1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 160 } 161 162 /// AddGlobalCtor - Add a function to the list that will be called before 163 /// main() runs. 164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 165 // FIXME: Type coercion of void()* types. 166 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 167 } 168 169 /// AddGlobalDtor - Add a function to the list that will be called 170 /// when the module is unloaded. 171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 174 } 175 176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 177 // Ctor function type is void()*. 178 llvm::FunctionType* CtorFTy = 179 llvm::FunctionType::get(llvm::Type::VoidTy, 180 std::vector<const llvm::Type*>(), 181 false); 182 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 183 184 // Get the type of a ctor entry, { i32, void ()* }. 185 llvm::StructType* CtorStructTy = 186 llvm::StructType::get(llvm::Type::Int32Ty, 187 llvm::PointerType::getUnqual(CtorFTy), NULL); 188 189 // Construct the constructor and destructor arrays. 190 std::vector<llvm::Constant*> Ctors; 191 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 192 std::vector<llvm::Constant*> S; 193 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 194 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 195 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 196 } 197 198 if (!Ctors.empty()) { 199 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 200 new llvm::GlobalVariable(AT, false, 201 llvm::GlobalValue::AppendingLinkage, 202 llvm::ConstantArray::get(AT, Ctors), 203 GlobalName, 204 &TheModule); 205 } 206 } 207 208 void CodeGenModule::EmitAnnotations() { 209 if (Annotations.empty()) 210 return; 211 212 // Create a new global variable for the ConstantStruct in the Module. 213 llvm::Constant *Array = 214 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 215 Annotations.size()), 216 Annotations); 217 llvm::GlobalValue *gv = 218 new llvm::GlobalVariable(Array->getType(), false, 219 llvm::GlobalValue::AppendingLinkage, Array, 220 "llvm.global.annotations", &TheModule); 221 gv->setSection("llvm.metadata"); 222 } 223 224 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 225 GVALinkage Linkage, 226 llvm::GlobalValue *GV, 227 bool ForDefinition) { 228 // FIXME: Set up linkage and many other things. Note, this is a simple 229 // approximation of what we really want. 230 if (!ForDefinition) { 231 // Only a few attributes are set on declarations. 232 233 // The dllimport attribute is overridden by a subsequent declaration as 234 // dllexport. 235 if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 236 // dllimport attribute can be applied only to function decls, not to 237 // definitions. 238 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 239 if (!FD->getBody()) 240 GV->setLinkage(llvm::Function::DLLImportLinkage); 241 } else 242 GV->setLinkage(llvm::Function::DLLImportLinkage); 243 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 244 // "extern_weak" is overloaded in LLVM; we probably should have 245 // separate linkage types for this. 246 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 247 } 248 } else if (Linkage == GVA_Internal) { 249 GV->setLinkage(llvm::Function::InternalLinkage); 250 } else if (D->hasAttr<DLLExportAttr>()) { 251 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 252 // The dllexport attribute is ignored for undefined symbols. 253 if (FD->getBody()) 254 GV->setLinkage(llvm::Function::DLLExportLinkage); 255 } else { 256 GV->setLinkage(llvm::Function::DLLExportLinkage); 257 } 258 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 259 GV->setLinkage(llvm::Function::WeakAnyLinkage); 260 } else if (Linkage == GVA_Inline || Linkage == GVA_ExternInline) { 261 GV->setLinkage(llvm::Function::WeakAnyLinkage); 262 } 263 264 if (ForDefinition) { 265 setGlobalVisibility(GV, D); 266 267 // Only add to llvm.used when we see a definition, otherwise we 268 // might add multiple times or risk the value being replaced by a 269 // subsequent RAUW. 270 if (D->hasAttr<UsedAttr>()) 271 AddUsedGlobal(GV); 272 } 273 274 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 275 GV->setSection(SA->getName()); 276 } 277 278 void CodeGenModule::SetFunctionAttributes(const Decl *D, 279 const CGFunctionInfo &Info, 280 llvm::Function *F) { 281 AttributeListType AttributeList; 282 ConstructAttributeList(Info, D, AttributeList); 283 284 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 285 AttributeList.size())); 286 287 // Set the appropriate calling convention for the Function. 288 if (D->hasAttr<FastCallAttr>()) 289 F->setCallingConv(llvm::CallingConv::X86_FastCall); 290 291 if (D->hasAttr<StdCallAttr>()) 292 F->setCallingConv(llvm::CallingConv::X86_StdCall); 293 } 294 295 296 static CodeGenModule::GVALinkage 297 GetLinkageForFunctionOrMethodDecl(const Decl *D) { 298 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 299 if (FD->getStorageClass() == FunctionDecl::Static) 300 return CodeGenModule::GVA_Internal; 301 if (FD->isInline()) { 302 if (FD->getStorageClass() == FunctionDecl::Extern) 303 return CodeGenModule::GVA_ExternInline; 304 return CodeGenModule::GVA_Inline; 305 } 306 } else { 307 assert(isa<ObjCMethodDecl>(D)); 308 return CodeGenModule::GVA_Internal; 309 } 310 return CodeGenModule::GVA_Normal; 311 } 312 313 /// SetFunctionAttributesForDefinition - Set function attributes 314 /// specific to a function definition. 315 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 316 llvm::Function *F) { 317 SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true); 318 319 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 320 F->addFnAttr(llvm::Attribute::NoUnwind); 321 322 if (D->hasAttr<AlwaysInlineAttr>()) 323 F->addFnAttr(llvm::Attribute::AlwaysInline); 324 325 if (D->hasAttr<NoinlineAttr>()) 326 F->addFnAttr(llvm::Attribute::NoInline); 327 } 328 329 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 330 llvm::Function *F) { 331 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 332 333 SetFunctionAttributesForDefinition(MD, F); 334 } 335 336 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 337 llvm::Function *F) { 338 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 339 340 SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false); 341 } 342 343 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 344 assert(!GV->isDeclaration() && 345 "Only globals with definition can force usage."); 346 LLVMUsed.push_back(GV); 347 } 348 349 void CodeGenModule::EmitLLVMUsed() { 350 // Don't create llvm.used if there is no need. 351 if (LLVMUsed.empty()) 352 return; 353 354 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 355 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 356 357 // Convert LLVMUsed to what ConstantArray needs. 358 std::vector<llvm::Constant*> UsedArray; 359 UsedArray.resize(LLVMUsed.size()); 360 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 361 UsedArray[i] = 362 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 363 } 364 365 llvm::GlobalVariable *GV = 366 new llvm::GlobalVariable(ATy, false, 367 llvm::GlobalValue::AppendingLinkage, 368 llvm::ConstantArray::get(ATy, UsedArray), 369 "llvm.used", &getModule()); 370 371 GV->setSection("llvm.metadata"); 372 } 373 374 void CodeGenModule::EmitDeferred() { 375 // Emit code for any potentially referenced deferred decls. Since a 376 // previously unused static decl may become used during the generation of code 377 // for a static function, iterate until no changes are made. 378 while (!DeferredDeclsToEmit.empty()) { 379 const ValueDecl *D = DeferredDeclsToEmit.back(); 380 DeferredDeclsToEmit.pop_back(); 381 382 // The mangled name for the decl must have been emitted in GlobalDeclMap. 383 // Look it up to see if it was defined with a stronger definition (e.g. an 384 // extern inline function with a strong function redefinition). If so, 385 // just ignore the deferred decl. 386 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 387 assert(CGRef && "Deferred decl wasn't referenced?"); 388 389 if (!CGRef->isDeclaration()) 390 continue; 391 392 // Otherwise, emit the definition and move on to the next one. 393 EmitGlobalDefinition(D); 394 } 395 } 396 397 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 398 /// annotation information for a given GlobalValue. The annotation struct is 399 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 400 /// GlobalValue being annotated. The second field is the constant string 401 /// created from the AnnotateAttr's annotation. The third field is a constant 402 /// string containing the name of the translation unit. The fourth field is 403 /// the line number in the file of the annotated value declaration. 404 /// 405 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 406 /// appears to. 407 /// 408 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 409 const AnnotateAttr *AA, 410 unsigned LineNo) { 411 llvm::Module *M = &getModule(); 412 413 // get [N x i8] constants for the annotation string, and the filename string 414 // which are the 2nd and 3rd elements of the global annotation structure. 415 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 416 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 417 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 418 true); 419 420 // Get the two global values corresponding to the ConstantArrays we just 421 // created to hold the bytes of the strings. 422 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 423 llvm::GlobalValue *annoGV = 424 new llvm::GlobalVariable(anno->getType(), false, 425 llvm::GlobalValue::InternalLinkage, anno, 426 GV->getName() + StringPrefix, M); 427 // translation unit name string, emitted into the llvm.metadata section. 428 llvm::GlobalValue *unitGV = 429 new llvm::GlobalVariable(unit->getType(), false, 430 llvm::GlobalValue::InternalLinkage, unit, 431 StringPrefix, M); 432 433 // Create the ConstantStruct that is the global annotion. 434 llvm::Constant *Fields[4] = { 435 llvm::ConstantExpr::getBitCast(GV, SBP), 436 llvm::ConstantExpr::getBitCast(annoGV, SBP), 437 llvm::ConstantExpr::getBitCast(unitGV, SBP), 438 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 439 }; 440 return llvm::ConstantStruct::get(Fields, 4, false); 441 } 442 443 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 444 // Never defer when EmitAllDecls is specified or the decl has 445 // attribute used. 446 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 447 return false; 448 449 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 450 // Constructors and destructors should never be deferred. 451 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 452 return false; 453 454 // FIXME: What about inline, and/or extern inline? 455 if (FD->getStorageClass() != FunctionDecl::Static) 456 return false; 457 } else { 458 const VarDecl *VD = cast<VarDecl>(Global); 459 assert(VD->isFileVarDecl() && "Invalid decl"); 460 461 if (VD->getStorageClass() != VarDecl::Static) 462 return false; 463 } 464 465 return true; 466 } 467 468 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 469 // If this is an alias definition (which otherwise looks like a declaration) 470 // emit it now. 471 if (Global->hasAttr<AliasAttr>()) 472 return EmitAliasDefinition(Global); 473 474 // Ignore declarations, they will be emitted on their first use. 475 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 476 // Forward declarations are emitted lazily on first use. 477 if (!FD->isThisDeclarationADefinition()) 478 return; 479 } else { 480 const VarDecl *VD = cast<VarDecl>(Global); 481 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 482 483 // Forward declarations are emitted lazily on first use. 484 if (!VD->getInit() && VD->hasExternalStorage()) 485 return; 486 } 487 488 // Defer code generation when possible if this is a static definition, inline 489 // function etc. These we only want to emit if they are used. 490 if (MayDeferGeneration(Global)) { 491 // If the value has already been used, add it directly to the 492 // DeferredDeclsToEmit list. 493 const char *MangledName = getMangledName(Global); 494 if (GlobalDeclMap.count(MangledName)) 495 DeferredDeclsToEmit.push_back(Global); 496 else { 497 // Otherwise, remember that we saw a deferred decl with this name. The 498 // first use of the mangled name will cause it to move into 499 // DeferredDeclsToEmit. 500 DeferredDecls[MangledName] = Global; 501 } 502 return; 503 } 504 505 // Otherwise emit the definition. 506 EmitGlobalDefinition(Global); 507 } 508 509 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 510 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 511 EmitGlobalFunctionDefinition(FD); 512 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 513 EmitGlobalVarDefinition(VD); 514 } else { 515 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 516 } 517 } 518 519 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 520 /// module, create and return an llvm Function with the specified type. If there 521 /// is something in the module with the specified name, return it potentially 522 /// bitcasted to the right type. 523 /// 524 /// If D is non-null, it specifies a decl that correspond to this. This is used 525 /// to set the attributes on the function when it is first created. 526 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 527 const llvm::Type *Ty, 528 const FunctionDecl *D) { 529 // Lookup the entry, lazily creating it if necessary. 530 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 531 if (Entry) { 532 if (Entry->getType()->getElementType() == Ty) 533 return Entry; 534 535 // Make sure the result is of the correct type. 536 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 537 return llvm::ConstantExpr::getBitCast(Entry, PTy); 538 } 539 540 // This is the first use or definition of a mangled name. If there is a 541 // deferred decl with this name, remember that we need to emit it at the end 542 // of the file. 543 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 544 DeferredDecls.find(MangledName); 545 if (DDI != DeferredDecls.end()) { 546 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 547 // list, and remove it from DeferredDecls (since we don't need it anymore). 548 DeferredDeclsToEmit.push_back(DDI->second); 549 DeferredDecls.erase(DDI); 550 } 551 552 // This function doesn't have a complete type (for example, the return 553 // type is an incomplete struct). Use a fake type instead, and make 554 // sure not to try to set attributes. 555 bool ShouldSetAttributes = true; 556 if (!isa<llvm::FunctionType>(Ty)) { 557 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 558 std::vector<const llvm::Type*>(), false); 559 ShouldSetAttributes = false; 560 } 561 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 562 llvm::Function::ExternalLinkage, 563 "", &getModule()); 564 F->setName(MangledName); 565 if (D && ShouldSetAttributes) 566 SetFunctionAttributes(D, F); 567 Entry = F; 568 return F; 569 } 570 571 /// GetAddrOfFunction - Return the address of the given function. If Ty is 572 /// non-null, then this function will use the specified type if it has to 573 /// create it (this occurs when we see a definition of the function). 574 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 575 const llvm::Type *Ty) { 576 // If there was no specific requested type, just convert it now. 577 if (!Ty) 578 Ty = getTypes().ConvertType(D->getType()); 579 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 580 } 581 582 /// CreateRuntimeFunction - Create a new runtime function with the specified 583 /// type and name. 584 llvm::Constant * 585 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 586 const char *Name) { 587 // Convert Name to be a uniqued string from the IdentifierInfo table. 588 Name = getContext().Idents.get(Name).getName(); 589 return GetOrCreateLLVMFunction(Name, FTy, 0); 590 } 591 592 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 593 /// create and return an llvm GlobalVariable with the specified type. If there 594 /// is something in the module with the specified name, return it potentially 595 /// bitcasted to the right type. 596 /// 597 /// If D is non-null, it specifies a decl that correspond to this. This is used 598 /// to set the attributes on the global when it is first created. 599 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 600 const llvm::PointerType*Ty, 601 const VarDecl *D) { 602 // Lookup the entry, lazily creating it if necessary. 603 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 604 if (Entry) { 605 if (Entry->getType() == Ty) 606 return Entry; 607 608 // Make sure the result is of the correct type. 609 return llvm::ConstantExpr::getBitCast(Entry, Ty); 610 } 611 612 // We don't support __thread yet. 613 if (D && D->isThreadSpecified()) 614 ErrorUnsupported(D, "thread local ('__thread') variable", true); 615 616 // This is the first use or definition of a mangled name. If there is a 617 // deferred decl with this name, remember that we need to emit it at the end 618 // of the file. 619 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 620 DeferredDecls.find(MangledName); 621 if (DDI != DeferredDecls.end()) { 622 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 623 // list, and remove it from DeferredDecls (since we don't need it anymore). 624 DeferredDeclsToEmit.push_back(DDI->second); 625 DeferredDecls.erase(DDI); 626 } 627 628 llvm::GlobalVariable *GV = 629 new llvm::GlobalVariable(Ty->getElementType(), false, 630 llvm::GlobalValue::ExternalLinkage, 631 0, "", &getModule(), 632 0, Ty->getAddressSpace()); 633 GV->setName(MangledName); 634 635 // Handle things which are present even on external declarations. 636 if (D) { 637 // FIXME: This code is overly simple and should be merged with 638 // other global handling. 639 GV->setConstant(D->getType().isConstant(Context)); 640 641 // FIXME: Merge with other attribute handling code. 642 if (D->getStorageClass() == VarDecl::PrivateExtern) 643 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 644 645 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 646 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 647 } 648 649 return Entry = GV; 650 } 651 652 653 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 654 /// given global variable. If Ty is non-null and if the global doesn't exist, 655 /// then it will be greated with the specified type instead of whatever the 656 /// normal requested type would be. 657 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 658 const llvm::Type *Ty) { 659 assert(D->hasGlobalStorage() && "Not a global variable"); 660 QualType ASTTy = D->getType(); 661 if (Ty == 0) 662 Ty = getTypes().ConvertTypeForMem(ASTTy); 663 664 const llvm::PointerType *PTy = 665 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 666 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 667 } 668 669 /// CreateRuntimeVariable - Create a new runtime global variable with the 670 /// specified type and name. 671 llvm::Constant * 672 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 673 const char *Name) { 674 // Convert Name to be a uniqued string from the IdentifierInfo table. 675 Name = getContext().Idents.get(Name).getName(); 676 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 677 } 678 679 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 680 llvm::Constant *Init = 0; 681 QualType ASTTy = D->getType(); 682 683 if (D->getInit() == 0) { 684 // This is a tentative definition; tentative definitions are 685 // implicitly initialized with { 0 } 686 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 687 if (ASTTy->isIncompleteArrayType()) { 688 // An incomplete array is normally [ TYPE x 0 ], but we need 689 // to fix it to [ TYPE x 1 ]. 690 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 691 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 692 } 693 Init = llvm::Constant::getNullValue(InitTy); 694 } else { 695 Init = EmitConstantExpr(D->getInit(), D->getType()); 696 if (!Init) { 697 ErrorUnsupported(D, "static initializer"); 698 QualType T = D->getInit()->getType(); 699 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 700 } 701 } 702 703 const llvm::Type* InitType = Init->getType(); 704 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 705 706 // Strip off a bitcast if we got one back. 707 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 708 assert(CE->getOpcode() == llvm::Instruction::BitCast); 709 Entry = CE->getOperand(0); 710 } 711 712 // Entry is now either a Function or GlobalVariable. 713 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 714 715 // If we already have this global and it has an initializer, then 716 // we are in the rare situation where we emitted the defining 717 // declaration of the global and are now being asked to emit a 718 // definition which would be common. This occurs, for example, in 719 // the following situation because statics can be emitted out of 720 // order: 721 // 722 // static int x; 723 // static int *y = &x; 724 // static int x = 10; 725 // int **z = &y; 726 // 727 // Bail here so we don't blow away the definition. Note that if we 728 // can't distinguish here if we emitted a definition with a null 729 // initializer, but this case is safe. 730 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 731 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 732 return; 733 } 734 735 // We have a definition after a declaration with the wrong type. 736 // We must make a new GlobalVariable* and update everything that used OldGV 737 // (a declaration or tentative definition) with the new GlobalVariable* 738 // (which will be a definition). 739 // 740 // This happens if there is a prototype for a global (e.g. 741 // "extern int x[];") and then a definition of a different type (e.g. 742 // "int x[10];"). This also happens when an initializer has a different type 743 // from the type of the global (this happens with unions). 744 if (GV == 0 || 745 GV->getType()->getElementType() != InitType || 746 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 747 748 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 749 GlobalDeclMap.erase(getMangledName(D)); 750 751 // Make a new global with the correct type, this is now guaranteed to work. 752 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 753 GV->takeName(cast<llvm::GlobalValue>(Entry)); 754 755 // Replace all uses of the old global with the new global 756 llvm::Constant *NewPtrForOldDecl = 757 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 758 Entry->replaceAllUsesWith(NewPtrForOldDecl); 759 760 // Erase the old global, since it is no longer used. 761 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 762 } 763 764 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 765 SourceManager &SM = Context.getSourceManager(); 766 AddAnnotation(EmitAnnotateAttr(GV, AA, 767 SM.getInstantiationLineNumber(D->getLocation()))); 768 } 769 770 GV->setInitializer(Init); 771 GV->setConstant(D->getType().isConstant(Context)); 772 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 773 774 // Set the llvm linkage type as appropriate. 775 if (D->getStorageClass() == VarDecl::Static) 776 GV->setLinkage(llvm::Function::InternalLinkage); 777 else if (D->hasAttr<DLLImportAttr>()) 778 GV->setLinkage(llvm::Function::DLLImportLinkage); 779 else if (D->hasAttr<DLLExportAttr>()) 780 GV->setLinkage(llvm::Function::DLLExportLinkage); 781 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 782 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 783 else if (!CompileOpts.NoCommon && 784 (!D->hasExternalStorage() && !D->getInit())) 785 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 786 else 787 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 788 789 setGlobalVisibility(GV, D); 790 791 if (D->hasAttr<UsedAttr>()) 792 AddUsedGlobal(GV); 793 794 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 795 GV->setSection(SA->getName()); 796 797 // Emit global variable debug information. 798 if (CGDebugInfo *DI = getDebugInfo()) { 799 DI->setLocation(D->getLocation()); 800 DI->EmitGlobalVariable(GV, D); 801 } 802 } 803 804 805 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 806 const llvm::FunctionType *Ty; 807 808 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 809 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 810 811 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 812 } else { 813 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 814 815 // As a special case, make sure that definitions of K&R function 816 // "type foo()" aren't declared as varargs (which forces the backend 817 // to do unnecessary work). 818 if (D->getType()->isFunctionNoProtoType()) { 819 assert(Ty->isVarArg() && "Didn't lower type as expected"); 820 // Due to stret, the lowered function could have arguments. 821 // Just create the same type as was lowered by ConvertType 822 // but strip off the varargs bit. 823 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 824 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 825 } 826 } 827 828 // Get or create the prototype for teh function. 829 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 830 831 // Strip off a bitcast if we got one back. 832 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 833 assert(CE->getOpcode() == llvm::Instruction::BitCast); 834 Entry = CE->getOperand(0); 835 } 836 837 838 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 839 // If the types mismatch then we have to rewrite the definition. 840 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 841 "Shouldn't replace non-declaration"); 842 843 // F is the Function* for the one with the wrong type, we must make a new 844 // Function* and update everything that used F (a declaration) with the new 845 // Function* (which will be a definition). 846 // 847 // This happens if there is a prototype for a function 848 // (e.g. "int f()") and then a definition of a different type 849 // (e.g. "int f(int x)"). Start by making a new function of the 850 // correct type, RAUW, then steal the name. 851 GlobalDeclMap.erase(getMangledName(D)); 852 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 853 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 854 855 // Replace uses of F with the Function we will endow with a body. 856 llvm::Constant *NewPtrForOldDecl = 857 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 858 Entry->replaceAllUsesWith(NewPtrForOldDecl); 859 860 // Ok, delete the old function now, which is dead. 861 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 862 863 Entry = NewFn; 864 } 865 866 llvm::Function *Fn = cast<llvm::Function>(Entry); 867 868 CodeGenFunction(*this).GenerateCode(D, Fn); 869 870 SetFunctionAttributesForDefinition(D, Fn); 871 872 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 873 AddGlobalCtor(Fn, CA->getPriority()); 874 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 875 AddGlobalDtor(Fn, DA->getPriority()); 876 } 877 878 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 879 const AliasAttr *AA = D->getAttr<AliasAttr>(); 880 assert(AA && "Not an alias?"); 881 882 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 883 884 // Unique the name through the identifier table. 885 const char *AliaseeName = AA->getAliasee().c_str(); 886 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 887 888 // Create a reference to the named value. This ensures that it is emitted 889 // if a deferred decl. 890 llvm::Constant *Aliasee; 891 if (isa<llvm::FunctionType>(DeclTy)) 892 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 893 else 894 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 895 llvm::PointerType::getUnqual(DeclTy), 0); 896 897 // Create the new alias itself, but don't set a name yet. 898 llvm::GlobalValue *GA = 899 new llvm::GlobalAlias(Aliasee->getType(), 900 llvm::Function::ExternalLinkage, 901 "", Aliasee, &getModule()); 902 903 // See if there is already something with the alias' name in the module. 904 const char *MangledName = getMangledName(D); 905 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 906 907 if (Entry && !Entry->isDeclaration()) { 908 // If there is a definition in the module, then it wins over the alias. 909 // This is dubious, but allow it to be safe. Just ignore the alias. 910 GA->eraseFromParent(); 911 return; 912 } 913 914 if (Entry) { 915 // If there is a declaration in the module, then we had an extern followed 916 // by the alias, as in: 917 // extern int test6(); 918 // ... 919 // int test6() __attribute__((alias("test7"))); 920 // 921 // Remove it and replace uses of it with the alias. 922 923 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 924 Entry->getType())); 925 Entry->eraseFromParent(); 926 } 927 928 // Now we know that there is no conflict, set the name. 929 Entry = GA; 930 GA->setName(MangledName); 931 932 // Alias should never be internal or inline. 933 SetGlobalValueAttributes(D, GVA_Normal, GA, true); 934 } 935 936 /// getBuiltinLibFunction - Given a builtin id for a function like 937 /// "__builtin_fabsf", return a Function* for "fabsf". 938 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 939 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 940 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 941 "isn't a lib fn"); 942 943 // Get the name, skip over the __builtin_ prefix (if necessary). 944 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 945 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 946 Name += 10; 947 948 // Get the type for the builtin. 949 Builtin::Context::GetBuiltinTypeError Error; 950 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 951 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 952 953 const llvm::FunctionType *Ty = 954 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 955 956 // Unique the name through the identifier table. 957 Name = getContext().Idents.get(Name).getName(); 958 // FIXME: param attributes for sext/zext etc. 959 return GetOrCreateLLVMFunction(Name, Ty, 0); 960 } 961 962 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 963 unsigned NumTys) { 964 return llvm::Intrinsic::getDeclaration(&getModule(), 965 (llvm::Intrinsic::ID)IID, Tys, NumTys); 966 } 967 968 llvm::Function *CodeGenModule::getMemCpyFn() { 969 if (MemCpyFn) return MemCpyFn; 970 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 971 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 972 } 973 974 llvm::Function *CodeGenModule::getMemMoveFn() { 975 if (MemMoveFn) return MemMoveFn; 976 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 977 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 978 } 979 980 llvm::Function *CodeGenModule::getMemSetFn() { 981 if (MemSetFn) return MemSetFn; 982 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 983 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 984 } 985 986 static void appendFieldAndPadding(CodeGenModule &CGM, 987 std::vector<llvm::Constant*>& Fields, 988 FieldDecl *FieldD, FieldDecl *NextFieldD, 989 llvm::Constant* Field, 990 RecordDecl* RD, const llvm::StructType *STy) { 991 // Append the field. 992 Fields.push_back(Field); 993 994 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 995 996 int NextStructFieldNo; 997 if (!NextFieldD) { 998 NextStructFieldNo = STy->getNumElements(); 999 } else { 1000 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1001 } 1002 1003 // Append padding 1004 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1005 llvm::Constant *C = 1006 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1007 1008 Fields.push_back(C); 1009 } 1010 } 1011 1012 llvm::Constant *CodeGenModule:: 1013 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1014 std::string str; 1015 unsigned StringLength; 1016 1017 bool isUTF16 = false; 1018 if (Literal->containsNonAsciiOrNull()) { 1019 // Convert from UTF-8 to UTF-16. 1020 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1021 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1022 UTF16 *ToPtr = &ToBuf[0]; 1023 1024 ConversionResult Result; 1025 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1026 &ToPtr, ToPtr+Literal->getByteLength(), 1027 strictConversion); 1028 if (Result == conversionOK) { 1029 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1030 // without doing more surgery to this routine. Since we aren't explicitly 1031 // checking for endianness here, it's also a bug (when generating code for 1032 // a target that doesn't match the host endianness). Modeling this as an 1033 // i16 array is likely the cleanest solution. 1034 StringLength = ToPtr-&ToBuf[0]; 1035 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1036 isUTF16 = true; 1037 } else if (Result == sourceIllegal) { 1038 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1039 str.assign(Literal->getStrData(), Literal->getByteLength()); 1040 StringLength = str.length(); 1041 } else 1042 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1043 1044 } else { 1045 str.assign(Literal->getStrData(), Literal->getByteLength()); 1046 StringLength = str.length(); 1047 } 1048 llvm::StringMapEntry<llvm::Constant *> &Entry = 1049 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1050 1051 if (llvm::Constant *C = Entry.getValue()) 1052 return C; 1053 1054 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1055 llvm::Constant *Zeros[] = { Zero, Zero }; 1056 1057 if (!CFConstantStringClassRef) { 1058 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1059 Ty = llvm::ArrayType::get(Ty, 0); 1060 1061 // FIXME: This is fairly broken if 1062 // __CFConstantStringClassReference is already defined, in that it 1063 // will get renamed and the user will most likely see an opaque 1064 // error message. This is a general issue with relying on 1065 // particular names. 1066 llvm::GlobalVariable *GV = 1067 new llvm::GlobalVariable(Ty, false, 1068 llvm::GlobalVariable::ExternalLinkage, 0, 1069 "__CFConstantStringClassReference", 1070 &getModule()); 1071 1072 // Decay array -> ptr 1073 CFConstantStringClassRef = 1074 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1075 } 1076 1077 QualType CFTy = getContext().getCFConstantStringType(); 1078 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1079 1080 const llvm::StructType *STy = 1081 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1082 1083 std::vector<llvm::Constant*> Fields; 1084 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1085 1086 // Class pointer. 1087 FieldDecl *CurField = *Field++; 1088 FieldDecl *NextField = *Field++; 1089 appendFieldAndPadding(*this, Fields, CurField, NextField, 1090 CFConstantStringClassRef, CFRD, STy); 1091 1092 // Flags. 1093 CurField = NextField; 1094 NextField = *Field++; 1095 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1096 appendFieldAndPadding(*this, Fields, CurField, NextField, 1097 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1098 : llvm::ConstantInt::get(Ty, 0x07C8), 1099 CFRD, STy); 1100 1101 // String pointer. 1102 CurField = NextField; 1103 NextField = *Field++; 1104 llvm::Constant *C = llvm::ConstantArray::get(str); 1105 1106 const char *Sect, *Prefix; 1107 bool isConstant; 1108 if (isUTF16) { 1109 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1110 Sect = getContext().Target.getUnicodeStringSection(); 1111 // FIXME: Why does GCC not set constant here? 1112 isConstant = false; 1113 } else { 1114 Prefix = getContext().Target.getStringSymbolPrefix(true); 1115 Sect = getContext().Target.getCFStringDataSection(); 1116 // FIXME: -fwritable-strings should probably affect this, but we 1117 // are following gcc here. 1118 isConstant = true; 1119 } 1120 llvm::GlobalVariable *GV = 1121 new llvm::GlobalVariable(C->getType(), isConstant, 1122 llvm::GlobalValue::InternalLinkage, 1123 C, Prefix, &getModule()); 1124 if (Sect) 1125 GV->setSection(Sect); 1126 if (isUTF16) { 1127 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1128 GV->setAlignment(Align); 1129 } 1130 appendFieldAndPadding(*this, Fields, CurField, NextField, 1131 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1132 CFRD, STy); 1133 1134 // String length. 1135 CurField = NextField; 1136 NextField = 0; 1137 Ty = getTypes().ConvertType(getContext().LongTy); 1138 appendFieldAndPadding(*this, Fields, CurField, NextField, 1139 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1140 1141 // The struct. 1142 C = llvm::ConstantStruct::get(STy, Fields); 1143 GV = new llvm::GlobalVariable(C->getType(), true, 1144 llvm::GlobalVariable::InternalLinkage, C, 1145 getContext().Target.getCFStringSymbolPrefix(), 1146 &getModule()); 1147 if (const char *Sect = getContext().Target.getCFStringSection()) 1148 GV->setSection(Sect); 1149 Entry.setValue(GV); 1150 1151 return GV; 1152 } 1153 1154 /// GetStringForStringLiteral - Return the appropriate bytes for a 1155 /// string literal, properly padded to match the literal type. 1156 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1157 const char *StrData = E->getStrData(); 1158 unsigned Len = E->getByteLength(); 1159 1160 const ConstantArrayType *CAT = 1161 getContext().getAsConstantArrayType(E->getType()); 1162 assert(CAT && "String isn't pointer or array!"); 1163 1164 // Resize the string to the right size. 1165 std::string Str(StrData, StrData+Len); 1166 uint64_t RealLen = CAT->getSize().getZExtValue(); 1167 1168 if (E->isWide()) 1169 RealLen *= getContext().Target.getWCharWidth()/8; 1170 1171 Str.resize(RealLen, '\0'); 1172 1173 return Str; 1174 } 1175 1176 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1177 /// constant array for the given string literal. 1178 llvm::Constant * 1179 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1180 // FIXME: This can be more efficient. 1181 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1182 } 1183 1184 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1185 /// array for the given ObjCEncodeExpr node. 1186 llvm::Constant * 1187 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1188 std::string Str; 1189 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1190 1191 return GetAddrOfConstantCString(Str); 1192 } 1193 1194 1195 /// GenerateWritableString -- Creates storage for a string literal. 1196 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1197 bool constant, 1198 CodeGenModule &CGM, 1199 const char *GlobalName) { 1200 // Create Constant for this string literal. Don't add a '\0'. 1201 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1202 1203 // Create a global variable for this string 1204 return new llvm::GlobalVariable(C->getType(), constant, 1205 llvm::GlobalValue::InternalLinkage, 1206 C, GlobalName, &CGM.getModule()); 1207 } 1208 1209 /// GetAddrOfConstantString - Returns a pointer to a character array 1210 /// containing the literal. This contents are exactly that of the 1211 /// given string, i.e. it will not be null terminated automatically; 1212 /// see GetAddrOfConstantCString. Note that whether the result is 1213 /// actually a pointer to an LLVM constant depends on 1214 /// Feature.WriteableStrings. 1215 /// 1216 /// The result has pointer to array type. 1217 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1218 const char *GlobalName) { 1219 bool IsConstant = !Features.WritableStrings; 1220 1221 // Get the default prefix if a name wasn't specified. 1222 if (!GlobalName) 1223 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1224 1225 // Don't share any string literals if strings aren't constant. 1226 if (!IsConstant) 1227 return GenerateStringLiteral(str, false, *this, GlobalName); 1228 1229 llvm::StringMapEntry<llvm::Constant *> &Entry = 1230 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1231 1232 if (Entry.getValue()) 1233 return Entry.getValue(); 1234 1235 // Create a global variable for this. 1236 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1237 Entry.setValue(C); 1238 return C; 1239 } 1240 1241 /// GetAddrOfConstantCString - Returns a pointer to a character 1242 /// array containing the literal and a terminating '\-' 1243 /// character. The result has pointer to array type. 1244 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1245 const char *GlobalName){ 1246 return GetAddrOfConstantString(str + '\0', GlobalName); 1247 } 1248 1249 /// EmitObjCPropertyImplementations - Emit information for synthesized 1250 /// properties for an implementation. 1251 void CodeGenModule::EmitObjCPropertyImplementations(const 1252 ObjCImplementationDecl *D) { 1253 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1254 e = D->propimpl_end(); i != e; ++i) { 1255 ObjCPropertyImplDecl *PID = *i; 1256 1257 // Dynamic is just for type-checking. 1258 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1259 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1260 1261 // Determine which methods need to be implemented, some may have 1262 // been overridden. Note that ::isSynthesized is not the method 1263 // we want, that just indicates if the decl came from a 1264 // property. What we want to know is if the method is defined in 1265 // this implementation. 1266 if (!D->getInstanceMethod(PD->getGetterName())) 1267 CodeGenFunction(*this).GenerateObjCGetter( 1268 const_cast<ObjCImplementationDecl *>(D), PID); 1269 if (!PD->isReadOnly() && 1270 !D->getInstanceMethod(PD->getSetterName())) 1271 CodeGenFunction(*this).GenerateObjCSetter( 1272 const_cast<ObjCImplementationDecl *>(D), PID); 1273 } 1274 } 1275 } 1276 1277 /// EmitNamespace - Emit all declarations in a namespace. 1278 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1279 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1280 E = ND->decls_end(getContext()); 1281 I != E; ++I) 1282 EmitTopLevelDecl(*I); 1283 } 1284 1285 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1286 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1287 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1288 ErrorUnsupported(LSD, "linkage spec"); 1289 return; 1290 } 1291 1292 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1293 E = LSD->decls_end(getContext()); 1294 I != E; ++I) 1295 EmitTopLevelDecl(*I); 1296 } 1297 1298 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1299 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1300 // If an error has occurred, stop code generation, but continue 1301 // parsing and semantic analysis (to ensure all warnings and errors 1302 // are emitted). 1303 if (Diags.hasErrorOccurred()) 1304 return; 1305 1306 switch (D->getKind()) { 1307 case Decl::CXXMethod: 1308 case Decl::Function: 1309 case Decl::Var: 1310 EmitGlobal(cast<ValueDecl>(D)); 1311 break; 1312 1313 case Decl::Namespace: 1314 EmitNamespace(cast<NamespaceDecl>(D)); 1315 break; 1316 1317 // Objective-C Decls 1318 1319 // Forward declarations, no (immediate) code generation. 1320 case Decl::ObjCClass: 1321 case Decl::ObjCForwardProtocol: 1322 case Decl::ObjCCategory: 1323 break; 1324 case Decl::ObjCInterface: 1325 // If we already laid out this interface due to an @class, and if we 1326 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1327 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1328 break; 1329 1330 case Decl::ObjCProtocol: 1331 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1332 break; 1333 1334 case Decl::ObjCCategoryImpl: 1335 // Categories have properties but don't support synthesize so we 1336 // can ignore them here. 1337 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1338 break; 1339 1340 case Decl::ObjCImplementation: { 1341 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1342 EmitObjCPropertyImplementations(OMD); 1343 Runtime->GenerateClass(OMD); 1344 break; 1345 } 1346 case Decl::ObjCMethod: { 1347 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1348 // If this is not a prototype, emit the body. 1349 if (OMD->getBody()) 1350 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1351 break; 1352 } 1353 case Decl::ObjCCompatibleAlias: 1354 // compatibility-alias is a directive and has no code gen. 1355 break; 1356 1357 case Decl::LinkageSpec: 1358 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1359 break; 1360 1361 case Decl::FileScopeAsm: { 1362 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1363 std::string AsmString(AD->getAsmString()->getStrData(), 1364 AD->getAsmString()->getByteLength()); 1365 1366 const std::string &S = getModule().getModuleInlineAsm(); 1367 if (S.empty()) 1368 getModule().setModuleInlineAsm(AsmString); 1369 else 1370 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1371 break; 1372 } 1373 1374 default: 1375 // Make sure we handled everything we should, every other kind is 1376 // a non-top-level decl. FIXME: Would be nice to have an 1377 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1378 // that easily. 1379 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1380 } 1381 } 1382