1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return UniqueMangledName(Name.begin(), Name.end()); 160 } 161 162 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 163 const char *NameEnd) { 164 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 165 166 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 167 } 168 169 /// AddGlobalCtor - Add a function to the list that will be called before 170 /// main() runs. 171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 174 } 175 176 /// AddGlobalDtor - Add a function to the list that will be called 177 /// when the module is unloaded. 178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 179 // FIXME: Type coercion of void()* types. 180 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 181 } 182 183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 184 // Ctor function type is void()*. 185 llvm::FunctionType* CtorFTy = 186 llvm::FunctionType::get(llvm::Type::VoidTy, 187 std::vector<const llvm::Type*>(), 188 false); 189 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 190 191 // Get the type of a ctor entry, { i32, void ()* }. 192 llvm::StructType* CtorStructTy = 193 llvm::StructType::get(llvm::Type::Int32Ty, 194 llvm::PointerType::getUnqual(CtorFTy), NULL); 195 196 // Construct the constructor and destructor arrays. 197 std::vector<llvm::Constant*> Ctors; 198 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 199 std::vector<llvm::Constant*> S; 200 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 201 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 202 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 203 } 204 205 if (!Ctors.empty()) { 206 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 207 new llvm::GlobalVariable(AT, false, 208 llvm::GlobalValue::AppendingLinkage, 209 llvm::ConstantArray::get(AT, Ctors), 210 GlobalName, 211 &TheModule); 212 } 213 } 214 215 void CodeGenModule::EmitAnnotations() { 216 if (Annotations.empty()) 217 return; 218 219 // Create a new global variable for the ConstantStruct in the Module. 220 llvm::Constant *Array = 221 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 222 Annotations.size()), 223 Annotations); 224 llvm::GlobalValue *gv = 225 new llvm::GlobalVariable(Array->getType(), false, 226 llvm::GlobalValue::AppendingLinkage, Array, 227 "llvm.global.annotations", &TheModule); 228 gv->setSection("llvm.metadata"); 229 } 230 231 static CodeGenModule::GVALinkage 232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 233 // "static" and attr(always_inline) functions get internal linkage. 234 if (FD->getStorageClass() == FunctionDecl::Static || 235 FD->hasAttr<AlwaysInlineAttr>()) 236 return CodeGenModule::GVA_Internal; 237 238 if (!FD->isInline()) 239 return CodeGenModule::GVA_StrongExternal; 240 241 // If the inline function explicitly has the GNU inline attribute on it, then 242 // force to GNUC semantics (which is strong external), regardless of language. 243 if (FD->hasAttr<GNUCInlineAttr>()) 244 return CodeGenModule::GVA_StrongExternal; 245 246 // The definition of inline changes based on the language. Note that we 247 // have already handled "static inline" above, with the GVA_Internal case. 248 if (Features.CPlusPlus) // inline and extern inline. 249 return CodeGenModule::GVA_CXXInline; 250 251 if (FD->getStorageClass() == FunctionDecl::Extern) { 252 // extern inline in C99 is a strong definition. In C89, it is extern inline. 253 if (Features.C99) 254 return CodeGenModule::GVA_StrongExternal; 255 256 // In C89 mode, an 'extern inline' works like a C99 inline function. 257 return CodeGenModule::GVA_C99Inline; 258 } 259 260 if (Features.C99) 261 return CodeGenModule::GVA_C99Inline; 262 263 // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode. 264 return CodeGenModule::GVA_StrongExternal; 265 } 266 267 /// SetFunctionDefinitionAttributes - Set attributes for a global. 268 /// 269 /// FIXME: This is currently only done for aliases and functions, but 270 /// not for variables (these details are set in 271 /// EmitGlobalVarDefinition for variables). 272 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 273 llvm::GlobalValue *GV) { 274 GVALinkage Linkage = GetLinkageForFunction(D, Features); 275 276 if (Linkage == GVA_Internal) { 277 GV->setLinkage(llvm::Function::InternalLinkage); 278 } else if (D->hasAttr<DLLExportAttr>()) { 279 GV->setLinkage(llvm::Function::DLLExportLinkage); 280 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 281 GV->setLinkage(llvm::Function::WeakAnyLinkage); 282 } else if (Linkage == GVA_C99Inline) { 283 // In C99 mode, 'inline' functions are guaranteed to have a strong 284 // definition somewhere else, so we can use available_externally linkage. 285 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 286 } else if (Linkage == GVA_CXXInline) { 287 // In C++, the compiler has to emit a definition in every translation unit 288 // that references the function. We should use linkonce_odr because 289 // a) if all references in this translation unit are optimized away, we 290 // don't need to codegen it. b) if the function persists, it needs to be 291 // merged with other definitions. c) C++ has the ODR, so we know the 292 // definition is dependable. 293 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 294 } else { 295 assert(Linkage == GVA_StrongExternal); 296 // Otherwise, we have strong external linkage. 297 GV->setLinkage(llvm::Function::ExternalLinkage); 298 } 299 300 SetCommonAttributes(D, GV); 301 } 302 303 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 304 const CGFunctionInfo &Info, 305 llvm::Function *F) { 306 AttributeListType AttributeList; 307 ConstructAttributeList(Info, D, AttributeList); 308 309 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 310 AttributeList.size())); 311 312 // Set the appropriate calling convention for the Function. 313 if (D->hasAttr<FastCallAttr>()) 314 F->setCallingConv(llvm::CallingConv::X86_FastCall); 315 316 if (D->hasAttr<StdCallAttr>()) 317 F->setCallingConv(llvm::CallingConv::X86_StdCall); 318 } 319 320 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 321 llvm::Function *F) { 322 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 323 F->addFnAttr(llvm::Attribute::NoUnwind); 324 325 if (D->hasAttr<AlwaysInlineAttr>()) 326 F->addFnAttr(llvm::Attribute::AlwaysInline); 327 328 if (D->hasAttr<NoinlineAttr>()) 329 F->addFnAttr(llvm::Attribute::NoInline); 330 } 331 332 void CodeGenModule::SetCommonAttributes(const Decl *D, 333 llvm::GlobalValue *GV) { 334 setGlobalVisibility(GV, D); 335 336 if (D->hasAttr<UsedAttr>()) 337 AddUsedGlobal(GV); 338 339 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 340 GV->setSection(SA->getName()); 341 } 342 343 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 344 llvm::Function *F) { 345 SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 346 SetLLVMFunctionAttributesForDefinition(MD, F); 347 348 F->setLinkage(llvm::Function::InternalLinkage); 349 350 SetCommonAttributes(MD, F); 351 } 352 353 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 354 llvm::Function *F) { 355 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 356 357 // Only a few attributes are set on declarations; these may later be 358 // overridden by a definition. 359 360 if (FD->hasAttr<DLLImportAttr>()) { 361 F->setLinkage(llvm::Function::DLLImportLinkage); 362 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 363 // "extern_weak" is overloaded in LLVM; we probably should have 364 // separate linkage types for this. 365 F->setLinkage(llvm::Function::ExternalWeakLinkage); 366 } else { 367 F->setLinkage(llvm::Function::ExternalLinkage); 368 } 369 370 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 371 F->setSection(SA->getName()); 372 } 373 374 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 375 assert(!GV->isDeclaration() && 376 "Only globals with definition can force usage."); 377 LLVMUsed.push_back(GV); 378 } 379 380 void CodeGenModule::EmitLLVMUsed() { 381 // Don't create llvm.used if there is no need. 382 if (LLVMUsed.empty()) 383 return; 384 385 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 386 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 387 388 // Convert LLVMUsed to what ConstantArray needs. 389 std::vector<llvm::Constant*> UsedArray; 390 UsedArray.resize(LLVMUsed.size()); 391 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 392 UsedArray[i] = 393 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 394 } 395 396 llvm::GlobalVariable *GV = 397 new llvm::GlobalVariable(ATy, false, 398 llvm::GlobalValue::AppendingLinkage, 399 llvm::ConstantArray::get(ATy, UsedArray), 400 "llvm.used", &getModule()); 401 402 GV->setSection("llvm.metadata"); 403 } 404 405 void CodeGenModule::EmitDeferred() { 406 // Emit code for any potentially referenced deferred decls. Since a 407 // previously unused static decl may become used during the generation of code 408 // for a static function, iterate until no changes are made. 409 while (!DeferredDeclsToEmit.empty()) { 410 const ValueDecl *D = DeferredDeclsToEmit.back(); 411 DeferredDeclsToEmit.pop_back(); 412 413 // The mangled name for the decl must have been emitted in GlobalDeclMap. 414 // Look it up to see if it was defined with a stronger definition (e.g. an 415 // extern inline function with a strong function redefinition). If so, 416 // just ignore the deferred decl. 417 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 418 assert(CGRef && "Deferred decl wasn't referenced?"); 419 420 if (!CGRef->isDeclaration()) 421 continue; 422 423 // Otherwise, emit the definition and move on to the next one. 424 EmitGlobalDefinition(D); 425 } 426 427 // Emit any tentative definitions, in reverse order so the most 428 // important (merged) decl will be seen and emitted first. 429 for (std::vector<const VarDecl*>::reverse_iterator 430 it = TentativeDefinitions.rbegin(), ie = TentativeDefinitions.rend(); 431 it != ie; ++it) 432 EmitTentativeDefinition(*it); 433 } 434 435 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 436 /// annotation information for a given GlobalValue. The annotation struct is 437 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 438 /// GlobalValue being annotated. The second field is the constant string 439 /// created from the AnnotateAttr's annotation. The third field is a constant 440 /// string containing the name of the translation unit. The fourth field is 441 /// the line number in the file of the annotated value declaration. 442 /// 443 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 444 /// appears to. 445 /// 446 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 447 const AnnotateAttr *AA, 448 unsigned LineNo) { 449 llvm::Module *M = &getModule(); 450 451 // get [N x i8] constants for the annotation string, and the filename string 452 // which are the 2nd and 3rd elements of the global annotation structure. 453 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 454 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 455 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 456 true); 457 458 // Get the two global values corresponding to the ConstantArrays we just 459 // created to hold the bytes of the strings. 460 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 461 llvm::GlobalValue *annoGV = 462 new llvm::GlobalVariable(anno->getType(), false, 463 llvm::GlobalValue::InternalLinkage, anno, 464 GV->getName() + StringPrefix, M); 465 // translation unit name string, emitted into the llvm.metadata section. 466 llvm::GlobalValue *unitGV = 467 new llvm::GlobalVariable(unit->getType(), false, 468 llvm::GlobalValue::InternalLinkage, unit, 469 StringPrefix, M); 470 471 // Create the ConstantStruct for the global annotation. 472 llvm::Constant *Fields[4] = { 473 llvm::ConstantExpr::getBitCast(GV, SBP), 474 llvm::ConstantExpr::getBitCast(annoGV, SBP), 475 llvm::ConstantExpr::getBitCast(unitGV, SBP), 476 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 477 }; 478 return llvm::ConstantStruct::get(Fields, 4, false); 479 } 480 481 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 482 // Never defer when EmitAllDecls is specified or the decl has 483 // attribute used. 484 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 485 return false; 486 487 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 488 // Constructors and destructors should never be deferred. 489 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 490 return false; 491 492 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 493 494 // static, static inline, always_inline, and extern inline functions can 495 // always be deferred. Normal inline functions can be deferred in C99/C++. 496 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 497 Linkage == GVA_CXXInline) 498 return true; 499 return false; 500 } 501 502 const VarDecl *VD = cast<VarDecl>(Global); 503 assert(VD->isFileVarDecl() && "Invalid decl"); 504 return VD->getStorageClass() == VarDecl::Static; 505 } 506 507 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 508 // If this is an alias definition (which otherwise looks like a declaration) 509 // emit it now. 510 if (Global->hasAttr<AliasAttr>()) 511 return EmitAliasDefinition(Global); 512 513 // Ignore declarations, they will be emitted on their first use. 514 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 515 // Forward declarations are emitted lazily on first use. 516 if (!FD->isThisDeclarationADefinition()) 517 return; 518 } else { 519 const VarDecl *VD = cast<VarDecl>(Global); 520 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 521 522 // If this isn't a definition, defer code generation. 523 if (!VD->getInit()) { 524 // If this is a tentative definition, remember it so that we can 525 // emit the common definition if needed. It is important to 526 // defer tentative definitions, since they may have incomplete 527 // type. 528 if (!VD->hasExternalStorage()) 529 TentativeDefinitions.push_back(VD); 530 return; 531 } 532 } 533 534 // Defer code generation when possible if this is a static definition, inline 535 // function etc. These we only want to emit if they are used. 536 if (MayDeferGeneration(Global)) { 537 // If the value has already been used, add it directly to the 538 // DeferredDeclsToEmit list. 539 const char *MangledName = getMangledName(Global); 540 if (GlobalDeclMap.count(MangledName)) 541 DeferredDeclsToEmit.push_back(Global); 542 else { 543 // Otherwise, remember that we saw a deferred decl with this name. The 544 // first use of the mangled name will cause it to move into 545 // DeferredDeclsToEmit. 546 DeferredDecls[MangledName] = Global; 547 } 548 return; 549 } 550 551 // Otherwise emit the definition. 552 EmitGlobalDefinition(Global); 553 } 554 555 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 556 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 557 EmitGlobalFunctionDefinition(FD); 558 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 559 EmitGlobalVarDefinition(VD); 560 } else { 561 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 562 } 563 } 564 565 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 566 /// module, create and return an llvm Function with the specified type. If there 567 /// is something in the module with the specified name, return it potentially 568 /// bitcasted to the right type. 569 /// 570 /// If D is non-null, it specifies a decl that correspond to this. This is used 571 /// to set the attributes on the function when it is first created. 572 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 573 const llvm::Type *Ty, 574 const FunctionDecl *D) { 575 // Lookup the entry, lazily creating it if necessary. 576 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 577 if (Entry) { 578 if (Entry->getType()->getElementType() == Ty) 579 return Entry; 580 581 // Make sure the result is of the correct type. 582 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 583 return llvm::ConstantExpr::getBitCast(Entry, PTy); 584 } 585 586 // This is the first use or definition of a mangled name. If there is a 587 // deferred decl with this name, remember that we need to emit it at the end 588 // of the file. 589 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 590 DeferredDecls.find(MangledName); 591 if (DDI != DeferredDecls.end()) { 592 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 593 // list, and remove it from DeferredDecls (since we don't need it anymore). 594 DeferredDeclsToEmit.push_back(DDI->second); 595 DeferredDecls.erase(DDI); 596 } 597 598 // This function doesn't have a complete type (for example, the return 599 // type is an incomplete struct). Use a fake type instead, and make 600 // sure not to try to set attributes. 601 bool ShouldSetAttributes = true; 602 if (!isa<llvm::FunctionType>(Ty)) { 603 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 604 std::vector<const llvm::Type*>(), false); 605 ShouldSetAttributes = false; 606 } 607 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 608 llvm::Function::ExternalLinkage, 609 "", &getModule()); 610 F->setName(MangledName); 611 if (D && ShouldSetAttributes) 612 SetFunctionAttributes(D, F); 613 Entry = F; 614 return F; 615 } 616 617 /// GetAddrOfFunction - Return the address of the given function. If Ty is 618 /// non-null, then this function will use the specified type if it has to 619 /// create it (this occurs when we see a definition of the function). 620 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 621 const llvm::Type *Ty) { 622 // If there was no specific requested type, just convert it now. 623 if (!Ty) 624 Ty = getTypes().ConvertType(D->getType()); 625 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 626 } 627 628 /// CreateRuntimeFunction - Create a new runtime function with the specified 629 /// type and name. 630 llvm::Constant * 631 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 632 const char *Name) { 633 // Convert Name to be a uniqued string from the IdentifierInfo table. 634 Name = getContext().Idents.get(Name).getName(); 635 return GetOrCreateLLVMFunction(Name, FTy, 0); 636 } 637 638 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 639 /// create and return an llvm GlobalVariable with the specified type. If there 640 /// is something in the module with the specified name, return it potentially 641 /// bitcasted to the right type. 642 /// 643 /// If D is non-null, it specifies a decl that correspond to this. This is used 644 /// to set the attributes on the global when it is first created. 645 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 646 const llvm::PointerType*Ty, 647 const VarDecl *D) { 648 // Lookup the entry, lazily creating it if necessary. 649 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 650 if (Entry) { 651 if (Entry->getType() == Ty) 652 return Entry; 653 654 // Make sure the result is of the correct type. 655 return llvm::ConstantExpr::getBitCast(Entry, Ty); 656 } 657 658 // We don't support __thread yet. 659 if (D && D->isThreadSpecified()) 660 ErrorUnsupported(D, "thread local ('__thread') variable", true); 661 662 // This is the first use or definition of a mangled name. If there is a 663 // deferred decl with this name, remember that we need to emit it at the end 664 // of the file. 665 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 666 DeferredDecls.find(MangledName); 667 if (DDI != DeferredDecls.end()) { 668 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 669 // list, and remove it from DeferredDecls (since we don't need it anymore). 670 DeferredDeclsToEmit.push_back(DDI->second); 671 DeferredDecls.erase(DDI); 672 } 673 674 llvm::GlobalVariable *GV = 675 new llvm::GlobalVariable(Ty->getElementType(), false, 676 llvm::GlobalValue::ExternalLinkage, 677 0, "", &getModule(), 678 0, Ty->getAddressSpace()); 679 GV->setName(MangledName); 680 681 // Handle things which are present even on external declarations. 682 if (D) { 683 // FIXME: This code is overly simple and should be merged with 684 // other global handling. 685 GV->setConstant(D->getType().isConstant(Context)); 686 687 // FIXME: Merge with other attribute handling code. 688 if (D->getStorageClass() == VarDecl::PrivateExtern) 689 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 690 691 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 692 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 693 } 694 695 return Entry = GV; 696 } 697 698 699 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 700 /// given global variable. If Ty is non-null and if the global doesn't exist, 701 /// then it will be greated with the specified type instead of whatever the 702 /// normal requested type would be. 703 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 704 const llvm::Type *Ty) { 705 assert(D->hasGlobalStorage() && "Not a global variable"); 706 QualType ASTTy = D->getType(); 707 if (Ty == 0) 708 Ty = getTypes().ConvertTypeForMem(ASTTy); 709 710 const llvm::PointerType *PTy = 711 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 712 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 713 } 714 715 /// CreateRuntimeVariable - Create a new runtime global variable with the 716 /// specified type and name. 717 llvm::Constant * 718 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 719 const char *Name) { 720 // Convert Name to be a uniqued string from the IdentifierInfo table. 721 Name = getContext().Idents.get(Name).getName(); 722 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 723 } 724 725 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 726 assert(!D->getInit() && "Cannot emit definite definitions here!"); 727 728 // See if we have already defined this (as a variable), if so we do 729 // not need to do anything. 730 llvm::GlobalValue *GV = GlobalDeclMap[getMangledName(D)]; 731 if (llvm::GlobalVariable *Var = dyn_cast_or_null<llvm::GlobalVariable>(GV)) 732 if (Var->hasInitializer()) 733 return; 734 735 EmitGlobalVarDefinition(D); 736 } 737 738 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 739 llvm::Constant *Init = 0; 740 QualType ASTTy = D->getType(); 741 742 if (D->getInit() == 0) { 743 // This is a tentative definition; tentative definitions are 744 // implicitly initialized with { 0 }. 745 // 746 // Note that tentative definitions are only emitted at the end of 747 // a translation unit, so they should never have incomplete 748 // type. In addition, EmitTentativeDefinition makes sure that we 749 // never attempt to emit a tentative definition if a real one 750 // exists. A use may still exists, however, so we still may need 751 // to do a RAUW. 752 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 753 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 754 } else { 755 Init = EmitConstantExpr(D->getInit(), D->getType()); 756 if (!Init) { 757 ErrorUnsupported(D, "static initializer"); 758 QualType T = D->getInit()->getType(); 759 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 760 } 761 } 762 763 const llvm::Type* InitType = Init->getType(); 764 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 765 766 // Strip off a bitcast if we got one back. 767 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 768 assert(CE->getOpcode() == llvm::Instruction::BitCast); 769 Entry = CE->getOperand(0); 770 } 771 772 // Entry is now either a Function or GlobalVariable. 773 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 774 775 // We have a definition after a declaration with the wrong type. 776 // We must make a new GlobalVariable* and update everything that used OldGV 777 // (a declaration or tentative definition) with the new GlobalVariable* 778 // (which will be a definition). 779 // 780 // This happens if there is a prototype for a global (e.g. 781 // "extern int x[];") and then a definition of a different type (e.g. 782 // "int x[10];"). This also happens when an initializer has a different type 783 // from the type of the global (this happens with unions). 784 if (GV == 0 || 785 GV->getType()->getElementType() != InitType || 786 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 787 788 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 789 GlobalDeclMap.erase(getMangledName(D)); 790 791 // Make a new global with the correct type, this is now guaranteed to work. 792 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 793 GV->takeName(cast<llvm::GlobalValue>(Entry)); 794 795 // Replace all uses of the old global with the new global 796 llvm::Constant *NewPtrForOldDecl = 797 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 798 Entry->replaceAllUsesWith(NewPtrForOldDecl); 799 800 // Erase the old global, since it is no longer used. 801 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 802 } 803 804 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 805 SourceManager &SM = Context.getSourceManager(); 806 AddAnnotation(EmitAnnotateAttr(GV, AA, 807 SM.getInstantiationLineNumber(D->getLocation()))); 808 } 809 810 GV->setInitializer(Init); 811 GV->setConstant(D->getType().isConstant(Context)); 812 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 813 814 // Set the llvm linkage type as appropriate. 815 if (D->getStorageClass() == VarDecl::Static) 816 GV->setLinkage(llvm::Function::InternalLinkage); 817 else if (D->hasAttr<DLLImportAttr>()) 818 GV->setLinkage(llvm::Function::DLLImportLinkage); 819 else if (D->hasAttr<DLLExportAttr>()) 820 GV->setLinkage(llvm::Function::DLLExportLinkage); 821 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 822 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 823 else if (!CompileOpts.NoCommon && 824 (!D->hasExternalStorage() && !D->getInit())) 825 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 826 else 827 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 828 829 SetCommonAttributes(D, GV); 830 831 // Emit global variable debug information. 832 if (CGDebugInfo *DI = getDebugInfo()) { 833 DI->setLocation(D->getLocation()); 834 DI->EmitGlobalVariable(GV, D); 835 } 836 } 837 838 839 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 840 const llvm::FunctionType *Ty; 841 842 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 843 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 844 845 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 846 } else { 847 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 848 849 // As a special case, make sure that definitions of K&R function 850 // "type foo()" aren't declared as varargs (which forces the backend 851 // to do unnecessary work). 852 if (D->getType()->isFunctionNoProtoType()) { 853 assert(Ty->isVarArg() && "Didn't lower type as expected"); 854 // Due to stret, the lowered function could have arguments. 855 // Just create the same type as was lowered by ConvertType 856 // but strip off the varargs bit. 857 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 858 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 859 } 860 } 861 862 // Get or create the prototype for teh function. 863 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 864 865 // Strip off a bitcast if we got one back. 866 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 867 assert(CE->getOpcode() == llvm::Instruction::BitCast); 868 Entry = CE->getOperand(0); 869 } 870 871 872 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 873 // If the types mismatch then we have to rewrite the definition. 874 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 875 "Shouldn't replace non-declaration"); 876 877 // F is the Function* for the one with the wrong type, we must make a new 878 // Function* and update everything that used F (a declaration) with the new 879 // Function* (which will be a definition). 880 // 881 // This happens if there is a prototype for a function 882 // (e.g. "int f()") and then a definition of a different type 883 // (e.g. "int f(int x)"). Start by making a new function of the 884 // correct type, RAUW, then steal the name. 885 GlobalDeclMap.erase(getMangledName(D)); 886 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 887 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 888 889 // Replace uses of F with the Function we will endow with a body. 890 llvm::Constant *NewPtrForOldDecl = 891 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 892 Entry->replaceAllUsesWith(NewPtrForOldDecl); 893 894 // Ok, delete the old function now, which is dead. 895 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 896 897 Entry = NewFn; 898 } 899 900 llvm::Function *Fn = cast<llvm::Function>(Entry); 901 902 CodeGenFunction(*this).GenerateCode(D, Fn); 903 904 SetFunctionDefinitionAttributes(D, Fn); 905 SetLLVMFunctionAttributesForDefinition(D, Fn); 906 907 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 908 AddGlobalCtor(Fn, CA->getPriority()); 909 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 910 AddGlobalDtor(Fn, DA->getPriority()); 911 } 912 913 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 914 const AliasAttr *AA = D->getAttr<AliasAttr>(); 915 assert(AA && "Not an alias?"); 916 917 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 918 919 // Unique the name through the identifier table. 920 const char *AliaseeName = AA->getAliasee().c_str(); 921 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 922 923 // Create a reference to the named value. This ensures that it is emitted 924 // if a deferred decl. 925 llvm::Constant *Aliasee; 926 if (isa<llvm::FunctionType>(DeclTy)) 927 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 928 else 929 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 930 llvm::PointerType::getUnqual(DeclTy), 0); 931 932 // Create the new alias itself, but don't set a name yet. 933 llvm::GlobalValue *GA = 934 new llvm::GlobalAlias(Aliasee->getType(), 935 llvm::Function::ExternalLinkage, 936 "", Aliasee, &getModule()); 937 938 // See if there is already something with the alias' name in the module. 939 const char *MangledName = getMangledName(D); 940 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 941 942 if (Entry && !Entry->isDeclaration()) { 943 // If there is a definition in the module, then it wins over the alias. 944 // This is dubious, but allow it to be safe. Just ignore the alias. 945 GA->eraseFromParent(); 946 return; 947 } 948 949 if (Entry) { 950 // If there is a declaration in the module, then we had an extern followed 951 // by the alias, as in: 952 // extern int test6(); 953 // ... 954 // int test6() __attribute__((alias("test7"))); 955 // 956 // Remove it and replace uses of it with the alias. 957 958 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 959 Entry->getType())); 960 Entry->eraseFromParent(); 961 } 962 963 // Now we know that there is no conflict, set the name. 964 Entry = GA; 965 GA->setName(MangledName); 966 967 // Set attributes which are particular to an alias; this is a 968 // specialization of the attributes which may be set on a global 969 // variable/function. 970 if (D->hasAttr<DLLExportAttr>()) { 971 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 972 // The dllexport attribute is ignored for undefined symbols. 973 if (FD->getBody()) 974 GA->setLinkage(llvm::Function::DLLExportLinkage); 975 } else { 976 GA->setLinkage(llvm::Function::DLLExportLinkage); 977 } 978 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 979 GA->setLinkage(llvm::Function::WeakAnyLinkage); 980 } 981 982 SetCommonAttributes(D, GA); 983 } 984 985 /// getBuiltinLibFunction - Given a builtin id for a function like 986 /// "__builtin_fabsf", return a Function* for "fabsf". 987 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 988 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 989 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 990 "isn't a lib fn"); 991 992 // Get the name, skip over the __builtin_ prefix (if necessary). 993 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 994 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 995 Name += 10; 996 997 // Get the type for the builtin. 998 Builtin::Context::GetBuiltinTypeError Error; 999 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 1000 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 1001 1002 const llvm::FunctionType *Ty = 1003 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1004 1005 // Unique the name through the identifier table. 1006 Name = getContext().Idents.get(Name).getName(); 1007 // FIXME: param attributes for sext/zext etc. 1008 return GetOrCreateLLVMFunction(Name, Ty, 0); 1009 } 1010 1011 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1012 unsigned NumTys) { 1013 return llvm::Intrinsic::getDeclaration(&getModule(), 1014 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1015 } 1016 1017 llvm::Function *CodeGenModule::getMemCpyFn() { 1018 if (MemCpyFn) return MemCpyFn; 1019 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1020 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1021 } 1022 1023 llvm::Function *CodeGenModule::getMemMoveFn() { 1024 if (MemMoveFn) return MemMoveFn; 1025 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1026 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1027 } 1028 1029 llvm::Function *CodeGenModule::getMemSetFn() { 1030 if (MemSetFn) return MemSetFn; 1031 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1032 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1033 } 1034 1035 static void appendFieldAndPadding(CodeGenModule &CGM, 1036 std::vector<llvm::Constant*>& Fields, 1037 FieldDecl *FieldD, FieldDecl *NextFieldD, 1038 llvm::Constant* Field, 1039 RecordDecl* RD, const llvm::StructType *STy) { 1040 // Append the field. 1041 Fields.push_back(Field); 1042 1043 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1044 1045 int NextStructFieldNo; 1046 if (!NextFieldD) { 1047 NextStructFieldNo = STy->getNumElements(); 1048 } else { 1049 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1050 } 1051 1052 // Append padding 1053 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1054 llvm::Constant *C = 1055 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1056 1057 Fields.push_back(C); 1058 } 1059 } 1060 1061 llvm::Constant *CodeGenModule:: 1062 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1063 std::string str; 1064 unsigned StringLength; 1065 1066 bool isUTF16 = false; 1067 if (Literal->containsNonAsciiOrNull()) { 1068 // Convert from UTF-8 to UTF-16. 1069 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1070 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1071 UTF16 *ToPtr = &ToBuf[0]; 1072 1073 ConversionResult Result; 1074 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1075 &ToPtr, ToPtr+Literal->getByteLength(), 1076 strictConversion); 1077 if (Result == conversionOK) { 1078 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1079 // without doing more surgery to this routine. Since we aren't explicitly 1080 // checking for endianness here, it's also a bug (when generating code for 1081 // a target that doesn't match the host endianness). Modeling this as an 1082 // i16 array is likely the cleanest solution. 1083 StringLength = ToPtr-&ToBuf[0]; 1084 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1085 isUTF16 = true; 1086 } else if (Result == sourceIllegal) { 1087 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1088 str.assign(Literal->getStrData(), Literal->getByteLength()); 1089 StringLength = str.length(); 1090 } else 1091 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1092 1093 } else { 1094 str.assign(Literal->getStrData(), Literal->getByteLength()); 1095 StringLength = str.length(); 1096 } 1097 llvm::StringMapEntry<llvm::Constant *> &Entry = 1098 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1099 1100 if (llvm::Constant *C = Entry.getValue()) 1101 return C; 1102 1103 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1104 llvm::Constant *Zeros[] = { Zero, Zero }; 1105 1106 if (!CFConstantStringClassRef) { 1107 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1108 Ty = llvm::ArrayType::get(Ty, 0); 1109 1110 // FIXME: This is fairly broken if 1111 // __CFConstantStringClassReference is already defined, in that it 1112 // will get renamed and the user will most likely see an opaque 1113 // error message. This is a general issue with relying on 1114 // particular names. 1115 llvm::GlobalVariable *GV = 1116 new llvm::GlobalVariable(Ty, false, 1117 llvm::GlobalVariable::ExternalLinkage, 0, 1118 "__CFConstantStringClassReference", 1119 &getModule()); 1120 1121 // Decay array -> ptr 1122 CFConstantStringClassRef = 1123 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1124 } 1125 1126 QualType CFTy = getContext().getCFConstantStringType(); 1127 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1128 1129 const llvm::StructType *STy = 1130 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1131 1132 std::vector<llvm::Constant*> Fields; 1133 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1134 1135 // Class pointer. 1136 FieldDecl *CurField = *Field++; 1137 FieldDecl *NextField = *Field++; 1138 appendFieldAndPadding(*this, Fields, CurField, NextField, 1139 CFConstantStringClassRef, CFRD, STy); 1140 1141 // Flags. 1142 CurField = NextField; 1143 NextField = *Field++; 1144 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1145 appendFieldAndPadding(*this, Fields, CurField, NextField, 1146 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1147 : llvm::ConstantInt::get(Ty, 0x07C8), 1148 CFRD, STy); 1149 1150 // String pointer. 1151 CurField = NextField; 1152 NextField = *Field++; 1153 llvm::Constant *C = llvm::ConstantArray::get(str); 1154 1155 const char *Sect, *Prefix; 1156 bool isConstant; 1157 if (isUTF16) { 1158 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1159 Sect = getContext().Target.getUnicodeStringSection(); 1160 // FIXME: Why does GCC not set constant here? 1161 isConstant = false; 1162 } else { 1163 Prefix = getContext().Target.getStringSymbolPrefix(true); 1164 Sect = getContext().Target.getCFStringDataSection(); 1165 // FIXME: -fwritable-strings should probably affect this, but we 1166 // are following gcc here. 1167 isConstant = true; 1168 } 1169 llvm::GlobalVariable *GV = 1170 new llvm::GlobalVariable(C->getType(), isConstant, 1171 llvm::GlobalValue::InternalLinkage, 1172 C, Prefix, &getModule()); 1173 if (Sect) 1174 GV->setSection(Sect); 1175 if (isUTF16) { 1176 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1177 GV->setAlignment(Align); 1178 } 1179 appendFieldAndPadding(*this, Fields, CurField, NextField, 1180 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1181 CFRD, STy); 1182 1183 // String length. 1184 CurField = NextField; 1185 NextField = 0; 1186 Ty = getTypes().ConvertType(getContext().LongTy); 1187 appendFieldAndPadding(*this, Fields, CurField, NextField, 1188 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1189 1190 // The struct. 1191 C = llvm::ConstantStruct::get(STy, Fields); 1192 GV = new llvm::GlobalVariable(C->getType(), true, 1193 llvm::GlobalVariable::InternalLinkage, C, 1194 getContext().Target.getCFStringSymbolPrefix(), 1195 &getModule()); 1196 if (const char *Sect = getContext().Target.getCFStringSection()) 1197 GV->setSection(Sect); 1198 Entry.setValue(GV); 1199 1200 return GV; 1201 } 1202 1203 /// GetStringForStringLiteral - Return the appropriate bytes for a 1204 /// string literal, properly padded to match the literal type. 1205 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1206 const char *StrData = E->getStrData(); 1207 unsigned Len = E->getByteLength(); 1208 1209 const ConstantArrayType *CAT = 1210 getContext().getAsConstantArrayType(E->getType()); 1211 assert(CAT && "String isn't pointer or array!"); 1212 1213 // Resize the string to the right size. 1214 std::string Str(StrData, StrData+Len); 1215 uint64_t RealLen = CAT->getSize().getZExtValue(); 1216 1217 if (E->isWide()) 1218 RealLen *= getContext().Target.getWCharWidth()/8; 1219 1220 Str.resize(RealLen, '\0'); 1221 1222 return Str; 1223 } 1224 1225 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1226 /// constant array for the given string literal. 1227 llvm::Constant * 1228 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1229 // FIXME: This can be more efficient. 1230 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1231 } 1232 1233 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1234 /// array for the given ObjCEncodeExpr node. 1235 llvm::Constant * 1236 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1237 std::string Str; 1238 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1239 1240 return GetAddrOfConstantCString(Str); 1241 } 1242 1243 1244 /// GenerateWritableString -- Creates storage for a string literal. 1245 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1246 bool constant, 1247 CodeGenModule &CGM, 1248 const char *GlobalName) { 1249 // Create Constant for this string literal. Don't add a '\0'. 1250 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1251 1252 // Create a global variable for this string 1253 return new llvm::GlobalVariable(C->getType(), constant, 1254 llvm::GlobalValue::InternalLinkage, 1255 C, GlobalName, &CGM.getModule()); 1256 } 1257 1258 /// GetAddrOfConstantString - Returns a pointer to a character array 1259 /// containing the literal. This contents are exactly that of the 1260 /// given string, i.e. it will not be null terminated automatically; 1261 /// see GetAddrOfConstantCString. Note that whether the result is 1262 /// actually a pointer to an LLVM constant depends on 1263 /// Feature.WriteableStrings. 1264 /// 1265 /// The result has pointer to array type. 1266 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1267 const char *GlobalName) { 1268 bool IsConstant = !Features.WritableStrings; 1269 1270 // Get the default prefix if a name wasn't specified. 1271 if (!GlobalName) 1272 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1273 1274 // Don't share any string literals if strings aren't constant. 1275 if (!IsConstant) 1276 return GenerateStringLiteral(str, false, *this, GlobalName); 1277 1278 llvm::StringMapEntry<llvm::Constant *> &Entry = 1279 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1280 1281 if (Entry.getValue()) 1282 return Entry.getValue(); 1283 1284 // Create a global variable for this. 1285 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1286 Entry.setValue(C); 1287 return C; 1288 } 1289 1290 /// GetAddrOfConstantCString - Returns a pointer to a character 1291 /// array containing the literal and a terminating '\-' 1292 /// character. The result has pointer to array type. 1293 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1294 const char *GlobalName){ 1295 return GetAddrOfConstantString(str + '\0', GlobalName); 1296 } 1297 1298 /// EmitObjCPropertyImplementations - Emit information for synthesized 1299 /// properties for an implementation. 1300 void CodeGenModule::EmitObjCPropertyImplementations(const 1301 ObjCImplementationDecl *D) { 1302 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1303 e = D->propimpl_end(); i != e; ++i) { 1304 ObjCPropertyImplDecl *PID = *i; 1305 1306 // Dynamic is just for type-checking. 1307 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1308 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1309 1310 // Determine which methods need to be implemented, some may have 1311 // been overridden. Note that ::isSynthesized is not the method 1312 // we want, that just indicates if the decl came from a 1313 // property. What we want to know is if the method is defined in 1314 // this implementation. 1315 if (!D->getInstanceMethod(PD->getGetterName())) 1316 CodeGenFunction(*this).GenerateObjCGetter( 1317 const_cast<ObjCImplementationDecl *>(D), PID); 1318 if (!PD->isReadOnly() && 1319 !D->getInstanceMethod(PD->getSetterName())) 1320 CodeGenFunction(*this).GenerateObjCSetter( 1321 const_cast<ObjCImplementationDecl *>(D), PID); 1322 } 1323 } 1324 } 1325 1326 /// EmitNamespace - Emit all declarations in a namespace. 1327 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1328 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1329 E = ND->decls_end(getContext()); 1330 I != E; ++I) 1331 EmitTopLevelDecl(*I); 1332 } 1333 1334 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1335 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1336 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1337 ErrorUnsupported(LSD, "linkage spec"); 1338 return; 1339 } 1340 1341 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1342 E = LSD->decls_end(getContext()); 1343 I != E; ++I) 1344 EmitTopLevelDecl(*I); 1345 } 1346 1347 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1348 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1349 // If an error has occurred, stop code generation, but continue 1350 // parsing and semantic analysis (to ensure all warnings and errors 1351 // are emitted). 1352 if (Diags.hasErrorOccurred()) 1353 return; 1354 1355 switch (D->getKind()) { 1356 case Decl::CXXMethod: 1357 case Decl::Function: 1358 case Decl::Var: 1359 EmitGlobal(cast<ValueDecl>(D)); 1360 break; 1361 1362 // C++ Decls 1363 case Decl::Namespace: 1364 EmitNamespace(cast<NamespaceDecl>(D)); 1365 break; 1366 case Decl::CXXConstructor: 1367 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1368 break; 1369 1370 // Objective-C Decls 1371 1372 // Forward declarations, no (immediate) code generation. 1373 case Decl::ObjCClass: 1374 case Decl::ObjCForwardProtocol: 1375 case Decl::ObjCCategory: 1376 break; 1377 case Decl::ObjCInterface: 1378 // If we already laid out this interface due to an @class, and if we 1379 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1380 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1381 break; 1382 1383 case Decl::ObjCProtocol: 1384 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1385 break; 1386 1387 case Decl::ObjCCategoryImpl: 1388 // Categories have properties but don't support synthesize so we 1389 // can ignore them here. 1390 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1391 break; 1392 1393 case Decl::ObjCImplementation: { 1394 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1395 EmitObjCPropertyImplementations(OMD); 1396 Runtime->GenerateClass(OMD); 1397 break; 1398 } 1399 case Decl::ObjCMethod: { 1400 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1401 // If this is not a prototype, emit the body. 1402 if (OMD->getBody()) 1403 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1404 break; 1405 } 1406 case Decl::ObjCCompatibleAlias: 1407 // compatibility-alias is a directive and has no code gen. 1408 break; 1409 1410 case Decl::LinkageSpec: 1411 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1412 break; 1413 1414 case Decl::FileScopeAsm: { 1415 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1416 std::string AsmString(AD->getAsmString()->getStrData(), 1417 AD->getAsmString()->getByteLength()); 1418 1419 const std::string &S = getModule().getModuleInlineAsm(); 1420 if (S.empty()) 1421 getModule().setModuleInlineAsm(AsmString); 1422 else 1423 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1424 break; 1425 } 1426 1427 default: 1428 // Make sure we handled everything we should, every other kind is 1429 // a non-top-level decl. FIXME: Would be nice to have an 1430 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1431 // that easily. 1432 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1433 } 1434 } 1435