1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 
43 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                              llvm::Module &M, const llvm::TargetData &TD,
45                              Diagnostic &diags)
46   : BlockModule(C, M, TD, Types, *this), Context(C),
47     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50     MangleCtx(C), VTables(*this), Runtime(0),
51     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
52     VMContext(M.getContext()) {
53 
54   if (!Features.ObjC1)
55     Runtime = 0;
56   else if (!Features.NeXTRuntime)
57     Runtime = CreateGNUObjCRuntime(*this);
58   else if (Features.ObjCNonFragileABI)
59     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
60   else
61     Runtime = CreateMacObjCRuntime(*this);
62 
63   // If debug info generation is enabled, create the CGDebugInfo object.
64   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
65 }
66 
67 CodeGenModule::~CodeGenModule() {
68   delete Runtime;
69   delete DebugInfo;
70 }
71 
72 void CodeGenModule::createObjCRuntime() {
73   if (!Features.NeXTRuntime)
74     Runtime = CreateGNUObjCRuntime(*this);
75   else if (Features.ObjCNonFragileABI)
76     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
77   else
78     Runtime = CreateMacObjCRuntime(*this);
79 }
80 
81 void CodeGenModule::Release() {
82   EmitDeferred();
83   EmitCXXGlobalInitFunc();
84   EmitCXXGlobalDtorFunc();
85   if (Runtime)
86     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
87       AddGlobalCtor(ObjCInitFunction);
88   EmitCtorList(GlobalCtors, "llvm.global_ctors");
89   EmitCtorList(GlobalDtors, "llvm.global_dtors");
90   EmitAnnotations();
91   EmitLLVMUsed();
92 }
93 
94 bool CodeGenModule::isTargetDarwin() const {
95   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
96 }
97 
98 /// ErrorUnsupported - Print out an error that codegen doesn't support the
99 /// specified stmt yet.
100 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
101                                      bool OmitOnError) {
102   if (OmitOnError && getDiags().hasErrorOccurred())
103     return;
104   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
105                                                "cannot compile this %0 yet");
106   std::string Msg = Type;
107   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
108     << Msg << S->getSourceRange();
109 }
110 
111 /// ErrorUnsupported - Print out an error that codegen doesn't support the
112 /// specified decl yet.
113 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
114                                      bool OmitOnError) {
115   if (OmitOnError && getDiags().hasErrorOccurred())
116     return;
117   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
118                                                "cannot compile this %0 yet");
119   std::string Msg = Type;
120   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
121 }
122 
123 LangOptions::VisibilityMode
124 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
125   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
126     if (VD->getStorageClass() == VarDecl::PrivateExtern)
127       return LangOptions::Hidden;
128 
129   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
130     switch (attr->getVisibility()) {
131     default: assert(0 && "Unknown visibility!");
132     case VisibilityAttr::DefaultVisibility:
133       return LangOptions::Default;
134     case VisibilityAttr::HiddenVisibility:
135       return LangOptions::Hidden;
136     case VisibilityAttr::ProtectedVisibility:
137       return LangOptions::Protected;
138     }
139   }
140 
141   // This decl should have the same visibility as its parent.
142   if (const DeclContext *DC = D->getDeclContext())
143     return getDeclVisibilityMode(cast<Decl>(DC));
144 
145   return getLangOptions().getVisibilityMode();
146 }
147 
148 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
149                                         const Decl *D) const {
150   // Internal definitions always have default visibility.
151   if (GV->hasLocalLinkage()) {
152     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
153     return;
154   }
155 
156   switch (getDeclVisibilityMode(D)) {
157   default: assert(0 && "Unknown visibility!");
158   case LangOptions::Default:
159     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
160   case LangOptions::Hidden:
161     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
162   case LangOptions::Protected:
163     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
164   }
165 }
166 
167 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
168   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
169 
170   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
171     return getMangledCXXCtorName(Buffer, D, GD.getCtorType());
172   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
173     return getMangledCXXDtorName(Buffer, D, GD.getDtorType());
174 
175   return getMangledName(Buffer, ND);
176 }
177 
178 /// \brief Retrieves the mangled name for the given declaration.
179 ///
180 /// If the given declaration requires a mangled name, returns an
181 /// const char* containing the mangled name.  Otherwise, returns
182 /// the unmangled name.
183 ///
184 void CodeGenModule::getMangledName(MangleBuffer &Buffer,
185                                    const NamedDecl *ND) {
186   if (!getMangleContext().shouldMangleDeclName(ND)) {
187     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
188     Buffer.setString(ND->getNameAsCString());
189     return;
190   }
191 
192   getMangleContext().mangleName(ND, Buffer.getBuffer());
193 }
194 
195 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
196   return getModule().getNamedValue(Name);
197 }
198 
199 /// AddGlobalCtor - Add a function to the list that will be called before
200 /// main() runs.
201 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
202   // FIXME: Type coercion of void()* types.
203   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
204 }
205 
206 /// AddGlobalDtor - Add a function to the list that will be called
207 /// when the module is unloaded.
208 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
209   // FIXME: Type coercion of void()* types.
210   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
211 }
212 
213 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
214   // Ctor function type is void()*.
215   llvm::FunctionType* CtorFTy =
216     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
217                             std::vector<const llvm::Type*>(),
218                             false);
219   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
220 
221   // Get the type of a ctor entry, { i32, void ()* }.
222   llvm::StructType* CtorStructTy =
223     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
224                           llvm::PointerType::getUnqual(CtorFTy), NULL);
225 
226   // Construct the constructor and destructor arrays.
227   std::vector<llvm::Constant*> Ctors;
228   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
229     std::vector<llvm::Constant*> S;
230     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
231                 I->second, false));
232     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
233     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
234   }
235 
236   if (!Ctors.empty()) {
237     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
238     new llvm::GlobalVariable(TheModule, AT, false,
239                              llvm::GlobalValue::AppendingLinkage,
240                              llvm::ConstantArray::get(AT, Ctors),
241                              GlobalName);
242   }
243 }
244 
245 void CodeGenModule::EmitAnnotations() {
246   if (Annotations.empty())
247     return;
248 
249   // Create a new global variable for the ConstantStruct in the Module.
250   llvm::Constant *Array =
251   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
252                                                 Annotations.size()),
253                            Annotations);
254   llvm::GlobalValue *gv =
255   new llvm::GlobalVariable(TheModule, Array->getType(), false,
256                            llvm::GlobalValue::AppendingLinkage, Array,
257                            "llvm.global.annotations");
258   gv->setSection("llvm.metadata");
259 }
260 
261 static CodeGenModule::GVALinkage
262 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
263                       const LangOptions &Features) {
264   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
265 
266   Linkage L = FD->getLinkage();
267   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
268       FD->getType()->getLinkage() == UniqueExternalLinkage)
269     L = UniqueExternalLinkage;
270 
271   switch (L) {
272   case NoLinkage:
273   case InternalLinkage:
274   case UniqueExternalLinkage:
275     return CodeGenModule::GVA_Internal;
276 
277   case ExternalLinkage:
278     switch (FD->getTemplateSpecializationKind()) {
279     case TSK_Undeclared:
280     case TSK_ExplicitSpecialization:
281       External = CodeGenModule::GVA_StrongExternal;
282       break;
283 
284     case TSK_ExplicitInstantiationDefinition:
285       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
286 
287     case TSK_ExplicitInstantiationDeclaration:
288     case TSK_ImplicitInstantiation:
289       External = CodeGenModule::GVA_TemplateInstantiation;
290       break;
291     }
292   }
293 
294   if (!FD->isInlined())
295     return External;
296 
297   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
298     // GNU or C99 inline semantics. Determine whether this symbol should be
299     // externally visible.
300     if (FD->isInlineDefinitionExternallyVisible())
301       return External;
302 
303     // C99 inline semantics, where the symbol is not externally visible.
304     return CodeGenModule::GVA_C99Inline;
305   }
306 
307   // C++0x [temp.explicit]p9:
308   //   [ Note: The intent is that an inline function that is the subject of
309   //   an explicit instantiation declaration will still be implicitly
310   //   instantiated when used so that the body can be considered for
311   //   inlining, but that no out-of-line copy of the inline function would be
312   //   generated in the translation unit. -- end note ]
313 
314   // We check the specialization kind of the class for implicit methods.
315   // They have a TSK_Undeclared specialization kind.
316   TemplateSpecializationKind TSK;
317   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
318   if (MD && MD->isImplicit())
319     TSK = MD->getParent()->getTemplateSpecializationKind();
320   else
321     TSK = FD->getTemplateSpecializationKind();
322 
323   if (TSK == TSK_ExplicitInstantiationDeclaration)
324     return CodeGenModule::GVA_C99Inline;
325 
326   return CodeGenModule::GVA_CXXInline;
327 }
328 
329 llvm::GlobalValue::LinkageTypes
330 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
331   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
332 
333   if (Linkage == GVA_Internal) {
334     return llvm::Function::InternalLinkage;
335   } else if (D->hasAttr<DLLExportAttr>()) {
336     return llvm::Function::DLLExportLinkage;
337   } else if (D->hasAttr<WeakAttr>()) {
338     return llvm::Function::WeakAnyLinkage;
339   } else if (Linkage == GVA_C99Inline) {
340     // In C99 mode, 'inline' functions are guaranteed to have a strong
341     // definition somewhere else, so we can use available_externally linkage.
342     return llvm::Function::AvailableExternallyLinkage;
343   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
344     // In C++, the compiler has to emit a definition in every translation unit
345     // that references the function.  We should use linkonce_odr because
346     // a) if all references in this translation unit are optimized away, we
347     // don't need to codegen it.  b) if the function persists, it needs to be
348     // merged with other definitions. c) C++ has the ODR, so we know the
349     // definition is dependable.
350     return llvm::Function::LinkOnceODRLinkage;
351   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
352     // An explicit instantiation of a template has weak linkage, since
353     // explicit instantiations can occur in multiple translation units
354     // and must all be equivalent. However, we are not allowed to
355     // throw away these explicit instantiations.
356     return llvm::Function::WeakODRLinkage;
357   } else {
358     assert(Linkage == GVA_StrongExternal);
359     // Otherwise, we have strong external linkage.
360     return llvm::Function::ExternalLinkage;
361   }
362 }
363 
364 
365 /// SetFunctionDefinitionAttributes - Set attributes for a global.
366 ///
367 /// FIXME: This is currently only done for aliases and functions, but not for
368 /// variables (these details are set in EmitGlobalVarDefinition for variables).
369 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
370                                                     llvm::GlobalValue *GV) {
371   GV->setLinkage(getFunctionLinkage(D));
372   SetCommonAttributes(D, GV);
373 }
374 
375 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
376                                               const CGFunctionInfo &Info,
377                                               llvm::Function *F) {
378   unsigned CallingConv;
379   AttributeListType AttributeList;
380   ConstructAttributeList(Info, D, AttributeList, CallingConv);
381   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
382                                           AttributeList.size()));
383   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
384 }
385 
386 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
387                                                            llvm::Function *F) {
388   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
389     F->addFnAttr(llvm::Attribute::NoUnwind);
390 
391   if (D->hasAttr<AlwaysInlineAttr>())
392     F->addFnAttr(llvm::Attribute::AlwaysInline);
393 
394   if (D->hasAttr<NoInlineAttr>())
395     F->addFnAttr(llvm::Attribute::NoInline);
396 
397   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
398     F->addFnAttr(llvm::Attribute::StackProtect);
399   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
400     F->addFnAttr(llvm::Attribute::StackProtectReq);
401 
402   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
403     unsigned width = Context.Target.getCharWidth();
404     F->setAlignment(AA->getAlignment() / width);
405     while ((AA = AA->getNext<AlignedAttr>()))
406       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
407   }
408   // C++ ABI requires 2-byte alignment for member functions.
409   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
410     F->setAlignment(2);
411 }
412 
413 void CodeGenModule::SetCommonAttributes(const Decl *D,
414                                         llvm::GlobalValue *GV) {
415   setGlobalVisibility(GV, D);
416 
417   if (D->hasAttr<UsedAttr>())
418     AddUsedGlobal(GV);
419 
420   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
421     GV->setSection(SA->getName());
422 
423   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
424 }
425 
426 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
427                                                   llvm::Function *F,
428                                                   const CGFunctionInfo &FI) {
429   SetLLVMFunctionAttributes(D, FI, F);
430   SetLLVMFunctionAttributesForDefinition(D, F);
431 
432   F->setLinkage(llvm::Function::InternalLinkage);
433 
434   SetCommonAttributes(D, F);
435 }
436 
437 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
438                                           llvm::Function *F,
439                                           bool IsIncompleteFunction) {
440   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
441 
442   if (!IsIncompleteFunction)
443     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
444 
445   // Only a few attributes are set on declarations; these may later be
446   // overridden by a definition.
447 
448   if (FD->hasAttr<DLLImportAttr>()) {
449     F->setLinkage(llvm::Function::DLLImportLinkage);
450   } else if (FD->hasAttr<WeakAttr>() ||
451              FD->hasAttr<WeakImportAttr>()) {
452     // "extern_weak" is overloaded in LLVM; we probably should have
453     // separate linkage types for this.
454     F->setLinkage(llvm::Function::ExternalWeakLinkage);
455   } else {
456     F->setLinkage(llvm::Function::ExternalLinkage);
457   }
458 
459   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
460     F->setSection(SA->getName());
461 }
462 
463 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
464   assert(!GV->isDeclaration() &&
465          "Only globals with definition can force usage.");
466   LLVMUsed.push_back(GV);
467 }
468 
469 void CodeGenModule::EmitLLVMUsed() {
470   // Don't create llvm.used if there is no need.
471   if (LLVMUsed.empty())
472     return;
473 
474   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
475 
476   // Convert LLVMUsed to what ConstantArray needs.
477   std::vector<llvm::Constant*> UsedArray;
478   UsedArray.resize(LLVMUsed.size());
479   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
480     UsedArray[i] =
481      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
482                                       i8PTy);
483   }
484 
485   if (UsedArray.empty())
486     return;
487   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
488 
489   llvm::GlobalVariable *GV =
490     new llvm::GlobalVariable(getModule(), ATy, false,
491                              llvm::GlobalValue::AppendingLinkage,
492                              llvm::ConstantArray::get(ATy, UsedArray),
493                              "llvm.used");
494 
495   GV->setSection("llvm.metadata");
496 }
497 
498 void CodeGenModule::EmitDeferred() {
499   // Emit code for any potentially referenced deferred decls.  Since a
500   // previously unused static decl may become used during the generation of code
501   // for a static function, iterate until no  changes are made.
502 
503   while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) {
504     if (!DeferredVtables.empty()) {
505       const CXXRecordDecl *RD = DeferredVtables.back();
506       DeferredVtables.pop_back();
507       getVTables().GenerateClassData(getVtableLinkage(RD), RD);
508       continue;
509     }
510 
511     GlobalDecl D = DeferredDeclsToEmit.back();
512     DeferredDeclsToEmit.pop_back();
513 
514     // Look it up to see if it was defined with a stronger definition (e.g. an
515     // extern inline function with a strong function redefinition).  If so,
516     // just ignore the deferred decl.
517     MangleBuffer Name;
518     getMangledName(Name, D);
519     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
520     assert(CGRef && "Deferred decl wasn't referenced?");
521 
522     if (!CGRef->isDeclaration())
523       continue;
524 
525     // Otherwise, emit the definition and move on to the next one.
526     EmitGlobalDefinition(D);
527   }
528 }
529 
530 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
531 /// annotation information for a given GlobalValue.  The annotation struct is
532 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
533 /// GlobalValue being annotated.  The second field is the constant string
534 /// created from the AnnotateAttr's annotation.  The third field is a constant
535 /// string containing the name of the translation unit.  The fourth field is
536 /// the line number in the file of the annotated value declaration.
537 ///
538 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
539 ///        appears to.
540 ///
541 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
542                                                 const AnnotateAttr *AA,
543                                                 unsigned LineNo) {
544   llvm::Module *M = &getModule();
545 
546   // get [N x i8] constants for the annotation string, and the filename string
547   // which are the 2nd and 3rd elements of the global annotation structure.
548   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
549   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
550                                                   AA->getAnnotation(), true);
551   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
552                                                   M->getModuleIdentifier(),
553                                                   true);
554 
555   // Get the two global values corresponding to the ConstantArrays we just
556   // created to hold the bytes of the strings.
557   llvm::GlobalValue *annoGV =
558     new llvm::GlobalVariable(*M, anno->getType(), false,
559                              llvm::GlobalValue::PrivateLinkage, anno,
560                              GV->getName());
561   // translation unit name string, emitted into the llvm.metadata section.
562   llvm::GlobalValue *unitGV =
563     new llvm::GlobalVariable(*M, unit->getType(), false,
564                              llvm::GlobalValue::PrivateLinkage, unit,
565                              ".str");
566 
567   // Create the ConstantStruct for the global annotation.
568   llvm::Constant *Fields[4] = {
569     llvm::ConstantExpr::getBitCast(GV, SBP),
570     llvm::ConstantExpr::getBitCast(annoGV, SBP),
571     llvm::ConstantExpr::getBitCast(unitGV, SBP),
572     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
573   };
574   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
575 }
576 
577 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
578   // Never defer when EmitAllDecls is specified or the decl has
579   // attribute used.
580   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
581     return false;
582 
583   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
584     // Constructors and destructors should never be deferred.
585     if (FD->hasAttr<ConstructorAttr>() ||
586         FD->hasAttr<DestructorAttr>())
587       return false;
588 
589     // The key function for a class must never be deferred.
590     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
591       const CXXRecordDecl *RD = MD->getParent();
592       if (MD->isOutOfLine() && RD->isDynamicClass()) {
593         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
594         if (KeyFunction &&
595             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
596           return false;
597       }
598     }
599 
600     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
601 
602     // static, static inline, always_inline, and extern inline functions can
603     // always be deferred.  Normal inline functions can be deferred in C99/C++.
604     // Implicit template instantiations can also be deferred in C++.
605     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
606         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
607       return true;
608     return false;
609   }
610 
611   const VarDecl *VD = cast<VarDecl>(Global);
612   assert(VD->isFileVarDecl() && "Invalid decl");
613 
614   // We never want to defer structs that have non-trivial constructors or
615   // destructors.
616 
617   // FIXME: Handle references.
618   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
619     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
620       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
621         return false;
622     }
623   }
624 
625   // Static data may be deferred, but out-of-line static data members
626   // cannot be.
627   Linkage L = VD->getLinkage();
628   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
629       VD->getType()->getLinkage() == UniqueExternalLinkage)
630     L = UniqueExternalLinkage;
631 
632   switch (L) {
633   case NoLinkage:
634   case InternalLinkage:
635   case UniqueExternalLinkage:
636     // Initializer has side effects?
637     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
638       return false;
639     return !(VD->isStaticDataMember() && VD->isOutOfLine());
640 
641   case ExternalLinkage:
642     break;
643   }
644 
645   return false;
646 }
647 
648 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
649   const AliasAttr *AA = VD->getAttr<AliasAttr>();
650   assert(AA && "No alias?");
651 
652   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
653 
654   // See if there is already something with the target's name in the module.
655   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
656 
657   llvm::Constant *Aliasee;
658   if (isa<llvm::FunctionType>(DeclTy))
659     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
660   else
661     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
662                                     llvm::PointerType::getUnqual(DeclTy), 0);
663   if (!Entry) {
664     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
665     F->setLinkage(llvm::Function::ExternalWeakLinkage);
666     WeakRefReferences.insert(F);
667   }
668 
669   return Aliasee;
670 }
671 
672 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
673   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
674 
675   // Weak references don't produce any output by themselves.
676   if (Global->hasAttr<WeakRefAttr>())
677     return;
678 
679   // If this is an alias definition (which otherwise looks like a declaration)
680   // emit it now.
681   if (Global->hasAttr<AliasAttr>())
682     return EmitAliasDefinition(GD);
683 
684   // Ignore declarations, they will be emitted on their first use.
685   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
686     // Forward declarations are emitted lazily on first use.
687     if (!FD->isThisDeclarationADefinition())
688       return;
689   } else {
690     const VarDecl *VD = cast<VarDecl>(Global);
691     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
692 
693     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
694       return;
695   }
696 
697   // Defer code generation when possible if this is a static definition, inline
698   // function etc.  These we only want to emit if they are used.
699   if (MayDeferGeneration(Global)) {
700     // If the value has already been used, add it directly to the
701     // DeferredDeclsToEmit list.
702     MangleBuffer MangledName;
703     getMangledName(MangledName, GD);
704     if (GetGlobalValue(MangledName))
705       DeferredDeclsToEmit.push_back(GD);
706     else {
707       // Otherwise, remember that we saw a deferred decl with this name.  The
708       // first use of the mangled name will cause it to move into
709       // DeferredDeclsToEmit.
710       DeferredDecls[MangledName] = GD;
711     }
712     return;
713   }
714 
715   // Otherwise emit the definition.
716   EmitGlobalDefinition(GD);
717 }
718 
719 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
720   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
721 
722   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
723                                  Context.getSourceManager(),
724                                  "Generating code for declaration");
725 
726   if (isa<CXXMethodDecl>(D))
727     getVTables().EmitVTableRelatedData(GD);
728 
729   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
730     EmitCXXConstructor(CD, GD.getCtorType());
731   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
732     EmitCXXDestructor(DD, GD.getDtorType());
733   else if (isa<FunctionDecl>(D))
734     EmitGlobalFunctionDefinition(GD);
735   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
736     EmitGlobalVarDefinition(VD);
737   else {
738     assert(0 && "Invalid argument to EmitGlobalDefinition()");
739   }
740 }
741 
742 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
743 /// module, create and return an llvm Function with the specified type. If there
744 /// is something in the module with the specified name, return it potentially
745 /// bitcasted to the right type.
746 ///
747 /// If D is non-null, it specifies a decl that correspond to this.  This is used
748 /// to set the attributes on the function when it is first created.
749 llvm::Constant *
750 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
751                                        const llvm::Type *Ty,
752                                        GlobalDecl D) {
753   // Lookup the entry, lazily creating it if necessary.
754   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
755   if (Entry) {
756     if (WeakRefReferences.count(Entry)) {
757       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
758       if (FD && !FD->hasAttr<WeakAttr>())
759         Entry->setLinkage(llvm::Function::ExternalLinkage);
760 
761       WeakRefReferences.erase(Entry);
762     }
763 
764     if (Entry->getType()->getElementType() == Ty)
765       return Entry;
766 
767     // Make sure the result is of the correct type.
768     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
769     return llvm::ConstantExpr::getBitCast(Entry, PTy);
770   }
771 
772   // This function doesn't have a complete type (for example, the return
773   // type is an incomplete struct). Use a fake type instead, and make
774   // sure not to try to set attributes.
775   bool IsIncompleteFunction = false;
776   if (!isa<llvm::FunctionType>(Ty)) {
777     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
778                                  std::vector<const llvm::Type*>(), false);
779     IsIncompleteFunction = true;
780   }
781   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
782                                              llvm::Function::ExternalLinkage,
783                                              MangledName, &getModule());
784   assert(F->getName() == MangledName && "name was uniqued!");
785   if (D.getDecl())
786     SetFunctionAttributes(D, F, IsIncompleteFunction);
787 
788   // This is the first use or definition of a mangled name.  If there is a
789   // deferred decl with this name, remember that we need to emit it at the end
790   // of the file.
791   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
792   if (DDI != DeferredDecls.end()) {
793     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
794     // list, and remove it from DeferredDecls (since we don't need it anymore).
795     DeferredDeclsToEmit.push_back(DDI->second);
796     DeferredDecls.erase(DDI);
797   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
798     // If this the first reference to a C++ inline function in a class, queue up
799     // the deferred function body for emission.  These are not seen as
800     // top-level declarations.
801     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
802       DeferredDeclsToEmit.push_back(D);
803     // A called constructor which has no definition or declaration need be
804     // synthesized.
805     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
806       if (CD->isImplicit()) {
807         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
808         DeferredDeclsToEmit.push_back(D);
809       }
810     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
811       if (DD->isImplicit()) {
812         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
813         DeferredDeclsToEmit.push_back(D);
814       }
815     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
816       if (MD->isCopyAssignment() && MD->isImplicit()) {
817         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
818         DeferredDeclsToEmit.push_back(D);
819       }
820     }
821   }
822 
823   return F;
824 }
825 
826 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
827 /// non-null, then this function will use the specified type if it has to
828 /// create it (this occurs when we see a definition of the function).
829 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
830                                                  const llvm::Type *Ty) {
831   // If there was no specific requested type, just convert it now.
832   if (!Ty)
833     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
834   MangleBuffer MangledName;
835   getMangledName(MangledName, GD);
836   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
837 }
838 
839 /// CreateRuntimeFunction - Create a new runtime function with the specified
840 /// type and name.
841 llvm::Constant *
842 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
843                                      llvm::StringRef Name) {
844   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
845 }
846 
847 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
848   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
849     return false;
850   if (Context.getLangOptions().CPlusPlus &&
851       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
852     // FIXME: We should do something fancier here!
853     return false;
854   }
855   return true;
856 }
857 
858 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
859 /// create and return an llvm GlobalVariable with the specified type.  If there
860 /// is something in the module with the specified name, return it potentially
861 /// bitcasted to the right type.
862 ///
863 /// If D is non-null, it specifies a decl that correspond to this.  This is used
864 /// to set the attributes on the global when it is first created.
865 llvm::Constant *
866 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
867                                      const llvm::PointerType *Ty,
868                                      const VarDecl *D) {
869   // Lookup the entry, lazily creating it if necessary.
870   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
871   if (Entry) {
872     if (WeakRefReferences.count(Entry)) {
873       if (D && !D->hasAttr<WeakAttr>())
874         Entry->setLinkage(llvm::Function::ExternalLinkage);
875 
876       WeakRefReferences.erase(Entry);
877     }
878 
879     if (Entry->getType() == Ty)
880       return Entry;
881 
882     // Make sure the result is of the correct type.
883     return llvm::ConstantExpr::getBitCast(Entry, Ty);
884   }
885 
886   // This is the first use or definition of a mangled name.  If there is a
887   // deferred decl with this name, remember that we need to emit it at the end
888   // of the file.
889   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
890   if (DDI != DeferredDecls.end()) {
891     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
892     // list, and remove it from DeferredDecls (since we don't need it anymore).
893     DeferredDeclsToEmit.push_back(DDI->second);
894     DeferredDecls.erase(DDI);
895   }
896 
897   llvm::GlobalVariable *GV =
898     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
899                              llvm::GlobalValue::ExternalLinkage,
900                              0, MangledName, 0,
901                              false, Ty->getAddressSpace());
902 
903   // Handle things which are present even on external declarations.
904   if (D) {
905     // FIXME: This code is overly simple and should be merged with other global
906     // handling.
907     GV->setConstant(DeclIsConstantGlobal(Context, D));
908 
909     // FIXME: Merge with other attribute handling code.
910     if (D->getStorageClass() == VarDecl::PrivateExtern)
911       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
912 
913     if (D->hasAttr<WeakAttr>() ||
914         D->hasAttr<WeakImportAttr>())
915       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
916 
917     GV->setThreadLocal(D->isThreadSpecified());
918   }
919 
920   return GV;
921 }
922 
923 
924 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
925 /// given global variable.  If Ty is non-null and if the global doesn't exist,
926 /// then it will be greated with the specified type instead of whatever the
927 /// normal requested type would be.
928 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
929                                                   const llvm::Type *Ty) {
930   assert(D->hasGlobalStorage() && "Not a global variable");
931   QualType ASTTy = D->getType();
932   if (Ty == 0)
933     Ty = getTypes().ConvertTypeForMem(ASTTy);
934 
935   const llvm::PointerType *PTy =
936     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
937 
938   MangleBuffer MangledName;
939   getMangledName(MangledName, D);
940   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
941 }
942 
943 /// CreateRuntimeVariable - Create a new runtime global variable with the
944 /// specified type and name.
945 llvm::Constant *
946 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
947                                      llvm::StringRef Name) {
948   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
949 }
950 
951 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
952   assert(!D->getInit() && "Cannot emit definite definitions here!");
953 
954   if (MayDeferGeneration(D)) {
955     // If we have not seen a reference to this variable yet, place it
956     // into the deferred declarations table to be emitted if needed
957     // later.
958     MangleBuffer MangledName;
959     getMangledName(MangledName, D);
960     if (!GetGlobalValue(MangledName)) {
961       DeferredDecls[MangledName] = D;
962       return;
963     }
964   }
965 
966   // The tentative definition is the only definition.
967   EmitGlobalVarDefinition(D);
968 }
969 
970 llvm::GlobalVariable::LinkageTypes
971 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
972   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
973     return llvm::GlobalVariable::InternalLinkage;
974 
975   if (const CXXMethodDecl *KeyFunction
976                                     = RD->getASTContext().getKeyFunction(RD)) {
977     // If this class has a key function, use that to determine the linkage of
978     // the vtable.
979     const FunctionDecl *Def = 0;
980     if (KeyFunction->getBody(Def))
981       KeyFunction = cast<CXXMethodDecl>(Def);
982 
983     switch (KeyFunction->getTemplateSpecializationKind()) {
984       case TSK_Undeclared:
985       case TSK_ExplicitSpecialization:
986         if (KeyFunction->isInlined())
987           return llvm::GlobalVariable::WeakODRLinkage;
988 
989         return llvm::GlobalVariable::ExternalLinkage;
990 
991       case TSK_ImplicitInstantiation:
992       case TSK_ExplicitInstantiationDefinition:
993         return llvm::GlobalVariable::WeakODRLinkage;
994 
995       case TSK_ExplicitInstantiationDeclaration:
996         // FIXME: Use available_externally linkage. However, this currently
997         // breaks LLVM's build due to undefined symbols.
998         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
999         return llvm::GlobalVariable::WeakODRLinkage;
1000     }
1001   }
1002 
1003   switch (RD->getTemplateSpecializationKind()) {
1004   case TSK_Undeclared:
1005   case TSK_ExplicitSpecialization:
1006   case TSK_ImplicitInstantiation:
1007   case TSK_ExplicitInstantiationDefinition:
1008     return llvm::GlobalVariable::WeakODRLinkage;
1009 
1010   case TSK_ExplicitInstantiationDeclaration:
1011     // FIXME: Use available_externally linkage. However, this currently
1012     // breaks LLVM's build due to undefined symbols.
1013     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1014     return llvm::GlobalVariable::WeakODRLinkage;
1015   }
1016 
1017   // Silence GCC warning.
1018   return llvm::GlobalVariable::WeakODRLinkage;
1019 }
1020 
1021 static CodeGenModule::GVALinkage
1022 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1023   // If this is a static data member, compute the kind of template
1024   // specialization. Otherwise, this variable is not part of a
1025   // template.
1026   TemplateSpecializationKind TSK = TSK_Undeclared;
1027   if (VD->isStaticDataMember())
1028     TSK = VD->getTemplateSpecializationKind();
1029 
1030   Linkage L = VD->getLinkage();
1031   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1032       VD->getType()->getLinkage() == UniqueExternalLinkage)
1033     L = UniqueExternalLinkage;
1034 
1035   switch (L) {
1036   case NoLinkage:
1037   case InternalLinkage:
1038   case UniqueExternalLinkage:
1039     return CodeGenModule::GVA_Internal;
1040 
1041   case ExternalLinkage:
1042     switch (TSK) {
1043     case TSK_Undeclared:
1044     case TSK_ExplicitSpecialization:
1045       return CodeGenModule::GVA_StrongExternal;
1046 
1047     case TSK_ExplicitInstantiationDeclaration:
1048       llvm_unreachable("Variable should not be instantiated");
1049       // Fall through to treat this like any other instantiation.
1050 
1051     case TSK_ExplicitInstantiationDefinition:
1052       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1053 
1054     case TSK_ImplicitInstantiation:
1055       return CodeGenModule::GVA_TemplateInstantiation;
1056     }
1057   }
1058 
1059   return CodeGenModule::GVA_StrongExternal;
1060 }
1061 
1062 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1063     return CharUnits::fromQuantity(
1064       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1065 }
1066 
1067 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1068   llvm::Constant *Init = 0;
1069   QualType ASTTy = D->getType();
1070   bool NonConstInit = false;
1071 
1072   const Expr *InitExpr = D->getAnyInitializer();
1073 
1074   if (!InitExpr) {
1075     // This is a tentative definition; tentative definitions are
1076     // implicitly initialized with { 0 }.
1077     //
1078     // Note that tentative definitions are only emitted at the end of
1079     // a translation unit, so they should never have incomplete
1080     // type. In addition, EmitTentativeDefinition makes sure that we
1081     // never attempt to emit a tentative definition if a real one
1082     // exists. A use may still exists, however, so we still may need
1083     // to do a RAUW.
1084     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1085     Init = EmitNullConstant(D->getType());
1086   } else {
1087     Init = EmitConstantExpr(InitExpr, D->getType());
1088 
1089     if (!Init) {
1090       QualType T = InitExpr->getType();
1091       if (getLangOptions().CPlusPlus) {
1092         EmitCXXGlobalVarDeclInitFunc(D);
1093         Init = EmitNullConstant(T);
1094         NonConstInit = true;
1095       } else {
1096         ErrorUnsupported(D, "static initializer");
1097         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1098       }
1099     }
1100   }
1101 
1102   const llvm::Type* InitType = Init->getType();
1103   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1104 
1105   // Strip off a bitcast if we got one back.
1106   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1107     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1108            // all zero index gep.
1109            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1110     Entry = CE->getOperand(0);
1111   }
1112 
1113   // Entry is now either a Function or GlobalVariable.
1114   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1115 
1116   // We have a definition after a declaration with the wrong type.
1117   // We must make a new GlobalVariable* and update everything that used OldGV
1118   // (a declaration or tentative definition) with the new GlobalVariable*
1119   // (which will be a definition).
1120   //
1121   // This happens if there is a prototype for a global (e.g.
1122   // "extern int x[];") and then a definition of a different type (e.g.
1123   // "int x[10];"). This also happens when an initializer has a different type
1124   // from the type of the global (this happens with unions).
1125   if (GV == 0 ||
1126       GV->getType()->getElementType() != InitType ||
1127       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1128 
1129     // Move the old entry aside so that we'll create a new one.
1130     Entry->setName(llvm::StringRef());
1131 
1132     // Make a new global with the correct type, this is now guaranteed to work.
1133     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1134 
1135     // Replace all uses of the old global with the new global
1136     llvm::Constant *NewPtrForOldDecl =
1137         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1138     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1139 
1140     // Erase the old global, since it is no longer used.
1141     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1142   }
1143 
1144   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1145     SourceManager &SM = Context.getSourceManager();
1146     AddAnnotation(EmitAnnotateAttr(GV, AA,
1147                               SM.getInstantiationLineNumber(D->getLocation())));
1148   }
1149 
1150   GV->setInitializer(Init);
1151 
1152   // If it is safe to mark the global 'constant', do so now.
1153   GV->setConstant(false);
1154   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1155     GV->setConstant(true);
1156 
1157   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1158 
1159   // Set the llvm linkage type as appropriate.
1160   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1161   if (Linkage == GVA_Internal)
1162     GV->setLinkage(llvm::Function::InternalLinkage);
1163   else if (D->hasAttr<DLLImportAttr>())
1164     GV->setLinkage(llvm::Function::DLLImportLinkage);
1165   else if (D->hasAttr<DLLExportAttr>())
1166     GV->setLinkage(llvm::Function::DLLExportLinkage);
1167   else if (D->hasAttr<WeakAttr>()) {
1168     if (GV->isConstant())
1169       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1170     else
1171       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1172   } else if (Linkage == GVA_TemplateInstantiation ||
1173              Linkage == GVA_ExplicitTemplateInstantiation)
1174     // FIXME: It seems like we can provide more specific linkage here
1175     // (LinkOnceODR, WeakODR).
1176     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1177   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1178            !D->hasExternalStorage() && !D->getInit() &&
1179            !D->getAttr<SectionAttr>()) {
1180     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1181     // common vars aren't constant even if declared const.
1182     GV->setConstant(false);
1183   } else
1184     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1185 
1186   SetCommonAttributes(D, GV);
1187 
1188   // Emit global variable debug information.
1189   if (CGDebugInfo *DI = getDebugInfo()) {
1190     DI->setLocation(D->getLocation());
1191     DI->EmitGlobalVariable(GV, D);
1192   }
1193 }
1194 
1195 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1196 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1197 /// existing call uses of the old function in the module, this adjusts them to
1198 /// call the new function directly.
1199 ///
1200 /// This is not just a cleanup: the always_inline pass requires direct calls to
1201 /// functions to be able to inline them.  If there is a bitcast in the way, it
1202 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1203 /// run at -O0.
1204 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1205                                                       llvm::Function *NewFn) {
1206   // If we're redefining a global as a function, don't transform it.
1207   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1208   if (OldFn == 0) return;
1209 
1210   const llvm::Type *NewRetTy = NewFn->getReturnType();
1211   llvm::SmallVector<llvm::Value*, 4> ArgList;
1212 
1213   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1214        UI != E; ) {
1215     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1216     unsigned OpNo = UI.getOperandNo();
1217     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1218     if (!CI || OpNo != 0) continue;
1219 
1220     // If the return types don't match exactly, and if the call isn't dead, then
1221     // we can't transform this call.
1222     if (CI->getType() != NewRetTy && !CI->use_empty())
1223       continue;
1224 
1225     // If the function was passed too few arguments, don't transform.  If extra
1226     // arguments were passed, we silently drop them.  If any of the types
1227     // mismatch, we don't transform.
1228     unsigned ArgNo = 0;
1229     bool DontTransform = false;
1230     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1231          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1232       if (CI->getNumOperands()-1 == ArgNo ||
1233           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1234         DontTransform = true;
1235         break;
1236       }
1237     }
1238     if (DontTransform)
1239       continue;
1240 
1241     // Okay, we can transform this.  Create the new call instruction and copy
1242     // over the required information.
1243     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1244     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1245                                                      ArgList.end(), "", CI);
1246     ArgList.clear();
1247     if (!NewCall->getType()->isVoidTy())
1248       NewCall->takeName(CI);
1249     NewCall->setAttributes(CI->getAttributes());
1250     NewCall->setCallingConv(CI->getCallingConv());
1251 
1252     // Finally, remove the old call, replacing any uses with the new one.
1253     if (!CI->use_empty())
1254       CI->replaceAllUsesWith(NewCall);
1255 
1256     // Copy any custom metadata attached with CI.
1257     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1258       NewCall->setMetadata("dbg", DbgNode);
1259     CI->eraseFromParent();
1260   }
1261 }
1262 
1263 
1264 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1265   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1266   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1267   getMangleContext().mangleInitDiscriminator();
1268   // Get or create the prototype for the function.
1269   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1270 
1271   // Strip off a bitcast if we got one back.
1272   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1273     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1274     Entry = CE->getOperand(0);
1275   }
1276 
1277 
1278   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1279     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1280 
1281     // If the types mismatch then we have to rewrite the definition.
1282     assert(OldFn->isDeclaration() &&
1283            "Shouldn't replace non-declaration");
1284 
1285     // F is the Function* for the one with the wrong type, we must make a new
1286     // Function* and update everything that used F (a declaration) with the new
1287     // Function* (which will be a definition).
1288     //
1289     // This happens if there is a prototype for a function
1290     // (e.g. "int f()") and then a definition of a different type
1291     // (e.g. "int f(int x)").  Move the old function aside so that it
1292     // doesn't interfere with GetAddrOfFunction.
1293     OldFn->setName(llvm::StringRef());
1294     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1295 
1296     // If this is an implementation of a function without a prototype, try to
1297     // replace any existing uses of the function (which may be calls) with uses
1298     // of the new function
1299     if (D->getType()->isFunctionNoProtoType()) {
1300       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1301       OldFn->removeDeadConstantUsers();
1302     }
1303 
1304     // Replace uses of F with the Function we will endow with a body.
1305     if (!Entry->use_empty()) {
1306       llvm::Constant *NewPtrForOldDecl =
1307         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1308       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1309     }
1310 
1311     // Ok, delete the old function now, which is dead.
1312     OldFn->eraseFromParent();
1313 
1314     Entry = NewFn;
1315   }
1316 
1317   llvm::Function *Fn = cast<llvm::Function>(Entry);
1318 
1319   CodeGenFunction(*this).GenerateCode(D, Fn);
1320 
1321   SetFunctionDefinitionAttributes(D, Fn);
1322   SetLLVMFunctionAttributesForDefinition(D, Fn);
1323 
1324   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1325     AddGlobalCtor(Fn, CA->getPriority());
1326   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1327     AddGlobalDtor(Fn, DA->getPriority());
1328 }
1329 
1330 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1331   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1332   const AliasAttr *AA = D->getAttr<AliasAttr>();
1333   assert(AA && "Not an alias?");
1334 
1335   MangleBuffer MangledName;
1336   getMangledName(MangledName, GD);
1337 
1338   // If there is a definition in the module, then it wins over the alias.
1339   // This is dubious, but allow it to be safe.  Just ignore the alias.
1340   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1341   if (Entry && !Entry->isDeclaration())
1342     return;
1343 
1344   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1345 
1346   // Create a reference to the named value.  This ensures that it is emitted
1347   // if a deferred decl.
1348   llvm::Constant *Aliasee;
1349   if (isa<llvm::FunctionType>(DeclTy))
1350     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1351   else
1352     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1353                                     llvm::PointerType::getUnqual(DeclTy), 0);
1354 
1355   // Create the new alias itself, but don't set a name yet.
1356   llvm::GlobalValue *GA =
1357     new llvm::GlobalAlias(Aliasee->getType(),
1358                           llvm::Function::ExternalLinkage,
1359                           "", Aliasee, &getModule());
1360 
1361   if (Entry) {
1362     assert(Entry->isDeclaration());
1363 
1364     // If there is a declaration in the module, then we had an extern followed
1365     // by the alias, as in:
1366     //   extern int test6();
1367     //   ...
1368     //   int test6() __attribute__((alias("test7")));
1369     //
1370     // Remove it and replace uses of it with the alias.
1371     GA->takeName(Entry);
1372 
1373     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1374                                                           Entry->getType()));
1375     Entry->eraseFromParent();
1376   } else {
1377     GA->setName(MangledName.getString());
1378   }
1379 
1380   // Set attributes which are particular to an alias; this is a
1381   // specialization of the attributes which may be set on a global
1382   // variable/function.
1383   if (D->hasAttr<DLLExportAttr>()) {
1384     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1385       // The dllexport attribute is ignored for undefined symbols.
1386       if (FD->getBody())
1387         GA->setLinkage(llvm::Function::DLLExportLinkage);
1388     } else {
1389       GA->setLinkage(llvm::Function::DLLExportLinkage);
1390     }
1391   } else if (D->hasAttr<WeakAttr>() ||
1392              D->hasAttr<WeakRefAttr>() ||
1393              D->hasAttr<WeakImportAttr>()) {
1394     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1395   }
1396 
1397   SetCommonAttributes(D, GA);
1398 }
1399 
1400 /// getBuiltinLibFunction - Given a builtin id for a function like
1401 /// "__builtin_fabsf", return a Function* for "fabsf".
1402 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1403                                                   unsigned BuiltinID) {
1404   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1405           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1406          "isn't a lib fn");
1407 
1408   // Get the name, skip over the __builtin_ prefix (if necessary).
1409   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1410   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1411     Name += 10;
1412 
1413   const llvm::FunctionType *Ty =
1414     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1415 
1416   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1417 }
1418 
1419 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1420                                             unsigned NumTys) {
1421   return llvm::Intrinsic::getDeclaration(&getModule(),
1422                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1423 }
1424 
1425 llvm::Function *CodeGenModule::getMemCpyFn() {
1426   if (MemCpyFn) return MemCpyFn;
1427   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1428   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1429 }
1430 
1431 llvm::Function *CodeGenModule::getMemMoveFn() {
1432   if (MemMoveFn) return MemMoveFn;
1433   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1434   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1435 }
1436 
1437 llvm::Function *CodeGenModule::getMemSetFn() {
1438   if (MemSetFn) return MemSetFn;
1439   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1440   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1441 }
1442 
1443 static llvm::StringMapEntry<llvm::Constant*> &
1444 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1445                          const StringLiteral *Literal,
1446                          bool TargetIsLSB,
1447                          bool &IsUTF16,
1448                          unsigned &StringLength) {
1449   unsigned NumBytes = Literal->getByteLength();
1450 
1451   // Check for simple case.
1452   if (!Literal->containsNonAsciiOrNull()) {
1453     StringLength = NumBytes;
1454     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1455                                                 StringLength));
1456   }
1457 
1458   // Otherwise, convert the UTF8 literals into a byte string.
1459   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1460   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1461   UTF16 *ToPtr = &ToBuf[0];
1462 
1463   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1464                                                &ToPtr, ToPtr + NumBytes,
1465                                                strictConversion);
1466 
1467   // Check for conversion failure.
1468   if (Result != conversionOK) {
1469     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1470     // this duplicate code.
1471     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1472     StringLength = NumBytes;
1473     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1474                                                 StringLength));
1475   }
1476 
1477   // ConvertUTF8toUTF16 returns the length in ToPtr.
1478   StringLength = ToPtr - &ToBuf[0];
1479 
1480   // Render the UTF-16 string into a byte array and convert to the target byte
1481   // order.
1482   //
1483   // FIXME: This isn't something we should need to do here.
1484   llvm::SmallString<128> AsBytes;
1485   AsBytes.reserve(StringLength * 2);
1486   for (unsigned i = 0; i != StringLength; ++i) {
1487     unsigned short Val = ToBuf[i];
1488     if (TargetIsLSB) {
1489       AsBytes.push_back(Val & 0xFF);
1490       AsBytes.push_back(Val >> 8);
1491     } else {
1492       AsBytes.push_back(Val >> 8);
1493       AsBytes.push_back(Val & 0xFF);
1494     }
1495   }
1496   // Append one extra null character, the second is automatically added by our
1497   // caller.
1498   AsBytes.push_back(0);
1499 
1500   IsUTF16 = true;
1501   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1502 }
1503 
1504 llvm::Constant *
1505 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1506   unsigned StringLength = 0;
1507   bool isUTF16 = false;
1508   llvm::StringMapEntry<llvm::Constant*> &Entry =
1509     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1510                              getTargetData().isLittleEndian(),
1511                              isUTF16, StringLength);
1512 
1513   if (llvm::Constant *C = Entry.getValue())
1514     return C;
1515 
1516   llvm::Constant *Zero =
1517       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1518   llvm::Constant *Zeros[] = { Zero, Zero };
1519 
1520   // If we don't already have it, get __CFConstantStringClassReference.
1521   if (!CFConstantStringClassRef) {
1522     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1523     Ty = llvm::ArrayType::get(Ty, 0);
1524     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1525                                            "__CFConstantStringClassReference");
1526     // Decay array -> ptr
1527     CFConstantStringClassRef =
1528       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1529   }
1530 
1531   QualType CFTy = getContext().getCFConstantStringType();
1532 
1533   const llvm::StructType *STy =
1534     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1535 
1536   std::vector<llvm::Constant*> Fields(4);
1537 
1538   // Class pointer.
1539   Fields[0] = CFConstantStringClassRef;
1540 
1541   // Flags.
1542   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1543   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1544     llvm::ConstantInt::get(Ty, 0x07C8);
1545 
1546   // String pointer.
1547   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1548 
1549   llvm::GlobalValue::LinkageTypes Linkage;
1550   bool isConstant;
1551   if (isUTF16) {
1552     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1553     Linkage = llvm::GlobalValue::InternalLinkage;
1554     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1555     // does make plain ascii ones writable.
1556     isConstant = true;
1557   } else {
1558     Linkage = llvm::GlobalValue::PrivateLinkage;
1559     isConstant = !Features.WritableStrings;
1560   }
1561 
1562   llvm::GlobalVariable *GV =
1563     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1564                              ".str");
1565   if (isUTF16) {
1566     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1567     GV->setAlignment(Align.getQuantity());
1568   }
1569   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1570 
1571   // String length.
1572   Ty = getTypes().ConvertType(getContext().LongTy);
1573   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1574 
1575   // The struct.
1576   C = llvm::ConstantStruct::get(STy, Fields);
1577   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1578                                 llvm::GlobalVariable::PrivateLinkage, C,
1579                                 "_unnamed_cfstring_");
1580   if (const char *Sect = getContext().Target.getCFStringSection())
1581     GV->setSection(Sect);
1582   Entry.setValue(GV);
1583 
1584   return GV;
1585 }
1586 
1587 /// GetStringForStringLiteral - Return the appropriate bytes for a
1588 /// string literal, properly padded to match the literal type.
1589 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1590   const char *StrData = E->getStrData();
1591   unsigned Len = E->getByteLength();
1592 
1593   const ConstantArrayType *CAT =
1594     getContext().getAsConstantArrayType(E->getType());
1595   assert(CAT && "String isn't pointer or array!");
1596 
1597   // Resize the string to the right size.
1598   std::string Str(StrData, StrData+Len);
1599   uint64_t RealLen = CAT->getSize().getZExtValue();
1600 
1601   if (E->isWide())
1602     RealLen *= getContext().Target.getWCharWidth()/8;
1603 
1604   Str.resize(RealLen, '\0');
1605 
1606   return Str;
1607 }
1608 
1609 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1610 /// constant array for the given string literal.
1611 llvm::Constant *
1612 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1613   // FIXME: This can be more efficient.
1614   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1615   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1616   if (S->isWide()) {
1617     llvm::Type *DestTy =
1618         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1619     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1620   }
1621   return C;
1622 }
1623 
1624 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1625 /// array for the given ObjCEncodeExpr node.
1626 llvm::Constant *
1627 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1628   std::string Str;
1629   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1630 
1631   return GetAddrOfConstantCString(Str);
1632 }
1633 
1634 
1635 /// GenerateWritableString -- Creates storage for a string literal.
1636 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1637                                              bool constant,
1638                                              CodeGenModule &CGM,
1639                                              const char *GlobalName) {
1640   // Create Constant for this string literal. Don't add a '\0'.
1641   llvm::Constant *C =
1642       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1643 
1644   // Create a global variable for this string
1645   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1646                                   llvm::GlobalValue::PrivateLinkage,
1647                                   C, GlobalName);
1648 }
1649 
1650 /// GetAddrOfConstantString - Returns a pointer to a character array
1651 /// containing the literal. This contents are exactly that of the
1652 /// given string, i.e. it will not be null terminated automatically;
1653 /// see GetAddrOfConstantCString. Note that whether the result is
1654 /// actually a pointer to an LLVM constant depends on
1655 /// Feature.WriteableStrings.
1656 ///
1657 /// The result has pointer to array type.
1658 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1659                                                        const char *GlobalName) {
1660   bool IsConstant = !Features.WritableStrings;
1661 
1662   // Get the default prefix if a name wasn't specified.
1663   if (!GlobalName)
1664     GlobalName = ".str";
1665 
1666   // Don't share any string literals if strings aren't constant.
1667   if (!IsConstant)
1668     return GenerateStringLiteral(str, false, *this, GlobalName);
1669 
1670   llvm::StringMapEntry<llvm::Constant *> &Entry =
1671     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1672 
1673   if (Entry.getValue())
1674     return Entry.getValue();
1675 
1676   // Create a global variable for this.
1677   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1678   Entry.setValue(C);
1679   return C;
1680 }
1681 
1682 /// GetAddrOfConstantCString - Returns a pointer to a character
1683 /// array containing the literal and a terminating '\-'
1684 /// character. The result has pointer to array type.
1685 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1686                                                         const char *GlobalName){
1687   return GetAddrOfConstantString(str + '\0', GlobalName);
1688 }
1689 
1690 /// EmitObjCPropertyImplementations - Emit information for synthesized
1691 /// properties for an implementation.
1692 void CodeGenModule::EmitObjCPropertyImplementations(const
1693                                                     ObjCImplementationDecl *D) {
1694   for (ObjCImplementationDecl::propimpl_iterator
1695          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1696     ObjCPropertyImplDecl *PID = *i;
1697 
1698     // Dynamic is just for type-checking.
1699     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1700       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1701 
1702       // Determine which methods need to be implemented, some may have
1703       // been overridden. Note that ::isSynthesized is not the method
1704       // we want, that just indicates if the decl came from a
1705       // property. What we want to know is if the method is defined in
1706       // this implementation.
1707       if (!D->getInstanceMethod(PD->getGetterName()))
1708         CodeGenFunction(*this).GenerateObjCGetter(
1709                                  const_cast<ObjCImplementationDecl *>(D), PID);
1710       if (!PD->isReadOnly() &&
1711           !D->getInstanceMethod(PD->getSetterName()))
1712         CodeGenFunction(*this).GenerateObjCSetter(
1713                                  const_cast<ObjCImplementationDecl *>(D), PID);
1714     }
1715   }
1716 }
1717 
1718 /// EmitNamespace - Emit all declarations in a namespace.
1719 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1720   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1721        I != E; ++I)
1722     EmitTopLevelDecl(*I);
1723 }
1724 
1725 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1726 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1727   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1728       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1729     ErrorUnsupported(LSD, "linkage spec");
1730     return;
1731   }
1732 
1733   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1734        I != E; ++I)
1735     EmitTopLevelDecl(*I);
1736 }
1737 
1738 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1739 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1740   // If an error has occurred, stop code generation, but continue
1741   // parsing and semantic analysis (to ensure all warnings and errors
1742   // are emitted).
1743   if (Diags.hasErrorOccurred())
1744     return;
1745 
1746   // Ignore dependent declarations.
1747   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1748     return;
1749 
1750   switch (D->getKind()) {
1751   case Decl::CXXConversion:
1752   case Decl::CXXMethod:
1753   case Decl::Function:
1754     // Skip function templates
1755     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1756       return;
1757 
1758     EmitGlobal(cast<FunctionDecl>(D));
1759     break;
1760 
1761   case Decl::Var:
1762     EmitGlobal(cast<VarDecl>(D));
1763     break;
1764 
1765   // C++ Decls
1766   case Decl::Namespace:
1767     EmitNamespace(cast<NamespaceDecl>(D));
1768     break;
1769     // No code generation needed.
1770   case Decl::UsingShadow:
1771   case Decl::Using:
1772   case Decl::UsingDirective:
1773   case Decl::ClassTemplate:
1774   case Decl::FunctionTemplate:
1775   case Decl::NamespaceAlias:
1776     break;
1777   case Decl::CXXConstructor:
1778     // Skip function templates
1779     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1780       return;
1781 
1782     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1783     break;
1784   case Decl::CXXDestructor:
1785     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1786     break;
1787 
1788   case Decl::StaticAssert:
1789     // Nothing to do.
1790     break;
1791 
1792   // Objective-C Decls
1793 
1794   // Forward declarations, no (immediate) code generation.
1795   case Decl::ObjCClass:
1796   case Decl::ObjCForwardProtocol:
1797   case Decl::ObjCCategory:
1798   case Decl::ObjCInterface:
1799     break;
1800 
1801   case Decl::ObjCProtocol:
1802     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1803     break;
1804 
1805   case Decl::ObjCCategoryImpl:
1806     // Categories have properties but don't support synthesize so we
1807     // can ignore them here.
1808     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1809     break;
1810 
1811   case Decl::ObjCImplementation: {
1812     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1813     EmitObjCPropertyImplementations(OMD);
1814     Runtime->GenerateClass(OMD);
1815     break;
1816   }
1817   case Decl::ObjCMethod: {
1818     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1819     // If this is not a prototype, emit the body.
1820     if (OMD->getBody())
1821       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1822     break;
1823   }
1824   case Decl::ObjCCompatibleAlias:
1825     // compatibility-alias is a directive and has no code gen.
1826     break;
1827 
1828   case Decl::LinkageSpec:
1829     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1830     break;
1831 
1832   case Decl::FileScopeAsm: {
1833     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1834     llvm::StringRef AsmString = AD->getAsmString()->getString();
1835 
1836     const std::string &S = getModule().getModuleInlineAsm();
1837     if (S.empty())
1838       getModule().setModuleInlineAsm(AsmString);
1839     else
1840       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1841     break;
1842   }
1843 
1844   default:
1845     // Make sure we handled everything we should, every other kind is a
1846     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1847     // function. Need to recode Decl::Kind to do that easily.
1848     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1849   }
1850 }
1851