1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = GD.getDecl();
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // The kind of external linkage this function will have, if it is not
251   // inline or static.
252   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253   if (Context.getLangOptions().CPlusPlus &&
254       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
255       !FD->isExplicitSpecialization())
256     External = CodeGenModule::GVA_TemplateInstantiation;
257 
258   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
259     // C++ member functions defined inside the class are always inline.
260     if (MD->isInline() || !MD->isOutOfLine())
261       return CodeGenModule::GVA_CXXInline;
262 
263     return External;
264   }
265 
266   // "static" functions get internal linkage.
267   if (FD->getStorageClass() == FunctionDecl::Static)
268     return CodeGenModule::GVA_Internal;
269 
270   if (!FD->isInline())
271     return External;
272 
273   // If the inline function explicitly has the GNU inline attribute on it, or if
274   // this is C89 mode, we use to GNU semantics.
275   if (!Features.C99 && !Features.CPlusPlus) {
276     // extern inline in GNU mode is like C99 inline.
277     if (FD->getStorageClass() == FunctionDecl::Extern)
278       return CodeGenModule::GVA_C99Inline;
279     // Normal inline is a strong symbol.
280     return CodeGenModule::GVA_StrongExternal;
281   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
282     // GCC in C99 mode seems to use a different decision-making
283     // process for extern inline, which factors in previous
284     // declarations.
285     if (FD->isExternGNUInline(Context))
286       return CodeGenModule::GVA_C99Inline;
287     // Normal inline is a strong symbol.
288     return External;
289   }
290 
291   // The definition of inline changes based on the language.  Note that we
292   // have already handled "static inline" above, with the GVA_Internal case.
293   if (Features.CPlusPlus)  // inline and extern inline.
294     return CodeGenModule::GVA_CXXInline;
295 
296   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
297   if (FD->isC99InlineDefinition())
298     return CodeGenModule::GVA_C99Inline;
299 
300   return CodeGenModule::GVA_StrongExternal;
301 }
302 
303 /// SetFunctionDefinitionAttributes - Set attributes for a global.
304 ///
305 /// FIXME: This is currently only done for aliases and functions, but not for
306 /// variables (these details are set in EmitGlobalVarDefinition for variables).
307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
308                                                     llvm::GlobalValue *GV) {
309   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
310 
311   if (Linkage == GVA_Internal) {
312     GV->setLinkage(llvm::Function::InternalLinkage);
313   } else if (D->hasAttr<DLLExportAttr>()) {
314     GV->setLinkage(llvm::Function::DLLExportLinkage);
315   } else if (D->hasAttr<WeakAttr>()) {
316     GV->setLinkage(llvm::Function::WeakAnyLinkage);
317   } else if (Linkage == GVA_C99Inline) {
318     // In C99 mode, 'inline' functions are guaranteed to have a strong
319     // definition somewhere else, so we can use available_externally linkage.
320     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
321   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
322     // In C++, the compiler has to emit a definition in every translation unit
323     // that references the function.  We should use linkonce_odr because
324     // a) if all references in this translation unit are optimized away, we
325     // don't need to codegen it.  b) if the function persists, it needs to be
326     // merged with other definitions. c) C++ has the ODR, so we know the
327     // definition is dependable.
328     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
329   } else {
330     assert(Linkage == GVA_StrongExternal);
331     // Otherwise, we have strong external linkage.
332     GV->setLinkage(llvm::Function::ExternalLinkage);
333   }
334 
335   SetCommonAttributes(D, GV);
336 }
337 
338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
339                                               const CGFunctionInfo &Info,
340                                               llvm::Function *F) {
341   AttributeListType AttributeList;
342   ConstructAttributeList(Info, D, AttributeList);
343 
344   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
345                                         AttributeList.size()));
346 
347   // Set the appropriate calling convention for the Function.
348   if (D->hasAttr<FastCallAttr>())
349     F->setCallingConv(llvm::CallingConv::X86_FastCall);
350 
351   if (D->hasAttr<StdCallAttr>())
352     F->setCallingConv(llvm::CallingConv::X86_StdCall);
353 }
354 
355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
356                                                            llvm::Function *F) {
357   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
358     F->addFnAttr(llvm::Attribute::NoUnwind);
359 
360   if (D->hasAttr<AlwaysInlineAttr>())
361     F->addFnAttr(llvm::Attribute::AlwaysInline);
362 
363   if (D->hasAttr<NoinlineAttr>())
364     F->addFnAttr(llvm::Attribute::NoInline);
365 }
366 
367 void CodeGenModule::SetCommonAttributes(const Decl *D,
368                                         llvm::GlobalValue *GV) {
369   setGlobalVisibility(GV, D);
370 
371   if (D->hasAttr<UsedAttr>())
372     AddUsedGlobal(GV);
373 
374   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
375     GV->setSection(SA->getName());
376 }
377 
378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
379                                                   llvm::Function *F,
380                                                   const CGFunctionInfo &FI) {
381   SetLLVMFunctionAttributes(D, FI, F);
382   SetLLVMFunctionAttributesForDefinition(D, F);
383 
384   F->setLinkage(llvm::Function::InternalLinkage);
385 
386   SetCommonAttributes(D, F);
387 }
388 
389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
390                                           llvm::Function *F,
391                                           bool IsIncompleteFunction) {
392   if (!IsIncompleteFunction)
393     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
394 
395   // Only a few attributes are set on declarations; these may later be
396   // overridden by a definition.
397 
398   if (FD->hasAttr<DLLImportAttr>()) {
399     F->setLinkage(llvm::Function::DLLImportLinkage);
400   } else if (FD->hasAttr<WeakAttr>() ||
401              FD->hasAttr<WeakImportAttr>()) {
402     // "extern_weak" is overloaded in LLVM; we probably should have
403     // separate linkage types for this.
404     F->setLinkage(llvm::Function::ExternalWeakLinkage);
405   } else {
406     F->setLinkage(llvm::Function::ExternalLinkage);
407   }
408 
409   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
410     F->setSection(SA->getName());
411 }
412 
413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
414   assert(!GV->isDeclaration() &&
415          "Only globals with definition can force usage.");
416   LLVMUsed.push_back(GV);
417 }
418 
419 void CodeGenModule::EmitLLVMUsed() {
420   // Don't create llvm.used if there is no need.
421   if (LLVMUsed.empty())
422     return;
423 
424   llvm::Type *i8PTy =
425       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
426 
427   // Convert LLVMUsed to what ConstantArray needs.
428   std::vector<llvm::Constant*> UsedArray;
429   UsedArray.resize(LLVMUsed.size());
430   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
431     UsedArray[i] =
432      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
433                                       i8PTy);
434   }
435 
436   if (UsedArray.empty())
437     return;
438   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
439 
440   llvm::GlobalVariable *GV =
441     new llvm::GlobalVariable(getModule(), ATy, false,
442                              llvm::GlobalValue::AppendingLinkage,
443                              llvm::ConstantArray::get(ATy, UsedArray),
444                              "llvm.used");
445 
446   GV->setSection("llvm.metadata");
447 }
448 
449 void CodeGenModule::EmitDeferred() {
450   // Emit code for any potentially referenced deferred decls.  Since a
451   // previously unused static decl may become used during the generation of code
452   // for a static function, iterate until no  changes are made.
453   while (!DeferredDeclsToEmit.empty()) {
454     GlobalDecl D = DeferredDeclsToEmit.back();
455     DeferredDeclsToEmit.pop_back();
456 
457     // The mangled name for the decl must have been emitted in GlobalDeclMap.
458     // Look it up to see if it was defined with a stronger definition (e.g. an
459     // extern inline function with a strong function redefinition).  If so,
460     // just ignore the deferred decl.
461     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
462     assert(CGRef && "Deferred decl wasn't referenced?");
463 
464     if (!CGRef->isDeclaration())
465       continue;
466 
467     // Otherwise, emit the definition and move on to the next one.
468     EmitGlobalDefinition(D);
469   }
470 }
471 
472 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
473 /// annotation information for a given GlobalValue.  The annotation struct is
474 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
475 /// GlobalValue being annotated.  The second field is the constant string
476 /// created from the AnnotateAttr's annotation.  The third field is a constant
477 /// string containing the name of the translation unit.  The fourth field is
478 /// the line number in the file of the annotated value declaration.
479 ///
480 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
481 ///        appears to.
482 ///
483 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
484                                                 const AnnotateAttr *AA,
485                                                 unsigned LineNo) {
486   llvm::Module *M = &getModule();
487 
488   // get [N x i8] constants for the annotation string, and the filename string
489   // which are the 2nd and 3rd elements of the global annotation structure.
490   const llvm::Type *SBP =
491       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
492   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
493                                                   AA->getAnnotation(), true);
494   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
495                                                   M->getModuleIdentifier(),
496                                                   true);
497 
498   // Get the two global values corresponding to the ConstantArrays we just
499   // created to hold the bytes of the strings.
500   llvm::GlobalValue *annoGV =
501     new llvm::GlobalVariable(*M, anno->getType(), false,
502                              llvm::GlobalValue::PrivateLinkage, anno,
503                              GV->getName());
504   // translation unit name string, emitted into the llvm.metadata section.
505   llvm::GlobalValue *unitGV =
506     new llvm::GlobalVariable(*M, unit->getType(), false,
507                              llvm::GlobalValue::PrivateLinkage, unit,
508                              ".str");
509 
510   // Create the ConstantStruct for the global annotation.
511   llvm::Constant *Fields[4] = {
512     llvm::ConstantExpr::getBitCast(GV, SBP),
513     llvm::ConstantExpr::getBitCast(annoGV, SBP),
514     llvm::ConstantExpr::getBitCast(unitGV, SBP),
515     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
516   };
517   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
518 }
519 
520 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
521   // Never defer when EmitAllDecls is specified or the decl has
522   // attribute used.
523   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
524     return false;
525 
526   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
527     // Constructors and destructors should never be deferred.
528     if (FD->hasAttr<ConstructorAttr>() ||
529         FD->hasAttr<DestructorAttr>())
530       return false;
531 
532     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
533 
534     // static, static inline, always_inline, and extern inline functions can
535     // always be deferred.  Normal inline functions can be deferred in C99/C++.
536     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
537         Linkage == GVA_CXXInline)
538       return true;
539     return false;
540   }
541 
542   const VarDecl *VD = cast<VarDecl>(Global);
543   assert(VD->isFileVarDecl() && "Invalid decl");
544 
545   return VD->getStorageClass() == VarDecl::Static;
546 }
547 
548 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
549   const ValueDecl *Global = GD.getDecl();
550 
551   // If this is an alias definition (which otherwise looks like a declaration)
552   // emit it now.
553   if (Global->hasAttr<AliasAttr>())
554     return EmitAliasDefinition(Global);
555 
556   // Ignore declarations, they will be emitted on their first use.
557   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
558     // Forward declarations are emitted lazily on first use.
559     if (!FD->isThisDeclarationADefinition())
560       return;
561   } else {
562     const VarDecl *VD = cast<VarDecl>(Global);
563     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
564 
565     // In C++, if this is marked "extern", defer code generation.
566     if (getLangOptions().CPlusPlus && !VD->getInit() &&
567         (VD->getStorageClass() == VarDecl::Extern ||
568          VD->isExternC(getContext())))
569       return;
570 
571     // In C, if this isn't a definition, defer code generation.
572     if (!getLangOptions().CPlusPlus && !VD->getInit())
573       return;
574   }
575 
576   // Defer code generation when possible if this is a static definition, inline
577   // function etc.  These we only want to emit if they are used.
578   if (MayDeferGeneration(Global)) {
579     // If the value has already been used, add it directly to the
580     // DeferredDeclsToEmit list.
581     const char *MangledName = getMangledName(GD);
582     if (GlobalDeclMap.count(MangledName))
583       DeferredDeclsToEmit.push_back(GD);
584     else {
585       // Otherwise, remember that we saw a deferred decl with this name.  The
586       // first use of the mangled name will cause it to move into
587       // DeferredDeclsToEmit.
588       DeferredDecls[MangledName] = GD;
589     }
590     return;
591   }
592 
593   // Otherwise emit the definition.
594   EmitGlobalDefinition(GD);
595 }
596 
597 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
598   const ValueDecl *D = GD.getDecl();
599 
600   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
601     EmitCXXConstructor(CD, GD.getCtorType());
602   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
603     EmitCXXDestructor(DD, GD.getDtorType());
604   else if (isa<FunctionDecl>(D))
605     EmitGlobalFunctionDefinition(GD);
606   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
607     EmitGlobalVarDefinition(VD);
608   else {
609     assert(0 && "Invalid argument to EmitGlobalDefinition()");
610   }
611 }
612 
613 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
614 /// module, create and return an llvm Function with the specified type. If there
615 /// is something in the module with the specified name, return it potentially
616 /// bitcasted to the right type.
617 ///
618 /// If D is non-null, it specifies a decl that correspond to this.  This is used
619 /// to set the attributes on the function when it is first created.
620 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
621                                                        const llvm::Type *Ty,
622                                                        GlobalDecl D) {
623   // Lookup the entry, lazily creating it if necessary.
624   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
625   if (Entry) {
626     if (Entry->getType()->getElementType() == Ty)
627       return Entry;
628 
629     // Make sure the result is of the correct type.
630     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
631     return llvm::ConstantExpr::getBitCast(Entry, PTy);
632   }
633 
634   // This is the first use or definition of a mangled name.  If there is a
635   // deferred decl with this name, remember that we need to emit it at the end
636   // of the file.
637   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
638     DeferredDecls.find(MangledName);
639   if (DDI != DeferredDecls.end()) {
640     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
641     // list, and remove it from DeferredDecls (since we don't need it anymore).
642     DeferredDeclsToEmit.push_back(DDI->second);
643     DeferredDecls.erase(DDI);
644   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
645     // If this the first reference to a C++ inline function in a class, queue up
646     // the deferred function body for emission.  These are not seen as
647     // top-level declarations.
648     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
649       DeferredDeclsToEmit.push_back(D);
650     // A called constructor which has no definition or declaration need be
651     // synthesized.
652     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
653       const CXXRecordDecl *ClassDecl =
654         cast<CXXRecordDecl>(CD->getDeclContext());
655       if (CD->isCopyConstructor(getContext()))
656         DeferredCopyConstructorToEmit(D);
657       else if (!ClassDecl->hasUserDeclaredConstructor())
658         DeferredDeclsToEmit.push_back(D);
659     }
660     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
661            if (MD->isCopyAssignment())
662              DeferredCopyAssignmentToEmit(D);
663   }
664 
665   // This function doesn't have a complete type (for example, the return
666   // type is an incomplete struct). Use a fake type instead, and make
667   // sure not to try to set attributes.
668   bool IsIncompleteFunction = false;
669   if (!isa<llvm::FunctionType>(Ty)) {
670     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
671                                  std::vector<const llvm::Type*>(), false);
672     IsIncompleteFunction = true;
673   }
674   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
675                                              llvm::Function::ExternalLinkage,
676                                              "", &getModule());
677   F->setName(MangledName);
678   if (D.getDecl())
679     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
680                           IsIncompleteFunction);
681   Entry = F;
682   return F;
683 }
684 
685 /// Defer definition of copy constructor(s) which need be implicitly defined.
686 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
687   const CXXConstructorDecl *CD =
688     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
689   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
690   if (ClassDecl->hasTrivialCopyConstructor() ||
691       ClassDecl->hasUserDeclaredCopyConstructor())
692     return;
693 
694   // First make sure all direct base classes and virtual bases and non-static
695   // data mebers which need to have their copy constructors implicitly defined
696   // are defined. 12.8.p7
697   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
698        Base != ClassDecl->bases_end(); ++Base) {
699     CXXRecordDecl *BaseClassDecl
700       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
701     if (CXXConstructorDecl *BaseCopyCtor =
702         BaseClassDecl->getCopyConstructor(Context, 0))
703       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
704   }
705 
706   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
707        FieldEnd = ClassDecl->field_end();
708        Field != FieldEnd; ++Field) {
709     QualType FieldType = Context.getCanonicalType((*Field)->getType());
710     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
711       FieldType = Array->getElementType();
712     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
713       if ((*Field)->isAnonymousStructOrUnion())
714         continue;
715       CXXRecordDecl *FieldClassDecl
716         = cast<CXXRecordDecl>(FieldClassType->getDecl());
717       if (CXXConstructorDecl *FieldCopyCtor =
718           FieldClassDecl->getCopyConstructor(Context, 0))
719         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
720     }
721   }
722   DeferredDeclsToEmit.push_back(CopyCtorDecl);
723 }
724 
725 /// Defer definition of copy assignments which need be implicitly defined.
726 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
727   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
728   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
729 
730   if (ClassDecl->hasTrivialCopyAssignment() ||
731       ClassDecl->hasUserDeclaredCopyAssignment())
732     return;
733 
734   // First make sure all direct base classes and virtual bases and non-static
735   // data mebers which need to have their copy assignments implicitly defined
736   // are defined. 12.8.p12
737   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
738        Base != ClassDecl->bases_end(); ++Base) {
739     CXXRecordDecl *BaseClassDecl
740       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
741     const CXXMethodDecl *MD = 0;
742     if (BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
743       GetAddrOfFunction(GlobalDecl(MD), 0);
744   }
745 
746   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
747        FieldEnd = ClassDecl->field_end();
748        Field != FieldEnd; ++Field) {
749     QualType FieldType = Context.getCanonicalType((*Field)->getType());
750     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
751       FieldType = Array->getElementType();
752     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
753       if ((*Field)->isAnonymousStructOrUnion())
754         continue;
755       CXXRecordDecl *FieldClassDecl
756         = cast<CXXRecordDecl>(FieldClassType->getDecl());
757       const CXXMethodDecl *MD = 0;
758       if (FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
759           GetAddrOfFunction(GlobalDecl(MD), 0);
760     }
761   }
762   DeferredDeclsToEmit.push_back(CopyAssignDecl);
763 }
764 
765 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
766 /// non-null, then this function will use the specified type if it has to
767 /// create it (this occurs when we see a definition of the function).
768 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
769                                                  const llvm::Type *Ty) {
770   // If there was no specific requested type, just convert it now.
771   if (!Ty)
772     Ty = getTypes().ConvertType(GD.getDecl()->getType());
773   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
774 }
775 
776 /// CreateRuntimeFunction - Create a new runtime function with the specified
777 /// type and name.
778 llvm::Constant *
779 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
780                                      const char *Name) {
781   // Convert Name to be a uniqued string from the IdentifierInfo table.
782   Name = getContext().Idents.get(Name).getName();
783   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
784 }
785 
786 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
787 /// create and return an llvm GlobalVariable with the specified type.  If there
788 /// is something in the module with the specified name, return it potentially
789 /// bitcasted to the right type.
790 ///
791 /// If D is non-null, it specifies a decl that correspond to this.  This is used
792 /// to set the attributes on the global when it is first created.
793 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
794                                                      const llvm::PointerType*Ty,
795                                                      const VarDecl *D) {
796   // Lookup the entry, lazily creating it if necessary.
797   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
798   if (Entry) {
799     if (Entry->getType() == Ty)
800       return Entry;
801 
802     // Make sure the result is of the correct type.
803     return llvm::ConstantExpr::getBitCast(Entry, Ty);
804   }
805 
806   // This is the first use or definition of a mangled name.  If there is a
807   // deferred decl with this name, remember that we need to emit it at the end
808   // of the file.
809   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
810     DeferredDecls.find(MangledName);
811   if (DDI != DeferredDecls.end()) {
812     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
813     // list, and remove it from DeferredDecls (since we don't need it anymore).
814     DeferredDeclsToEmit.push_back(DDI->second);
815     DeferredDecls.erase(DDI);
816   }
817 
818   llvm::GlobalVariable *GV =
819     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
820                              llvm::GlobalValue::ExternalLinkage,
821                              0, "", 0,
822                              false, Ty->getAddressSpace());
823   GV->setName(MangledName);
824 
825   // Handle things which are present even on external declarations.
826   if (D) {
827     // FIXME: This code is overly simple and should be merged with other global
828     // handling.
829     GV->setConstant(D->getType().isConstant(Context));
830 
831     // FIXME: Merge with other attribute handling code.
832     if (D->getStorageClass() == VarDecl::PrivateExtern)
833       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
834 
835     if (D->hasAttr<WeakAttr>() ||
836         D->hasAttr<WeakImportAttr>())
837       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
838 
839     GV->setThreadLocal(D->isThreadSpecified());
840   }
841 
842   return Entry = GV;
843 }
844 
845 
846 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
847 /// given global variable.  If Ty is non-null and if the global doesn't exist,
848 /// then it will be greated with the specified type instead of whatever the
849 /// normal requested type would be.
850 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
851                                                   const llvm::Type *Ty) {
852   assert(D->hasGlobalStorage() && "Not a global variable");
853   QualType ASTTy = D->getType();
854   if (Ty == 0)
855     Ty = getTypes().ConvertTypeForMem(ASTTy);
856 
857   const llvm::PointerType *PTy =
858     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
859   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
860 }
861 
862 /// CreateRuntimeVariable - Create a new runtime global variable with the
863 /// specified type and name.
864 llvm::Constant *
865 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
866                                      const char *Name) {
867   // Convert Name to be a uniqued string from the IdentifierInfo table.
868   Name = getContext().Idents.get(Name).getName();
869   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
870 }
871 
872 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
873   assert(!D->getInit() && "Cannot emit definite definitions here!");
874 
875   if (MayDeferGeneration(D)) {
876     // If we have not seen a reference to this variable yet, place it
877     // into the deferred declarations table to be emitted if needed
878     // later.
879     const char *MangledName = getMangledName(D);
880     if (GlobalDeclMap.count(MangledName) == 0) {
881       DeferredDecls[MangledName] = GlobalDecl(D);
882       return;
883     }
884   }
885 
886   // The tentative definition is the only definition.
887   EmitGlobalVarDefinition(D);
888 }
889 
890 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
891   llvm::Constant *Init = 0;
892   QualType ASTTy = D->getType();
893 
894   if (D->getInit() == 0) {
895     // This is a tentative definition; tentative definitions are
896     // implicitly initialized with { 0 }.
897     //
898     // Note that tentative definitions are only emitted at the end of
899     // a translation unit, so they should never have incomplete
900     // type. In addition, EmitTentativeDefinition makes sure that we
901     // never attempt to emit a tentative definition if a real one
902     // exists. A use may still exists, however, so we still may need
903     // to do a RAUW.
904     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
905     Init = EmitNullConstant(D->getType());
906   } else {
907     Init = EmitConstantExpr(D->getInit(), D->getType());
908 
909     if (!Init) {
910       QualType T = D->getInit()->getType();
911       if (getLangOptions().CPlusPlus) {
912         CXXGlobalInits.push_back(D);
913         Init = EmitNullConstant(T);
914       } else {
915         ErrorUnsupported(D, "static initializer");
916         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
917       }
918     }
919   }
920 
921   const llvm::Type* InitType = Init->getType();
922   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
923 
924   // Strip off a bitcast if we got one back.
925   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
926     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
927            // all zero index gep.
928            CE->getOpcode() == llvm::Instruction::GetElementPtr);
929     Entry = CE->getOperand(0);
930   }
931 
932   // Entry is now either a Function or GlobalVariable.
933   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
934 
935   // We have a definition after a declaration with the wrong type.
936   // We must make a new GlobalVariable* and update everything that used OldGV
937   // (a declaration or tentative definition) with the new GlobalVariable*
938   // (which will be a definition).
939   //
940   // This happens if there is a prototype for a global (e.g.
941   // "extern int x[];") and then a definition of a different type (e.g.
942   // "int x[10];"). This also happens when an initializer has a different type
943   // from the type of the global (this happens with unions).
944   if (GV == 0 ||
945       GV->getType()->getElementType() != InitType ||
946       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
947 
948     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
949     GlobalDeclMap.erase(getMangledName(D));
950 
951     // Make a new global with the correct type, this is now guaranteed to work.
952     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
953     GV->takeName(cast<llvm::GlobalValue>(Entry));
954 
955     // Replace all uses of the old global with the new global
956     llvm::Constant *NewPtrForOldDecl =
957         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
958     Entry->replaceAllUsesWith(NewPtrForOldDecl);
959 
960     // Erase the old global, since it is no longer used.
961     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
962   }
963 
964   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
965     SourceManager &SM = Context.getSourceManager();
966     AddAnnotation(EmitAnnotateAttr(GV, AA,
967                               SM.getInstantiationLineNumber(D->getLocation())));
968   }
969 
970   GV->setInitializer(Init);
971 
972   // If it is safe to mark the global 'constant', do so now.
973   GV->setConstant(false);
974   if (D->getType().isConstant(Context)) {
975     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
976     // members, it cannot be declared "LLVM const".
977     GV->setConstant(true);
978   }
979 
980   GV->setAlignment(getContext().getDeclAlignInBytes(D));
981 
982   // Set the llvm linkage type as appropriate.
983   if (D->getStorageClass() == VarDecl::Static)
984     GV->setLinkage(llvm::Function::InternalLinkage);
985   else if (D->hasAttr<DLLImportAttr>())
986     GV->setLinkage(llvm::Function::DLLImportLinkage);
987   else if (D->hasAttr<DLLExportAttr>())
988     GV->setLinkage(llvm::Function::DLLExportLinkage);
989   else if (D->hasAttr<WeakAttr>()) {
990     if (GV->isConstant())
991       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
992     else
993       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
994   } else if (!CompileOpts.NoCommon &&
995            !D->hasExternalStorage() && !D->getInit() &&
996            !D->getAttr<SectionAttr>()) {
997     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
998     // common vars aren't constant even if declared const.
999     GV->setConstant(false);
1000   } else
1001     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1002 
1003   SetCommonAttributes(D, GV);
1004 
1005   // Emit global variable debug information.
1006   if (CGDebugInfo *DI = getDebugInfo()) {
1007     DI->setLocation(D->getLocation());
1008     DI->EmitGlobalVariable(GV, D);
1009   }
1010 }
1011 
1012 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1013 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1014 /// existing call uses of the old function in the module, this adjusts them to
1015 /// call the new function directly.
1016 ///
1017 /// This is not just a cleanup: the always_inline pass requires direct calls to
1018 /// functions to be able to inline them.  If there is a bitcast in the way, it
1019 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1020 /// run at -O0.
1021 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1022                                                       llvm::Function *NewFn) {
1023   // If we're redefining a global as a function, don't transform it.
1024   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1025   if (OldFn == 0) return;
1026 
1027   const llvm::Type *NewRetTy = NewFn->getReturnType();
1028   llvm::SmallVector<llvm::Value*, 4> ArgList;
1029 
1030   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1031        UI != E; ) {
1032     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1033     unsigned OpNo = UI.getOperandNo();
1034     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1035     if (!CI || OpNo != 0) continue;
1036 
1037     // If the return types don't match exactly, and if the call isn't dead, then
1038     // we can't transform this call.
1039     if (CI->getType() != NewRetTy && !CI->use_empty())
1040       continue;
1041 
1042     // If the function was passed too few arguments, don't transform.  If extra
1043     // arguments were passed, we silently drop them.  If any of the types
1044     // mismatch, we don't transform.
1045     unsigned ArgNo = 0;
1046     bool DontTransform = false;
1047     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1048          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1049       if (CI->getNumOperands()-1 == ArgNo ||
1050           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1051         DontTransform = true;
1052         break;
1053       }
1054     }
1055     if (DontTransform)
1056       continue;
1057 
1058     // Okay, we can transform this.  Create the new call instruction and copy
1059     // over the required information.
1060     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1061     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1062                                                      ArgList.end(), "", CI);
1063     ArgList.clear();
1064     if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext()))
1065       NewCall->takeName(CI);
1066     NewCall->setCallingConv(CI->getCallingConv());
1067     NewCall->setAttributes(CI->getAttributes());
1068 
1069     // Finally, remove the old call, replacing any uses with the new one.
1070     if (!CI->use_empty())
1071       CI->replaceAllUsesWith(NewCall);
1072     CI->eraseFromParent();
1073   }
1074 }
1075 
1076 
1077 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1078   const llvm::FunctionType *Ty;
1079   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1080 
1081   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1082     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1083 
1084     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1085   } else {
1086     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1087 
1088     // As a special case, make sure that definitions of K&R function
1089     // "type foo()" aren't declared as varargs (which forces the backend
1090     // to do unnecessary work).
1091     if (D->getType()->isFunctionNoProtoType()) {
1092       assert(Ty->isVarArg() && "Didn't lower type as expected");
1093       // Due to stret, the lowered function could have arguments.
1094       // Just create the same type as was lowered by ConvertType
1095       // but strip off the varargs bit.
1096       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1097       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1098     }
1099   }
1100 
1101   // Get or create the prototype for the function.
1102   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1103 
1104   // Strip off a bitcast if we got one back.
1105   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1106     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1107     Entry = CE->getOperand(0);
1108   }
1109 
1110 
1111   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1112     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1113 
1114     // If the types mismatch then we have to rewrite the definition.
1115     assert(OldFn->isDeclaration() &&
1116            "Shouldn't replace non-declaration");
1117 
1118     // F is the Function* for the one with the wrong type, we must make a new
1119     // Function* and update everything that used F (a declaration) with the new
1120     // Function* (which will be a definition).
1121     //
1122     // This happens if there is a prototype for a function
1123     // (e.g. "int f()") and then a definition of a different type
1124     // (e.g. "int f(int x)").  Start by making a new function of the
1125     // correct type, RAUW, then steal the name.
1126     GlobalDeclMap.erase(getMangledName(D));
1127     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1128     NewFn->takeName(OldFn);
1129 
1130     // If this is an implementation of a function without a prototype, try to
1131     // replace any existing uses of the function (which may be calls) with uses
1132     // of the new function
1133     if (D->getType()->isFunctionNoProtoType()) {
1134       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1135       OldFn->removeDeadConstantUsers();
1136     }
1137 
1138     // Replace uses of F with the Function we will endow with a body.
1139     if (!Entry->use_empty()) {
1140       llvm::Constant *NewPtrForOldDecl =
1141         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1142       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1143     }
1144 
1145     // Ok, delete the old function now, which is dead.
1146     OldFn->eraseFromParent();
1147 
1148     Entry = NewFn;
1149   }
1150 
1151   llvm::Function *Fn = cast<llvm::Function>(Entry);
1152 
1153   CodeGenFunction(*this).GenerateCode(D, Fn);
1154 
1155   SetFunctionDefinitionAttributes(D, Fn);
1156   SetLLVMFunctionAttributesForDefinition(D, Fn);
1157 
1158   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1159     AddGlobalCtor(Fn, CA->getPriority());
1160   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1161     AddGlobalDtor(Fn, DA->getPriority());
1162 }
1163 
1164 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1165   const AliasAttr *AA = D->getAttr<AliasAttr>();
1166   assert(AA && "Not an alias?");
1167 
1168   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1169 
1170   // Unique the name through the identifier table.
1171   const char *AliaseeName = AA->getAliasee().c_str();
1172   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1173 
1174   // Create a reference to the named value.  This ensures that it is emitted
1175   // if a deferred decl.
1176   llvm::Constant *Aliasee;
1177   if (isa<llvm::FunctionType>(DeclTy))
1178     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1179   else
1180     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1181                                     llvm::PointerType::getUnqual(DeclTy), 0);
1182 
1183   // Create the new alias itself, but don't set a name yet.
1184   llvm::GlobalValue *GA =
1185     new llvm::GlobalAlias(Aliasee->getType(),
1186                           llvm::Function::ExternalLinkage,
1187                           "", Aliasee, &getModule());
1188 
1189   // See if there is already something with the alias' name in the module.
1190   const char *MangledName = getMangledName(D);
1191   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1192 
1193   if (Entry && !Entry->isDeclaration()) {
1194     // If there is a definition in the module, then it wins over the alias.
1195     // This is dubious, but allow it to be safe.  Just ignore the alias.
1196     GA->eraseFromParent();
1197     return;
1198   }
1199 
1200   if (Entry) {
1201     // If there is a declaration in the module, then we had an extern followed
1202     // by the alias, as in:
1203     //   extern int test6();
1204     //   ...
1205     //   int test6() __attribute__((alias("test7")));
1206     //
1207     // Remove it and replace uses of it with the alias.
1208 
1209     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1210                                                           Entry->getType()));
1211     Entry->eraseFromParent();
1212   }
1213 
1214   // Now we know that there is no conflict, set the name.
1215   Entry = GA;
1216   GA->setName(MangledName);
1217 
1218   // Set attributes which are particular to an alias; this is a
1219   // specialization of the attributes which may be set on a global
1220   // variable/function.
1221   if (D->hasAttr<DLLExportAttr>()) {
1222     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1223       // The dllexport attribute is ignored for undefined symbols.
1224       if (FD->getBody())
1225         GA->setLinkage(llvm::Function::DLLExportLinkage);
1226     } else {
1227       GA->setLinkage(llvm::Function::DLLExportLinkage);
1228     }
1229   } else if (D->hasAttr<WeakAttr>() ||
1230              D->hasAttr<WeakImportAttr>()) {
1231     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1232   }
1233 
1234   SetCommonAttributes(D, GA);
1235 }
1236 
1237 /// getBuiltinLibFunction - Given a builtin id for a function like
1238 /// "__builtin_fabsf", return a Function* for "fabsf".
1239 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1240   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1241           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1242          "isn't a lib fn");
1243 
1244   // Get the name, skip over the __builtin_ prefix (if necessary).
1245   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1246   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1247     Name += 10;
1248 
1249   // Get the type for the builtin.
1250   ASTContext::GetBuiltinTypeError Error;
1251   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1252   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1253 
1254   const llvm::FunctionType *Ty =
1255     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1256 
1257   // Unique the name through the identifier table.
1258   Name = getContext().Idents.get(Name).getName();
1259   // FIXME: param attributes for sext/zext etc.
1260   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1261 }
1262 
1263 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1264                                             unsigned NumTys) {
1265   return llvm::Intrinsic::getDeclaration(&getModule(),
1266                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1267 }
1268 
1269 llvm::Function *CodeGenModule::getMemCpyFn() {
1270   if (MemCpyFn) return MemCpyFn;
1271   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1272   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1273 }
1274 
1275 llvm::Function *CodeGenModule::getMemMoveFn() {
1276   if (MemMoveFn) return MemMoveFn;
1277   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1278   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1279 }
1280 
1281 llvm::Function *CodeGenModule::getMemSetFn() {
1282   if (MemSetFn) return MemSetFn;
1283   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1284   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1285 }
1286 
1287 static void appendFieldAndPadding(CodeGenModule &CGM,
1288                                   std::vector<llvm::Constant*>& Fields,
1289                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1290                                   llvm::Constant* Field,
1291                                   RecordDecl* RD, const llvm::StructType *STy) {
1292   // Append the field.
1293   Fields.push_back(Field);
1294 
1295   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1296 
1297   int NextStructFieldNo;
1298   if (!NextFieldD) {
1299     NextStructFieldNo = STy->getNumElements();
1300   } else {
1301     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1302   }
1303 
1304   // Append padding
1305   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1306     llvm::Constant *C =
1307       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1308 
1309     Fields.push_back(C);
1310   }
1311 }
1312 
1313 static llvm::StringMapEntry<llvm::Constant*> &
1314 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1315                          const StringLiteral *Literal,
1316                          bool TargetIsLSB,
1317                          bool &IsUTF16,
1318                          unsigned &StringLength) {
1319   unsigned NumBytes = Literal->getByteLength();
1320 
1321   // Check for simple case.
1322   if (!Literal->containsNonAsciiOrNull()) {
1323     StringLength = NumBytes;
1324     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1325                                                 StringLength));
1326   }
1327 
1328   // Otherwise, convert the UTF8 literals into a byte string.
1329   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1330   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1331   UTF16 *ToPtr = &ToBuf[0];
1332 
1333   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1334                                                &ToPtr, ToPtr + NumBytes,
1335                                                strictConversion);
1336 
1337   // Check for conversion failure.
1338   if (Result != conversionOK) {
1339     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1340     // this duplicate code.
1341     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1342     StringLength = NumBytes;
1343     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1344                                                 StringLength));
1345   }
1346 
1347   // ConvertUTF8toUTF16 returns the length in ToPtr.
1348   StringLength = ToPtr - &ToBuf[0];
1349 
1350   // Render the UTF-16 string into a byte array and convert to the target byte
1351   // order.
1352   //
1353   // FIXME: This isn't something we should need to do here.
1354   llvm::SmallString<128> AsBytes;
1355   AsBytes.reserve(StringLength * 2);
1356   for (unsigned i = 0; i != StringLength; ++i) {
1357     unsigned short Val = ToBuf[i];
1358     if (TargetIsLSB) {
1359       AsBytes.push_back(Val & 0xFF);
1360       AsBytes.push_back(Val >> 8);
1361     } else {
1362       AsBytes.push_back(Val >> 8);
1363       AsBytes.push_back(Val & 0xFF);
1364     }
1365   }
1366   // Append one extra null character, the second is automatically added by our
1367   // caller.
1368   AsBytes.push_back(0);
1369 
1370   IsUTF16 = true;
1371   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1372 }
1373 
1374 llvm::Constant *
1375 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1376   unsigned StringLength = 0;
1377   bool isUTF16 = false;
1378   llvm::StringMapEntry<llvm::Constant*> &Entry =
1379     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1380                              getTargetData().isLittleEndian(),
1381                              isUTF16, StringLength);
1382 
1383   if (llvm::Constant *C = Entry.getValue())
1384     return C;
1385 
1386   llvm::Constant *Zero =
1387       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1388   llvm::Constant *Zeros[] = { Zero, Zero };
1389 
1390   // If we don't already have it, get __CFConstantStringClassReference.
1391   if (!CFConstantStringClassRef) {
1392     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1393     Ty = llvm::ArrayType::get(Ty, 0);
1394     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1395                                            "__CFConstantStringClassReference");
1396     // Decay array -> ptr
1397     CFConstantStringClassRef =
1398       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1399   }
1400 
1401   QualType CFTy = getContext().getCFConstantStringType();
1402   RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl();
1403 
1404   const llvm::StructType *STy =
1405     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1406 
1407   std::vector<llvm::Constant*> Fields;
1408   RecordDecl::field_iterator Field = CFRD->field_begin();
1409 
1410   // Class pointer.
1411   FieldDecl *CurField = *Field++;
1412   FieldDecl *NextField = *Field++;
1413   appendFieldAndPadding(*this, Fields, CurField, NextField,
1414                         CFConstantStringClassRef, CFRD, STy);
1415 
1416   // Flags.
1417   CurField = NextField;
1418   NextField = *Field++;
1419   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1420   appendFieldAndPadding(*this, Fields, CurField, NextField,
1421                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1422                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1423                         CFRD, STy);
1424 
1425   // String pointer.
1426   CurField = NextField;
1427   NextField = *Field++;
1428   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1429 
1430   const char *Sect, *Prefix;
1431   bool isConstant;
1432   llvm::GlobalValue::LinkageTypes Linkage;
1433   if (isUTF16) {
1434     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1435     Sect = getContext().Target.getUnicodeStringSection();
1436     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1437     Linkage = llvm::GlobalValue::InternalLinkage;
1438     // FIXME: Why does GCC not set constant here?
1439     isConstant = false;
1440   } else {
1441     Prefix = ".str";
1442     Sect = getContext().Target.getCFStringDataSection();
1443     Linkage = llvm::GlobalValue::PrivateLinkage;
1444     // FIXME: -fwritable-strings should probably affect this, but we
1445     // are following gcc here.
1446     isConstant = true;
1447   }
1448   llvm::GlobalVariable *GV =
1449     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1450                              Linkage, C, Prefix);
1451   if (Sect)
1452     GV->setSection(Sect);
1453   if (isUTF16) {
1454     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1455     GV->setAlignment(Align);
1456   }
1457   appendFieldAndPadding(*this, Fields, CurField, NextField,
1458                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1459                         CFRD, STy);
1460 
1461   // String length.
1462   CurField = NextField;
1463   NextField = 0;
1464   Ty = getTypes().ConvertType(getContext().LongTy);
1465   appendFieldAndPadding(*this, Fields, CurField, NextField,
1466                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1467 
1468   // The struct.
1469   C = llvm::ConstantStruct::get(STy, Fields);
1470   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1471                                 llvm::GlobalVariable::PrivateLinkage, C,
1472                                 "_unnamed_cfstring_");
1473   if (const char *Sect = getContext().Target.getCFStringSection())
1474     GV->setSection(Sect);
1475   Entry.setValue(GV);
1476 
1477   return GV;
1478 }
1479 
1480 /// GetStringForStringLiteral - Return the appropriate bytes for a
1481 /// string literal, properly padded to match the literal type.
1482 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1483   const char *StrData = E->getStrData();
1484   unsigned Len = E->getByteLength();
1485 
1486   const ConstantArrayType *CAT =
1487     getContext().getAsConstantArrayType(E->getType());
1488   assert(CAT && "String isn't pointer or array!");
1489 
1490   // Resize the string to the right size.
1491   std::string Str(StrData, StrData+Len);
1492   uint64_t RealLen = CAT->getSize().getZExtValue();
1493 
1494   if (E->isWide())
1495     RealLen *= getContext().Target.getWCharWidth()/8;
1496 
1497   Str.resize(RealLen, '\0');
1498 
1499   return Str;
1500 }
1501 
1502 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1503 /// constant array for the given string literal.
1504 llvm::Constant *
1505 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1506   // FIXME: This can be more efficient.
1507   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1508 }
1509 
1510 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1511 /// array for the given ObjCEncodeExpr node.
1512 llvm::Constant *
1513 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1514   std::string Str;
1515   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1516 
1517   return GetAddrOfConstantCString(Str);
1518 }
1519 
1520 
1521 /// GenerateWritableString -- Creates storage for a string literal.
1522 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1523                                              bool constant,
1524                                              CodeGenModule &CGM,
1525                                              const char *GlobalName) {
1526   // Create Constant for this string literal. Don't add a '\0'.
1527   llvm::Constant *C =
1528       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1529 
1530   // Create a global variable for this string
1531   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1532                                   llvm::GlobalValue::PrivateLinkage,
1533                                   C, GlobalName);
1534 }
1535 
1536 /// GetAddrOfConstantString - Returns a pointer to a character array
1537 /// containing the literal. This contents are exactly that of the
1538 /// given string, i.e. it will not be null terminated automatically;
1539 /// see GetAddrOfConstantCString. Note that whether the result is
1540 /// actually a pointer to an LLVM constant depends on
1541 /// Feature.WriteableStrings.
1542 ///
1543 /// The result has pointer to array type.
1544 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1545                                                        const char *GlobalName) {
1546   bool IsConstant = !Features.WritableStrings;
1547 
1548   // Get the default prefix if a name wasn't specified.
1549   if (!GlobalName)
1550     GlobalName = ".str";
1551 
1552   // Don't share any string literals if strings aren't constant.
1553   if (!IsConstant)
1554     return GenerateStringLiteral(str, false, *this, GlobalName);
1555 
1556   llvm::StringMapEntry<llvm::Constant *> &Entry =
1557     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1558 
1559   if (Entry.getValue())
1560     return Entry.getValue();
1561 
1562   // Create a global variable for this.
1563   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1564   Entry.setValue(C);
1565   return C;
1566 }
1567 
1568 /// GetAddrOfConstantCString - Returns a pointer to a character
1569 /// array containing the literal and a terminating '\-'
1570 /// character. The result has pointer to array type.
1571 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1572                                                         const char *GlobalName){
1573   return GetAddrOfConstantString(str + '\0', GlobalName);
1574 }
1575 
1576 /// EmitObjCPropertyImplementations - Emit information for synthesized
1577 /// properties for an implementation.
1578 void CodeGenModule::EmitObjCPropertyImplementations(const
1579                                                     ObjCImplementationDecl *D) {
1580   for (ObjCImplementationDecl::propimpl_iterator
1581          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1582     ObjCPropertyImplDecl *PID = *i;
1583 
1584     // Dynamic is just for type-checking.
1585     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1586       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1587 
1588       // Determine which methods need to be implemented, some may have
1589       // been overridden. Note that ::isSynthesized is not the method
1590       // we want, that just indicates if the decl came from a
1591       // property. What we want to know is if the method is defined in
1592       // this implementation.
1593       if (!D->getInstanceMethod(PD->getGetterName()))
1594         CodeGenFunction(*this).GenerateObjCGetter(
1595                                  const_cast<ObjCImplementationDecl *>(D), PID);
1596       if (!PD->isReadOnly() &&
1597           !D->getInstanceMethod(PD->getSetterName()))
1598         CodeGenFunction(*this).GenerateObjCSetter(
1599                                  const_cast<ObjCImplementationDecl *>(D), PID);
1600     }
1601   }
1602 }
1603 
1604 /// EmitNamespace - Emit all declarations in a namespace.
1605 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1606   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1607        I != E; ++I)
1608     EmitTopLevelDecl(*I);
1609 }
1610 
1611 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1612 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1613   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1614       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1615     ErrorUnsupported(LSD, "linkage spec");
1616     return;
1617   }
1618 
1619   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1620        I != E; ++I)
1621     EmitTopLevelDecl(*I);
1622 }
1623 
1624 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1625 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1626   // If an error has occurred, stop code generation, but continue
1627   // parsing and semantic analysis (to ensure all warnings and errors
1628   // are emitted).
1629   if (Diags.hasErrorOccurred())
1630     return;
1631 
1632   // Ignore dependent declarations.
1633   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1634     return;
1635 
1636   switch (D->getKind()) {
1637   case Decl::CXXMethod:
1638   case Decl::Function:
1639     // Skip function templates
1640     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1641       return;
1642 
1643     // Fall through
1644 
1645   case Decl::Var:
1646     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1647     break;
1648 
1649   // C++ Decls
1650   case Decl::Namespace:
1651     EmitNamespace(cast<NamespaceDecl>(D));
1652     break;
1653     // No code generation needed.
1654   case Decl::Using:
1655   case Decl::ClassTemplate:
1656   case Decl::FunctionTemplate:
1657     break;
1658   case Decl::CXXConstructor:
1659     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1660     break;
1661   case Decl::CXXDestructor:
1662     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1663     break;
1664 
1665   case Decl::StaticAssert:
1666     // Nothing to do.
1667     break;
1668 
1669   // Objective-C Decls
1670 
1671   // Forward declarations, no (immediate) code generation.
1672   case Decl::ObjCClass:
1673   case Decl::ObjCForwardProtocol:
1674   case Decl::ObjCCategory:
1675   case Decl::ObjCInterface:
1676     break;
1677 
1678   case Decl::ObjCProtocol:
1679     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1680     break;
1681 
1682   case Decl::ObjCCategoryImpl:
1683     // Categories have properties but don't support synthesize so we
1684     // can ignore them here.
1685     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1686     break;
1687 
1688   case Decl::ObjCImplementation: {
1689     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1690     EmitObjCPropertyImplementations(OMD);
1691     Runtime->GenerateClass(OMD);
1692     break;
1693   }
1694   case Decl::ObjCMethod: {
1695     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1696     // If this is not a prototype, emit the body.
1697     if (OMD->getBody())
1698       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1699     break;
1700   }
1701   case Decl::ObjCCompatibleAlias:
1702     // compatibility-alias is a directive and has no code gen.
1703     break;
1704 
1705   case Decl::LinkageSpec:
1706     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1707     break;
1708 
1709   case Decl::FileScopeAsm: {
1710     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1711     std::string AsmString(AD->getAsmString()->getStrData(),
1712                           AD->getAsmString()->getByteLength());
1713 
1714     const std::string &S = getModule().getModuleInlineAsm();
1715     if (S.empty())
1716       getModule().setModuleInlineAsm(AsmString);
1717     else
1718       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1719     break;
1720   }
1721 
1722   default:
1723     // Make sure we handled everything we should, every other kind is a
1724     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1725     // function. Need to recode Decl::Kind to do that easily.
1726     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1727   }
1728 }
1729