1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Support/ErrorHandling.h"
36 using namespace clang;
37 using namespace CodeGen;
38 
39 
40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
41                              llvm::Module &M, const llvm::TargetData &TD,
42                              Diagnostic &diags)
43   : BlockModule(C, M, TD, Types, *this), Context(C),
44     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
45     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
46     VtableInfo(*this), Runtime(0),
47     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
48     VMContext(M.getContext()) {
49 
50   if (!Features.ObjC1)
51     Runtime = 0;
52   else if (!Features.NeXTRuntime)
53     Runtime = CreateGNUObjCRuntime(*this);
54   else if (Features.ObjCNonFragileABI)
55     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
56   else
57     Runtime = CreateMacObjCRuntime(*this);
58 
59   // If debug info generation is enabled, create the CGDebugInfo object.
60   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
61 }
62 
63 CodeGenModule::~CodeGenModule() {
64   delete Runtime;
65   delete DebugInfo;
66 }
67 
68 void CodeGenModule::Release() {
69   // We need to call this first because it can add deferred declarations.
70   EmitCXXGlobalInitFunc();
71 
72   EmitDeferred();
73   if (Runtime)
74     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
75       AddGlobalCtor(ObjCInitFunction);
76   EmitCtorList(GlobalCtors, "llvm.global_ctors");
77   EmitCtorList(GlobalDtors, "llvm.global_dtors");
78   EmitAnnotations();
79   EmitLLVMUsed();
80 }
81 
82 /// ErrorUnsupported - Print out an error that codegen doesn't support the
83 /// specified stmt yet.
84 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
85                                      bool OmitOnError) {
86   if (OmitOnError && getDiags().hasErrorOccurred())
87     return;
88   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
89                                                "cannot compile this %0 yet");
90   std::string Msg = Type;
91   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
92     << Msg << S->getSourceRange();
93 }
94 
95 /// ErrorUnsupported - Print out an error that codegen doesn't support the
96 /// specified decl yet.
97 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
98                                      bool OmitOnError) {
99   if (OmitOnError && getDiags().hasErrorOccurred())
100     return;
101   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
102                                                "cannot compile this %0 yet");
103   std::string Msg = Type;
104   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
105 }
106 
107 LangOptions::VisibilityMode
108 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
109   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
110     if (VD->getStorageClass() == VarDecl::PrivateExtern)
111       return LangOptions::Hidden;
112 
113   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
114     switch (attr->getVisibility()) {
115     default: assert(0 && "Unknown visibility!");
116     case VisibilityAttr::DefaultVisibility:
117       return LangOptions::Default;
118     case VisibilityAttr::HiddenVisibility:
119       return LangOptions::Hidden;
120     case VisibilityAttr::ProtectedVisibility:
121       return LangOptions::Protected;
122     }
123   }
124 
125   return getLangOptions().getVisibilityMode();
126 }
127 
128 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
129                                         const Decl *D) const {
130   // Internal definitions always have default visibility.
131   if (GV->hasLocalLinkage()) {
132     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
133     return;
134   }
135 
136   switch (getDeclVisibilityMode(D)) {
137   default: assert(0 && "Unknown visibility!");
138   case LangOptions::Default:
139     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
140   case LangOptions::Hidden:
141     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
142   case LangOptions::Protected:
143     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
144   }
145 }
146 
147 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
148   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
149 
150   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
151     return getMangledCXXCtorName(D, GD.getCtorType());
152   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
153     return getMangledCXXDtorName(D, GD.getDtorType());
154 
155   return getMangledName(ND);
156 }
157 
158 /// \brief Retrieves the mangled name for the given declaration.
159 ///
160 /// If the given declaration requires a mangled name, returns an
161 /// const char* containing the mangled name.  Otherwise, returns
162 /// the unmangled name.
163 ///
164 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
165   if (!getMangleContext().shouldMangleDeclName(ND)) {
166     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167     return ND->getNameAsCString();
168   }
169 
170   llvm::SmallString<256> Name;
171   getMangleContext().mangleName(ND, Name);
172   Name += '\0';
173   return UniqueMangledName(Name.begin(), Name.end());
174 }
175 
176 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
177                                              const char *NameEnd) {
178   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
179 
180   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
181 }
182 
183 /// AddGlobalCtor - Add a function to the list that will be called before
184 /// main() runs.
185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
186   // FIXME: Type coercion of void()* types.
187   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
188 }
189 
190 /// AddGlobalDtor - Add a function to the list that will be called
191 /// when the module is unloaded.
192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
193   // FIXME: Type coercion of void()* types.
194   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
195 }
196 
197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
198   // Ctor function type is void()*.
199   llvm::FunctionType* CtorFTy =
200     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
201                             std::vector<const llvm::Type*>(),
202                             false);
203   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
204 
205   // Get the type of a ctor entry, { i32, void ()* }.
206   llvm::StructType* CtorStructTy =
207     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
208                           llvm::PointerType::getUnqual(CtorFTy), NULL);
209 
210   // Construct the constructor and destructor arrays.
211   std::vector<llvm::Constant*> Ctors;
212   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
213     std::vector<llvm::Constant*> S;
214     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
215                 I->second, false));
216     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
217     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
218   }
219 
220   if (!Ctors.empty()) {
221     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
222     new llvm::GlobalVariable(TheModule, AT, false,
223                              llvm::GlobalValue::AppendingLinkage,
224                              llvm::ConstantArray::get(AT, Ctors),
225                              GlobalName);
226   }
227 }
228 
229 void CodeGenModule::EmitAnnotations() {
230   if (Annotations.empty())
231     return;
232 
233   // Create a new global variable for the ConstantStruct in the Module.
234   llvm::Constant *Array =
235   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
236                                                 Annotations.size()),
237                            Annotations);
238   llvm::GlobalValue *gv =
239   new llvm::GlobalVariable(TheModule, Array->getType(), false,
240                            llvm::GlobalValue::AppendingLinkage, Array,
241                            "llvm.global.annotations");
242   gv->setSection("llvm.metadata");
243 }
244 
245 static CodeGenModule::GVALinkage
246 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
247                       const LangOptions &Features) {
248   // Everything located semantically within an anonymous namespace is
249   // always internal.
250   if (FD->isInAnonymousNamespace())
251     return CodeGenModule::GVA_Internal;
252 
253   // "static" functions get internal linkage.
254   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
255     return CodeGenModule::GVA_Internal;
256 
257   // The kind of external linkage this function will have, if it is not
258   // inline or static.
259   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
260   if (Context.getLangOptions().CPlusPlus) {
261     TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
262 
263     if (TSK == TSK_ExplicitInstantiationDefinition) {
264       // If a function has been explicitly instantiated, then it should
265       // always have strong external linkage.
266       return CodeGenModule::GVA_StrongExternal;
267     }
268 
269     if (TSK == TSK_ImplicitInstantiation)
270       External = CodeGenModule::GVA_TemplateInstantiation;
271   }
272 
273   if (!FD->isInlined())
274     return External;
275 
276   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
277     // GNU or C99 inline semantics. Determine whether this symbol should be
278     // externally visible.
279     if (FD->isInlineDefinitionExternallyVisible())
280       return External;
281 
282     // C99 inline semantics, where the symbol is not externally visible.
283     return CodeGenModule::GVA_C99Inline;
284   }
285 
286   // C++0x [temp.explicit]p9:
287   //   [ Note: The intent is that an inline function that is the subject of
288   //   an explicit instantiation declaration will still be implicitly
289   //   instantiated when used so that the body can be considered for
290   //   inlining, but that no out-of-line copy of the inline function would be
291   //   generated in the translation unit. -- end note ]
292   if (FD->getTemplateSpecializationKind()
293                                        == TSK_ExplicitInstantiationDeclaration)
294     return CodeGenModule::GVA_C99Inline;
295 
296   return CodeGenModule::GVA_CXXInline;
297 }
298 
299 /// SetFunctionDefinitionAttributes - Set attributes for a global.
300 ///
301 /// FIXME: This is currently only done for aliases and functions, but not for
302 /// variables (these details are set in EmitGlobalVarDefinition for variables).
303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
304                                                     llvm::GlobalValue *GV) {
305   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
306 
307   if (Linkage == GVA_Internal) {
308     GV->setLinkage(llvm::Function::InternalLinkage);
309   } else if (D->hasAttr<DLLExportAttr>()) {
310     GV->setLinkage(llvm::Function::DLLExportLinkage);
311   } else if (D->hasAttr<WeakAttr>()) {
312     GV->setLinkage(llvm::Function::WeakAnyLinkage);
313   } else if (Linkage == GVA_C99Inline) {
314     // In C99 mode, 'inline' functions are guaranteed to have a strong
315     // definition somewhere else, so we can use available_externally linkage.
316     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
317   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
318     // In C++, the compiler has to emit a definition in every translation unit
319     // that references the function.  We should use linkonce_odr because
320     // a) if all references in this translation unit are optimized away, we
321     // don't need to codegen it.  b) if the function persists, it needs to be
322     // merged with other definitions. c) C++ has the ODR, so we know the
323     // definition is dependable.
324     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
325   } else {
326     assert(Linkage == GVA_StrongExternal);
327     // Otherwise, we have strong external linkage.
328     GV->setLinkage(llvm::Function::ExternalLinkage);
329   }
330 
331   SetCommonAttributes(D, GV);
332 }
333 
334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
335                                               const CGFunctionInfo &Info,
336                                               llvm::Function *F) {
337   unsigned CallingConv;
338   AttributeListType AttributeList;
339   ConstructAttributeList(Info, D, AttributeList, CallingConv);
340   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
341                                           AttributeList.size()));
342   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
343 }
344 
345 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
346                                                            llvm::Function *F) {
347   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
348     F->addFnAttr(llvm::Attribute::NoUnwind);
349 
350   if (D->hasAttr<AlwaysInlineAttr>())
351     F->addFnAttr(llvm::Attribute::AlwaysInline);
352 
353   if (D->hasAttr<NoInlineAttr>())
354     F->addFnAttr(llvm::Attribute::NoInline);
355 
356   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
357     F->addFnAttr(llvm::Attribute::StackProtect);
358   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
359     F->addFnAttr(llvm::Attribute::StackProtectReq);
360 
361   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
362     unsigned width = Context.Target.getCharWidth();
363     F->setAlignment(AA->getAlignment() / width);
364     while ((AA = AA->getNext<AlignedAttr>()))
365       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
366   }
367   // C++ ABI requires 2-byte alignment for member functions.
368   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
369     F->setAlignment(2);
370 }
371 
372 void CodeGenModule::SetCommonAttributes(const Decl *D,
373                                         llvm::GlobalValue *GV) {
374   setGlobalVisibility(GV, D);
375 
376   if (D->hasAttr<UsedAttr>())
377     AddUsedGlobal(GV);
378 
379   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
380     GV->setSection(SA->getName());
381 }
382 
383 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
384                                                   llvm::Function *F,
385                                                   const CGFunctionInfo &FI) {
386   SetLLVMFunctionAttributes(D, FI, F);
387   SetLLVMFunctionAttributesForDefinition(D, F);
388 
389   F->setLinkage(llvm::Function::InternalLinkage);
390 
391   SetCommonAttributes(D, F);
392 }
393 
394 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
395                                           llvm::Function *F,
396                                           bool IsIncompleteFunction) {
397   if (!IsIncompleteFunction)
398     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
399 
400   // Only a few attributes are set on declarations; these may later be
401   // overridden by a definition.
402 
403   if (FD->hasAttr<DLLImportAttr>()) {
404     F->setLinkage(llvm::Function::DLLImportLinkage);
405   } else if (FD->hasAttr<WeakAttr>() ||
406              FD->hasAttr<WeakImportAttr>()) {
407     // "extern_weak" is overloaded in LLVM; we probably should have
408     // separate linkage types for this.
409     F->setLinkage(llvm::Function::ExternalWeakLinkage);
410   } else {
411     F->setLinkage(llvm::Function::ExternalLinkage);
412   }
413 
414   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
415     F->setSection(SA->getName());
416 }
417 
418 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
419   assert(!GV->isDeclaration() &&
420          "Only globals with definition can force usage.");
421   LLVMUsed.push_back(GV);
422 }
423 
424 void CodeGenModule::EmitLLVMUsed() {
425   // Don't create llvm.used if there is no need.
426   if (LLVMUsed.empty())
427     return;
428 
429   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
430 
431   // Convert LLVMUsed to what ConstantArray needs.
432   std::vector<llvm::Constant*> UsedArray;
433   UsedArray.resize(LLVMUsed.size());
434   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
435     UsedArray[i] =
436      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
437                                       i8PTy);
438   }
439 
440   if (UsedArray.empty())
441     return;
442   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
443 
444   llvm::GlobalVariable *GV =
445     new llvm::GlobalVariable(getModule(), ATy, false,
446                              llvm::GlobalValue::AppendingLinkage,
447                              llvm::ConstantArray::get(ATy, UsedArray),
448                              "llvm.used");
449 
450   GV->setSection("llvm.metadata");
451 }
452 
453 void CodeGenModule::EmitDeferred() {
454   // Emit code for any potentially referenced deferred decls.  Since a
455   // previously unused static decl may become used during the generation of code
456   // for a static function, iterate until no  changes are made.
457   while (!DeferredDeclsToEmit.empty()) {
458     GlobalDecl D = DeferredDeclsToEmit.back();
459     DeferredDeclsToEmit.pop_back();
460 
461     // The mangled name for the decl must have been emitted in GlobalDeclMap.
462     // Look it up to see if it was defined with a stronger definition (e.g. an
463     // extern inline function with a strong function redefinition).  If so,
464     // just ignore the deferred decl.
465     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
466     assert(CGRef && "Deferred decl wasn't referenced?");
467 
468     if (!CGRef->isDeclaration())
469       continue;
470 
471     // Otherwise, emit the definition and move on to the next one.
472     EmitGlobalDefinition(D);
473   }
474 }
475 
476 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
477 /// annotation information for a given GlobalValue.  The annotation struct is
478 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
479 /// GlobalValue being annotated.  The second field is the constant string
480 /// created from the AnnotateAttr's annotation.  The third field is a constant
481 /// string containing the name of the translation unit.  The fourth field is
482 /// the line number in the file of the annotated value declaration.
483 ///
484 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
485 ///        appears to.
486 ///
487 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
488                                                 const AnnotateAttr *AA,
489                                                 unsigned LineNo) {
490   llvm::Module *M = &getModule();
491 
492   // get [N x i8] constants for the annotation string, and the filename string
493   // which are the 2nd and 3rd elements of the global annotation structure.
494   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
495   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
496                                                   AA->getAnnotation(), true);
497   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
498                                                   M->getModuleIdentifier(),
499                                                   true);
500 
501   // Get the two global values corresponding to the ConstantArrays we just
502   // created to hold the bytes of the strings.
503   llvm::GlobalValue *annoGV =
504     new llvm::GlobalVariable(*M, anno->getType(), false,
505                              llvm::GlobalValue::PrivateLinkage, anno,
506                              GV->getName());
507   // translation unit name string, emitted into the llvm.metadata section.
508   llvm::GlobalValue *unitGV =
509     new llvm::GlobalVariable(*M, unit->getType(), false,
510                              llvm::GlobalValue::PrivateLinkage, unit,
511                              ".str");
512 
513   // Create the ConstantStruct for the global annotation.
514   llvm::Constant *Fields[4] = {
515     llvm::ConstantExpr::getBitCast(GV, SBP),
516     llvm::ConstantExpr::getBitCast(annoGV, SBP),
517     llvm::ConstantExpr::getBitCast(unitGV, SBP),
518     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
519   };
520   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
521 }
522 
523 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
524   // Never defer when EmitAllDecls is specified or the decl has
525   // attribute used.
526   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
527     return false;
528 
529   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
530     // Constructors and destructors should never be deferred.
531     if (FD->hasAttr<ConstructorAttr>() ||
532         FD->hasAttr<DestructorAttr>())
533       return false;
534 
535     // The key function for a class must never be deferred.
536     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
537       const CXXRecordDecl *RD = MD->getParent();
538       if (MD->isOutOfLine() && RD->isDynamicClass()) {
539         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
540         if (KeyFunction == MD->getCanonicalDecl())
541           return false;
542       }
543     }
544 
545     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
546 
547     // static, static inline, always_inline, and extern inline functions can
548     // always be deferred.  Normal inline functions can be deferred in C99/C++.
549     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
550         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
551       return true;
552     return false;
553   }
554 
555   const VarDecl *VD = cast<VarDecl>(Global);
556   assert(VD->isFileVarDecl() && "Invalid decl");
557 
558   // We never want to defer structs that have non-trivial constructors or
559   // destructors.
560 
561   // FIXME: Handle references.
562   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
563     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
564       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
565         return false;
566     }
567   }
568 
569   // Static data may be deferred, but out-of-line static data members
570   // cannot be.
571   if (VD->isInAnonymousNamespace())
572     return true;
573   if (VD->getLinkage() == VarDecl::InternalLinkage) {
574     // Initializer has side effects?
575     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
576       return false;
577     return !(VD->isStaticDataMember() && VD->isOutOfLine());
578   }
579   return false;
580 }
581 
582 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
583   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
584 
585   // If this is an alias definition (which otherwise looks like a declaration)
586   // emit it now.
587   if (Global->hasAttr<AliasAttr>())
588     return EmitAliasDefinition(Global);
589 
590   // Ignore declarations, they will be emitted on their first use.
591   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
592     // Forward declarations are emitted lazily on first use.
593     if (!FD->isThisDeclarationADefinition())
594       return;
595   } else {
596     const VarDecl *VD = cast<VarDecl>(Global);
597     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
598 
599     if (getLangOptions().CPlusPlus && !VD->getInit()) {
600       // In C++, if this is marked "extern", defer code generation.
601       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
602         return;
603 
604       // If this is a declaration of an explicit specialization of a static
605       // data member in a class template, don't emit it.
606       if (VD->isStaticDataMember() &&
607           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
608         return;
609     }
610 
611     // In C, if this isn't a definition, defer code generation.
612     if (!getLangOptions().CPlusPlus && !VD->getInit())
613       return;
614   }
615 
616   // Defer code generation when possible if this is a static definition, inline
617   // function etc.  These we only want to emit if they are used.
618   if (MayDeferGeneration(Global)) {
619     // If the value has already been used, add it directly to the
620     // DeferredDeclsToEmit list.
621     const char *MangledName = getMangledName(GD);
622     if (GlobalDeclMap.count(MangledName))
623       DeferredDeclsToEmit.push_back(GD);
624     else {
625       // Otherwise, remember that we saw a deferred decl with this name.  The
626       // first use of the mangled name will cause it to move into
627       // DeferredDeclsToEmit.
628       DeferredDecls[MangledName] = GD;
629     }
630     return;
631   }
632 
633   // Otherwise emit the definition.
634   EmitGlobalDefinition(GD);
635 }
636 
637 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
638   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
639 
640   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
641                                  Context.getSourceManager(),
642                                  "Generating code for declaration");
643 
644   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
645     getVtableInfo().MaybeEmitVtable(GD);
646     if (MD->isVirtual() && MD->isOutOfLine() &&
647         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
648       if (isa<CXXDestructorDecl>(D)) {
649         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
650                            GD.getDtorType());
651         BuildThunksForVirtual(CanonGD);
652       } else {
653         BuildThunksForVirtual(MD->getCanonicalDecl());
654       }
655     }
656   }
657 
658   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
659     EmitCXXConstructor(CD, GD.getCtorType());
660   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
661     EmitCXXDestructor(DD, GD.getDtorType());
662   else if (isa<FunctionDecl>(D))
663     EmitGlobalFunctionDefinition(GD);
664   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
665     EmitGlobalVarDefinition(VD);
666   else {
667     assert(0 && "Invalid argument to EmitGlobalDefinition()");
668   }
669 }
670 
671 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
672 /// module, create and return an llvm Function with the specified type. If there
673 /// is something in the module with the specified name, return it potentially
674 /// bitcasted to the right type.
675 ///
676 /// If D is non-null, it specifies a decl that correspond to this.  This is used
677 /// to set the attributes on the function when it is first created.
678 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
679                                                        const llvm::Type *Ty,
680                                                        GlobalDecl D) {
681   // Lookup the entry, lazily creating it if necessary.
682   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
683   if (Entry) {
684     if (Entry->getType()->getElementType() == Ty)
685       return Entry;
686 
687     // Make sure the result is of the correct type.
688     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
689     return llvm::ConstantExpr::getBitCast(Entry, PTy);
690   }
691 
692   // This function doesn't have a complete type (for example, the return
693   // type is an incomplete struct). Use a fake type instead, and make
694   // sure not to try to set attributes.
695   bool IsIncompleteFunction = false;
696   if (!isa<llvm::FunctionType>(Ty)) {
697     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
698                                  std::vector<const llvm::Type*>(), false);
699     IsIncompleteFunction = true;
700   }
701   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
702                                              llvm::Function::ExternalLinkage,
703                                              "", &getModule());
704   F->setName(MangledName);
705   if (D.getDecl())
706     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
707                           IsIncompleteFunction);
708   Entry = F;
709 
710   // This is the first use or definition of a mangled name.  If there is a
711   // deferred decl with this name, remember that we need to emit it at the end
712   // of the file.
713   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
714     DeferredDecls.find(MangledName);
715   if (DDI != DeferredDecls.end()) {
716     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
717     // list, and remove it from DeferredDecls (since we don't need it anymore).
718     DeferredDeclsToEmit.push_back(DDI->second);
719     DeferredDecls.erase(DDI);
720   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
721     // If this the first reference to a C++ inline function in a class, queue up
722     // the deferred function body for emission.  These are not seen as
723     // top-level declarations.
724     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
725       DeferredDeclsToEmit.push_back(D);
726     // A called constructor which has no definition or declaration need be
727     // synthesized.
728     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
729       if (CD->isImplicit())
730         DeferredDeclsToEmit.push_back(D);
731     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
732       if (DD->isImplicit())
733         DeferredDeclsToEmit.push_back(D);
734     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
735       if (MD->isCopyAssignment() && MD->isImplicit())
736         DeferredDeclsToEmit.push_back(D);
737     }
738   }
739 
740   return F;
741 }
742 
743 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
744 /// non-null, then this function will use the specified type if it has to
745 /// create it (this occurs when we see a definition of the function).
746 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
747                                                  const llvm::Type *Ty) {
748   // If there was no specific requested type, just convert it now.
749   if (!Ty)
750     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
751   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
752 }
753 
754 /// CreateRuntimeFunction - Create a new runtime function with the specified
755 /// type and name.
756 llvm::Constant *
757 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
758                                      const char *Name) {
759   // Convert Name to be a uniqued string from the IdentifierInfo table.
760   Name = getContext().Idents.get(Name).getNameStart();
761   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
762 }
763 
764 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
765   if (!D->getType().isConstant(Context))
766     return false;
767   if (Context.getLangOptions().CPlusPlus &&
768       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
769     // FIXME: We should do something fancier here!
770     return false;
771   }
772   return true;
773 }
774 
775 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
776 /// create and return an llvm GlobalVariable with the specified type.  If there
777 /// is something in the module with the specified name, return it potentially
778 /// bitcasted to the right type.
779 ///
780 /// If D is non-null, it specifies a decl that correspond to this.  This is used
781 /// to set the attributes on the global when it is first created.
782 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
783                                                      const llvm::PointerType*Ty,
784                                                      const VarDecl *D) {
785   // Lookup the entry, lazily creating it if necessary.
786   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
787   if (Entry) {
788     if (Entry->getType() == Ty)
789       return Entry;
790 
791     // Make sure the result is of the correct type.
792     return llvm::ConstantExpr::getBitCast(Entry, Ty);
793   }
794 
795   // This is the first use or definition of a mangled name.  If there is a
796   // deferred decl with this name, remember that we need to emit it at the end
797   // of the file.
798   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
799     DeferredDecls.find(MangledName);
800   if (DDI != DeferredDecls.end()) {
801     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
802     // list, and remove it from DeferredDecls (since we don't need it anymore).
803     DeferredDeclsToEmit.push_back(DDI->second);
804     DeferredDecls.erase(DDI);
805   }
806 
807   llvm::GlobalVariable *GV =
808     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
809                              llvm::GlobalValue::ExternalLinkage,
810                              0, "", 0,
811                              false, Ty->getAddressSpace());
812   GV->setName(MangledName);
813 
814   // Handle things which are present even on external declarations.
815   if (D) {
816     // FIXME: This code is overly simple and should be merged with other global
817     // handling.
818     GV->setConstant(DeclIsConstantGlobal(Context, D));
819 
820     // FIXME: Merge with other attribute handling code.
821     if (D->getStorageClass() == VarDecl::PrivateExtern)
822       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
823 
824     if (D->hasAttr<WeakAttr>() ||
825         D->hasAttr<WeakImportAttr>())
826       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
827 
828     GV->setThreadLocal(D->isThreadSpecified());
829   }
830 
831   return Entry = GV;
832 }
833 
834 
835 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
836 /// given global variable.  If Ty is non-null and if the global doesn't exist,
837 /// then it will be greated with the specified type instead of whatever the
838 /// normal requested type would be.
839 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
840                                                   const llvm::Type *Ty) {
841   assert(D->hasGlobalStorage() && "Not a global variable");
842   QualType ASTTy = D->getType();
843   if (Ty == 0)
844     Ty = getTypes().ConvertTypeForMem(ASTTy);
845 
846   const llvm::PointerType *PTy =
847     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
848   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
849 }
850 
851 /// CreateRuntimeVariable - Create a new runtime global variable with the
852 /// specified type and name.
853 llvm::Constant *
854 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
855                                      const char *Name) {
856   // Convert Name to be a uniqued string from the IdentifierInfo table.
857   Name = getContext().Idents.get(Name).getNameStart();
858   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
859 }
860 
861 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
862   assert(!D->getInit() && "Cannot emit definite definitions here!");
863 
864   if (MayDeferGeneration(D)) {
865     // If we have not seen a reference to this variable yet, place it
866     // into the deferred declarations table to be emitted if needed
867     // later.
868     const char *MangledName = getMangledName(D);
869     if (GlobalDeclMap.count(MangledName) == 0) {
870       DeferredDecls[MangledName] = D;
871       return;
872     }
873   }
874 
875   // The tentative definition is the only definition.
876   EmitGlobalVarDefinition(D);
877 }
878 
879 static CodeGenModule::GVALinkage
880 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
881   // Everything located semantically within an anonymous namespace is
882   // always internal.
883   if (VD->isInAnonymousNamespace())
884     return CodeGenModule::GVA_Internal;
885 
886   // Handle linkage for static data members.
887   if (VD->isStaticDataMember()) {
888     switch (VD->getTemplateSpecializationKind()) {
889     case TSK_Undeclared:
890     case TSK_ExplicitSpecialization:
891     case TSK_ExplicitInstantiationDefinition:
892       return CodeGenModule::GVA_StrongExternal;
893 
894     case TSK_ExplicitInstantiationDeclaration:
895       llvm_unreachable("Variable should not be instantiated");
896       // Fall through to treat this like any other instantiation.
897 
898     case TSK_ImplicitInstantiation:
899       return CodeGenModule::GVA_TemplateInstantiation;
900     }
901   }
902 
903   if (VD->getLinkage() == VarDecl::InternalLinkage)
904     return CodeGenModule::GVA_Internal;
905 
906   return CodeGenModule::GVA_StrongExternal;
907 }
908 
909 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
910   llvm::Constant *Init = 0;
911   QualType ASTTy = D->getType();
912 
913   if (D->getInit() == 0) {
914     // This is a tentative definition; tentative definitions are
915     // implicitly initialized with { 0 }.
916     //
917     // Note that tentative definitions are only emitted at the end of
918     // a translation unit, so they should never have incomplete
919     // type. In addition, EmitTentativeDefinition makes sure that we
920     // never attempt to emit a tentative definition if a real one
921     // exists. A use may still exists, however, so we still may need
922     // to do a RAUW.
923     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
924     Init = EmitNullConstant(D->getType());
925   } else {
926     Init = EmitConstantExpr(D->getInit(), D->getType());
927 
928     if (!Init) {
929       QualType T = D->getInit()->getType();
930       if (getLangOptions().CPlusPlus) {
931         CXXGlobalInits.push_back(D);
932         Init = EmitNullConstant(T);
933       } else {
934         ErrorUnsupported(D, "static initializer");
935         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
936       }
937     }
938   }
939 
940   const llvm::Type* InitType = Init->getType();
941   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
942 
943   // Strip off a bitcast if we got one back.
944   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
945     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
946            // all zero index gep.
947            CE->getOpcode() == llvm::Instruction::GetElementPtr);
948     Entry = CE->getOperand(0);
949   }
950 
951   // Entry is now either a Function or GlobalVariable.
952   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
953 
954   // We have a definition after a declaration with the wrong type.
955   // We must make a new GlobalVariable* and update everything that used OldGV
956   // (a declaration or tentative definition) with the new GlobalVariable*
957   // (which will be a definition).
958   //
959   // This happens if there is a prototype for a global (e.g.
960   // "extern int x[];") and then a definition of a different type (e.g.
961   // "int x[10];"). This also happens when an initializer has a different type
962   // from the type of the global (this happens with unions).
963   if (GV == 0 ||
964       GV->getType()->getElementType() != InitType ||
965       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
966 
967     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
968     GlobalDeclMap.erase(getMangledName(D));
969 
970     // Make a new global with the correct type, this is now guaranteed to work.
971     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
972     GV->takeName(cast<llvm::GlobalValue>(Entry));
973 
974     // Replace all uses of the old global with the new global
975     llvm::Constant *NewPtrForOldDecl =
976         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
977     Entry->replaceAllUsesWith(NewPtrForOldDecl);
978 
979     // Erase the old global, since it is no longer used.
980     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
981   }
982 
983   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
984     SourceManager &SM = Context.getSourceManager();
985     AddAnnotation(EmitAnnotateAttr(GV, AA,
986                               SM.getInstantiationLineNumber(D->getLocation())));
987   }
988 
989   GV->setInitializer(Init);
990 
991   // If it is safe to mark the global 'constant', do so now.
992   GV->setConstant(false);
993   if (DeclIsConstantGlobal(Context, D))
994     GV->setConstant(true);
995 
996   GV->setAlignment(getContext().getDeclAlignInBytes(D));
997 
998   // Set the llvm linkage type as appropriate.
999   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1000   if (Linkage == GVA_Internal)
1001     GV->setLinkage(llvm::Function::InternalLinkage);
1002   else if (D->hasAttr<DLLImportAttr>())
1003     GV->setLinkage(llvm::Function::DLLImportLinkage);
1004   else if (D->hasAttr<DLLExportAttr>())
1005     GV->setLinkage(llvm::Function::DLLExportLinkage);
1006   else if (D->hasAttr<WeakAttr>()) {
1007     if (GV->isConstant())
1008       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1009     else
1010       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1011   } else if (Linkage == GVA_TemplateInstantiation)
1012     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1013   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1014            !D->hasExternalStorage() && !D->getInit() &&
1015            !D->getAttr<SectionAttr>()) {
1016     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1017     // common vars aren't constant even if declared const.
1018     GV->setConstant(false);
1019   } else
1020     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1021 
1022   SetCommonAttributes(D, GV);
1023 
1024   // Emit global variable debug information.
1025   if (CGDebugInfo *DI = getDebugInfo()) {
1026     DI->setLocation(D->getLocation());
1027     DI->EmitGlobalVariable(GV, D);
1028   }
1029 }
1030 
1031 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1032 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1033 /// existing call uses of the old function in the module, this adjusts them to
1034 /// call the new function directly.
1035 ///
1036 /// This is not just a cleanup: the always_inline pass requires direct calls to
1037 /// functions to be able to inline them.  If there is a bitcast in the way, it
1038 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1039 /// run at -O0.
1040 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1041                                                       llvm::Function *NewFn) {
1042   // If we're redefining a global as a function, don't transform it.
1043   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1044   if (OldFn == 0) return;
1045 
1046   const llvm::Type *NewRetTy = NewFn->getReturnType();
1047   llvm::SmallVector<llvm::Value*, 4> ArgList;
1048 
1049   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1050        UI != E; ) {
1051     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1052     unsigned OpNo = UI.getOperandNo();
1053     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1054     if (!CI || OpNo != 0) continue;
1055 
1056     // If the return types don't match exactly, and if the call isn't dead, then
1057     // we can't transform this call.
1058     if (CI->getType() != NewRetTy && !CI->use_empty())
1059       continue;
1060 
1061     // If the function was passed too few arguments, don't transform.  If extra
1062     // arguments were passed, we silently drop them.  If any of the types
1063     // mismatch, we don't transform.
1064     unsigned ArgNo = 0;
1065     bool DontTransform = false;
1066     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1067          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1068       if (CI->getNumOperands()-1 == ArgNo ||
1069           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1070         DontTransform = true;
1071         break;
1072       }
1073     }
1074     if (DontTransform)
1075       continue;
1076 
1077     // Okay, we can transform this.  Create the new call instruction and copy
1078     // over the required information.
1079     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1080     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1081                                                      ArgList.end(), "", CI);
1082     ArgList.clear();
1083     if (!NewCall->getType()->isVoidTy())
1084       NewCall->takeName(CI);
1085     NewCall->setAttributes(CI->getAttributes());
1086     NewCall->setCallingConv(CI->getCallingConv());
1087 
1088     // Finally, remove the old call, replacing any uses with the new one.
1089     if (!CI->use_empty())
1090       CI->replaceAllUsesWith(NewCall);
1091 
1092     // Copy any custom metadata attached with CI.
1093     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1094       NewCall->setMetadata("dbg", DbgNode);
1095     CI->eraseFromParent();
1096   }
1097 }
1098 
1099 
1100 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1101   const llvm::FunctionType *Ty;
1102   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1103 
1104   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1105     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1106 
1107     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1108   } else {
1109     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1110 
1111     // As a special case, make sure that definitions of K&R function
1112     // "type foo()" aren't declared as varargs (which forces the backend
1113     // to do unnecessary work).
1114     if (D->getType()->isFunctionNoProtoType()) {
1115       assert(Ty->isVarArg() && "Didn't lower type as expected");
1116       // Due to stret, the lowered function could have arguments.
1117       // Just create the same type as was lowered by ConvertType
1118       // but strip off the varargs bit.
1119       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1120       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1121     }
1122   }
1123 
1124   // Get or create the prototype for the function.
1125   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1126 
1127   // Strip off a bitcast if we got one back.
1128   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1129     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1130     Entry = CE->getOperand(0);
1131   }
1132 
1133 
1134   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1135     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1136 
1137     // If the types mismatch then we have to rewrite the definition.
1138     assert(OldFn->isDeclaration() &&
1139            "Shouldn't replace non-declaration");
1140 
1141     // F is the Function* for the one with the wrong type, we must make a new
1142     // Function* and update everything that used F (a declaration) with the new
1143     // Function* (which will be a definition).
1144     //
1145     // This happens if there is a prototype for a function
1146     // (e.g. "int f()") and then a definition of a different type
1147     // (e.g. "int f(int x)").  Start by making a new function of the
1148     // correct type, RAUW, then steal the name.
1149     GlobalDeclMap.erase(getMangledName(D));
1150     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1151     NewFn->takeName(OldFn);
1152 
1153     // If this is an implementation of a function without a prototype, try to
1154     // replace any existing uses of the function (which may be calls) with uses
1155     // of the new function
1156     if (D->getType()->isFunctionNoProtoType()) {
1157       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1158       OldFn->removeDeadConstantUsers();
1159     }
1160 
1161     // Replace uses of F with the Function we will endow with a body.
1162     if (!Entry->use_empty()) {
1163       llvm::Constant *NewPtrForOldDecl =
1164         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1165       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1166     }
1167 
1168     // Ok, delete the old function now, which is dead.
1169     OldFn->eraseFromParent();
1170 
1171     Entry = NewFn;
1172   }
1173 
1174   llvm::Function *Fn = cast<llvm::Function>(Entry);
1175 
1176   CodeGenFunction(*this).GenerateCode(D, Fn);
1177 
1178   SetFunctionDefinitionAttributes(D, Fn);
1179   SetLLVMFunctionAttributesForDefinition(D, Fn);
1180 
1181   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1182     AddGlobalCtor(Fn, CA->getPriority());
1183   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1184     AddGlobalDtor(Fn, DA->getPriority());
1185 }
1186 
1187 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1188   const AliasAttr *AA = D->getAttr<AliasAttr>();
1189   assert(AA && "Not an alias?");
1190 
1191   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1192 
1193   // Unique the name through the identifier table.
1194   const char *AliaseeName = AA->getAliasee().c_str();
1195   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1196 
1197   // Create a reference to the named value.  This ensures that it is emitted
1198   // if a deferred decl.
1199   llvm::Constant *Aliasee;
1200   if (isa<llvm::FunctionType>(DeclTy))
1201     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1202   else
1203     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1204                                     llvm::PointerType::getUnqual(DeclTy), 0);
1205 
1206   // Create the new alias itself, but don't set a name yet.
1207   llvm::GlobalValue *GA =
1208     new llvm::GlobalAlias(Aliasee->getType(),
1209                           llvm::Function::ExternalLinkage,
1210                           "", Aliasee, &getModule());
1211 
1212   // See if there is already something with the alias' name in the module.
1213   const char *MangledName = getMangledName(D);
1214   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1215 
1216   if (Entry && !Entry->isDeclaration()) {
1217     // If there is a definition in the module, then it wins over the alias.
1218     // This is dubious, but allow it to be safe.  Just ignore the alias.
1219     GA->eraseFromParent();
1220     return;
1221   }
1222 
1223   if (Entry) {
1224     // If there is a declaration in the module, then we had an extern followed
1225     // by the alias, as in:
1226     //   extern int test6();
1227     //   ...
1228     //   int test6() __attribute__((alias("test7")));
1229     //
1230     // Remove it and replace uses of it with the alias.
1231 
1232     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1233                                                           Entry->getType()));
1234     Entry->eraseFromParent();
1235   }
1236 
1237   // Now we know that there is no conflict, set the name.
1238   Entry = GA;
1239   GA->setName(MangledName);
1240 
1241   // Set attributes which are particular to an alias; this is a
1242   // specialization of the attributes which may be set on a global
1243   // variable/function.
1244   if (D->hasAttr<DLLExportAttr>()) {
1245     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1246       // The dllexport attribute is ignored for undefined symbols.
1247       if (FD->getBody())
1248         GA->setLinkage(llvm::Function::DLLExportLinkage);
1249     } else {
1250       GA->setLinkage(llvm::Function::DLLExportLinkage);
1251     }
1252   } else if (D->hasAttr<WeakAttr>() ||
1253              D->hasAttr<WeakImportAttr>()) {
1254     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1255   }
1256 
1257   SetCommonAttributes(D, GA);
1258 }
1259 
1260 /// getBuiltinLibFunction - Given a builtin id for a function like
1261 /// "__builtin_fabsf", return a Function* for "fabsf".
1262 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1263                                                   unsigned BuiltinID) {
1264   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1265           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1266          "isn't a lib fn");
1267 
1268   // Get the name, skip over the __builtin_ prefix (if necessary).
1269   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1270   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1271     Name += 10;
1272 
1273   const llvm::FunctionType *Ty =
1274     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1275 
1276   // Unique the name through the identifier table.
1277   Name = getContext().Idents.get(Name).getNameStart();
1278   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1279 }
1280 
1281 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1282                                             unsigned NumTys) {
1283   return llvm::Intrinsic::getDeclaration(&getModule(),
1284                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1285 }
1286 
1287 llvm::Function *CodeGenModule::getMemCpyFn() {
1288   if (MemCpyFn) return MemCpyFn;
1289   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1290   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1291 }
1292 
1293 llvm::Function *CodeGenModule::getMemMoveFn() {
1294   if (MemMoveFn) return MemMoveFn;
1295   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1296   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1297 }
1298 
1299 llvm::Function *CodeGenModule::getMemSetFn() {
1300   if (MemSetFn) return MemSetFn;
1301   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1302   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1303 }
1304 
1305 static llvm::StringMapEntry<llvm::Constant*> &
1306 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1307                          const StringLiteral *Literal,
1308                          bool TargetIsLSB,
1309                          bool &IsUTF16,
1310                          unsigned &StringLength) {
1311   unsigned NumBytes = Literal->getByteLength();
1312 
1313   // Check for simple case.
1314   if (!Literal->containsNonAsciiOrNull()) {
1315     StringLength = NumBytes;
1316     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1317                                                 StringLength));
1318   }
1319 
1320   // Otherwise, convert the UTF8 literals into a byte string.
1321   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1322   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1323   UTF16 *ToPtr = &ToBuf[0];
1324 
1325   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1326                                                &ToPtr, ToPtr + NumBytes,
1327                                                strictConversion);
1328 
1329   // Check for conversion failure.
1330   if (Result != conversionOK) {
1331     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1332     // this duplicate code.
1333     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1334     StringLength = NumBytes;
1335     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1336                                                 StringLength));
1337   }
1338 
1339   // ConvertUTF8toUTF16 returns the length in ToPtr.
1340   StringLength = ToPtr - &ToBuf[0];
1341 
1342   // Render the UTF-16 string into a byte array and convert to the target byte
1343   // order.
1344   //
1345   // FIXME: This isn't something we should need to do here.
1346   llvm::SmallString<128> AsBytes;
1347   AsBytes.reserve(StringLength * 2);
1348   for (unsigned i = 0; i != StringLength; ++i) {
1349     unsigned short Val = ToBuf[i];
1350     if (TargetIsLSB) {
1351       AsBytes.push_back(Val & 0xFF);
1352       AsBytes.push_back(Val >> 8);
1353     } else {
1354       AsBytes.push_back(Val >> 8);
1355       AsBytes.push_back(Val & 0xFF);
1356     }
1357   }
1358   // Append one extra null character, the second is automatically added by our
1359   // caller.
1360   AsBytes.push_back(0);
1361 
1362   IsUTF16 = true;
1363   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1364 }
1365 
1366 llvm::Constant *
1367 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1368   unsigned StringLength = 0;
1369   bool isUTF16 = false;
1370   llvm::StringMapEntry<llvm::Constant*> &Entry =
1371     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1372                              getTargetData().isLittleEndian(),
1373                              isUTF16, StringLength);
1374 
1375   if (llvm::Constant *C = Entry.getValue())
1376     return C;
1377 
1378   llvm::Constant *Zero =
1379       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1380   llvm::Constant *Zeros[] = { Zero, Zero };
1381 
1382   // If we don't already have it, get __CFConstantStringClassReference.
1383   if (!CFConstantStringClassRef) {
1384     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1385     Ty = llvm::ArrayType::get(Ty, 0);
1386     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1387                                            "__CFConstantStringClassReference");
1388     // Decay array -> ptr
1389     CFConstantStringClassRef =
1390       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1391   }
1392 
1393   QualType CFTy = getContext().getCFConstantStringType();
1394 
1395   const llvm::StructType *STy =
1396     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1397 
1398   std::vector<llvm::Constant*> Fields(4);
1399 
1400   // Class pointer.
1401   Fields[0] = CFConstantStringClassRef;
1402 
1403   // Flags.
1404   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1405   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1406     llvm::ConstantInt::get(Ty, 0x07C8);
1407 
1408   // String pointer.
1409   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1410 
1411   const char *Sect = 0;
1412   llvm::GlobalValue::LinkageTypes Linkage;
1413   bool isConstant;
1414   if (isUTF16) {
1415     Sect = getContext().Target.getUnicodeStringSection();
1416     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1417     Linkage = llvm::GlobalValue::InternalLinkage;
1418     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1419     // does make plain ascii ones writable.
1420     isConstant = true;
1421   } else {
1422     Linkage = llvm::GlobalValue::PrivateLinkage;
1423     isConstant = !Features.WritableStrings;
1424   }
1425 
1426   llvm::GlobalVariable *GV =
1427     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1428                              ".str");
1429   if (Sect)
1430     GV->setSection(Sect);
1431   if (isUTF16) {
1432     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1433     GV->setAlignment(Align);
1434   }
1435   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1436 
1437   // String length.
1438   Ty = getTypes().ConvertType(getContext().LongTy);
1439   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1440 
1441   // The struct.
1442   C = llvm::ConstantStruct::get(STy, Fields);
1443   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1444                                 llvm::GlobalVariable::PrivateLinkage, C,
1445                                 "_unnamed_cfstring_");
1446   if (const char *Sect = getContext().Target.getCFStringSection())
1447     GV->setSection(Sect);
1448   Entry.setValue(GV);
1449 
1450   return GV;
1451 }
1452 
1453 /// GetStringForStringLiteral - Return the appropriate bytes for a
1454 /// string literal, properly padded to match the literal type.
1455 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1456   const char *StrData = E->getStrData();
1457   unsigned Len = E->getByteLength();
1458 
1459   const ConstantArrayType *CAT =
1460     getContext().getAsConstantArrayType(E->getType());
1461   assert(CAT && "String isn't pointer or array!");
1462 
1463   // Resize the string to the right size.
1464   std::string Str(StrData, StrData+Len);
1465   uint64_t RealLen = CAT->getSize().getZExtValue();
1466 
1467   if (E->isWide())
1468     RealLen *= getContext().Target.getWCharWidth()/8;
1469 
1470   Str.resize(RealLen, '\0');
1471 
1472   return Str;
1473 }
1474 
1475 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1476 /// constant array for the given string literal.
1477 llvm::Constant *
1478 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1479   // FIXME: This can be more efficient.
1480   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1481   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1482   if (S->isWide()) {
1483     llvm::Type *DestTy =
1484         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1485     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1486   }
1487   return C;
1488 }
1489 
1490 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1491 /// array for the given ObjCEncodeExpr node.
1492 llvm::Constant *
1493 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1494   std::string Str;
1495   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1496 
1497   return GetAddrOfConstantCString(Str);
1498 }
1499 
1500 
1501 /// GenerateWritableString -- Creates storage for a string literal.
1502 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1503                                              bool constant,
1504                                              CodeGenModule &CGM,
1505                                              const char *GlobalName) {
1506   // Create Constant for this string literal. Don't add a '\0'.
1507   llvm::Constant *C =
1508       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1509 
1510   // Create a global variable for this string
1511   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1512                                   llvm::GlobalValue::PrivateLinkage,
1513                                   C, GlobalName);
1514 }
1515 
1516 /// GetAddrOfConstantString - Returns a pointer to a character array
1517 /// containing the literal. This contents are exactly that of the
1518 /// given string, i.e. it will not be null terminated automatically;
1519 /// see GetAddrOfConstantCString. Note that whether the result is
1520 /// actually a pointer to an LLVM constant depends on
1521 /// Feature.WriteableStrings.
1522 ///
1523 /// The result has pointer to array type.
1524 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1525                                                        const char *GlobalName) {
1526   bool IsConstant = !Features.WritableStrings;
1527 
1528   // Get the default prefix if a name wasn't specified.
1529   if (!GlobalName)
1530     GlobalName = ".str";
1531 
1532   // Don't share any string literals if strings aren't constant.
1533   if (!IsConstant)
1534     return GenerateStringLiteral(str, false, *this, GlobalName);
1535 
1536   llvm::StringMapEntry<llvm::Constant *> &Entry =
1537     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1538 
1539   if (Entry.getValue())
1540     return Entry.getValue();
1541 
1542   // Create a global variable for this.
1543   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1544   Entry.setValue(C);
1545   return C;
1546 }
1547 
1548 /// GetAddrOfConstantCString - Returns a pointer to a character
1549 /// array containing the literal and a terminating '\-'
1550 /// character. The result has pointer to array type.
1551 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1552                                                         const char *GlobalName){
1553   return GetAddrOfConstantString(str + '\0', GlobalName);
1554 }
1555 
1556 /// EmitObjCPropertyImplementations - Emit information for synthesized
1557 /// properties for an implementation.
1558 void CodeGenModule::EmitObjCPropertyImplementations(const
1559                                                     ObjCImplementationDecl *D) {
1560   for (ObjCImplementationDecl::propimpl_iterator
1561          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1562     ObjCPropertyImplDecl *PID = *i;
1563 
1564     // Dynamic is just for type-checking.
1565     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1566       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1567 
1568       // Determine which methods need to be implemented, some may have
1569       // been overridden. Note that ::isSynthesized is not the method
1570       // we want, that just indicates if the decl came from a
1571       // property. What we want to know is if the method is defined in
1572       // this implementation.
1573       if (!D->getInstanceMethod(PD->getGetterName()))
1574         CodeGenFunction(*this).GenerateObjCGetter(
1575                                  const_cast<ObjCImplementationDecl *>(D), PID);
1576       if (!PD->isReadOnly() &&
1577           !D->getInstanceMethod(PD->getSetterName()))
1578         CodeGenFunction(*this).GenerateObjCSetter(
1579                                  const_cast<ObjCImplementationDecl *>(D), PID);
1580     }
1581   }
1582 }
1583 
1584 /// EmitNamespace - Emit all declarations in a namespace.
1585 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1586   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1587        I != E; ++I)
1588     EmitTopLevelDecl(*I);
1589 }
1590 
1591 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1592 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1593   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1594       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1595     ErrorUnsupported(LSD, "linkage spec");
1596     return;
1597   }
1598 
1599   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1600        I != E; ++I)
1601     EmitTopLevelDecl(*I);
1602 }
1603 
1604 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1605 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1606   // If an error has occurred, stop code generation, but continue
1607   // parsing and semantic analysis (to ensure all warnings and errors
1608   // are emitted).
1609   if (Diags.hasErrorOccurred())
1610     return;
1611 
1612   // Ignore dependent declarations.
1613   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1614     return;
1615 
1616   switch (D->getKind()) {
1617   case Decl::CXXConversion:
1618   case Decl::CXXMethod:
1619   case Decl::Function:
1620     // Skip function templates
1621     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1622       return;
1623 
1624     EmitGlobal(cast<FunctionDecl>(D));
1625     break;
1626 
1627   case Decl::Var:
1628     EmitGlobal(cast<VarDecl>(D));
1629     break;
1630 
1631   // C++ Decls
1632   case Decl::Namespace:
1633     EmitNamespace(cast<NamespaceDecl>(D));
1634     break;
1635     // No code generation needed.
1636   case Decl::UsingShadow:
1637   case Decl::Using:
1638   case Decl::UsingDirective:
1639   case Decl::ClassTemplate:
1640   case Decl::FunctionTemplate:
1641   case Decl::NamespaceAlias:
1642     break;
1643   case Decl::CXXConstructor:
1644     // Skip function templates
1645     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1646       return;
1647 
1648     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1649     break;
1650   case Decl::CXXDestructor:
1651     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1652     break;
1653 
1654   case Decl::StaticAssert:
1655     // Nothing to do.
1656     break;
1657 
1658   // Objective-C Decls
1659 
1660   // Forward declarations, no (immediate) code generation.
1661   case Decl::ObjCClass:
1662   case Decl::ObjCForwardProtocol:
1663   case Decl::ObjCCategory:
1664   case Decl::ObjCInterface:
1665     break;
1666 
1667   case Decl::ObjCProtocol:
1668     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1669     break;
1670 
1671   case Decl::ObjCCategoryImpl:
1672     // Categories have properties but don't support synthesize so we
1673     // can ignore them here.
1674     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1675     break;
1676 
1677   case Decl::ObjCImplementation: {
1678     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1679     EmitObjCPropertyImplementations(OMD);
1680     Runtime->GenerateClass(OMD);
1681     break;
1682   }
1683   case Decl::ObjCMethod: {
1684     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1685     // If this is not a prototype, emit the body.
1686     if (OMD->getBody())
1687       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1688     break;
1689   }
1690   case Decl::ObjCCompatibleAlias:
1691     // compatibility-alias is a directive and has no code gen.
1692     break;
1693 
1694   case Decl::LinkageSpec:
1695     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1696     break;
1697 
1698   case Decl::FileScopeAsm: {
1699     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1700     llvm::StringRef AsmString = AD->getAsmString()->getString();
1701 
1702     const std::string &S = getModule().getModuleInlineAsm();
1703     if (S.empty())
1704       getModule().setModuleInlineAsm(AsmString);
1705     else
1706       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1707     break;
1708   }
1709 
1710   default:
1711     // Make sure we handled everything we should, every other kind is a
1712     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1713     // function. Need to recode Decl::Kind to do that easily.
1714     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1715   }
1716 }
1717