445 
1446   // Resize the string to the right size.
1447   std::string Str(StrData, StrData+Len);
1448   uint64_t RealLen = CAT->getSize().getZExtValue();
1449 
1450   if (E->isWide())
1451     RealLen *= getContext().Target.getWCharWidth()/8;
1452 
1453   Str.resize(RealLen, '\0');
1454 
1455   return Str;
1456 }
1457 
1458 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1459 /// constant array for the given string literal.
1460 llvm::Constant *
1461 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1462   // FIXME: This can be more efficient.
1463   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1464   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1465   if (S->isWide()) {
1466     llvm::Type *DestTy =
1467         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1468     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1469   }
1470   return C;
1471 }
1472 
1473 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1474 /// array for the given ObjCEncodeExpr node.
1475 llvm::Constant *
1476 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1477   std::string Str;
1478   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1479 
1480   return GetAddrOfConstantCString(Str);
1481 }
1482 
1483 
1484 /// GenerateWritableString -- Creates storage for a string literal.
1485 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1486                                              bool constant,
1487                                              CodeGenModule &CGM,
1488                                              const char *GlobalName) {
1489   // Create Constant for this string literal. Don't add a '\0'.
1490   llvm::Constant *C =
1491       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1492 
1493   // Create a global variable for this string
1494   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1495                                   llvm::GlobalValue::PrivateLinkage,
1496                                   C, GlobalName);
1497 }
1498 
1499 /// GetAddrOfConstantString - Returns a pointer to a character array
1500 /// containing the literal. This contents are exactly that of the
1501 /// given string, i.e. it will not be null terminated automatically;
1502 /// see GetAddrOfConstantCString. Note that whether the result is
1503 /// actually a pointer to an LLVM constant depends on
1504 /// Feature.WriteableStrings.
1505 ///
1506 /// The result has pointer to array type.
1507 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1508                                                        const char *GlobalName) {
1509   bool IsConstant = !Features.WritableStrings;
1510 
1511   // Get the default prefix if a name wasn't specified.
1512   if (!GlobalName)
1513     GlobalName = ".str";
1514 
1515   // Don't share any string literals if strings aren't constant.
1516   if (!IsConstant)
1517     return GenerateStringLiteral(str, false, *this, GlobalName);
1518 
1519   llvm::StringMapEntry<llvm::Constant *> &Entry =
1520     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1521 
1522   if (Entry.getValue())
1523     return Entry.getValue();
1524 
1525   // Create a global variable for this.
1526   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1527   Entry.setValue(C);
1528   return C;
1529 }
1530 
1531 /// GetAddrOfConstantCString - Returns a pointer to a character
1532 /// array containing the literal and a terminating '\-'
1533 /// character. The result has pointer to array type.
1534 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1535                                                         const char *GlobalName){
1536   return GetAddrOfConstantString(str + '\0', GlobalName);
1537 }
1538 
1539 /// EmitObjCPropertyImplementations - Emit information for synthesized
1540 /// properties for an implementation.
1541 void CodeGenModule::EmitObjCPropertyImplementations(const
1542                                                     ObjCImplementationDecl *D) {
1543   for (ObjCImplementationDecl::propimpl_iterator
1544          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1545     ObjCPropertyImplDecl *PID = *i;
1546 
1547     // Dynamic is just for type-checking.
1548     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1549       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1550 
1551       // Determine which methods need to be implemented, some may have
1552       // been overridden. Note that ::isSynthesized is not the method
1553       // we want, that just indicates if the decl came from a
1554       // property. What we want to know is if the method is defined in
1555       // this implementation.
1556       if (!D->getInstanceMethod(PD->getGetterName()))
1557         CodeGenFunction(*this).GenerateObjCGetter(
1558                                  const_cast<ObjCImplementationDecl *>(D), PID);
1559       if (!PD->isReadOnly() &&
1560           !D->getInstanceMethod(PD->getSetterName()))
1561         CodeGenFunction(*this).GenerateObjCSetter(
1562                                  const_cast<ObjCImplementationDecl *>(D), PID);
1563     }
1564   }
1565 }
1566 
1567 /// EmitNamespace - Emit all declarations in a namespace.
1568 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1569   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1570        I != E; ++I)
1571     EmitTopLevelDecl(*I);
1572 }
1573 
1574 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1575 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1576   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1577       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1578     ErrorUnsupported(LSD, "linkage spec");
1579     return;
1580   }
1581 
1582   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1583        I != E; ++I)
1584     EmitTopLevelDecl(*I);
1585 }
1586 
1587 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1588 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1589   // If an error has occurred, stop code generation, but continue
1590   // parsing and semantic analysis (to ensure all warnings and errors
1591   // are emitted).
1592   if (Diags.hasErrorOccurred())
1593     return;
1594 
1595   // Ignore dependent declarations.
1596   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1597     return;
1598 
1599   switch (D->getKind()) {
1600   case Decl::CXXConversion:
1601   case Decl::CXXMethod:
1602   case Decl::Function:
1603     // Skip function templates
1604     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1605       return;
1606 
1607     EmitGlobal(cast<FunctionDecl>(D));
1608     break;
1609 
1610   case Decl::Var:
1611     EmitGlobal(cast<VarDecl>(D));
1612     break;
1613 
1614   // C++ Decls
1615   case Decl::Namespace:
1616     EmitNamespace(cast<NamespaceDecl>(D));
1617     break;
1618     // No code generation needed.
1619   case Decl::UsingShadow:
1620   case Decl::Using:
1621   case Decl::UsingDirective:
1622   case Decl::ClassTemplate:
1623   case Decl::FunctionTemplate:
1624   case Decl::NamespaceAlias:
1625     break;
1626   case Decl::CXXConstructor:
1627     // Skip function templates
1628     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1629       return;
1630 
1631     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1632     break;
1633   case Decl::CXXDestructor:
1634     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1635     break;
1636 
1637   case Decl::StaticAssert:
1638     // Nothing to do.
1639     break;
1640 
1641   // Objective-C Decls
1642 
1643   // Forward declarations, no (immediate) code generation.
1644   case Decl::ObjCClass:
1645   case Decl::ObjCForwardProtocol:
1646   case Decl::ObjCCategory:
1647   case Decl::ObjCInterface:
1648     break;
1649 
1650   case Decl::ObjCProtocol:
1651     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1652     break;
1653 
1654   case Decl::ObjCCategoryImpl:
1655     // Categories have properties but don't support synthesize so we
1656     // can ignore them here.
1657     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1658     break;
1659 
1660   case Decl::ObjCImplementation: {
1661     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1662     EmitObjCPropertyImplementations(OMD);
1663     Runtime->GenerateClass(OMD);
1664     break;
1665   }
1666   case Decl::ObjCMethod: {
1667     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1668     // If this is not a prototype, emit the body.
1669     if (OMD->getBody())
1670       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1671     break;
1672   }
1673   case Decl::ObjCCompatibleAlias:
1674     // compatibility-alias is a directive and has no code gen.
1675     break;
1676 
1677   case Decl::LinkageSpec:
1678     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1679     break;
1680 
1681   case Decl::FileScopeAsm: {
1682     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1683     std::string AsmString(AD->getAsmString()->getStrData(),
1684                           AD->getAsmString()->getByteLength());
1685 
1686     const std::string &S = getModule().getModuleInlineAsm();
1687     if (S.empty())
1688       getModule().setModuleInlineAsm(AsmString);
1689     else
1690       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1691     break;
1692   }
1693 
1694   default:
1695     // Make sure we handled everything we should, every other kind is a
1696     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1697     // function. Need to recode Decl::Kind to do that easily.
1698     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1699   }
1700 }
1701