1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = GD.getDecl();
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::VoidTy,
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::Int32Ty,
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(
217       llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // The kind of external linkage this function will have, if it is not
251   // inline or static.
252   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253   if (Context.getLangOptions().CPlusPlus &&
254       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
255       !FD->isExplicitSpecialization())
256     External = CodeGenModule::GVA_TemplateInstantiation;
257 
258   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
259     // C++ member functions defined inside the class are always inline.
260     if (MD->isInline() || !MD->isOutOfLine())
261       return CodeGenModule::GVA_CXXInline;
262 
263     return External;
264   }
265 
266   // "static" functions get internal linkage.
267   if (FD->getStorageClass() == FunctionDecl::Static)
268     return CodeGenModule::GVA_Internal;
269 
270   if (!FD->isInline())
271     return External;
272 
273   // If the inline function explicitly has the GNU inline attribute on it, or if
274   // this is C89 mode, we use to GNU semantics.
275   if (!Features.C99 && !Features.CPlusPlus) {
276     // extern inline in GNU mode is like C99 inline.
277     if (FD->getStorageClass() == FunctionDecl::Extern)
278       return CodeGenModule::GVA_C99Inline;
279     // Normal inline is a strong symbol.
280     return CodeGenModule::GVA_StrongExternal;
281   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
282     // GCC in C99 mode seems to use a different decision-making
283     // process for extern inline, which factors in previous
284     // declarations.
285     if (FD->isExternGNUInline(Context))
286       return CodeGenModule::GVA_C99Inline;
287     // Normal inline is a strong symbol.
288     return External;
289   }
290 
291   // The definition of inline changes based on the language.  Note that we
292   // have already handled "static inline" above, with the GVA_Internal case.
293   if (Features.CPlusPlus)  // inline and extern inline.
294     return CodeGenModule::GVA_CXXInline;
295 
296   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
297   if (FD->isC99InlineDefinition())
298     return CodeGenModule::GVA_C99Inline;
299 
300   return CodeGenModule::GVA_StrongExternal;
301 }
302 
303 /// SetFunctionDefinitionAttributes - Set attributes for a global.
304 ///
305 /// FIXME: This is currently only done for aliases and functions, but not for
306 /// variables (these details are set in EmitGlobalVarDefinition for variables).
307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
308                                                     llvm::GlobalValue *GV) {
309   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
310 
311   if (Linkage == GVA_Internal) {
312     GV->setLinkage(llvm::Function::InternalLinkage);
313   } else if (D->hasAttr<DLLExportAttr>()) {
314     GV->setLinkage(llvm::Function::DLLExportLinkage);
315   } else if (D->hasAttr<WeakAttr>()) {
316     GV->setLinkage(llvm::Function::WeakAnyLinkage);
317   } else if (Linkage == GVA_C99Inline) {
318     // In C99 mode, 'inline' functions are guaranteed to have a strong
319     // definition somewhere else, so we can use available_externally linkage.
320     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
321   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
322     // In C++, the compiler has to emit a definition in every translation unit
323     // that references the function.  We should use linkonce_odr because
324     // a) if all references in this translation unit are optimized away, we
325     // don't need to codegen it.  b) if the function persists, it needs to be
326     // merged with other definitions. c) C++ has the ODR, so we know the
327     // definition is dependable.
328     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
329   } else {
330     assert(Linkage == GVA_StrongExternal);
331     // Otherwise, we have strong external linkage.
332     GV->setLinkage(llvm::Function::ExternalLinkage);
333   }
334 
335   SetCommonAttributes(D, GV);
336 }
337 
338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
339                                               const CGFunctionInfo &Info,
340                                               llvm::Function *F) {
341   AttributeListType AttributeList;
342   ConstructAttributeList(Info, D, AttributeList);
343 
344   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
345                                         AttributeList.size()));
346 
347   // Set the appropriate calling convention for the Function.
348   if (D->hasAttr<FastCallAttr>())
349     F->setCallingConv(llvm::CallingConv::X86_FastCall);
350 
351   if (D->hasAttr<StdCallAttr>())
352     F->setCallingConv(llvm::CallingConv::X86_StdCall);
353 }
354 
355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
356                                                            llvm::Function *F) {
357   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
358     F->addFnAttr(llvm::Attribute::NoUnwind);
359 
360   if (D->hasAttr<AlwaysInlineAttr>())
361     F->addFnAttr(llvm::Attribute::AlwaysInline);
362 
363   if (D->hasAttr<NoinlineAttr>())
364     F->addFnAttr(llvm::Attribute::NoInline);
365 }
366 
367 void CodeGenModule::SetCommonAttributes(const Decl *D,
368                                         llvm::GlobalValue *GV) {
369   setGlobalVisibility(GV, D);
370 
371   if (D->hasAttr<UsedAttr>())
372     AddUsedGlobal(GV);
373 
374   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
375     GV->setSection(SA->getName());
376 }
377 
378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
379                                                   llvm::Function *F,
380                                                   const CGFunctionInfo &FI) {
381   SetLLVMFunctionAttributes(D, FI, F);
382   SetLLVMFunctionAttributesForDefinition(D, F);
383 
384   F->setLinkage(llvm::Function::InternalLinkage);
385 
386   SetCommonAttributes(D, F);
387 }
388 
389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
390                                           llvm::Function *F,
391                                           bool IsIncompleteFunction) {
392   if (!IsIncompleteFunction)
393     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
394 
395   // Only a few attributes are set on declarations; these may later be
396   // overridden by a definition.
397 
398   if (FD->hasAttr<DLLImportAttr>()) {
399     F->setLinkage(llvm::Function::DLLImportLinkage);
400   } else if (FD->hasAttr<WeakAttr>() ||
401              FD->hasAttr<WeakImportAttr>()) {
402     // "extern_weak" is overloaded in LLVM; we probably should have
403     // separate linkage types for this.
404     F->setLinkage(llvm::Function::ExternalWeakLinkage);
405   } else {
406     F->setLinkage(llvm::Function::ExternalLinkage);
407   }
408 
409   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
410     F->setSection(SA->getName());
411 }
412 
413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
414   assert(!GV->isDeclaration() &&
415          "Only globals with definition can force usage.");
416   LLVMUsed.push_back(GV);
417 }
418 
419 void CodeGenModule::EmitLLVMUsed() {
420   // Don't create llvm.used if there is no need.
421   if (LLVMUsed.empty())
422     return;
423 
424   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
425 
426   // Convert LLVMUsed to what ConstantArray needs.
427   std::vector<llvm::Constant*> UsedArray;
428   UsedArray.resize(LLVMUsed.size());
429   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
430     UsedArray[i] =
431      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
432                                       i8PTy);
433   }
434 
435   if (UsedArray.empty())
436     return;
437   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
438 
439   llvm::GlobalVariable *GV =
440     new llvm::GlobalVariable(getModule(), ATy, false,
441                              llvm::GlobalValue::AppendingLinkage,
442                              llvm::ConstantArray::get(ATy, UsedArray),
443                              "llvm.used");
444 
445   GV->setSection("llvm.metadata");
446 }
447 
448 void CodeGenModule::EmitDeferred() {
449   // Emit code for any potentially referenced deferred decls.  Since a
450   // previously unused static decl may become used during the generation of code
451   // for a static function, iterate until no  changes are made.
452   while (!DeferredDeclsToEmit.empty()) {
453     GlobalDecl D = DeferredDeclsToEmit.back();
454     DeferredDeclsToEmit.pop_back();
455 
456     // The mangled name for the decl must have been emitted in GlobalDeclMap.
457     // Look it up to see if it was defined with a stronger definition (e.g. an
458     // extern inline function with a strong function redefinition).  If so,
459     // just ignore the deferred decl.
460     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
461     assert(CGRef && "Deferred decl wasn't referenced?");
462 
463     if (!CGRef->isDeclaration())
464       continue;
465 
466     // Otherwise, emit the definition and move on to the next one.
467     EmitGlobalDefinition(D);
468   }
469 }
470 
471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
472 /// annotation information for a given GlobalValue.  The annotation struct is
473 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
474 /// GlobalValue being annotated.  The second field is the constant string
475 /// created from the AnnotateAttr's annotation.  The third field is a constant
476 /// string containing the name of the translation unit.  The fourth field is
477 /// the line number in the file of the annotated value declaration.
478 ///
479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
480 ///        appears to.
481 ///
482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
483                                                 const AnnotateAttr *AA,
484                                                 unsigned LineNo) {
485   llvm::Module *M = &getModule();
486 
487   // get [N x i8] constants for the annotation string, and the filename string
488   // which are the 2nd and 3rd elements of the global annotation structure.
489   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
490   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
491   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
492                                                   true);
493 
494   // Get the two global values corresponding to the ConstantArrays we just
495   // created to hold the bytes of the strings.
496   llvm::GlobalValue *annoGV =
497     new llvm::GlobalVariable(*M, anno->getType(), false,
498                              llvm::GlobalValue::PrivateLinkage, anno,
499                              GV->getName());
500   // translation unit name string, emitted into the llvm.metadata section.
501   llvm::GlobalValue *unitGV =
502     new llvm::GlobalVariable(*M, unit->getType(), false,
503                              llvm::GlobalValue::PrivateLinkage, unit,
504                              ".str");
505 
506   // Create the ConstantStruct for the global annotation.
507   llvm::Constant *Fields[4] = {
508     llvm::ConstantExpr::getBitCast(GV, SBP),
509     llvm::ConstantExpr::getBitCast(annoGV, SBP),
510     llvm::ConstantExpr::getBitCast(unitGV, SBP),
511     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
512   };
513   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
514 }
515 
516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
517   // Never defer when EmitAllDecls is specified or the decl has
518   // attribute used.
519   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
520     return false;
521 
522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
523     // Constructors and destructors should never be deferred.
524     if (FD->hasAttr<ConstructorAttr>() ||
525         FD->hasAttr<DestructorAttr>())
526       return false;
527 
528     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
529 
530     // static, static inline, always_inline, and extern inline functions can
531     // always be deferred.  Normal inline functions can be deferred in C99/C++.
532     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
533         Linkage == GVA_CXXInline)
534       return true;
535     return false;
536   }
537 
538   const VarDecl *VD = cast<VarDecl>(Global);
539   assert(VD->isFileVarDecl() && "Invalid decl");
540 
541   return VD->getStorageClass() == VarDecl::Static;
542 }
543 
544 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
545   const ValueDecl *Global = GD.getDecl();
546 
547   // If this is an alias definition (which otherwise looks like a declaration)
548   // emit it now.
549   if (Global->hasAttr<AliasAttr>())
550     return EmitAliasDefinition(Global);
551 
552   // Ignore declarations, they will be emitted on their first use.
553   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554     // Forward declarations are emitted lazily on first use.
555     if (!FD->isThisDeclarationADefinition())
556       return;
557   } else {
558     const VarDecl *VD = cast<VarDecl>(Global);
559     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
560 
561     // In C++, if this is marked "extern", defer code generation.
562     if (getLangOptions().CPlusPlus && !VD->getInit() &&
563         (VD->getStorageClass() == VarDecl::Extern ||
564          VD->isExternC(getContext())))
565       return;
566 
567     // In C, if this isn't a definition, defer code generation.
568     if (!getLangOptions().CPlusPlus && !VD->getInit())
569       return;
570   }
571 
572   // Defer code generation when possible if this is a static definition, inline
573   // function etc.  These we only want to emit if they are used.
574   if (MayDeferGeneration(Global)) {
575     // If the value has already been used, add it directly to the
576     // DeferredDeclsToEmit list.
577     const char *MangledName = getMangledName(GD);
578     if (GlobalDeclMap.count(MangledName))
579       DeferredDeclsToEmit.push_back(GD);
580     else {
581       // Otherwise, remember that we saw a deferred decl with this name.  The
582       // first use of the mangled name will cause it to move into
583       // DeferredDeclsToEmit.
584       DeferredDecls[MangledName] = GD;
585     }
586     return;
587   }
588 
589   // Otherwise emit the definition.
590   EmitGlobalDefinition(GD);
591 }
592 
593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
594   const ValueDecl *D = GD.getDecl();
595 
596   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
597     EmitCXXConstructor(CD, GD.getCtorType());
598   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
599     EmitCXXDestructor(DD, GD.getDtorType());
600   else if (isa<FunctionDecl>(D))
601     EmitGlobalFunctionDefinition(GD);
602   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
603     EmitGlobalVarDefinition(VD);
604   else {
605     assert(0 && "Invalid argument to EmitGlobalDefinition()");
606   }
607 }
608 
609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
610 /// module, create and return an llvm Function with the specified type. If there
611 /// is something in the module with the specified name, return it potentially
612 /// bitcasted to the right type.
613 ///
614 /// If D is non-null, it specifies a decl that correspond to this.  This is used
615 /// to set the attributes on the function when it is first created.
616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
617                                                        const llvm::Type *Ty,
618                                                        GlobalDecl D) {
619   // Lookup the entry, lazily creating it if necessary.
620   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
621   if (Entry) {
622     if (Entry->getType()->getElementType() == Ty)
623       return Entry;
624 
625     // Make sure the result is of the correct type.
626     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
627     return llvm::ConstantExpr::getBitCast(Entry, PTy);
628   }
629 
630   // This is the first use or definition of a mangled name.  If there is a
631   // deferred decl with this name, remember that we need to emit it at the end
632   // of the file.
633   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
634     DeferredDecls.find(MangledName);
635   if (DDI != DeferredDecls.end()) {
636     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
637     // list, and remove it from DeferredDecls (since we don't need it anymore).
638     DeferredDeclsToEmit.push_back(DDI->second);
639     DeferredDecls.erase(DDI);
640   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
641     // If this the first reference to a C++ inline function in a class, queue up
642     // the deferred function body for emission.  These are not seen as
643     // top-level declarations.
644     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
645       DeferredDeclsToEmit.push_back(D);
646     // A called constructor which has no definition or declaration need be
647     // synthesized.
648     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
649       const CXXRecordDecl *ClassDecl =
650         cast<CXXRecordDecl>(CD->getDeclContext());
651       if (CD->isCopyConstructor(getContext()))
652         DeferredCopyConstructorToEmit(D);
653       else if (!ClassDecl->hasUserDeclaredConstructor())
654         DeferredDeclsToEmit.push_back(D);
655     }
656     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
657            if (MD->isCopyAssignment())
658              DeferredCopyAssignmentToEmit(D);
659   }
660 
661   // This function doesn't have a complete type (for example, the return
662   // type is an incomplete struct). Use a fake type instead, and make
663   // sure not to try to set attributes.
664   bool IsIncompleteFunction = false;
665   if (!isa<llvm::FunctionType>(Ty)) {
666     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
667                                  std::vector<const llvm::Type*>(), false);
668     IsIncompleteFunction = true;
669   }
670   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
671                                              llvm::Function::ExternalLinkage,
672                                              "", &getModule());
673   F->setName(MangledName);
674   if (D.getDecl())
675     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
676                           IsIncompleteFunction);
677   Entry = F;
678   return F;
679 }
680 
681 /// Defer definition of copy constructor(s) which need be implicitly defined.
682 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
683   const CXXConstructorDecl *CD =
684     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
685   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
686   if (ClassDecl->hasTrivialCopyConstructor() ||
687       ClassDecl->hasUserDeclaredCopyConstructor())
688     return;
689 
690   // First make sure all direct base classes and virtual bases and non-static
691   // data mebers which need to have their copy constructors implicitly defined
692   // are defined. 12.8.p7
693   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
694        Base != ClassDecl->bases_end(); ++Base) {
695     CXXRecordDecl *BaseClassDecl
696       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
697     if (CXXConstructorDecl *BaseCopyCtor =
698         BaseClassDecl->getCopyConstructor(Context, 0))
699       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
700   }
701 
702   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
703        FieldEnd = ClassDecl->field_end();
704        Field != FieldEnd; ++Field) {
705     QualType FieldType = Context.getCanonicalType((*Field)->getType());
706     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
707       FieldType = Array->getElementType();
708     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
709       if ((*Field)->isAnonymousStructOrUnion())
710         continue;
711       CXXRecordDecl *FieldClassDecl
712         = cast<CXXRecordDecl>(FieldClassType->getDecl());
713       if (CXXConstructorDecl *FieldCopyCtor =
714           FieldClassDecl->getCopyConstructor(Context, 0))
715         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
716     }
717   }
718   DeferredDeclsToEmit.push_back(CopyCtorDecl);
719 }
720 
721 /// Defer definition of copy assignments which need be implicitly defined.
722 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
723   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
724   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
725 
726   if (ClassDecl->hasTrivialCopyAssignment() ||
727       ClassDecl->hasUserDeclaredCopyAssignment())
728     return;
729 
730   // First make sure all direct base classes and virtual bases and non-static
731   // data mebers which need to have their copy assignments implicitly defined
732   // are defined. 12.8.p12
733   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
734        Base != ClassDecl->bases_end(); ++Base) {
735     CXXRecordDecl *BaseClassDecl
736       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
737     const CXXMethodDecl *MD = 0;
738     if (BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
739       GetAddrOfFunction(GlobalDecl(MD), 0);
740   }
741 
742   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
743        FieldEnd = ClassDecl->field_end();
744        Field != FieldEnd; ++Field) {
745     QualType FieldType = Context.getCanonicalType((*Field)->getType());
746     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
747       FieldType = Array->getElementType();
748     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
749       if ((*Field)->isAnonymousStructOrUnion())
750         continue;
751       CXXRecordDecl *FieldClassDecl
752         = cast<CXXRecordDecl>(FieldClassType->getDecl());
753       const CXXMethodDecl *MD = 0;
754       if (FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
755           GetAddrOfFunction(GlobalDecl(MD), 0);
756     }
757   }
758   DeferredDeclsToEmit.push_back(CopyAssignDecl);
759 }
760 
761 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
762 /// non-null, then this function will use the specified type if it has to
763 /// create it (this occurs when we see a definition of the function).
764 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
765                                                  const llvm::Type *Ty) {
766   // If there was no specific requested type, just convert it now.
767   if (!Ty)
768     Ty = getTypes().ConvertType(GD.getDecl()->getType());
769   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
770 }
771 
772 /// CreateRuntimeFunction - Create a new runtime function with the specified
773 /// type and name.
774 llvm::Constant *
775 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
776                                      const char *Name) {
777   // Convert Name to be a uniqued string from the IdentifierInfo table.
778   Name = getContext().Idents.get(Name).getName();
779   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
780 }
781 
782 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
783 /// create and return an llvm GlobalVariable with the specified type.  If there
784 /// is something in the module with the specified name, return it potentially
785 /// bitcasted to the right type.
786 ///
787 /// If D is non-null, it specifies a decl that correspond to this.  This is used
788 /// to set the attributes on the global when it is first created.
789 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
790                                                      const llvm::PointerType*Ty,
791                                                      const VarDecl *D) {
792   // Lookup the entry, lazily creating it if necessary.
793   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
794   if (Entry) {
795     if (Entry->getType() == Ty)
796       return Entry;
797 
798     // Make sure the result is of the correct type.
799     return llvm::ConstantExpr::getBitCast(Entry, Ty);
800   }
801 
802   // This is the first use or definition of a mangled name.  If there is a
803   // deferred decl with this name, remember that we need to emit it at the end
804   // of the file.
805   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
806     DeferredDecls.find(MangledName);
807   if (DDI != DeferredDecls.end()) {
808     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
809     // list, and remove it from DeferredDecls (since we don't need it anymore).
810     DeferredDeclsToEmit.push_back(DDI->second);
811     DeferredDecls.erase(DDI);
812   }
813 
814   llvm::GlobalVariable *GV =
815     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
816                              llvm::GlobalValue::ExternalLinkage,
817                              0, "", 0,
818                              false, Ty->getAddressSpace());
819   GV->setName(MangledName);
820 
821   // Handle things which are present even on external declarations.
822   if (D) {
823     // FIXME: This code is overly simple and should be merged with other global
824     // handling.
825     GV->setConstant(D->getType().isConstant(Context));
826 
827     // FIXME: Merge with other attribute handling code.
828     if (D->getStorageClass() == VarDecl::PrivateExtern)
829       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
830 
831     if (D->hasAttr<WeakAttr>() ||
832         D->hasAttr<WeakImportAttr>())
833       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
834 
835     GV->setThreadLocal(D->isThreadSpecified());
836   }
837 
838   return Entry = GV;
839 }
840 
841 
842 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
843 /// given global variable.  If Ty is non-null and if the global doesn't exist,
844 /// then it will be greated with the specified type instead of whatever the
845 /// normal requested type would be.
846 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
847                                                   const llvm::Type *Ty) {
848   assert(D->hasGlobalStorage() && "Not a global variable");
849   QualType ASTTy = D->getType();
850   if (Ty == 0)
851     Ty = getTypes().ConvertTypeForMem(ASTTy);
852 
853   const llvm::PointerType *PTy =
854     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
855   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
856 }
857 
858 /// CreateRuntimeVariable - Create a new runtime global variable with the
859 /// specified type and name.
860 llvm::Constant *
861 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
862                                      const char *Name) {
863   // Convert Name to be a uniqued string from the IdentifierInfo table.
864   Name = getContext().Idents.get(Name).getName();
865   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
866 }
867 
868 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
869   assert(!D->getInit() && "Cannot emit definite definitions here!");
870 
871   if (MayDeferGeneration(D)) {
872     // If we have not seen a reference to this variable yet, place it
873     // into the deferred declarations table to be emitted if needed
874     // later.
875     const char *MangledName = getMangledName(D);
876     if (GlobalDeclMap.count(MangledName) == 0) {
877       DeferredDecls[MangledName] = GlobalDecl(D);
878       return;
879     }
880   }
881 
882   // The tentative definition is the only definition.
883   EmitGlobalVarDefinition(D);
884 }
885 
886 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
887   llvm::Constant *Init = 0;
888   QualType ASTTy = D->getType();
889 
890   if (D->getInit() == 0) {
891     // This is a tentative definition; tentative definitions are
892     // implicitly initialized with { 0 }.
893     //
894     // Note that tentative definitions are only emitted at the end of
895     // a translation unit, so they should never have incomplete
896     // type. In addition, EmitTentativeDefinition makes sure that we
897     // never attempt to emit a tentative definition if a real one
898     // exists. A use may still exists, however, so we still may need
899     // to do a RAUW.
900     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
901     Init = EmitNullConstant(D->getType());
902   } else {
903     Init = EmitConstantExpr(D->getInit(), D->getType());
904 
905     if (!Init) {
906       QualType T = D->getInit()->getType();
907       if (getLangOptions().CPlusPlus) {
908         CXXGlobalInits.push_back(D);
909         Init = EmitNullConstant(T);
910       } else {
911         ErrorUnsupported(D, "static initializer");
912         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
913       }
914     }
915   }
916 
917   const llvm::Type* InitType = Init->getType();
918   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
919 
920   // Strip off a bitcast if we got one back.
921   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
922     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
923            // all zero index gep.
924            CE->getOpcode() == llvm::Instruction::GetElementPtr);
925     Entry = CE->getOperand(0);
926   }
927 
928   // Entry is now either a Function or GlobalVariable.
929   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
930 
931   // We have a definition after a declaration with the wrong type.
932   // We must make a new GlobalVariable* and update everything that used OldGV
933   // (a declaration or tentative definition) with the new GlobalVariable*
934   // (which will be a definition).
935   //
936   // This happens if there is a prototype for a global (e.g.
937   // "extern int x[];") and then a definition of a different type (e.g.
938   // "int x[10];"). This also happens when an initializer has a different type
939   // from the type of the global (this happens with unions).
940   if (GV == 0 ||
941       GV->getType()->getElementType() != InitType ||
942       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
943 
944     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
945     GlobalDeclMap.erase(getMangledName(D));
946 
947     // Make a new global with the correct type, this is now guaranteed to work.
948     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
949     GV->takeName(cast<llvm::GlobalValue>(Entry));
950 
951     // Replace all uses of the old global with the new global
952     llvm::Constant *NewPtrForOldDecl =
953         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
954     Entry->replaceAllUsesWith(NewPtrForOldDecl);
955 
956     // Erase the old global, since it is no longer used.
957     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
958   }
959 
960   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
961     SourceManager &SM = Context.getSourceManager();
962     AddAnnotation(EmitAnnotateAttr(GV, AA,
963                               SM.getInstantiationLineNumber(D->getLocation())));
964   }
965 
966   GV->setInitializer(Init);
967 
968   // If it is safe to mark the global 'constant', do so now.
969   GV->setConstant(false);
970   if (D->getType().isConstant(Context)) {
971     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
972     // members, it cannot be declared "LLVM const".
973     GV->setConstant(true);
974   }
975 
976   GV->setAlignment(getContext().getDeclAlignInBytes(D));
977 
978   // Set the llvm linkage type as appropriate.
979   if (D->getStorageClass() == VarDecl::Static)
980     GV->setLinkage(llvm::Function::InternalLinkage);
981   else if (D->hasAttr<DLLImportAttr>())
982     GV->setLinkage(llvm::Function::DLLImportLinkage);
983   else if (D->hasAttr<DLLExportAttr>())
984     GV->setLinkage(llvm::Function::DLLExportLinkage);
985   else if (D->hasAttr<WeakAttr>()) {
986     if (GV->isConstant())
987       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
988     else
989       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
990   } else if (!CompileOpts.NoCommon &&
991            !D->hasExternalStorage() && !D->getInit() &&
992            !D->getAttr<SectionAttr>()) {
993     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
994     // common vars aren't constant even if declared const.
995     GV->setConstant(false);
996   } else
997     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
998 
999   SetCommonAttributes(D, GV);
1000 
1001   // Emit global variable debug information.
1002   if (CGDebugInfo *DI = getDebugInfo()) {
1003     DI->setLocation(D->getLocation());
1004     DI->EmitGlobalVariable(GV, D);
1005   }
1006 }
1007 
1008 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1009 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1010 /// existing call uses of the old function in the module, this adjusts them to
1011 /// call the new function directly.
1012 ///
1013 /// This is not just a cleanup: the always_inline pass requires direct calls to
1014 /// functions to be able to inline them.  If there is a bitcast in the way, it
1015 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1016 /// run at -O0.
1017 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1018                                                       llvm::Function *NewFn) {
1019   // If we're redefining a global as a function, don't transform it.
1020   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1021   if (OldFn == 0) return;
1022 
1023   const llvm::Type *NewRetTy = NewFn->getReturnType();
1024   llvm::SmallVector<llvm::Value*, 4> ArgList;
1025 
1026   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1027        UI != E; ) {
1028     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1029     unsigned OpNo = UI.getOperandNo();
1030     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1031     if (!CI || OpNo != 0) continue;
1032 
1033     // If the return types don't match exactly, and if the call isn't dead, then
1034     // we can't transform this call.
1035     if (CI->getType() != NewRetTy && !CI->use_empty())
1036       continue;
1037 
1038     // If the function was passed too few arguments, don't transform.  If extra
1039     // arguments were passed, we silently drop them.  If any of the types
1040     // mismatch, we don't transform.
1041     unsigned ArgNo = 0;
1042     bool DontTransform = false;
1043     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1044          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1045       if (CI->getNumOperands()-1 == ArgNo ||
1046           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1047         DontTransform = true;
1048         break;
1049       }
1050     }
1051     if (DontTransform)
1052       continue;
1053 
1054     // Okay, we can transform this.  Create the new call instruction and copy
1055     // over the required information.
1056     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1057     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1058                                                      ArgList.end(), "", CI);
1059     ArgList.clear();
1060     if (NewCall->getType() != llvm::Type::VoidTy)
1061       NewCall->takeName(CI);
1062     NewCall->setCallingConv(CI->getCallingConv());
1063     NewCall->setAttributes(CI->getAttributes());
1064 
1065     // Finally, remove the old call, replacing any uses with the new one.
1066     if (!CI->use_empty())
1067       CI->replaceAllUsesWith(NewCall);
1068     CI->eraseFromParent();
1069   }
1070 }
1071 
1072 
1073 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1074   const llvm::FunctionType *Ty;
1075   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1076 
1077   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1078     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1079 
1080     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1081   } else {
1082     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1083 
1084     // As a special case, make sure that definitions of K&R function
1085     // "type foo()" aren't declared as varargs (which forces the backend
1086     // to do unnecessary work).
1087     if (D->getType()->isFunctionNoProtoType()) {
1088       assert(Ty->isVarArg() && "Didn't lower type as expected");
1089       // Due to stret, the lowered function could have arguments.
1090       // Just create the same type as was lowered by ConvertType
1091       // but strip off the varargs bit.
1092       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1093       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1094     }
1095   }
1096 
1097   // Get or create the prototype for the function.
1098   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1099 
1100   // Strip off a bitcast if we got one back.
1101   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1102     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1103     Entry = CE->getOperand(0);
1104   }
1105 
1106 
1107   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1108     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1109 
1110     // If the types mismatch then we have to rewrite the definition.
1111     assert(OldFn->isDeclaration() &&
1112            "Shouldn't replace non-declaration");
1113 
1114     // F is the Function* for the one with the wrong type, we must make a new
1115     // Function* and update everything that used F (a declaration) with the new
1116     // Function* (which will be a definition).
1117     //
1118     // This happens if there is a prototype for a function
1119     // (e.g. "int f()") and then a definition of a different type
1120     // (e.g. "int f(int x)").  Start by making a new function of the
1121     // correct type, RAUW, then steal the name.
1122     GlobalDeclMap.erase(getMangledName(D));
1123     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1124     NewFn->takeName(OldFn);
1125 
1126     // If this is an implementation of a function without a prototype, try to
1127     // replace any existing uses of the function (which may be calls) with uses
1128     // of the new function
1129     if (D->getType()->isFunctionNoProtoType()) {
1130       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1131       OldFn->removeDeadConstantUsers();
1132     }
1133 
1134     // Replace uses of F with the Function we will endow with a body.
1135     if (!Entry->use_empty()) {
1136       llvm::Constant *NewPtrForOldDecl =
1137         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1138       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1139     }
1140 
1141     // Ok, delete the old function now, which is dead.
1142     OldFn->eraseFromParent();
1143 
1144     Entry = NewFn;
1145   }
1146 
1147   llvm::Function *Fn = cast<llvm::Function>(Entry);
1148 
1149   CodeGenFunction(*this).GenerateCode(D, Fn);
1150 
1151   SetFunctionDefinitionAttributes(D, Fn);
1152   SetLLVMFunctionAttributesForDefinition(D, Fn);
1153 
1154   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1155     AddGlobalCtor(Fn, CA->getPriority());
1156   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1157     AddGlobalDtor(Fn, DA->getPriority());
1158 }
1159 
1160 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1161   const AliasAttr *AA = D->getAttr<AliasAttr>();
1162   assert(AA && "Not an alias?");
1163 
1164   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1165 
1166   // Unique the name through the identifier table.
1167   const char *AliaseeName = AA->getAliasee().c_str();
1168   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1169 
1170   // Create a reference to the named value.  This ensures that it is emitted
1171   // if a deferred decl.
1172   llvm::Constant *Aliasee;
1173   if (isa<llvm::FunctionType>(DeclTy))
1174     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1175   else
1176     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1177                                     llvm::PointerType::getUnqual(DeclTy), 0);
1178 
1179   // Create the new alias itself, but don't set a name yet.
1180   llvm::GlobalValue *GA =
1181     new llvm::GlobalAlias(Aliasee->getType(),
1182                           llvm::Function::ExternalLinkage,
1183                           "", Aliasee, &getModule());
1184 
1185   // See if there is already something with the alias' name in the module.
1186   const char *MangledName = getMangledName(D);
1187   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1188 
1189   if (Entry && !Entry->isDeclaration()) {
1190     // If there is a definition in the module, then it wins over the alias.
1191     // This is dubious, but allow it to be safe.  Just ignore the alias.
1192     GA->eraseFromParent();
1193     return;
1194   }
1195 
1196   if (Entry) {
1197     // If there is a declaration in the module, then we had an extern followed
1198     // by the alias, as in:
1199     //   extern int test6();
1200     //   ...
1201     //   int test6() __attribute__((alias("test7")));
1202     //
1203     // Remove it and replace uses of it with the alias.
1204 
1205     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1206                                                           Entry->getType()));
1207     Entry->eraseFromParent();
1208   }
1209 
1210   // Now we know that there is no conflict, set the name.
1211   Entry = GA;
1212   GA->setName(MangledName);
1213 
1214   // Set attributes which are particular to an alias; this is a
1215   // specialization of the attributes which may be set on a global
1216   // variable/function.
1217   if (D->hasAttr<DLLExportAttr>()) {
1218     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1219       // The dllexport attribute is ignored for undefined symbols.
1220       if (FD->getBody())
1221         GA->setLinkage(llvm::Function::DLLExportLinkage);
1222     } else {
1223       GA->setLinkage(llvm::Function::DLLExportLinkage);
1224     }
1225   } else if (D->hasAttr<WeakAttr>() ||
1226              D->hasAttr<WeakImportAttr>()) {
1227     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1228   }
1229 
1230   SetCommonAttributes(D, GA);
1231 }
1232 
1233 /// getBuiltinLibFunction - Given a builtin id for a function like
1234 /// "__builtin_fabsf", return a Function* for "fabsf".
1235 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1236   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1237           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1238          "isn't a lib fn");
1239 
1240   // Get the name, skip over the __builtin_ prefix (if necessary).
1241   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1242   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1243     Name += 10;
1244 
1245   // Get the type for the builtin.
1246   ASTContext::GetBuiltinTypeError Error;
1247   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1248   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1249 
1250   const llvm::FunctionType *Ty =
1251     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1252 
1253   // Unique the name through the identifier table.
1254   Name = getContext().Idents.get(Name).getName();
1255   // FIXME: param attributes for sext/zext etc.
1256   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1257 }
1258 
1259 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1260                                             unsigned NumTys) {
1261   return llvm::Intrinsic::getDeclaration(&getModule(),
1262                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1263 }
1264 
1265 llvm::Function *CodeGenModule::getMemCpyFn() {
1266   if (MemCpyFn) return MemCpyFn;
1267   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1268   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1269 }
1270 
1271 llvm::Function *CodeGenModule::getMemMoveFn() {
1272   if (MemMoveFn) return MemMoveFn;
1273   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1274   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1275 }
1276 
1277 llvm::Function *CodeGenModule::getMemSetFn() {
1278   if (MemSetFn) return MemSetFn;
1279   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1280   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1281 }
1282 
1283 static void appendFieldAndPadding(CodeGenModule &CGM,
1284                                   std::vector<llvm::Constant*>& Fields,
1285                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1286                                   llvm::Constant* Field,
1287                                   RecordDecl* RD, const llvm::StructType *STy) {
1288   // Append the field.
1289   Fields.push_back(Field);
1290 
1291   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1292 
1293   int NextStructFieldNo;
1294   if (!NextFieldD) {
1295     NextStructFieldNo = STy->getNumElements();
1296   } else {
1297     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1298   }
1299 
1300   // Append padding
1301   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1302     llvm::Constant *C =
1303       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1304 
1305     Fields.push_back(C);
1306   }
1307 }
1308 
1309 static llvm::StringMapEntry<llvm::Constant*> &
1310 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1311                          const StringLiteral *Literal,
1312                          bool TargetIsLSB,
1313                          bool &IsUTF16,
1314                          unsigned &StringLength) {
1315   unsigned NumBytes = Literal->getByteLength();
1316 
1317   // Check for simple case.
1318   if (!Literal->containsNonAsciiOrNull()) {
1319     StringLength = NumBytes;
1320     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1321                                                 StringLength));
1322   }
1323 
1324   // Otherwise, convert the UTF8 literals into a byte string.
1325   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1326   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1327   UTF16 *ToPtr = &ToBuf[0];
1328 
1329   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1330                                                &ToPtr, ToPtr + NumBytes,
1331                                                strictConversion);
1332 
1333   // Check for conversion failure.
1334   if (Result != conversionOK) {
1335     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1336     // this duplicate code.
1337     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1338     StringLength = NumBytes;
1339     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1340                                                 StringLength));
1341   }
1342 
1343   // ConvertUTF8toUTF16 returns the length in ToPtr.
1344   StringLength = ToPtr - &ToBuf[0];
1345 
1346   // Render the UTF-16 string into a byte array and convert to the target byte
1347   // order.
1348   //
1349   // FIXME: This isn't something we should need to do here.
1350   llvm::SmallString<128> AsBytes;
1351   AsBytes.reserve(StringLength * 2);
1352   for (unsigned i = 0; i != StringLength; ++i) {
1353     unsigned short Val = ToBuf[i];
1354     if (TargetIsLSB) {
1355       AsBytes.push_back(Val & 0xFF);
1356       AsBytes.push_back(Val >> 8);
1357     } else {
1358       AsBytes.push_back(Val >> 8);
1359       AsBytes.push_back(Val & 0xFF);
1360     }
1361   }
1362   // Append one extra null character, the second is automatically added by our
1363   // caller.
1364   AsBytes.push_back(0);
1365 
1366   IsUTF16 = true;
1367   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1368 }
1369 
1370 llvm::Constant *
1371 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1372   unsigned StringLength = 0;
1373   bool isUTF16 = false;
1374   llvm::StringMapEntry<llvm::Constant*> &Entry =
1375     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1376                              getTargetData().isLittleEndian(),
1377                              isUTF16, StringLength);
1378 
1379   if (llvm::Constant *C = Entry.getValue())
1380     return C;
1381 
1382   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1383   llvm::Constant *Zeros[] = { Zero, Zero };
1384 
1385   // If we don't already have it, get __CFConstantStringClassReference.
1386   if (!CFConstantStringClassRef) {
1387     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1388     Ty = llvm::ArrayType::get(Ty, 0);
1389     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1390                                            "__CFConstantStringClassReference");
1391     // Decay array -> ptr
1392     CFConstantStringClassRef =
1393       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1394   }
1395 
1396   QualType CFTy = getContext().getCFConstantStringType();
1397   RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl();
1398 
1399   const llvm::StructType *STy =
1400     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1401 
1402   std::vector<llvm::Constant*> Fields;
1403   RecordDecl::field_iterator Field = CFRD->field_begin();
1404 
1405   // Class pointer.
1406   FieldDecl *CurField = *Field++;
1407   FieldDecl *NextField = *Field++;
1408   appendFieldAndPadding(*this, Fields, CurField, NextField,
1409                         CFConstantStringClassRef, CFRD, STy);
1410 
1411   // Flags.
1412   CurField = NextField;
1413   NextField = *Field++;
1414   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1415   appendFieldAndPadding(*this, Fields, CurField, NextField,
1416                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1417                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1418                         CFRD, STy);
1419 
1420   // String pointer.
1421   CurField = NextField;
1422   NextField = *Field++;
1423   llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str());
1424 
1425   const char *Sect, *Prefix;
1426   bool isConstant;
1427   llvm::GlobalValue::LinkageTypes Linkage;
1428   if (isUTF16) {
1429     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1430     Sect = getContext().Target.getUnicodeStringSection();
1431     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1432     Linkage = llvm::GlobalValue::InternalLinkage;
1433     // FIXME: Why does GCC not set constant here?
1434     isConstant = false;
1435   } else {
1436     Prefix = ".str";
1437     Sect = getContext().Target.getCFStringDataSection();
1438     Linkage = llvm::GlobalValue::PrivateLinkage;
1439     // FIXME: -fwritable-strings should probably affect this, but we
1440     // are following gcc here.
1441     isConstant = true;
1442   }
1443   llvm::GlobalVariable *GV =
1444     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1445                              Linkage, C, Prefix);
1446   if (Sect)
1447     GV->setSection(Sect);
1448   if (isUTF16) {
1449     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1450     GV->setAlignment(Align);
1451   }
1452   appendFieldAndPadding(*this, Fields, CurField, NextField,
1453                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1454                         CFRD, STy);
1455 
1456   // String length.
1457   CurField = NextField;
1458   NextField = 0;
1459   Ty = getTypes().ConvertType(getContext().LongTy);
1460   appendFieldAndPadding(*this, Fields, CurField, NextField,
1461                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1462 
1463   // The struct.
1464   C = llvm::ConstantStruct::get(STy, Fields);
1465   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1466                                 llvm::GlobalVariable::PrivateLinkage, C,
1467                                 "_unnamed_cfstring_");
1468   if (const char *Sect = getContext().Target.getCFStringSection())
1469     GV->setSection(Sect);
1470   Entry.setValue(GV);
1471 
1472   return GV;
1473 }
1474 
1475 /// GetStringForStringLiteral - Return the appropriate bytes for a
1476 /// string literal, properly padded to match the literal type.
1477 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1478   const char *StrData = E->getStrData();
1479   unsigned Len = E->getByteLength();
1480 
1481   const ConstantArrayType *CAT =
1482     getContext().getAsConstantArrayType(E->getType());
1483   assert(CAT && "String isn't pointer or array!");
1484 
1485   // Resize the string to the right size.
1486   std::string Str(StrData, StrData+Len);
1487   uint64_t RealLen = CAT->getSize().getZExtValue();
1488 
1489   if (E->isWide())
1490     RealLen *= getContext().Target.getWCharWidth()/8;
1491 
1492   Str.resize(RealLen, '\0');
1493 
1494   return Str;
1495 }
1496 
1497 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1498 /// constant array for the given string literal.
1499 llvm::Constant *
1500 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1501   // FIXME: This can be more efficient.
1502   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1503 }
1504 
1505 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1506 /// array for the given ObjCEncodeExpr node.
1507 llvm::Constant *
1508 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1509   std::string Str;
1510   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1511 
1512   return GetAddrOfConstantCString(Str);
1513 }
1514 
1515 
1516 /// GenerateWritableString -- Creates storage for a string literal.
1517 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1518                                              bool constant,
1519                                              CodeGenModule &CGM,
1520                                              const char *GlobalName) {
1521   // Create Constant for this string literal. Don't add a '\0'.
1522   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1523 
1524   // Create a global variable for this string
1525   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1526                                   llvm::GlobalValue::PrivateLinkage,
1527                                   C, GlobalName);
1528 }
1529 
1530 /// GetAddrOfConstantString - Returns a pointer to a character array
1531 /// containing the literal. This contents are exactly that of the
1532 /// given string, i.e. it will not be null terminated automatically;
1533 /// see GetAddrOfConstantCString. Note that whether the result is
1534 /// actually a pointer to an LLVM constant depends on
1535 /// Feature.WriteableStrings.
1536 ///
1537 /// The result has pointer to array type.
1538 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1539                                                        const char *GlobalName) {
1540   bool IsConstant = !Features.WritableStrings;
1541 
1542   // Get the default prefix if a name wasn't specified.
1543   if (!GlobalName)
1544     GlobalName = ".str";
1545 
1546   // Don't share any string literals if strings aren't constant.
1547   if (!IsConstant)
1548     return GenerateStringLiteral(str, false, *this, GlobalName);
1549 
1550   llvm::StringMapEntry<llvm::Constant *> &Entry =
1551     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1552 
1553   if (Entry.getValue())
1554     return Entry.getValue();
1555 
1556   // Create a global variable for this.
1557   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1558   Entry.setValue(C);
1559   return C;
1560 }
1561 
1562 /// GetAddrOfConstantCString - Returns a pointer to a character
1563 /// array containing the literal and a terminating '\-'
1564 /// character. The result has pointer to array type.
1565 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1566                                                         const char *GlobalName){
1567   return GetAddrOfConstantString(str + '\0', GlobalName);
1568 }
1569 
1570 /// EmitObjCPropertyImplementations - Emit information for synthesized
1571 /// properties for an implementation.
1572 void CodeGenModule::EmitObjCPropertyImplementations(const
1573                                                     ObjCImplementationDecl *D) {
1574   for (ObjCImplementationDecl::propimpl_iterator
1575          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1576     ObjCPropertyImplDecl *PID = *i;
1577 
1578     // Dynamic is just for type-checking.
1579     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1580       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1581 
1582       // Determine which methods need to be implemented, some may have
1583       // been overridden. Note that ::isSynthesized is not the method
1584       // we want, that just indicates if the decl came from a
1585       // property. What we want to know is if the method is defined in
1586       // this implementation.
1587       if (!D->getInstanceMethod(PD->getGetterName()))
1588         CodeGenFunction(*this).GenerateObjCGetter(
1589                                  const_cast<ObjCImplementationDecl *>(D), PID);
1590       if (!PD->isReadOnly() &&
1591           !D->getInstanceMethod(PD->getSetterName()))
1592         CodeGenFunction(*this).GenerateObjCSetter(
1593                                  const_cast<ObjCImplementationDecl *>(D), PID);
1594     }
1595   }
1596 }
1597 
1598 /// EmitNamespace - Emit all declarations in a namespace.
1599 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1600   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1601        I != E; ++I)
1602     EmitTopLevelDecl(*I);
1603 }
1604 
1605 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1606 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1607   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1608       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1609     ErrorUnsupported(LSD, "linkage spec");
1610     return;
1611   }
1612 
1613   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1614        I != E; ++I)
1615     EmitTopLevelDecl(*I);
1616 }
1617 
1618 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1619 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1620   // If an error has occurred, stop code generation, but continue
1621   // parsing and semantic analysis (to ensure all warnings and errors
1622   // are emitted).
1623   if (Diags.hasErrorOccurred())
1624     return;
1625 
1626   // Ignore dependent declarations.
1627   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1628     return;
1629 
1630   switch (D->getKind()) {
1631   case Decl::CXXMethod:
1632   case Decl::Function:
1633     // Skip function templates
1634     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1635       return;
1636 
1637     // Fall through
1638 
1639   case Decl::Var:
1640     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1641     break;
1642 
1643   // C++ Decls
1644   case Decl::Namespace:
1645     EmitNamespace(cast<NamespaceDecl>(D));
1646     break;
1647     // No code generation needed.
1648   case Decl::Using:
1649   case Decl::ClassTemplate:
1650   case Decl::FunctionTemplate:
1651     break;
1652   case Decl::CXXConstructor:
1653     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1654     break;
1655   case Decl::CXXDestructor:
1656     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1657     break;
1658 
1659   case Decl::StaticAssert:
1660     // Nothing to do.
1661     break;
1662 
1663   // Objective-C Decls
1664 
1665   // Forward declarations, no (immediate) code generation.
1666   case Decl::ObjCClass:
1667   case Decl::ObjCForwardProtocol:
1668   case Decl::ObjCCategory:
1669   case Decl::ObjCInterface:
1670     break;
1671 
1672   case Decl::ObjCProtocol:
1673     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1674     break;
1675 
1676   case Decl::ObjCCategoryImpl:
1677     // Categories have properties but don't support synthesize so we
1678     // can ignore them here.
1679     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1680     break;
1681 
1682   case Decl::ObjCImplementation: {
1683     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1684     EmitObjCPropertyImplementations(OMD);
1685     Runtime->GenerateClass(OMD);
1686     break;
1687   }
1688   case Decl::ObjCMethod: {
1689     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1690     // If this is not a prototype, emit the body.
1691     if (OMD->getBody())
1692       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1693     break;
1694   }
1695   case Decl::ObjCCompatibleAlias:
1696     // compatibility-alias is a directive and has no code gen.
1697     break;
1698 
1699   case Decl::LinkageSpec:
1700     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1701     break;
1702 
1703   case Decl::FileScopeAsm: {
1704     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1705     std::string AsmString(AD->getAsmString()->getStrData(),
1706                           AD->getAsmString()->getByteLength());
1707 
1708     const std::string &S = getModule().getModuleInlineAsm();
1709     if (S.empty())
1710       getModule().setModuleInlineAsm(AsmString);
1711     else
1712       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1713     break;
1714   }
1715 
1716   default:
1717     // Make sure we handled everything we should, every other kind is a
1718     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1719     // function. Need to recode Decl::Kind to do that easily.
1720     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1721   }
1722 }
1723