1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = GD.getDecl(); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 217 I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // The kind of external linkage this function will have, if it is not 251 // inline or static. 252 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 253 if (Context.getLangOptions().CPlusPlus && 254 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 255 !FD->isExplicitSpecialization()) 256 External = CodeGenModule::GVA_TemplateInstantiation; 257 258 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 259 // C++ member functions defined inside the class are always inline. 260 if (MD->isInline() || !MD->isOutOfLine()) 261 return CodeGenModule::GVA_CXXInline; 262 263 return External; 264 } 265 266 // "static" functions get internal linkage. 267 if (FD->getStorageClass() == FunctionDecl::Static) 268 return CodeGenModule::GVA_Internal; 269 270 if (!FD->isInline()) 271 return External; 272 273 // If the inline function explicitly has the GNU inline attribute on it, or if 274 // this is C89 mode, we use to GNU semantics. 275 if (!Features.C99 && !Features.CPlusPlus) { 276 // extern inline in GNU mode is like C99 inline. 277 if (FD->getStorageClass() == FunctionDecl::Extern) 278 return CodeGenModule::GVA_C99Inline; 279 // Normal inline is a strong symbol. 280 return CodeGenModule::GVA_StrongExternal; 281 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 282 // GCC in C99 mode seems to use a different decision-making 283 // process for extern inline, which factors in previous 284 // declarations. 285 if (FD->isExternGNUInline(Context)) 286 return CodeGenModule::GVA_C99Inline; 287 // Normal inline is a strong symbol. 288 return External; 289 } 290 291 // The definition of inline changes based on the language. Note that we 292 // have already handled "static inline" above, with the GVA_Internal case. 293 if (Features.CPlusPlus) // inline and extern inline. 294 return CodeGenModule::GVA_CXXInline; 295 296 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 297 if (FD->isC99InlineDefinition()) 298 return CodeGenModule::GVA_C99Inline; 299 300 return CodeGenModule::GVA_StrongExternal; 301 } 302 303 /// SetFunctionDefinitionAttributes - Set attributes for a global. 304 /// 305 /// FIXME: This is currently only done for aliases and functions, but not for 306 /// variables (these details are set in EmitGlobalVarDefinition for variables). 307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 308 llvm::GlobalValue *GV) { 309 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 310 311 if (Linkage == GVA_Internal) { 312 GV->setLinkage(llvm::Function::InternalLinkage); 313 } else if (D->hasAttr<DLLExportAttr>()) { 314 GV->setLinkage(llvm::Function::DLLExportLinkage); 315 } else if (D->hasAttr<WeakAttr>()) { 316 GV->setLinkage(llvm::Function::WeakAnyLinkage); 317 } else if (Linkage == GVA_C99Inline) { 318 // In C99 mode, 'inline' functions are guaranteed to have a strong 319 // definition somewhere else, so we can use available_externally linkage. 320 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 321 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 322 // In C++, the compiler has to emit a definition in every translation unit 323 // that references the function. We should use linkonce_odr because 324 // a) if all references in this translation unit are optimized away, we 325 // don't need to codegen it. b) if the function persists, it needs to be 326 // merged with other definitions. c) C++ has the ODR, so we know the 327 // definition is dependable. 328 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 329 } else { 330 assert(Linkage == GVA_StrongExternal); 331 // Otherwise, we have strong external linkage. 332 GV->setLinkage(llvm::Function::ExternalLinkage); 333 } 334 335 SetCommonAttributes(D, GV); 336 } 337 338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 339 const CGFunctionInfo &Info, 340 llvm::Function *F) { 341 AttributeListType AttributeList; 342 ConstructAttributeList(Info, D, AttributeList); 343 344 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 345 AttributeList.size())); 346 347 // Set the appropriate calling convention for the Function. 348 if (D->hasAttr<FastCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_FastCall); 350 351 if (D->hasAttr<StdCallAttr>()) 352 F->setCallingConv(llvm::CallingConv::X86_StdCall); 353 } 354 355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 356 llvm::Function *F) { 357 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 358 F->addFnAttr(llvm::Attribute::NoUnwind); 359 360 if (D->hasAttr<AlwaysInlineAttr>()) 361 F->addFnAttr(llvm::Attribute::AlwaysInline); 362 363 if (D->hasAttr<NoinlineAttr>()) 364 F->addFnAttr(llvm::Attribute::NoInline); 365 } 366 367 void CodeGenModule::SetCommonAttributes(const Decl *D, 368 llvm::GlobalValue *GV) { 369 setGlobalVisibility(GV, D); 370 371 if (D->hasAttr<UsedAttr>()) 372 AddUsedGlobal(GV); 373 374 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 375 GV->setSection(SA->getName()); 376 } 377 378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 379 llvm::Function *F, 380 const CGFunctionInfo &FI) { 381 SetLLVMFunctionAttributes(D, FI, F); 382 SetLLVMFunctionAttributesForDefinition(D, F); 383 384 F->setLinkage(llvm::Function::InternalLinkage); 385 386 SetCommonAttributes(D, F); 387 } 388 389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 390 llvm::Function *F, 391 bool IsIncompleteFunction) { 392 if (!IsIncompleteFunction) 393 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 394 395 // Only a few attributes are set on declarations; these may later be 396 // overridden by a definition. 397 398 if (FD->hasAttr<DLLImportAttr>()) { 399 F->setLinkage(llvm::Function::DLLImportLinkage); 400 } else if (FD->hasAttr<WeakAttr>() || 401 FD->hasAttr<WeakImportAttr>()) { 402 // "extern_weak" is overloaded in LLVM; we probably should have 403 // separate linkage types for this. 404 F->setLinkage(llvm::Function::ExternalWeakLinkage); 405 } else { 406 F->setLinkage(llvm::Function::ExternalLinkage); 407 } 408 409 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 410 F->setSection(SA->getName()); 411 } 412 413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 414 assert(!GV->isDeclaration() && 415 "Only globals with definition can force usage."); 416 LLVMUsed.push_back(GV); 417 } 418 419 void CodeGenModule::EmitLLVMUsed() { 420 // Don't create llvm.used if there is no need. 421 if (LLVMUsed.empty()) 422 return; 423 424 llvm::Type *i8PTy = 425 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 426 427 // Convert LLVMUsed to what ConstantArray needs. 428 std::vector<llvm::Constant*> UsedArray; 429 UsedArray.resize(LLVMUsed.size()); 430 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 431 UsedArray[i] = 432 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 433 i8PTy); 434 } 435 436 if (UsedArray.empty()) 437 return; 438 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 439 440 llvm::GlobalVariable *GV = 441 new llvm::GlobalVariable(getModule(), ATy, false, 442 llvm::GlobalValue::AppendingLinkage, 443 llvm::ConstantArray::get(ATy, UsedArray), 444 "llvm.used"); 445 446 GV->setSection("llvm.metadata"); 447 } 448 449 void CodeGenModule::EmitDeferred() { 450 // Emit code for any potentially referenced deferred decls. Since a 451 // previously unused static decl may become used during the generation of code 452 // for a static function, iterate until no changes are made. 453 while (!DeferredDeclsToEmit.empty()) { 454 GlobalDecl D = DeferredDeclsToEmit.back(); 455 DeferredDeclsToEmit.pop_back(); 456 457 // The mangled name for the decl must have been emitted in GlobalDeclMap. 458 // Look it up to see if it was defined with a stronger definition (e.g. an 459 // extern inline function with a strong function redefinition). If so, 460 // just ignore the deferred decl. 461 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 462 assert(CGRef && "Deferred decl wasn't referenced?"); 463 464 if (!CGRef->isDeclaration()) 465 continue; 466 467 // Otherwise, emit the definition and move on to the next one. 468 EmitGlobalDefinition(D); 469 } 470 } 471 472 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 473 /// annotation information for a given GlobalValue. The annotation struct is 474 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 475 /// GlobalValue being annotated. The second field is the constant string 476 /// created from the AnnotateAttr's annotation. The third field is a constant 477 /// string containing the name of the translation unit. The fourth field is 478 /// the line number in the file of the annotated value declaration. 479 /// 480 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 481 /// appears to. 482 /// 483 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 484 const AnnotateAttr *AA, 485 unsigned LineNo) { 486 llvm::Module *M = &getModule(); 487 488 // get [N x i8] constants for the annotation string, and the filename string 489 // which are the 2nd and 3rd elements of the global annotation structure. 490 const llvm::Type *SBP = 491 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 492 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 493 AA->getAnnotation(), true); 494 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 495 M->getModuleIdentifier(), 496 true); 497 498 // Get the two global values corresponding to the ConstantArrays we just 499 // created to hold the bytes of the strings. 500 llvm::GlobalValue *annoGV = 501 new llvm::GlobalVariable(*M, anno->getType(), false, 502 llvm::GlobalValue::PrivateLinkage, anno, 503 GV->getName()); 504 // translation unit name string, emitted into the llvm.metadata section. 505 llvm::GlobalValue *unitGV = 506 new llvm::GlobalVariable(*M, unit->getType(), false, 507 llvm::GlobalValue::PrivateLinkage, unit, 508 ".str"); 509 510 // Create the ConstantStruct for the global annotation. 511 llvm::Constant *Fields[4] = { 512 llvm::ConstantExpr::getBitCast(GV, SBP), 513 llvm::ConstantExpr::getBitCast(annoGV, SBP), 514 llvm::ConstantExpr::getBitCast(unitGV, SBP), 515 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 516 }; 517 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 518 } 519 520 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 521 // Never defer when EmitAllDecls is specified or the decl has 522 // attribute used. 523 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 524 return false; 525 526 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 527 // Constructors and destructors should never be deferred. 528 if (FD->hasAttr<ConstructorAttr>() || 529 FD->hasAttr<DestructorAttr>()) 530 return false; 531 532 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 533 534 // static, static inline, always_inline, and extern inline functions can 535 // always be deferred. Normal inline functions can be deferred in C99/C++. 536 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 537 Linkage == GVA_CXXInline) 538 return true; 539 return false; 540 } 541 542 const VarDecl *VD = cast<VarDecl>(Global); 543 assert(VD->isFileVarDecl() && "Invalid decl"); 544 545 return VD->getStorageClass() == VarDecl::Static; 546 } 547 548 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 549 const ValueDecl *Global = GD.getDecl(); 550 551 // If this is an alias definition (which otherwise looks like a declaration) 552 // emit it now. 553 if (Global->hasAttr<AliasAttr>()) 554 return EmitAliasDefinition(Global); 555 556 // Ignore declarations, they will be emitted on their first use. 557 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 558 // Forward declarations are emitted lazily on first use. 559 if (!FD->isThisDeclarationADefinition()) 560 return; 561 } else { 562 const VarDecl *VD = cast<VarDecl>(Global); 563 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 564 565 // In C++, if this is marked "extern", defer code generation. 566 if (getLangOptions().CPlusPlus && !VD->getInit() && 567 (VD->getStorageClass() == VarDecl::Extern || 568 VD->isExternC(getContext()))) 569 return; 570 571 // In C, if this isn't a definition, defer code generation. 572 if (!getLangOptions().CPlusPlus && !VD->getInit()) 573 return; 574 } 575 576 // Defer code generation when possible if this is a static definition, inline 577 // function etc. These we only want to emit if they are used. 578 if (MayDeferGeneration(Global)) { 579 // If the value has already been used, add it directly to the 580 // DeferredDeclsToEmit list. 581 const char *MangledName = getMangledName(GD); 582 if (GlobalDeclMap.count(MangledName)) 583 DeferredDeclsToEmit.push_back(GD); 584 else { 585 // Otherwise, remember that we saw a deferred decl with this name. The 586 // first use of the mangled name will cause it to move into 587 // DeferredDeclsToEmit. 588 DeferredDecls[MangledName] = GD; 589 } 590 return; 591 } 592 593 // Otherwise emit the definition. 594 EmitGlobalDefinition(GD); 595 } 596 597 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 598 const ValueDecl *D = GD.getDecl(); 599 600 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 601 EmitCXXConstructor(CD, GD.getCtorType()); 602 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 603 EmitCXXDestructor(DD, GD.getDtorType()); 604 else if (isa<FunctionDecl>(D)) 605 EmitGlobalFunctionDefinition(GD); 606 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 607 EmitGlobalVarDefinition(VD); 608 else { 609 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 610 } 611 } 612 613 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 614 /// module, create and return an llvm Function with the specified type. If there 615 /// is something in the module with the specified name, return it potentially 616 /// bitcasted to the right type. 617 /// 618 /// If D is non-null, it specifies a decl that correspond to this. This is used 619 /// to set the attributes on the function when it is first created. 620 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 621 const llvm::Type *Ty, 622 GlobalDecl D) { 623 // Lookup the entry, lazily creating it if necessary. 624 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 625 if (Entry) { 626 if (Entry->getType()->getElementType() == Ty) 627 return Entry; 628 629 // Make sure the result is of the correct type. 630 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 631 return llvm::ConstantExpr::getBitCast(Entry, PTy); 632 } 633 634 // This is the first use or definition of a mangled name. If there is a 635 // deferred decl with this name, remember that we need to emit it at the end 636 // of the file. 637 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 638 DeferredDecls.find(MangledName); 639 if (DDI != DeferredDecls.end()) { 640 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 641 // list, and remove it from DeferredDecls (since we don't need it anymore). 642 DeferredDeclsToEmit.push_back(DDI->second); 643 DeferredDecls.erase(DDI); 644 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 645 // If this the first reference to a C++ inline function in a class, queue up 646 // the deferred function body for emission. These are not seen as 647 // top-level declarations. 648 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 649 DeferredDeclsToEmit.push_back(D); 650 // A called constructor which has no definition or declaration need be 651 // synthesized. 652 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 653 const CXXRecordDecl *ClassDecl = 654 cast<CXXRecordDecl>(CD->getDeclContext()); 655 if (CD->isCopyConstructor(getContext())) 656 DeferredCopyConstructorToEmit(D); 657 else if (!ClassDecl->hasUserDeclaredConstructor()) 658 DeferredDeclsToEmit.push_back(D); 659 } 660 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 661 if (MD->isCopyAssignment()) 662 DeferredCopyAssignmentToEmit(D); 663 } 664 665 // This function doesn't have a complete type (for example, the return 666 // type is an incomplete struct). Use a fake type instead, and make 667 // sure not to try to set attributes. 668 bool IsIncompleteFunction = false; 669 if (!isa<llvm::FunctionType>(Ty)) { 670 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 671 std::vector<const llvm::Type*>(), false); 672 IsIncompleteFunction = true; 673 } 674 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 675 llvm::Function::ExternalLinkage, 676 "", &getModule()); 677 F->setName(MangledName); 678 if (D.getDecl()) 679 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 680 IsIncompleteFunction); 681 Entry = F; 682 return F; 683 } 684 685 /// Defer definition of copy constructor(s) which need be implicitly defined. 686 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 687 const CXXConstructorDecl *CD = 688 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 689 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 690 if (ClassDecl->hasTrivialCopyConstructor() || 691 ClassDecl->hasUserDeclaredCopyConstructor()) 692 return; 693 694 // First make sure all direct base classes and virtual bases and non-static 695 // data mebers which need to have their copy constructors implicitly defined 696 // are defined. 12.8.p7 697 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 698 Base != ClassDecl->bases_end(); ++Base) { 699 CXXRecordDecl *BaseClassDecl 700 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 701 if (CXXConstructorDecl *BaseCopyCtor = 702 BaseClassDecl->getCopyConstructor(Context, 0)) 703 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 704 } 705 706 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 707 FieldEnd = ClassDecl->field_end(); 708 Field != FieldEnd; ++Field) { 709 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 710 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 711 FieldType = Array->getElementType(); 712 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 713 if ((*Field)->isAnonymousStructOrUnion()) 714 continue; 715 CXXRecordDecl *FieldClassDecl 716 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 717 if (CXXConstructorDecl *FieldCopyCtor = 718 FieldClassDecl->getCopyConstructor(Context, 0)) 719 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 720 } 721 } 722 DeferredDeclsToEmit.push_back(CopyCtorDecl); 723 } 724 725 /// Defer definition of copy assignments which need be implicitly defined. 726 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 727 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 728 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 729 730 if (ClassDecl->hasTrivialCopyAssignment() || 731 ClassDecl->hasUserDeclaredCopyAssignment()) 732 return; 733 734 // First make sure all direct base classes and virtual bases and non-static 735 // data mebers which need to have their copy assignments implicitly defined 736 // are defined. 12.8.p12 737 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 738 Base != ClassDecl->bases_end(); ++Base) { 739 CXXRecordDecl *BaseClassDecl 740 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 741 const CXXMethodDecl *MD = 0; 742 if (BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 743 GetAddrOfFunction(GlobalDecl(MD), 0); 744 } 745 746 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 747 FieldEnd = ClassDecl->field_end(); 748 Field != FieldEnd; ++Field) { 749 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 750 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 751 FieldType = Array->getElementType(); 752 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 753 if ((*Field)->isAnonymousStructOrUnion()) 754 continue; 755 CXXRecordDecl *FieldClassDecl 756 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 757 const CXXMethodDecl *MD = 0; 758 if (FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 759 GetAddrOfFunction(GlobalDecl(MD), 0); 760 } 761 } 762 DeferredDeclsToEmit.push_back(CopyAssignDecl); 763 } 764 765 /// GetAddrOfFunction - Return the address of the given function. If Ty is 766 /// non-null, then this function will use the specified type if it has to 767 /// create it (this occurs when we see a definition of the function). 768 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 769 const llvm::Type *Ty) { 770 // If there was no specific requested type, just convert it now. 771 if (!Ty) 772 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 773 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 774 } 775 776 /// CreateRuntimeFunction - Create a new runtime function with the specified 777 /// type and name. 778 llvm::Constant * 779 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 780 const char *Name) { 781 // Convert Name to be a uniqued string from the IdentifierInfo table. 782 Name = getContext().Idents.get(Name).getName(); 783 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 784 } 785 786 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 787 /// create and return an llvm GlobalVariable with the specified type. If there 788 /// is something in the module with the specified name, return it potentially 789 /// bitcasted to the right type. 790 /// 791 /// If D is non-null, it specifies a decl that correspond to this. This is used 792 /// to set the attributes on the global when it is first created. 793 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 794 const llvm::PointerType*Ty, 795 const VarDecl *D) { 796 // Lookup the entry, lazily creating it if necessary. 797 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 798 if (Entry) { 799 if (Entry->getType() == Ty) 800 return Entry; 801 802 // Make sure the result is of the correct type. 803 return llvm::ConstantExpr::getBitCast(Entry, Ty); 804 } 805 806 // This is the first use or definition of a mangled name. If there is a 807 // deferred decl with this name, remember that we need to emit it at the end 808 // of the file. 809 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 810 DeferredDecls.find(MangledName); 811 if (DDI != DeferredDecls.end()) { 812 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 813 // list, and remove it from DeferredDecls (since we don't need it anymore). 814 DeferredDeclsToEmit.push_back(DDI->second); 815 DeferredDecls.erase(DDI); 816 } 817 818 llvm::GlobalVariable *GV = 819 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 820 llvm::GlobalValue::ExternalLinkage, 821 0, "", 0, 822 false, Ty->getAddressSpace()); 823 GV->setName(MangledName); 824 825 // Handle things which are present even on external declarations. 826 if (D) { 827 // FIXME: This code is overly simple and should be merged with other global 828 // handling. 829 GV->setConstant(D->getType().isConstant(Context)); 830 831 // FIXME: Merge with other attribute handling code. 832 if (D->getStorageClass() == VarDecl::PrivateExtern) 833 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 834 835 if (D->hasAttr<WeakAttr>() || 836 D->hasAttr<WeakImportAttr>()) 837 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 838 839 GV->setThreadLocal(D->isThreadSpecified()); 840 } 841 842 return Entry = GV; 843 } 844 845 846 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 847 /// given global variable. If Ty is non-null and if the global doesn't exist, 848 /// then it will be greated with the specified type instead of whatever the 849 /// normal requested type would be. 850 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 851 const llvm::Type *Ty) { 852 assert(D->hasGlobalStorage() && "Not a global variable"); 853 QualType ASTTy = D->getType(); 854 if (Ty == 0) 855 Ty = getTypes().ConvertTypeForMem(ASTTy); 856 857 const llvm::PointerType *PTy = 858 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 859 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 860 } 861 862 /// CreateRuntimeVariable - Create a new runtime global variable with the 863 /// specified type and name. 864 llvm::Constant * 865 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 866 const char *Name) { 867 // Convert Name to be a uniqued string from the IdentifierInfo table. 868 Name = getContext().Idents.get(Name).getName(); 869 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 870 } 871 872 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 873 assert(!D->getInit() && "Cannot emit definite definitions here!"); 874 875 if (MayDeferGeneration(D)) { 876 // If we have not seen a reference to this variable yet, place it 877 // into the deferred declarations table to be emitted if needed 878 // later. 879 const char *MangledName = getMangledName(D); 880 if (GlobalDeclMap.count(MangledName) == 0) { 881 DeferredDecls[MangledName] = GlobalDecl(D); 882 return; 883 } 884 } 885 886 // The tentative definition is the only definition. 887 EmitGlobalVarDefinition(D); 888 } 889 890 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 891 llvm::Constant *Init = 0; 892 QualType ASTTy = D->getType(); 893 894 if (D->getInit() == 0) { 895 // This is a tentative definition; tentative definitions are 896 // implicitly initialized with { 0 }. 897 // 898 // Note that tentative definitions are only emitted at the end of 899 // a translation unit, so they should never have incomplete 900 // type. In addition, EmitTentativeDefinition makes sure that we 901 // never attempt to emit a tentative definition if a real one 902 // exists. A use may still exists, however, so we still may need 903 // to do a RAUW. 904 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 905 Init = EmitNullConstant(D->getType()); 906 } else { 907 Init = EmitConstantExpr(D->getInit(), D->getType()); 908 909 if (!Init) { 910 QualType T = D->getInit()->getType(); 911 if (getLangOptions().CPlusPlus) { 912 CXXGlobalInits.push_back(D); 913 Init = EmitNullConstant(T); 914 } else { 915 ErrorUnsupported(D, "static initializer"); 916 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 917 } 918 } 919 } 920 921 const llvm::Type* InitType = Init->getType(); 922 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 923 924 // Strip off a bitcast if we got one back. 925 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 926 assert(CE->getOpcode() == llvm::Instruction::BitCast || 927 // all zero index gep. 928 CE->getOpcode() == llvm::Instruction::GetElementPtr); 929 Entry = CE->getOperand(0); 930 } 931 932 // Entry is now either a Function or GlobalVariable. 933 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 934 935 // We have a definition after a declaration with the wrong type. 936 // We must make a new GlobalVariable* and update everything that used OldGV 937 // (a declaration or tentative definition) with the new GlobalVariable* 938 // (which will be a definition). 939 // 940 // This happens if there is a prototype for a global (e.g. 941 // "extern int x[];") and then a definition of a different type (e.g. 942 // "int x[10];"). This also happens when an initializer has a different type 943 // from the type of the global (this happens with unions). 944 if (GV == 0 || 945 GV->getType()->getElementType() != InitType || 946 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 947 948 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 949 GlobalDeclMap.erase(getMangledName(D)); 950 951 // Make a new global with the correct type, this is now guaranteed to work. 952 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 953 GV->takeName(cast<llvm::GlobalValue>(Entry)); 954 955 // Replace all uses of the old global with the new global 956 llvm::Constant *NewPtrForOldDecl = 957 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 958 Entry->replaceAllUsesWith(NewPtrForOldDecl); 959 960 // Erase the old global, since it is no longer used. 961 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 962 } 963 964 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 965 SourceManager &SM = Context.getSourceManager(); 966 AddAnnotation(EmitAnnotateAttr(GV, AA, 967 SM.getInstantiationLineNumber(D->getLocation()))); 968 } 969 970 GV->setInitializer(Init); 971 972 // If it is safe to mark the global 'constant', do so now. 973 GV->setConstant(false); 974 if (D->getType().isConstant(Context)) { 975 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 976 // members, it cannot be declared "LLVM const". 977 GV->setConstant(true); 978 } 979 980 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 981 982 // Set the llvm linkage type as appropriate. 983 if (D->getStorageClass() == VarDecl::Static) 984 GV->setLinkage(llvm::Function::InternalLinkage); 985 else if (D->hasAttr<DLLImportAttr>()) 986 GV->setLinkage(llvm::Function::DLLImportLinkage); 987 else if (D->hasAttr<DLLExportAttr>()) 988 GV->setLinkage(llvm::Function::DLLExportLinkage); 989 else if (D->hasAttr<WeakAttr>()) { 990 if (GV->isConstant()) 991 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 992 else 993 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 994 } else if (!CompileOpts.NoCommon && 995 !D->hasExternalStorage() && !D->getInit() && 996 !D->getAttr<SectionAttr>()) { 997 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 998 // common vars aren't constant even if declared const. 999 GV->setConstant(false); 1000 } else 1001 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1002 1003 SetCommonAttributes(D, GV); 1004 1005 // Emit global variable debug information. 1006 if (CGDebugInfo *DI = getDebugInfo()) { 1007 DI->setLocation(D->getLocation()); 1008 DI->EmitGlobalVariable(GV, D); 1009 } 1010 } 1011 1012 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1013 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1014 /// existing call uses of the old function in the module, this adjusts them to 1015 /// call the new function directly. 1016 /// 1017 /// This is not just a cleanup: the always_inline pass requires direct calls to 1018 /// functions to be able to inline them. If there is a bitcast in the way, it 1019 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1020 /// run at -O0. 1021 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1022 llvm::Function *NewFn) { 1023 // If we're redefining a global as a function, don't transform it. 1024 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1025 if (OldFn == 0) return; 1026 1027 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1028 llvm::SmallVector<llvm::Value*, 4> ArgList; 1029 1030 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1031 UI != E; ) { 1032 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1033 unsigned OpNo = UI.getOperandNo(); 1034 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1035 if (!CI || OpNo != 0) continue; 1036 1037 // If the return types don't match exactly, and if the call isn't dead, then 1038 // we can't transform this call. 1039 if (CI->getType() != NewRetTy && !CI->use_empty()) 1040 continue; 1041 1042 // If the function was passed too few arguments, don't transform. If extra 1043 // arguments were passed, we silently drop them. If any of the types 1044 // mismatch, we don't transform. 1045 unsigned ArgNo = 0; 1046 bool DontTransform = false; 1047 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1048 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1049 if (CI->getNumOperands()-1 == ArgNo || 1050 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1051 DontTransform = true; 1052 break; 1053 } 1054 } 1055 if (DontTransform) 1056 continue; 1057 1058 // Okay, we can transform this. Create the new call instruction and copy 1059 // over the required information. 1060 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1061 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1062 ArgList.end(), "", CI); 1063 ArgList.clear(); 1064 if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext())) 1065 NewCall->takeName(CI); 1066 NewCall->setCallingConv(CI->getCallingConv()); 1067 NewCall->setAttributes(CI->getAttributes()); 1068 1069 // Finally, remove the old call, replacing any uses with the new one. 1070 if (!CI->use_empty()) 1071 CI->replaceAllUsesWith(NewCall); 1072 CI->eraseFromParent(); 1073 } 1074 } 1075 1076 1077 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1078 const llvm::FunctionType *Ty; 1079 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1080 1081 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1082 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1083 1084 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1085 } else { 1086 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1087 1088 // As a special case, make sure that definitions of K&R function 1089 // "type foo()" aren't declared as varargs (which forces the backend 1090 // to do unnecessary work). 1091 if (D->getType()->isFunctionNoProtoType()) { 1092 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1093 // Due to stret, the lowered function could have arguments. 1094 // Just create the same type as was lowered by ConvertType 1095 // but strip off the varargs bit. 1096 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1097 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1098 } 1099 } 1100 1101 // Get or create the prototype for the function. 1102 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1103 1104 // Strip off a bitcast if we got one back. 1105 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1106 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1107 Entry = CE->getOperand(0); 1108 } 1109 1110 1111 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1112 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1113 1114 // If the types mismatch then we have to rewrite the definition. 1115 assert(OldFn->isDeclaration() && 1116 "Shouldn't replace non-declaration"); 1117 1118 // F is the Function* for the one with the wrong type, we must make a new 1119 // Function* and update everything that used F (a declaration) with the new 1120 // Function* (which will be a definition). 1121 // 1122 // This happens if there is a prototype for a function 1123 // (e.g. "int f()") and then a definition of a different type 1124 // (e.g. "int f(int x)"). Start by making a new function of the 1125 // correct type, RAUW, then steal the name. 1126 GlobalDeclMap.erase(getMangledName(D)); 1127 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1128 NewFn->takeName(OldFn); 1129 1130 // If this is an implementation of a function without a prototype, try to 1131 // replace any existing uses of the function (which may be calls) with uses 1132 // of the new function 1133 if (D->getType()->isFunctionNoProtoType()) { 1134 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1135 OldFn->removeDeadConstantUsers(); 1136 } 1137 1138 // Replace uses of F with the Function we will endow with a body. 1139 if (!Entry->use_empty()) { 1140 llvm::Constant *NewPtrForOldDecl = 1141 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1142 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1143 } 1144 1145 // Ok, delete the old function now, which is dead. 1146 OldFn->eraseFromParent(); 1147 1148 Entry = NewFn; 1149 } 1150 1151 llvm::Function *Fn = cast<llvm::Function>(Entry); 1152 1153 CodeGenFunction(*this).GenerateCode(D, Fn); 1154 1155 SetFunctionDefinitionAttributes(D, Fn); 1156 SetLLVMFunctionAttributesForDefinition(D, Fn); 1157 1158 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1159 AddGlobalCtor(Fn, CA->getPriority()); 1160 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1161 AddGlobalDtor(Fn, DA->getPriority()); 1162 } 1163 1164 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1165 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1166 assert(AA && "Not an alias?"); 1167 1168 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1169 1170 // Unique the name through the identifier table. 1171 const char *AliaseeName = AA->getAliasee().c_str(); 1172 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1173 1174 // Create a reference to the named value. This ensures that it is emitted 1175 // if a deferred decl. 1176 llvm::Constant *Aliasee; 1177 if (isa<llvm::FunctionType>(DeclTy)) 1178 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1179 else 1180 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1181 llvm::PointerType::getUnqual(DeclTy), 0); 1182 1183 // Create the new alias itself, but don't set a name yet. 1184 llvm::GlobalValue *GA = 1185 new llvm::GlobalAlias(Aliasee->getType(), 1186 llvm::Function::ExternalLinkage, 1187 "", Aliasee, &getModule()); 1188 1189 // See if there is already something with the alias' name in the module. 1190 const char *MangledName = getMangledName(D); 1191 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1192 1193 if (Entry && !Entry->isDeclaration()) { 1194 // If there is a definition in the module, then it wins over the alias. 1195 // This is dubious, but allow it to be safe. Just ignore the alias. 1196 GA->eraseFromParent(); 1197 return; 1198 } 1199 1200 if (Entry) { 1201 // If there is a declaration in the module, then we had an extern followed 1202 // by the alias, as in: 1203 // extern int test6(); 1204 // ... 1205 // int test6() __attribute__((alias("test7"))); 1206 // 1207 // Remove it and replace uses of it with the alias. 1208 1209 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1210 Entry->getType())); 1211 Entry->eraseFromParent(); 1212 } 1213 1214 // Now we know that there is no conflict, set the name. 1215 Entry = GA; 1216 GA->setName(MangledName); 1217 1218 // Set attributes which are particular to an alias; this is a 1219 // specialization of the attributes which may be set on a global 1220 // variable/function. 1221 if (D->hasAttr<DLLExportAttr>()) { 1222 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1223 // The dllexport attribute is ignored for undefined symbols. 1224 if (FD->getBody()) 1225 GA->setLinkage(llvm::Function::DLLExportLinkage); 1226 } else { 1227 GA->setLinkage(llvm::Function::DLLExportLinkage); 1228 } 1229 } else if (D->hasAttr<WeakAttr>() || 1230 D->hasAttr<WeakImportAttr>()) { 1231 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1232 } 1233 1234 SetCommonAttributes(D, GA); 1235 } 1236 1237 /// getBuiltinLibFunction - Given a builtin id for a function like 1238 /// "__builtin_fabsf", return a Function* for "fabsf". 1239 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1240 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1241 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1242 "isn't a lib fn"); 1243 1244 // Get the name, skip over the __builtin_ prefix (if necessary). 1245 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1246 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1247 Name += 10; 1248 1249 // Get the type for the builtin. 1250 ASTContext::GetBuiltinTypeError Error; 1251 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1252 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1253 1254 const llvm::FunctionType *Ty = 1255 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1256 1257 // Unique the name through the identifier table. 1258 Name = getContext().Idents.get(Name).getName(); 1259 // FIXME: param attributes for sext/zext etc. 1260 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1261 } 1262 1263 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1264 unsigned NumTys) { 1265 return llvm::Intrinsic::getDeclaration(&getModule(), 1266 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1267 } 1268 1269 llvm::Function *CodeGenModule::getMemCpyFn() { 1270 if (MemCpyFn) return MemCpyFn; 1271 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1272 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1273 } 1274 1275 llvm::Function *CodeGenModule::getMemMoveFn() { 1276 if (MemMoveFn) return MemMoveFn; 1277 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1278 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1279 } 1280 1281 llvm::Function *CodeGenModule::getMemSetFn() { 1282 if (MemSetFn) return MemSetFn; 1283 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1284 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1285 } 1286 1287 static void appendFieldAndPadding(CodeGenModule &CGM, 1288 std::vector<llvm::Constant*>& Fields, 1289 FieldDecl *FieldD, FieldDecl *NextFieldD, 1290 llvm::Constant* Field, 1291 RecordDecl* RD, const llvm::StructType *STy) { 1292 // Append the field. 1293 Fields.push_back(Field); 1294 1295 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1296 1297 int NextStructFieldNo; 1298 if (!NextFieldD) { 1299 NextStructFieldNo = STy->getNumElements(); 1300 } else { 1301 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1302 } 1303 1304 // Append padding 1305 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1306 llvm::Constant *C = 1307 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1308 1309 Fields.push_back(C); 1310 } 1311 } 1312 1313 static llvm::StringMapEntry<llvm::Constant*> & 1314 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1315 const StringLiteral *Literal, 1316 bool TargetIsLSB, 1317 bool &IsUTF16, 1318 unsigned &StringLength) { 1319 unsigned NumBytes = Literal->getByteLength(); 1320 1321 // Check for simple case. 1322 if (!Literal->containsNonAsciiOrNull()) { 1323 StringLength = NumBytes; 1324 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1325 StringLength)); 1326 } 1327 1328 // Otherwise, convert the UTF8 literals into a byte string. 1329 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1330 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1331 UTF16 *ToPtr = &ToBuf[0]; 1332 1333 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1334 &ToPtr, ToPtr + NumBytes, 1335 strictConversion); 1336 1337 // Check for conversion failure. 1338 if (Result != conversionOK) { 1339 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1340 // this duplicate code. 1341 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1342 StringLength = NumBytes; 1343 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1344 StringLength)); 1345 } 1346 1347 // ConvertUTF8toUTF16 returns the length in ToPtr. 1348 StringLength = ToPtr - &ToBuf[0]; 1349 1350 // Render the UTF-16 string into a byte array and convert to the target byte 1351 // order. 1352 // 1353 // FIXME: This isn't something we should need to do here. 1354 llvm::SmallString<128> AsBytes; 1355 AsBytes.reserve(StringLength * 2); 1356 for (unsigned i = 0; i != StringLength; ++i) { 1357 unsigned short Val = ToBuf[i]; 1358 if (TargetIsLSB) { 1359 AsBytes.push_back(Val & 0xFF); 1360 AsBytes.push_back(Val >> 8); 1361 } else { 1362 AsBytes.push_back(Val >> 8); 1363 AsBytes.push_back(Val & 0xFF); 1364 } 1365 } 1366 // Append one extra null character, the second is automatically added by our 1367 // caller. 1368 AsBytes.push_back(0); 1369 1370 IsUTF16 = true; 1371 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1372 } 1373 1374 llvm::Constant * 1375 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1376 unsigned StringLength = 0; 1377 bool isUTF16 = false; 1378 llvm::StringMapEntry<llvm::Constant*> &Entry = 1379 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1380 getTargetData().isLittleEndian(), 1381 isUTF16, StringLength); 1382 1383 if (llvm::Constant *C = Entry.getValue()) 1384 return C; 1385 1386 llvm::Constant *Zero = 1387 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1388 llvm::Constant *Zeros[] = { Zero, Zero }; 1389 1390 // If we don't already have it, get __CFConstantStringClassReference. 1391 if (!CFConstantStringClassRef) { 1392 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1393 Ty = llvm::ArrayType::get(Ty, 0); 1394 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1395 "__CFConstantStringClassReference"); 1396 // Decay array -> ptr 1397 CFConstantStringClassRef = 1398 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1399 } 1400 1401 QualType CFTy = getContext().getCFConstantStringType(); 1402 RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl(); 1403 1404 const llvm::StructType *STy = 1405 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1406 1407 std::vector<llvm::Constant*> Fields; 1408 RecordDecl::field_iterator Field = CFRD->field_begin(); 1409 1410 // Class pointer. 1411 FieldDecl *CurField = *Field++; 1412 FieldDecl *NextField = *Field++; 1413 appendFieldAndPadding(*this, Fields, CurField, NextField, 1414 CFConstantStringClassRef, CFRD, STy); 1415 1416 // Flags. 1417 CurField = NextField; 1418 NextField = *Field++; 1419 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1420 appendFieldAndPadding(*this, Fields, CurField, NextField, 1421 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1422 : llvm::ConstantInt::get(Ty, 0x07C8), 1423 CFRD, STy); 1424 1425 // String pointer. 1426 CurField = NextField; 1427 NextField = *Field++; 1428 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1429 1430 const char *Sect, *Prefix; 1431 bool isConstant; 1432 llvm::GlobalValue::LinkageTypes Linkage; 1433 if (isUTF16) { 1434 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1435 Sect = getContext().Target.getUnicodeStringSection(); 1436 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1437 Linkage = llvm::GlobalValue::InternalLinkage; 1438 // FIXME: Why does GCC not set constant here? 1439 isConstant = false; 1440 } else { 1441 Prefix = ".str"; 1442 Sect = getContext().Target.getCFStringDataSection(); 1443 Linkage = llvm::GlobalValue::PrivateLinkage; 1444 // FIXME: -fwritable-strings should probably affect this, but we 1445 // are following gcc here. 1446 isConstant = true; 1447 } 1448 llvm::GlobalVariable *GV = 1449 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1450 Linkage, C, Prefix); 1451 if (Sect) 1452 GV->setSection(Sect); 1453 if (isUTF16) { 1454 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1455 GV->setAlignment(Align); 1456 } 1457 appendFieldAndPadding(*this, Fields, CurField, NextField, 1458 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1459 CFRD, STy); 1460 1461 // String length. 1462 CurField = NextField; 1463 NextField = 0; 1464 Ty = getTypes().ConvertType(getContext().LongTy); 1465 appendFieldAndPadding(*this, Fields, CurField, NextField, 1466 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1467 1468 // The struct. 1469 C = llvm::ConstantStruct::get(STy, Fields); 1470 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1471 llvm::GlobalVariable::PrivateLinkage, C, 1472 "_unnamed_cfstring_"); 1473 if (const char *Sect = getContext().Target.getCFStringSection()) 1474 GV->setSection(Sect); 1475 Entry.setValue(GV); 1476 1477 return GV; 1478 } 1479 1480 /// GetStringForStringLiteral - Return the appropriate bytes for a 1481 /// string literal, properly padded to match the literal type. 1482 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1483 const char *StrData = E->getStrData(); 1484 unsigned Len = E->getByteLength(); 1485 1486 const ConstantArrayType *CAT = 1487 getContext().getAsConstantArrayType(E->getType()); 1488 assert(CAT && "String isn't pointer or array!"); 1489 1490 // Resize the string to the right size. 1491 std::string Str(StrData, StrData+Len); 1492 uint64_t RealLen = CAT->getSize().getZExtValue(); 1493 1494 if (E->isWide()) 1495 RealLen *= getContext().Target.getWCharWidth()/8; 1496 1497 Str.resize(RealLen, '\0'); 1498 1499 return Str; 1500 } 1501 1502 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1503 /// constant array for the given string literal. 1504 llvm::Constant * 1505 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1506 // FIXME: This can be more efficient. 1507 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1508 } 1509 1510 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1511 /// array for the given ObjCEncodeExpr node. 1512 llvm::Constant * 1513 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1514 std::string Str; 1515 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1516 1517 return GetAddrOfConstantCString(Str); 1518 } 1519 1520 1521 /// GenerateWritableString -- Creates storage for a string literal. 1522 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1523 bool constant, 1524 CodeGenModule &CGM, 1525 const char *GlobalName) { 1526 // Create Constant for this string literal. Don't add a '\0'. 1527 llvm::Constant *C = 1528 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1529 1530 // Create a global variable for this string 1531 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1532 llvm::GlobalValue::PrivateLinkage, 1533 C, GlobalName); 1534 } 1535 1536 /// GetAddrOfConstantString - Returns a pointer to a character array 1537 /// containing the literal. This contents are exactly that of the 1538 /// given string, i.e. it will not be null terminated automatically; 1539 /// see GetAddrOfConstantCString. Note that whether the result is 1540 /// actually a pointer to an LLVM constant depends on 1541 /// Feature.WriteableStrings. 1542 /// 1543 /// The result has pointer to array type. 1544 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1545 const char *GlobalName) { 1546 bool IsConstant = !Features.WritableStrings; 1547 1548 // Get the default prefix if a name wasn't specified. 1549 if (!GlobalName) 1550 GlobalName = ".str"; 1551 1552 // Don't share any string literals if strings aren't constant. 1553 if (!IsConstant) 1554 return GenerateStringLiteral(str, false, *this, GlobalName); 1555 1556 llvm::StringMapEntry<llvm::Constant *> &Entry = 1557 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1558 1559 if (Entry.getValue()) 1560 return Entry.getValue(); 1561 1562 // Create a global variable for this. 1563 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1564 Entry.setValue(C); 1565 return C; 1566 } 1567 1568 /// GetAddrOfConstantCString - Returns a pointer to a character 1569 /// array containing the literal and a terminating '\-' 1570 /// character. The result has pointer to array type. 1571 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1572 const char *GlobalName){ 1573 return GetAddrOfConstantString(str + '\0', GlobalName); 1574 } 1575 1576 /// EmitObjCPropertyImplementations - Emit information for synthesized 1577 /// properties for an implementation. 1578 void CodeGenModule::EmitObjCPropertyImplementations(const 1579 ObjCImplementationDecl *D) { 1580 for (ObjCImplementationDecl::propimpl_iterator 1581 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1582 ObjCPropertyImplDecl *PID = *i; 1583 1584 // Dynamic is just for type-checking. 1585 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1586 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1587 1588 // Determine which methods need to be implemented, some may have 1589 // been overridden. Note that ::isSynthesized is not the method 1590 // we want, that just indicates if the decl came from a 1591 // property. What we want to know is if the method is defined in 1592 // this implementation. 1593 if (!D->getInstanceMethod(PD->getGetterName())) 1594 CodeGenFunction(*this).GenerateObjCGetter( 1595 const_cast<ObjCImplementationDecl *>(D), PID); 1596 if (!PD->isReadOnly() && 1597 !D->getInstanceMethod(PD->getSetterName())) 1598 CodeGenFunction(*this).GenerateObjCSetter( 1599 const_cast<ObjCImplementationDecl *>(D), PID); 1600 } 1601 } 1602 } 1603 1604 /// EmitNamespace - Emit all declarations in a namespace. 1605 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1606 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1607 I != E; ++I) 1608 EmitTopLevelDecl(*I); 1609 } 1610 1611 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1612 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1613 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1614 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1615 ErrorUnsupported(LSD, "linkage spec"); 1616 return; 1617 } 1618 1619 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1620 I != E; ++I) 1621 EmitTopLevelDecl(*I); 1622 } 1623 1624 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1625 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1626 // If an error has occurred, stop code generation, but continue 1627 // parsing and semantic analysis (to ensure all warnings and errors 1628 // are emitted). 1629 if (Diags.hasErrorOccurred()) 1630 return; 1631 1632 // Ignore dependent declarations. 1633 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1634 return; 1635 1636 switch (D->getKind()) { 1637 case Decl::CXXMethod: 1638 case Decl::Function: 1639 // Skip function templates 1640 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1641 return; 1642 1643 // Fall through 1644 1645 case Decl::Var: 1646 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1647 break; 1648 1649 // C++ Decls 1650 case Decl::Namespace: 1651 EmitNamespace(cast<NamespaceDecl>(D)); 1652 break; 1653 // No code generation needed. 1654 case Decl::Using: 1655 case Decl::ClassTemplate: 1656 case Decl::FunctionTemplate: 1657 break; 1658 case Decl::CXXConstructor: 1659 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1660 break; 1661 case Decl::CXXDestructor: 1662 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1663 break; 1664 1665 case Decl::StaticAssert: 1666 // Nothing to do. 1667 break; 1668 1669 // Objective-C Decls 1670 1671 // Forward declarations, no (immediate) code generation. 1672 case Decl::ObjCClass: 1673 case Decl::ObjCForwardProtocol: 1674 case Decl::ObjCCategory: 1675 case Decl::ObjCInterface: 1676 break; 1677 1678 case Decl::ObjCProtocol: 1679 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1680 break; 1681 1682 case Decl::ObjCCategoryImpl: 1683 // Categories have properties but don't support synthesize so we 1684 // can ignore them here. 1685 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1686 break; 1687 1688 case Decl::ObjCImplementation: { 1689 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1690 EmitObjCPropertyImplementations(OMD); 1691 Runtime->GenerateClass(OMD); 1692 break; 1693 } 1694 case Decl::ObjCMethod: { 1695 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1696 // If this is not a prototype, emit the body. 1697 if (OMD->getBody()) 1698 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1699 break; 1700 } 1701 case Decl::ObjCCompatibleAlias: 1702 // compatibility-alias is a directive and has no code gen. 1703 break; 1704 1705 case Decl::LinkageSpec: 1706 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1707 break; 1708 1709 case Decl::FileScopeAsm: { 1710 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1711 std::string AsmString(AD->getAsmString()->getStrData(), 1712 AD->getAsmString()->getByteLength()); 1713 1714 const std::string &S = getModule().getModuleInlineAsm(); 1715 if (S.empty()) 1716 getModule().setModuleInlineAsm(AsmString); 1717 else 1718 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1719 break; 1720 } 1721 1722 default: 1723 // Make sure we handled everything we should, every other kind is a 1724 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1725 // function. Need to recode Decl::Kind to do that easily. 1726 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1727 } 1728 } 1729