1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
160 }
161 
162 /// AddGlobalCtor - Add a function to the list that will be called before
163 /// main() runs.
164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
165   // FIXME: Type coercion of void()* types.
166   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
167 }
168 
169 /// AddGlobalDtor - Add a function to the list that will be called
170 /// when the module is unloaded.
171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
174 }
175 
176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
177   // Ctor function type is void()*.
178   llvm::FunctionType* CtorFTy =
179     llvm::FunctionType::get(llvm::Type::VoidTy,
180                             std::vector<const llvm::Type*>(),
181                             false);
182   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
183 
184   // Get the type of a ctor entry, { i32, void ()* }.
185   llvm::StructType* CtorStructTy =
186     llvm::StructType::get(llvm::Type::Int32Ty,
187                           llvm::PointerType::getUnqual(CtorFTy), NULL);
188 
189   // Construct the constructor and destructor arrays.
190   std::vector<llvm::Constant*> Ctors;
191   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
192     std::vector<llvm::Constant*> S;
193     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
194     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
195     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
196   }
197 
198   if (!Ctors.empty()) {
199     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
200     new llvm::GlobalVariable(AT, false,
201                              llvm::GlobalValue::AppendingLinkage,
202                              llvm::ConstantArray::get(AT, Ctors),
203                              GlobalName,
204                              &TheModule);
205   }
206 }
207 
208 void CodeGenModule::EmitAnnotations() {
209   if (Annotations.empty())
210     return;
211 
212   // Create a new global variable for the ConstantStruct in the Module.
213   llvm::Constant *Array =
214   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
215                                                 Annotations.size()),
216                            Annotations);
217   llvm::GlobalValue *gv =
218   new llvm::GlobalVariable(Array->getType(), false,
219                            llvm::GlobalValue::AppendingLinkage, Array,
220                            "llvm.global.annotations", &TheModule);
221   gv->setSection("llvm.metadata");
222 }
223 
224 void CodeGenModule::SetGlobalValueAttributes(const Decl *D,
225                                              GVALinkage Linkage,
226                                              llvm::GlobalValue *GV,
227                                              bool ForDefinition) {
228   // FIXME: Set up linkage and many other things.  Note, this is a simple
229   // approximation of what we really want.
230   if (!ForDefinition) {
231     // Only a few attributes are set on declarations.
232 
233     // The dllimport attribute is overridden by a subsequent declaration as
234     // dllexport.
235     if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
236       // dllimport attribute can be applied only to function decls, not to
237       // definitions.
238       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
239         if (!FD->getBody())
240           GV->setLinkage(llvm::Function::DLLImportLinkage);
241       } else
242         GV->setLinkage(llvm::Function::DLLImportLinkage);
243     } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
244       // "extern_weak" is overloaded in LLVM; we probably should have
245       // separate linkage types for this.
246       GV->setLinkage(llvm::Function::ExternalWeakLinkage);
247     }
248   } else if (Linkage == GVA_Internal) {
249     GV->setLinkage(llvm::Function::InternalLinkage);
250   } else if (D->hasAttr<DLLExportAttr>()) {
251     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
252       // The dllexport attribute is ignored for undefined symbols.
253       if (FD->getBody())
254         GV->setLinkage(llvm::Function::DLLExportLinkage);
255     } else {
256       GV->setLinkage(llvm::Function::DLLExportLinkage);
257     }
258   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
259     GV->setLinkage(llvm::Function::WeakAnyLinkage);
260   } else if (Linkage == GVA_Inline || Linkage == GVA_ExternInline) {
261     GV->setLinkage(llvm::Function::WeakAnyLinkage);
262   }
263 
264   if (ForDefinition) {
265     setGlobalVisibility(GV, D);
266 
267     // Only add to llvm.used when we see a definition, otherwise we
268     // might add multiple times or risk the value being replaced by a
269     // subsequent RAUW.
270     if (D->hasAttr<UsedAttr>())
271       AddUsedGlobal(GV);
272   }
273 
274   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
275     GV->setSection(SA->getName());
276 }
277 
278 void CodeGenModule::SetFunctionAttributes(const Decl *D,
279                                           const CGFunctionInfo &Info,
280                                           llvm::Function *F) {
281   AttributeListType AttributeList;
282   ConstructAttributeList(Info, D, AttributeList);
283 
284   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
285                                         AttributeList.size()));
286 
287   // Set the appropriate calling convention for the Function.
288   if (D->hasAttr<FastCallAttr>())
289     F->setCallingConv(llvm::CallingConv::X86_FastCall);
290 
291   if (D->hasAttr<StdCallAttr>())
292     F->setCallingConv(llvm::CallingConv::X86_StdCall);
293 }
294 
295 
296 static CodeGenModule::GVALinkage
297 GetLinkageForFunctionOrMethodDecl(const Decl *D) {
298   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
299     if (FD->getStorageClass() == FunctionDecl::Static)
300       return CodeGenModule::GVA_Internal;
301     if (FD->isInline()) {
302       if (FD->getStorageClass() == FunctionDecl::Extern)
303         return CodeGenModule::GVA_ExternInline;
304       return CodeGenModule::GVA_Inline;
305     }
306   } else {
307     assert(isa<ObjCMethodDecl>(D));
308     return CodeGenModule::GVA_Internal;
309   }
310   return CodeGenModule::GVA_Normal;
311 }
312 
313 /// SetFunctionAttributesForDefinition - Set function attributes
314 /// specific to a function definition.
315 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
316                                                        llvm::Function *F) {
317   SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true);
318 
319   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
320     F->addFnAttr(llvm::Attribute::NoUnwind);
321 
322   if (D->hasAttr<AlwaysInlineAttr>())
323     F->addFnAttr(llvm::Attribute::AlwaysInline);
324 
325   if (D->hasAttr<NoinlineAttr>())
326     F->addFnAttr(llvm::Attribute::NoInline);
327 }
328 
329 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
330                                         llvm::Function *F) {
331   SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
332 
333   SetFunctionAttributesForDefinition(MD, F);
334 }
335 
336 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
337                                           llvm::Function *F) {
338   SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
339 
340   SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false);
341 }
342 
343 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
344   assert(!GV->isDeclaration() &&
345          "Only globals with definition can force usage.");
346   LLVMUsed.push_back(GV);
347 }
348 
349 void CodeGenModule::EmitLLVMUsed() {
350   // Don't create llvm.used if there is no need.
351   if (LLVMUsed.empty())
352     return;
353 
354   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
355   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
356 
357   // Convert LLVMUsed to what ConstantArray needs.
358   std::vector<llvm::Constant*> UsedArray;
359   UsedArray.resize(LLVMUsed.size());
360   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
361     UsedArray[i] =
362      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
363   }
364 
365   llvm::GlobalVariable *GV =
366     new llvm::GlobalVariable(ATy, false,
367                              llvm::GlobalValue::AppendingLinkage,
368                              llvm::ConstantArray::get(ATy, UsedArray),
369                              "llvm.used", &getModule());
370 
371   GV->setSection("llvm.metadata");
372 }
373 
374 void CodeGenModule::EmitDeferred() {
375   // Emit code for any potentially referenced deferred decls.  Since a
376   // previously unused static decl may become used during the generation of code
377   // for a static function, iterate until no  changes are made.
378   while (!DeferredDeclsToEmit.empty()) {
379     const ValueDecl *D = DeferredDeclsToEmit.back();
380     DeferredDeclsToEmit.pop_back();
381 
382     // The mangled name for the decl must have been emitted in GlobalDeclMap.
383     // Look it up to see if it was defined with a stronger definition (e.g. an
384     // extern inline function with a strong function redefinition).  If so,
385     // just ignore the deferred decl.
386     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
387     assert(CGRef && "Deferred decl wasn't referenced?");
388 
389     if (!CGRef->isDeclaration())
390       continue;
391 
392     // Otherwise, emit the definition and move on to the next one.
393     EmitGlobalDefinition(D);
394   }
395 }
396 
397 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
398 /// annotation information for a given GlobalValue.  The annotation struct is
399 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
400 /// GlobalValue being annotated.  The second field is the constant string
401 /// created from the AnnotateAttr's annotation.  The third field is a constant
402 /// string containing the name of the translation unit.  The fourth field is
403 /// the line number in the file of the annotated value declaration.
404 ///
405 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
406 ///        appears to.
407 ///
408 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
409                                                 const AnnotateAttr *AA,
410                                                 unsigned LineNo) {
411   llvm::Module *M = &getModule();
412 
413   // get [N x i8] constants for the annotation string, and the filename string
414   // which are the 2nd and 3rd elements of the global annotation structure.
415   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
416   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
417   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
418                                                   true);
419 
420   // Get the two global values corresponding to the ConstantArrays we just
421   // created to hold the bytes of the strings.
422   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
423   llvm::GlobalValue *annoGV =
424   new llvm::GlobalVariable(anno->getType(), false,
425                            llvm::GlobalValue::InternalLinkage, anno,
426                            GV->getName() + StringPrefix, M);
427   // translation unit name string, emitted into the llvm.metadata section.
428   llvm::GlobalValue *unitGV =
429   new llvm::GlobalVariable(unit->getType(), false,
430                            llvm::GlobalValue::InternalLinkage, unit,
431                            StringPrefix, M);
432 
433   // Create the ConstantStruct that is the global annotion.
434   llvm::Constant *Fields[4] = {
435     llvm::ConstantExpr::getBitCast(GV, SBP),
436     llvm::ConstantExpr::getBitCast(annoGV, SBP),
437     llvm::ConstantExpr::getBitCast(unitGV, SBP),
438     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
439   };
440   return llvm::ConstantStruct::get(Fields, 4, false);
441 }
442 
443 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
444   // Never defer when EmitAllDecls is specified or the decl has
445   // attribute used.
446   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
447     return false;
448 
449   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
450     // Constructors and destructors should never be deferred.
451     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
452       return false;
453 
454     // FIXME: What about inline, and/or extern inline?
455     if (FD->getStorageClass() != FunctionDecl::Static)
456       return false;
457   } else {
458     const VarDecl *VD = cast<VarDecl>(Global);
459     assert(VD->isFileVarDecl() && "Invalid decl");
460 
461     if (VD->getStorageClass() != VarDecl::Static)
462       return false;
463   }
464 
465   return true;
466 }
467 
468 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
469   // If this is an alias definition (which otherwise looks like a declaration)
470   // emit it now.
471   if (Global->hasAttr<AliasAttr>())
472     return EmitAliasDefinition(Global);
473 
474   // Ignore declarations, they will be emitted on their first use.
475   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
476     // Forward declarations are emitted lazily on first use.
477     if (!FD->isThisDeclarationADefinition())
478       return;
479   } else {
480     const VarDecl *VD = cast<VarDecl>(Global);
481     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
482 
483     // Forward declarations are emitted lazily on first use.
484     if (!VD->getInit() && VD->hasExternalStorage())
485       return;
486   }
487 
488   // Defer code generation when possible if this is a static definition, inline
489   // function etc.  These we only want to emit if they are used.
490   if (MayDeferGeneration(Global)) {
491     // If the value has already been used, add it directly to the
492     // DeferredDeclsToEmit list.
493     const char *MangledName = getMangledName(Global);
494     if (GlobalDeclMap.count(MangledName))
495       DeferredDeclsToEmit.push_back(Global);
496     else {
497       // Otherwise, remember that we saw a deferred decl with this name.  The
498       // first use of the mangled name will cause it to move into
499       // DeferredDeclsToEmit.
500       DeferredDecls[MangledName] = Global;
501     }
502     return;
503   }
504 
505   // Otherwise emit the definition.
506   EmitGlobalDefinition(Global);
507 }
508 
509 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
510   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
511     EmitGlobalFunctionDefinition(FD);
512   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
513     EmitGlobalVarDefinition(VD);
514   } else {
515     assert(0 && "Invalid argument to EmitGlobalDefinition()");
516   }
517 }
518 
519 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
520 /// module, create and return an llvm Function with the specified type. If there
521 /// is something in the module with the specified name, return it potentially
522 /// bitcasted to the right type.
523 ///
524 /// If D is non-null, it specifies a decl that correspond to this.  This is used
525 /// to set the attributes on the function when it is first created.
526 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
527                                                        const llvm::Type *Ty,
528                                                        const FunctionDecl *D) {
529   // Lookup the entry, lazily creating it if necessary.
530   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
531   if (Entry) {
532     if (Entry->getType()->getElementType() == Ty)
533       return Entry;
534 
535     // Make sure the result is of the correct type.
536     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
537     return llvm::ConstantExpr::getBitCast(Entry, PTy);
538   }
539 
540   // This is the first use or definition of a mangled name.  If there is a
541   // deferred decl with this name, remember that we need to emit it at the end
542   // of the file.
543   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
544   DeferredDecls.find(MangledName);
545   if (DDI != DeferredDecls.end()) {
546     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
547     // list, and remove it from DeferredDecls (since we don't need it anymore).
548     DeferredDeclsToEmit.push_back(DDI->second);
549     DeferredDecls.erase(DDI);
550   }
551 
552   // This function doesn't have a complete type (for example, the return
553   // type is an incomplete struct). Use a fake type instead, and make
554   // sure not to try to set attributes.
555   bool ShouldSetAttributes = true;
556   if (!isa<llvm::FunctionType>(Ty)) {
557     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
558                                  std::vector<const llvm::Type*>(), false);
559     ShouldSetAttributes = false;
560   }
561   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
562                                              llvm::Function::ExternalLinkage,
563                                              "", &getModule());
564   F->setName(MangledName);
565   if (D && ShouldSetAttributes)
566     SetFunctionAttributes(D, F);
567   Entry = F;
568   return F;
569 }
570 
571 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
572 /// non-null, then this function will use the specified type if it has to
573 /// create it (this occurs when we see a definition of the function).
574 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
575                                                  const llvm::Type *Ty) {
576   // If there was no specific requested type, just convert it now.
577   if (!Ty)
578     Ty = getTypes().ConvertType(D->getType());
579   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
580 }
581 
582 /// CreateRuntimeFunction - Create a new runtime function with the specified
583 /// type and name.
584 llvm::Constant *
585 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
586                                      const char *Name) {
587   // Convert Name to be a uniqued string from the IdentifierInfo table.
588   Name = getContext().Idents.get(Name).getName();
589   return GetOrCreateLLVMFunction(Name, FTy, 0);
590 }
591 
592 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
593 /// create and return an llvm GlobalVariable with the specified type.  If there
594 /// is something in the module with the specified name, return it potentially
595 /// bitcasted to the right type.
596 ///
597 /// If D is non-null, it specifies a decl that correspond to this.  This is used
598 /// to set the attributes on the global when it is first created.
599 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
600                                                      const llvm::PointerType*Ty,
601                                                      const VarDecl *D) {
602   // Lookup the entry, lazily creating it if necessary.
603   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
604   if (Entry) {
605     if (Entry->getType() == Ty)
606       return Entry;
607 
608     // Make sure the result is of the correct type.
609     return llvm::ConstantExpr::getBitCast(Entry, Ty);
610   }
611 
612   // We don't support __thread yet.
613   if (D && D->isThreadSpecified())
614     ErrorUnsupported(D, "thread local ('__thread') variable", true);
615 
616   // This is the first use or definition of a mangled name.  If there is a
617   // deferred decl with this name, remember that we need to emit it at the end
618   // of the file.
619   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
620     DeferredDecls.find(MangledName);
621   if (DDI != DeferredDecls.end()) {
622     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
623     // list, and remove it from DeferredDecls (since we don't need it anymore).
624     DeferredDeclsToEmit.push_back(DDI->second);
625     DeferredDecls.erase(DDI);
626   }
627 
628   llvm::GlobalVariable *GV =
629     new llvm::GlobalVariable(Ty->getElementType(), false,
630                              llvm::GlobalValue::ExternalLinkage,
631                              0, "", &getModule(),
632                              0, Ty->getAddressSpace());
633   GV->setName(MangledName);
634 
635   // Handle things which are present even on external declarations.
636   if (D) {
637     // FIXME: This code is overly simple and should be merged with
638     // other global handling.
639     GV->setConstant(D->getType().isConstant(Context));
640 
641     // FIXME: Merge with other attribute handling code.
642     if (D->getStorageClass() == VarDecl::PrivateExtern)
643       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
644 
645     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
646       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
647   }
648 
649   return Entry = GV;
650 }
651 
652 
653 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
654 /// given global variable.  If Ty is non-null and if the global doesn't exist,
655 /// then it will be greated with the specified type instead of whatever the
656 /// normal requested type would be.
657 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
658                                                   const llvm::Type *Ty) {
659   assert(D->hasGlobalStorage() && "Not a global variable");
660   QualType ASTTy = D->getType();
661   if (Ty == 0)
662     Ty = getTypes().ConvertTypeForMem(ASTTy);
663 
664   const llvm::PointerType *PTy =
665     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
666   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
667 }
668 
669 /// CreateRuntimeVariable - Create a new runtime global variable with the
670 /// specified type and name.
671 llvm::Constant *
672 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
673                                      const char *Name) {
674   // Convert Name to be a uniqued string from the IdentifierInfo table.
675   Name = getContext().Idents.get(Name).getName();
676   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
677 }
678 
679 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
680   llvm::Constant *Init = 0;
681   QualType ASTTy = D->getType();
682 
683   if (D->getInit() == 0) {
684     // This is a tentative definition; tentative definitions are
685     // implicitly initialized with { 0 }
686     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
687     if (ASTTy->isIncompleteArrayType()) {
688       // An incomplete array is normally [ TYPE x 0 ], but we need
689       // to fix it to [ TYPE x 1 ].
690       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
691       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
692     }
693     Init = llvm::Constant::getNullValue(InitTy);
694   } else {
695     Init = EmitConstantExpr(D->getInit(), D->getType());
696     if (!Init) {
697       ErrorUnsupported(D, "static initializer");
698       QualType T = D->getInit()->getType();
699       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
700     }
701   }
702 
703   const llvm::Type* InitType = Init->getType();
704   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
705 
706   // Strip off a bitcast if we got one back.
707   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
708     assert(CE->getOpcode() == llvm::Instruction::BitCast);
709     Entry = CE->getOperand(0);
710   }
711 
712   // Entry is now either a Function or GlobalVariable.
713   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
714 
715   // If we already have this global and it has an initializer, then
716   // we are in the rare situation where we emitted the defining
717   // declaration of the global and are now being asked to emit a
718   // definition which would be common. This occurs, for example, in
719   // the following situation because statics can be emitted out of
720   // order:
721   //
722   //  static int x;
723   //  static int *y = &x;
724   //  static int x = 10;
725   //  int **z = &y;
726   //
727   // Bail here so we don't blow away the definition. Note that if we
728   // can't distinguish here if we emitted a definition with a null
729   // initializer, but this case is safe.
730   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
731     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
732     return;
733   }
734 
735   // We have a definition after a declaration with the wrong type.
736   // We must make a new GlobalVariable* and update everything that used OldGV
737   // (a declaration or tentative definition) with the new GlobalVariable*
738   // (which will be a definition).
739   //
740   // This happens if there is a prototype for a global (e.g.
741   // "extern int x[];") and then a definition of a different type (e.g.
742   // "int x[10];"). This also happens when an initializer has a different type
743   // from the type of the global (this happens with unions).
744   if (GV == 0 ||
745       GV->getType()->getElementType() != InitType ||
746       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
747 
748     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
749     GlobalDeclMap.erase(getMangledName(D));
750 
751     // Make a new global with the correct type, this is now guaranteed to work.
752     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
753     GV->takeName(cast<llvm::GlobalValue>(Entry));
754 
755     // Replace all uses of the old global with the new global
756     llvm::Constant *NewPtrForOldDecl =
757         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
758     Entry->replaceAllUsesWith(NewPtrForOldDecl);
759 
760     // Erase the old global, since it is no longer used.
761     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
762   }
763 
764   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
765     SourceManager &SM = Context.getSourceManager();
766     AddAnnotation(EmitAnnotateAttr(GV, AA,
767                               SM.getInstantiationLineNumber(D->getLocation())));
768   }
769 
770   GV->setInitializer(Init);
771   GV->setConstant(D->getType().isConstant(Context));
772   GV->setAlignment(getContext().getDeclAlignInBytes(D));
773 
774   // Set the llvm linkage type as appropriate.
775   if (D->getStorageClass() == VarDecl::Static)
776     GV->setLinkage(llvm::Function::InternalLinkage);
777   else if (D->hasAttr<DLLImportAttr>())
778     GV->setLinkage(llvm::Function::DLLImportLinkage);
779   else if (D->hasAttr<DLLExportAttr>())
780     GV->setLinkage(llvm::Function::DLLExportLinkage);
781   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
782     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
783   else if (!CompileOpts.NoCommon &&
784            (!D->hasExternalStorage() && !D->getInit()))
785     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
786   else
787     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
788 
789   setGlobalVisibility(GV, D);
790 
791   if (D->hasAttr<UsedAttr>())
792     AddUsedGlobal(GV);
793 
794   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
795     GV->setSection(SA->getName());
796 
797   // Emit global variable debug information.
798   if (CGDebugInfo *DI = getDebugInfo()) {
799     DI->setLocation(D->getLocation());
800     DI->EmitGlobalVariable(GV, D);
801   }
802 }
803 
804 
805 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
806   const llvm::FunctionType *Ty;
807 
808   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
809     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
810 
811     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
812   } else {
813     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
814 
815     // As a special case, make sure that definitions of K&R function
816     // "type foo()" aren't declared as varargs (which forces the backend
817     // to do unnecessary work).
818     if (D->getType()->isFunctionNoProtoType()) {
819       assert(Ty->isVarArg() && "Didn't lower type as expected");
820       // Due to stret, the lowered function could have arguments.
821       // Just create the same type as was lowered by ConvertType
822       // but strip off the varargs bit.
823       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
824       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
825     }
826   }
827 
828   // Get or create the prototype for teh function.
829   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
830 
831   // Strip off a bitcast if we got one back.
832   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
833     assert(CE->getOpcode() == llvm::Instruction::BitCast);
834     Entry = CE->getOperand(0);
835   }
836 
837 
838   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
839     // If the types mismatch then we have to rewrite the definition.
840     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
841            "Shouldn't replace non-declaration");
842 
843     // F is the Function* for the one with the wrong type, we must make a new
844     // Function* and update everything that used F (a declaration) with the new
845     // Function* (which will be a definition).
846     //
847     // This happens if there is a prototype for a function
848     // (e.g. "int f()") and then a definition of a different type
849     // (e.g. "int f(int x)").  Start by making a new function of the
850     // correct type, RAUW, then steal the name.
851     GlobalDeclMap.erase(getMangledName(D));
852     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
853     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
854 
855     // Replace uses of F with the Function we will endow with a body.
856     llvm::Constant *NewPtrForOldDecl =
857       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
858     Entry->replaceAllUsesWith(NewPtrForOldDecl);
859 
860     // Ok, delete the old function now, which is dead.
861     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
862 
863     Entry = NewFn;
864   }
865 
866   llvm::Function *Fn = cast<llvm::Function>(Entry);
867 
868   CodeGenFunction(*this).GenerateCode(D, Fn);
869 
870   SetFunctionAttributesForDefinition(D, Fn);
871 
872   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
873     AddGlobalCtor(Fn, CA->getPriority());
874   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
875     AddGlobalDtor(Fn, DA->getPriority());
876 }
877 
878 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
879   const AliasAttr *AA = D->getAttr<AliasAttr>();
880   assert(AA && "Not an alias?");
881 
882   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
883 
884   // Unique the name through the identifier table.
885   const char *AliaseeName = AA->getAliasee().c_str();
886   AliaseeName = getContext().Idents.get(AliaseeName).getName();
887 
888   // Create a reference to the named value.  This ensures that it is emitted
889   // if a deferred decl.
890   llvm::Constant *Aliasee;
891   if (isa<llvm::FunctionType>(DeclTy))
892     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
893   else
894     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
895                                     llvm::PointerType::getUnqual(DeclTy), 0);
896 
897   // Create the new alias itself, but don't set a name yet.
898   llvm::GlobalValue *GA =
899     new llvm::GlobalAlias(Aliasee->getType(),
900                           llvm::Function::ExternalLinkage,
901                           "", Aliasee, &getModule());
902 
903   // See if there is already something with the alias' name in the module.
904   const char *MangledName = getMangledName(D);
905   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
906 
907   if (Entry && !Entry->isDeclaration()) {
908     // If there is a definition in the module, then it wins over the alias.
909     // This is dubious, but allow it to be safe.  Just ignore the alias.
910     GA->eraseFromParent();
911     return;
912   }
913 
914   if (Entry) {
915     // If there is a declaration in the module, then we had an extern followed
916     // by the alias, as in:
917     //   extern int test6();
918     //   ...
919     //   int test6() __attribute__((alias("test7")));
920     //
921     // Remove it and replace uses of it with the alias.
922 
923     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
924                                                           Entry->getType()));
925     Entry->eraseFromParent();
926   }
927 
928   // Now we know that there is no conflict, set the name.
929   Entry = GA;
930   GA->setName(MangledName);
931 
932   // Alias should never be internal or inline.
933   SetGlobalValueAttributes(D, GVA_Normal, GA, true);
934 }
935 
936 /// getBuiltinLibFunction - Given a builtin id for a function like
937 /// "__builtin_fabsf", return a Function* for "fabsf".
938 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
939   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
940           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
941          "isn't a lib fn");
942 
943   // Get the name, skip over the __builtin_ prefix (if necessary).
944   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
945   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
946     Name += 10;
947 
948   // Get the type for the builtin.
949   Builtin::Context::GetBuiltinTypeError Error;
950   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
951   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
952 
953   const llvm::FunctionType *Ty =
954     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
955 
956   // Unique the name through the identifier table.
957   Name = getContext().Idents.get(Name).getName();
958   // FIXME: param attributes for sext/zext etc.
959   return GetOrCreateLLVMFunction(Name, Ty, 0);
960 }
961 
962 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
963                                             unsigned NumTys) {
964   return llvm::Intrinsic::getDeclaration(&getModule(),
965                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
966 }
967 
968 llvm::Function *CodeGenModule::getMemCpyFn() {
969   if (MemCpyFn) return MemCpyFn;
970   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
971   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
972 }
973 
974 llvm::Function *CodeGenModule::getMemMoveFn() {
975   if (MemMoveFn) return MemMoveFn;
976   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
977   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
978 }
979 
980 llvm::Function *CodeGenModule::getMemSetFn() {
981   if (MemSetFn) return MemSetFn;
982   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
983   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
984 }
985 
986 static void appendFieldAndPadding(CodeGenModule &CGM,
987                                   std::vector<llvm::Constant*>& Fields,
988                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
989                                   llvm::Constant* Field,
990                                   RecordDecl* RD, const llvm::StructType *STy) {
991   // Append the field.
992   Fields.push_back(Field);
993 
994   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
995 
996   int NextStructFieldNo;
997   if (!NextFieldD) {
998     NextStructFieldNo = STy->getNumElements();
999   } else {
1000     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1001   }
1002 
1003   // Append padding
1004   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1005     llvm::Constant *C =
1006       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1007 
1008     Fields.push_back(C);
1009   }
1010 }
1011 
1012 llvm::Constant *CodeGenModule::
1013 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1014   std::string str;
1015   unsigned StringLength;
1016 
1017   bool isUTF16 = false;
1018   if (Literal->containsNonAsciiOrNull()) {
1019     // Convert from UTF-8 to UTF-16.
1020     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1021     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1022     UTF16 *ToPtr = &ToBuf[0];
1023 
1024     ConversionResult Result;
1025     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1026                                 &ToPtr, ToPtr+Literal->getByteLength(),
1027                                 strictConversion);
1028     if (Result == conversionOK) {
1029       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1030       // without doing more surgery to this routine. Since we aren't explicitly
1031       // checking for endianness here, it's also a bug (when generating code for
1032       // a target that doesn't match the host endianness). Modeling this as an
1033       // i16 array is likely the cleanest solution.
1034       StringLength = ToPtr-&ToBuf[0];
1035       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1036       isUTF16 = true;
1037     } else if (Result == sourceIllegal) {
1038       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1039       str.assign(Literal->getStrData(), Literal->getByteLength());
1040       StringLength = str.length();
1041     } else
1042       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1043 
1044   } else {
1045     str.assign(Literal->getStrData(), Literal->getByteLength());
1046     StringLength = str.length();
1047   }
1048   llvm::StringMapEntry<llvm::Constant *> &Entry =
1049     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1050 
1051   if (llvm::Constant *C = Entry.getValue())
1052     return C;
1053 
1054   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1055   llvm::Constant *Zeros[] = { Zero, Zero };
1056 
1057   if (!CFConstantStringClassRef) {
1058     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1059     Ty = llvm::ArrayType::get(Ty, 0);
1060 
1061     // FIXME: This is fairly broken if
1062     // __CFConstantStringClassReference is already defined, in that it
1063     // will get renamed and the user will most likely see an opaque
1064     // error message. This is a general issue with relying on
1065     // particular names.
1066     llvm::GlobalVariable *GV =
1067       new llvm::GlobalVariable(Ty, false,
1068                                llvm::GlobalVariable::ExternalLinkage, 0,
1069                                "__CFConstantStringClassReference",
1070                                &getModule());
1071 
1072     // Decay array -> ptr
1073     CFConstantStringClassRef =
1074       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1075   }
1076 
1077   QualType CFTy = getContext().getCFConstantStringType();
1078   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1079 
1080   const llvm::StructType *STy =
1081     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1082 
1083   std::vector<llvm::Constant*> Fields;
1084   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1085 
1086   // Class pointer.
1087   FieldDecl *CurField = *Field++;
1088   FieldDecl *NextField = *Field++;
1089   appendFieldAndPadding(*this, Fields, CurField, NextField,
1090                         CFConstantStringClassRef, CFRD, STy);
1091 
1092   // Flags.
1093   CurField = NextField;
1094   NextField = *Field++;
1095   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1096   appendFieldAndPadding(*this, Fields, CurField, NextField,
1097                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1098                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1099                         CFRD, STy);
1100 
1101   // String pointer.
1102   CurField = NextField;
1103   NextField = *Field++;
1104   llvm::Constant *C = llvm::ConstantArray::get(str);
1105 
1106   const char *Sect, *Prefix;
1107   bool isConstant;
1108   if (isUTF16) {
1109     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1110     Sect = getContext().Target.getUnicodeStringSection();
1111     // FIXME: Why does GCC not set constant here?
1112     isConstant = false;
1113   } else {
1114     Prefix = getContext().Target.getStringSymbolPrefix(true);
1115     Sect = getContext().Target.getCFStringDataSection();
1116     // FIXME: -fwritable-strings should probably affect this, but we
1117     // are following gcc here.
1118     isConstant = true;
1119   }
1120   llvm::GlobalVariable *GV =
1121     new llvm::GlobalVariable(C->getType(), isConstant,
1122                              llvm::GlobalValue::InternalLinkage,
1123                              C, Prefix, &getModule());
1124   if (Sect)
1125     GV->setSection(Sect);
1126   if (isUTF16) {
1127     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1128     GV->setAlignment(Align);
1129   }
1130   appendFieldAndPadding(*this, Fields, CurField, NextField,
1131                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1132                         CFRD, STy);
1133 
1134   // String length.
1135   CurField = NextField;
1136   NextField = 0;
1137   Ty = getTypes().ConvertType(getContext().LongTy);
1138   appendFieldAndPadding(*this, Fields, CurField, NextField,
1139                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1140 
1141   // The struct.
1142   C = llvm::ConstantStruct::get(STy, Fields);
1143   GV = new llvm::GlobalVariable(C->getType(), true,
1144                                 llvm::GlobalVariable::InternalLinkage, C,
1145                                 getContext().Target.getCFStringSymbolPrefix(),
1146                                 &getModule());
1147   if (const char *Sect = getContext().Target.getCFStringSection())
1148     GV->setSection(Sect);
1149   Entry.setValue(GV);
1150 
1151   return GV;
1152 }
1153 
1154 /// GetStringForStringLiteral - Return the appropriate bytes for a
1155 /// string literal, properly padded to match the literal type.
1156 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1157   const char *StrData = E->getStrData();
1158   unsigned Len = E->getByteLength();
1159 
1160   const ConstantArrayType *CAT =
1161     getContext().getAsConstantArrayType(E->getType());
1162   assert(CAT && "String isn't pointer or array!");
1163 
1164   // Resize the string to the right size.
1165   std::string Str(StrData, StrData+Len);
1166   uint64_t RealLen = CAT->getSize().getZExtValue();
1167 
1168   if (E->isWide())
1169     RealLen *= getContext().Target.getWCharWidth()/8;
1170 
1171   Str.resize(RealLen, '\0');
1172 
1173   return Str;
1174 }
1175 
1176 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1177 /// constant array for the given string literal.
1178 llvm::Constant *
1179 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1180   // FIXME: This can be more efficient.
1181   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1182 }
1183 
1184 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1185 /// array for the given ObjCEncodeExpr node.
1186 llvm::Constant *
1187 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1188   std::string Str;
1189   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1190 
1191   return GetAddrOfConstantCString(Str);
1192 }
1193 
1194 
1195 /// GenerateWritableString -- Creates storage for a string literal.
1196 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1197                                              bool constant,
1198                                              CodeGenModule &CGM,
1199                                              const char *GlobalName) {
1200   // Create Constant for this string literal. Don't add a '\0'.
1201   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1202 
1203   // Create a global variable for this string
1204   return new llvm::GlobalVariable(C->getType(), constant,
1205                                   llvm::GlobalValue::InternalLinkage,
1206                                   C, GlobalName, &CGM.getModule());
1207 }
1208 
1209 /// GetAddrOfConstantString - Returns a pointer to a character array
1210 /// containing the literal. This contents are exactly that of the
1211 /// given string, i.e. it will not be null terminated automatically;
1212 /// see GetAddrOfConstantCString. Note that whether the result is
1213 /// actually a pointer to an LLVM constant depends on
1214 /// Feature.WriteableStrings.
1215 ///
1216 /// The result has pointer to array type.
1217 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1218                                                        const char *GlobalName) {
1219   bool IsConstant = !Features.WritableStrings;
1220 
1221   // Get the default prefix if a name wasn't specified.
1222   if (!GlobalName)
1223     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1224 
1225   // Don't share any string literals if strings aren't constant.
1226   if (!IsConstant)
1227     return GenerateStringLiteral(str, false, *this, GlobalName);
1228 
1229   llvm::StringMapEntry<llvm::Constant *> &Entry =
1230   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1231 
1232   if (Entry.getValue())
1233     return Entry.getValue();
1234 
1235   // Create a global variable for this.
1236   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1237   Entry.setValue(C);
1238   return C;
1239 }
1240 
1241 /// GetAddrOfConstantCString - Returns a pointer to a character
1242 /// array containing the literal and a terminating '\-'
1243 /// character. The result has pointer to array type.
1244 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1245                                                         const char *GlobalName){
1246   return GetAddrOfConstantString(str + '\0', GlobalName);
1247 }
1248 
1249 /// EmitObjCPropertyImplementations - Emit information for synthesized
1250 /// properties for an implementation.
1251 void CodeGenModule::EmitObjCPropertyImplementations(const
1252                                                     ObjCImplementationDecl *D) {
1253   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1254          e = D->propimpl_end(); i != e; ++i) {
1255     ObjCPropertyImplDecl *PID = *i;
1256 
1257     // Dynamic is just for type-checking.
1258     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1259       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1260 
1261       // Determine which methods need to be implemented, some may have
1262       // been overridden. Note that ::isSynthesized is not the method
1263       // we want, that just indicates if the decl came from a
1264       // property. What we want to know is if the method is defined in
1265       // this implementation.
1266       if (!D->getInstanceMethod(PD->getGetterName()))
1267         CodeGenFunction(*this).GenerateObjCGetter(
1268                                  const_cast<ObjCImplementationDecl *>(D), PID);
1269       if (!PD->isReadOnly() &&
1270           !D->getInstanceMethod(PD->getSetterName()))
1271         CodeGenFunction(*this).GenerateObjCSetter(
1272                                  const_cast<ObjCImplementationDecl *>(D), PID);
1273     }
1274   }
1275 }
1276 
1277 /// EmitNamespace - Emit all declarations in a namespace.
1278 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1279   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1280          E = ND->decls_end(getContext());
1281        I != E; ++I)
1282     EmitTopLevelDecl(*I);
1283 }
1284 
1285 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1286 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1287   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1288     ErrorUnsupported(LSD, "linkage spec");
1289     return;
1290   }
1291 
1292   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1293          E = LSD->decls_end(getContext());
1294        I != E; ++I)
1295     EmitTopLevelDecl(*I);
1296 }
1297 
1298 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1299 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1300   // If an error has occurred, stop code generation, but continue
1301   // parsing and semantic analysis (to ensure all warnings and errors
1302   // are emitted).
1303   if (Diags.hasErrorOccurred())
1304     return;
1305 
1306   switch (D->getKind()) {
1307   case Decl::CXXMethod:
1308   case Decl::Function:
1309   case Decl::Var:
1310     EmitGlobal(cast<ValueDecl>(D));
1311     break;
1312 
1313   case Decl::Namespace:
1314     EmitNamespace(cast<NamespaceDecl>(D));
1315     break;
1316 
1317     // Objective-C Decls
1318 
1319   // Forward declarations, no (immediate) code generation.
1320   case Decl::ObjCClass:
1321   case Decl::ObjCForwardProtocol:
1322   case Decl::ObjCCategory:
1323     break;
1324   case Decl::ObjCInterface:
1325     // If we already laid out this interface due to an @class, and if we
1326     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1327     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1328     break;
1329 
1330   case Decl::ObjCProtocol:
1331     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1332     break;
1333 
1334   case Decl::ObjCCategoryImpl:
1335     // Categories have properties but don't support synthesize so we
1336     // can ignore them here.
1337     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1338     break;
1339 
1340   case Decl::ObjCImplementation: {
1341     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1342     EmitObjCPropertyImplementations(OMD);
1343     Runtime->GenerateClass(OMD);
1344     break;
1345   }
1346   case Decl::ObjCMethod: {
1347     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1348     // If this is not a prototype, emit the body.
1349     if (OMD->getBody())
1350       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1351     break;
1352   }
1353   case Decl::ObjCCompatibleAlias:
1354     // compatibility-alias is a directive and has no code gen.
1355     break;
1356 
1357   case Decl::LinkageSpec:
1358     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1359     break;
1360 
1361   case Decl::FileScopeAsm: {
1362     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1363     std::string AsmString(AD->getAsmString()->getStrData(),
1364                           AD->getAsmString()->getByteLength());
1365 
1366     const std::string &S = getModule().getModuleInlineAsm();
1367     if (S.empty())
1368       getModule().setModuleInlineAsm(AsmString);
1369     else
1370       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1371     break;
1372   }
1373 
1374   default:
1375     // Make sure we handled everything we should, every other kind is
1376     // a non-top-level decl.  FIXME: Would be nice to have an
1377     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1378     // that easily.
1379     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1380   }
1381 }
1382