1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
43     VtableInfo(*this), Runtime(0),
44     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
45     VMContext(M.getContext()) {
46 
47   if (!Features.ObjC1)
48     Runtime = 0;
49   else if (!Features.NeXTRuntime)
50     Runtime = CreateGNUObjCRuntime(*this);
51   else if (Features.ObjCNonFragileABI)
52     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
53   else
54     Runtime = CreateMacObjCRuntime(*this);
55 
56   // If debug info generation is enabled, create the CGDebugInfo object.
57   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
58 }
59 
60 CodeGenModule::~CodeGenModule() {
61   delete Runtime;
62   delete DebugInfo;
63 }
64 
65 void CodeGenModule::Release() {
66   // We need to call this first because it can add deferred declarations.
67   EmitCXXGlobalInitFunc();
68 
69   EmitDeferred();
70   if (Runtime)
71     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
72       AddGlobalCtor(ObjCInitFunction);
73   EmitCtorList(GlobalCtors, "llvm.global_ctors");
74   EmitCtorList(GlobalDtors, "llvm.global_dtors");
75   EmitAnnotations();
76   EmitLLVMUsed();
77 }
78 
79 /// ErrorUnsupported - Print out an error that codegen doesn't support the
80 /// specified stmt yet.
81 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
82                                      bool OmitOnError) {
83   if (OmitOnError && getDiags().hasErrorOccurred())
84     return;
85   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
86                                                "cannot compile this %0 yet");
87   std::string Msg = Type;
88   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
89     << Msg << S->getSourceRange();
90 }
91 
92 /// ErrorUnsupported - Print out an error that codegen doesn't support the
93 /// specified decl yet.
94 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
95                                      bool OmitOnError) {
96   if (OmitOnError && getDiags().hasErrorOccurred())
97     return;
98   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                                "cannot compile this %0 yet");
100   std::string Msg = Type;
101   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
102 }
103 
104 LangOptions::VisibilityMode
105 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
106   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
107     if (VD->getStorageClass() == VarDecl::PrivateExtern)
108       return LangOptions::Hidden;
109 
110   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
111     switch (attr->getVisibility()) {
112     default: assert(0 && "Unknown visibility!");
113     case VisibilityAttr::DefaultVisibility:
114       return LangOptions::Default;
115     case VisibilityAttr::HiddenVisibility:
116       return LangOptions::Hidden;
117     case VisibilityAttr::ProtectedVisibility:
118       return LangOptions::Protected;
119     }
120   }
121 
122   return getLangOptions().getVisibilityMode();
123 }
124 
125 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
126                                         const Decl *D) const {
127   // Internal definitions always have default visibility.
128   if (GV->hasLocalLinkage()) {
129     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
130     return;
131   }
132 
133   switch (getDeclVisibilityMode(D)) {
134   default: assert(0 && "Unknown visibility!");
135   case LangOptions::Default:
136     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
137   case LangOptions::Hidden:
138     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
139   case LangOptions::Protected:
140     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
141   }
142 }
143 
144 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
145   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
146 
147   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
148     return getMangledCXXCtorName(D, GD.getCtorType());
149   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
150     return getMangledCXXDtorName(D, GD.getDtorType());
151 
152   return getMangledName(ND);
153 }
154 
155 /// \brief Retrieves the mangled name for the given declaration.
156 ///
157 /// If the given declaration requires a mangled name, returns an
158 /// const char* containing the mangled name.  Otherwise, returns
159 /// the unmangled name.
160 ///
161 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
162   // In C, functions with no attributes never need to be mangled. Fastpath them.
163   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
164     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165     return ND->getNameAsCString();
166   }
167 
168   llvm::SmallString<256> Name;
169   llvm::raw_svector_ostream Out(Name);
170   if (!mangleName(getMangleContext(), ND, Out)) {
171     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
172     return ND->getNameAsCString();
173   }
174 
175   Name += '\0';
176   return UniqueMangledName(Name.begin(), Name.end());
177 }
178 
179 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
180                                              const char *NameEnd) {
181   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
182 
183   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
184 }
185 
186 /// AddGlobalCtor - Add a function to the list that will be called before
187 /// main() runs.
188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
189   // FIXME: Type coercion of void()* types.
190   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
191 }
192 
193 /// AddGlobalDtor - Add a function to the list that will be called
194 /// when the module is unloaded.
195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
196   // FIXME: Type coercion of void()* types.
197   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
198 }
199 
200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
201   // Ctor function type is void()*.
202   llvm::FunctionType* CtorFTy =
203     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
204                             std::vector<const llvm::Type*>(),
205                             false);
206   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
207 
208   // Get the type of a ctor entry, { i32, void ()* }.
209   llvm::StructType* CtorStructTy =
210     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
211                           llvm::PointerType::getUnqual(CtorFTy), NULL);
212 
213   // Construct the constructor and destructor arrays.
214   std::vector<llvm::Constant*> Ctors;
215   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
216     std::vector<llvm::Constant*> S;
217     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
218                 I->second, false));
219     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
220     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
221   }
222 
223   if (!Ctors.empty()) {
224     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
225     new llvm::GlobalVariable(TheModule, AT, false,
226                              llvm::GlobalValue::AppendingLinkage,
227                              llvm::ConstantArray::get(AT, Ctors),
228                              GlobalName);
229   }
230 }
231 
232 void CodeGenModule::EmitAnnotations() {
233   if (Annotations.empty())
234     return;
235 
236   // Create a new global variable for the ConstantStruct in the Module.
237   llvm::Constant *Array =
238   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
239                                                 Annotations.size()),
240                            Annotations);
241   llvm::GlobalValue *gv =
242   new llvm::GlobalVariable(TheModule, Array->getType(), false,
243                            llvm::GlobalValue::AppendingLinkage, Array,
244                            "llvm.global.annotations");
245   gv->setSection("llvm.metadata");
246 }
247 
248 static CodeGenModule::GVALinkage
249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
250                       const LangOptions &Features) {
251   // Everything located semantically within an anonymous namespace is
252   // always internal.
253   if (FD->isInAnonymousNamespace())
254     return CodeGenModule::GVA_Internal;
255 
256   // "static" functions get internal linkage.
257   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
258     return CodeGenModule::GVA_Internal;
259 
260   // The kind of external linkage this function will have, if it is not
261   // inline or static.
262   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
263   if (Context.getLangOptions().CPlusPlus &&
264       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
265     External = CodeGenModule::GVA_TemplateInstantiation;
266 
267   if (!FD->isInlined())
268     return External;
269 
270   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
271     // GNU or C99 inline semantics. Determine whether this symbol should be
272     // externally visible.
273     if (FD->isInlineDefinitionExternallyVisible())
274       return External;
275 
276     // C99 inline semantics, where the symbol is not externally visible.
277     return CodeGenModule::GVA_C99Inline;
278   }
279 
280   // C++0x [temp.explicit]p9:
281   //   [ Note: The intent is that an inline function that is the subject of
282   //   an explicit instantiation declaration will still be implicitly
283   //   instantiated when used so that the body can be considered for
284   //   inlining, but that no out-of-line copy of the inline function would be
285   //   generated in the translation unit. -- end note ]
286   if (FD->getTemplateSpecializationKind()
287                                        == TSK_ExplicitInstantiationDeclaration)
288     return CodeGenModule::GVA_C99Inline;
289 
290   return CodeGenModule::GVA_CXXInline;
291 }
292 
293 /// SetFunctionDefinitionAttributes - Set attributes for a global.
294 ///
295 /// FIXME: This is currently only done for aliases and functions, but not for
296 /// variables (these details are set in EmitGlobalVarDefinition for variables).
297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
298                                                     llvm::GlobalValue *GV) {
299   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
300 
301   if (Linkage == GVA_Internal) {
302     GV->setLinkage(llvm::Function::InternalLinkage);
303   } else if (D->hasAttr<DLLExportAttr>()) {
304     GV->setLinkage(llvm::Function::DLLExportLinkage);
305   } else if (D->hasAttr<WeakAttr>()) {
306     GV->setLinkage(llvm::Function::WeakAnyLinkage);
307   } else if (Linkage == GVA_C99Inline) {
308     // In C99 mode, 'inline' functions are guaranteed to have a strong
309     // definition somewhere else, so we can use available_externally linkage.
310     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
311   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
312     // In C++, the compiler has to emit a definition in every translation unit
313     // that references the function.  We should use linkonce_odr because
314     // a) if all references in this translation unit are optimized away, we
315     // don't need to codegen it.  b) if the function persists, it needs to be
316     // merged with other definitions. c) C++ has the ODR, so we know the
317     // definition is dependable.
318     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
319   } else {
320     assert(Linkage == GVA_StrongExternal);
321     // Otherwise, we have strong external linkage.
322     GV->setLinkage(llvm::Function::ExternalLinkage);
323   }
324 
325   SetCommonAttributes(D, GV);
326 }
327 
328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
329                                               const CGFunctionInfo &Info,
330                                               llvm::Function *F) {
331   unsigned CallingConv;
332   AttributeListType AttributeList;
333   ConstructAttributeList(Info, D, AttributeList, CallingConv);
334   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
335                                           AttributeList.size()));
336   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
337 }
338 
339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
340                                                            llvm::Function *F) {
341   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
342     F->addFnAttr(llvm::Attribute::NoUnwind);
343 
344   if (D->hasAttr<AlwaysInlineAttr>())
345     F->addFnAttr(llvm::Attribute::AlwaysInline);
346 
347   if (D->hasAttr<NoInlineAttr>())
348     F->addFnAttr(llvm::Attribute::NoInline);
349 
350   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
351     F->setAlignment(AA->getAlignment()/8);
352   // C++ ABI requires 2-byte alignment for member functions.
353   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
354     F->setAlignment(2);
355 }
356 
357 void CodeGenModule::SetCommonAttributes(const Decl *D,
358                                         llvm::GlobalValue *GV) {
359   setGlobalVisibility(GV, D);
360 
361   if (D->hasAttr<UsedAttr>())
362     AddUsedGlobal(GV);
363 
364   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
365     GV->setSection(SA->getName());
366 }
367 
368 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
369                                                   llvm::Function *F,
370                                                   const CGFunctionInfo &FI) {
371   SetLLVMFunctionAttributes(D, FI, F);
372   SetLLVMFunctionAttributesForDefinition(D, F);
373 
374   F->setLinkage(llvm::Function::InternalLinkage);
375 
376   SetCommonAttributes(D, F);
377 }
378 
379 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
380                                           llvm::Function *F,
381                                           bool IsIncompleteFunction) {
382   if (!IsIncompleteFunction)
383     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
384 
385   // Only a few attributes are set on declarations; these may later be
386   // overridden by a definition.
387 
388   if (FD->hasAttr<DLLImportAttr>()) {
389     F->setLinkage(llvm::Function::DLLImportLinkage);
390   } else if (FD->hasAttr<WeakAttr>() ||
391              FD->hasAttr<WeakImportAttr>()) {
392     // "extern_weak" is overloaded in LLVM; we probably should have
393     // separate linkage types for this.
394     F->setLinkage(llvm::Function::ExternalWeakLinkage);
395   } else {
396     F->setLinkage(llvm::Function::ExternalLinkage);
397   }
398 
399   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
400     F->setSection(SA->getName());
401 }
402 
403 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
404   assert(!GV->isDeclaration() &&
405          "Only globals with definition can force usage.");
406   LLVMUsed.push_back(GV);
407 }
408 
409 void CodeGenModule::EmitLLVMUsed() {
410   // Don't create llvm.used if there is no need.
411   if (LLVMUsed.empty())
412     return;
413 
414   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
415 
416   // Convert LLVMUsed to what ConstantArray needs.
417   std::vector<llvm::Constant*> UsedArray;
418   UsedArray.resize(LLVMUsed.size());
419   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
420     UsedArray[i] =
421      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
422                                       i8PTy);
423   }
424 
425   if (UsedArray.empty())
426     return;
427   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
428 
429   llvm::GlobalVariable *GV =
430     new llvm::GlobalVariable(getModule(), ATy, false,
431                              llvm::GlobalValue::AppendingLinkage,
432                              llvm::ConstantArray::get(ATy, UsedArray),
433                              "llvm.used");
434 
435   GV->setSection("llvm.metadata");
436 }
437 
438 void CodeGenModule::EmitDeferred() {
439   // Emit code for any potentially referenced deferred decls.  Since a
440   // previously unused static decl may become used during the generation of code
441   // for a static function, iterate until no  changes are made.
442   while (!DeferredDeclsToEmit.empty()) {
443     GlobalDecl D = DeferredDeclsToEmit.back();
444     DeferredDeclsToEmit.pop_back();
445 
446     // The mangled name for the decl must have been emitted in GlobalDeclMap.
447     // Look it up to see if it was defined with a stronger definition (e.g. an
448     // extern inline function with a strong function redefinition).  If so,
449     // just ignore the deferred decl.
450     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
451     assert(CGRef && "Deferred decl wasn't referenced?");
452 
453     if (!CGRef->isDeclaration())
454       continue;
455 
456     // Otherwise, emit the definition and move on to the next one.
457     EmitGlobalDefinition(D);
458   }
459 }
460 
461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
462 /// annotation information for a given GlobalValue.  The annotation struct is
463 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
464 /// GlobalValue being annotated.  The second field is the constant string
465 /// created from the AnnotateAttr's annotation.  The third field is a constant
466 /// string containing the name of the translation unit.  The fourth field is
467 /// the line number in the file of the annotated value declaration.
468 ///
469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
470 ///        appears to.
471 ///
472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
473                                                 const AnnotateAttr *AA,
474                                                 unsigned LineNo) {
475   llvm::Module *M = &getModule();
476 
477   // get [N x i8] constants for the annotation string, and the filename string
478   // which are the 2nd and 3rd elements of the global annotation structure.
479   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
480   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
481                                                   AA->getAnnotation(), true);
482   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
483                                                   M->getModuleIdentifier(),
484                                                   true);
485 
486   // Get the two global values corresponding to the ConstantArrays we just
487   // created to hold the bytes of the strings.
488   llvm::GlobalValue *annoGV =
489     new llvm::GlobalVariable(*M, anno->getType(), false,
490                              llvm::GlobalValue::PrivateLinkage, anno,
491                              GV->getName());
492   // translation unit name string, emitted into the llvm.metadata section.
493   llvm::GlobalValue *unitGV =
494     new llvm::GlobalVariable(*M, unit->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, unit,
496                              ".str");
497 
498   // Create the ConstantStruct for the global annotation.
499   llvm::Constant *Fields[4] = {
500     llvm::ConstantExpr::getBitCast(GV, SBP),
501     llvm::ConstantExpr::getBitCast(annoGV, SBP),
502     llvm::ConstantExpr::getBitCast(unitGV, SBP),
503     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
504   };
505   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
506 }
507 
508 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
509   // Never defer when EmitAllDecls is specified or the decl has
510   // attribute used.
511   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
512     return false;
513 
514   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
515     // Constructors and destructors should never be deferred.
516     if (FD->hasAttr<ConstructorAttr>() ||
517         FD->hasAttr<DestructorAttr>())
518       return false;
519 
520     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
521 
522     // static, static inline, always_inline, and extern inline functions can
523     // always be deferred.  Normal inline functions can be deferred in C99/C++.
524     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
525         Linkage == GVA_CXXInline)
526       return true;
527     return false;
528   }
529 
530   const VarDecl *VD = cast<VarDecl>(Global);
531   assert(VD->isFileVarDecl() && "Invalid decl");
532 
533   // We never want to defer structs that have non-trivial constructors or
534   // destructors.
535 
536   // FIXME: Handle references.
537   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
538     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
539       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
540         return false;
541     }
542   }
543 
544   // Static data may be deferred, but out-of-line static data members
545   // cannot be.
546   if (VD->isInAnonymousNamespace())
547     return true;
548   if (VD->getStorageClass() == VarDecl::Static) {
549     // Initializer has side effects?
550     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
551       return false;
552     return !(VD->isStaticDataMember() && VD->isOutOfLine());
553   }
554   return false;
555 }
556 
557 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
558   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
559 
560   // If this is an alias definition (which otherwise looks like a declaration)
561   // emit it now.
562   if (Global->hasAttr<AliasAttr>())
563     return EmitAliasDefinition(Global);
564 
565   // Ignore declarations, they will be emitted on their first use.
566   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
567     // Forward declarations are emitted lazily on first use.
568     if (!FD->isThisDeclarationADefinition())
569       return;
570   } else {
571     const VarDecl *VD = cast<VarDecl>(Global);
572     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
573 
574     // In C++, if this is marked "extern", defer code generation.
575     if (getLangOptions().CPlusPlus && !VD->getInit() &&
576         (VD->getStorageClass() == VarDecl::Extern ||
577          VD->isExternC()))
578       return;
579 
580     // In C, if this isn't a definition, defer code generation.
581     if (!getLangOptions().CPlusPlus && !VD->getInit())
582       return;
583   }
584 
585   // Defer code generation when possible if this is a static definition, inline
586   // function etc.  These we only want to emit if they are used.
587   if (MayDeferGeneration(Global)) {
588     // If the value has already been used, add it directly to the
589     // DeferredDeclsToEmit list.
590     const char *MangledName = getMangledName(GD);
591     if (GlobalDeclMap.count(MangledName))
592       DeferredDeclsToEmit.push_back(GD);
593     else {
594       // Otherwise, remember that we saw a deferred decl with this name.  The
595       // first use of the mangled name will cause it to move into
596       // DeferredDeclsToEmit.
597       DeferredDecls[MangledName] = GD;
598     }
599     return;
600   }
601 
602   // Otherwise emit the definition.
603   EmitGlobalDefinition(GD);
604 }
605 
606 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
607   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
608 
609   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
610                                  Context.getSourceManager(),
611                                  "Generating code for declaration");
612 
613   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
614     EmitCXXConstructor(CD, GD.getCtorType());
615   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
616     EmitCXXDestructor(DD, GD.getDtorType());
617   else if (isa<FunctionDecl>(D))
618     EmitGlobalFunctionDefinition(GD);
619   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
620     EmitGlobalVarDefinition(VD);
621   else {
622     assert(0 && "Invalid argument to EmitGlobalDefinition()");
623   }
624 }
625 
626 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
627 /// module, create and return an llvm Function with the specified type. If there
628 /// is something in the module with the specified name, return it potentially
629 /// bitcasted to the right type.
630 ///
631 /// If D is non-null, it specifies a decl that correspond to this.  This is used
632 /// to set the attributes on the function when it is first created.
633 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
634                                                        const llvm::Type *Ty,
635                                                        GlobalDecl D) {
636   // Lookup the entry, lazily creating it if necessary.
637   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
638   if (Entry) {
639     if (Entry->getType()->getElementType() == Ty)
640       return Entry;
641 
642     // Make sure the result is of the correct type.
643     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
644     return llvm::ConstantExpr::getBitCast(Entry, PTy);
645   }
646 
647   // This is the first use or definition of a mangled name.  If there is a
648   // deferred decl with this name, remember that we need to emit it at the end
649   // of the file.
650   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
651     DeferredDecls.find(MangledName);
652   if (DDI != DeferredDecls.end()) {
653     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
654     // list, and remove it from DeferredDecls (since we don't need it anymore).
655     DeferredDeclsToEmit.push_back(DDI->second);
656     DeferredDecls.erase(DDI);
657   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
658     // If this the first reference to a C++ inline function in a class, queue up
659     // the deferred function body for emission.  These are not seen as
660     // top-level declarations.
661     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
662       DeferredDeclsToEmit.push_back(D);
663     // A called constructor which has no definition or declaration need be
664     // synthesized.
665     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
666       const CXXRecordDecl *ClassDecl =
667         cast<CXXRecordDecl>(CD->getDeclContext());
668       if (CD->isCopyConstructor(getContext()))
669         DeferredCopyConstructorToEmit(D);
670       else if (!ClassDecl->hasUserDeclaredConstructor())
671         DeferredDeclsToEmit.push_back(D);
672     }
673     else if (isa<CXXDestructorDecl>(FD))
674        DeferredDestructorToEmit(D);
675     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
676            if (MD->isCopyAssignment())
677              DeferredCopyAssignmentToEmit(D);
678   }
679 
680   // This function doesn't have a complete type (for example, the return
681   // type is an incomplete struct). Use a fake type instead, and make
682   // sure not to try to set attributes.
683   bool IsIncompleteFunction = false;
684   if (!isa<llvm::FunctionType>(Ty)) {
685     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
686                                  std::vector<const llvm::Type*>(), false);
687     IsIncompleteFunction = true;
688   }
689   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
690                                              llvm::Function::ExternalLinkage,
691                                              "", &getModule());
692   F->setName(MangledName);
693   if (D.getDecl())
694     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
695                           IsIncompleteFunction);
696   Entry = F;
697   return F;
698 }
699 
700 /// Defer definition of copy constructor(s) which need be implicitly defined.
701 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
702   const CXXConstructorDecl *CD =
703     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
704   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
705   if (ClassDecl->hasTrivialCopyConstructor() ||
706       ClassDecl->hasUserDeclaredCopyConstructor())
707     return;
708 
709   // First make sure all direct base classes and virtual bases and non-static
710   // data mebers which need to have their copy constructors implicitly defined
711   // are defined. 12.8.p7
712   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
713        Base != ClassDecl->bases_end(); ++Base) {
714     CXXRecordDecl *BaseClassDecl
715       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
716     if (CXXConstructorDecl *BaseCopyCtor =
717         BaseClassDecl->getCopyConstructor(Context, 0))
718       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
719   }
720 
721   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
722        FieldEnd = ClassDecl->field_end();
723        Field != FieldEnd; ++Field) {
724     QualType FieldType = Context.getCanonicalType((*Field)->getType());
725     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
726       FieldType = Array->getElementType();
727     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
728       if ((*Field)->isAnonymousStructOrUnion())
729         continue;
730       CXXRecordDecl *FieldClassDecl
731         = cast<CXXRecordDecl>(FieldClassType->getDecl());
732       if (CXXConstructorDecl *FieldCopyCtor =
733           FieldClassDecl->getCopyConstructor(Context, 0))
734         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
735     }
736   }
737   DeferredDeclsToEmit.push_back(CopyCtorDecl);
738 }
739 
740 /// Defer definition of copy assignments which need be implicitly defined.
741 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
742   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
743   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
744 
745   if (ClassDecl->hasTrivialCopyAssignment() ||
746       ClassDecl->hasUserDeclaredCopyAssignment())
747     return;
748 
749   // First make sure all direct base classes and virtual bases and non-static
750   // data mebers which need to have their copy assignments implicitly defined
751   // are defined. 12.8.p12
752   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
753        Base != ClassDecl->bases_end(); ++Base) {
754     CXXRecordDecl *BaseClassDecl
755       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
756     const CXXMethodDecl *MD = 0;
757     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
758         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
759         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
760       GetAddrOfFunction(MD, 0);
761   }
762 
763   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
764        FieldEnd = ClassDecl->field_end();
765        Field != FieldEnd; ++Field) {
766     QualType FieldType = Context.getCanonicalType((*Field)->getType());
767     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
768       FieldType = Array->getElementType();
769     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
770       if ((*Field)->isAnonymousStructOrUnion())
771         continue;
772       CXXRecordDecl *FieldClassDecl
773         = cast<CXXRecordDecl>(FieldClassType->getDecl());
774       const CXXMethodDecl *MD = 0;
775       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
776           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
777           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
778           GetAddrOfFunction(MD, 0);
779     }
780   }
781   DeferredDeclsToEmit.push_back(CopyAssignDecl);
782 }
783 
784 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
785   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
786   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
787   if (ClassDecl->hasTrivialDestructor() ||
788       ClassDecl->hasUserDeclaredDestructor())
789     return;
790 
791   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
792        Base != ClassDecl->bases_end(); ++Base) {
793     CXXRecordDecl *BaseClassDecl
794       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
795     if (const CXXDestructorDecl *BaseDtor =
796           BaseClassDecl->getDestructor(Context))
797       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
798   }
799 
800   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
801        FieldEnd = ClassDecl->field_end();
802        Field != FieldEnd; ++Field) {
803     QualType FieldType = Context.getCanonicalType((*Field)->getType());
804     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
805       FieldType = Array->getElementType();
806     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
807       if ((*Field)->isAnonymousStructOrUnion())
808         continue;
809       CXXRecordDecl *FieldClassDecl
810         = cast<CXXRecordDecl>(FieldClassType->getDecl());
811       if (const CXXDestructorDecl *FieldDtor =
812             FieldClassDecl->getDestructor(Context))
813         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
814     }
815   }
816   DeferredDeclsToEmit.push_back(DtorDecl);
817 }
818 
819 
820 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
821 /// non-null, then this function will use the specified type if it has to
822 /// create it (this occurs when we see a definition of the function).
823 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
824                                                  const llvm::Type *Ty) {
825   // If there was no specific requested type, just convert it now.
826   if (!Ty)
827     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
828   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
829 }
830 
831 /// CreateRuntimeFunction - Create a new runtime function with the specified
832 /// type and name.
833 llvm::Constant *
834 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
835                                      const char *Name) {
836   // Convert Name to be a uniqued string from the IdentifierInfo table.
837   Name = getContext().Idents.get(Name).getNameStart();
838   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
839 }
840 
841 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
842 /// create and return an llvm GlobalVariable with the specified type.  If there
843 /// is something in the module with the specified name, return it potentially
844 /// bitcasted to the right type.
845 ///
846 /// If D is non-null, it specifies a decl that correspond to this.  This is used
847 /// to set the attributes on the global when it is first created.
848 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
849                                                      const llvm::PointerType*Ty,
850                                                      const VarDecl *D) {
851   // Lookup the entry, lazily creating it if necessary.
852   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
853   if (Entry) {
854     if (Entry->getType() == Ty)
855       return Entry;
856 
857     // Make sure the result is of the correct type.
858     return llvm::ConstantExpr::getBitCast(Entry, Ty);
859   }
860 
861   // This is the first use or definition of a mangled name.  If there is a
862   // deferred decl with this name, remember that we need to emit it at the end
863   // of the file.
864   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
865     DeferredDecls.find(MangledName);
866   if (DDI != DeferredDecls.end()) {
867     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
868     // list, and remove it from DeferredDecls (since we don't need it anymore).
869     DeferredDeclsToEmit.push_back(DDI->second);
870     DeferredDecls.erase(DDI);
871   }
872 
873   llvm::GlobalVariable *GV =
874     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
875                              llvm::GlobalValue::ExternalLinkage,
876                              0, "", 0,
877                              false, Ty->getAddressSpace());
878   GV->setName(MangledName);
879 
880   // Handle things which are present even on external declarations.
881   if (D) {
882     // FIXME: This code is overly simple and should be merged with other global
883     // handling.
884     GV->setConstant(D->getType().isConstant(Context));
885 
886     // FIXME: Merge with other attribute handling code.
887     if (D->getStorageClass() == VarDecl::PrivateExtern)
888       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
889 
890     if (D->hasAttr<WeakAttr>() ||
891         D->hasAttr<WeakImportAttr>())
892       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
893 
894     GV->setThreadLocal(D->isThreadSpecified());
895   }
896 
897   return Entry = GV;
898 }
899 
900 
901 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
902 /// given global variable.  If Ty is non-null and if the global doesn't exist,
903 /// then it will be greated with the specified type instead of whatever the
904 /// normal requested type would be.
905 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
906                                                   const llvm::Type *Ty) {
907   assert(D->hasGlobalStorage() && "Not a global variable");
908   QualType ASTTy = D->getType();
909   if (Ty == 0)
910     Ty = getTypes().ConvertTypeForMem(ASTTy);
911 
912   const llvm::PointerType *PTy =
913     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
914   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
915 }
916 
917 /// CreateRuntimeVariable - Create a new runtime global variable with the
918 /// specified type and name.
919 llvm::Constant *
920 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
921                                      const char *Name) {
922   // Convert Name to be a uniqued string from the IdentifierInfo table.
923   Name = getContext().Idents.get(Name).getNameStart();
924   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
925 }
926 
927 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
928   assert(!D->getInit() && "Cannot emit definite definitions here!");
929 
930   if (MayDeferGeneration(D)) {
931     // If we have not seen a reference to this variable yet, place it
932     // into the deferred declarations table to be emitted if needed
933     // later.
934     const char *MangledName = getMangledName(D);
935     if (GlobalDeclMap.count(MangledName) == 0) {
936       DeferredDecls[MangledName] = D;
937       return;
938     }
939   }
940 
941   // The tentative definition is the only definition.
942   EmitGlobalVarDefinition(D);
943 }
944 
945 static CodeGenModule::GVALinkage
946 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
947   // Everything located semantically within an anonymous namespace is
948   // always internal.
949   if (VD->isInAnonymousNamespace())
950     return CodeGenModule::GVA_Internal;
951 
952   // Handle linkage for static data members.
953   if (VD->isStaticDataMember()) {
954     switch (VD->getTemplateSpecializationKind()) {
955     case TSK_Undeclared:
956     case TSK_ExplicitSpecialization:
957     case TSK_ExplicitInstantiationDefinition:
958       return CodeGenModule::GVA_StrongExternal;
959 
960     case TSK_ExplicitInstantiationDeclaration:
961       llvm::llvm_unreachable("Variable should not be instantiated");
962       // Fall through to treat this like any other instantiation.
963 
964     case TSK_ImplicitInstantiation:
965       return CodeGenModule::GVA_TemplateInstantiation;
966     }
967   }
968 
969   // Static variables get internal linkage.
970   if (VD->getStorageClass() == VarDecl::Static)
971     return CodeGenModule::GVA_Internal;
972 
973   return CodeGenModule::GVA_StrongExternal;
974 }
975 
976 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
977   llvm::Constant *Init = 0;
978   QualType ASTTy = D->getType();
979 
980   if (D->getInit() == 0) {
981     // This is a tentative definition; tentative definitions are
982     // implicitly initialized with { 0 }.
983     //
984     // Note that tentative definitions are only emitted at the end of
985     // a translation unit, so they should never have incomplete
986     // type. In addition, EmitTentativeDefinition makes sure that we
987     // never attempt to emit a tentative definition if a real one
988     // exists. A use may still exists, however, so we still may need
989     // to do a RAUW.
990     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
991     Init = EmitNullConstant(D->getType());
992   } else {
993     Init = EmitConstantExpr(D->getInit(), D->getType());
994 
995     if (!Init) {
996       QualType T = D->getInit()->getType();
997       if (getLangOptions().CPlusPlus) {
998         CXXGlobalInits.push_back(D);
999         Init = EmitNullConstant(T);
1000       } else {
1001         ErrorUnsupported(D, "static initializer");
1002         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1003       }
1004     }
1005   }
1006 
1007   const llvm::Type* InitType = Init->getType();
1008   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1009 
1010   // Strip off a bitcast if we got one back.
1011   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1012     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1013            // all zero index gep.
1014            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1015     Entry = CE->getOperand(0);
1016   }
1017 
1018   // Entry is now either a Function or GlobalVariable.
1019   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1020 
1021   // We have a definition after a declaration with the wrong type.
1022   // We must make a new GlobalVariable* and update everything that used OldGV
1023   // (a declaration or tentative definition) with the new GlobalVariable*
1024   // (which will be a definition).
1025   //
1026   // This happens if there is a prototype for a global (e.g.
1027   // "extern int x[];") and then a definition of a different type (e.g.
1028   // "int x[10];"). This also happens when an initializer has a different type
1029   // from the type of the global (this happens with unions).
1030   if (GV == 0 ||
1031       GV->getType()->getElementType() != InitType ||
1032       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1033 
1034     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1035     GlobalDeclMap.erase(getMangledName(D));
1036 
1037     // Make a new global with the correct type, this is now guaranteed to work.
1038     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1039     GV->takeName(cast<llvm::GlobalValue>(Entry));
1040 
1041     // Replace all uses of the old global with the new global
1042     llvm::Constant *NewPtrForOldDecl =
1043         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1044     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1045 
1046     // Erase the old global, since it is no longer used.
1047     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1048   }
1049 
1050   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1051     SourceManager &SM = Context.getSourceManager();
1052     AddAnnotation(EmitAnnotateAttr(GV, AA,
1053                               SM.getInstantiationLineNumber(D->getLocation())));
1054   }
1055 
1056   GV->setInitializer(Init);
1057 
1058   // If it is safe to mark the global 'constant', do so now.
1059   GV->setConstant(false);
1060   if (D->getType().isConstant(Context)) {
1061     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1062     // members, it cannot be declared "LLVM const".
1063     GV->setConstant(true);
1064   }
1065 
1066   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1067 
1068   // Set the llvm linkage type as appropriate.
1069   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1070   if (Linkage == GVA_Internal)
1071     GV->setLinkage(llvm::Function::InternalLinkage);
1072   else if (D->hasAttr<DLLImportAttr>())
1073     GV->setLinkage(llvm::Function::DLLImportLinkage);
1074   else if (D->hasAttr<DLLExportAttr>())
1075     GV->setLinkage(llvm::Function::DLLExportLinkage);
1076   else if (D->hasAttr<WeakAttr>()) {
1077     if (GV->isConstant())
1078       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1079     else
1080       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1081   } else if (Linkage == GVA_TemplateInstantiation)
1082     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1083   else if (!CompileOpts.NoCommon &&
1084            !D->hasExternalStorage() && !D->getInit() &&
1085            !D->getAttr<SectionAttr>()) {
1086     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1087     // common vars aren't constant even if declared const.
1088     GV->setConstant(false);
1089   } else
1090     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1091 
1092   SetCommonAttributes(D, GV);
1093 
1094   // Emit global variable debug information.
1095   if (CGDebugInfo *DI = getDebugInfo()) {
1096     DI->setLocation(D->getLocation());
1097     DI->EmitGlobalVariable(GV, D);
1098   }
1099 }
1100 
1101 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1102 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1103 /// existing call uses of the old function in the module, this adjusts them to
1104 /// call the new function directly.
1105 ///
1106 /// This is not just a cleanup: the always_inline pass requires direct calls to
1107 /// functions to be able to inline them.  If there is a bitcast in the way, it
1108 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1109 /// run at -O0.
1110 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1111                                                       llvm::Function *NewFn) {
1112   // If we're redefining a global as a function, don't transform it.
1113   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1114   if (OldFn == 0) return;
1115 
1116   const llvm::Type *NewRetTy = NewFn->getReturnType();
1117   llvm::SmallVector<llvm::Value*, 4> ArgList;
1118 
1119   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1120        UI != E; ) {
1121     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1122     unsigned OpNo = UI.getOperandNo();
1123     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1124     if (!CI || OpNo != 0) continue;
1125 
1126     // If the return types don't match exactly, and if the call isn't dead, then
1127     // we can't transform this call.
1128     if (CI->getType() != NewRetTy && !CI->use_empty())
1129       continue;
1130 
1131     // If the function was passed too few arguments, don't transform.  If extra
1132     // arguments were passed, we silently drop them.  If any of the types
1133     // mismatch, we don't transform.
1134     unsigned ArgNo = 0;
1135     bool DontTransform = false;
1136     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1137          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1138       if (CI->getNumOperands()-1 == ArgNo ||
1139           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1140         DontTransform = true;
1141         break;
1142       }
1143     }
1144     if (DontTransform)
1145       continue;
1146 
1147     // Okay, we can transform this.  Create the new call instruction and copy
1148     // over the required information.
1149     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1150     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1151                                                      ArgList.end(), "", CI);
1152     ArgList.clear();
1153     if (!NewCall->getType()->isVoidTy())
1154       NewCall->takeName(CI);
1155     NewCall->setAttributes(CI->getAttributes());
1156     NewCall->setCallingConv(CI->getCallingConv());
1157 
1158     // Finally, remove the old call, replacing any uses with the new one.
1159     if (!CI->use_empty())
1160       CI->replaceAllUsesWith(NewCall);
1161 
1162     // Copy any custom metadata attached with CI.
1163     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1164     TheMetadata.copyMD(CI, NewCall);
1165 
1166     CI->eraseFromParent();
1167   }
1168 }
1169 
1170 
1171 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1172   const llvm::FunctionType *Ty;
1173   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1174 
1175   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1176     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1177 
1178     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1179   } else {
1180     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1181 
1182     // As a special case, make sure that definitions of K&R function
1183     // "type foo()" aren't declared as varargs (which forces the backend
1184     // to do unnecessary work).
1185     if (D->getType()->isFunctionNoProtoType()) {
1186       assert(Ty->isVarArg() && "Didn't lower type as expected");
1187       // Due to stret, the lowered function could have arguments.
1188       // Just create the same type as was lowered by ConvertType
1189       // but strip off the varargs bit.
1190       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1191       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1192     }
1193   }
1194 
1195   // Get or create the prototype for the function.
1196   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1197 
1198   // Strip off a bitcast if we got one back.
1199   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1200     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1201     Entry = CE->getOperand(0);
1202   }
1203 
1204 
1205   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1206     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1207 
1208     // If the types mismatch then we have to rewrite the definition.
1209     assert(OldFn->isDeclaration() &&
1210            "Shouldn't replace non-declaration");
1211 
1212     // F is the Function* for the one with the wrong type, we must make a new
1213     // Function* and update everything that used F (a declaration) with the new
1214     // Function* (which will be a definition).
1215     //
1216     // This happens if there is a prototype for a function
1217     // (e.g. "int f()") and then a definition of a different type
1218     // (e.g. "int f(int x)").  Start by making a new function of the
1219     // correct type, RAUW, then steal the name.
1220     GlobalDeclMap.erase(getMangledName(D));
1221     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1222     NewFn->takeName(OldFn);
1223 
1224     // If this is an implementation of a function without a prototype, try to
1225     // replace any existing uses of the function (which may be calls) with uses
1226     // of the new function
1227     if (D->getType()->isFunctionNoProtoType()) {
1228       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1229       OldFn->removeDeadConstantUsers();
1230     }
1231 
1232     // Replace uses of F with the Function we will endow with a body.
1233     if (!Entry->use_empty()) {
1234       llvm::Constant *NewPtrForOldDecl =
1235         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1236       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1237     }
1238 
1239     // Ok, delete the old function now, which is dead.
1240     OldFn->eraseFromParent();
1241 
1242     Entry = NewFn;
1243   }
1244 
1245   llvm::Function *Fn = cast<llvm::Function>(Entry);
1246 
1247   CodeGenFunction(*this).GenerateCode(D, Fn);
1248 
1249   SetFunctionDefinitionAttributes(D, Fn);
1250   SetLLVMFunctionAttributesForDefinition(D, Fn);
1251 
1252   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1253     AddGlobalCtor(Fn, CA->getPriority());
1254   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1255     AddGlobalDtor(Fn, DA->getPriority());
1256 }
1257 
1258 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1259   const AliasAttr *AA = D->getAttr<AliasAttr>();
1260   assert(AA && "Not an alias?");
1261 
1262   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1263 
1264   // Unique the name through the identifier table.
1265   const char *AliaseeName = AA->getAliasee().c_str();
1266   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1267 
1268   // Create a reference to the named value.  This ensures that it is emitted
1269   // if a deferred decl.
1270   llvm::Constant *Aliasee;
1271   if (isa<llvm::FunctionType>(DeclTy))
1272     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1273   else
1274     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1275                                     llvm::PointerType::getUnqual(DeclTy), 0);
1276 
1277   // Create the new alias itself, but don't set a name yet.
1278   llvm::GlobalValue *GA =
1279     new llvm::GlobalAlias(Aliasee->getType(),
1280                           llvm::Function::ExternalLinkage,
1281                           "", Aliasee, &getModule());
1282 
1283   // See if there is already something with the alias' name in the module.
1284   const char *MangledName = getMangledName(D);
1285   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1286 
1287   if (Entry && !Entry->isDeclaration()) {
1288     // If there is a definition in the module, then it wins over the alias.
1289     // This is dubious, but allow it to be safe.  Just ignore the alias.
1290     GA->eraseFromParent();
1291     return;
1292   }
1293 
1294   if (Entry) {
1295     // If there is a declaration in the module, then we had an extern followed
1296     // by the alias, as in:
1297     //   extern int test6();
1298     //   ...
1299     //   int test6() __attribute__((alias("test7")));
1300     //
1301     // Remove it and replace uses of it with the alias.
1302 
1303     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1304                                                           Entry->getType()));
1305     Entry->eraseFromParent();
1306   }
1307 
1308   // Now we know that there is no conflict, set the name.
1309   Entry = GA;
1310   GA->setName(MangledName);
1311 
1312   // Set attributes which are particular to an alias; this is a
1313   // specialization of the attributes which may be set on a global
1314   // variable/function.
1315   if (D->hasAttr<DLLExportAttr>()) {
1316     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1317       // The dllexport attribute is ignored for undefined symbols.
1318       if (FD->getBody())
1319         GA->setLinkage(llvm::Function::DLLExportLinkage);
1320     } else {
1321       GA->setLinkage(llvm::Function::DLLExportLinkage);
1322     }
1323   } else if (D->hasAttr<WeakAttr>() ||
1324              D->hasAttr<WeakImportAttr>()) {
1325     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1326   }
1327 
1328   SetCommonAttributes(D, GA);
1329 }
1330 
1331 /// getBuiltinLibFunction - Given a builtin id for a function like
1332 /// "__builtin_fabsf", return a Function* for "fabsf".
1333 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1334                                                   unsigned BuiltinID) {
1335   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1336           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1337          "isn't a lib fn");
1338 
1339   // Get the name, skip over the __builtin_ prefix (if necessary).
1340   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1341   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1342     Name += 10;
1343 
1344   // Get the type for the builtin.
1345   ASTContext::GetBuiltinTypeError Error;
1346   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1347   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1348 
1349   const llvm::FunctionType *Ty =
1350     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1351 
1352   // Unique the name through the identifier table.
1353   Name = getContext().Idents.get(Name).getNameStart();
1354   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1355 }
1356 
1357 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1358                                             unsigned NumTys) {
1359   return llvm::Intrinsic::getDeclaration(&getModule(),
1360                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1361 }
1362 
1363 llvm::Function *CodeGenModule::getMemCpyFn() {
1364   if (MemCpyFn) return MemCpyFn;
1365   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1366   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1367 }
1368 
1369 llvm::Function *CodeGenModule::getMemMoveFn() {
1370   if (MemMoveFn) return MemMoveFn;
1371   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1372   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1373 }
1374 
1375 llvm::Function *CodeGenModule::getMemSetFn() {
1376   if (MemSetFn) return MemSetFn;
1377   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1378   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1379 }
1380 
1381 static llvm::StringMapEntry<llvm::Constant*> &
1382 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1383                          const StringLiteral *Literal,
1384                          bool TargetIsLSB,
1385                          bool &IsUTF16,
1386                          unsigned &StringLength) {
1387   unsigned NumBytes = Literal->getByteLength();
1388 
1389   // Check for simple case.
1390   if (!Literal->containsNonAsciiOrNull()) {
1391     StringLength = NumBytes;
1392     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1393                                                 StringLength));
1394   }
1395 
1396   // Otherwise, convert the UTF8 literals into a byte string.
1397   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1398   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1399   UTF16 *ToPtr = &ToBuf[0];
1400 
1401   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1402                                                &ToPtr, ToPtr + NumBytes,
1403                                                strictConversion);
1404 
1405   // Check for conversion failure.
1406   if (Result != conversionOK) {
1407     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1408     // this duplicate code.
1409     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1410     StringLength = NumBytes;
1411     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1412                                                 StringLength));
1413   }
1414 
1415   // ConvertUTF8toUTF16 returns the length in ToPtr.
1416   StringLength = ToPtr - &ToBuf[0];
1417 
1418   // Render the UTF-16 string into a byte array and convert to the target byte
1419   // order.
1420   //
1421   // FIXME: This isn't something we should need to do here.
1422   llvm::SmallString<128> AsBytes;
1423   AsBytes.reserve(StringLength * 2);
1424   for (unsigned i = 0; i != StringLength; ++i) {
1425     unsigned short Val = ToBuf[i];
1426     if (TargetIsLSB) {
1427       AsBytes.push_back(Val & 0xFF);
1428       AsBytes.push_back(Val >> 8);
1429     } else {
1430       AsBytes.push_back(Val >> 8);
1431       AsBytes.push_back(Val & 0xFF);
1432     }
1433   }
1434   // Append one extra null character, the second is automatically added by our
1435   // caller.
1436   AsBytes.push_back(0);
1437 
1438   IsUTF16 = true;
1439   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1440 }
1441 
1442 llvm::Constant *
1443 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1444   unsigned StringLength = 0;
1445   bool isUTF16 = false;
1446   llvm::StringMapEntry<llvm::Constant*> &Entry =
1447     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1448                              getTargetData().isLittleEndian(),
1449                              isUTF16, StringLength);
1450 
1451   if (llvm::Constant *C = Entry.getValue())
1452     return C;
1453 
1454   llvm::Constant *Zero =
1455       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1456   llvm::Constant *Zeros[] = { Zero, Zero };
1457 
1458   // If we don't already have it, get __CFConstantStringClassReference.
1459   if (!CFConstantStringClassRef) {
1460     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1461     Ty = llvm::ArrayType::get(Ty, 0);
1462     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1463                                            "__CFConstantStringClassReference");
1464     // Decay array -> ptr
1465     CFConstantStringClassRef =
1466       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1467   }
1468 
1469   QualType CFTy = getContext().getCFConstantStringType();
1470 
1471   const llvm::StructType *STy =
1472     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1473 
1474   std::vector<llvm::Constant*> Fields(4);
1475 
1476   // Class pointer.
1477   Fields[0] = CFConstantStringClassRef;
1478 
1479   // Flags.
1480   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1481   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1482     llvm::ConstantInt::get(Ty, 0x07C8);
1483 
1484   // String pointer.
1485   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1486 
1487   const char *Sect = 0;
1488   llvm::GlobalValue::LinkageTypes Linkage;
1489   bool isConstant;
1490   if (isUTF16) {
1491     Sect = getContext().Target.getUnicodeStringSection();
1492     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1493     Linkage = llvm::GlobalValue::InternalLinkage;
1494     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1495     // does make plain ascii ones writable.
1496     isConstant = true;
1497   } else {
1498     Linkage = llvm::GlobalValue::PrivateLinkage;
1499     isConstant = !Features.WritableStrings;
1500   }
1501 
1502   llvm::GlobalVariable *GV =
1503     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1504                              ".str");
1505   if (Sect)
1506     GV->setSection(Sect);
1507   if (isUTF16) {
1508     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1509     GV->setAlignment(Align);
1510   }
1511   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1512 
1513   // String length.
1514   Ty = getTypes().ConvertType(getContext().LongTy);
1515   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1516 
1517   // The struct.
1518   C = llvm::ConstantStruct::get(STy, Fields);
1519   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1520                                 llvm::GlobalVariable::PrivateLinkage, C,
1521                                 "_unnamed_cfstring_");
1522   if (const char *Sect = getContext().Target.getCFStringSection())
1523     GV->setSection(Sect);
1524   Entry.setValue(GV);
1525 
1526   return GV;
1527 }
1528 
1529 /// GetStringForStringLiteral - Return the appropriate bytes for a
1530 /// string literal, properly padded to match the literal type.
1531 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1532   const char *StrData = E->getStrData();
1533   unsigned Len = E->getByteLength();
1534 
1535   const ConstantArrayType *CAT =
1536     getContext().getAsConstantArrayType(E->getType());
1537   assert(CAT && "String isn't pointer or array!");
1538 
1539   // Resize the string to the right size.
1540   std::string Str(StrData, StrData+Len);
1541   uint64_t RealLen = CAT->getSize().getZExtValue();
1542 
1543   if (E->isWide())
1544     RealLen *= getContext().Target.getWCharWidth()/8;
1545 
1546   Str.resize(RealLen, '\0');
1547 
1548   return Str;
1549 }
1550 
1551 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1552 /// constant array for the given string literal.
1553 llvm::Constant *
1554 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1555   // FIXME: This can be more efficient.
1556   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1557 }
1558 
1559 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1560 /// array for the given ObjCEncodeExpr node.
1561 llvm::Constant *
1562 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1563   std::string Str;
1564   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1565 
1566   return GetAddrOfConstantCString(Str);
1567 }
1568 
1569 
1570 /// GenerateWritableString -- Creates storage for a string literal.
1571 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1572                                              bool constant,
1573                                              CodeGenModule &CGM,
1574                                              const char *GlobalName) {
1575   // Create Constant for this string literal. Don't add a '\0'.
1576   llvm::Constant *C =
1577       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1578 
1579   // Create a global variable for this string
1580   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1581                                   llvm::GlobalValue::PrivateLinkage,
1582                                   C, GlobalName);
1583 }
1584 
1585 /// GetAddrOfConstantString - Returns a pointer to a character array
1586 /// containing the literal. This contents are exactly that of the
1587 /// given string, i.e. it will not be null terminated automatically;
1588 /// see GetAddrOfConstantCString. Note that whether the result is
1589 /// actually a pointer to an LLVM constant depends on
1590 /// Feature.WriteableStrings.
1591 ///
1592 /// The result has pointer to array type.
1593 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1594                                                        const char *GlobalName) {
1595   bool IsConstant = !Features.WritableStrings;
1596 
1597   // Get the default prefix if a name wasn't specified.
1598   if (!GlobalName)
1599     GlobalName = ".str";
1600 
1601   // Don't share any string literals if strings aren't constant.
1602   if (!IsConstant)
1603     return GenerateStringLiteral(str, false, *this, GlobalName);
1604 
1605   llvm::StringMapEntry<llvm::Constant *> &Entry =
1606     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1607 
1608   if (Entry.getValue())
1609     return Entry.getValue();
1610 
1611   // Create a global variable for this.
1612   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1613   Entry.setValue(C);
1614   return C;
1615 }
1616 
1617 /// GetAddrOfConstantCString - Returns a pointer to a character
1618 /// array containing the literal and a terminating '\-'
1619 /// character. The result has pointer to array type.
1620 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1621                                                         const char *GlobalName){
1622   return GetAddrOfConstantString(str + '\0', GlobalName);
1623 }
1624 
1625 /// EmitObjCPropertyImplementations - Emit information for synthesized
1626 /// properties for an implementation.
1627 void CodeGenModule::EmitObjCPropertyImplementations(const
1628                                                     ObjCImplementationDecl *D) {
1629   for (ObjCImplementationDecl::propimpl_iterator
1630          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1631     ObjCPropertyImplDecl *PID = *i;
1632 
1633     // Dynamic is just for type-checking.
1634     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1635       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1636 
1637       // Determine which methods need to be implemented, some may have
1638       // been overridden. Note that ::isSynthesized is not the method
1639       // we want, that just indicates if the decl came from a
1640       // property. What we want to know is if the method is defined in
1641       // this implementation.
1642       if (!D->getInstanceMethod(PD->getGetterName()))
1643         CodeGenFunction(*this).GenerateObjCGetter(
1644                                  const_cast<ObjCImplementationDecl *>(D), PID);
1645       if (!PD->isReadOnly() &&
1646           !D->getInstanceMethod(PD->getSetterName()))
1647         CodeGenFunction(*this).GenerateObjCSetter(
1648                                  const_cast<ObjCImplementationDecl *>(D), PID);
1649     }
1650   }
1651 }
1652 
1653 /// EmitNamespace - Emit all declarations in a namespace.
1654 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1655   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1656        I != E; ++I)
1657     EmitTopLevelDecl(*I);
1658 }
1659 
1660 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1661 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1662   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1663       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1664     ErrorUnsupported(LSD, "linkage spec");
1665     return;
1666   }
1667 
1668   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1669        I != E; ++I)
1670     EmitTopLevelDecl(*I);
1671 }
1672 
1673 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1674 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1675   // If an error has occurred, stop code generation, but continue
1676   // parsing and semantic analysis (to ensure all warnings and errors
1677   // are emitted).
1678   if (Diags.hasErrorOccurred())
1679     return;
1680 
1681   // Ignore dependent declarations.
1682   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1683     return;
1684 
1685   switch (D->getKind()) {
1686   case Decl::CXXConversion:
1687   case Decl::CXXMethod:
1688   case Decl::Function:
1689     // Skip function templates
1690     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1691       return;
1692 
1693     EmitGlobal(cast<FunctionDecl>(D));
1694     break;
1695 
1696   case Decl::Var:
1697     EmitGlobal(cast<VarDecl>(D));
1698     break;
1699 
1700   // C++ Decls
1701   case Decl::Namespace:
1702     EmitNamespace(cast<NamespaceDecl>(D));
1703     break;
1704     // No code generation needed.
1705   case Decl::Using:
1706   case Decl::UsingDirective:
1707   case Decl::ClassTemplate:
1708   case Decl::FunctionTemplate:
1709   case Decl::NamespaceAlias:
1710     break;
1711   case Decl::CXXConstructor:
1712     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1713     break;
1714   case Decl::CXXDestructor:
1715     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1716     break;
1717 
1718   case Decl::StaticAssert:
1719     // Nothing to do.
1720     break;
1721 
1722   // Objective-C Decls
1723 
1724   // Forward declarations, no (immediate) code generation.
1725   case Decl::ObjCClass:
1726   case Decl::ObjCForwardProtocol:
1727   case Decl::ObjCCategory:
1728   case Decl::ObjCInterface:
1729     break;
1730 
1731   case Decl::ObjCProtocol:
1732     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1733     break;
1734 
1735   case Decl::ObjCCategoryImpl:
1736     // Categories have properties but don't support synthesize so we
1737     // can ignore them here.
1738     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1739     break;
1740 
1741   case Decl::ObjCImplementation: {
1742     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1743     EmitObjCPropertyImplementations(OMD);
1744     Runtime->GenerateClass(OMD);
1745     break;
1746   }
1747   case Decl::ObjCMethod: {
1748     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1749     // If this is not a prototype, emit the body.
1750     if (OMD->getBody())
1751       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1752     break;
1753   }
1754   case Decl::ObjCCompatibleAlias:
1755     // compatibility-alias is a directive and has no code gen.
1756     break;
1757 
1758   case Decl::LinkageSpec:
1759     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1760     break;
1761 
1762   case Decl::FileScopeAsm: {
1763     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1764     std::string AsmString(AD->getAsmString()->getStrData(),
1765                           AD->getAsmString()->getByteLength());
1766 
1767     const std::string &S = getModule().getModuleInlineAsm();
1768     if (S.empty())
1769       getModule().setModuleInlineAsm(AsmString);
1770     else
1771       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1772     break;
1773   }
1774 
1775   default:
1776     // Make sure we handled everything we should, every other kind is a
1777     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1778     // function. Need to recode Decl::Kind to do that easily.
1779     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1780   }
1781 }
1782