1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = GD.getDecl(); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::VoidTy, 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::Int32Ty, 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back( 217 llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // The kind of external linkage this function will have, if it is not 251 // inline or static. 252 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 253 if (Context.getLangOptions().CPlusPlus && 254 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 255 !FD->isExplicitSpecialization()) 256 External = CodeGenModule::GVA_TemplateInstantiation; 257 258 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 259 // C++ member functions defined inside the class are always inline. 260 if (MD->isInline() || !MD->isOutOfLine()) 261 return CodeGenModule::GVA_CXXInline; 262 263 return External; 264 } 265 266 // "static" functions get internal linkage. 267 if (FD->getStorageClass() == FunctionDecl::Static) 268 return CodeGenModule::GVA_Internal; 269 270 if (!FD->isInline()) 271 return External; 272 273 // If the inline function explicitly has the GNU inline attribute on it, or if 274 // this is C89 mode, we use to GNU semantics. 275 if (!Features.C99 && !Features.CPlusPlus) { 276 // extern inline in GNU mode is like C99 inline. 277 if (FD->getStorageClass() == FunctionDecl::Extern) 278 return CodeGenModule::GVA_C99Inline; 279 // Normal inline is a strong symbol. 280 return CodeGenModule::GVA_StrongExternal; 281 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 282 // GCC in C99 mode seems to use a different decision-making 283 // process for extern inline, which factors in previous 284 // declarations. 285 if (FD->isExternGNUInline(Context)) 286 return CodeGenModule::GVA_C99Inline; 287 // Normal inline is a strong symbol. 288 return External; 289 } 290 291 // The definition of inline changes based on the language. Note that we 292 // have already handled "static inline" above, with the GVA_Internal case. 293 if (Features.CPlusPlus) // inline and extern inline. 294 return CodeGenModule::GVA_CXXInline; 295 296 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 297 if (FD->isC99InlineDefinition()) 298 return CodeGenModule::GVA_C99Inline; 299 300 return CodeGenModule::GVA_StrongExternal; 301 } 302 303 /// SetFunctionDefinitionAttributes - Set attributes for a global. 304 /// 305 /// FIXME: This is currently only done for aliases and functions, but not for 306 /// variables (these details are set in EmitGlobalVarDefinition for variables). 307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 308 llvm::GlobalValue *GV) { 309 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 310 311 if (Linkage == GVA_Internal) { 312 GV->setLinkage(llvm::Function::InternalLinkage); 313 } else if (D->hasAttr<DLLExportAttr>()) { 314 GV->setLinkage(llvm::Function::DLLExportLinkage); 315 } else if (D->hasAttr<WeakAttr>()) { 316 GV->setLinkage(llvm::Function::WeakAnyLinkage); 317 } else if (Linkage == GVA_C99Inline) { 318 // In C99 mode, 'inline' functions are guaranteed to have a strong 319 // definition somewhere else, so we can use available_externally linkage. 320 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 321 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 322 // In C++, the compiler has to emit a definition in every translation unit 323 // that references the function. We should use linkonce_odr because 324 // a) if all references in this translation unit are optimized away, we 325 // don't need to codegen it. b) if the function persists, it needs to be 326 // merged with other definitions. c) C++ has the ODR, so we know the 327 // definition is dependable. 328 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 329 } else { 330 assert(Linkage == GVA_StrongExternal); 331 // Otherwise, we have strong external linkage. 332 GV->setLinkage(llvm::Function::ExternalLinkage); 333 } 334 335 SetCommonAttributes(D, GV); 336 } 337 338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 339 const CGFunctionInfo &Info, 340 llvm::Function *F) { 341 AttributeListType AttributeList; 342 ConstructAttributeList(Info, D, AttributeList); 343 344 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 345 AttributeList.size())); 346 347 // Set the appropriate calling convention for the Function. 348 if (D->hasAttr<FastCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_FastCall); 350 351 if (D->hasAttr<StdCallAttr>()) 352 F->setCallingConv(llvm::CallingConv::X86_StdCall); 353 } 354 355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 356 llvm::Function *F) { 357 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 358 F->addFnAttr(llvm::Attribute::NoUnwind); 359 360 if (D->hasAttr<AlwaysInlineAttr>()) 361 F->addFnAttr(llvm::Attribute::AlwaysInline); 362 363 if (D->hasAttr<NoinlineAttr>()) 364 F->addFnAttr(llvm::Attribute::NoInline); 365 } 366 367 void CodeGenModule::SetCommonAttributes(const Decl *D, 368 llvm::GlobalValue *GV) { 369 setGlobalVisibility(GV, D); 370 371 if (D->hasAttr<UsedAttr>()) 372 AddUsedGlobal(GV); 373 374 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 375 GV->setSection(SA->getName()); 376 } 377 378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 379 llvm::Function *F, 380 const CGFunctionInfo &FI) { 381 SetLLVMFunctionAttributes(D, FI, F); 382 SetLLVMFunctionAttributesForDefinition(D, F); 383 384 F->setLinkage(llvm::Function::InternalLinkage); 385 386 SetCommonAttributes(D, F); 387 } 388 389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 390 llvm::Function *F, 391 bool IsIncompleteFunction) { 392 if (!IsIncompleteFunction) 393 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 394 395 // Only a few attributes are set on declarations; these may later be 396 // overridden by a definition. 397 398 if (FD->hasAttr<DLLImportAttr>()) { 399 F->setLinkage(llvm::Function::DLLImportLinkage); 400 } else if (FD->hasAttr<WeakAttr>() || 401 FD->hasAttr<WeakImportAttr>()) { 402 // "extern_weak" is overloaded in LLVM; we probably should have 403 // separate linkage types for this. 404 F->setLinkage(llvm::Function::ExternalWeakLinkage); 405 } else { 406 F->setLinkage(llvm::Function::ExternalLinkage); 407 } 408 409 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 410 F->setSection(SA->getName()); 411 } 412 413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 414 assert(!GV->isDeclaration() && 415 "Only globals with definition can force usage."); 416 LLVMUsed.push_back(GV); 417 } 418 419 void CodeGenModule::EmitLLVMUsed() { 420 // Don't create llvm.used if there is no need. 421 if (LLVMUsed.empty()) 422 return; 423 424 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 425 426 // Convert LLVMUsed to what ConstantArray needs. 427 std::vector<llvm::Constant*> UsedArray; 428 UsedArray.resize(LLVMUsed.size()); 429 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 430 UsedArray[i] = 431 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 432 i8PTy); 433 } 434 435 if (UsedArray.empty()) 436 return; 437 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 438 439 llvm::GlobalVariable *GV = 440 new llvm::GlobalVariable(getModule(), ATy, false, 441 llvm::GlobalValue::AppendingLinkage, 442 llvm::ConstantArray::get(ATy, UsedArray), 443 "llvm.used"); 444 445 GV->setSection("llvm.metadata"); 446 } 447 448 void CodeGenModule::EmitDeferred() { 449 // Emit code for any potentially referenced deferred decls. Since a 450 // previously unused static decl may become used during the generation of code 451 // for a static function, iterate until no changes are made. 452 while (!DeferredDeclsToEmit.empty()) { 453 GlobalDecl D = DeferredDeclsToEmit.back(); 454 DeferredDeclsToEmit.pop_back(); 455 456 // The mangled name for the decl must have been emitted in GlobalDeclMap. 457 // Look it up to see if it was defined with a stronger definition (e.g. an 458 // extern inline function with a strong function redefinition). If so, 459 // just ignore the deferred decl. 460 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 461 assert(CGRef && "Deferred decl wasn't referenced?"); 462 463 if (!CGRef->isDeclaration()) 464 continue; 465 466 // Otherwise, emit the definition and move on to the next one. 467 EmitGlobalDefinition(D); 468 } 469 } 470 471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 472 /// annotation information for a given GlobalValue. The annotation struct is 473 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 474 /// GlobalValue being annotated. The second field is the constant string 475 /// created from the AnnotateAttr's annotation. The third field is a constant 476 /// string containing the name of the translation unit. The fourth field is 477 /// the line number in the file of the annotated value declaration. 478 /// 479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 480 /// appears to. 481 /// 482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 483 const AnnotateAttr *AA, 484 unsigned LineNo) { 485 llvm::Module *M = &getModule(); 486 487 // get [N x i8] constants for the annotation string, and the filename string 488 // which are the 2nd and 3rd elements of the global annotation structure. 489 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 490 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 491 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 492 true); 493 494 // Get the two global values corresponding to the ConstantArrays we just 495 // created to hold the bytes of the strings. 496 llvm::GlobalValue *annoGV = 497 new llvm::GlobalVariable(*M, anno->getType(), false, 498 llvm::GlobalValue::PrivateLinkage, anno, 499 GV->getName()); 500 // translation unit name string, emitted into the llvm.metadata section. 501 llvm::GlobalValue *unitGV = 502 new llvm::GlobalVariable(*M, unit->getType(), false, 503 llvm::GlobalValue::PrivateLinkage, unit, 504 ".str"); 505 506 // Create the ConstantStruct for the global annotation. 507 llvm::Constant *Fields[4] = { 508 llvm::ConstantExpr::getBitCast(GV, SBP), 509 llvm::ConstantExpr::getBitCast(annoGV, SBP), 510 llvm::ConstantExpr::getBitCast(unitGV, SBP), 511 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 512 }; 513 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 514 } 515 516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 517 // Never defer when EmitAllDecls is specified or the decl has 518 // attribute used. 519 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 520 return false; 521 522 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 523 // Constructors and destructors should never be deferred. 524 if (FD->hasAttr<ConstructorAttr>() || 525 FD->hasAttr<DestructorAttr>()) 526 return false; 527 528 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 529 530 // static, static inline, always_inline, and extern inline functions can 531 // always be deferred. Normal inline functions can be deferred in C99/C++. 532 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 533 Linkage == GVA_CXXInline) 534 return true; 535 return false; 536 } 537 538 const VarDecl *VD = cast<VarDecl>(Global); 539 assert(VD->isFileVarDecl() && "Invalid decl"); 540 541 return VD->getStorageClass() == VarDecl::Static; 542 } 543 544 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 545 const ValueDecl *Global = GD.getDecl(); 546 547 // If this is an alias definition (which otherwise looks like a declaration) 548 // emit it now. 549 if (Global->hasAttr<AliasAttr>()) 550 return EmitAliasDefinition(Global); 551 552 // Ignore declarations, they will be emitted on their first use. 553 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 554 // Forward declarations are emitted lazily on first use. 555 if (!FD->isThisDeclarationADefinition()) 556 return; 557 } else { 558 const VarDecl *VD = cast<VarDecl>(Global); 559 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 560 561 // In C++, if this is marked "extern", defer code generation. 562 if (getLangOptions().CPlusPlus && !VD->getInit() && 563 (VD->getStorageClass() == VarDecl::Extern || 564 VD->isExternC(getContext()))) 565 return; 566 567 // In C, if this isn't a definition, defer code generation. 568 if (!getLangOptions().CPlusPlus && !VD->getInit()) 569 return; 570 } 571 572 // Defer code generation when possible if this is a static definition, inline 573 // function etc. These we only want to emit if they are used. 574 if (MayDeferGeneration(Global)) { 575 // If the value has already been used, add it directly to the 576 // DeferredDeclsToEmit list. 577 const char *MangledName = getMangledName(GD); 578 if (GlobalDeclMap.count(MangledName)) 579 DeferredDeclsToEmit.push_back(GD); 580 else { 581 // Otherwise, remember that we saw a deferred decl with this name. The 582 // first use of the mangled name will cause it to move into 583 // DeferredDeclsToEmit. 584 DeferredDecls[MangledName] = GD; 585 } 586 return; 587 } 588 589 // Otherwise emit the definition. 590 EmitGlobalDefinition(GD); 591 } 592 593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 594 const ValueDecl *D = GD.getDecl(); 595 596 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 597 EmitCXXConstructor(CD, GD.getCtorType()); 598 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 599 EmitCXXDestructor(DD, GD.getDtorType()); 600 else if (isa<FunctionDecl>(D)) 601 EmitGlobalFunctionDefinition(GD); 602 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 603 EmitGlobalVarDefinition(VD); 604 else { 605 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 606 } 607 } 608 609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 610 /// module, create and return an llvm Function with the specified type. If there 611 /// is something in the module with the specified name, return it potentially 612 /// bitcasted to the right type. 613 /// 614 /// If D is non-null, it specifies a decl that correspond to this. This is used 615 /// to set the attributes on the function when it is first created. 616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 617 const llvm::Type *Ty, 618 GlobalDecl D) { 619 // Lookup the entry, lazily creating it if necessary. 620 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 621 if (Entry) { 622 if (Entry->getType()->getElementType() == Ty) 623 return Entry; 624 625 // Make sure the result is of the correct type. 626 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 627 return llvm::ConstantExpr::getBitCast(Entry, PTy); 628 } 629 630 // This is the first use or definition of a mangled name. If there is a 631 // deferred decl with this name, remember that we need to emit it at the end 632 // of the file. 633 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 634 DeferredDecls.find(MangledName); 635 if (DDI != DeferredDecls.end()) { 636 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 637 // list, and remove it from DeferredDecls (since we don't need it anymore). 638 DeferredDeclsToEmit.push_back(DDI->second); 639 DeferredDecls.erase(DDI); 640 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 641 // If this the first reference to a C++ inline function in a class, queue up 642 // the deferred function body for emission. These are not seen as 643 // top-level declarations. 644 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 645 DeferredDeclsToEmit.push_back(D); 646 // A called constructor which has no definition or declaration need be 647 // synthesized. 648 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 649 const CXXRecordDecl *ClassDecl = 650 cast<CXXRecordDecl>(CD->getDeclContext()); 651 if (CD->isCopyConstructor(getContext())) 652 DeferredCopyConstructorToEmit(D); 653 else if (!ClassDecl->hasUserDeclaredConstructor()) 654 DeferredDeclsToEmit.push_back(D); 655 } 656 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 657 if (MD->isCopyAssignment()) 658 DeferredCopyAssignmentToEmit(D); 659 } 660 661 // This function doesn't have a complete type (for example, the return 662 // type is an incomplete struct). Use a fake type instead, and make 663 // sure not to try to set attributes. 664 bool IsIncompleteFunction = false; 665 if (!isa<llvm::FunctionType>(Ty)) { 666 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 667 std::vector<const llvm::Type*>(), false); 668 IsIncompleteFunction = true; 669 } 670 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 671 llvm::Function::ExternalLinkage, 672 "", &getModule()); 673 F->setName(MangledName); 674 if (D.getDecl()) 675 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 676 IsIncompleteFunction); 677 Entry = F; 678 return F; 679 } 680 681 /// Defer definition of copy constructor(s) which need be implicitly defined. 682 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 683 const CXXConstructorDecl *CD = 684 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 685 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 686 if (ClassDecl->hasTrivialCopyConstructor() || 687 ClassDecl->hasUserDeclaredCopyConstructor()) 688 return; 689 690 // First make sure all direct base classes and virtual bases and non-static 691 // data mebers which need to have their copy constructors implicitly defined 692 // are defined. 12.8.p7 693 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 694 Base != ClassDecl->bases_end(); ++Base) { 695 CXXRecordDecl *BaseClassDecl 696 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 697 if (CXXConstructorDecl *BaseCopyCtor = 698 BaseClassDecl->getCopyConstructor(Context, 0)) 699 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 700 } 701 702 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 703 FieldEnd = ClassDecl->field_end(); 704 Field != FieldEnd; ++Field) { 705 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 706 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 707 FieldType = Array->getElementType(); 708 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 709 if ((*Field)->isAnonymousStructOrUnion()) 710 continue; 711 CXXRecordDecl *FieldClassDecl 712 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 713 if (CXXConstructorDecl *FieldCopyCtor = 714 FieldClassDecl->getCopyConstructor(Context, 0)) 715 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 716 } 717 } 718 DeferredDeclsToEmit.push_back(CopyCtorDecl); 719 } 720 721 /// Defer definition of copy assignments which need be implicitly defined. 722 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 723 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 724 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 725 726 if (ClassDecl->hasTrivialCopyAssignment() || 727 ClassDecl->hasUserDeclaredCopyAssignment()) 728 return; 729 730 // First make sure all direct base classes and virtual bases and non-static 731 // data mebers which need to have their copy assignments implicitly defined 732 // are defined. 12.8.p12 733 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 734 Base != ClassDecl->bases_end(); ++Base) { 735 CXXRecordDecl *BaseClassDecl 736 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 737 const CXXMethodDecl *MD = 0; 738 if (BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 739 GetAddrOfFunction(GlobalDecl(MD), 0); 740 } 741 742 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 743 FieldEnd = ClassDecl->field_end(); 744 Field != FieldEnd; ++Field) { 745 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 746 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 747 FieldType = Array->getElementType(); 748 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 749 if ((*Field)->isAnonymousStructOrUnion()) 750 continue; 751 CXXRecordDecl *FieldClassDecl 752 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 753 const CXXMethodDecl *MD = 0; 754 if (FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 755 GetAddrOfFunction(GlobalDecl(MD), 0); 756 } 757 } 758 DeferredDeclsToEmit.push_back(CopyAssignDecl); 759 } 760 761 /// GetAddrOfFunction - Return the address of the given function. If Ty is 762 /// non-null, then this function will use the specified type if it has to 763 /// create it (this occurs when we see a definition of the function). 764 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 765 const llvm::Type *Ty) { 766 // If there was no specific requested type, just convert it now. 767 if (!Ty) 768 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 769 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 770 } 771 772 /// CreateRuntimeFunction - Create a new runtime function with the specified 773 /// type and name. 774 llvm::Constant * 775 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 776 const char *Name) { 777 // Convert Name to be a uniqued string from the IdentifierInfo table. 778 Name = getContext().Idents.get(Name).getName(); 779 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 780 } 781 782 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 783 /// create and return an llvm GlobalVariable with the specified type. If there 784 /// is something in the module with the specified name, return it potentially 785 /// bitcasted to the right type. 786 /// 787 /// If D is non-null, it specifies a decl that correspond to this. This is used 788 /// to set the attributes on the global when it is first created. 789 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 790 const llvm::PointerType*Ty, 791 const VarDecl *D) { 792 // Lookup the entry, lazily creating it if necessary. 793 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 794 if (Entry) { 795 if (Entry->getType() == Ty) 796 return Entry; 797 798 // Make sure the result is of the correct type. 799 return llvm::ConstantExpr::getBitCast(Entry, Ty); 800 } 801 802 // This is the first use or definition of a mangled name. If there is a 803 // deferred decl with this name, remember that we need to emit it at the end 804 // of the file. 805 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 806 DeferredDecls.find(MangledName); 807 if (DDI != DeferredDecls.end()) { 808 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 809 // list, and remove it from DeferredDecls (since we don't need it anymore). 810 DeferredDeclsToEmit.push_back(DDI->second); 811 DeferredDecls.erase(DDI); 812 } 813 814 llvm::GlobalVariable *GV = 815 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 816 llvm::GlobalValue::ExternalLinkage, 817 0, "", 0, 818 false, Ty->getAddressSpace()); 819 GV->setName(MangledName); 820 821 // Handle things which are present even on external declarations. 822 if (D) { 823 // FIXME: This code is overly simple and should be merged with other global 824 // handling. 825 GV->setConstant(D->getType().isConstant(Context)); 826 827 // FIXME: Merge with other attribute handling code. 828 if (D->getStorageClass() == VarDecl::PrivateExtern) 829 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 830 831 if (D->hasAttr<WeakAttr>() || 832 D->hasAttr<WeakImportAttr>()) 833 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 834 835 GV->setThreadLocal(D->isThreadSpecified()); 836 } 837 838 return Entry = GV; 839 } 840 841 842 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 843 /// given global variable. If Ty is non-null and if the global doesn't exist, 844 /// then it will be greated with the specified type instead of whatever the 845 /// normal requested type would be. 846 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 847 const llvm::Type *Ty) { 848 assert(D->hasGlobalStorage() && "Not a global variable"); 849 QualType ASTTy = D->getType(); 850 if (Ty == 0) 851 Ty = getTypes().ConvertTypeForMem(ASTTy); 852 853 const llvm::PointerType *PTy = 854 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 855 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 856 } 857 858 /// CreateRuntimeVariable - Create a new runtime global variable with the 859 /// specified type and name. 860 llvm::Constant * 861 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 862 const char *Name) { 863 // Convert Name to be a uniqued string from the IdentifierInfo table. 864 Name = getContext().Idents.get(Name).getName(); 865 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 866 } 867 868 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 869 assert(!D->getInit() && "Cannot emit definite definitions here!"); 870 871 if (MayDeferGeneration(D)) { 872 // If we have not seen a reference to this variable yet, place it 873 // into the deferred declarations table to be emitted if needed 874 // later. 875 const char *MangledName = getMangledName(D); 876 if (GlobalDeclMap.count(MangledName) == 0) { 877 DeferredDecls[MangledName] = GlobalDecl(D); 878 return; 879 } 880 } 881 882 // The tentative definition is the only definition. 883 EmitGlobalVarDefinition(D); 884 } 885 886 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 887 llvm::Constant *Init = 0; 888 QualType ASTTy = D->getType(); 889 890 if (D->getInit() == 0) { 891 // This is a tentative definition; tentative definitions are 892 // implicitly initialized with { 0 }. 893 // 894 // Note that tentative definitions are only emitted at the end of 895 // a translation unit, so they should never have incomplete 896 // type. In addition, EmitTentativeDefinition makes sure that we 897 // never attempt to emit a tentative definition if a real one 898 // exists. A use may still exists, however, so we still may need 899 // to do a RAUW. 900 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 901 Init = EmitNullConstant(D->getType()); 902 } else { 903 Init = EmitConstantExpr(D->getInit(), D->getType()); 904 905 if (!Init) { 906 QualType T = D->getInit()->getType(); 907 if (getLangOptions().CPlusPlus) { 908 CXXGlobalInits.push_back(D); 909 Init = EmitNullConstant(T); 910 } else { 911 ErrorUnsupported(D, "static initializer"); 912 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 913 } 914 } 915 } 916 917 const llvm::Type* InitType = Init->getType(); 918 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 919 920 // Strip off a bitcast if we got one back. 921 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 922 assert(CE->getOpcode() == llvm::Instruction::BitCast || 923 // all zero index gep. 924 CE->getOpcode() == llvm::Instruction::GetElementPtr); 925 Entry = CE->getOperand(0); 926 } 927 928 // Entry is now either a Function or GlobalVariable. 929 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 930 931 // We have a definition after a declaration with the wrong type. 932 // We must make a new GlobalVariable* and update everything that used OldGV 933 // (a declaration or tentative definition) with the new GlobalVariable* 934 // (which will be a definition). 935 // 936 // This happens if there is a prototype for a global (e.g. 937 // "extern int x[];") and then a definition of a different type (e.g. 938 // "int x[10];"). This also happens when an initializer has a different type 939 // from the type of the global (this happens with unions). 940 if (GV == 0 || 941 GV->getType()->getElementType() != InitType || 942 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 943 944 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 945 GlobalDeclMap.erase(getMangledName(D)); 946 947 // Make a new global with the correct type, this is now guaranteed to work. 948 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 949 GV->takeName(cast<llvm::GlobalValue>(Entry)); 950 951 // Replace all uses of the old global with the new global 952 llvm::Constant *NewPtrForOldDecl = 953 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 954 Entry->replaceAllUsesWith(NewPtrForOldDecl); 955 956 // Erase the old global, since it is no longer used. 957 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 958 } 959 960 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 961 SourceManager &SM = Context.getSourceManager(); 962 AddAnnotation(EmitAnnotateAttr(GV, AA, 963 SM.getInstantiationLineNumber(D->getLocation()))); 964 } 965 966 GV->setInitializer(Init); 967 968 // If it is safe to mark the global 'constant', do so now. 969 GV->setConstant(false); 970 if (D->getType().isConstant(Context)) { 971 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 972 // members, it cannot be declared "LLVM const". 973 GV->setConstant(true); 974 } 975 976 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 977 978 // Set the llvm linkage type as appropriate. 979 if (D->getStorageClass() == VarDecl::Static) 980 GV->setLinkage(llvm::Function::InternalLinkage); 981 else if (D->hasAttr<DLLImportAttr>()) 982 GV->setLinkage(llvm::Function::DLLImportLinkage); 983 else if (D->hasAttr<DLLExportAttr>()) 984 GV->setLinkage(llvm::Function::DLLExportLinkage); 985 else if (D->hasAttr<WeakAttr>()) { 986 if (GV->isConstant()) 987 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 988 else 989 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 990 } else if (!CompileOpts.NoCommon && 991 !D->hasExternalStorage() && !D->getInit() && 992 !D->getAttr<SectionAttr>()) { 993 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 994 // common vars aren't constant even if declared const. 995 GV->setConstant(false); 996 } else 997 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 998 999 SetCommonAttributes(D, GV); 1000 1001 // Emit global variable debug information. 1002 if (CGDebugInfo *DI = getDebugInfo()) { 1003 DI->setLocation(D->getLocation()); 1004 DI->EmitGlobalVariable(GV, D); 1005 } 1006 } 1007 1008 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1009 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1010 /// existing call uses of the old function in the module, this adjusts them to 1011 /// call the new function directly. 1012 /// 1013 /// This is not just a cleanup: the always_inline pass requires direct calls to 1014 /// functions to be able to inline them. If there is a bitcast in the way, it 1015 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1016 /// run at -O0. 1017 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1018 llvm::Function *NewFn) { 1019 // If we're redefining a global as a function, don't transform it. 1020 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1021 if (OldFn == 0) return; 1022 1023 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1024 llvm::SmallVector<llvm::Value*, 4> ArgList; 1025 1026 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1027 UI != E; ) { 1028 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1029 unsigned OpNo = UI.getOperandNo(); 1030 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1031 if (!CI || OpNo != 0) continue; 1032 1033 // If the return types don't match exactly, and if the call isn't dead, then 1034 // we can't transform this call. 1035 if (CI->getType() != NewRetTy && !CI->use_empty()) 1036 continue; 1037 1038 // If the function was passed too few arguments, don't transform. If extra 1039 // arguments were passed, we silently drop them. If any of the types 1040 // mismatch, we don't transform. 1041 unsigned ArgNo = 0; 1042 bool DontTransform = false; 1043 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1044 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1045 if (CI->getNumOperands()-1 == ArgNo || 1046 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1047 DontTransform = true; 1048 break; 1049 } 1050 } 1051 if (DontTransform) 1052 continue; 1053 1054 // Okay, we can transform this. Create the new call instruction and copy 1055 // over the required information. 1056 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1057 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1058 ArgList.end(), "", CI); 1059 ArgList.clear(); 1060 if (NewCall->getType() != llvm::Type::VoidTy) 1061 NewCall->takeName(CI); 1062 NewCall->setCallingConv(CI->getCallingConv()); 1063 NewCall->setAttributes(CI->getAttributes()); 1064 1065 // Finally, remove the old call, replacing any uses with the new one. 1066 if (!CI->use_empty()) 1067 CI->replaceAllUsesWith(NewCall); 1068 CI->eraseFromParent(); 1069 } 1070 } 1071 1072 1073 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1074 const llvm::FunctionType *Ty; 1075 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1076 1077 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1078 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1079 1080 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1081 } else { 1082 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1083 1084 // As a special case, make sure that definitions of K&R function 1085 // "type foo()" aren't declared as varargs (which forces the backend 1086 // to do unnecessary work). 1087 if (D->getType()->isFunctionNoProtoType()) { 1088 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1089 // Due to stret, the lowered function could have arguments. 1090 // Just create the same type as was lowered by ConvertType 1091 // but strip off the varargs bit. 1092 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1093 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1094 } 1095 } 1096 1097 // Get or create the prototype for the function. 1098 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1099 1100 // Strip off a bitcast if we got one back. 1101 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1102 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1103 Entry = CE->getOperand(0); 1104 } 1105 1106 1107 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1108 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1109 1110 // If the types mismatch then we have to rewrite the definition. 1111 assert(OldFn->isDeclaration() && 1112 "Shouldn't replace non-declaration"); 1113 1114 // F is the Function* for the one with the wrong type, we must make a new 1115 // Function* and update everything that used F (a declaration) with the new 1116 // Function* (which will be a definition). 1117 // 1118 // This happens if there is a prototype for a function 1119 // (e.g. "int f()") and then a definition of a different type 1120 // (e.g. "int f(int x)"). Start by making a new function of the 1121 // correct type, RAUW, then steal the name. 1122 GlobalDeclMap.erase(getMangledName(D)); 1123 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1124 NewFn->takeName(OldFn); 1125 1126 // If this is an implementation of a function without a prototype, try to 1127 // replace any existing uses of the function (which may be calls) with uses 1128 // of the new function 1129 if (D->getType()->isFunctionNoProtoType()) { 1130 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1131 OldFn->removeDeadConstantUsers(); 1132 } 1133 1134 // Replace uses of F with the Function we will endow with a body. 1135 if (!Entry->use_empty()) { 1136 llvm::Constant *NewPtrForOldDecl = 1137 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1138 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1139 } 1140 1141 // Ok, delete the old function now, which is dead. 1142 OldFn->eraseFromParent(); 1143 1144 Entry = NewFn; 1145 } 1146 1147 llvm::Function *Fn = cast<llvm::Function>(Entry); 1148 1149 CodeGenFunction(*this).GenerateCode(D, Fn); 1150 1151 SetFunctionDefinitionAttributes(D, Fn); 1152 SetLLVMFunctionAttributesForDefinition(D, Fn); 1153 1154 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1155 AddGlobalCtor(Fn, CA->getPriority()); 1156 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1157 AddGlobalDtor(Fn, DA->getPriority()); 1158 } 1159 1160 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1161 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1162 assert(AA && "Not an alias?"); 1163 1164 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1165 1166 // Unique the name through the identifier table. 1167 const char *AliaseeName = AA->getAliasee().c_str(); 1168 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1169 1170 // Create a reference to the named value. This ensures that it is emitted 1171 // if a deferred decl. 1172 llvm::Constant *Aliasee; 1173 if (isa<llvm::FunctionType>(DeclTy)) 1174 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1175 else 1176 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1177 llvm::PointerType::getUnqual(DeclTy), 0); 1178 1179 // Create the new alias itself, but don't set a name yet. 1180 llvm::GlobalValue *GA = 1181 new llvm::GlobalAlias(Aliasee->getType(), 1182 llvm::Function::ExternalLinkage, 1183 "", Aliasee, &getModule()); 1184 1185 // See if there is already something with the alias' name in the module. 1186 const char *MangledName = getMangledName(D); 1187 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1188 1189 if (Entry && !Entry->isDeclaration()) { 1190 // If there is a definition in the module, then it wins over the alias. 1191 // This is dubious, but allow it to be safe. Just ignore the alias. 1192 GA->eraseFromParent(); 1193 return; 1194 } 1195 1196 if (Entry) { 1197 // If there is a declaration in the module, then we had an extern followed 1198 // by the alias, as in: 1199 // extern int test6(); 1200 // ... 1201 // int test6() __attribute__((alias("test7"))); 1202 // 1203 // Remove it and replace uses of it with the alias. 1204 1205 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1206 Entry->getType())); 1207 Entry->eraseFromParent(); 1208 } 1209 1210 // Now we know that there is no conflict, set the name. 1211 Entry = GA; 1212 GA->setName(MangledName); 1213 1214 // Set attributes which are particular to an alias; this is a 1215 // specialization of the attributes which may be set on a global 1216 // variable/function. 1217 if (D->hasAttr<DLLExportAttr>()) { 1218 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1219 // The dllexport attribute is ignored for undefined symbols. 1220 if (FD->getBody()) 1221 GA->setLinkage(llvm::Function::DLLExportLinkage); 1222 } else { 1223 GA->setLinkage(llvm::Function::DLLExportLinkage); 1224 } 1225 } else if (D->hasAttr<WeakAttr>() || 1226 D->hasAttr<WeakImportAttr>()) { 1227 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1228 } 1229 1230 SetCommonAttributes(D, GA); 1231 } 1232 1233 /// getBuiltinLibFunction - Given a builtin id for a function like 1234 /// "__builtin_fabsf", return a Function* for "fabsf". 1235 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1236 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1237 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1238 "isn't a lib fn"); 1239 1240 // Get the name, skip over the __builtin_ prefix (if necessary). 1241 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1242 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1243 Name += 10; 1244 1245 // Get the type for the builtin. 1246 ASTContext::GetBuiltinTypeError Error; 1247 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1248 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1249 1250 const llvm::FunctionType *Ty = 1251 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1252 1253 // Unique the name through the identifier table. 1254 Name = getContext().Idents.get(Name).getName(); 1255 // FIXME: param attributes for sext/zext etc. 1256 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1257 } 1258 1259 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1260 unsigned NumTys) { 1261 return llvm::Intrinsic::getDeclaration(&getModule(), 1262 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1263 } 1264 1265 llvm::Function *CodeGenModule::getMemCpyFn() { 1266 if (MemCpyFn) return MemCpyFn; 1267 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1268 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1269 } 1270 1271 llvm::Function *CodeGenModule::getMemMoveFn() { 1272 if (MemMoveFn) return MemMoveFn; 1273 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1274 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1275 } 1276 1277 llvm::Function *CodeGenModule::getMemSetFn() { 1278 if (MemSetFn) return MemSetFn; 1279 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1280 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1281 } 1282 1283 static void appendFieldAndPadding(CodeGenModule &CGM, 1284 std::vector<llvm::Constant*>& Fields, 1285 FieldDecl *FieldD, FieldDecl *NextFieldD, 1286 llvm::Constant* Field, 1287 RecordDecl* RD, const llvm::StructType *STy) { 1288 // Append the field. 1289 Fields.push_back(Field); 1290 1291 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1292 1293 int NextStructFieldNo; 1294 if (!NextFieldD) { 1295 NextStructFieldNo = STy->getNumElements(); 1296 } else { 1297 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1298 } 1299 1300 // Append padding 1301 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1302 llvm::Constant *C = 1303 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1304 1305 Fields.push_back(C); 1306 } 1307 } 1308 1309 static llvm::StringMapEntry<llvm::Constant*> & 1310 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1311 const StringLiteral *Literal, 1312 bool TargetIsLSB, 1313 bool &IsUTF16, 1314 unsigned &StringLength) { 1315 unsigned NumBytes = Literal->getByteLength(); 1316 1317 // Check for simple case. 1318 if (!Literal->containsNonAsciiOrNull()) { 1319 StringLength = NumBytes; 1320 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1321 StringLength)); 1322 } 1323 1324 // Otherwise, convert the UTF8 literals into a byte string. 1325 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1326 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1327 UTF16 *ToPtr = &ToBuf[0]; 1328 1329 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1330 &ToPtr, ToPtr + NumBytes, 1331 strictConversion); 1332 1333 // Check for conversion failure. 1334 if (Result != conversionOK) { 1335 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1336 // this duplicate code. 1337 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1338 StringLength = NumBytes; 1339 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1340 StringLength)); 1341 } 1342 1343 // ConvertUTF8toUTF16 returns the length in ToPtr. 1344 StringLength = ToPtr - &ToBuf[0]; 1345 1346 // Render the UTF-16 string into a byte array and convert to the target byte 1347 // order. 1348 // 1349 // FIXME: This isn't something we should need to do here. 1350 llvm::SmallString<128> AsBytes; 1351 AsBytes.reserve(StringLength * 2); 1352 for (unsigned i = 0; i != StringLength; ++i) { 1353 unsigned short Val = ToBuf[i]; 1354 if (TargetIsLSB) { 1355 AsBytes.push_back(Val & 0xFF); 1356 AsBytes.push_back(Val >> 8); 1357 } else { 1358 AsBytes.push_back(Val >> 8); 1359 AsBytes.push_back(Val & 0xFF); 1360 } 1361 } 1362 // Append one extra null character, the second is automatically added by our 1363 // caller. 1364 AsBytes.push_back(0); 1365 1366 IsUTF16 = true; 1367 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1368 } 1369 1370 llvm::Constant * 1371 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1372 unsigned StringLength = 0; 1373 bool isUTF16 = false; 1374 llvm::StringMapEntry<llvm::Constant*> &Entry = 1375 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1376 getTargetData().isLittleEndian(), 1377 isUTF16, StringLength); 1378 1379 if (llvm::Constant *C = Entry.getValue()) 1380 return C; 1381 1382 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1383 llvm::Constant *Zeros[] = { Zero, Zero }; 1384 1385 // If we don't already have it, get __CFConstantStringClassReference. 1386 if (!CFConstantStringClassRef) { 1387 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1388 Ty = llvm::ArrayType::get(Ty, 0); 1389 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1390 "__CFConstantStringClassReference"); 1391 // Decay array -> ptr 1392 CFConstantStringClassRef = 1393 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1394 } 1395 1396 QualType CFTy = getContext().getCFConstantStringType(); 1397 RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl(); 1398 1399 const llvm::StructType *STy = 1400 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1401 1402 std::vector<llvm::Constant*> Fields; 1403 RecordDecl::field_iterator Field = CFRD->field_begin(); 1404 1405 // Class pointer. 1406 FieldDecl *CurField = *Field++; 1407 FieldDecl *NextField = *Field++; 1408 appendFieldAndPadding(*this, Fields, CurField, NextField, 1409 CFConstantStringClassRef, CFRD, STy); 1410 1411 // Flags. 1412 CurField = NextField; 1413 NextField = *Field++; 1414 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1415 appendFieldAndPadding(*this, Fields, CurField, NextField, 1416 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1417 : llvm::ConstantInt::get(Ty, 0x07C8), 1418 CFRD, STy); 1419 1420 // String pointer. 1421 CurField = NextField; 1422 NextField = *Field++; 1423 llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str()); 1424 1425 const char *Sect, *Prefix; 1426 bool isConstant; 1427 llvm::GlobalValue::LinkageTypes Linkage; 1428 if (isUTF16) { 1429 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1430 Sect = getContext().Target.getUnicodeStringSection(); 1431 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1432 Linkage = llvm::GlobalValue::InternalLinkage; 1433 // FIXME: Why does GCC not set constant here? 1434 isConstant = false; 1435 } else { 1436 Prefix = ".str"; 1437 Sect = getContext().Target.getCFStringDataSection(); 1438 Linkage = llvm::GlobalValue::PrivateLinkage; 1439 // FIXME: -fwritable-strings should probably affect this, but we 1440 // are following gcc here. 1441 isConstant = true; 1442 } 1443 llvm::GlobalVariable *GV = 1444 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1445 Linkage, C, Prefix); 1446 if (Sect) 1447 GV->setSection(Sect); 1448 if (isUTF16) { 1449 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1450 GV->setAlignment(Align); 1451 } 1452 appendFieldAndPadding(*this, Fields, CurField, NextField, 1453 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1454 CFRD, STy); 1455 1456 // String length. 1457 CurField = NextField; 1458 NextField = 0; 1459 Ty = getTypes().ConvertType(getContext().LongTy); 1460 appendFieldAndPadding(*this, Fields, CurField, NextField, 1461 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1462 1463 // The struct. 1464 C = llvm::ConstantStruct::get(STy, Fields); 1465 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1466 llvm::GlobalVariable::PrivateLinkage, C, 1467 "_unnamed_cfstring_"); 1468 if (const char *Sect = getContext().Target.getCFStringSection()) 1469 GV->setSection(Sect); 1470 Entry.setValue(GV); 1471 1472 return GV; 1473 } 1474 1475 /// GetStringForStringLiteral - Return the appropriate bytes for a 1476 /// string literal, properly padded to match the literal type. 1477 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1478 const char *StrData = E->getStrData(); 1479 unsigned Len = E->getByteLength(); 1480 1481 const ConstantArrayType *CAT = 1482 getContext().getAsConstantArrayType(E->getType()); 1483 assert(CAT && "String isn't pointer or array!"); 1484 1485 // Resize the string to the right size. 1486 std::string Str(StrData, StrData+Len); 1487 uint64_t RealLen = CAT->getSize().getZExtValue(); 1488 1489 if (E->isWide()) 1490 RealLen *= getContext().Target.getWCharWidth()/8; 1491 1492 Str.resize(RealLen, '\0'); 1493 1494 return Str; 1495 } 1496 1497 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1498 /// constant array for the given string literal. 1499 llvm::Constant * 1500 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1501 // FIXME: This can be more efficient. 1502 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1503 } 1504 1505 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1506 /// array for the given ObjCEncodeExpr node. 1507 llvm::Constant * 1508 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1509 std::string Str; 1510 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1511 1512 return GetAddrOfConstantCString(Str); 1513 } 1514 1515 1516 /// GenerateWritableString -- Creates storage for a string literal. 1517 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1518 bool constant, 1519 CodeGenModule &CGM, 1520 const char *GlobalName) { 1521 // Create Constant for this string literal. Don't add a '\0'. 1522 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1523 1524 // Create a global variable for this string 1525 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1526 llvm::GlobalValue::PrivateLinkage, 1527 C, GlobalName); 1528 } 1529 1530 /// GetAddrOfConstantString - Returns a pointer to a character array 1531 /// containing the literal. This contents are exactly that of the 1532 /// given string, i.e. it will not be null terminated automatically; 1533 /// see GetAddrOfConstantCString. Note that whether the result is 1534 /// actually a pointer to an LLVM constant depends on 1535 /// Feature.WriteableStrings. 1536 /// 1537 /// The result has pointer to array type. 1538 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1539 const char *GlobalName) { 1540 bool IsConstant = !Features.WritableStrings; 1541 1542 // Get the default prefix if a name wasn't specified. 1543 if (!GlobalName) 1544 GlobalName = ".str"; 1545 1546 // Don't share any string literals if strings aren't constant. 1547 if (!IsConstant) 1548 return GenerateStringLiteral(str, false, *this, GlobalName); 1549 1550 llvm::StringMapEntry<llvm::Constant *> &Entry = 1551 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1552 1553 if (Entry.getValue()) 1554 return Entry.getValue(); 1555 1556 // Create a global variable for this. 1557 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1558 Entry.setValue(C); 1559 return C; 1560 } 1561 1562 /// GetAddrOfConstantCString - Returns a pointer to a character 1563 /// array containing the literal and a terminating '\-' 1564 /// character. The result has pointer to array type. 1565 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1566 const char *GlobalName){ 1567 return GetAddrOfConstantString(str + '\0', GlobalName); 1568 } 1569 1570 /// EmitObjCPropertyImplementations - Emit information for synthesized 1571 /// properties for an implementation. 1572 void CodeGenModule::EmitObjCPropertyImplementations(const 1573 ObjCImplementationDecl *D) { 1574 for (ObjCImplementationDecl::propimpl_iterator 1575 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1576 ObjCPropertyImplDecl *PID = *i; 1577 1578 // Dynamic is just for type-checking. 1579 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1580 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1581 1582 // Determine which methods need to be implemented, some may have 1583 // been overridden. Note that ::isSynthesized is not the method 1584 // we want, that just indicates if the decl came from a 1585 // property. What we want to know is if the method is defined in 1586 // this implementation. 1587 if (!D->getInstanceMethod(PD->getGetterName())) 1588 CodeGenFunction(*this).GenerateObjCGetter( 1589 const_cast<ObjCImplementationDecl *>(D), PID); 1590 if (!PD->isReadOnly() && 1591 !D->getInstanceMethod(PD->getSetterName())) 1592 CodeGenFunction(*this).GenerateObjCSetter( 1593 const_cast<ObjCImplementationDecl *>(D), PID); 1594 } 1595 } 1596 } 1597 1598 /// EmitNamespace - Emit all declarations in a namespace. 1599 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1600 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1601 I != E; ++I) 1602 EmitTopLevelDecl(*I); 1603 } 1604 1605 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1606 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1607 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1608 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1609 ErrorUnsupported(LSD, "linkage spec"); 1610 return; 1611 } 1612 1613 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1614 I != E; ++I) 1615 EmitTopLevelDecl(*I); 1616 } 1617 1618 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1619 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1620 // If an error has occurred, stop code generation, but continue 1621 // parsing and semantic analysis (to ensure all warnings and errors 1622 // are emitted). 1623 if (Diags.hasErrorOccurred()) 1624 return; 1625 1626 // Ignore dependent declarations. 1627 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1628 return; 1629 1630 switch (D->getKind()) { 1631 case Decl::CXXMethod: 1632 case Decl::Function: 1633 // Skip function templates 1634 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1635 return; 1636 1637 // Fall through 1638 1639 case Decl::Var: 1640 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1641 break; 1642 1643 // C++ Decls 1644 case Decl::Namespace: 1645 EmitNamespace(cast<NamespaceDecl>(D)); 1646 break; 1647 // No code generation needed. 1648 case Decl::Using: 1649 case Decl::ClassTemplate: 1650 case Decl::FunctionTemplate: 1651 break; 1652 case Decl::CXXConstructor: 1653 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1654 break; 1655 case Decl::CXXDestructor: 1656 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1657 break; 1658 1659 case Decl::StaticAssert: 1660 // Nothing to do. 1661 break; 1662 1663 // Objective-C Decls 1664 1665 // Forward declarations, no (immediate) code generation. 1666 case Decl::ObjCClass: 1667 case Decl::ObjCForwardProtocol: 1668 case Decl::ObjCCategory: 1669 case Decl::ObjCInterface: 1670 break; 1671 1672 case Decl::ObjCProtocol: 1673 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1674 break; 1675 1676 case Decl::ObjCCategoryImpl: 1677 // Categories have properties but don't support synthesize so we 1678 // can ignore them here. 1679 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1680 break; 1681 1682 case Decl::ObjCImplementation: { 1683 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1684 EmitObjCPropertyImplementations(OMD); 1685 Runtime->GenerateClass(OMD); 1686 break; 1687 } 1688 case Decl::ObjCMethod: { 1689 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1690 // If this is not a prototype, emit the body. 1691 if (OMD->getBody()) 1692 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1693 break; 1694 } 1695 case Decl::ObjCCompatibleAlias: 1696 // compatibility-alias is a directive and has no code gen. 1697 break; 1698 1699 case Decl::LinkageSpec: 1700 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1701 break; 1702 1703 case Decl::FileScopeAsm: { 1704 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1705 std::string AsmString(AD->getAsmString()->getStrData(), 1706 AD->getAsmString()->getByteLength()); 1707 1708 const std::string &S = getModule().getModuleInlineAsm(); 1709 if (S.empty()) 1710 getModule().setModuleInlineAsm(AsmString); 1711 else 1712 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1713 break; 1714 } 1715 1716 default: 1717 // Make sure we handled everything we should, every other kind is a 1718 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1719 // function. Need to recode Decl::Kind to do that easily. 1720 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1721 } 1722 } 1723