1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 SizeSizeInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, 117 C.getTargetInfo().getMaxPointerWidth()); 118 Int8PtrTy = Int8Ty->getPointerTo(0); 119 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 120 AllocaInt8PtrTy = Int8Ty->getPointerTo( 121 M.getDataLayout().getAllocaAddrSpace()); 122 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 123 124 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 125 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 211 break; 212 } 213 } 214 215 void CodeGenModule::createCUDARuntime() { 216 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 217 } 218 219 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 220 Replacements[Name] = C; 221 } 222 223 void CodeGenModule::applyReplacements() { 224 for (auto &I : Replacements) { 225 StringRef MangledName = I.first(); 226 llvm::Constant *Replacement = I.second; 227 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 228 if (!Entry) 229 continue; 230 auto *OldF = cast<llvm::Function>(Entry); 231 auto *NewF = dyn_cast<llvm::Function>(Replacement); 232 if (!NewF) { 233 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 234 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 235 } else { 236 auto *CE = cast<llvm::ConstantExpr>(Replacement); 237 assert(CE->getOpcode() == llvm::Instruction::BitCast || 238 CE->getOpcode() == llvm::Instruction::GetElementPtr); 239 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 240 } 241 } 242 243 // Replace old with new, but keep the old order. 244 OldF->replaceAllUsesWith(Replacement); 245 if (NewF) { 246 NewF->removeFromParent(); 247 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 248 NewF); 249 } 250 OldF->eraseFromParent(); 251 } 252 } 253 254 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 255 GlobalValReplacements.push_back(std::make_pair(GV, C)); 256 } 257 258 void CodeGenModule::applyGlobalValReplacements() { 259 for (auto &I : GlobalValReplacements) { 260 llvm::GlobalValue *GV = I.first; 261 llvm::Constant *C = I.second; 262 263 GV->replaceAllUsesWith(C); 264 GV->eraseFromParent(); 265 } 266 } 267 268 // This is only used in aliases that we created and we know they have a 269 // linear structure. 270 static const llvm::GlobalObject *getAliasedGlobal( 271 const llvm::GlobalIndirectSymbol &GIS) { 272 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 273 const llvm::Constant *C = &GIS; 274 for (;;) { 275 C = C->stripPointerCasts(); 276 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 277 return GO; 278 // stripPointerCasts will not walk over weak aliases. 279 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 280 if (!GIS2) 281 return nullptr; 282 if (!Visited.insert(GIS2).second) 283 return nullptr; 284 C = GIS2->getIndirectSymbol(); 285 } 286 } 287 288 void CodeGenModule::checkAliases() { 289 // Check if the constructed aliases are well formed. It is really unfortunate 290 // that we have to do this in CodeGen, but we only construct mangled names 291 // and aliases during codegen. 292 bool Error = false; 293 DiagnosticsEngine &Diags = getDiags(); 294 for (const GlobalDecl &GD : Aliases) { 295 const auto *D = cast<ValueDecl>(GD.getDecl()); 296 SourceLocation Location; 297 bool IsIFunc = D->hasAttr<IFuncAttr>(); 298 if (const Attr *A = D->getDefiningAttr()) 299 Location = A->getLocation(); 300 else 301 llvm_unreachable("Not an alias or ifunc?"); 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 305 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 306 if (!GV) { 307 Error = true; 308 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 309 } else if (GV->isDeclaration()) { 310 Error = true; 311 Diags.Report(Location, diag::err_alias_to_undefined) 312 << IsIFunc << IsIFunc; 313 } else if (IsIFunc) { 314 // Check resolver function type. 315 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 316 GV->getType()->getPointerElementType()); 317 assert(FTy); 318 if (!FTy->getReturnType()->isPointerTy()) 319 Diags.Report(Location, diag::err_ifunc_resolver_return); 320 if (FTy->getNumParams()) 321 Diags.Report(Location, diag::err_ifunc_resolver_params); 322 } 323 324 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 325 llvm::GlobalValue *AliaseeGV; 326 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 327 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 328 else 329 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 330 331 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 332 StringRef AliasSection = SA->getName(); 333 if (AliasSection != AliaseeGV->getSection()) 334 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 335 << AliasSection << IsIFunc << IsIFunc; 336 } 337 338 // We have to handle alias to weak aliases in here. LLVM itself disallows 339 // this since the object semantics would not match the IL one. For 340 // compatibility with gcc we implement it by just pointing the alias 341 // to its aliasee's aliasee. We also warn, since the user is probably 342 // expecting the link to be weak. 343 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 344 if (GA->isInterposable()) { 345 Diags.Report(Location, diag::warn_alias_to_weak_alias) 346 << GV->getName() << GA->getName() << IsIFunc; 347 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 348 GA->getIndirectSymbol(), Alias->getType()); 349 Alias->setIndirectSymbol(Aliasee); 350 } 351 } 352 } 353 if (!Error) 354 return; 355 356 for (const GlobalDecl &GD : Aliases) { 357 StringRef MangledName = getMangledName(GD); 358 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 359 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 360 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 361 Alias->eraseFromParent(); 362 } 363 } 364 365 void CodeGenModule::clear() { 366 DeferredDeclsToEmit.clear(); 367 if (OpenMPRuntime) 368 OpenMPRuntime->clear(); 369 } 370 371 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 372 StringRef MainFile) { 373 if (!hasDiagnostics()) 374 return; 375 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 376 if (MainFile.empty()) 377 MainFile = "<stdin>"; 378 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 379 } else { 380 if (Mismatched > 0) 381 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 382 383 if (Missing > 0) 384 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 385 } 386 } 387 388 void CodeGenModule::Release() { 389 EmitDeferred(); 390 EmitVTablesOpportunistically(); 391 applyGlobalValReplacements(); 392 applyReplacements(); 393 checkAliases(); 394 EmitCXXGlobalInitFunc(); 395 EmitCXXGlobalDtorFunc(); 396 EmitCXXThreadLocalInitFunc(); 397 if (ObjCRuntime) 398 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 399 AddGlobalCtor(ObjCInitFunction); 400 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 401 CUDARuntime) { 402 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 403 AddGlobalCtor(CudaCtorFunction); 404 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 405 AddGlobalDtor(CudaDtorFunction); 406 } 407 if (OpenMPRuntime) 408 if (llvm::Function *OpenMPRegistrationFunction = 409 OpenMPRuntime->emitRegistrationFunction()) { 410 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 411 OpenMPRegistrationFunction : nullptr; 412 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 413 } 414 if (PGOReader) { 415 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 416 if (PGOStats.hasDiagnostics()) 417 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 418 } 419 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 420 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 421 EmitGlobalAnnotations(); 422 EmitStaticExternCAliases(); 423 EmitDeferredUnusedCoverageMappings(); 424 if (CoverageMapping) 425 CoverageMapping->emit(); 426 if (CodeGenOpts.SanitizeCfiCrossDso) { 427 CodeGenFunction(*this).EmitCfiCheckFail(); 428 CodeGenFunction(*this).EmitCfiCheckStub(); 429 } 430 emitAtAvailableLinkGuard(); 431 emitLLVMUsed(); 432 if (SanStats) 433 SanStats->finish(); 434 435 if (CodeGenOpts.Autolink && 436 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 437 EmitModuleLinkOptions(); 438 } 439 440 // Record mregparm value now so it is visible through rest of codegen. 441 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 442 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 443 CodeGenOpts.NumRegisterParameters); 444 445 if (CodeGenOpts.DwarfVersion) { 446 // We actually want the latest version when there are conflicts. 447 // We can change from Warning to Latest if such mode is supported. 448 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 449 CodeGenOpts.DwarfVersion); 450 } 451 if (CodeGenOpts.EmitCodeView) { 452 // Indicate that we want CodeView in the metadata. 453 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 454 } 455 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 456 // We don't support LTO with 2 with different StrictVTablePointers 457 // FIXME: we could support it by stripping all the information introduced 458 // by StrictVTablePointers. 459 460 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 461 462 llvm::Metadata *Ops[2] = { 463 llvm::MDString::get(VMContext, "StrictVTablePointers"), 464 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 465 llvm::Type::getInt32Ty(VMContext), 1))}; 466 467 getModule().addModuleFlag(llvm::Module::Require, 468 "StrictVTablePointersRequirement", 469 llvm::MDNode::get(VMContext, Ops)); 470 } 471 if (DebugInfo) 472 // We support a single version in the linked module. The LLVM 473 // parser will drop debug info with a different version number 474 // (and warn about it, too). 475 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 476 llvm::DEBUG_METADATA_VERSION); 477 478 // We need to record the widths of enums and wchar_t, so that we can generate 479 // the correct build attributes in the ARM backend. wchar_size is also used by 480 // TargetLibraryInfo. 481 uint64_t WCharWidth = 482 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 483 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 484 485 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 486 if ( Arch == llvm::Triple::arm 487 || Arch == llvm::Triple::armeb 488 || Arch == llvm::Triple::thumb 489 || Arch == llvm::Triple::thumbeb) { 490 // The minimum width of an enum in bytes 491 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 492 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 493 } 494 495 if (CodeGenOpts.SanitizeCfiCrossDso) { 496 // Indicate that we want cross-DSO control flow integrity checks. 497 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 498 } 499 500 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 501 // Indicate whether __nvvm_reflect should be configured to flush denormal 502 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 503 // property.) 504 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 505 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 506 } 507 508 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 509 if (LangOpts.OpenCL) { 510 EmitOpenCLMetadata(); 511 // Emit SPIR version. 512 if (getTriple().getArch() == llvm::Triple::spir || 513 getTriple().getArch() == llvm::Triple::spir64) { 514 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 515 // opencl.spir.version named metadata. 516 llvm::Metadata *SPIRVerElts[] = { 517 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 518 Int32Ty, LangOpts.OpenCLVersion / 100)), 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 521 llvm::NamedMDNode *SPIRVerMD = 522 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 523 llvm::LLVMContext &Ctx = TheModule.getContext(); 524 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 525 } 526 } 527 528 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 529 assert(PLevel < 3 && "Invalid PIC Level"); 530 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 531 if (Context.getLangOpts().PIE) 532 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 533 } 534 535 SimplifyPersonality(); 536 537 if (getCodeGenOpts().EmitDeclMetadata) 538 EmitDeclMetadata(); 539 540 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 541 EmitCoverageFile(); 542 543 if (DebugInfo) 544 DebugInfo->finalize(); 545 546 EmitVersionIdentMetadata(); 547 548 EmitTargetMetadata(); 549 } 550 551 void CodeGenModule::EmitOpenCLMetadata() { 552 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 553 // opencl.ocl.version named metadata node. 554 llvm::Metadata *OCLVerElts[] = { 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 Int32Ty, LangOpts.OpenCLVersion / 100)), 557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 558 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 559 llvm::NamedMDNode *OCLVerMD = 560 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 561 llvm::LLVMContext &Ctx = TheModule.getContext(); 562 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 563 } 564 565 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 566 // Make sure that this type is translated. 567 Types.UpdateCompletedType(TD); 568 } 569 570 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 571 // Make sure that this type is translated. 572 Types.RefreshTypeCacheForClass(RD); 573 } 574 575 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 576 if (!TBAA) 577 return nullptr; 578 return TBAA->getTypeInfo(QTy); 579 } 580 581 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 582 return TBAAAccessInfo(getTBAATypeInfo(AccessType)); 583 } 584 585 TBAAAccessInfo CodeGenModule::getTBAAVTablePtrAccessInfo() { 586 if (!TBAA) 587 return TBAAAccessInfo(); 588 return TBAA->getVTablePtrAccessInfo(); 589 } 590 591 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 592 if (!TBAA) 593 return nullptr; 594 return TBAA->getTBAAStructInfo(QTy); 595 } 596 597 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 598 if (!TBAA) 599 return nullptr; 600 return TBAA->getAccessTagInfo(Info); 601 } 602 603 TBAAAccessInfo CodeGenModule::getTBAAMayAliasAccessInfo() { 604 if (!TBAA) 605 return TBAAAccessInfo(); 606 return TBAA->getMayAliasAccessInfo(); 607 } 608 609 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 610 TBAAAccessInfo TBAAInfo) { 611 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 612 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 613 } 614 615 void CodeGenModule::DecorateInstructionWithInvariantGroup( 616 llvm::Instruction *I, const CXXRecordDecl *RD) { 617 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 618 llvm::MDNode::get(getLLVMContext(), {})); 619 } 620 621 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 622 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 623 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 624 } 625 626 /// ErrorUnsupported - Print out an error that codegen doesn't support the 627 /// specified stmt yet. 628 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 629 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 630 "cannot compile this %0 yet"); 631 std::string Msg = Type; 632 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 633 << Msg << S->getSourceRange(); 634 } 635 636 /// ErrorUnsupported - Print out an error that codegen doesn't support the 637 /// specified decl yet. 638 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 639 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 640 "cannot compile this %0 yet"); 641 std::string Msg = Type; 642 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 643 } 644 645 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 646 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 647 } 648 649 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 650 const NamedDecl *D) const { 651 // Internal definitions always have default visibility. 652 if (GV->hasLocalLinkage()) { 653 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 654 return; 655 } 656 657 // Set visibility for definitions. 658 LinkageInfo LV = D->getLinkageAndVisibility(); 659 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 660 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 661 } 662 663 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 664 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 665 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 666 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 667 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 668 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 669 } 670 671 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 672 CodeGenOptions::TLSModel M) { 673 switch (M) { 674 case CodeGenOptions::GeneralDynamicTLSModel: 675 return llvm::GlobalVariable::GeneralDynamicTLSModel; 676 case CodeGenOptions::LocalDynamicTLSModel: 677 return llvm::GlobalVariable::LocalDynamicTLSModel; 678 case CodeGenOptions::InitialExecTLSModel: 679 return llvm::GlobalVariable::InitialExecTLSModel; 680 case CodeGenOptions::LocalExecTLSModel: 681 return llvm::GlobalVariable::LocalExecTLSModel; 682 } 683 llvm_unreachable("Invalid TLS model!"); 684 } 685 686 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 687 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 688 689 llvm::GlobalValue::ThreadLocalMode TLM; 690 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 691 692 // Override the TLS model if it is explicitly specified. 693 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 694 TLM = GetLLVMTLSModel(Attr->getModel()); 695 } 696 697 GV->setThreadLocalMode(TLM); 698 } 699 700 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 701 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 702 703 // Some ABIs don't have constructor variants. Make sure that base and 704 // complete constructors get mangled the same. 705 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 706 if (!getTarget().getCXXABI().hasConstructorVariants()) { 707 CXXCtorType OrigCtorType = GD.getCtorType(); 708 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 709 if (OrigCtorType == Ctor_Base) 710 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 711 } 712 } 713 714 auto FoundName = MangledDeclNames.find(CanonicalGD); 715 if (FoundName != MangledDeclNames.end()) 716 return FoundName->second; 717 718 const auto *ND = cast<NamedDecl>(GD.getDecl()); 719 SmallString<256> Buffer; 720 StringRef Str; 721 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 722 llvm::raw_svector_ostream Out(Buffer); 723 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 724 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 725 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 726 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 727 else 728 getCXXABI().getMangleContext().mangleName(ND, Out); 729 Str = Out.str(); 730 } else { 731 IdentifierInfo *II = ND->getIdentifier(); 732 assert(II && "Attempt to mangle unnamed decl."); 733 const auto *FD = dyn_cast<FunctionDecl>(ND); 734 735 if (FD && 736 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 737 llvm::raw_svector_ostream Out(Buffer); 738 Out << "__regcall3__" << II->getName(); 739 Str = Out.str(); 740 } else { 741 Str = II->getName(); 742 } 743 } 744 745 // Keep the first result in the case of a mangling collision. 746 auto Result = Manglings.insert(std::make_pair(Str, GD)); 747 return MangledDeclNames[CanonicalGD] = Result.first->first(); 748 } 749 750 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 751 const BlockDecl *BD) { 752 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 753 const Decl *D = GD.getDecl(); 754 755 SmallString<256> Buffer; 756 llvm::raw_svector_ostream Out(Buffer); 757 if (!D) 758 MangleCtx.mangleGlobalBlock(BD, 759 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 760 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 761 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 762 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 763 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 764 else 765 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 766 767 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 768 return Result.first->first(); 769 } 770 771 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 772 return getModule().getNamedValue(Name); 773 } 774 775 /// AddGlobalCtor - Add a function to the list that will be called before 776 /// main() runs. 777 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 778 llvm::Constant *AssociatedData) { 779 // FIXME: Type coercion of void()* types. 780 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 781 } 782 783 /// AddGlobalDtor - Add a function to the list that will be called 784 /// when the module is unloaded. 785 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 786 // FIXME: Type coercion of void()* types. 787 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 788 } 789 790 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 791 if (Fns.empty()) return; 792 793 // Ctor function type is void()*. 794 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 795 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 796 797 // Get the type of a ctor entry, { i32, void ()*, i8* }. 798 llvm::StructType *CtorStructTy = llvm::StructType::get( 799 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 800 801 // Construct the constructor and destructor arrays. 802 ConstantInitBuilder builder(*this); 803 auto ctors = builder.beginArray(CtorStructTy); 804 for (const auto &I : Fns) { 805 auto ctor = ctors.beginStruct(CtorStructTy); 806 ctor.addInt(Int32Ty, I.Priority); 807 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 808 if (I.AssociatedData) 809 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 810 else 811 ctor.addNullPointer(VoidPtrTy); 812 ctor.finishAndAddTo(ctors); 813 } 814 815 auto list = 816 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 817 /*constant*/ false, 818 llvm::GlobalValue::AppendingLinkage); 819 820 // The LTO linker doesn't seem to like it when we set an alignment 821 // on appending variables. Take it off as a workaround. 822 list->setAlignment(0); 823 824 Fns.clear(); 825 } 826 827 llvm::GlobalValue::LinkageTypes 828 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 829 const auto *D = cast<FunctionDecl>(GD.getDecl()); 830 831 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 832 833 if (isa<CXXDestructorDecl>(D) && 834 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 835 GD.getDtorType())) { 836 // Destructor variants in the Microsoft C++ ABI are always internal or 837 // linkonce_odr thunks emitted on an as-needed basis. 838 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 839 : llvm::GlobalValue::LinkOnceODRLinkage; 840 } 841 842 if (isa<CXXConstructorDecl>(D) && 843 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 844 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 845 // Our approach to inheriting constructors is fundamentally different from 846 // that used by the MS ABI, so keep our inheriting constructor thunks 847 // internal rather than trying to pick an unambiguous mangling for them. 848 return llvm::GlobalValue::InternalLinkage; 849 } 850 851 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 852 } 853 854 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 855 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 856 857 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 858 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 859 // Don't dllexport/import destructor thunks. 860 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 861 return; 862 } 863 } 864 865 if (FD->hasAttr<DLLImportAttr>()) 866 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 867 else if (FD->hasAttr<DLLExportAttr>()) 868 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 869 else 870 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 871 } 872 873 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 874 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 875 if (!MDS) return nullptr; 876 877 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 878 } 879 880 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 881 llvm::Function *F) { 882 setNonAliasAttributes(D, F); 883 } 884 885 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 886 const CGFunctionInfo &Info, 887 llvm::Function *F) { 888 unsigned CallingConv; 889 llvm::AttributeList PAL; 890 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 891 F->setAttributes(PAL); 892 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 893 } 894 895 /// Determines whether the language options require us to model 896 /// unwind exceptions. We treat -fexceptions as mandating this 897 /// except under the fragile ObjC ABI with only ObjC exceptions 898 /// enabled. This means, for example, that C with -fexceptions 899 /// enables this. 900 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 901 // If exceptions are completely disabled, obviously this is false. 902 if (!LangOpts.Exceptions) return false; 903 904 // If C++ exceptions are enabled, this is true. 905 if (LangOpts.CXXExceptions) return true; 906 907 // If ObjC exceptions are enabled, this depends on the ABI. 908 if (LangOpts.ObjCExceptions) { 909 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 910 } 911 912 return true; 913 } 914 915 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 916 llvm::Function *F) { 917 llvm::AttrBuilder B; 918 919 if (CodeGenOpts.UnwindTables) 920 B.addAttribute(llvm::Attribute::UWTable); 921 922 if (!hasUnwindExceptions(LangOpts)) 923 B.addAttribute(llvm::Attribute::NoUnwind); 924 925 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 926 B.addAttribute(llvm::Attribute::StackProtect); 927 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 928 B.addAttribute(llvm::Attribute::StackProtectStrong); 929 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 930 B.addAttribute(llvm::Attribute::StackProtectReq); 931 932 if (!D) { 933 // If we don't have a declaration to control inlining, the function isn't 934 // explicitly marked as alwaysinline for semantic reasons, and inlining is 935 // disabled, mark the function as noinline. 936 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 937 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 938 B.addAttribute(llvm::Attribute::NoInline); 939 940 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 941 return; 942 } 943 944 // Track whether we need to add the optnone LLVM attribute, 945 // starting with the default for this optimization level. 946 bool ShouldAddOptNone = 947 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 948 // We can't add optnone in the following cases, it won't pass the verifier. 949 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 950 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 951 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 952 953 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 954 B.addAttribute(llvm::Attribute::OptimizeNone); 955 956 // OptimizeNone implies noinline; we should not be inlining such functions. 957 B.addAttribute(llvm::Attribute::NoInline); 958 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 959 "OptimizeNone and AlwaysInline on same function!"); 960 961 // We still need to handle naked functions even though optnone subsumes 962 // much of their semantics. 963 if (D->hasAttr<NakedAttr>()) 964 B.addAttribute(llvm::Attribute::Naked); 965 966 // OptimizeNone wins over OptimizeForSize and MinSize. 967 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 968 F->removeFnAttr(llvm::Attribute::MinSize); 969 } else if (D->hasAttr<NakedAttr>()) { 970 // Naked implies noinline: we should not be inlining such functions. 971 B.addAttribute(llvm::Attribute::Naked); 972 B.addAttribute(llvm::Attribute::NoInline); 973 } else if (D->hasAttr<NoDuplicateAttr>()) { 974 B.addAttribute(llvm::Attribute::NoDuplicate); 975 } else if (D->hasAttr<NoInlineAttr>()) { 976 B.addAttribute(llvm::Attribute::NoInline); 977 } else if (D->hasAttr<AlwaysInlineAttr>() && 978 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 979 // (noinline wins over always_inline, and we can't specify both in IR) 980 B.addAttribute(llvm::Attribute::AlwaysInline); 981 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 982 // If we're not inlining, then force everything that isn't always_inline to 983 // carry an explicit noinline attribute. 984 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 985 B.addAttribute(llvm::Attribute::NoInline); 986 } else { 987 // Otherwise, propagate the inline hint attribute and potentially use its 988 // absence to mark things as noinline. 989 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 990 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 991 return Redecl->isInlineSpecified(); 992 })) { 993 B.addAttribute(llvm::Attribute::InlineHint); 994 } else if (CodeGenOpts.getInlining() == 995 CodeGenOptions::OnlyHintInlining && 996 !FD->isInlined() && 997 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 998 B.addAttribute(llvm::Attribute::NoInline); 999 } 1000 } 1001 } 1002 1003 // Add other optimization related attributes if we are optimizing this 1004 // function. 1005 if (!D->hasAttr<OptimizeNoneAttr>()) { 1006 if (D->hasAttr<ColdAttr>()) { 1007 if (!ShouldAddOptNone) 1008 B.addAttribute(llvm::Attribute::OptimizeForSize); 1009 B.addAttribute(llvm::Attribute::Cold); 1010 } 1011 1012 if (D->hasAttr<MinSizeAttr>()) 1013 B.addAttribute(llvm::Attribute::MinSize); 1014 } 1015 1016 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1017 1018 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1019 if (alignment) 1020 F->setAlignment(alignment); 1021 1022 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1023 // reserve a bit for differentiating between virtual and non-virtual member 1024 // functions. If the current target's C++ ABI requires this and this is a 1025 // member function, set its alignment accordingly. 1026 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1027 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1028 F->setAlignment(2); 1029 } 1030 1031 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1032 if (CodeGenOpts.SanitizeCfiCrossDso) 1033 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1034 CreateFunctionTypeMetadata(FD, F); 1035 } 1036 1037 void CodeGenModule::SetCommonAttributes(const Decl *D, 1038 llvm::GlobalValue *GV) { 1039 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1040 setGlobalVisibility(GV, ND); 1041 else 1042 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1043 1044 if (D && D->hasAttr<UsedAttr>()) 1045 addUsedGlobal(GV); 1046 } 1047 1048 void CodeGenModule::setAliasAttributes(const Decl *D, 1049 llvm::GlobalValue *GV) { 1050 SetCommonAttributes(D, GV); 1051 1052 // Process the dllexport attribute based on whether the original definition 1053 // (not necessarily the aliasee) was exported. 1054 if (D->hasAttr<DLLExportAttr>()) 1055 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1056 } 1057 1058 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1059 llvm::GlobalObject *GO) { 1060 SetCommonAttributes(D, GO); 1061 1062 if (D) { 1063 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1064 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1065 GV->addAttribute("bss-section", SA->getName()); 1066 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1067 GV->addAttribute("data-section", SA->getName()); 1068 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1069 GV->addAttribute("rodata-section", SA->getName()); 1070 } 1071 1072 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1073 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1074 if (!D->getAttr<SectionAttr>()) 1075 F->addFnAttr("implicit-section-name", SA->getName()); 1076 } 1077 1078 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1079 GO->setSection(SA->getName()); 1080 } 1081 1082 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1083 } 1084 1085 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1086 llvm::Function *F, 1087 const CGFunctionInfo &FI) { 1088 SetLLVMFunctionAttributes(D, FI, F); 1089 SetLLVMFunctionAttributesForDefinition(D, F); 1090 1091 F->setLinkage(llvm::Function::InternalLinkage); 1092 1093 setNonAliasAttributes(D, F); 1094 } 1095 1096 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1097 const NamedDecl *ND) { 1098 // Set linkage and visibility in case we never see a definition. 1099 LinkageInfo LV = ND->getLinkageAndVisibility(); 1100 if (!isExternallyVisible(LV.getLinkage())) { 1101 // Don't set internal linkage on declarations. 1102 } else { 1103 if (ND->hasAttr<DLLImportAttr>()) { 1104 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1105 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1106 } else if (ND->hasAttr<DLLExportAttr>()) { 1107 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1108 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1109 // "extern_weak" is overloaded in LLVM; we probably should have 1110 // separate linkage types for this. 1111 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1112 } 1113 1114 // Set visibility on a declaration only if it's explicit. 1115 if (LV.isVisibilityExplicit()) 1116 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1117 } 1118 } 1119 1120 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1121 llvm::Function *F) { 1122 // Only if we are checking indirect calls. 1123 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1124 return; 1125 1126 // Non-static class methods are handled via vtable pointer checks elsewhere. 1127 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1128 return; 1129 1130 // Additionally, if building with cross-DSO support... 1131 if (CodeGenOpts.SanitizeCfiCrossDso) { 1132 // Skip available_externally functions. They won't be codegen'ed in the 1133 // current module anyway. 1134 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1135 return; 1136 } 1137 1138 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1139 F->addTypeMetadata(0, MD); 1140 1141 // Emit a hash-based bit set entry for cross-DSO calls. 1142 if (CodeGenOpts.SanitizeCfiCrossDso) 1143 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1144 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1145 } 1146 1147 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1148 bool IsIncompleteFunction, 1149 bool IsThunk, 1150 ForDefinition_t IsForDefinition) { 1151 1152 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1153 // If this is an intrinsic function, set the function's attributes 1154 // to the intrinsic's attributes. 1155 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1156 return; 1157 } 1158 1159 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1160 1161 if (!IsIncompleteFunction) { 1162 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1163 // Setup target-specific attributes. 1164 if (!IsForDefinition) 1165 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1166 NotForDefinition); 1167 } 1168 1169 // Add the Returned attribute for "this", except for iOS 5 and earlier 1170 // where substantial code, including the libstdc++ dylib, was compiled with 1171 // GCC and does not actually return "this". 1172 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1173 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1174 assert(!F->arg_empty() && 1175 F->arg_begin()->getType() 1176 ->canLosslesslyBitCastTo(F->getReturnType()) && 1177 "unexpected this return"); 1178 F->addAttribute(1, llvm::Attribute::Returned); 1179 } 1180 1181 // Only a few attributes are set on declarations; these may later be 1182 // overridden by a definition. 1183 1184 setLinkageAndVisibilityForGV(F, FD); 1185 1186 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1187 F->addFnAttr("implicit-section-name"); 1188 } 1189 1190 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1191 F->setSection(SA->getName()); 1192 1193 if (FD->isReplaceableGlobalAllocationFunction()) { 1194 // A replaceable global allocation function does not act like a builtin by 1195 // default, only if it is invoked by a new-expression or delete-expression. 1196 F->addAttribute(llvm::AttributeList::FunctionIndex, 1197 llvm::Attribute::NoBuiltin); 1198 1199 // A sane operator new returns a non-aliasing pointer. 1200 // FIXME: Also add NonNull attribute to the return value 1201 // for the non-nothrow forms? 1202 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1203 if (getCodeGenOpts().AssumeSaneOperatorNew && 1204 (Kind == OO_New || Kind == OO_Array_New)) 1205 F->addAttribute(llvm::AttributeList::ReturnIndex, 1206 llvm::Attribute::NoAlias); 1207 } 1208 1209 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1210 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1211 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1212 if (MD->isVirtual()) 1213 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1214 1215 // Don't emit entries for function declarations in the cross-DSO mode. This 1216 // is handled with better precision by the receiving DSO. 1217 if (!CodeGenOpts.SanitizeCfiCrossDso) 1218 CreateFunctionTypeMetadata(FD, F); 1219 } 1220 1221 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1222 assert(!GV->isDeclaration() && 1223 "Only globals with definition can force usage."); 1224 LLVMUsed.emplace_back(GV); 1225 } 1226 1227 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1228 assert(!GV->isDeclaration() && 1229 "Only globals with definition can force usage."); 1230 LLVMCompilerUsed.emplace_back(GV); 1231 } 1232 1233 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1234 std::vector<llvm::WeakTrackingVH> &List) { 1235 // Don't create llvm.used if there is no need. 1236 if (List.empty()) 1237 return; 1238 1239 // Convert List to what ConstantArray needs. 1240 SmallVector<llvm::Constant*, 8> UsedArray; 1241 UsedArray.resize(List.size()); 1242 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1243 UsedArray[i] = 1244 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1245 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1246 } 1247 1248 if (UsedArray.empty()) 1249 return; 1250 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1251 1252 auto *GV = new llvm::GlobalVariable( 1253 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1254 llvm::ConstantArray::get(ATy, UsedArray), Name); 1255 1256 GV->setSection("llvm.metadata"); 1257 } 1258 1259 void CodeGenModule::emitLLVMUsed() { 1260 emitUsed(*this, "llvm.used", LLVMUsed); 1261 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1262 } 1263 1264 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1265 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1266 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1267 } 1268 1269 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1270 llvm::SmallString<32> Opt; 1271 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1272 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1273 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1274 } 1275 1276 void CodeGenModule::AddDependentLib(StringRef Lib) { 1277 llvm::SmallString<24> Opt; 1278 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1279 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1280 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1281 } 1282 1283 /// \brief Add link options implied by the given module, including modules 1284 /// it depends on, using a postorder walk. 1285 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1286 SmallVectorImpl<llvm::MDNode *> &Metadata, 1287 llvm::SmallPtrSet<Module *, 16> &Visited) { 1288 // Import this module's parent. 1289 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1290 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1291 } 1292 1293 // Import this module's dependencies. 1294 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1295 if (Visited.insert(Mod->Imports[I - 1]).second) 1296 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1297 } 1298 1299 // Add linker options to link against the libraries/frameworks 1300 // described by this module. 1301 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1302 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1303 // Link against a framework. Frameworks are currently Darwin only, so we 1304 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1305 if (Mod->LinkLibraries[I-1].IsFramework) { 1306 llvm::Metadata *Args[2] = { 1307 llvm::MDString::get(Context, "-framework"), 1308 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1309 1310 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1311 continue; 1312 } 1313 1314 // Link against a library. 1315 llvm::SmallString<24> Opt; 1316 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1317 Mod->LinkLibraries[I-1].Library, Opt); 1318 auto *OptString = llvm::MDString::get(Context, Opt); 1319 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1320 } 1321 } 1322 1323 void CodeGenModule::EmitModuleLinkOptions() { 1324 // Collect the set of all of the modules we want to visit to emit link 1325 // options, which is essentially the imported modules and all of their 1326 // non-explicit child modules. 1327 llvm::SetVector<clang::Module *> LinkModules; 1328 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1329 SmallVector<clang::Module *, 16> Stack; 1330 1331 // Seed the stack with imported modules. 1332 for (Module *M : ImportedModules) { 1333 // Do not add any link flags when an implementation TU of a module imports 1334 // a header of that same module. 1335 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1336 !getLangOpts().isCompilingModule()) 1337 continue; 1338 if (Visited.insert(M).second) 1339 Stack.push_back(M); 1340 } 1341 1342 // Find all of the modules to import, making a little effort to prune 1343 // non-leaf modules. 1344 while (!Stack.empty()) { 1345 clang::Module *Mod = Stack.pop_back_val(); 1346 1347 bool AnyChildren = false; 1348 1349 // Visit the submodules of this module. 1350 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1351 SubEnd = Mod->submodule_end(); 1352 Sub != SubEnd; ++Sub) { 1353 // Skip explicit children; they need to be explicitly imported to be 1354 // linked against. 1355 if ((*Sub)->IsExplicit) 1356 continue; 1357 1358 if (Visited.insert(*Sub).second) { 1359 Stack.push_back(*Sub); 1360 AnyChildren = true; 1361 } 1362 } 1363 1364 // We didn't find any children, so add this module to the list of 1365 // modules to link against. 1366 if (!AnyChildren) { 1367 LinkModules.insert(Mod); 1368 } 1369 } 1370 1371 // Add link options for all of the imported modules in reverse topological 1372 // order. We don't do anything to try to order import link flags with respect 1373 // to linker options inserted by things like #pragma comment(). 1374 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1375 Visited.clear(); 1376 for (Module *M : LinkModules) 1377 if (Visited.insert(M).second) 1378 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1379 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1380 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1381 1382 // Add the linker options metadata flag. 1383 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1384 for (auto *MD : LinkerOptionsMetadata) 1385 NMD->addOperand(MD); 1386 } 1387 1388 void CodeGenModule::EmitDeferred() { 1389 // Emit code for any potentially referenced deferred decls. Since a 1390 // previously unused static decl may become used during the generation of code 1391 // for a static function, iterate until no changes are made. 1392 1393 if (!DeferredVTables.empty()) { 1394 EmitDeferredVTables(); 1395 1396 // Emitting a vtable doesn't directly cause more vtables to 1397 // become deferred, although it can cause functions to be 1398 // emitted that then need those vtables. 1399 assert(DeferredVTables.empty()); 1400 } 1401 1402 // Stop if we're out of both deferred vtables and deferred declarations. 1403 if (DeferredDeclsToEmit.empty()) 1404 return; 1405 1406 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1407 // work, it will not interfere with this. 1408 std::vector<GlobalDecl> CurDeclsToEmit; 1409 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1410 1411 for (GlobalDecl &D : CurDeclsToEmit) { 1412 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1413 // to get GlobalValue with exactly the type we need, not something that 1414 // might had been created for another decl with the same mangled name but 1415 // different type. 1416 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1417 GetAddrOfGlobal(D, ForDefinition)); 1418 1419 // In case of different address spaces, we may still get a cast, even with 1420 // IsForDefinition equal to true. Query mangled names table to get 1421 // GlobalValue. 1422 if (!GV) 1423 GV = GetGlobalValue(getMangledName(D)); 1424 1425 // Make sure GetGlobalValue returned non-null. 1426 assert(GV); 1427 1428 // Check to see if we've already emitted this. This is necessary 1429 // for a couple of reasons: first, decls can end up in the 1430 // deferred-decls queue multiple times, and second, decls can end 1431 // up with definitions in unusual ways (e.g. by an extern inline 1432 // function acquiring a strong function redefinition). Just 1433 // ignore these cases. 1434 if (!GV->isDeclaration()) 1435 continue; 1436 1437 // Otherwise, emit the definition and move on to the next one. 1438 EmitGlobalDefinition(D, GV); 1439 1440 // If we found out that we need to emit more decls, do that recursively. 1441 // This has the advantage that the decls are emitted in a DFS and related 1442 // ones are close together, which is convenient for testing. 1443 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1444 EmitDeferred(); 1445 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1446 } 1447 } 1448 } 1449 1450 void CodeGenModule::EmitVTablesOpportunistically() { 1451 // Try to emit external vtables as available_externally if they have emitted 1452 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1453 // is not allowed to create new references to things that need to be emitted 1454 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1455 1456 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1457 && "Only emit opportunistic vtables with optimizations"); 1458 1459 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1460 assert(getVTables().isVTableExternal(RD) && 1461 "This queue should only contain external vtables"); 1462 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1463 VTables.GenerateClassData(RD); 1464 } 1465 OpportunisticVTables.clear(); 1466 } 1467 1468 void CodeGenModule::EmitGlobalAnnotations() { 1469 if (Annotations.empty()) 1470 return; 1471 1472 // Create a new global variable for the ConstantStruct in the Module. 1473 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1474 Annotations[0]->getType(), Annotations.size()), Annotations); 1475 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1476 llvm::GlobalValue::AppendingLinkage, 1477 Array, "llvm.global.annotations"); 1478 gv->setSection(AnnotationSection); 1479 } 1480 1481 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1482 llvm::Constant *&AStr = AnnotationStrings[Str]; 1483 if (AStr) 1484 return AStr; 1485 1486 // Not found yet, create a new global. 1487 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1488 auto *gv = 1489 new llvm::GlobalVariable(getModule(), s->getType(), true, 1490 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1491 gv->setSection(AnnotationSection); 1492 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1493 AStr = gv; 1494 return gv; 1495 } 1496 1497 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1498 SourceManager &SM = getContext().getSourceManager(); 1499 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1500 if (PLoc.isValid()) 1501 return EmitAnnotationString(PLoc.getFilename()); 1502 return EmitAnnotationString(SM.getBufferName(Loc)); 1503 } 1504 1505 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1506 SourceManager &SM = getContext().getSourceManager(); 1507 PresumedLoc PLoc = SM.getPresumedLoc(L); 1508 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1509 SM.getExpansionLineNumber(L); 1510 return llvm::ConstantInt::get(Int32Ty, LineNo); 1511 } 1512 1513 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1514 const AnnotateAttr *AA, 1515 SourceLocation L) { 1516 // Get the globals for file name, annotation, and the line number. 1517 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1518 *UnitGV = EmitAnnotationUnit(L), 1519 *LineNoCst = EmitAnnotationLineNo(L); 1520 1521 // Create the ConstantStruct for the global annotation. 1522 llvm::Constant *Fields[4] = { 1523 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1524 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1525 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1526 LineNoCst 1527 }; 1528 return llvm::ConstantStruct::getAnon(Fields); 1529 } 1530 1531 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1532 llvm::GlobalValue *GV) { 1533 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1534 // Get the struct elements for these annotations. 1535 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1536 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1537 } 1538 1539 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1540 llvm::Function *Fn, 1541 SourceLocation Loc) const { 1542 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1543 // Blacklist by function name. 1544 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1545 return true; 1546 // Blacklist by location. 1547 if (Loc.isValid()) 1548 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1549 // If location is unknown, this may be a compiler-generated function. Assume 1550 // it's located in the main file. 1551 auto &SM = Context.getSourceManager(); 1552 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1553 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1554 } 1555 return false; 1556 } 1557 1558 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1559 SourceLocation Loc, QualType Ty, 1560 StringRef Category) const { 1561 // For now globals can be blacklisted only in ASan and KASan. 1562 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1563 (SanitizerKind::Address | SanitizerKind::KernelAddress); 1564 if (!EnabledAsanMask) 1565 return false; 1566 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1567 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1568 return true; 1569 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1570 return true; 1571 // Check global type. 1572 if (!Ty.isNull()) { 1573 // Drill down the array types: if global variable of a fixed type is 1574 // blacklisted, we also don't instrument arrays of them. 1575 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1576 Ty = AT->getElementType(); 1577 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1578 // We allow to blacklist only record types (classes, structs etc.) 1579 if (Ty->isRecordType()) { 1580 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1581 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1582 return true; 1583 } 1584 } 1585 return false; 1586 } 1587 1588 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1589 StringRef Category) const { 1590 if (!LangOpts.XRayInstrument) 1591 return false; 1592 const auto &XRayFilter = getContext().getXRayFilter(); 1593 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1594 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1595 if (Loc.isValid()) 1596 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1597 if (Attr == ImbueAttr::NONE) 1598 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1599 switch (Attr) { 1600 case ImbueAttr::NONE: 1601 return false; 1602 case ImbueAttr::ALWAYS: 1603 Fn->addFnAttr("function-instrument", "xray-always"); 1604 break; 1605 case ImbueAttr::ALWAYS_ARG1: 1606 Fn->addFnAttr("function-instrument", "xray-always"); 1607 Fn->addFnAttr("xray-log-args", "1"); 1608 break; 1609 case ImbueAttr::NEVER: 1610 Fn->addFnAttr("function-instrument", "xray-never"); 1611 break; 1612 } 1613 return true; 1614 } 1615 1616 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1617 // Never defer when EmitAllDecls is specified. 1618 if (LangOpts.EmitAllDecls) 1619 return true; 1620 1621 return getContext().DeclMustBeEmitted(Global); 1622 } 1623 1624 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1625 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1626 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1627 // Implicit template instantiations may change linkage if they are later 1628 // explicitly instantiated, so they should not be emitted eagerly. 1629 return false; 1630 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1631 if (Context.getInlineVariableDefinitionKind(VD) == 1632 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1633 // A definition of an inline constexpr static data member may change 1634 // linkage later if it's redeclared outside the class. 1635 return false; 1636 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1637 // codegen for global variables, because they may be marked as threadprivate. 1638 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1639 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1640 return false; 1641 1642 return true; 1643 } 1644 1645 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1646 const CXXUuidofExpr* E) { 1647 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1648 // well-formed. 1649 StringRef Uuid = E->getUuidStr(); 1650 std::string Name = "_GUID_" + Uuid.lower(); 1651 std::replace(Name.begin(), Name.end(), '-', '_'); 1652 1653 // The UUID descriptor should be pointer aligned. 1654 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1655 1656 // Look for an existing global. 1657 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1658 return ConstantAddress(GV, Alignment); 1659 1660 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1661 assert(Init && "failed to initialize as constant"); 1662 1663 auto *GV = new llvm::GlobalVariable( 1664 getModule(), Init->getType(), 1665 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1666 if (supportsCOMDAT()) 1667 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1668 return ConstantAddress(GV, Alignment); 1669 } 1670 1671 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1672 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1673 assert(AA && "No alias?"); 1674 1675 CharUnits Alignment = getContext().getDeclAlign(VD); 1676 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1677 1678 // See if there is already something with the target's name in the module. 1679 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1680 if (Entry) { 1681 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1682 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1683 return ConstantAddress(Ptr, Alignment); 1684 } 1685 1686 llvm::Constant *Aliasee; 1687 if (isa<llvm::FunctionType>(DeclTy)) 1688 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1689 GlobalDecl(cast<FunctionDecl>(VD)), 1690 /*ForVTable=*/false); 1691 else 1692 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1693 llvm::PointerType::getUnqual(DeclTy), 1694 nullptr); 1695 1696 auto *F = cast<llvm::GlobalValue>(Aliasee); 1697 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1698 WeakRefReferences.insert(F); 1699 1700 return ConstantAddress(Aliasee, Alignment); 1701 } 1702 1703 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1704 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1705 1706 // Weak references don't produce any output by themselves. 1707 if (Global->hasAttr<WeakRefAttr>()) 1708 return; 1709 1710 // If this is an alias definition (which otherwise looks like a declaration) 1711 // emit it now. 1712 if (Global->hasAttr<AliasAttr>()) 1713 return EmitAliasDefinition(GD); 1714 1715 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1716 if (Global->hasAttr<IFuncAttr>()) 1717 return emitIFuncDefinition(GD); 1718 1719 // If this is CUDA, be selective about which declarations we emit. 1720 if (LangOpts.CUDA) { 1721 if (LangOpts.CUDAIsDevice) { 1722 if (!Global->hasAttr<CUDADeviceAttr>() && 1723 !Global->hasAttr<CUDAGlobalAttr>() && 1724 !Global->hasAttr<CUDAConstantAttr>() && 1725 !Global->hasAttr<CUDASharedAttr>()) 1726 return; 1727 } else { 1728 // We need to emit host-side 'shadows' for all global 1729 // device-side variables because the CUDA runtime needs their 1730 // size and host-side address in order to provide access to 1731 // their device-side incarnations. 1732 1733 // So device-only functions are the only things we skip. 1734 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1735 Global->hasAttr<CUDADeviceAttr>()) 1736 return; 1737 1738 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1739 "Expected Variable or Function"); 1740 } 1741 } 1742 1743 if (LangOpts.OpenMP) { 1744 // If this is OpenMP device, check if it is legal to emit this global 1745 // normally. 1746 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1747 return; 1748 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1749 if (MustBeEmitted(Global)) 1750 EmitOMPDeclareReduction(DRD); 1751 return; 1752 } 1753 } 1754 1755 // Ignore declarations, they will be emitted on their first use. 1756 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1757 // Forward declarations are emitted lazily on first use. 1758 if (!FD->doesThisDeclarationHaveABody()) { 1759 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1760 return; 1761 1762 StringRef MangledName = getMangledName(GD); 1763 1764 // Compute the function info and LLVM type. 1765 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1766 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1767 1768 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1769 /*DontDefer=*/false); 1770 return; 1771 } 1772 } else { 1773 const auto *VD = cast<VarDecl>(Global); 1774 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1775 // We need to emit device-side global CUDA variables even if a 1776 // variable does not have a definition -- we still need to define 1777 // host-side shadow for it. 1778 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1779 !VD->hasDefinition() && 1780 (VD->hasAttr<CUDAConstantAttr>() || 1781 VD->hasAttr<CUDADeviceAttr>()); 1782 if (!MustEmitForCuda && 1783 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1784 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1785 // If this declaration may have caused an inline variable definition to 1786 // change linkage, make sure that it's emitted. 1787 if (Context.getInlineVariableDefinitionKind(VD) == 1788 ASTContext::InlineVariableDefinitionKind::Strong) 1789 GetAddrOfGlobalVar(VD); 1790 return; 1791 } 1792 } 1793 1794 // Defer code generation to first use when possible, e.g. if this is an inline 1795 // function. If the global must always be emitted, do it eagerly if possible 1796 // to benefit from cache locality. 1797 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1798 // Emit the definition if it can't be deferred. 1799 EmitGlobalDefinition(GD); 1800 return; 1801 } 1802 1803 // If we're deferring emission of a C++ variable with an 1804 // initializer, remember the order in which it appeared in the file. 1805 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1806 cast<VarDecl>(Global)->hasInit()) { 1807 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1808 CXXGlobalInits.push_back(nullptr); 1809 } 1810 1811 StringRef MangledName = getMangledName(GD); 1812 if (GetGlobalValue(MangledName) != nullptr) { 1813 // The value has already been used and should therefore be emitted. 1814 addDeferredDeclToEmit(GD); 1815 } else if (MustBeEmitted(Global)) { 1816 // The value must be emitted, but cannot be emitted eagerly. 1817 assert(!MayBeEmittedEagerly(Global)); 1818 addDeferredDeclToEmit(GD); 1819 } else { 1820 // Otherwise, remember that we saw a deferred decl with this name. The 1821 // first use of the mangled name will cause it to move into 1822 // DeferredDeclsToEmit. 1823 DeferredDecls[MangledName] = GD; 1824 } 1825 } 1826 1827 // Check if T is a class type with a destructor that's not dllimport. 1828 static bool HasNonDllImportDtor(QualType T) { 1829 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1830 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1831 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1832 return true; 1833 1834 return false; 1835 } 1836 1837 namespace { 1838 struct FunctionIsDirectlyRecursive : 1839 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1840 const StringRef Name; 1841 const Builtin::Context &BI; 1842 bool Result; 1843 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1844 Name(N), BI(C), Result(false) { 1845 } 1846 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1847 1848 bool TraverseCallExpr(CallExpr *E) { 1849 const FunctionDecl *FD = E->getDirectCallee(); 1850 if (!FD) 1851 return true; 1852 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1853 if (Attr && Name == Attr->getLabel()) { 1854 Result = true; 1855 return false; 1856 } 1857 unsigned BuiltinID = FD->getBuiltinID(); 1858 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1859 return true; 1860 StringRef BuiltinName = BI.getName(BuiltinID); 1861 if (BuiltinName.startswith("__builtin_") && 1862 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1863 Result = true; 1864 return false; 1865 } 1866 return true; 1867 } 1868 }; 1869 1870 // Make sure we're not referencing non-imported vars or functions. 1871 struct DLLImportFunctionVisitor 1872 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1873 bool SafeToInline = true; 1874 1875 bool shouldVisitImplicitCode() const { return true; } 1876 1877 bool VisitVarDecl(VarDecl *VD) { 1878 if (VD->getTLSKind()) { 1879 // A thread-local variable cannot be imported. 1880 SafeToInline = false; 1881 return SafeToInline; 1882 } 1883 1884 // A variable definition might imply a destructor call. 1885 if (VD->isThisDeclarationADefinition()) 1886 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1887 1888 return SafeToInline; 1889 } 1890 1891 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1892 if (const auto *D = E->getTemporary()->getDestructor()) 1893 SafeToInline = D->hasAttr<DLLImportAttr>(); 1894 return SafeToInline; 1895 } 1896 1897 bool VisitDeclRefExpr(DeclRefExpr *E) { 1898 ValueDecl *VD = E->getDecl(); 1899 if (isa<FunctionDecl>(VD)) 1900 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1901 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1902 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1903 return SafeToInline; 1904 } 1905 1906 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1907 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1908 return SafeToInline; 1909 } 1910 1911 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1912 CXXMethodDecl *M = E->getMethodDecl(); 1913 if (!M) { 1914 // Call through a pointer to member function. This is safe to inline. 1915 SafeToInline = true; 1916 } else { 1917 SafeToInline = M->hasAttr<DLLImportAttr>(); 1918 } 1919 return SafeToInline; 1920 } 1921 1922 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1923 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1924 return SafeToInline; 1925 } 1926 1927 bool VisitCXXNewExpr(CXXNewExpr *E) { 1928 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1929 return SafeToInline; 1930 } 1931 }; 1932 } 1933 1934 // isTriviallyRecursive - Check if this function calls another 1935 // decl that, because of the asm attribute or the other decl being a builtin, 1936 // ends up pointing to itself. 1937 bool 1938 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1939 StringRef Name; 1940 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1941 // asm labels are a special kind of mangling we have to support. 1942 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1943 if (!Attr) 1944 return false; 1945 Name = Attr->getLabel(); 1946 } else { 1947 Name = FD->getName(); 1948 } 1949 1950 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1951 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1952 return Walker.Result; 1953 } 1954 1955 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1956 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1957 return true; 1958 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1959 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1960 return false; 1961 1962 if (F->hasAttr<DLLImportAttr>()) { 1963 // Check whether it would be safe to inline this dllimport function. 1964 DLLImportFunctionVisitor Visitor; 1965 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1966 if (!Visitor.SafeToInline) 1967 return false; 1968 1969 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1970 // Implicit destructor invocations aren't captured in the AST, so the 1971 // check above can't see them. Check for them manually here. 1972 for (const Decl *Member : Dtor->getParent()->decls()) 1973 if (isa<FieldDecl>(Member)) 1974 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1975 return false; 1976 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1977 if (HasNonDllImportDtor(B.getType())) 1978 return false; 1979 } 1980 } 1981 1982 // PR9614. Avoid cases where the source code is lying to us. An available 1983 // externally function should have an equivalent function somewhere else, 1984 // but a function that calls itself is clearly not equivalent to the real 1985 // implementation. 1986 // This happens in glibc's btowc and in some configure checks. 1987 return !isTriviallyRecursive(F); 1988 } 1989 1990 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 1991 return CodeGenOpts.OptimizationLevel > 0; 1992 } 1993 1994 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1995 const auto *D = cast<ValueDecl>(GD.getDecl()); 1996 1997 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1998 Context.getSourceManager(), 1999 "Generating code for declaration"); 2000 2001 if (isa<FunctionDecl>(D)) { 2002 // At -O0, don't generate IR for functions with available_externally 2003 // linkage. 2004 if (!shouldEmitFunction(GD)) 2005 return; 2006 2007 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2008 // Make sure to emit the definition(s) before we emit the thunks. 2009 // This is necessary for the generation of certain thunks. 2010 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2011 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2012 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2013 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2014 else 2015 EmitGlobalFunctionDefinition(GD, GV); 2016 2017 if (Method->isVirtual()) 2018 getVTables().EmitThunks(GD); 2019 2020 return; 2021 } 2022 2023 return EmitGlobalFunctionDefinition(GD, GV); 2024 } 2025 2026 if (const auto *VD = dyn_cast<VarDecl>(D)) 2027 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2028 2029 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2030 } 2031 2032 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2033 llvm::Function *NewFn); 2034 2035 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2036 /// module, create and return an llvm Function with the specified type. If there 2037 /// is something in the module with the specified name, return it potentially 2038 /// bitcasted to the right type. 2039 /// 2040 /// If D is non-null, it specifies a decl that correspond to this. This is used 2041 /// to set the attributes on the function when it is first created. 2042 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2043 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2044 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2045 ForDefinition_t IsForDefinition) { 2046 const Decl *D = GD.getDecl(); 2047 2048 // Lookup the entry, lazily creating it if necessary. 2049 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2050 if (Entry) { 2051 if (WeakRefReferences.erase(Entry)) { 2052 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2053 if (FD && !FD->hasAttr<WeakAttr>()) 2054 Entry->setLinkage(llvm::Function::ExternalLinkage); 2055 } 2056 2057 // Handle dropped DLL attributes. 2058 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2059 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2060 2061 // If there are two attempts to define the same mangled name, issue an 2062 // error. 2063 if (IsForDefinition && !Entry->isDeclaration()) { 2064 GlobalDecl OtherGD; 2065 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2066 // to make sure that we issue an error only once. 2067 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2068 (GD.getCanonicalDecl().getDecl() != 2069 OtherGD.getCanonicalDecl().getDecl()) && 2070 DiagnosedConflictingDefinitions.insert(GD).second) { 2071 getDiags().Report(D->getLocation(), 2072 diag::err_duplicate_mangled_name); 2073 getDiags().Report(OtherGD.getDecl()->getLocation(), 2074 diag::note_previous_definition); 2075 } 2076 } 2077 2078 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2079 (Entry->getType()->getElementType() == Ty)) { 2080 return Entry; 2081 } 2082 2083 // Make sure the result is of the correct type. 2084 // (If function is requested for a definition, we always need to create a new 2085 // function, not just return a bitcast.) 2086 if (!IsForDefinition) 2087 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2088 } 2089 2090 // This function doesn't have a complete type (for example, the return 2091 // type is an incomplete struct). Use a fake type instead, and make 2092 // sure not to try to set attributes. 2093 bool IsIncompleteFunction = false; 2094 2095 llvm::FunctionType *FTy; 2096 if (isa<llvm::FunctionType>(Ty)) { 2097 FTy = cast<llvm::FunctionType>(Ty); 2098 } else { 2099 FTy = llvm::FunctionType::get(VoidTy, false); 2100 IsIncompleteFunction = true; 2101 } 2102 2103 llvm::Function *F = 2104 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2105 Entry ? StringRef() : MangledName, &getModule()); 2106 2107 // If we already created a function with the same mangled name (but different 2108 // type) before, take its name and add it to the list of functions to be 2109 // replaced with F at the end of CodeGen. 2110 // 2111 // This happens if there is a prototype for a function (e.g. "int f()") and 2112 // then a definition of a different type (e.g. "int f(int x)"). 2113 if (Entry) { 2114 F->takeName(Entry); 2115 2116 // This might be an implementation of a function without a prototype, in 2117 // which case, try to do special replacement of calls which match the new 2118 // prototype. The really key thing here is that we also potentially drop 2119 // arguments from the call site so as to make a direct call, which makes the 2120 // inliner happier and suppresses a number of optimizer warnings (!) about 2121 // dropping arguments. 2122 if (!Entry->use_empty()) { 2123 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2124 Entry->removeDeadConstantUsers(); 2125 } 2126 2127 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2128 F, Entry->getType()->getElementType()->getPointerTo()); 2129 addGlobalValReplacement(Entry, BC); 2130 } 2131 2132 assert(F->getName() == MangledName && "name was uniqued!"); 2133 if (D) 2134 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2135 IsForDefinition); 2136 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2137 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2138 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2139 } 2140 2141 if (!DontDefer) { 2142 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2143 // each other bottoming out with the base dtor. Therefore we emit non-base 2144 // dtors on usage, even if there is no dtor definition in the TU. 2145 if (D && isa<CXXDestructorDecl>(D) && 2146 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2147 GD.getDtorType())) 2148 addDeferredDeclToEmit(GD); 2149 2150 // This is the first use or definition of a mangled name. If there is a 2151 // deferred decl with this name, remember that we need to emit it at the end 2152 // of the file. 2153 auto DDI = DeferredDecls.find(MangledName); 2154 if (DDI != DeferredDecls.end()) { 2155 // Move the potentially referenced deferred decl to the 2156 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2157 // don't need it anymore). 2158 addDeferredDeclToEmit(DDI->second); 2159 DeferredDecls.erase(DDI); 2160 2161 // Otherwise, there are cases we have to worry about where we're 2162 // using a declaration for which we must emit a definition but where 2163 // we might not find a top-level definition: 2164 // - member functions defined inline in their classes 2165 // - friend functions defined inline in some class 2166 // - special member functions with implicit definitions 2167 // If we ever change our AST traversal to walk into class methods, 2168 // this will be unnecessary. 2169 // 2170 // We also don't emit a definition for a function if it's going to be an 2171 // entry in a vtable, unless it's already marked as used. 2172 } else if (getLangOpts().CPlusPlus && D) { 2173 // Look for a declaration that's lexically in a record. 2174 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2175 FD = FD->getPreviousDecl()) { 2176 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2177 if (FD->doesThisDeclarationHaveABody()) { 2178 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2179 break; 2180 } 2181 } 2182 } 2183 } 2184 } 2185 2186 // Make sure the result is of the requested type. 2187 if (!IsIncompleteFunction) { 2188 assert(F->getType()->getElementType() == Ty); 2189 return F; 2190 } 2191 2192 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2193 return llvm::ConstantExpr::getBitCast(F, PTy); 2194 } 2195 2196 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2197 /// non-null, then this function will use the specified type if it has to 2198 /// create it (this occurs when we see a definition of the function). 2199 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2200 llvm::Type *Ty, 2201 bool ForVTable, 2202 bool DontDefer, 2203 ForDefinition_t IsForDefinition) { 2204 // If there was no specific requested type, just convert it now. 2205 if (!Ty) { 2206 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2207 auto CanonTy = Context.getCanonicalType(FD->getType()); 2208 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2209 } 2210 2211 StringRef MangledName = getMangledName(GD); 2212 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2213 /*IsThunk=*/false, llvm::AttributeList(), 2214 IsForDefinition); 2215 } 2216 2217 static const FunctionDecl * 2218 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2219 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2220 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2221 2222 IdentifierInfo &CII = C.Idents.get(Name); 2223 for (const auto &Result : DC->lookup(&CII)) 2224 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2225 return FD; 2226 2227 if (!C.getLangOpts().CPlusPlus) 2228 return nullptr; 2229 2230 // Demangle the premangled name from getTerminateFn() 2231 IdentifierInfo &CXXII = 2232 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2233 ? C.Idents.get("terminate") 2234 : C.Idents.get(Name); 2235 2236 for (const auto &N : {"__cxxabiv1", "std"}) { 2237 IdentifierInfo &NS = C.Idents.get(N); 2238 for (const auto &Result : DC->lookup(&NS)) { 2239 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2240 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2241 for (const auto &Result : LSD->lookup(&NS)) 2242 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2243 break; 2244 2245 if (ND) 2246 for (const auto &Result : ND->lookup(&CXXII)) 2247 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2248 return FD; 2249 } 2250 } 2251 2252 return nullptr; 2253 } 2254 2255 /// CreateRuntimeFunction - Create a new runtime function with the specified 2256 /// type and name. 2257 llvm::Constant * 2258 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2259 llvm::AttributeList ExtraAttrs, 2260 bool Local) { 2261 llvm::Constant *C = 2262 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2263 /*DontDefer=*/false, /*IsThunk=*/false, 2264 ExtraAttrs); 2265 2266 if (auto *F = dyn_cast<llvm::Function>(C)) { 2267 if (F->empty()) { 2268 F->setCallingConv(getRuntimeCC()); 2269 2270 if (!Local && getTriple().isOSBinFormatCOFF() && 2271 !getCodeGenOpts().LTOVisibilityPublicStd) { 2272 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2273 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2274 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2275 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2276 } 2277 } 2278 } 2279 } 2280 2281 return C; 2282 } 2283 2284 /// CreateBuiltinFunction - Create a new builtin function with the specified 2285 /// type and name. 2286 llvm::Constant * 2287 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2288 llvm::AttributeList ExtraAttrs) { 2289 llvm::Constant *C = 2290 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2291 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2292 if (auto *F = dyn_cast<llvm::Function>(C)) 2293 if (F->empty()) 2294 F->setCallingConv(getBuiltinCC()); 2295 return C; 2296 } 2297 2298 /// isTypeConstant - Determine whether an object of this type can be emitted 2299 /// as a constant. 2300 /// 2301 /// If ExcludeCtor is true, the duration when the object's constructor runs 2302 /// will not be considered. The caller will need to verify that the object is 2303 /// not written to during its construction. 2304 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2305 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2306 return false; 2307 2308 if (Context.getLangOpts().CPlusPlus) { 2309 if (const CXXRecordDecl *Record 2310 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2311 return ExcludeCtor && !Record->hasMutableFields() && 2312 Record->hasTrivialDestructor(); 2313 } 2314 2315 return true; 2316 } 2317 2318 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2319 /// create and return an llvm GlobalVariable with the specified type. If there 2320 /// is something in the module with the specified name, return it potentially 2321 /// bitcasted to the right type. 2322 /// 2323 /// If D is non-null, it specifies a decl that correspond to this. This is used 2324 /// to set the attributes on the global when it is first created. 2325 /// 2326 /// If IsForDefinition is true, it is guranteed that an actual global with 2327 /// type Ty will be returned, not conversion of a variable with the same 2328 /// mangled name but some other type. 2329 llvm::Constant * 2330 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2331 llvm::PointerType *Ty, 2332 const VarDecl *D, 2333 ForDefinition_t IsForDefinition) { 2334 // Lookup the entry, lazily creating it if necessary. 2335 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2336 if (Entry) { 2337 if (WeakRefReferences.erase(Entry)) { 2338 if (D && !D->hasAttr<WeakAttr>()) 2339 Entry->setLinkage(llvm::Function::ExternalLinkage); 2340 } 2341 2342 // Handle dropped DLL attributes. 2343 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2344 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2345 2346 if (Entry->getType() == Ty) 2347 return Entry; 2348 2349 // If there are two attempts to define the same mangled name, issue an 2350 // error. 2351 if (IsForDefinition && !Entry->isDeclaration()) { 2352 GlobalDecl OtherGD; 2353 const VarDecl *OtherD; 2354 2355 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2356 // to make sure that we issue an error only once. 2357 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2358 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2359 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2360 OtherD->hasInit() && 2361 DiagnosedConflictingDefinitions.insert(D).second) { 2362 getDiags().Report(D->getLocation(), 2363 diag::err_duplicate_mangled_name); 2364 getDiags().Report(OtherGD.getDecl()->getLocation(), 2365 diag::note_previous_definition); 2366 } 2367 } 2368 2369 // Make sure the result is of the correct type. 2370 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2371 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2372 2373 // (If global is requested for a definition, we always need to create a new 2374 // global, not just return a bitcast.) 2375 if (!IsForDefinition) 2376 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2377 } 2378 2379 auto AddrSpace = GetGlobalVarAddressSpace(D); 2380 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2381 2382 auto *GV = new llvm::GlobalVariable( 2383 getModule(), Ty->getElementType(), false, 2384 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2385 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2386 2387 // If we already created a global with the same mangled name (but different 2388 // type) before, take its name and remove it from its parent. 2389 if (Entry) { 2390 GV->takeName(Entry); 2391 2392 if (!Entry->use_empty()) { 2393 llvm::Constant *NewPtrForOldDecl = 2394 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2395 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2396 } 2397 2398 Entry->eraseFromParent(); 2399 } 2400 2401 // This is the first use or definition of a mangled name. If there is a 2402 // deferred decl with this name, remember that we need to emit it at the end 2403 // of the file. 2404 auto DDI = DeferredDecls.find(MangledName); 2405 if (DDI != DeferredDecls.end()) { 2406 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2407 // list, and remove it from DeferredDecls (since we don't need it anymore). 2408 addDeferredDeclToEmit(DDI->second); 2409 DeferredDecls.erase(DDI); 2410 } 2411 2412 // Handle things which are present even on external declarations. 2413 if (D) { 2414 // FIXME: This code is overly simple and should be merged with other global 2415 // handling. 2416 GV->setConstant(isTypeConstant(D->getType(), false)); 2417 2418 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2419 2420 setLinkageAndVisibilityForGV(GV, D); 2421 2422 if (D->getTLSKind()) { 2423 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2424 CXXThreadLocals.push_back(D); 2425 setTLSMode(GV, *D); 2426 } 2427 2428 // If required by the ABI, treat declarations of static data members with 2429 // inline initializers as definitions. 2430 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2431 EmitGlobalVarDefinition(D); 2432 } 2433 2434 // Emit section information for extern variables. 2435 if (D->hasExternalStorage()) { 2436 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2437 GV->setSection(SA->getName()); 2438 } 2439 2440 // Handle XCore specific ABI requirements. 2441 if (getTriple().getArch() == llvm::Triple::xcore && 2442 D->getLanguageLinkage() == CLanguageLinkage && 2443 D->getType().isConstant(Context) && 2444 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2445 GV->setSection(".cp.rodata"); 2446 2447 // Check if we a have a const declaration with an initializer, we may be 2448 // able to emit it as available_externally to expose it's value to the 2449 // optimizer. 2450 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2451 D->getType().isConstQualified() && !GV->hasInitializer() && 2452 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2453 const auto *Record = 2454 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2455 bool HasMutableFields = Record && Record->hasMutableFields(); 2456 if (!HasMutableFields) { 2457 const VarDecl *InitDecl; 2458 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2459 if (InitExpr) { 2460 ConstantEmitter emitter(*this); 2461 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2462 if (Init) { 2463 auto *InitType = Init->getType(); 2464 if (GV->getType()->getElementType() != InitType) { 2465 // The type of the initializer does not match the definition. 2466 // This happens when an initializer has a different type from 2467 // the type of the global (because of padding at the end of a 2468 // structure for instance). 2469 GV->setName(StringRef()); 2470 // Make a new global with the correct type, this is now guaranteed 2471 // to work. 2472 auto *NewGV = cast<llvm::GlobalVariable>( 2473 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2474 2475 // Erase the old global, since it is no longer used. 2476 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2477 GV = NewGV; 2478 } else { 2479 GV->setInitializer(Init); 2480 GV->setConstant(true); 2481 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2482 } 2483 emitter.finalize(GV); 2484 } 2485 } 2486 } 2487 } 2488 } 2489 2490 auto ExpectedAS = 2491 D ? D->getType().getAddressSpace() 2492 : static_cast<unsigned>(LangOpts.OpenCL ? LangAS::opencl_global 2493 : LangAS::Default); 2494 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2495 Ty->getPointerAddressSpace()); 2496 if (AddrSpace != ExpectedAS) 2497 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2498 ExpectedAS, Ty); 2499 2500 return GV; 2501 } 2502 2503 llvm::Constant * 2504 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2505 ForDefinition_t IsForDefinition) { 2506 const Decl *D = GD.getDecl(); 2507 if (isa<CXXConstructorDecl>(D)) 2508 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2509 getFromCtorType(GD.getCtorType()), 2510 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2511 /*DontDefer=*/false, IsForDefinition); 2512 else if (isa<CXXDestructorDecl>(D)) 2513 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2514 getFromDtorType(GD.getDtorType()), 2515 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2516 /*DontDefer=*/false, IsForDefinition); 2517 else if (isa<CXXMethodDecl>(D)) { 2518 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2519 cast<CXXMethodDecl>(D)); 2520 auto Ty = getTypes().GetFunctionType(*FInfo); 2521 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2522 IsForDefinition); 2523 } else if (isa<FunctionDecl>(D)) { 2524 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2525 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2526 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2527 IsForDefinition); 2528 } else 2529 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2530 IsForDefinition); 2531 } 2532 2533 llvm::GlobalVariable * 2534 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2535 llvm::Type *Ty, 2536 llvm::GlobalValue::LinkageTypes Linkage) { 2537 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2538 llvm::GlobalVariable *OldGV = nullptr; 2539 2540 if (GV) { 2541 // Check if the variable has the right type. 2542 if (GV->getType()->getElementType() == Ty) 2543 return GV; 2544 2545 // Because C++ name mangling, the only way we can end up with an already 2546 // existing global with the same name is if it has been declared extern "C". 2547 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2548 OldGV = GV; 2549 } 2550 2551 // Create a new variable. 2552 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2553 Linkage, nullptr, Name); 2554 2555 if (OldGV) { 2556 // Replace occurrences of the old variable if needed. 2557 GV->takeName(OldGV); 2558 2559 if (!OldGV->use_empty()) { 2560 llvm::Constant *NewPtrForOldDecl = 2561 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2562 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2563 } 2564 2565 OldGV->eraseFromParent(); 2566 } 2567 2568 if (supportsCOMDAT() && GV->isWeakForLinker() && 2569 !GV->hasAvailableExternallyLinkage()) 2570 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2571 2572 return GV; 2573 } 2574 2575 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2576 /// given global variable. If Ty is non-null and if the global doesn't exist, 2577 /// then it will be created with the specified type instead of whatever the 2578 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2579 /// that an actual global with type Ty will be returned, not conversion of a 2580 /// variable with the same mangled name but some other type. 2581 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2582 llvm::Type *Ty, 2583 ForDefinition_t IsForDefinition) { 2584 assert(D->hasGlobalStorage() && "Not a global variable"); 2585 QualType ASTTy = D->getType(); 2586 if (!Ty) 2587 Ty = getTypes().ConvertTypeForMem(ASTTy); 2588 2589 llvm::PointerType *PTy = 2590 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2591 2592 StringRef MangledName = getMangledName(D); 2593 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2594 } 2595 2596 /// CreateRuntimeVariable - Create a new runtime global variable with the 2597 /// specified type and name. 2598 llvm::Constant * 2599 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2600 StringRef Name) { 2601 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2602 } 2603 2604 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2605 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2606 2607 StringRef MangledName = getMangledName(D); 2608 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2609 2610 // We already have a definition, not declaration, with the same mangled name. 2611 // Emitting of declaration is not required (and actually overwrites emitted 2612 // definition). 2613 if (GV && !GV->isDeclaration()) 2614 return; 2615 2616 // If we have not seen a reference to this variable yet, place it into the 2617 // deferred declarations table to be emitted if needed later. 2618 if (!MustBeEmitted(D) && !GV) { 2619 DeferredDecls[MangledName] = D; 2620 return; 2621 } 2622 2623 // The tentative definition is the only definition. 2624 EmitGlobalVarDefinition(D); 2625 } 2626 2627 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2628 return Context.toCharUnitsFromBits( 2629 getDataLayout().getTypeStoreSizeInBits(Ty)); 2630 } 2631 2632 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2633 unsigned AddrSpace; 2634 if (LangOpts.OpenCL) { 2635 AddrSpace = D ? D->getType().getAddressSpace() 2636 : static_cast<unsigned>(LangAS::opencl_global); 2637 assert(AddrSpace == LangAS::opencl_global || 2638 AddrSpace == LangAS::opencl_constant || 2639 AddrSpace == LangAS::opencl_local || 2640 AddrSpace >= LangAS::FirstTargetAddressSpace); 2641 return AddrSpace; 2642 } 2643 2644 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2645 if (D && D->hasAttr<CUDAConstantAttr>()) 2646 return LangAS::cuda_constant; 2647 else if (D && D->hasAttr<CUDASharedAttr>()) 2648 return LangAS::cuda_shared; 2649 else 2650 return LangAS::cuda_device; 2651 } 2652 2653 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2654 } 2655 2656 template<typename SomeDecl> 2657 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2658 llvm::GlobalValue *GV) { 2659 if (!getLangOpts().CPlusPlus) 2660 return; 2661 2662 // Must have 'used' attribute, or else inline assembly can't rely on 2663 // the name existing. 2664 if (!D->template hasAttr<UsedAttr>()) 2665 return; 2666 2667 // Must have internal linkage and an ordinary name. 2668 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2669 return; 2670 2671 // Must be in an extern "C" context. Entities declared directly within 2672 // a record are not extern "C" even if the record is in such a context. 2673 const SomeDecl *First = D->getFirstDecl(); 2674 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2675 return; 2676 2677 // OK, this is an internal linkage entity inside an extern "C" linkage 2678 // specification. Make a note of that so we can give it the "expected" 2679 // mangled name if nothing else is using that name. 2680 std::pair<StaticExternCMap::iterator, bool> R = 2681 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2682 2683 // If we have multiple internal linkage entities with the same name 2684 // in extern "C" regions, none of them gets that name. 2685 if (!R.second) 2686 R.first->second = nullptr; 2687 } 2688 2689 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2690 if (!CGM.supportsCOMDAT()) 2691 return false; 2692 2693 if (D.hasAttr<SelectAnyAttr>()) 2694 return true; 2695 2696 GVALinkage Linkage; 2697 if (auto *VD = dyn_cast<VarDecl>(&D)) 2698 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2699 else 2700 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2701 2702 switch (Linkage) { 2703 case GVA_Internal: 2704 case GVA_AvailableExternally: 2705 case GVA_StrongExternal: 2706 return false; 2707 case GVA_DiscardableODR: 2708 case GVA_StrongODR: 2709 return true; 2710 } 2711 llvm_unreachable("No such linkage"); 2712 } 2713 2714 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2715 llvm::GlobalObject &GO) { 2716 if (!shouldBeInCOMDAT(*this, D)) 2717 return; 2718 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2719 } 2720 2721 /// Pass IsTentative as true if you want to create a tentative definition. 2722 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2723 bool IsTentative) { 2724 // OpenCL global variables of sampler type are translated to function calls, 2725 // therefore no need to be translated. 2726 QualType ASTTy = D->getType(); 2727 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2728 return; 2729 2730 llvm::Constant *Init = nullptr; 2731 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2732 bool NeedsGlobalCtor = false; 2733 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2734 2735 const VarDecl *InitDecl; 2736 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2737 2738 Optional<ConstantEmitter> emitter; 2739 2740 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2741 // as part of their declaration." Sema has already checked for 2742 // error cases, so we just need to set Init to UndefValue. 2743 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2744 D->hasAttr<CUDASharedAttr>()) 2745 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2746 else if (!InitExpr) { 2747 // This is a tentative definition; tentative definitions are 2748 // implicitly initialized with { 0 }. 2749 // 2750 // Note that tentative definitions are only emitted at the end of 2751 // a translation unit, so they should never have incomplete 2752 // type. In addition, EmitTentativeDefinition makes sure that we 2753 // never attempt to emit a tentative definition if a real one 2754 // exists. A use may still exists, however, so we still may need 2755 // to do a RAUW. 2756 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2757 Init = EmitNullConstant(D->getType()); 2758 } else { 2759 initializedGlobalDecl = GlobalDecl(D); 2760 emitter.emplace(*this); 2761 Init = emitter->tryEmitForInitializer(*InitDecl); 2762 2763 if (!Init) { 2764 QualType T = InitExpr->getType(); 2765 if (D->getType()->isReferenceType()) 2766 T = D->getType(); 2767 2768 if (getLangOpts().CPlusPlus) { 2769 Init = EmitNullConstant(T); 2770 NeedsGlobalCtor = true; 2771 } else { 2772 ErrorUnsupported(D, "static initializer"); 2773 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2774 } 2775 } else { 2776 // We don't need an initializer, so remove the entry for the delayed 2777 // initializer position (just in case this entry was delayed) if we 2778 // also don't need to register a destructor. 2779 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2780 DelayedCXXInitPosition.erase(D); 2781 } 2782 } 2783 2784 llvm::Type* InitType = Init->getType(); 2785 llvm::Constant *Entry = 2786 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2787 2788 // Strip off a bitcast if we got one back. 2789 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2790 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2791 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2792 // All zero index gep. 2793 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2794 Entry = CE->getOperand(0); 2795 } 2796 2797 // Entry is now either a Function or GlobalVariable. 2798 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2799 2800 // We have a definition after a declaration with the wrong type. 2801 // We must make a new GlobalVariable* and update everything that used OldGV 2802 // (a declaration or tentative definition) with the new GlobalVariable* 2803 // (which will be a definition). 2804 // 2805 // This happens if there is a prototype for a global (e.g. 2806 // "extern int x[];") and then a definition of a different type (e.g. 2807 // "int x[10];"). This also happens when an initializer has a different type 2808 // from the type of the global (this happens with unions). 2809 if (!GV || GV->getType()->getElementType() != InitType || 2810 GV->getType()->getAddressSpace() != 2811 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2812 2813 // Move the old entry aside so that we'll create a new one. 2814 Entry->setName(StringRef()); 2815 2816 // Make a new global with the correct type, this is now guaranteed to work. 2817 GV = cast<llvm::GlobalVariable>( 2818 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2819 2820 // Replace all uses of the old global with the new global 2821 llvm::Constant *NewPtrForOldDecl = 2822 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2823 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2824 2825 // Erase the old global, since it is no longer used. 2826 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2827 } 2828 2829 MaybeHandleStaticInExternC(D, GV); 2830 2831 if (D->hasAttr<AnnotateAttr>()) 2832 AddGlobalAnnotations(D, GV); 2833 2834 // Set the llvm linkage type as appropriate. 2835 llvm::GlobalValue::LinkageTypes Linkage = 2836 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2837 2838 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2839 // the device. [...]" 2840 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2841 // __device__, declares a variable that: [...] 2842 // Is accessible from all the threads within the grid and from the host 2843 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2844 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2845 if (GV && LangOpts.CUDA) { 2846 if (LangOpts.CUDAIsDevice) { 2847 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2848 GV->setExternallyInitialized(true); 2849 } else { 2850 // Host-side shadows of external declarations of device-side 2851 // global variables become internal definitions. These have to 2852 // be internal in order to prevent name conflicts with global 2853 // host variables with the same name in a different TUs. 2854 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2855 Linkage = llvm::GlobalValue::InternalLinkage; 2856 2857 // Shadow variables and their properties must be registered 2858 // with CUDA runtime. 2859 unsigned Flags = 0; 2860 if (!D->hasDefinition()) 2861 Flags |= CGCUDARuntime::ExternDeviceVar; 2862 if (D->hasAttr<CUDAConstantAttr>()) 2863 Flags |= CGCUDARuntime::ConstantDeviceVar; 2864 getCUDARuntime().registerDeviceVar(*GV, Flags); 2865 } else if (D->hasAttr<CUDASharedAttr>()) 2866 // __shared__ variables are odd. Shadows do get created, but 2867 // they are not registered with the CUDA runtime, so they 2868 // can't really be used to access their device-side 2869 // counterparts. It's not clear yet whether it's nvcc's bug or 2870 // a feature, but we've got to do the same for compatibility. 2871 Linkage = llvm::GlobalValue::InternalLinkage; 2872 } 2873 } 2874 2875 GV->setInitializer(Init); 2876 if (emitter) emitter->finalize(GV); 2877 2878 // If it is safe to mark the global 'constant', do so now. 2879 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2880 isTypeConstant(D->getType(), true)); 2881 2882 // If it is in a read-only section, mark it 'constant'. 2883 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2884 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2885 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2886 GV->setConstant(true); 2887 } 2888 2889 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2890 2891 2892 // On Darwin, if the normal linkage of a C++ thread_local variable is 2893 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2894 // copies within a linkage unit; otherwise, the backing variable has 2895 // internal linkage and all accesses should just be calls to the 2896 // Itanium-specified entry point, which has the normal linkage of the 2897 // variable. This is to preserve the ability to change the implementation 2898 // behind the scenes. 2899 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2900 Context.getTargetInfo().getTriple().isOSDarwin() && 2901 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2902 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2903 Linkage = llvm::GlobalValue::InternalLinkage; 2904 2905 GV->setLinkage(Linkage); 2906 if (D->hasAttr<DLLImportAttr>()) 2907 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2908 else if (D->hasAttr<DLLExportAttr>()) 2909 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2910 else 2911 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2912 2913 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2914 // common vars aren't constant even if declared const. 2915 GV->setConstant(false); 2916 // Tentative definition of global variables may be initialized with 2917 // non-zero null pointers. In this case they should have weak linkage 2918 // since common linkage must have zero initializer and must not have 2919 // explicit section therefore cannot have non-zero initial value. 2920 if (!GV->getInitializer()->isNullValue()) 2921 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2922 } 2923 2924 setNonAliasAttributes(D, GV); 2925 2926 if (D->getTLSKind() && !GV->isThreadLocal()) { 2927 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2928 CXXThreadLocals.push_back(D); 2929 setTLSMode(GV, *D); 2930 } 2931 2932 maybeSetTrivialComdat(*D, *GV); 2933 2934 // Emit the initializer function if necessary. 2935 if (NeedsGlobalCtor || NeedsGlobalDtor) 2936 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2937 2938 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2939 2940 // Emit global variable debug information. 2941 if (CGDebugInfo *DI = getModuleDebugInfo()) 2942 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2943 DI->EmitGlobalVariable(GV, D); 2944 } 2945 2946 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2947 CodeGenModule &CGM, const VarDecl *D, 2948 bool NoCommon) { 2949 // Don't give variables common linkage if -fno-common was specified unless it 2950 // was overridden by a NoCommon attribute. 2951 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2952 return true; 2953 2954 // C11 6.9.2/2: 2955 // A declaration of an identifier for an object that has file scope without 2956 // an initializer, and without a storage-class specifier or with the 2957 // storage-class specifier static, constitutes a tentative definition. 2958 if (D->getInit() || D->hasExternalStorage()) 2959 return true; 2960 2961 // A variable cannot be both common and exist in a section. 2962 if (D->hasAttr<SectionAttr>()) 2963 return true; 2964 2965 // A variable cannot be both common and exist in a section. 2966 // We dont try to determine which is the right section in the front-end. 2967 // If no specialized section name is applicable, it will resort to default. 2968 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2969 D->hasAttr<PragmaClangDataSectionAttr>() || 2970 D->hasAttr<PragmaClangRodataSectionAttr>()) 2971 return true; 2972 2973 // Thread local vars aren't considered common linkage. 2974 if (D->getTLSKind()) 2975 return true; 2976 2977 // Tentative definitions marked with WeakImportAttr are true definitions. 2978 if (D->hasAttr<WeakImportAttr>()) 2979 return true; 2980 2981 // A variable cannot be both common and exist in a comdat. 2982 if (shouldBeInCOMDAT(CGM, *D)) 2983 return true; 2984 2985 // Declarations with a required alignment do not have common linkage in MSVC 2986 // mode. 2987 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2988 if (D->hasAttr<AlignedAttr>()) 2989 return true; 2990 QualType VarType = D->getType(); 2991 if (Context.isAlignmentRequired(VarType)) 2992 return true; 2993 2994 if (const auto *RT = VarType->getAs<RecordType>()) { 2995 const RecordDecl *RD = RT->getDecl(); 2996 for (const FieldDecl *FD : RD->fields()) { 2997 if (FD->isBitField()) 2998 continue; 2999 if (FD->hasAttr<AlignedAttr>()) 3000 return true; 3001 if (Context.isAlignmentRequired(FD->getType())) 3002 return true; 3003 } 3004 } 3005 } 3006 3007 return false; 3008 } 3009 3010 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3011 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3012 if (Linkage == GVA_Internal) 3013 return llvm::Function::InternalLinkage; 3014 3015 if (D->hasAttr<WeakAttr>()) { 3016 if (IsConstantVariable) 3017 return llvm::GlobalVariable::WeakODRLinkage; 3018 else 3019 return llvm::GlobalVariable::WeakAnyLinkage; 3020 } 3021 3022 // We are guaranteed to have a strong definition somewhere else, 3023 // so we can use available_externally linkage. 3024 if (Linkage == GVA_AvailableExternally) 3025 return llvm::GlobalValue::AvailableExternallyLinkage; 3026 3027 // Note that Apple's kernel linker doesn't support symbol 3028 // coalescing, so we need to avoid linkonce and weak linkages there. 3029 // Normally, this means we just map to internal, but for explicit 3030 // instantiations we'll map to external. 3031 3032 // In C++, the compiler has to emit a definition in every translation unit 3033 // that references the function. We should use linkonce_odr because 3034 // a) if all references in this translation unit are optimized away, we 3035 // don't need to codegen it. b) if the function persists, it needs to be 3036 // merged with other definitions. c) C++ has the ODR, so we know the 3037 // definition is dependable. 3038 if (Linkage == GVA_DiscardableODR) 3039 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3040 : llvm::Function::InternalLinkage; 3041 3042 // An explicit instantiation of a template has weak linkage, since 3043 // explicit instantiations can occur in multiple translation units 3044 // and must all be equivalent. However, we are not allowed to 3045 // throw away these explicit instantiations. 3046 // 3047 // We don't currently support CUDA device code spread out across multiple TUs, 3048 // so say that CUDA templates are either external (for kernels) or internal. 3049 // This lets llvm perform aggressive inter-procedural optimizations. 3050 if (Linkage == GVA_StrongODR) { 3051 if (Context.getLangOpts().AppleKext) 3052 return llvm::Function::ExternalLinkage; 3053 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3054 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3055 : llvm::Function::InternalLinkage; 3056 return llvm::Function::WeakODRLinkage; 3057 } 3058 3059 // C++ doesn't have tentative definitions and thus cannot have common 3060 // linkage. 3061 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3062 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3063 CodeGenOpts.NoCommon)) 3064 return llvm::GlobalVariable::CommonLinkage; 3065 3066 // selectany symbols are externally visible, so use weak instead of 3067 // linkonce. MSVC optimizes away references to const selectany globals, so 3068 // all definitions should be the same and ODR linkage should be used. 3069 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3070 if (D->hasAttr<SelectAnyAttr>()) 3071 return llvm::GlobalVariable::WeakODRLinkage; 3072 3073 // Otherwise, we have strong external linkage. 3074 assert(Linkage == GVA_StrongExternal); 3075 return llvm::GlobalVariable::ExternalLinkage; 3076 } 3077 3078 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3079 const VarDecl *VD, bool IsConstant) { 3080 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3081 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3082 } 3083 3084 /// Replace the uses of a function that was declared with a non-proto type. 3085 /// We want to silently drop extra arguments from call sites 3086 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3087 llvm::Function *newFn) { 3088 // Fast path. 3089 if (old->use_empty()) return; 3090 3091 llvm::Type *newRetTy = newFn->getReturnType(); 3092 SmallVector<llvm::Value*, 4> newArgs; 3093 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3094 3095 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3096 ui != ue; ) { 3097 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3098 llvm::User *user = use->getUser(); 3099 3100 // Recognize and replace uses of bitcasts. Most calls to 3101 // unprototyped functions will use bitcasts. 3102 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3103 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3104 replaceUsesOfNonProtoConstant(bitcast, newFn); 3105 continue; 3106 } 3107 3108 // Recognize calls to the function. 3109 llvm::CallSite callSite(user); 3110 if (!callSite) continue; 3111 if (!callSite.isCallee(&*use)) continue; 3112 3113 // If the return types don't match exactly, then we can't 3114 // transform this call unless it's dead. 3115 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3116 continue; 3117 3118 // Get the call site's attribute list. 3119 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3120 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3121 3122 // If the function was passed too few arguments, don't transform. 3123 unsigned newNumArgs = newFn->arg_size(); 3124 if (callSite.arg_size() < newNumArgs) continue; 3125 3126 // If extra arguments were passed, we silently drop them. 3127 // If any of the types mismatch, we don't transform. 3128 unsigned argNo = 0; 3129 bool dontTransform = false; 3130 for (llvm::Argument &A : newFn->args()) { 3131 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3132 dontTransform = true; 3133 break; 3134 } 3135 3136 // Add any parameter attributes. 3137 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3138 argNo++; 3139 } 3140 if (dontTransform) 3141 continue; 3142 3143 // Okay, we can transform this. Create the new call instruction and copy 3144 // over the required information. 3145 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3146 3147 // Copy over any operand bundles. 3148 callSite.getOperandBundlesAsDefs(newBundles); 3149 3150 llvm::CallSite newCall; 3151 if (callSite.isCall()) { 3152 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3153 callSite.getInstruction()); 3154 } else { 3155 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3156 newCall = llvm::InvokeInst::Create(newFn, 3157 oldInvoke->getNormalDest(), 3158 oldInvoke->getUnwindDest(), 3159 newArgs, newBundles, "", 3160 callSite.getInstruction()); 3161 } 3162 newArgs.clear(); // for the next iteration 3163 3164 if (!newCall->getType()->isVoidTy()) 3165 newCall->takeName(callSite.getInstruction()); 3166 newCall.setAttributes(llvm::AttributeList::get( 3167 newFn->getContext(), oldAttrs.getFnAttributes(), 3168 oldAttrs.getRetAttributes(), newArgAttrs)); 3169 newCall.setCallingConv(callSite.getCallingConv()); 3170 3171 // Finally, remove the old call, replacing any uses with the new one. 3172 if (!callSite->use_empty()) 3173 callSite->replaceAllUsesWith(newCall.getInstruction()); 3174 3175 // Copy debug location attached to CI. 3176 if (callSite->getDebugLoc()) 3177 newCall->setDebugLoc(callSite->getDebugLoc()); 3178 3179 callSite->eraseFromParent(); 3180 } 3181 } 3182 3183 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3184 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3185 /// existing call uses of the old function in the module, this adjusts them to 3186 /// call the new function directly. 3187 /// 3188 /// This is not just a cleanup: the always_inline pass requires direct calls to 3189 /// functions to be able to inline them. If there is a bitcast in the way, it 3190 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3191 /// run at -O0. 3192 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3193 llvm::Function *NewFn) { 3194 // If we're redefining a global as a function, don't transform it. 3195 if (!isa<llvm::Function>(Old)) return; 3196 3197 replaceUsesOfNonProtoConstant(Old, NewFn); 3198 } 3199 3200 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3201 auto DK = VD->isThisDeclarationADefinition(); 3202 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3203 return; 3204 3205 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3206 // If we have a definition, this might be a deferred decl. If the 3207 // instantiation is explicit, make sure we emit it at the end. 3208 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3209 GetAddrOfGlobalVar(VD); 3210 3211 EmitTopLevelDecl(VD); 3212 } 3213 3214 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3215 llvm::GlobalValue *GV) { 3216 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3217 3218 // Compute the function info and LLVM type. 3219 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3220 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3221 3222 // Get or create the prototype for the function. 3223 if (!GV || (GV->getType()->getElementType() != Ty)) 3224 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3225 /*DontDefer=*/true, 3226 ForDefinition)); 3227 3228 // Already emitted. 3229 if (!GV->isDeclaration()) 3230 return; 3231 3232 // We need to set linkage and visibility on the function before 3233 // generating code for it because various parts of IR generation 3234 // want to propagate this information down (e.g. to local static 3235 // declarations). 3236 auto *Fn = cast<llvm::Function>(GV); 3237 setFunctionLinkage(GD, Fn); 3238 setFunctionDLLStorageClass(GD, Fn); 3239 3240 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3241 setGlobalVisibility(Fn, D); 3242 3243 MaybeHandleStaticInExternC(D, Fn); 3244 3245 maybeSetTrivialComdat(*D, *Fn); 3246 3247 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3248 3249 setFunctionDefinitionAttributes(D, Fn); 3250 SetLLVMFunctionAttributesForDefinition(D, Fn); 3251 3252 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3253 AddGlobalCtor(Fn, CA->getPriority()); 3254 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3255 AddGlobalDtor(Fn, DA->getPriority()); 3256 if (D->hasAttr<AnnotateAttr>()) 3257 AddGlobalAnnotations(D, Fn); 3258 } 3259 3260 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3261 const auto *D = cast<ValueDecl>(GD.getDecl()); 3262 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3263 assert(AA && "Not an alias?"); 3264 3265 StringRef MangledName = getMangledName(GD); 3266 3267 if (AA->getAliasee() == MangledName) { 3268 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3269 return; 3270 } 3271 3272 // If there is a definition in the module, then it wins over the alias. 3273 // This is dubious, but allow it to be safe. Just ignore the alias. 3274 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3275 if (Entry && !Entry->isDeclaration()) 3276 return; 3277 3278 Aliases.push_back(GD); 3279 3280 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3281 3282 // Create a reference to the named value. This ensures that it is emitted 3283 // if a deferred decl. 3284 llvm::Constant *Aliasee; 3285 if (isa<llvm::FunctionType>(DeclTy)) 3286 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3287 /*ForVTable=*/false); 3288 else 3289 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3290 llvm::PointerType::getUnqual(DeclTy), 3291 /*D=*/nullptr); 3292 3293 // Create the new alias itself, but don't set a name yet. 3294 auto *GA = llvm::GlobalAlias::create( 3295 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3296 3297 if (Entry) { 3298 if (GA->getAliasee() == Entry) { 3299 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3300 return; 3301 } 3302 3303 assert(Entry->isDeclaration()); 3304 3305 // If there is a declaration in the module, then we had an extern followed 3306 // by the alias, as in: 3307 // extern int test6(); 3308 // ... 3309 // int test6() __attribute__((alias("test7"))); 3310 // 3311 // Remove it and replace uses of it with the alias. 3312 GA->takeName(Entry); 3313 3314 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3315 Entry->getType())); 3316 Entry->eraseFromParent(); 3317 } else { 3318 GA->setName(MangledName); 3319 } 3320 3321 // Set attributes which are particular to an alias; this is a 3322 // specialization of the attributes which may be set on a global 3323 // variable/function. 3324 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3325 D->isWeakImported()) { 3326 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3327 } 3328 3329 if (const auto *VD = dyn_cast<VarDecl>(D)) 3330 if (VD->getTLSKind()) 3331 setTLSMode(GA, *VD); 3332 3333 setAliasAttributes(D, GA); 3334 } 3335 3336 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3337 const auto *D = cast<ValueDecl>(GD.getDecl()); 3338 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3339 assert(IFA && "Not an ifunc?"); 3340 3341 StringRef MangledName = getMangledName(GD); 3342 3343 if (IFA->getResolver() == MangledName) { 3344 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3345 return; 3346 } 3347 3348 // Report an error if some definition overrides ifunc. 3349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3350 if (Entry && !Entry->isDeclaration()) { 3351 GlobalDecl OtherGD; 3352 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3353 DiagnosedConflictingDefinitions.insert(GD).second) { 3354 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3355 Diags.Report(OtherGD.getDecl()->getLocation(), 3356 diag::note_previous_definition); 3357 } 3358 return; 3359 } 3360 3361 Aliases.push_back(GD); 3362 3363 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3364 llvm::Constant *Resolver = 3365 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3366 /*ForVTable=*/false); 3367 llvm::GlobalIFunc *GIF = 3368 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3369 "", Resolver, &getModule()); 3370 if (Entry) { 3371 if (GIF->getResolver() == Entry) { 3372 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3373 return; 3374 } 3375 assert(Entry->isDeclaration()); 3376 3377 // If there is a declaration in the module, then we had an extern followed 3378 // by the ifunc, as in: 3379 // extern int test(); 3380 // ... 3381 // int test() __attribute__((ifunc("resolver"))); 3382 // 3383 // Remove it and replace uses of it with the ifunc. 3384 GIF->takeName(Entry); 3385 3386 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3387 Entry->getType())); 3388 Entry->eraseFromParent(); 3389 } else 3390 GIF->setName(MangledName); 3391 3392 SetCommonAttributes(D, GIF); 3393 } 3394 3395 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3396 ArrayRef<llvm::Type*> Tys) { 3397 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3398 Tys); 3399 } 3400 3401 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3402 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3403 const StringLiteral *Literal, bool TargetIsLSB, 3404 bool &IsUTF16, unsigned &StringLength) { 3405 StringRef String = Literal->getString(); 3406 unsigned NumBytes = String.size(); 3407 3408 // Check for simple case. 3409 if (!Literal->containsNonAsciiOrNull()) { 3410 StringLength = NumBytes; 3411 return *Map.insert(std::make_pair(String, nullptr)).first; 3412 } 3413 3414 // Otherwise, convert the UTF8 literals into a string of shorts. 3415 IsUTF16 = true; 3416 3417 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3418 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3419 llvm::UTF16 *ToPtr = &ToBuf[0]; 3420 3421 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3422 ToPtr + NumBytes, llvm::strictConversion); 3423 3424 // ConvertUTF8toUTF16 returns the length in ToPtr. 3425 StringLength = ToPtr - &ToBuf[0]; 3426 3427 // Add an explicit null. 3428 *ToPtr = 0; 3429 return *Map.insert(std::make_pair( 3430 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3431 (StringLength + 1) * 2), 3432 nullptr)).first; 3433 } 3434 3435 ConstantAddress 3436 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3437 unsigned StringLength = 0; 3438 bool isUTF16 = false; 3439 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3440 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3441 getDataLayout().isLittleEndian(), isUTF16, 3442 StringLength); 3443 3444 if (auto *C = Entry.second) 3445 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3446 3447 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3448 llvm::Constant *Zeros[] = { Zero, Zero }; 3449 3450 // If we don't already have it, get __CFConstantStringClassReference. 3451 if (!CFConstantStringClassRef) { 3452 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3453 Ty = llvm::ArrayType::get(Ty, 0); 3454 llvm::Constant *GV = 3455 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3456 3457 if (getTriple().isOSBinFormatCOFF()) { 3458 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3459 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3460 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3461 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3462 3463 const VarDecl *VD = nullptr; 3464 for (const auto &Result : DC->lookup(&II)) 3465 if ((VD = dyn_cast<VarDecl>(Result))) 3466 break; 3467 3468 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3469 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3470 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3471 } else { 3472 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3473 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3474 } 3475 } 3476 3477 // Decay array -> ptr 3478 CFConstantStringClassRef = 3479 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3480 } 3481 3482 QualType CFTy = getContext().getCFConstantStringType(); 3483 3484 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3485 3486 ConstantInitBuilder Builder(*this); 3487 auto Fields = Builder.beginStruct(STy); 3488 3489 // Class pointer. 3490 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3491 3492 // Flags. 3493 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3494 3495 // String pointer. 3496 llvm::Constant *C = nullptr; 3497 if (isUTF16) { 3498 auto Arr = llvm::makeArrayRef( 3499 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3500 Entry.first().size() / 2); 3501 C = llvm::ConstantDataArray::get(VMContext, Arr); 3502 } else { 3503 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3504 } 3505 3506 // Note: -fwritable-strings doesn't make the backing store strings of 3507 // CFStrings writable. (See <rdar://problem/10657500>) 3508 auto *GV = 3509 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3510 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3511 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3512 // Don't enforce the target's minimum global alignment, since the only use 3513 // of the string is via this class initializer. 3514 CharUnits Align = isUTF16 3515 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3516 : getContext().getTypeAlignInChars(getContext().CharTy); 3517 GV->setAlignment(Align.getQuantity()); 3518 3519 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3520 // Without it LLVM can merge the string with a non unnamed_addr one during 3521 // LTO. Doing that changes the section it ends in, which surprises ld64. 3522 if (getTriple().isOSBinFormatMachO()) 3523 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3524 : "__TEXT,__cstring,cstring_literals"); 3525 3526 // String. 3527 llvm::Constant *Str = 3528 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3529 3530 if (isUTF16) 3531 // Cast the UTF16 string to the correct type. 3532 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3533 Fields.add(Str); 3534 3535 // String length. 3536 auto Ty = getTypes().ConvertType(getContext().LongTy); 3537 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3538 3539 CharUnits Alignment = getPointerAlign(); 3540 3541 // The struct. 3542 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3543 /*isConstant=*/false, 3544 llvm::GlobalVariable::PrivateLinkage); 3545 switch (getTriple().getObjectFormat()) { 3546 case llvm::Triple::UnknownObjectFormat: 3547 llvm_unreachable("unknown file format"); 3548 case llvm::Triple::COFF: 3549 case llvm::Triple::ELF: 3550 case llvm::Triple::Wasm: 3551 GV->setSection("cfstring"); 3552 break; 3553 case llvm::Triple::MachO: 3554 GV->setSection("__DATA,__cfstring"); 3555 break; 3556 } 3557 Entry.second = GV; 3558 3559 return ConstantAddress(GV, Alignment); 3560 } 3561 3562 bool CodeGenModule::getExpressionLocationsEnabled() const { 3563 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3564 } 3565 3566 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3567 if (ObjCFastEnumerationStateType.isNull()) { 3568 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3569 D->startDefinition(); 3570 3571 QualType FieldTypes[] = { 3572 Context.UnsignedLongTy, 3573 Context.getPointerType(Context.getObjCIdType()), 3574 Context.getPointerType(Context.UnsignedLongTy), 3575 Context.getConstantArrayType(Context.UnsignedLongTy, 3576 llvm::APInt(32, 5), ArrayType::Normal, 0) 3577 }; 3578 3579 for (size_t i = 0; i < 4; ++i) { 3580 FieldDecl *Field = FieldDecl::Create(Context, 3581 D, 3582 SourceLocation(), 3583 SourceLocation(), nullptr, 3584 FieldTypes[i], /*TInfo=*/nullptr, 3585 /*BitWidth=*/nullptr, 3586 /*Mutable=*/false, 3587 ICIS_NoInit); 3588 Field->setAccess(AS_public); 3589 D->addDecl(Field); 3590 } 3591 3592 D->completeDefinition(); 3593 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3594 } 3595 3596 return ObjCFastEnumerationStateType; 3597 } 3598 3599 llvm::Constant * 3600 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3601 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3602 3603 // Don't emit it as the address of the string, emit the string data itself 3604 // as an inline array. 3605 if (E->getCharByteWidth() == 1) { 3606 SmallString<64> Str(E->getString()); 3607 3608 // Resize the string to the right size, which is indicated by its type. 3609 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3610 Str.resize(CAT->getSize().getZExtValue()); 3611 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3612 } 3613 3614 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3615 llvm::Type *ElemTy = AType->getElementType(); 3616 unsigned NumElements = AType->getNumElements(); 3617 3618 // Wide strings have either 2-byte or 4-byte elements. 3619 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3620 SmallVector<uint16_t, 32> Elements; 3621 Elements.reserve(NumElements); 3622 3623 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3624 Elements.push_back(E->getCodeUnit(i)); 3625 Elements.resize(NumElements); 3626 return llvm::ConstantDataArray::get(VMContext, Elements); 3627 } 3628 3629 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3630 SmallVector<uint32_t, 32> Elements; 3631 Elements.reserve(NumElements); 3632 3633 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3634 Elements.push_back(E->getCodeUnit(i)); 3635 Elements.resize(NumElements); 3636 return llvm::ConstantDataArray::get(VMContext, Elements); 3637 } 3638 3639 static llvm::GlobalVariable * 3640 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3641 CodeGenModule &CGM, StringRef GlobalName, 3642 CharUnits Alignment) { 3643 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3644 unsigned AddrSpace = 0; 3645 if (CGM.getLangOpts().OpenCL) 3646 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3647 3648 llvm::Module &M = CGM.getModule(); 3649 // Create a global variable for this string 3650 auto *GV = new llvm::GlobalVariable( 3651 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3652 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3653 GV->setAlignment(Alignment.getQuantity()); 3654 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3655 if (GV->isWeakForLinker()) { 3656 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3657 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3658 } 3659 3660 return GV; 3661 } 3662 3663 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3664 /// constant array for the given string literal. 3665 ConstantAddress 3666 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3667 StringRef Name) { 3668 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3669 3670 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3671 llvm::GlobalVariable **Entry = nullptr; 3672 if (!LangOpts.WritableStrings) { 3673 Entry = &ConstantStringMap[C]; 3674 if (auto GV = *Entry) { 3675 if (Alignment.getQuantity() > GV->getAlignment()) 3676 GV->setAlignment(Alignment.getQuantity()); 3677 return ConstantAddress(GV, Alignment); 3678 } 3679 } 3680 3681 SmallString<256> MangledNameBuffer; 3682 StringRef GlobalVariableName; 3683 llvm::GlobalValue::LinkageTypes LT; 3684 3685 // Mangle the string literal if the ABI allows for it. However, we cannot 3686 // do this if we are compiling with ASan or -fwritable-strings because they 3687 // rely on strings having normal linkage. 3688 if (!LangOpts.WritableStrings && 3689 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3690 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3691 llvm::raw_svector_ostream Out(MangledNameBuffer); 3692 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3693 3694 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3695 GlobalVariableName = MangledNameBuffer; 3696 } else { 3697 LT = llvm::GlobalValue::PrivateLinkage; 3698 GlobalVariableName = Name; 3699 } 3700 3701 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3702 if (Entry) 3703 *Entry = GV; 3704 3705 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3706 QualType()); 3707 return ConstantAddress(GV, Alignment); 3708 } 3709 3710 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3711 /// array for the given ObjCEncodeExpr node. 3712 ConstantAddress 3713 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3714 std::string Str; 3715 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3716 3717 return GetAddrOfConstantCString(Str); 3718 } 3719 3720 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3721 /// the literal and a terminating '\0' character. 3722 /// The result has pointer to array type. 3723 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3724 const std::string &Str, const char *GlobalName) { 3725 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3726 CharUnits Alignment = 3727 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3728 3729 llvm::Constant *C = 3730 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3731 3732 // Don't share any string literals if strings aren't constant. 3733 llvm::GlobalVariable **Entry = nullptr; 3734 if (!LangOpts.WritableStrings) { 3735 Entry = &ConstantStringMap[C]; 3736 if (auto GV = *Entry) { 3737 if (Alignment.getQuantity() > GV->getAlignment()) 3738 GV->setAlignment(Alignment.getQuantity()); 3739 return ConstantAddress(GV, Alignment); 3740 } 3741 } 3742 3743 // Get the default prefix if a name wasn't specified. 3744 if (!GlobalName) 3745 GlobalName = ".str"; 3746 // Create a global variable for this. 3747 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3748 GlobalName, Alignment); 3749 if (Entry) 3750 *Entry = GV; 3751 return ConstantAddress(GV, Alignment); 3752 } 3753 3754 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3755 const MaterializeTemporaryExpr *E, const Expr *Init) { 3756 assert((E->getStorageDuration() == SD_Static || 3757 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3758 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3759 3760 // If we're not materializing a subobject of the temporary, keep the 3761 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3762 QualType MaterializedType = Init->getType(); 3763 if (Init == E->GetTemporaryExpr()) 3764 MaterializedType = E->getType(); 3765 3766 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3767 3768 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3769 return ConstantAddress(Slot, Align); 3770 3771 // FIXME: If an externally-visible declaration extends multiple temporaries, 3772 // we need to give each temporary the same name in every translation unit (and 3773 // we also need to make the temporaries externally-visible). 3774 SmallString<256> Name; 3775 llvm::raw_svector_ostream Out(Name); 3776 getCXXABI().getMangleContext().mangleReferenceTemporary( 3777 VD, E->getManglingNumber(), Out); 3778 3779 APValue *Value = nullptr; 3780 if (E->getStorageDuration() == SD_Static) { 3781 // We might have a cached constant initializer for this temporary. Note 3782 // that this might have a different value from the value computed by 3783 // evaluating the initializer if the surrounding constant expression 3784 // modifies the temporary. 3785 Value = getContext().getMaterializedTemporaryValue(E, false); 3786 if (Value && Value->isUninit()) 3787 Value = nullptr; 3788 } 3789 3790 // Try evaluating it now, it might have a constant initializer. 3791 Expr::EvalResult EvalResult; 3792 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3793 !EvalResult.hasSideEffects()) 3794 Value = &EvalResult.Val; 3795 3796 unsigned AddrSpace = 3797 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3798 3799 Optional<ConstantEmitter> emitter; 3800 llvm::Constant *InitialValue = nullptr; 3801 bool Constant = false; 3802 llvm::Type *Type; 3803 if (Value) { 3804 // The temporary has a constant initializer, use it. 3805 emitter.emplace(*this); 3806 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3807 MaterializedType); 3808 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3809 Type = InitialValue->getType(); 3810 } else { 3811 // No initializer, the initialization will be provided when we 3812 // initialize the declaration which performed lifetime extension. 3813 Type = getTypes().ConvertTypeForMem(MaterializedType); 3814 } 3815 3816 // Create a global variable for this lifetime-extended temporary. 3817 llvm::GlobalValue::LinkageTypes Linkage = 3818 getLLVMLinkageVarDefinition(VD, Constant); 3819 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3820 const VarDecl *InitVD; 3821 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3822 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3823 // Temporaries defined inside a class get linkonce_odr linkage because the 3824 // class can be defined in multipe translation units. 3825 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3826 } else { 3827 // There is no need for this temporary to have external linkage if the 3828 // VarDecl has external linkage. 3829 Linkage = llvm::GlobalVariable::InternalLinkage; 3830 } 3831 } 3832 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3833 auto *GV = new llvm::GlobalVariable( 3834 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3835 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3836 if (emitter) emitter->finalize(GV); 3837 setGlobalVisibility(GV, VD); 3838 GV->setAlignment(Align.getQuantity()); 3839 if (supportsCOMDAT() && GV->isWeakForLinker()) 3840 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3841 if (VD->getTLSKind()) 3842 setTLSMode(GV, *VD); 3843 llvm::Constant *CV = GV; 3844 if (AddrSpace != LangAS::Default) 3845 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3846 *this, GV, AddrSpace, LangAS::Default, 3847 Type->getPointerTo( 3848 getContext().getTargetAddressSpace(LangAS::Default))); 3849 MaterializedGlobalTemporaryMap[E] = CV; 3850 return ConstantAddress(CV, Align); 3851 } 3852 3853 /// EmitObjCPropertyImplementations - Emit information for synthesized 3854 /// properties for an implementation. 3855 void CodeGenModule::EmitObjCPropertyImplementations(const 3856 ObjCImplementationDecl *D) { 3857 for (const auto *PID : D->property_impls()) { 3858 // Dynamic is just for type-checking. 3859 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3860 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3861 3862 // Determine which methods need to be implemented, some may have 3863 // been overridden. Note that ::isPropertyAccessor is not the method 3864 // we want, that just indicates if the decl came from a 3865 // property. What we want to know is if the method is defined in 3866 // this implementation. 3867 if (!D->getInstanceMethod(PD->getGetterName())) 3868 CodeGenFunction(*this).GenerateObjCGetter( 3869 const_cast<ObjCImplementationDecl *>(D), PID); 3870 if (!PD->isReadOnly() && 3871 !D->getInstanceMethod(PD->getSetterName())) 3872 CodeGenFunction(*this).GenerateObjCSetter( 3873 const_cast<ObjCImplementationDecl *>(D), PID); 3874 } 3875 } 3876 } 3877 3878 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3879 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3880 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3881 ivar; ivar = ivar->getNextIvar()) 3882 if (ivar->getType().isDestructedType()) 3883 return true; 3884 3885 return false; 3886 } 3887 3888 static bool AllTrivialInitializers(CodeGenModule &CGM, 3889 ObjCImplementationDecl *D) { 3890 CodeGenFunction CGF(CGM); 3891 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3892 E = D->init_end(); B != E; ++B) { 3893 CXXCtorInitializer *CtorInitExp = *B; 3894 Expr *Init = CtorInitExp->getInit(); 3895 if (!CGF.isTrivialInitializer(Init)) 3896 return false; 3897 } 3898 return true; 3899 } 3900 3901 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3902 /// for an implementation. 3903 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3904 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3905 if (needsDestructMethod(D)) { 3906 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3907 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3908 ObjCMethodDecl *DTORMethod = 3909 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3910 cxxSelector, getContext().VoidTy, nullptr, D, 3911 /*isInstance=*/true, /*isVariadic=*/false, 3912 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3913 /*isDefined=*/false, ObjCMethodDecl::Required); 3914 D->addInstanceMethod(DTORMethod); 3915 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3916 D->setHasDestructors(true); 3917 } 3918 3919 // If the implementation doesn't have any ivar initializers, we don't need 3920 // a .cxx_construct. 3921 if (D->getNumIvarInitializers() == 0 || 3922 AllTrivialInitializers(*this, D)) 3923 return; 3924 3925 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3926 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3927 // The constructor returns 'self'. 3928 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3929 D->getLocation(), 3930 D->getLocation(), 3931 cxxSelector, 3932 getContext().getObjCIdType(), 3933 nullptr, D, /*isInstance=*/true, 3934 /*isVariadic=*/false, 3935 /*isPropertyAccessor=*/true, 3936 /*isImplicitlyDeclared=*/true, 3937 /*isDefined=*/false, 3938 ObjCMethodDecl::Required); 3939 D->addInstanceMethod(CTORMethod); 3940 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3941 D->setHasNonZeroConstructors(true); 3942 } 3943 3944 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3945 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3946 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3947 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3948 ErrorUnsupported(LSD, "linkage spec"); 3949 return; 3950 } 3951 3952 EmitDeclContext(LSD); 3953 } 3954 3955 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3956 for (auto *I : DC->decls()) { 3957 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3958 // are themselves considered "top-level", so EmitTopLevelDecl on an 3959 // ObjCImplDecl does not recursively visit them. We need to do that in 3960 // case they're nested inside another construct (LinkageSpecDecl / 3961 // ExportDecl) that does stop them from being considered "top-level". 3962 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3963 for (auto *M : OID->methods()) 3964 EmitTopLevelDecl(M); 3965 } 3966 3967 EmitTopLevelDecl(I); 3968 } 3969 } 3970 3971 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3972 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3973 // Ignore dependent declarations. 3974 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3975 return; 3976 3977 switch (D->getKind()) { 3978 case Decl::CXXConversion: 3979 case Decl::CXXMethod: 3980 case Decl::Function: 3981 // Skip function templates 3982 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3983 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3984 return; 3985 3986 EmitGlobal(cast<FunctionDecl>(D)); 3987 // Always provide some coverage mapping 3988 // even for the functions that aren't emitted. 3989 AddDeferredUnusedCoverageMapping(D); 3990 break; 3991 3992 case Decl::CXXDeductionGuide: 3993 // Function-like, but does not result in code emission. 3994 break; 3995 3996 case Decl::Var: 3997 case Decl::Decomposition: 3998 // Skip variable templates 3999 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4000 return; 4001 LLVM_FALLTHROUGH; 4002 case Decl::VarTemplateSpecialization: 4003 EmitGlobal(cast<VarDecl>(D)); 4004 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4005 for (auto *B : DD->bindings()) 4006 if (auto *HD = B->getHoldingVar()) 4007 EmitGlobal(HD); 4008 break; 4009 4010 // Indirect fields from global anonymous structs and unions can be 4011 // ignored; only the actual variable requires IR gen support. 4012 case Decl::IndirectField: 4013 break; 4014 4015 // C++ Decls 4016 case Decl::Namespace: 4017 EmitDeclContext(cast<NamespaceDecl>(D)); 4018 break; 4019 case Decl::CXXRecord: 4020 if (DebugInfo) { 4021 if (auto *ES = D->getASTContext().getExternalSource()) 4022 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4023 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4024 } 4025 // Emit any static data members, they may be definitions. 4026 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4027 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4028 EmitTopLevelDecl(I); 4029 break; 4030 // No code generation needed. 4031 case Decl::UsingShadow: 4032 case Decl::ClassTemplate: 4033 case Decl::VarTemplate: 4034 case Decl::VarTemplatePartialSpecialization: 4035 case Decl::FunctionTemplate: 4036 case Decl::TypeAliasTemplate: 4037 case Decl::Block: 4038 case Decl::Empty: 4039 break; 4040 case Decl::Using: // using X; [C++] 4041 if (CGDebugInfo *DI = getModuleDebugInfo()) 4042 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4043 return; 4044 case Decl::NamespaceAlias: 4045 if (CGDebugInfo *DI = getModuleDebugInfo()) 4046 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4047 return; 4048 case Decl::UsingDirective: // using namespace X; [C++] 4049 if (CGDebugInfo *DI = getModuleDebugInfo()) 4050 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4051 return; 4052 case Decl::CXXConstructor: 4053 // Skip function templates 4054 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4055 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4056 return; 4057 4058 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4059 break; 4060 case Decl::CXXDestructor: 4061 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4062 return; 4063 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4064 break; 4065 4066 case Decl::StaticAssert: 4067 // Nothing to do. 4068 break; 4069 4070 // Objective-C Decls 4071 4072 // Forward declarations, no (immediate) code generation. 4073 case Decl::ObjCInterface: 4074 case Decl::ObjCCategory: 4075 break; 4076 4077 case Decl::ObjCProtocol: { 4078 auto *Proto = cast<ObjCProtocolDecl>(D); 4079 if (Proto->isThisDeclarationADefinition()) 4080 ObjCRuntime->GenerateProtocol(Proto); 4081 break; 4082 } 4083 4084 case Decl::ObjCCategoryImpl: 4085 // Categories have properties but don't support synthesize so we 4086 // can ignore them here. 4087 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4088 break; 4089 4090 case Decl::ObjCImplementation: { 4091 auto *OMD = cast<ObjCImplementationDecl>(D); 4092 EmitObjCPropertyImplementations(OMD); 4093 EmitObjCIvarInitializations(OMD); 4094 ObjCRuntime->GenerateClass(OMD); 4095 // Emit global variable debug information. 4096 if (CGDebugInfo *DI = getModuleDebugInfo()) 4097 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4098 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4099 OMD->getClassInterface()), OMD->getLocation()); 4100 break; 4101 } 4102 case Decl::ObjCMethod: { 4103 auto *OMD = cast<ObjCMethodDecl>(D); 4104 // If this is not a prototype, emit the body. 4105 if (OMD->getBody()) 4106 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4107 break; 4108 } 4109 case Decl::ObjCCompatibleAlias: 4110 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4111 break; 4112 4113 case Decl::PragmaComment: { 4114 const auto *PCD = cast<PragmaCommentDecl>(D); 4115 switch (PCD->getCommentKind()) { 4116 case PCK_Unknown: 4117 llvm_unreachable("unexpected pragma comment kind"); 4118 case PCK_Linker: 4119 AppendLinkerOptions(PCD->getArg()); 4120 break; 4121 case PCK_Lib: 4122 AddDependentLib(PCD->getArg()); 4123 break; 4124 case PCK_Compiler: 4125 case PCK_ExeStr: 4126 case PCK_User: 4127 break; // We ignore all of these. 4128 } 4129 break; 4130 } 4131 4132 case Decl::PragmaDetectMismatch: { 4133 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4134 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4135 break; 4136 } 4137 4138 case Decl::LinkageSpec: 4139 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4140 break; 4141 4142 case Decl::FileScopeAsm: { 4143 // File-scope asm is ignored during device-side CUDA compilation. 4144 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4145 break; 4146 // File-scope asm is ignored during device-side OpenMP compilation. 4147 if (LangOpts.OpenMPIsDevice) 4148 break; 4149 auto *AD = cast<FileScopeAsmDecl>(D); 4150 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4151 break; 4152 } 4153 4154 case Decl::Import: { 4155 auto *Import = cast<ImportDecl>(D); 4156 4157 // If we've already imported this module, we're done. 4158 if (!ImportedModules.insert(Import->getImportedModule())) 4159 break; 4160 4161 // Emit debug information for direct imports. 4162 if (!Import->getImportedOwningModule()) { 4163 if (CGDebugInfo *DI = getModuleDebugInfo()) 4164 DI->EmitImportDecl(*Import); 4165 } 4166 4167 // Find all of the submodules and emit the module initializers. 4168 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4169 SmallVector<clang::Module *, 16> Stack; 4170 Visited.insert(Import->getImportedModule()); 4171 Stack.push_back(Import->getImportedModule()); 4172 4173 while (!Stack.empty()) { 4174 clang::Module *Mod = Stack.pop_back_val(); 4175 if (!EmittedModuleInitializers.insert(Mod).second) 4176 continue; 4177 4178 for (auto *D : Context.getModuleInitializers(Mod)) 4179 EmitTopLevelDecl(D); 4180 4181 // Visit the submodules of this module. 4182 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4183 SubEnd = Mod->submodule_end(); 4184 Sub != SubEnd; ++Sub) { 4185 // Skip explicit children; they need to be explicitly imported to emit 4186 // the initializers. 4187 if ((*Sub)->IsExplicit) 4188 continue; 4189 4190 if (Visited.insert(*Sub).second) 4191 Stack.push_back(*Sub); 4192 } 4193 } 4194 break; 4195 } 4196 4197 case Decl::Export: 4198 EmitDeclContext(cast<ExportDecl>(D)); 4199 break; 4200 4201 case Decl::OMPThreadPrivate: 4202 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4203 break; 4204 4205 case Decl::ClassTemplateSpecialization: { 4206 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4207 if (DebugInfo && 4208 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4209 Spec->hasDefinition()) 4210 DebugInfo->completeTemplateDefinition(*Spec); 4211 break; 4212 } 4213 4214 case Decl::OMPDeclareReduction: 4215 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4216 break; 4217 4218 default: 4219 // Make sure we handled everything we should, every other kind is a 4220 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4221 // function. Need to recode Decl::Kind to do that easily. 4222 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4223 break; 4224 } 4225 } 4226 4227 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4228 // Do we need to generate coverage mapping? 4229 if (!CodeGenOpts.CoverageMapping) 4230 return; 4231 switch (D->getKind()) { 4232 case Decl::CXXConversion: 4233 case Decl::CXXMethod: 4234 case Decl::Function: 4235 case Decl::ObjCMethod: 4236 case Decl::CXXConstructor: 4237 case Decl::CXXDestructor: { 4238 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4239 return; 4240 SourceManager &SM = getContext().getSourceManager(); 4241 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4242 return; 4243 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4244 if (I == DeferredEmptyCoverageMappingDecls.end()) 4245 DeferredEmptyCoverageMappingDecls[D] = true; 4246 break; 4247 } 4248 default: 4249 break; 4250 }; 4251 } 4252 4253 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4254 // Do we need to generate coverage mapping? 4255 if (!CodeGenOpts.CoverageMapping) 4256 return; 4257 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4258 if (Fn->isTemplateInstantiation()) 4259 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4260 } 4261 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4262 if (I == DeferredEmptyCoverageMappingDecls.end()) 4263 DeferredEmptyCoverageMappingDecls[D] = false; 4264 else 4265 I->second = false; 4266 } 4267 4268 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4269 std::vector<const Decl *> DeferredDecls; 4270 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4271 if (!I.second) 4272 continue; 4273 DeferredDecls.push_back(I.first); 4274 } 4275 // Sort the declarations by their location to make sure that the tests get a 4276 // predictable order for the coverage mapping for the unused declarations. 4277 if (CodeGenOpts.DumpCoverageMapping) 4278 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4279 [] (const Decl *LHS, const Decl *RHS) { 4280 return LHS->getLocStart() < RHS->getLocStart(); 4281 }); 4282 for (const auto *D : DeferredDecls) { 4283 switch (D->getKind()) { 4284 case Decl::CXXConversion: 4285 case Decl::CXXMethod: 4286 case Decl::Function: 4287 case Decl::ObjCMethod: { 4288 CodeGenPGO PGO(*this); 4289 GlobalDecl GD(cast<FunctionDecl>(D)); 4290 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4291 getFunctionLinkage(GD)); 4292 break; 4293 } 4294 case Decl::CXXConstructor: { 4295 CodeGenPGO PGO(*this); 4296 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4297 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4298 getFunctionLinkage(GD)); 4299 break; 4300 } 4301 case Decl::CXXDestructor: { 4302 CodeGenPGO PGO(*this); 4303 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4304 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4305 getFunctionLinkage(GD)); 4306 break; 4307 } 4308 default: 4309 break; 4310 }; 4311 } 4312 } 4313 4314 /// Turns the given pointer into a constant. 4315 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4316 const void *Ptr) { 4317 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4318 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4319 return llvm::ConstantInt::get(i64, PtrInt); 4320 } 4321 4322 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4323 llvm::NamedMDNode *&GlobalMetadata, 4324 GlobalDecl D, 4325 llvm::GlobalValue *Addr) { 4326 if (!GlobalMetadata) 4327 GlobalMetadata = 4328 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4329 4330 // TODO: should we report variant information for ctors/dtors? 4331 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4332 llvm::ConstantAsMetadata::get(GetPointerConstant( 4333 CGM.getLLVMContext(), D.getDecl()))}; 4334 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4335 } 4336 4337 /// For each function which is declared within an extern "C" region and marked 4338 /// as 'used', but has internal linkage, create an alias from the unmangled 4339 /// name to the mangled name if possible. People expect to be able to refer 4340 /// to such functions with an unmangled name from inline assembly within the 4341 /// same translation unit. 4342 void CodeGenModule::EmitStaticExternCAliases() { 4343 // Don't do anything if we're generating CUDA device code -- the NVPTX 4344 // assembly target doesn't support aliases. 4345 if (Context.getTargetInfo().getTriple().isNVPTX()) 4346 return; 4347 for (auto &I : StaticExternCValues) { 4348 IdentifierInfo *Name = I.first; 4349 llvm::GlobalValue *Val = I.second; 4350 if (Val && !getModule().getNamedValue(Name->getName())) 4351 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4352 } 4353 } 4354 4355 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4356 GlobalDecl &Result) const { 4357 auto Res = Manglings.find(MangledName); 4358 if (Res == Manglings.end()) 4359 return false; 4360 Result = Res->getValue(); 4361 return true; 4362 } 4363 4364 /// Emits metadata nodes associating all the global values in the 4365 /// current module with the Decls they came from. This is useful for 4366 /// projects using IR gen as a subroutine. 4367 /// 4368 /// Since there's currently no way to associate an MDNode directly 4369 /// with an llvm::GlobalValue, we create a global named metadata 4370 /// with the name 'clang.global.decl.ptrs'. 4371 void CodeGenModule::EmitDeclMetadata() { 4372 llvm::NamedMDNode *GlobalMetadata = nullptr; 4373 4374 for (auto &I : MangledDeclNames) { 4375 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4376 // Some mangled names don't necessarily have an associated GlobalValue 4377 // in this module, e.g. if we mangled it for DebugInfo. 4378 if (Addr) 4379 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4380 } 4381 } 4382 4383 /// Emits metadata nodes for all the local variables in the current 4384 /// function. 4385 void CodeGenFunction::EmitDeclMetadata() { 4386 if (LocalDeclMap.empty()) return; 4387 4388 llvm::LLVMContext &Context = getLLVMContext(); 4389 4390 // Find the unique metadata ID for this name. 4391 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4392 4393 llvm::NamedMDNode *GlobalMetadata = nullptr; 4394 4395 for (auto &I : LocalDeclMap) { 4396 const Decl *D = I.first; 4397 llvm::Value *Addr = I.second.getPointer(); 4398 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4399 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4400 Alloca->setMetadata( 4401 DeclPtrKind, llvm::MDNode::get( 4402 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4403 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4404 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4405 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4406 } 4407 } 4408 } 4409 4410 void CodeGenModule::EmitVersionIdentMetadata() { 4411 llvm::NamedMDNode *IdentMetadata = 4412 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4413 std::string Version = getClangFullVersion(); 4414 llvm::LLVMContext &Ctx = TheModule.getContext(); 4415 4416 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4417 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4418 } 4419 4420 void CodeGenModule::EmitTargetMetadata() { 4421 // Warning, new MangledDeclNames may be appended within this loop. 4422 // We rely on MapVector insertions adding new elements to the end 4423 // of the container. 4424 // FIXME: Move this loop into the one target that needs it, and only 4425 // loop over those declarations for which we couldn't emit the target 4426 // metadata when we emitted the declaration. 4427 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4428 auto Val = *(MangledDeclNames.begin() + I); 4429 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4430 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4431 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4432 } 4433 } 4434 4435 void CodeGenModule::EmitCoverageFile() { 4436 if (getCodeGenOpts().CoverageDataFile.empty() && 4437 getCodeGenOpts().CoverageNotesFile.empty()) 4438 return; 4439 4440 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4441 if (!CUNode) 4442 return; 4443 4444 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4445 llvm::LLVMContext &Ctx = TheModule.getContext(); 4446 auto *CoverageDataFile = 4447 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4448 auto *CoverageNotesFile = 4449 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4450 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4451 llvm::MDNode *CU = CUNode->getOperand(i); 4452 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4453 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4454 } 4455 } 4456 4457 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4458 // Sema has checked that all uuid strings are of the form 4459 // "12345678-1234-1234-1234-1234567890ab". 4460 assert(Uuid.size() == 36); 4461 for (unsigned i = 0; i < 36; ++i) { 4462 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4463 else assert(isHexDigit(Uuid[i])); 4464 } 4465 4466 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4467 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4468 4469 llvm::Constant *Field3[8]; 4470 for (unsigned Idx = 0; Idx < 8; ++Idx) 4471 Field3[Idx] = llvm::ConstantInt::get( 4472 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4473 4474 llvm::Constant *Fields[4] = { 4475 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4476 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4477 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4478 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4479 }; 4480 4481 return llvm::ConstantStruct::getAnon(Fields); 4482 } 4483 4484 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4485 bool ForEH) { 4486 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4487 // FIXME: should we even be calling this method if RTTI is disabled 4488 // and it's not for EH? 4489 if (!ForEH && !getLangOpts().RTTI) 4490 return llvm::Constant::getNullValue(Int8PtrTy); 4491 4492 if (ForEH && Ty->isObjCObjectPointerType() && 4493 LangOpts.ObjCRuntime.isGNUFamily()) 4494 return ObjCRuntime->GetEHType(Ty); 4495 4496 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4497 } 4498 4499 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4500 for (auto RefExpr : D->varlists()) { 4501 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4502 bool PerformInit = 4503 VD->getAnyInitializer() && 4504 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4505 /*ForRef=*/false); 4506 4507 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4508 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4509 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4510 CXXGlobalInits.push_back(InitFunction); 4511 } 4512 } 4513 4514 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4515 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4516 if (InternalId) 4517 return InternalId; 4518 4519 if (isExternallyVisible(T->getLinkage())) { 4520 std::string OutName; 4521 llvm::raw_string_ostream Out(OutName); 4522 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4523 4524 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4525 } else { 4526 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4527 llvm::ArrayRef<llvm::Metadata *>()); 4528 } 4529 4530 return InternalId; 4531 } 4532 4533 /// Returns whether this module needs the "all-vtables" type identifier. 4534 bool CodeGenModule::NeedAllVtablesTypeId() const { 4535 // Returns true if at least one of vtable-based CFI checkers is enabled and 4536 // is not in the trapping mode. 4537 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4538 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4539 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4540 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4541 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4542 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4543 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4544 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4545 } 4546 4547 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4548 CharUnits Offset, 4549 const CXXRecordDecl *RD) { 4550 llvm::Metadata *MD = 4551 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4552 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4553 4554 if (CodeGenOpts.SanitizeCfiCrossDso) 4555 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4556 VTable->addTypeMetadata(Offset.getQuantity(), 4557 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4558 4559 if (NeedAllVtablesTypeId()) { 4560 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4561 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4562 } 4563 } 4564 4565 // Fills in the supplied string map with the set of target features for the 4566 // passed in function. 4567 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4568 const FunctionDecl *FD) { 4569 StringRef TargetCPU = Target.getTargetOpts().CPU; 4570 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4571 // If we have a TargetAttr build up the feature map based on that. 4572 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4573 4574 // Make a copy of the features as passed on the command line into the 4575 // beginning of the additional features from the function to override. 4576 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4577 Target.getTargetOpts().FeaturesAsWritten.begin(), 4578 Target.getTargetOpts().FeaturesAsWritten.end()); 4579 4580 if (ParsedAttr.Architecture != "") 4581 TargetCPU = ParsedAttr.Architecture ; 4582 4583 // Now populate the feature map, first with the TargetCPU which is either 4584 // the default or a new one from the target attribute string. Then we'll use 4585 // the passed in features (FeaturesAsWritten) along with the new ones from 4586 // the attribute. 4587 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4588 ParsedAttr.Features); 4589 } else { 4590 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4591 Target.getTargetOpts().Features); 4592 } 4593 } 4594 4595 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4596 if (!SanStats) 4597 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4598 4599 return *SanStats; 4600 } 4601 llvm::Value * 4602 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4603 CodeGenFunction &CGF) { 4604 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4605 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4606 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4607 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4608 "__translate_sampler_initializer"), 4609 {C}); 4610 } 4611