1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 EmitDeferred(); 66 if (Runtime) 67 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 68 AddGlobalCtor(ObjCInitFunction); 69 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 70 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 71 EmitAnnotations(); 72 EmitLLVMUsed(); 73 } 74 75 /// ErrorUnsupported - Print out an error that codegen doesn't support the 76 /// specified stmt yet. 77 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 78 bool OmitOnError) { 79 if (OmitOnError && getDiags().hasErrorOccurred()) 80 return; 81 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 82 "cannot compile this %0 yet"); 83 std::string Msg = Type; 84 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 85 << Msg << S->getSourceRange(); 86 } 87 88 /// ErrorUnsupported - Print out an error that codegen doesn't support the 89 /// specified decl yet. 90 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 91 bool OmitOnError) { 92 if (OmitOnError && getDiags().hasErrorOccurred()) 93 return; 94 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 95 "cannot compile this %0 yet"); 96 std::string Msg = Type; 97 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 98 } 99 100 LangOptions::VisibilityMode 101 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 102 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 103 if (VD->getStorageClass() == VarDecl::PrivateExtern) 104 return LangOptions::Hidden; 105 106 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 107 switch (attr->getVisibility()) { 108 default: assert(0 && "Unknown visibility!"); 109 case VisibilityAttr::DefaultVisibility: 110 return LangOptions::Default; 111 case VisibilityAttr::HiddenVisibility: 112 return LangOptions::Hidden; 113 case VisibilityAttr::ProtectedVisibility: 114 return LangOptions::Protected; 115 } 116 } 117 118 return getLangOptions().getVisibilityMode(); 119 } 120 121 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 122 const Decl *D) const { 123 // Internal definitions always have default visibility. 124 if (GV->hasLocalLinkage()) { 125 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 126 return; 127 } 128 129 switch (getDeclVisibilityMode(D)) { 130 default: assert(0 && "Unknown visibility!"); 131 case LangOptions::Default: 132 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 133 case LangOptions::Hidden: 134 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 135 case LangOptions::Protected: 136 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 137 } 138 } 139 140 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 141 const NamedDecl *ND = GD.getDecl(); 142 143 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 144 return getMangledCXXCtorName(D, GD.getCtorType()); 145 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 146 return getMangledCXXDtorName(D, GD.getDtorType()); 147 148 return getMangledName(ND); 149 } 150 151 /// \brief Retrieves the mangled name for the given declaration. 152 /// 153 /// If the given declaration requires a mangled name, returns an 154 /// const char* containing the mangled name. Otherwise, returns 155 /// the unmangled name. 156 /// 157 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 158 // In C, functions with no attributes never need to be mangled. Fastpath them. 159 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 160 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 161 return ND->getNameAsCString(); 162 } 163 164 llvm::SmallString<256> Name; 165 llvm::raw_svector_ostream Out(Name); 166 if (!mangleName(ND, Context, Out)) { 167 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 168 return ND->getNameAsCString(); 169 } 170 171 Name += '\0'; 172 return UniqueMangledName(Name.begin(), Name.end()); 173 } 174 175 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 176 const char *NameEnd) { 177 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 178 179 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 180 } 181 182 /// AddGlobalCtor - Add a function to the list that will be called before 183 /// main() runs. 184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 185 // FIXME: Type coercion of void()* types. 186 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 187 } 188 189 /// AddGlobalDtor - Add a function to the list that will be called 190 /// when the module is unloaded. 191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 192 // FIXME: Type coercion of void()* types. 193 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 194 } 195 196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 197 // Ctor function type is void()*. 198 llvm::FunctionType* CtorFTy = 199 llvm::FunctionType::get(llvm::Type::VoidTy, 200 std::vector<const llvm::Type*>(), 201 false); 202 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 203 204 // Get the type of a ctor entry, { i32, void ()* }. 205 llvm::StructType* CtorStructTy = 206 llvm::StructType::get(VMContext, llvm::Type::Int32Ty, 207 llvm::PointerType::getUnqual(CtorFTy), NULL); 208 209 // Construct the constructor and destructor arrays. 210 std::vector<llvm::Constant*> Ctors; 211 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 212 std::vector<llvm::Constant*> S; 213 S.push_back( 214 llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 215 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 llvm::ConstantArray::get(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // The kind of external linkage this function will have, if it is not 248 // inline or static. 249 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 250 if (Context.getLangOptions().CPlusPlus && 251 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 252 !FD->isExplicitSpecialization()) 253 External = CodeGenModule::GVA_TemplateInstantiation; 254 255 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 256 // C++ member functions defined inside the class are always inline. 257 if (MD->isInline() || !MD->isOutOfLine()) 258 return CodeGenModule::GVA_CXXInline; 259 260 return External; 261 } 262 263 // "static" functions get internal linkage. 264 if (FD->getStorageClass() == FunctionDecl::Static) 265 return CodeGenModule::GVA_Internal; 266 267 if (!FD->isInline()) 268 return External; 269 270 // If the inline function explicitly has the GNU inline attribute on it, or if 271 // this is C89 mode, we use to GNU semantics. 272 if (!Features.C99 && !Features.CPlusPlus) { 273 // extern inline in GNU mode is like C99 inline. 274 if (FD->getStorageClass() == FunctionDecl::Extern) 275 return CodeGenModule::GVA_C99Inline; 276 // Normal inline is a strong symbol. 277 return CodeGenModule::GVA_StrongExternal; 278 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 279 // GCC in C99 mode seems to use a different decision-making 280 // process for extern inline, which factors in previous 281 // declarations. 282 if (FD->isExternGNUInline(Context)) 283 return CodeGenModule::GVA_C99Inline; 284 // Normal inline is a strong symbol. 285 return External; 286 } 287 288 // The definition of inline changes based on the language. Note that we 289 // have already handled "static inline" above, with the GVA_Internal case. 290 if (Features.CPlusPlus) // inline and extern inline. 291 return CodeGenModule::GVA_CXXInline; 292 293 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 294 if (FD->isC99InlineDefinition()) 295 return CodeGenModule::GVA_C99Inline; 296 297 return CodeGenModule::GVA_StrongExternal; 298 } 299 300 /// SetFunctionDefinitionAttributes - Set attributes for a global. 301 /// 302 /// FIXME: This is currently only done for aliases and functions, but not for 303 /// variables (these details are set in EmitGlobalVarDefinition for variables). 304 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 305 llvm::GlobalValue *GV) { 306 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 307 308 if (Linkage == GVA_Internal) { 309 GV->setLinkage(llvm::Function::InternalLinkage); 310 } else if (D->hasAttr<DLLExportAttr>()) { 311 GV->setLinkage(llvm::Function::DLLExportLinkage); 312 } else if (D->hasAttr<WeakAttr>()) { 313 GV->setLinkage(llvm::Function::WeakAnyLinkage); 314 } else if (Linkage == GVA_C99Inline) { 315 // In C99 mode, 'inline' functions are guaranteed to have a strong 316 // definition somewhere else, so we can use available_externally linkage. 317 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 318 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 319 // In C++, the compiler has to emit a definition in every translation unit 320 // that references the function. We should use linkonce_odr because 321 // a) if all references in this translation unit are optimized away, we 322 // don't need to codegen it. b) if the function persists, it needs to be 323 // merged with other definitions. c) C++ has the ODR, so we know the 324 // definition is dependable. 325 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 326 } else { 327 assert(Linkage == GVA_StrongExternal); 328 // Otherwise, we have strong external linkage. 329 GV->setLinkage(llvm::Function::ExternalLinkage); 330 } 331 332 SetCommonAttributes(D, GV); 333 } 334 335 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 336 const CGFunctionInfo &Info, 337 llvm::Function *F) { 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList); 340 341 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 342 AttributeList.size())); 343 344 // Set the appropriate calling convention for the Function. 345 if (D->hasAttr<FastCallAttr>()) 346 F->setCallingConv(llvm::CallingConv::X86_FastCall); 347 348 if (D->hasAttr<StdCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_StdCall); 350 } 351 352 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 353 llvm::Function *F) { 354 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 355 F->addFnAttr(llvm::Attribute::NoUnwind); 356 357 if (D->hasAttr<AlwaysInlineAttr>()) 358 F->addFnAttr(llvm::Attribute::AlwaysInline); 359 360 if (D->hasAttr<NoinlineAttr>()) 361 F->addFnAttr(llvm::Attribute::NoInline); 362 } 363 364 void CodeGenModule::SetCommonAttributes(const Decl *D, 365 llvm::GlobalValue *GV) { 366 setGlobalVisibility(GV, D); 367 368 if (D->hasAttr<UsedAttr>()) 369 AddUsedGlobal(GV); 370 371 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 372 GV->setSection(SA->getName()); 373 } 374 375 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 376 llvm::Function *F, 377 const CGFunctionInfo &FI) { 378 SetLLVMFunctionAttributes(D, FI, F); 379 SetLLVMFunctionAttributesForDefinition(D, F); 380 381 F->setLinkage(llvm::Function::InternalLinkage); 382 383 SetCommonAttributes(D, F); 384 } 385 386 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 387 llvm::Function *F, 388 bool IsIncompleteFunction) { 389 if (!IsIncompleteFunction) 390 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 391 392 // Only a few attributes are set on declarations; these may later be 393 // overridden by a definition. 394 395 if (FD->hasAttr<DLLImportAttr>()) { 396 F->setLinkage(llvm::Function::DLLImportLinkage); 397 } else if (FD->hasAttr<WeakAttr>() || 398 FD->hasAttr<WeakImportAttr>()) { 399 // "extern_weak" is overloaded in LLVM; we probably should have 400 // separate linkage types for this. 401 F->setLinkage(llvm::Function::ExternalWeakLinkage); 402 } else { 403 F->setLinkage(llvm::Function::ExternalLinkage); 404 } 405 406 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 407 F->setSection(SA->getName()); 408 } 409 410 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 411 assert(!GV->isDeclaration() && 412 "Only globals with definition can force usage."); 413 LLVMUsed.push_back(GV); 414 } 415 416 void CodeGenModule::EmitLLVMUsed() { 417 // Don't create llvm.used if there is no need. 418 if (LLVMUsed.empty()) 419 return; 420 421 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 422 423 // Convert LLVMUsed to what ConstantArray needs. 424 std::vector<llvm::Constant*> UsedArray; 425 UsedArray.resize(LLVMUsed.size()); 426 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 427 UsedArray[i] = 428 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 429 i8PTy); 430 } 431 432 if (UsedArray.empty()) 433 return; 434 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 435 436 llvm::GlobalVariable *GV = 437 new llvm::GlobalVariable(getModule(), ATy, false, 438 llvm::GlobalValue::AppendingLinkage, 439 llvm::ConstantArray::get(ATy, UsedArray), 440 "llvm.used"); 441 442 GV->setSection("llvm.metadata"); 443 } 444 445 void CodeGenModule::EmitDeferred() { 446 // Emit code for any potentially referenced deferred decls. Since a 447 // previously unused static decl may become used during the generation of code 448 // for a static function, iterate until no changes are made. 449 while (!DeferredDeclsToEmit.empty()) { 450 GlobalDecl D = DeferredDeclsToEmit.back(); 451 DeferredDeclsToEmit.pop_back(); 452 453 // The mangled name for the decl must have been emitted in GlobalDeclMap. 454 // Look it up to see if it was defined with a stronger definition (e.g. an 455 // extern inline function with a strong function redefinition). If so, 456 // just ignore the deferred decl. 457 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 458 assert(CGRef && "Deferred decl wasn't referenced?"); 459 460 if (!CGRef->isDeclaration()) 461 continue; 462 463 // Otherwise, emit the definition and move on to the next one. 464 EmitGlobalDefinition(D); 465 } 466 } 467 468 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 469 /// annotation information for a given GlobalValue. The annotation struct is 470 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 471 /// GlobalValue being annotated. The second field is the constant string 472 /// created from the AnnotateAttr's annotation. The third field is a constant 473 /// string containing the name of the translation unit. The fourth field is 474 /// the line number in the file of the annotated value declaration. 475 /// 476 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 477 /// appears to. 478 /// 479 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 480 const AnnotateAttr *AA, 481 unsigned LineNo) { 482 llvm::Module *M = &getModule(); 483 484 // get [N x i8] constants for the annotation string, and the filename string 485 // which are the 2nd and 3rd elements of the global annotation structure. 486 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 487 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 488 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 489 true); 490 491 // Get the two global values corresponding to the ConstantArrays we just 492 // created to hold the bytes of the strings. 493 llvm::GlobalValue *annoGV = 494 new llvm::GlobalVariable(*M, anno->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, anno, 496 GV->getName()); 497 // translation unit name string, emitted into the llvm.metadata section. 498 llvm::GlobalValue *unitGV = 499 new llvm::GlobalVariable(*M, unit->getType(), false, 500 llvm::GlobalValue::PrivateLinkage, unit, 501 ".str"); 502 503 // Create the ConstantStruct for the global annotation. 504 llvm::Constant *Fields[4] = { 505 llvm::ConstantExpr::getBitCast(GV, SBP), 506 llvm::ConstantExpr::getBitCast(annoGV, SBP), 507 llvm::ConstantExpr::getBitCast(unitGV, SBP), 508 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 509 }; 510 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 511 } 512 513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 514 // Never defer when EmitAllDecls is specified or the decl has 515 // attribute used. 516 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 517 return false; 518 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 520 // Constructors and destructors should never be deferred. 521 if (FD->hasAttr<ConstructorAttr>() || 522 FD->hasAttr<DestructorAttr>()) 523 return false; 524 525 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 526 527 // static, static inline, always_inline, and extern inline functions can 528 // always be deferred. Normal inline functions can be deferred in C99/C++. 529 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 530 Linkage == GVA_CXXInline) 531 return true; 532 return false; 533 } 534 535 const VarDecl *VD = cast<VarDecl>(Global); 536 assert(VD->isFileVarDecl() && "Invalid decl"); 537 538 return VD->getStorageClass() == VarDecl::Static; 539 } 540 541 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 542 const ValueDecl *Global = GD.getDecl(); 543 544 // If this is an alias definition (which otherwise looks like a declaration) 545 // emit it now. 546 if (Global->hasAttr<AliasAttr>()) 547 return EmitAliasDefinition(Global); 548 549 // Ignore declarations, they will be emitted on their first use. 550 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 551 // Forward declarations are emitted lazily on first use. 552 if (!FD->isThisDeclarationADefinition()) 553 return; 554 } else { 555 const VarDecl *VD = cast<VarDecl>(Global); 556 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 557 558 // In C++, if this is marked "extern", defer code generation. 559 if (getLangOptions().CPlusPlus && !VD->getInit() && 560 (VD->getStorageClass() == VarDecl::Extern || 561 VD->isExternC(getContext()))) 562 return; 563 564 // In C, if this isn't a definition, defer code generation. 565 if (!getLangOptions().CPlusPlus && !VD->getInit()) 566 return; 567 } 568 569 // Defer code generation when possible if this is a static definition, inline 570 // function etc. These we only want to emit if they are used. 571 if (MayDeferGeneration(Global)) { 572 // If the value has already been used, add it directly to the 573 // DeferredDeclsToEmit list. 574 const char *MangledName = getMangledName(GD); 575 if (GlobalDeclMap.count(MangledName)) 576 DeferredDeclsToEmit.push_back(GD); 577 else { 578 // Otherwise, remember that we saw a deferred decl with this name. The 579 // first use of the mangled name will cause it to move into 580 // DeferredDeclsToEmit. 581 DeferredDecls[MangledName] = GD; 582 } 583 return; 584 } 585 586 // Otherwise emit the definition. 587 EmitGlobalDefinition(GD); 588 } 589 590 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 591 const ValueDecl *D = GD.getDecl(); 592 593 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 594 EmitCXXConstructor(CD, GD.getCtorType()); 595 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 596 EmitCXXDestructor(DD, GD.getDtorType()); 597 else if (isa<FunctionDecl>(D)) 598 EmitGlobalFunctionDefinition(GD); 599 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 600 EmitGlobalVarDefinition(VD); 601 else { 602 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 603 } 604 } 605 606 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 607 /// module, create and return an llvm Function with the specified type. If there 608 /// is something in the module with the specified name, return it potentially 609 /// bitcasted to the right type. 610 /// 611 /// If D is non-null, it specifies a decl that correspond to this. This is used 612 /// to set the attributes on the function when it is first created. 613 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 614 const llvm::Type *Ty, 615 GlobalDecl D) { 616 // Lookup the entry, lazily creating it if necessary. 617 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 618 if (Entry) { 619 if (Entry->getType()->getElementType() == Ty) 620 return Entry; 621 622 // Make sure the result is of the correct type. 623 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 624 return llvm::ConstantExpr::getBitCast(Entry, PTy); 625 } 626 627 // This is the first use or definition of a mangled name. If there is a 628 // deferred decl with this name, remember that we need to emit it at the end 629 // of the file. 630 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 631 DeferredDecls.find(MangledName); 632 if (DDI != DeferredDecls.end()) { 633 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 634 // list, and remove it from DeferredDecls (since we don't need it anymore). 635 DeferredDeclsToEmit.push_back(DDI->second); 636 DeferredDecls.erase(DDI); 637 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 638 // If this the first reference to a C++ inline function in a class, queue up 639 // the deferred function body for emission. These are not seen as 640 // top-level declarations. 641 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 642 DeferredDeclsToEmit.push_back(D); 643 // A called constructor which has no definition or declaration need be 644 // synthesized. 645 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 646 const CXXRecordDecl *ClassDecl = 647 cast<CXXRecordDecl>(CD->getDeclContext()); 648 if (CD->isCopyConstructor(getContext())) 649 DeferredCopyConstructorToEmit(D); 650 else if (!ClassDecl->hasUserDeclaredConstructor()) 651 DeferredDeclsToEmit.push_back(D); 652 } 653 } 654 655 // This function doesn't have a complete type (for example, the return 656 // type is an incomplete struct). Use a fake type instead, and make 657 // sure not to try to set attributes. 658 bool IsIncompleteFunction = false; 659 if (!isa<llvm::FunctionType>(Ty)) { 660 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 661 std::vector<const llvm::Type*>(), false); 662 IsIncompleteFunction = true; 663 } 664 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 665 llvm::Function::ExternalLinkage, 666 "", &getModule()); 667 F->setName(MangledName); 668 if (D.getDecl()) 669 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 670 IsIncompleteFunction); 671 Entry = F; 672 return F; 673 } 674 675 /// Defer definition of copy constructor(s) which need be implicitly defined. 676 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 677 const CXXConstructorDecl *CD = 678 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 679 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 680 if (ClassDecl->hasTrivialCopyConstructor() || 681 ClassDecl->hasUserDeclaredCopyConstructor()) 682 return; 683 684 // First make sure all direct base classes and virtual bases and non-static 685 // data mebers which need to have their copy constructors implicitly defined 686 // are defined. 12.8.p7 687 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 688 Base != ClassDecl->bases_end(); ++Base) { 689 unsigned TypeQuals; 690 CXXRecordDecl *BaseClassDecl 691 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 692 if (CXXConstructorDecl *BaseCopyCtor = 693 BaseClassDecl->getCopyConstructor(Context, TypeQuals)) 694 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 695 } 696 697 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 698 FieldEnd = ClassDecl->field_end(); 699 Field != FieldEnd; ++Field) { 700 unsigned TypeQuals; 701 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 702 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 703 FieldType = Array->getElementType(); 704 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 705 CXXRecordDecl *FieldClassDecl 706 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 707 if (CXXConstructorDecl *FieldCopyCtor = 708 FieldClassDecl->getCopyConstructor(Context, TypeQuals)) 709 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 710 } 711 } 712 DeferredDeclsToEmit.push_back(CopyCtorDecl); 713 714 } 715 716 /// GetAddrOfFunction - Return the address of the given function. If Ty is 717 /// non-null, then this function will use the specified type if it has to 718 /// create it (this occurs when we see a definition of the function). 719 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 720 const llvm::Type *Ty) { 721 // If there was no specific requested type, just convert it now. 722 if (!Ty) 723 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 724 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 725 } 726 727 /// CreateRuntimeFunction - Create a new runtime function with the specified 728 /// type and name. 729 llvm::Constant * 730 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 731 const char *Name) { 732 // Convert Name to be a uniqued string from the IdentifierInfo table. 733 Name = getContext().Idents.get(Name).getName(); 734 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 735 } 736 737 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 738 /// create and return an llvm GlobalVariable with the specified type. If there 739 /// is something in the module with the specified name, return it potentially 740 /// bitcasted to the right type. 741 /// 742 /// If D is non-null, it specifies a decl that correspond to this. This is used 743 /// to set the attributes on the global when it is first created. 744 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 745 const llvm::PointerType*Ty, 746 const VarDecl *D) { 747 // Lookup the entry, lazily creating it if necessary. 748 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 749 if (Entry) { 750 if (Entry->getType() == Ty) 751 return Entry; 752 753 // Make sure the result is of the correct type. 754 return llvm::ConstantExpr::getBitCast(Entry, Ty); 755 } 756 757 // This is the first use or definition of a mangled name. If there is a 758 // deferred decl with this name, remember that we need to emit it at the end 759 // of the file. 760 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 761 DeferredDecls.find(MangledName); 762 if (DDI != DeferredDecls.end()) { 763 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 764 // list, and remove it from DeferredDecls (since we don't need it anymore). 765 DeferredDeclsToEmit.push_back(DDI->second); 766 DeferredDecls.erase(DDI); 767 } 768 769 llvm::GlobalVariable *GV = 770 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 771 llvm::GlobalValue::ExternalLinkage, 772 0, "", 0, 773 false, Ty->getAddressSpace()); 774 GV->setName(MangledName); 775 776 // Handle things which are present even on external declarations. 777 if (D) { 778 // FIXME: This code is overly simple and should be merged with other global 779 // handling. 780 GV->setConstant(D->getType().isConstant(Context)); 781 782 // FIXME: Merge with other attribute handling code. 783 if (D->getStorageClass() == VarDecl::PrivateExtern) 784 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 785 786 if (D->hasAttr<WeakAttr>() || 787 D->hasAttr<WeakImportAttr>()) 788 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 789 790 GV->setThreadLocal(D->isThreadSpecified()); 791 } 792 793 return Entry = GV; 794 } 795 796 797 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 798 /// given global variable. If Ty is non-null and if the global doesn't exist, 799 /// then it will be greated with the specified type instead of whatever the 800 /// normal requested type would be. 801 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 802 const llvm::Type *Ty) { 803 assert(D->hasGlobalStorage() && "Not a global variable"); 804 QualType ASTTy = D->getType(); 805 if (Ty == 0) 806 Ty = getTypes().ConvertTypeForMem(ASTTy); 807 808 const llvm::PointerType *PTy = 809 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 810 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 811 } 812 813 /// CreateRuntimeVariable - Create a new runtime global variable with the 814 /// specified type and name. 815 llvm::Constant * 816 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 817 const char *Name) { 818 // Convert Name to be a uniqued string from the IdentifierInfo table. 819 Name = getContext().Idents.get(Name).getName(); 820 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 821 } 822 823 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 824 assert(!D->getInit() && "Cannot emit definite definitions here!"); 825 826 if (MayDeferGeneration(D)) { 827 // If we have not seen a reference to this variable yet, place it 828 // into the deferred declarations table to be emitted if needed 829 // later. 830 const char *MangledName = getMangledName(D); 831 if (GlobalDeclMap.count(MangledName) == 0) { 832 DeferredDecls[MangledName] = GlobalDecl(D); 833 return; 834 } 835 } 836 837 // The tentative definition is the only definition. 838 EmitGlobalVarDefinition(D); 839 } 840 841 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 842 llvm::Constant *Init = 0; 843 QualType ASTTy = D->getType(); 844 845 if (D->getInit() == 0) { 846 // This is a tentative definition; tentative definitions are 847 // implicitly initialized with { 0 }. 848 // 849 // Note that tentative definitions are only emitted at the end of 850 // a translation unit, so they should never have incomplete 851 // type. In addition, EmitTentativeDefinition makes sure that we 852 // never attempt to emit a tentative definition if a real one 853 // exists. A use may still exists, however, so we still may need 854 // to do a RAUW. 855 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 856 Init = EmitNullConstant(D->getType()); 857 } else { 858 Init = EmitConstantExpr(D->getInit(), D->getType()); 859 if (!Init) { 860 ErrorUnsupported(D, "static initializer"); 861 QualType T = D->getInit()->getType(); 862 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 863 } 864 } 865 866 const llvm::Type* InitType = Init->getType(); 867 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 868 869 // Strip off a bitcast if we got one back. 870 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 871 assert(CE->getOpcode() == llvm::Instruction::BitCast || 872 // all zero index gep. 873 CE->getOpcode() == llvm::Instruction::GetElementPtr); 874 Entry = CE->getOperand(0); 875 } 876 877 // Entry is now either a Function or GlobalVariable. 878 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 879 880 // We have a definition after a declaration with the wrong type. 881 // We must make a new GlobalVariable* and update everything that used OldGV 882 // (a declaration or tentative definition) with the new GlobalVariable* 883 // (which will be a definition). 884 // 885 // This happens if there is a prototype for a global (e.g. 886 // "extern int x[];") and then a definition of a different type (e.g. 887 // "int x[10];"). This also happens when an initializer has a different type 888 // from the type of the global (this happens with unions). 889 if (GV == 0 || 890 GV->getType()->getElementType() != InitType || 891 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 892 893 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 894 GlobalDeclMap.erase(getMangledName(D)); 895 896 // Make a new global with the correct type, this is now guaranteed to work. 897 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 898 GV->takeName(cast<llvm::GlobalValue>(Entry)); 899 900 // Replace all uses of the old global with the new global 901 llvm::Constant *NewPtrForOldDecl = 902 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 903 Entry->replaceAllUsesWith(NewPtrForOldDecl); 904 905 // Erase the old global, since it is no longer used. 906 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 907 } 908 909 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 910 SourceManager &SM = Context.getSourceManager(); 911 AddAnnotation(EmitAnnotateAttr(GV, AA, 912 SM.getInstantiationLineNumber(D->getLocation()))); 913 } 914 915 GV->setInitializer(Init); 916 917 // If it is safe to mark the global 'constant', do so now. 918 GV->setConstant(false); 919 if (D->getType().isConstant(Context)) { 920 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 921 // members, it cannot be declared "LLVM const". 922 GV->setConstant(true); 923 } 924 925 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 926 927 // Set the llvm linkage type as appropriate. 928 if (D->getStorageClass() == VarDecl::Static) 929 GV->setLinkage(llvm::Function::InternalLinkage); 930 else if (D->hasAttr<DLLImportAttr>()) 931 GV->setLinkage(llvm::Function::DLLImportLinkage); 932 else if (D->hasAttr<DLLExportAttr>()) 933 GV->setLinkage(llvm::Function::DLLExportLinkage); 934 else if (D->hasAttr<WeakAttr>()) { 935 if (GV->isConstant()) 936 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 937 else 938 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 939 } else if (!CompileOpts.NoCommon && 940 !D->hasExternalStorage() && !D->getInit() && 941 !D->getAttr<SectionAttr>()) { 942 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 943 // common vars aren't constant even if declared const. 944 GV->setConstant(false); 945 } else 946 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 947 948 SetCommonAttributes(D, GV); 949 950 // Emit global variable debug information. 951 if (CGDebugInfo *DI = getDebugInfo()) { 952 DI->setLocation(D->getLocation()); 953 DI->EmitGlobalVariable(GV, D); 954 } 955 } 956 957 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 958 /// implement a function with no prototype, e.g. "int foo() {}". If there are 959 /// existing call uses of the old function in the module, this adjusts them to 960 /// call the new function directly. 961 /// 962 /// This is not just a cleanup: the always_inline pass requires direct calls to 963 /// functions to be able to inline them. If there is a bitcast in the way, it 964 /// won't inline them. Instcombine normally deletes these calls, but it isn't 965 /// run at -O0. 966 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 967 llvm::Function *NewFn) { 968 // If we're redefining a global as a function, don't transform it. 969 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 970 if (OldFn == 0) return; 971 972 const llvm::Type *NewRetTy = NewFn->getReturnType(); 973 llvm::SmallVector<llvm::Value*, 4> ArgList; 974 975 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 976 UI != E; ) { 977 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 978 unsigned OpNo = UI.getOperandNo(); 979 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 980 if (!CI || OpNo != 0) continue; 981 982 // If the return types don't match exactly, and if the call isn't dead, then 983 // we can't transform this call. 984 if (CI->getType() != NewRetTy && !CI->use_empty()) 985 continue; 986 987 // If the function was passed too few arguments, don't transform. If extra 988 // arguments were passed, we silently drop them. If any of the types 989 // mismatch, we don't transform. 990 unsigned ArgNo = 0; 991 bool DontTransform = false; 992 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 993 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 994 if (CI->getNumOperands()-1 == ArgNo || 995 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 996 DontTransform = true; 997 break; 998 } 999 } 1000 if (DontTransform) 1001 continue; 1002 1003 // Okay, we can transform this. Create the new call instruction and copy 1004 // over the required information. 1005 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1006 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1007 ArgList.end(), "", CI); 1008 ArgList.clear(); 1009 if (NewCall->getType() != llvm::Type::VoidTy) 1010 NewCall->takeName(CI); 1011 NewCall->setCallingConv(CI->getCallingConv()); 1012 NewCall->setAttributes(CI->getAttributes()); 1013 1014 // Finally, remove the old call, replacing any uses with the new one. 1015 if (!CI->use_empty()) 1016 CI->replaceAllUsesWith(NewCall); 1017 CI->eraseFromParent(); 1018 } 1019 } 1020 1021 1022 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1023 const llvm::FunctionType *Ty; 1024 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1025 1026 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1027 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1028 1029 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1030 } else { 1031 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1032 1033 // As a special case, make sure that definitions of K&R function 1034 // "type foo()" aren't declared as varargs (which forces the backend 1035 // to do unnecessary work). 1036 if (D->getType()->isFunctionNoProtoType()) { 1037 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1038 // Due to stret, the lowered function could have arguments. 1039 // Just create the same type as was lowered by ConvertType 1040 // but strip off the varargs bit. 1041 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1042 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1043 } 1044 } 1045 1046 // Get or create the prototype for the function. 1047 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1048 1049 // Strip off a bitcast if we got one back. 1050 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1051 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1052 Entry = CE->getOperand(0); 1053 } 1054 1055 1056 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1057 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1058 1059 // If the types mismatch then we have to rewrite the definition. 1060 assert(OldFn->isDeclaration() && 1061 "Shouldn't replace non-declaration"); 1062 1063 // F is the Function* for the one with the wrong type, we must make a new 1064 // Function* and update everything that used F (a declaration) with the new 1065 // Function* (which will be a definition). 1066 // 1067 // This happens if there is a prototype for a function 1068 // (e.g. "int f()") and then a definition of a different type 1069 // (e.g. "int f(int x)"). Start by making a new function of the 1070 // correct type, RAUW, then steal the name. 1071 GlobalDeclMap.erase(getMangledName(D)); 1072 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1073 NewFn->takeName(OldFn); 1074 1075 // If this is an implementation of a function without a prototype, try to 1076 // replace any existing uses of the function (which may be calls) with uses 1077 // of the new function 1078 if (D->getType()->isFunctionNoProtoType()) { 1079 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1080 OldFn->removeDeadConstantUsers(); 1081 } 1082 1083 // Replace uses of F with the Function we will endow with a body. 1084 if (!Entry->use_empty()) { 1085 llvm::Constant *NewPtrForOldDecl = 1086 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1087 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1088 } 1089 1090 // Ok, delete the old function now, which is dead. 1091 OldFn->eraseFromParent(); 1092 1093 Entry = NewFn; 1094 } 1095 1096 llvm::Function *Fn = cast<llvm::Function>(Entry); 1097 1098 CodeGenFunction(*this).GenerateCode(D, Fn); 1099 1100 SetFunctionDefinitionAttributes(D, Fn); 1101 SetLLVMFunctionAttributesForDefinition(D, Fn); 1102 1103 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1104 AddGlobalCtor(Fn, CA->getPriority()); 1105 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1106 AddGlobalDtor(Fn, DA->getPriority()); 1107 } 1108 1109 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1110 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1111 assert(AA && "Not an alias?"); 1112 1113 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1114 1115 // Unique the name through the identifier table. 1116 const char *AliaseeName = AA->getAliasee().c_str(); 1117 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1118 1119 // Create a reference to the named value. This ensures that it is emitted 1120 // if a deferred decl. 1121 llvm::Constant *Aliasee; 1122 if (isa<llvm::FunctionType>(DeclTy)) 1123 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1124 else 1125 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1126 llvm::PointerType::getUnqual(DeclTy), 0); 1127 1128 // Create the new alias itself, but don't set a name yet. 1129 llvm::GlobalValue *GA = 1130 new llvm::GlobalAlias(Aliasee->getType(), 1131 llvm::Function::ExternalLinkage, 1132 "", Aliasee, &getModule()); 1133 1134 // See if there is already something with the alias' name in the module. 1135 const char *MangledName = getMangledName(D); 1136 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1137 1138 if (Entry && !Entry->isDeclaration()) { 1139 // If there is a definition in the module, then it wins over the alias. 1140 // This is dubious, but allow it to be safe. Just ignore the alias. 1141 GA->eraseFromParent(); 1142 return; 1143 } 1144 1145 if (Entry) { 1146 // If there is a declaration in the module, then we had an extern followed 1147 // by the alias, as in: 1148 // extern int test6(); 1149 // ... 1150 // int test6() __attribute__((alias("test7"))); 1151 // 1152 // Remove it and replace uses of it with the alias. 1153 1154 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1155 Entry->getType())); 1156 Entry->eraseFromParent(); 1157 } 1158 1159 // Now we know that there is no conflict, set the name. 1160 Entry = GA; 1161 GA->setName(MangledName); 1162 1163 // Set attributes which are particular to an alias; this is a 1164 // specialization of the attributes which may be set on a global 1165 // variable/function. 1166 if (D->hasAttr<DLLExportAttr>()) { 1167 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1168 // The dllexport attribute is ignored for undefined symbols. 1169 if (FD->getBody()) 1170 GA->setLinkage(llvm::Function::DLLExportLinkage); 1171 } else { 1172 GA->setLinkage(llvm::Function::DLLExportLinkage); 1173 } 1174 } else if (D->hasAttr<WeakAttr>() || 1175 D->hasAttr<WeakImportAttr>()) { 1176 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1177 } 1178 1179 SetCommonAttributes(D, GA); 1180 } 1181 1182 /// getBuiltinLibFunction - Given a builtin id for a function like 1183 /// "__builtin_fabsf", return a Function* for "fabsf". 1184 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1185 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1186 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1187 "isn't a lib fn"); 1188 1189 // Get the name, skip over the __builtin_ prefix (if necessary). 1190 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1191 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1192 Name += 10; 1193 1194 // Get the type for the builtin. 1195 ASTContext::GetBuiltinTypeError Error; 1196 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1197 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1198 1199 const llvm::FunctionType *Ty = 1200 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1201 1202 // Unique the name through the identifier table. 1203 Name = getContext().Idents.get(Name).getName(); 1204 // FIXME: param attributes for sext/zext etc. 1205 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1206 } 1207 1208 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1209 unsigned NumTys) { 1210 return llvm::Intrinsic::getDeclaration(&getModule(), 1211 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1212 } 1213 1214 llvm::Function *CodeGenModule::getMemCpyFn() { 1215 if (MemCpyFn) return MemCpyFn; 1216 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1217 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1218 } 1219 1220 llvm::Function *CodeGenModule::getMemMoveFn() { 1221 if (MemMoveFn) return MemMoveFn; 1222 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1223 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1224 } 1225 1226 llvm::Function *CodeGenModule::getMemSetFn() { 1227 if (MemSetFn) return MemSetFn; 1228 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1229 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1230 } 1231 1232 static void appendFieldAndPadding(CodeGenModule &CGM, 1233 std::vector<llvm::Constant*>& Fields, 1234 FieldDecl *FieldD, FieldDecl *NextFieldD, 1235 llvm::Constant* Field, 1236 RecordDecl* RD, const llvm::StructType *STy) { 1237 // Append the field. 1238 Fields.push_back(Field); 1239 1240 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1241 1242 int NextStructFieldNo; 1243 if (!NextFieldD) { 1244 NextStructFieldNo = STy->getNumElements(); 1245 } else { 1246 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1247 } 1248 1249 // Append padding 1250 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1251 llvm::Constant *C = 1252 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1253 1254 Fields.push_back(C); 1255 } 1256 } 1257 1258 static llvm::StringMapEntry<llvm::Constant*> & 1259 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1260 const StringLiteral *Literal, 1261 bool TargetIsLSB, 1262 bool &IsUTF16, 1263 unsigned &StringLength) { 1264 unsigned NumBytes = Literal->getByteLength(); 1265 1266 // Check for simple case. 1267 if (!Literal->containsNonAsciiOrNull()) { 1268 StringLength = NumBytes; 1269 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1270 StringLength)); 1271 } 1272 1273 // Otherwise, convert the UTF8 literals into a byte string. 1274 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1275 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1276 UTF16 *ToPtr = &ToBuf[0]; 1277 1278 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1279 &ToPtr, ToPtr + NumBytes, 1280 strictConversion); 1281 1282 // Check for conversion failure. 1283 if (Result != conversionOK) { 1284 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1285 // this duplicate code. 1286 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1287 StringLength = NumBytes; 1288 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1289 StringLength)); 1290 } 1291 1292 // ConvertUTF8toUTF16 returns the length in ToPtr. 1293 StringLength = ToPtr - &ToBuf[0]; 1294 1295 // Render the UTF-16 string into a byte array and convert to the target byte 1296 // order. 1297 // 1298 // FIXME: This isn't something we should need to do here. 1299 llvm::SmallString<128> AsBytes; 1300 AsBytes.reserve(StringLength * 2); 1301 for (unsigned i = 0; i != StringLength; ++i) { 1302 unsigned short Val = ToBuf[i]; 1303 if (TargetIsLSB) { 1304 AsBytes.push_back(Val & 0xFF); 1305 AsBytes.push_back(Val >> 8); 1306 } else { 1307 AsBytes.push_back(Val >> 8); 1308 AsBytes.push_back(Val & 0xFF); 1309 } 1310 } 1311 // Append one extra null character, the second is automatically added by our 1312 // caller. 1313 AsBytes.push_back(0); 1314 1315 IsUTF16 = true; 1316 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1317 } 1318 1319 llvm::Constant * 1320 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1321 unsigned StringLength = 0; 1322 bool isUTF16 = false; 1323 llvm::StringMapEntry<llvm::Constant*> &Entry = 1324 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1325 getTargetData().isLittleEndian(), 1326 isUTF16, StringLength); 1327 1328 if (llvm::Constant *C = Entry.getValue()) 1329 return C; 1330 1331 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1332 llvm::Constant *Zeros[] = { Zero, Zero }; 1333 1334 // If we don't already have it, get __CFConstantStringClassReference. 1335 if (!CFConstantStringClassRef) { 1336 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1337 Ty = llvm::ArrayType::get(Ty, 0); 1338 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1339 "__CFConstantStringClassReference"); 1340 // Decay array -> ptr 1341 CFConstantStringClassRef = 1342 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1343 } 1344 1345 QualType CFTy = getContext().getCFConstantStringType(); 1346 RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl(); 1347 1348 const llvm::StructType *STy = 1349 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1350 1351 std::vector<llvm::Constant*> Fields; 1352 RecordDecl::field_iterator Field = CFRD->field_begin(); 1353 1354 // Class pointer. 1355 FieldDecl *CurField = *Field++; 1356 FieldDecl *NextField = *Field++; 1357 appendFieldAndPadding(*this, Fields, CurField, NextField, 1358 CFConstantStringClassRef, CFRD, STy); 1359 1360 // Flags. 1361 CurField = NextField; 1362 NextField = *Field++; 1363 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1364 appendFieldAndPadding(*this, Fields, CurField, NextField, 1365 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1366 : llvm::ConstantInt::get(Ty, 0x07C8), 1367 CFRD, STy); 1368 1369 // String pointer. 1370 CurField = NextField; 1371 NextField = *Field++; 1372 llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str()); 1373 1374 const char *Sect, *Prefix; 1375 bool isConstant; 1376 llvm::GlobalValue::LinkageTypes Linkage; 1377 if (isUTF16) { 1378 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1379 Sect = getContext().Target.getUnicodeStringSection(); 1380 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1381 Linkage = llvm::GlobalValue::InternalLinkage; 1382 // FIXME: Why does GCC not set constant here? 1383 isConstant = false; 1384 } else { 1385 Prefix = ".str"; 1386 Sect = getContext().Target.getCFStringDataSection(); 1387 Linkage = llvm::GlobalValue::PrivateLinkage; 1388 // FIXME: -fwritable-strings should probably affect this, but we 1389 // are following gcc here. 1390 isConstant = true; 1391 } 1392 llvm::GlobalVariable *GV = 1393 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1394 Linkage, C, Prefix); 1395 if (Sect) 1396 GV->setSection(Sect); 1397 if (isUTF16) { 1398 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1399 GV->setAlignment(Align); 1400 } 1401 appendFieldAndPadding(*this, Fields, CurField, NextField, 1402 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1403 CFRD, STy); 1404 1405 // String length. 1406 CurField = NextField; 1407 NextField = 0; 1408 Ty = getTypes().ConvertType(getContext().LongTy); 1409 appendFieldAndPadding(*this, Fields, CurField, NextField, 1410 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1411 1412 // The struct. 1413 C = llvm::ConstantStruct::get(STy, Fields); 1414 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1415 llvm::GlobalVariable::PrivateLinkage, C, 1416 "_unnamed_cfstring_"); 1417 if (const char *Sect = getContext().Target.getCFStringSection()) 1418 GV->setSection(Sect); 1419 Entry.setValue(GV); 1420 1421 return GV; 1422 } 1423 1424 /// GetStringForStringLiteral - Return the appropriate bytes for a 1425 /// string literal, properly padded to match the literal type. 1426 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1427 const char *StrData = E->getStrData(); 1428 unsigned Len = E->getByteLength(); 1429 1430 const ConstantArrayType *CAT = 1431 getContext().getAsConstantArrayType(E->getType()); 1432 assert(CAT && "String isn't pointer or array!"); 1433 1434 // Resize the string to the right size. 1435 std::string Str(StrData, StrData+Len); 1436 uint64_t RealLen = CAT->getSize().getZExtValue(); 1437 1438 if (E->isWide()) 1439 RealLen *= getContext().Target.getWCharWidth()/8; 1440 1441 Str.resize(RealLen, '\0'); 1442 1443 return Str; 1444 } 1445 1446 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1447 /// constant array for the given string literal. 1448 llvm::Constant * 1449 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1450 // FIXME: This can be more efficient. 1451 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1452 } 1453 1454 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1455 /// array for the given ObjCEncodeExpr node. 1456 llvm::Constant * 1457 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1458 std::string Str; 1459 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1460 1461 return GetAddrOfConstantCString(Str); 1462 } 1463 1464 1465 /// GenerateWritableString -- Creates storage for a string literal. 1466 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1467 bool constant, 1468 CodeGenModule &CGM, 1469 const char *GlobalName) { 1470 // Create Constant for this string literal. Don't add a '\0'. 1471 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1472 1473 // Create a global variable for this string 1474 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1475 llvm::GlobalValue::PrivateLinkage, 1476 C, GlobalName); 1477 } 1478 1479 /// GetAddrOfConstantString - Returns a pointer to a character array 1480 /// containing the literal. This contents are exactly that of the 1481 /// given string, i.e. it will not be null terminated automatically; 1482 /// see GetAddrOfConstantCString. Note that whether the result is 1483 /// actually a pointer to an LLVM constant depends on 1484 /// Feature.WriteableStrings. 1485 /// 1486 /// The result has pointer to array type. 1487 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1488 const char *GlobalName) { 1489 bool IsConstant = !Features.WritableStrings; 1490 1491 // Get the default prefix if a name wasn't specified. 1492 if (!GlobalName) 1493 GlobalName = ".str"; 1494 1495 // Don't share any string literals if strings aren't constant. 1496 if (!IsConstant) 1497 return GenerateStringLiteral(str, false, *this, GlobalName); 1498 1499 llvm::StringMapEntry<llvm::Constant *> &Entry = 1500 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1501 1502 if (Entry.getValue()) 1503 return Entry.getValue(); 1504 1505 // Create a global variable for this. 1506 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1507 Entry.setValue(C); 1508 return C; 1509 } 1510 1511 /// GetAddrOfConstantCString - Returns a pointer to a character 1512 /// array containing the literal and a terminating '\-' 1513 /// character. The result has pointer to array type. 1514 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1515 const char *GlobalName){ 1516 return GetAddrOfConstantString(str + '\0', GlobalName); 1517 } 1518 1519 /// EmitObjCPropertyImplementations - Emit information for synthesized 1520 /// properties for an implementation. 1521 void CodeGenModule::EmitObjCPropertyImplementations(const 1522 ObjCImplementationDecl *D) { 1523 for (ObjCImplementationDecl::propimpl_iterator 1524 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1525 ObjCPropertyImplDecl *PID = *i; 1526 1527 // Dynamic is just for type-checking. 1528 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1529 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1530 1531 // Determine which methods need to be implemented, some may have 1532 // been overridden. Note that ::isSynthesized is not the method 1533 // we want, that just indicates if the decl came from a 1534 // property. What we want to know is if the method is defined in 1535 // this implementation. 1536 if (!D->getInstanceMethod(PD->getGetterName())) 1537 CodeGenFunction(*this).GenerateObjCGetter( 1538 const_cast<ObjCImplementationDecl *>(D), PID); 1539 if (!PD->isReadOnly() && 1540 !D->getInstanceMethod(PD->getSetterName())) 1541 CodeGenFunction(*this).GenerateObjCSetter( 1542 const_cast<ObjCImplementationDecl *>(D), PID); 1543 } 1544 } 1545 } 1546 1547 /// EmitNamespace - Emit all declarations in a namespace. 1548 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1549 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1550 I != E; ++I) 1551 EmitTopLevelDecl(*I); 1552 } 1553 1554 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1555 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1556 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1557 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1558 ErrorUnsupported(LSD, "linkage spec"); 1559 return; 1560 } 1561 1562 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1563 I != E; ++I) 1564 EmitTopLevelDecl(*I); 1565 } 1566 1567 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1568 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1569 // If an error has occurred, stop code generation, but continue 1570 // parsing and semantic analysis (to ensure all warnings and errors 1571 // are emitted). 1572 if (Diags.hasErrorOccurred()) 1573 return; 1574 1575 // Ignore dependent declarations. 1576 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1577 return; 1578 1579 switch (D->getKind()) { 1580 case Decl::CXXMethod: 1581 case Decl::Function: 1582 // Skip function templates 1583 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1584 return; 1585 1586 // Fall through 1587 1588 case Decl::Var: 1589 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1590 break; 1591 1592 // C++ Decls 1593 case Decl::Namespace: 1594 EmitNamespace(cast<NamespaceDecl>(D)); 1595 break; 1596 // No code generation needed. 1597 case Decl::Using: 1598 case Decl::ClassTemplate: 1599 case Decl::FunctionTemplate: 1600 break; 1601 case Decl::CXXConstructor: 1602 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1603 break; 1604 case Decl::CXXDestructor: 1605 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1606 break; 1607 1608 case Decl::StaticAssert: 1609 // Nothing to do. 1610 break; 1611 1612 // Objective-C Decls 1613 1614 // Forward declarations, no (immediate) code generation. 1615 case Decl::ObjCClass: 1616 case Decl::ObjCForwardProtocol: 1617 case Decl::ObjCCategory: 1618 case Decl::ObjCInterface: 1619 break; 1620 1621 case Decl::ObjCProtocol: 1622 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1623 break; 1624 1625 case Decl::ObjCCategoryImpl: 1626 // Categories have properties but don't support synthesize so we 1627 // can ignore them here. 1628 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1629 break; 1630 1631 case Decl::ObjCImplementation: { 1632 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1633 EmitObjCPropertyImplementations(OMD); 1634 Runtime->GenerateClass(OMD); 1635 break; 1636 } 1637 case Decl::ObjCMethod: { 1638 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1639 // If this is not a prototype, emit the body. 1640 if (OMD->getBody()) 1641 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1642 break; 1643 } 1644 case Decl::ObjCCompatibleAlias: 1645 // compatibility-alias is a directive and has no code gen. 1646 break; 1647 1648 case Decl::LinkageSpec: 1649 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1650 break; 1651 1652 case Decl::FileScopeAsm: { 1653 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1654 std::string AsmString(AD->getAsmString()->getStrData(), 1655 AD->getAsmString()->getByteLength()); 1656 1657 const std::string &S = getModule().getModuleInlineAsm(); 1658 if (S.empty()) 1659 getModule().setModuleInlineAsm(AsmString); 1660 else 1661 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1662 break; 1663 } 1664 1665 default: 1666 // Make sure we handled everything we should, every other kind is a 1667 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1668 // function. Need to recode Decl::Kind to do that easily. 1669 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1670 } 1671 } 1672