1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 43 VtableInfo(*this), Runtime(0), 44 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 45 VMContext(M.getContext()) { 46 47 if (!Features.ObjC1) 48 Runtime = 0; 49 else if (!Features.NeXTRuntime) 50 Runtime = CreateGNUObjCRuntime(*this); 51 else if (Features.ObjCNonFragileABI) 52 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 53 else 54 Runtime = CreateMacObjCRuntime(*this); 55 56 // If debug info generation is enabled, create the CGDebugInfo object. 57 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 58 } 59 60 CodeGenModule::~CodeGenModule() { 61 delete Runtime; 62 delete DebugInfo; 63 } 64 65 void CodeGenModule::Release() { 66 // We need to call this first because it can add deferred declarations. 67 EmitCXXGlobalInitFunc(); 68 69 EmitDeferred(); 70 if (Runtime) 71 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 72 AddGlobalCtor(ObjCInitFunction); 73 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 74 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 75 EmitAnnotations(); 76 EmitLLVMUsed(); 77 } 78 79 /// ErrorUnsupported - Print out an error that codegen doesn't support the 80 /// specified stmt yet. 81 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 82 bool OmitOnError) { 83 if (OmitOnError && getDiags().hasErrorOccurred()) 84 return; 85 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 86 "cannot compile this %0 yet"); 87 std::string Msg = Type; 88 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 89 << Msg << S->getSourceRange(); 90 } 91 92 /// ErrorUnsupported - Print out an error that codegen doesn't support the 93 /// specified decl yet. 94 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 95 bool OmitOnError) { 96 if (OmitOnError && getDiags().hasErrorOccurred()) 97 return; 98 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 99 "cannot compile this %0 yet"); 100 std::string Msg = Type; 101 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 102 } 103 104 LangOptions::VisibilityMode 105 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 106 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 107 if (VD->getStorageClass() == VarDecl::PrivateExtern) 108 return LangOptions::Hidden; 109 110 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 111 switch (attr->getVisibility()) { 112 default: assert(0 && "Unknown visibility!"); 113 case VisibilityAttr::DefaultVisibility: 114 return LangOptions::Default; 115 case VisibilityAttr::HiddenVisibility: 116 return LangOptions::Hidden; 117 case VisibilityAttr::ProtectedVisibility: 118 return LangOptions::Protected; 119 } 120 } 121 122 return getLangOptions().getVisibilityMode(); 123 } 124 125 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 126 const Decl *D) const { 127 // Internal definitions always have default visibility. 128 if (GV->hasLocalLinkage()) { 129 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 130 return; 131 } 132 133 switch (getDeclVisibilityMode(D)) { 134 default: assert(0 && "Unknown visibility!"); 135 case LangOptions::Default: 136 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 137 case LangOptions::Hidden: 138 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 139 case LangOptions::Protected: 140 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 141 } 142 } 143 144 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 145 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 146 147 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 148 return getMangledCXXCtorName(D, GD.getCtorType()); 149 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 150 return getMangledCXXDtorName(D, GD.getDtorType()); 151 152 return getMangledName(ND); 153 } 154 155 /// \brief Retrieves the mangled name for the given declaration. 156 /// 157 /// If the given declaration requires a mangled name, returns an 158 /// const char* containing the mangled name. Otherwise, returns 159 /// the unmangled name. 160 /// 161 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 162 // In C, functions with no attributes never need to be mangled. Fastpath them. 163 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 164 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 165 return ND->getNameAsCString(); 166 } 167 168 llvm::SmallString<256> Name; 169 llvm::raw_svector_ostream Out(Name); 170 if (!mangleName(getMangleContext(), ND, Out)) { 171 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 172 return ND->getNameAsCString(); 173 } 174 175 Name += '\0'; 176 return UniqueMangledName(Name.begin(), Name.end()); 177 } 178 179 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 180 const char *NameEnd) { 181 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 182 183 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 184 } 185 186 /// AddGlobalCtor - Add a function to the list that will be called before 187 /// main() runs. 188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 189 // FIXME: Type coercion of void()* types. 190 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 191 } 192 193 /// AddGlobalDtor - Add a function to the list that will be called 194 /// when the module is unloaded. 195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 196 // FIXME: Type coercion of void()* types. 197 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 198 } 199 200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 201 // Ctor function type is void()*. 202 llvm::FunctionType* CtorFTy = 203 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 204 std::vector<const llvm::Type*>(), 205 false); 206 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 207 208 // Get the type of a ctor entry, { i32, void ()* }. 209 llvm::StructType* CtorStructTy = 210 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 211 llvm::PointerType::getUnqual(CtorFTy), NULL); 212 213 // Construct the constructor and destructor arrays. 214 std::vector<llvm::Constant*> Ctors; 215 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 216 std::vector<llvm::Constant*> S; 217 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 218 I->second, false)); 219 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 220 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 221 } 222 223 if (!Ctors.empty()) { 224 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 225 new llvm::GlobalVariable(TheModule, AT, false, 226 llvm::GlobalValue::AppendingLinkage, 227 llvm::ConstantArray::get(AT, Ctors), 228 GlobalName); 229 } 230 } 231 232 void CodeGenModule::EmitAnnotations() { 233 if (Annotations.empty()) 234 return; 235 236 // Create a new global variable for the ConstantStruct in the Module. 237 llvm::Constant *Array = 238 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 239 Annotations.size()), 240 Annotations); 241 llvm::GlobalValue *gv = 242 new llvm::GlobalVariable(TheModule, Array->getType(), false, 243 llvm::GlobalValue::AppendingLinkage, Array, 244 "llvm.global.annotations"); 245 gv->setSection("llvm.metadata"); 246 } 247 248 static CodeGenModule::GVALinkage 249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 250 const LangOptions &Features) { 251 // Everything located semantically within an anonymous namespace is 252 // always internal. 253 if (FD->isInAnonymousNamespace()) 254 return CodeGenModule::GVA_Internal; 255 256 // The kind of external linkage this function will have, if it is not 257 // inline or static. 258 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 259 if (Context.getLangOptions().CPlusPlus && 260 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 261 External = CodeGenModule::GVA_TemplateInstantiation; 262 263 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 264 // C++ member functions defined inside the class are always inline. 265 if (MD->isInline() || !MD->isOutOfLine()) 266 return CodeGenModule::GVA_CXXInline; 267 268 return External; 269 } 270 271 // "static" functions get internal linkage. 272 if (FD->getStorageClass() == FunctionDecl::Static) 273 return CodeGenModule::GVA_Internal; 274 275 if (!FD->isInline()) 276 return External; 277 278 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 279 // GNU or C99 inline semantics. Determine whether this symbol should be 280 // externally visible. 281 if (FD->isInlineDefinitionExternallyVisible()) 282 return External; 283 284 // C99 inline semantics, where the symbol is not externally visible. 285 return CodeGenModule::GVA_C99Inline; 286 } 287 288 // C++ inline semantics 289 assert(Features.CPlusPlus && "Must be in C++ mode"); 290 return CodeGenModule::GVA_CXXInline; 291 } 292 293 /// SetFunctionDefinitionAttributes - Set attributes for a global. 294 /// 295 /// FIXME: This is currently only done for aliases and functions, but not for 296 /// variables (these details are set in EmitGlobalVarDefinition for variables). 297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 298 llvm::GlobalValue *GV) { 299 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 300 301 if (Linkage == GVA_Internal) { 302 GV->setLinkage(llvm::Function::InternalLinkage); 303 } else if (D->hasAttr<DLLExportAttr>()) { 304 GV->setLinkage(llvm::Function::DLLExportLinkage); 305 } else if (D->hasAttr<WeakAttr>()) { 306 GV->setLinkage(llvm::Function::WeakAnyLinkage); 307 } else if (Linkage == GVA_C99Inline) { 308 // In C99 mode, 'inline' functions are guaranteed to have a strong 309 // definition somewhere else, so we can use available_externally linkage. 310 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 311 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 312 // In C++, the compiler has to emit a definition in every translation unit 313 // that references the function. We should use linkonce_odr because 314 // a) if all references in this translation unit are optimized away, we 315 // don't need to codegen it. b) if the function persists, it needs to be 316 // merged with other definitions. c) C++ has the ODR, so we know the 317 // definition is dependable. 318 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 319 } else { 320 assert(Linkage == GVA_StrongExternal); 321 // Otherwise, we have strong external linkage. 322 GV->setLinkage(llvm::Function::ExternalLinkage); 323 } 324 325 SetCommonAttributes(D, GV); 326 } 327 328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 329 const CGFunctionInfo &Info, 330 llvm::Function *F) { 331 unsigned CallingConv; 332 AttributeListType AttributeList; 333 ConstructAttributeList(Info, D, AttributeList, CallingConv); 334 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 335 AttributeList.size())); 336 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 337 } 338 339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 340 llvm::Function *F) { 341 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 342 F->addFnAttr(llvm::Attribute::NoUnwind); 343 344 if (D->hasAttr<AlwaysInlineAttr>()) 345 F->addFnAttr(llvm::Attribute::AlwaysInline); 346 347 if (D->hasAttr<NoInlineAttr>()) 348 F->addFnAttr(llvm::Attribute::NoInline); 349 350 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) 351 F->setAlignment(AA->getAlignment()/8); 352 // C++ ABI requires 2-byte alignment for member functions. 353 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 354 F->setAlignment(2); 355 } 356 357 void CodeGenModule::SetCommonAttributes(const Decl *D, 358 llvm::GlobalValue *GV) { 359 setGlobalVisibility(GV, D); 360 361 if (D->hasAttr<UsedAttr>()) 362 AddUsedGlobal(GV); 363 364 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 365 GV->setSection(SA->getName()); 366 } 367 368 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 369 llvm::Function *F, 370 const CGFunctionInfo &FI) { 371 SetLLVMFunctionAttributes(D, FI, F); 372 SetLLVMFunctionAttributesForDefinition(D, F); 373 374 F->setLinkage(llvm::Function::InternalLinkage); 375 376 SetCommonAttributes(D, F); 377 } 378 379 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 380 llvm::Function *F, 381 bool IsIncompleteFunction) { 382 if (!IsIncompleteFunction) 383 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 384 385 // Only a few attributes are set on declarations; these may later be 386 // overridden by a definition. 387 388 if (FD->hasAttr<DLLImportAttr>()) { 389 F->setLinkage(llvm::Function::DLLImportLinkage); 390 } else if (FD->hasAttr<WeakAttr>() || 391 FD->hasAttr<WeakImportAttr>()) { 392 // "extern_weak" is overloaded in LLVM; we probably should have 393 // separate linkage types for this. 394 F->setLinkage(llvm::Function::ExternalWeakLinkage); 395 } else { 396 F->setLinkage(llvm::Function::ExternalLinkage); 397 } 398 399 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 400 F->setSection(SA->getName()); 401 } 402 403 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 404 assert(!GV->isDeclaration() && 405 "Only globals with definition can force usage."); 406 LLVMUsed.push_back(GV); 407 } 408 409 void CodeGenModule::EmitLLVMUsed() { 410 // Don't create llvm.used if there is no need. 411 if (LLVMUsed.empty()) 412 return; 413 414 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 415 416 // Convert LLVMUsed to what ConstantArray needs. 417 std::vector<llvm::Constant*> UsedArray; 418 UsedArray.resize(LLVMUsed.size()); 419 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 420 UsedArray[i] = 421 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 422 i8PTy); 423 } 424 425 if (UsedArray.empty()) 426 return; 427 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 428 429 llvm::GlobalVariable *GV = 430 new llvm::GlobalVariable(getModule(), ATy, false, 431 llvm::GlobalValue::AppendingLinkage, 432 llvm::ConstantArray::get(ATy, UsedArray), 433 "llvm.used"); 434 435 GV->setSection("llvm.metadata"); 436 } 437 438 void CodeGenModule::EmitDeferred() { 439 // Emit code for any potentially referenced deferred decls. Since a 440 // previously unused static decl may become used during the generation of code 441 // for a static function, iterate until no changes are made. 442 while (!DeferredDeclsToEmit.empty()) { 443 GlobalDecl D = DeferredDeclsToEmit.back(); 444 DeferredDeclsToEmit.pop_back(); 445 446 // The mangled name for the decl must have been emitted in GlobalDeclMap. 447 // Look it up to see if it was defined with a stronger definition (e.g. an 448 // extern inline function with a strong function redefinition). If so, 449 // just ignore the deferred decl. 450 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 451 assert(CGRef && "Deferred decl wasn't referenced?"); 452 453 if (!CGRef->isDeclaration()) 454 continue; 455 456 // Otherwise, emit the definition and move on to the next one. 457 EmitGlobalDefinition(D); 458 } 459 } 460 461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 462 /// annotation information for a given GlobalValue. The annotation struct is 463 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 464 /// GlobalValue being annotated. The second field is the constant string 465 /// created from the AnnotateAttr's annotation. The third field is a constant 466 /// string containing the name of the translation unit. The fourth field is 467 /// the line number in the file of the annotated value declaration. 468 /// 469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 470 /// appears to. 471 /// 472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 473 const AnnotateAttr *AA, 474 unsigned LineNo) { 475 llvm::Module *M = &getModule(); 476 477 // get [N x i8] constants for the annotation string, and the filename string 478 // which are the 2nd and 3rd elements of the global annotation structure. 479 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 480 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 481 AA->getAnnotation(), true); 482 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 483 M->getModuleIdentifier(), 484 true); 485 486 // Get the two global values corresponding to the ConstantArrays we just 487 // created to hold the bytes of the strings. 488 llvm::GlobalValue *annoGV = 489 new llvm::GlobalVariable(*M, anno->getType(), false, 490 llvm::GlobalValue::PrivateLinkage, anno, 491 GV->getName()); 492 // translation unit name string, emitted into the llvm.metadata section. 493 llvm::GlobalValue *unitGV = 494 new llvm::GlobalVariable(*M, unit->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, unit, 496 ".str"); 497 498 // Create the ConstantStruct for the global annotation. 499 llvm::Constant *Fields[4] = { 500 llvm::ConstantExpr::getBitCast(GV, SBP), 501 llvm::ConstantExpr::getBitCast(annoGV, SBP), 502 llvm::ConstantExpr::getBitCast(unitGV, SBP), 503 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 504 }; 505 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 506 } 507 508 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 509 // Never defer when EmitAllDecls is specified or the decl has 510 // attribute used. 511 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 512 return false; 513 514 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 515 // Constructors and destructors should never be deferred. 516 if (FD->hasAttr<ConstructorAttr>() || 517 FD->hasAttr<DestructorAttr>()) 518 return false; 519 520 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 521 522 // static, static inline, always_inline, and extern inline functions can 523 // always be deferred. Normal inline functions can be deferred in C99/C++. 524 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 525 Linkage == GVA_CXXInline) 526 return true; 527 return false; 528 } 529 530 const VarDecl *VD = cast<VarDecl>(Global); 531 assert(VD->isFileVarDecl() && "Invalid decl"); 532 533 // We never want to defer structs that have non-trivial constructors or 534 // destructors. 535 536 // FIXME: Handle references. 537 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 538 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 539 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 540 return false; 541 } 542 } 543 544 // Static data may be deferred, but out-of-line static data members 545 // cannot be. 546 // FIXME: What if the initializer has side effects? 547 return VD->isInAnonymousNamespace() || 548 (VD->getStorageClass() == VarDecl::Static && 549 !(VD->isStaticDataMember() && VD->isOutOfLine())); 550 } 551 552 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 553 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 554 555 // If this is an alias definition (which otherwise looks like a declaration) 556 // emit it now. 557 if (Global->hasAttr<AliasAttr>()) 558 return EmitAliasDefinition(Global); 559 560 // Ignore declarations, they will be emitted on their first use. 561 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 562 // Forward declarations are emitted lazily on first use. 563 if (!FD->isThisDeclarationADefinition()) 564 return; 565 } else { 566 const VarDecl *VD = cast<VarDecl>(Global); 567 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 568 569 // In C++, if this is marked "extern", defer code generation. 570 if (getLangOptions().CPlusPlus && !VD->getInit() && 571 (VD->getStorageClass() == VarDecl::Extern || 572 VD->isExternC())) 573 return; 574 575 // In C, if this isn't a definition, defer code generation. 576 if (!getLangOptions().CPlusPlus && !VD->getInit()) 577 return; 578 } 579 580 // Defer code generation when possible if this is a static definition, inline 581 // function etc. These we only want to emit if they are used. 582 if (MayDeferGeneration(Global)) { 583 // If the value has already been used, add it directly to the 584 // DeferredDeclsToEmit list. 585 const char *MangledName = getMangledName(GD); 586 if (GlobalDeclMap.count(MangledName)) 587 DeferredDeclsToEmit.push_back(GD); 588 else { 589 // Otherwise, remember that we saw a deferred decl with this name. The 590 // first use of the mangled name will cause it to move into 591 // DeferredDeclsToEmit. 592 DeferredDecls[MangledName] = GD; 593 } 594 return; 595 } 596 597 // Otherwise emit the definition. 598 EmitGlobalDefinition(GD); 599 } 600 601 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 602 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 603 604 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 605 EmitCXXConstructor(CD, GD.getCtorType()); 606 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 607 EmitCXXDestructor(DD, GD.getDtorType()); 608 else if (isa<FunctionDecl>(D)) 609 EmitGlobalFunctionDefinition(GD); 610 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 611 EmitGlobalVarDefinition(VD); 612 else { 613 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 614 } 615 } 616 617 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 618 /// module, create and return an llvm Function with the specified type. If there 619 /// is something in the module with the specified name, return it potentially 620 /// bitcasted to the right type. 621 /// 622 /// If D is non-null, it specifies a decl that correspond to this. This is used 623 /// to set the attributes on the function when it is first created. 624 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 625 const llvm::Type *Ty, 626 GlobalDecl D) { 627 // Lookup the entry, lazily creating it if necessary. 628 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 629 if (Entry) { 630 if (Entry->getType()->getElementType() == Ty) 631 return Entry; 632 633 // Make sure the result is of the correct type. 634 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 635 return llvm::ConstantExpr::getBitCast(Entry, PTy); 636 } 637 638 // This is the first use or definition of a mangled name. If there is a 639 // deferred decl with this name, remember that we need to emit it at the end 640 // of the file. 641 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 642 DeferredDecls.find(MangledName); 643 if (DDI != DeferredDecls.end()) { 644 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 645 // list, and remove it from DeferredDecls (since we don't need it anymore). 646 DeferredDeclsToEmit.push_back(DDI->second); 647 DeferredDecls.erase(DDI); 648 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 649 // If this the first reference to a C++ inline function in a class, queue up 650 // the deferred function body for emission. These are not seen as 651 // top-level declarations. 652 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 653 DeferredDeclsToEmit.push_back(D); 654 // A called constructor which has no definition or declaration need be 655 // synthesized. 656 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 657 const CXXRecordDecl *ClassDecl = 658 cast<CXXRecordDecl>(CD->getDeclContext()); 659 if (CD->isCopyConstructor(getContext())) 660 DeferredCopyConstructorToEmit(D); 661 else if (!ClassDecl->hasUserDeclaredConstructor()) 662 DeferredDeclsToEmit.push_back(D); 663 } 664 else if (isa<CXXDestructorDecl>(FD)) 665 DeferredDestructorToEmit(D); 666 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 667 if (MD->isCopyAssignment()) 668 DeferredCopyAssignmentToEmit(D); 669 } 670 671 // This function doesn't have a complete type (for example, the return 672 // type is an incomplete struct). Use a fake type instead, and make 673 // sure not to try to set attributes. 674 bool IsIncompleteFunction = false; 675 if (!isa<llvm::FunctionType>(Ty)) { 676 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 677 std::vector<const llvm::Type*>(), false); 678 IsIncompleteFunction = true; 679 } 680 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 681 llvm::Function::ExternalLinkage, 682 "", &getModule()); 683 F->setName(MangledName); 684 if (D.getDecl()) 685 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 686 IsIncompleteFunction); 687 Entry = F; 688 return F; 689 } 690 691 /// Defer definition of copy constructor(s) which need be implicitly defined. 692 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 693 const CXXConstructorDecl *CD = 694 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 695 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 696 if (ClassDecl->hasTrivialCopyConstructor() || 697 ClassDecl->hasUserDeclaredCopyConstructor()) 698 return; 699 700 // First make sure all direct base classes and virtual bases and non-static 701 // data mebers which need to have their copy constructors implicitly defined 702 // are defined. 12.8.p7 703 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 704 Base != ClassDecl->bases_end(); ++Base) { 705 CXXRecordDecl *BaseClassDecl 706 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 707 if (CXXConstructorDecl *BaseCopyCtor = 708 BaseClassDecl->getCopyConstructor(Context, 0)) 709 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 710 } 711 712 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 713 FieldEnd = ClassDecl->field_end(); 714 Field != FieldEnd; ++Field) { 715 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 716 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 717 FieldType = Array->getElementType(); 718 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 719 if ((*Field)->isAnonymousStructOrUnion()) 720 continue; 721 CXXRecordDecl *FieldClassDecl 722 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 723 if (CXXConstructorDecl *FieldCopyCtor = 724 FieldClassDecl->getCopyConstructor(Context, 0)) 725 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 726 } 727 } 728 DeferredDeclsToEmit.push_back(CopyCtorDecl); 729 } 730 731 /// Defer definition of copy assignments which need be implicitly defined. 732 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 733 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 734 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 735 736 if (ClassDecl->hasTrivialCopyAssignment() || 737 ClassDecl->hasUserDeclaredCopyAssignment()) 738 return; 739 740 // First make sure all direct base classes and virtual bases and non-static 741 // data mebers which need to have their copy assignments implicitly defined 742 // are defined. 12.8.p12 743 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 744 Base != ClassDecl->bases_end(); ++Base) { 745 CXXRecordDecl *BaseClassDecl 746 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 747 const CXXMethodDecl *MD = 0; 748 if (!BaseClassDecl->hasTrivialCopyAssignment() && 749 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 750 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 751 GetAddrOfFunction(MD, 0); 752 } 753 754 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 755 FieldEnd = ClassDecl->field_end(); 756 Field != FieldEnd; ++Field) { 757 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 758 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 759 FieldType = Array->getElementType(); 760 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 761 if ((*Field)->isAnonymousStructOrUnion()) 762 continue; 763 CXXRecordDecl *FieldClassDecl 764 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 765 const CXXMethodDecl *MD = 0; 766 if (!FieldClassDecl->hasTrivialCopyAssignment() && 767 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 768 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 769 GetAddrOfFunction(MD, 0); 770 } 771 } 772 DeferredDeclsToEmit.push_back(CopyAssignDecl); 773 } 774 775 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 776 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 777 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 778 if (ClassDecl->hasTrivialDestructor() || 779 ClassDecl->hasUserDeclaredDestructor()) 780 return; 781 782 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 783 Base != ClassDecl->bases_end(); ++Base) { 784 CXXRecordDecl *BaseClassDecl 785 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 786 if (const CXXDestructorDecl *BaseDtor = 787 BaseClassDecl->getDestructor(Context)) 788 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 789 } 790 791 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 792 FieldEnd = ClassDecl->field_end(); 793 Field != FieldEnd; ++Field) { 794 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 795 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 796 FieldType = Array->getElementType(); 797 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 798 if ((*Field)->isAnonymousStructOrUnion()) 799 continue; 800 CXXRecordDecl *FieldClassDecl 801 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 802 if (const CXXDestructorDecl *FieldDtor = 803 FieldClassDecl->getDestructor(Context)) 804 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 805 } 806 } 807 DeferredDeclsToEmit.push_back(DtorDecl); 808 } 809 810 811 /// GetAddrOfFunction - Return the address of the given function. If Ty is 812 /// non-null, then this function will use the specified type if it has to 813 /// create it (this occurs when we see a definition of the function). 814 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 815 const llvm::Type *Ty) { 816 // If there was no specific requested type, just convert it now. 817 if (!Ty) 818 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 819 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 820 } 821 822 /// CreateRuntimeFunction - Create a new runtime function with the specified 823 /// type and name. 824 llvm::Constant * 825 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 826 const char *Name) { 827 // Convert Name to be a uniqued string from the IdentifierInfo table. 828 Name = getContext().Idents.get(Name).getName(); 829 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 830 } 831 832 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 833 /// create and return an llvm GlobalVariable with the specified type. If there 834 /// is something in the module with the specified name, return it potentially 835 /// bitcasted to the right type. 836 /// 837 /// If D is non-null, it specifies a decl that correspond to this. This is used 838 /// to set the attributes on the global when it is first created. 839 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 840 const llvm::PointerType*Ty, 841 const VarDecl *D) { 842 // Lookup the entry, lazily creating it if necessary. 843 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 844 if (Entry) { 845 if (Entry->getType() == Ty) 846 return Entry; 847 848 // Make sure the result is of the correct type. 849 return llvm::ConstantExpr::getBitCast(Entry, Ty); 850 } 851 852 // This is the first use or definition of a mangled name. If there is a 853 // deferred decl with this name, remember that we need to emit it at the end 854 // of the file. 855 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 856 DeferredDecls.find(MangledName); 857 if (DDI != DeferredDecls.end()) { 858 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 859 // list, and remove it from DeferredDecls (since we don't need it anymore). 860 DeferredDeclsToEmit.push_back(DDI->second); 861 DeferredDecls.erase(DDI); 862 } 863 864 llvm::GlobalVariable *GV = 865 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 866 llvm::GlobalValue::ExternalLinkage, 867 0, "", 0, 868 false, Ty->getAddressSpace()); 869 GV->setName(MangledName); 870 871 // Handle things which are present even on external declarations. 872 if (D) { 873 // FIXME: This code is overly simple and should be merged with other global 874 // handling. 875 GV->setConstant(D->getType().isConstant(Context)); 876 877 // FIXME: Merge with other attribute handling code. 878 if (D->getStorageClass() == VarDecl::PrivateExtern) 879 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 880 881 if (D->hasAttr<WeakAttr>() || 882 D->hasAttr<WeakImportAttr>()) 883 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 884 885 GV->setThreadLocal(D->isThreadSpecified()); 886 } 887 888 return Entry = GV; 889 } 890 891 892 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 893 /// given global variable. If Ty is non-null and if the global doesn't exist, 894 /// then it will be greated with the specified type instead of whatever the 895 /// normal requested type would be. 896 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 897 const llvm::Type *Ty) { 898 assert(D->hasGlobalStorage() && "Not a global variable"); 899 QualType ASTTy = D->getType(); 900 if (Ty == 0) 901 Ty = getTypes().ConvertTypeForMem(ASTTy); 902 903 const llvm::PointerType *PTy = 904 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 905 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 906 } 907 908 /// CreateRuntimeVariable - Create a new runtime global variable with the 909 /// specified type and name. 910 llvm::Constant * 911 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 912 const char *Name) { 913 // Convert Name to be a uniqued string from the IdentifierInfo table. 914 Name = getContext().Idents.get(Name).getName(); 915 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 916 } 917 918 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 919 assert(!D->getInit() && "Cannot emit definite definitions here!"); 920 921 if (MayDeferGeneration(D)) { 922 // If we have not seen a reference to this variable yet, place it 923 // into the deferred declarations table to be emitted if needed 924 // later. 925 const char *MangledName = getMangledName(D); 926 if (GlobalDeclMap.count(MangledName) == 0) { 927 DeferredDecls[MangledName] = D; 928 return; 929 } 930 } 931 932 // The tentative definition is the only definition. 933 EmitGlobalVarDefinition(D); 934 } 935 936 static CodeGenModule::GVALinkage 937 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 938 // Everything located semantically within an anonymous namespace is 939 // always internal. 940 if (VD->isInAnonymousNamespace()) 941 return CodeGenModule::GVA_Internal; 942 943 // Handle linkage for static data members. 944 if (VD->isStaticDataMember()) { 945 switch (VD->getTemplateSpecializationKind()) { 946 case TSK_Undeclared: 947 case TSK_ExplicitSpecialization: 948 case TSK_ExplicitInstantiationDefinition: 949 return CodeGenModule::GVA_StrongExternal; 950 951 case TSK_ExplicitInstantiationDeclaration: 952 assert(false && "Variable should not be instantiated"); 953 // Fall through to treat this like any other instantiation. 954 955 case TSK_ImplicitInstantiation: 956 return CodeGenModule::GVA_TemplateInstantiation; 957 } 958 } 959 960 // Static variables get internal linkage. 961 if (VD->getStorageClass() == VarDecl::Static) 962 return CodeGenModule::GVA_Internal; 963 964 return CodeGenModule::GVA_StrongExternal; 965 } 966 967 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 968 llvm::Constant *Init = 0; 969 QualType ASTTy = D->getType(); 970 971 if (D->getInit() == 0) { 972 // This is a tentative definition; tentative definitions are 973 // implicitly initialized with { 0 }. 974 // 975 // Note that tentative definitions are only emitted at the end of 976 // a translation unit, so they should never have incomplete 977 // type. In addition, EmitTentativeDefinition makes sure that we 978 // never attempt to emit a tentative definition if a real one 979 // exists. A use may still exists, however, so we still may need 980 // to do a RAUW. 981 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 982 Init = EmitNullConstant(D->getType()); 983 } else { 984 Init = EmitConstantExpr(D->getInit(), D->getType()); 985 986 if (!Init) { 987 QualType T = D->getInit()->getType(); 988 if (getLangOptions().CPlusPlus) { 989 CXXGlobalInits.push_back(D); 990 Init = EmitNullConstant(T); 991 } else { 992 ErrorUnsupported(D, "static initializer"); 993 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 994 } 995 } 996 } 997 998 const llvm::Type* InitType = Init->getType(); 999 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1000 1001 // Strip off a bitcast if we got one back. 1002 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1003 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1004 // all zero index gep. 1005 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1006 Entry = CE->getOperand(0); 1007 } 1008 1009 // Entry is now either a Function or GlobalVariable. 1010 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1011 1012 // We have a definition after a declaration with the wrong type. 1013 // We must make a new GlobalVariable* and update everything that used OldGV 1014 // (a declaration or tentative definition) with the new GlobalVariable* 1015 // (which will be a definition). 1016 // 1017 // This happens if there is a prototype for a global (e.g. 1018 // "extern int x[];") and then a definition of a different type (e.g. 1019 // "int x[10];"). This also happens when an initializer has a different type 1020 // from the type of the global (this happens with unions). 1021 if (GV == 0 || 1022 GV->getType()->getElementType() != InitType || 1023 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1024 1025 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1026 GlobalDeclMap.erase(getMangledName(D)); 1027 1028 // Make a new global with the correct type, this is now guaranteed to work. 1029 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1030 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1031 1032 // Replace all uses of the old global with the new global 1033 llvm::Constant *NewPtrForOldDecl = 1034 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1035 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1036 1037 // Erase the old global, since it is no longer used. 1038 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1039 } 1040 1041 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1042 SourceManager &SM = Context.getSourceManager(); 1043 AddAnnotation(EmitAnnotateAttr(GV, AA, 1044 SM.getInstantiationLineNumber(D->getLocation()))); 1045 } 1046 1047 GV->setInitializer(Init); 1048 1049 // If it is safe to mark the global 'constant', do so now. 1050 GV->setConstant(false); 1051 if (D->getType().isConstant(Context)) { 1052 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1053 // members, it cannot be declared "LLVM const". 1054 GV->setConstant(true); 1055 } 1056 1057 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1058 1059 // Set the llvm linkage type as appropriate. 1060 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1061 if (D->isInAnonymousNamespace()) 1062 GV->setLinkage(llvm::Function::InternalLinkage); 1063 else if (Linkage == GVA_Internal) 1064 GV->setLinkage(llvm::Function::InternalLinkage); 1065 else if (D->hasAttr<DLLImportAttr>()) 1066 GV->setLinkage(llvm::Function::DLLImportLinkage); 1067 else if (D->hasAttr<DLLExportAttr>()) 1068 GV->setLinkage(llvm::Function::DLLExportLinkage); 1069 else if (D->hasAttr<WeakAttr>()) { 1070 if (GV->isConstant()) 1071 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1072 else 1073 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1074 } else if (Linkage == GVA_TemplateInstantiation) 1075 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1076 else if (!CompileOpts.NoCommon && 1077 !D->hasExternalStorage() && !D->getInit() && 1078 !D->getAttr<SectionAttr>()) { 1079 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1080 // common vars aren't constant even if declared const. 1081 GV->setConstant(false); 1082 } else 1083 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1084 1085 SetCommonAttributes(D, GV); 1086 1087 // Emit global variable debug information. 1088 if (CGDebugInfo *DI = getDebugInfo()) { 1089 DI->setLocation(D->getLocation()); 1090 DI->EmitGlobalVariable(GV, D); 1091 } 1092 } 1093 1094 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1095 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1096 /// existing call uses of the old function in the module, this adjusts them to 1097 /// call the new function directly. 1098 /// 1099 /// This is not just a cleanup: the always_inline pass requires direct calls to 1100 /// functions to be able to inline them. If there is a bitcast in the way, it 1101 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1102 /// run at -O0. 1103 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1104 llvm::Function *NewFn) { 1105 // If we're redefining a global as a function, don't transform it. 1106 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1107 if (OldFn == 0) return; 1108 1109 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1110 llvm::SmallVector<llvm::Value*, 4> ArgList; 1111 1112 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1113 UI != E; ) { 1114 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1115 unsigned OpNo = UI.getOperandNo(); 1116 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1117 if (!CI || OpNo != 0) continue; 1118 1119 // If the return types don't match exactly, and if the call isn't dead, then 1120 // we can't transform this call. 1121 if (CI->getType() != NewRetTy && !CI->use_empty()) 1122 continue; 1123 1124 // If the function was passed too few arguments, don't transform. If extra 1125 // arguments were passed, we silently drop them. If any of the types 1126 // mismatch, we don't transform. 1127 unsigned ArgNo = 0; 1128 bool DontTransform = false; 1129 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1130 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1131 if (CI->getNumOperands()-1 == ArgNo || 1132 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1133 DontTransform = true; 1134 break; 1135 } 1136 } 1137 if (DontTransform) 1138 continue; 1139 1140 // Okay, we can transform this. Create the new call instruction and copy 1141 // over the required information. 1142 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1143 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1144 ArgList.end(), "", CI); 1145 ArgList.clear(); 1146 if (!NewCall->getType()->isVoidTy()) 1147 NewCall->takeName(CI); 1148 NewCall->setAttributes(CI->getAttributes()); 1149 NewCall->setCallingConv(CI->getCallingConv()); 1150 1151 // Finally, remove the old call, replacing any uses with the new one. 1152 if (!CI->use_empty()) 1153 CI->replaceAllUsesWith(NewCall); 1154 1155 // Copy any custom metadata attached with CI. 1156 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1157 TheMetadata.copyMD(CI, NewCall); 1158 1159 CI->eraseFromParent(); 1160 } 1161 } 1162 1163 1164 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1165 const llvm::FunctionType *Ty; 1166 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1167 1168 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1169 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1170 1171 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1172 } else { 1173 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1174 1175 // As a special case, make sure that definitions of K&R function 1176 // "type foo()" aren't declared as varargs (which forces the backend 1177 // to do unnecessary work). 1178 if (D->getType()->isFunctionNoProtoType()) { 1179 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1180 // Due to stret, the lowered function could have arguments. 1181 // Just create the same type as was lowered by ConvertType 1182 // but strip off the varargs bit. 1183 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1184 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1185 } 1186 } 1187 1188 // Get or create the prototype for the function. 1189 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1190 1191 // Strip off a bitcast if we got one back. 1192 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1193 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1194 Entry = CE->getOperand(0); 1195 } 1196 1197 1198 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1199 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1200 1201 // If the types mismatch then we have to rewrite the definition. 1202 assert(OldFn->isDeclaration() && 1203 "Shouldn't replace non-declaration"); 1204 1205 // F is the Function* for the one with the wrong type, we must make a new 1206 // Function* and update everything that used F (a declaration) with the new 1207 // Function* (which will be a definition). 1208 // 1209 // This happens if there is a prototype for a function 1210 // (e.g. "int f()") and then a definition of a different type 1211 // (e.g. "int f(int x)"). Start by making a new function of the 1212 // correct type, RAUW, then steal the name. 1213 GlobalDeclMap.erase(getMangledName(D)); 1214 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1215 NewFn->takeName(OldFn); 1216 1217 // If this is an implementation of a function without a prototype, try to 1218 // replace any existing uses of the function (which may be calls) with uses 1219 // of the new function 1220 if (D->getType()->isFunctionNoProtoType()) { 1221 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1222 OldFn->removeDeadConstantUsers(); 1223 } 1224 1225 // Replace uses of F with the Function we will endow with a body. 1226 if (!Entry->use_empty()) { 1227 llvm::Constant *NewPtrForOldDecl = 1228 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1229 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1230 } 1231 1232 // Ok, delete the old function now, which is dead. 1233 OldFn->eraseFromParent(); 1234 1235 Entry = NewFn; 1236 } 1237 1238 llvm::Function *Fn = cast<llvm::Function>(Entry); 1239 1240 CodeGenFunction(*this).GenerateCode(D, Fn); 1241 1242 SetFunctionDefinitionAttributes(D, Fn); 1243 SetLLVMFunctionAttributesForDefinition(D, Fn); 1244 1245 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1246 AddGlobalCtor(Fn, CA->getPriority()); 1247 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1248 AddGlobalDtor(Fn, DA->getPriority()); 1249 } 1250 1251 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1252 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1253 assert(AA && "Not an alias?"); 1254 1255 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1256 1257 // Unique the name through the identifier table. 1258 const char *AliaseeName = AA->getAliasee().c_str(); 1259 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1260 1261 // Create a reference to the named value. This ensures that it is emitted 1262 // if a deferred decl. 1263 llvm::Constant *Aliasee; 1264 if (isa<llvm::FunctionType>(DeclTy)) 1265 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1266 else 1267 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1268 llvm::PointerType::getUnqual(DeclTy), 0); 1269 1270 // Create the new alias itself, but don't set a name yet. 1271 llvm::GlobalValue *GA = 1272 new llvm::GlobalAlias(Aliasee->getType(), 1273 llvm::Function::ExternalLinkage, 1274 "", Aliasee, &getModule()); 1275 1276 // See if there is already something with the alias' name in the module. 1277 const char *MangledName = getMangledName(D); 1278 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1279 1280 if (Entry && !Entry->isDeclaration()) { 1281 // If there is a definition in the module, then it wins over the alias. 1282 // This is dubious, but allow it to be safe. Just ignore the alias. 1283 GA->eraseFromParent(); 1284 return; 1285 } 1286 1287 if (Entry) { 1288 // If there is a declaration in the module, then we had an extern followed 1289 // by the alias, as in: 1290 // extern int test6(); 1291 // ... 1292 // int test6() __attribute__((alias("test7"))); 1293 // 1294 // Remove it and replace uses of it with the alias. 1295 1296 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1297 Entry->getType())); 1298 Entry->eraseFromParent(); 1299 } 1300 1301 // Now we know that there is no conflict, set the name. 1302 Entry = GA; 1303 GA->setName(MangledName); 1304 1305 // Set attributes which are particular to an alias; this is a 1306 // specialization of the attributes which may be set on a global 1307 // variable/function. 1308 if (D->hasAttr<DLLExportAttr>()) { 1309 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1310 // The dllexport attribute is ignored for undefined symbols. 1311 if (FD->getBody()) 1312 GA->setLinkage(llvm::Function::DLLExportLinkage); 1313 } else { 1314 GA->setLinkage(llvm::Function::DLLExportLinkage); 1315 } 1316 } else if (D->hasAttr<WeakAttr>() || 1317 D->hasAttr<WeakImportAttr>()) { 1318 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1319 } 1320 1321 SetCommonAttributes(D, GA); 1322 } 1323 1324 /// getBuiltinLibFunction - Given a builtin id for a function like 1325 /// "__builtin_fabsf", return a Function* for "fabsf". 1326 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1327 unsigned BuiltinID) { 1328 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1329 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1330 "isn't a lib fn"); 1331 1332 // Get the name, skip over the __builtin_ prefix (if necessary). 1333 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1334 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1335 Name += 10; 1336 1337 // Get the type for the builtin. 1338 ASTContext::GetBuiltinTypeError Error; 1339 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1340 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1341 1342 const llvm::FunctionType *Ty = 1343 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1344 1345 // Unique the name through the identifier table. 1346 Name = getContext().Idents.get(Name).getName(); 1347 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1348 } 1349 1350 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1351 unsigned NumTys) { 1352 return llvm::Intrinsic::getDeclaration(&getModule(), 1353 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1354 } 1355 1356 llvm::Function *CodeGenModule::getMemCpyFn() { 1357 if (MemCpyFn) return MemCpyFn; 1358 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1359 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1360 } 1361 1362 llvm::Function *CodeGenModule::getMemMoveFn() { 1363 if (MemMoveFn) return MemMoveFn; 1364 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1365 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1366 } 1367 1368 llvm::Function *CodeGenModule::getMemSetFn() { 1369 if (MemSetFn) return MemSetFn; 1370 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1371 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1372 } 1373 1374 static llvm::StringMapEntry<llvm::Constant*> & 1375 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1376 const StringLiteral *Literal, 1377 bool TargetIsLSB, 1378 bool &IsUTF16, 1379 unsigned &StringLength) { 1380 unsigned NumBytes = Literal->getByteLength(); 1381 1382 // Check for simple case. 1383 if (!Literal->containsNonAsciiOrNull()) { 1384 StringLength = NumBytes; 1385 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1386 StringLength)); 1387 } 1388 1389 // Otherwise, convert the UTF8 literals into a byte string. 1390 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1391 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1392 UTF16 *ToPtr = &ToBuf[0]; 1393 1394 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1395 &ToPtr, ToPtr + NumBytes, 1396 strictConversion); 1397 1398 // Check for conversion failure. 1399 if (Result != conversionOK) { 1400 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1401 // this duplicate code. 1402 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1403 StringLength = NumBytes; 1404 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1405 StringLength)); 1406 } 1407 1408 // ConvertUTF8toUTF16 returns the length in ToPtr. 1409 StringLength = ToPtr - &ToBuf[0]; 1410 1411 // Render the UTF-16 string into a byte array and convert to the target byte 1412 // order. 1413 // 1414 // FIXME: This isn't something we should need to do here. 1415 llvm::SmallString<128> AsBytes; 1416 AsBytes.reserve(StringLength * 2); 1417 for (unsigned i = 0; i != StringLength; ++i) { 1418 unsigned short Val = ToBuf[i]; 1419 if (TargetIsLSB) { 1420 AsBytes.push_back(Val & 0xFF); 1421 AsBytes.push_back(Val >> 8); 1422 } else { 1423 AsBytes.push_back(Val >> 8); 1424 AsBytes.push_back(Val & 0xFF); 1425 } 1426 } 1427 // Append one extra null character, the second is automatically added by our 1428 // caller. 1429 AsBytes.push_back(0); 1430 1431 IsUTF16 = true; 1432 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1433 } 1434 1435 llvm::Constant * 1436 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1437 unsigned StringLength = 0; 1438 bool isUTF16 = false; 1439 llvm::StringMapEntry<llvm::Constant*> &Entry = 1440 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1441 getTargetData().isLittleEndian(), 1442 isUTF16, StringLength); 1443 1444 if (llvm::Constant *C = Entry.getValue()) 1445 return C; 1446 1447 llvm::Constant *Zero = 1448 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1449 llvm::Constant *Zeros[] = { Zero, Zero }; 1450 1451 // If we don't already have it, get __CFConstantStringClassReference. 1452 if (!CFConstantStringClassRef) { 1453 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1454 Ty = llvm::ArrayType::get(Ty, 0); 1455 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1456 "__CFConstantStringClassReference"); 1457 // Decay array -> ptr 1458 CFConstantStringClassRef = 1459 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1460 } 1461 1462 QualType CFTy = getContext().getCFConstantStringType(); 1463 1464 const llvm::StructType *STy = 1465 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1466 1467 std::vector<llvm::Constant*> Fields(4); 1468 1469 // Class pointer. 1470 Fields[0] = CFConstantStringClassRef; 1471 1472 // Flags. 1473 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1474 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1475 llvm::ConstantInt::get(Ty, 0x07C8); 1476 1477 // String pointer. 1478 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1479 1480 const char *Sect = 0; 1481 llvm::GlobalValue::LinkageTypes Linkage; 1482 bool isConstant; 1483 if (isUTF16) { 1484 Sect = getContext().Target.getUnicodeStringSection(); 1485 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1486 Linkage = llvm::GlobalValue::InternalLinkage; 1487 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1488 // does make plain ascii ones writable. 1489 isConstant = true; 1490 } else { 1491 Linkage = llvm::GlobalValue::PrivateLinkage; 1492 isConstant = !Features.WritableStrings; 1493 } 1494 1495 llvm::GlobalVariable *GV = 1496 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1497 ".str"); 1498 if (Sect) 1499 GV->setSection(Sect); 1500 if (isUTF16) { 1501 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1502 GV->setAlignment(Align); 1503 } 1504 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1505 1506 // String length. 1507 Ty = getTypes().ConvertType(getContext().LongTy); 1508 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1509 1510 // The struct. 1511 C = llvm::ConstantStruct::get(STy, Fields); 1512 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1513 llvm::GlobalVariable::PrivateLinkage, C, 1514 "_unnamed_cfstring_"); 1515 if (const char *Sect = getContext().Target.getCFStringSection()) 1516 GV->setSection(Sect); 1517 Entry.setValue(GV); 1518 1519 return GV; 1520 } 1521 1522 /// GetStringForStringLiteral - Return the appropriate bytes for a 1523 /// string literal, properly padded to match the literal type. 1524 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1525 const char *StrData = E->getStrData(); 1526 unsigned Len = E->getByteLength(); 1527 1528 const ConstantArrayType *CAT = 1529 getContext().getAsConstantArrayType(E->getType()); 1530 assert(CAT && "String isn't pointer or array!"); 1531 1532 // Resize the string to the right size. 1533 std::string Str(StrData, StrData+Len); 1534 uint64_t RealLen = CAT->getSize().getZExtValue(); 1535 1536 if (E->isWide()) 1537 RealLen *= getContext().Target.getWCharWidth()/8; 1538 1539 Str.resize(RealLen, '\0'); 1540 1541 return Str; 1542 } 1543 1544 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1545 /// constant array for the given string literal. 1546 llvm::Constant * 1547 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1548 // FIXME: This can be more efficient. 1549 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1550 } 1551 1552 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1553 /// array for the given ObjCEncodeExpr node. 1554 llvm::Constant * 1555 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1556 std::string Str; 1557 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1558 1559 return GetAddrOfConstantCString(Str); 1560 } 1561 1562 1563 /// GenerateWritableString -- Creates storage for a string literal. 1564 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1565 bool constant, 1566 CodeGenModule &CGM, 1567 const char *GlobalName) { 1568 // Create Constant for this string literal. Don't add a '\0'. 1569 llvm::Constant *C = 1570 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1571 1572 // Create a global variable for this string 1573 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1574 llvm::GlobalValue::PrivateLinkage, 1575 C, GlobalName); 1576 } 1577 1578 /// GetAddrOfConstantString - Returns a pointer to a character array 1579 /// containing the literal. This contents are exactly that of the 1580 /// given string, i.e. it will not be null terminated automatically; 1581 /// see GetAddrOfConstantCString. Note that whether the result is 1582 /// actually a pointer to an LLVM constant depends on 1583 /// Feature.WriteableStrings. 1584 /// 1585 /// The result has pointer to array type. 1586 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1587 const char *GlobalName) { 1588 bool IsConstant = !Features.WritableStrings; 1589 1590 // Get the default prefix if a name wasn't specified. 1591 if (!GlobalName) 1592 GlobalName = ".str"; 1593 1594 // Don't share any string literals if strings aren't constant. 1595 if (!IsConstant) 1596 return GenerateStringLiteral(str, false, *this, GlobalName); 1597 1598 llvm::StringMapEntry<llvm::Constant *> &Entry = 1599 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1600 1601 if (Entry.getValue()) 1602 return Entry.getValue(); 1603 1604 // Create a global variable for this. 1605 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1606 Entry.setValue(C); 1607 return C; 1608 } 1609 1610 /// GetAddrOfConstantCString - Returns a pointer to a character 1611 /// array containing the literal and a terminating '\-' 1612 /// character. The result has pointer to array type. 1613 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1614 const char *GlobalName){ 1615 return GetAddrOfConstantString(str + '\0', GlobalName); 1616 } 1617 1618 /// EmitObjCPropertyImplementations - Emit information for synthesized 1619 /// properties for an implementation. 1620 void CodeGenModule::EmitObjCPropertyImplementations(const 1621 ObjCImplementationDecl *D) { 1622 for (ObjCImplementationDecl::propimpl_iterator 1623 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1624 ObjCPropertyImplDecl *PID = *i; 1625 1626 // Dynamic is just for type-checking. 1627 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1628 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1629 1630 // Determine which methods need to be implemented, some may have 1631 // been overridden. Note that ::isSynthesized is not the method 1632 // we want, that just indicates if the decl came from a 1633 // property. What we want to know is if the method is defined in 1634 // this implementation. 1635 if (!D->getInstanceMethod(PD->getGetterName())) 1636 CodeGenFunction(*this).GenerateObjCGetter( 1637 const_cast<ObjCImplementationDecl *>(D), PID); 1638 if (!PD->isReadOnly() && 1639 !D->getInstanceMethod(PD->getSetterName())) 1640 CodeGenFunction(*this).GenerateObjCSetter( 1641 const_cast<ObjCImplementationDecl *>(D), PID); 1642 } 1643 } 1644 } 1645 1646 /// EmitNamespace - Emit all declarations in a namespace. 1647 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1648 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1649 I != E; ++I) 1650 EmitTopLevelDecl(*I); 1651 } 1652 1653 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1654 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1655 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1656 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1657 ErrorUnsupported(LSD, "linkage spec"); 1658 return; 1659 } 1660 1661 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1662 I != E; ++I) 1663 EmitTopLevelDecl(*I); 1664 } 1665 1666 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1667 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1668 // If an error has occurred, stop code generation, but continue 1669 // parsing and semantic analysis (to ensure all warnings and errors 1670 // are emitted). 1671 if (Diags.hasErrorOccurred()) 1672 return; 1673 1674 // Ignore dependent declarations. 1675 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1676 return; 1677 1678 switch (D->getKind()) { 1679 case Decl::CXXConversion: 1680 case Decl::CXXMethod: 1681 case Decl::Function: 1682 // Skip function templates 1683 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1684 return; 1685 1686 EmitGlobal(cast<FunctionDecl>(D)); 1687 break; 1688 1689 case Decl::Var: 1690 EmitGlobal(cast<VarDecl>(D)); 1691 break; 1692 1693 // C++ Decls 1694 case Decl::Namespace: 1695 EmitNamespace(cast<NamespaceDecl>(D)); 1696 break; 1697 // No code generation needed. 1698 case Decl::Using: 1699 case Decl::UsingDirective: 1700 case Decl::ClassTemplate: 1701 case Decl::FunctionTemplate: 1702 case Decl::NamespaceAlias: 1703 break; 1704 case Decl::CXXConstructor: 1705 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1706 break; 1707 case Decl::CXXDestructor: 1708 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1709 break; 1710 1711 case Decl::StaticAssert: 1712 // Nothing to do. 1713 break; 1714 1715 // Objective-C Decls 1716 1717 // Forward declarations, no (immediate) code generation. 1718 case Decl::ObjCClass: 1719 case Decl::ObjCForwardProtocol: 1720 case Decl::ObjCCategory: 1721 case Decl::ObjCInterface: 1722 break; 1723 1724 case Decl::ObjCProtocol: 1725 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1726 break; 1727 1728 case Decl::ObjCCategoryImpl: 1729 // Categories have properties but don't support synthesize so we 1730 // can ignore them here. 1731 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1732 break; 1733 1734 case Decl::ObjCImplementation: { 1735 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1736 EmitObjCPropertyImplementations(OMD); 1737 Runtime->GenerateClass(OMD); 1738 break; 1739 } 1740 case Decl::ObjCMethod: { 1741 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1742 // If this is not a prototype, emit the body. 1743 if (OMD->getBody()) 1744 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1745 break; 1746 } 1747 case Decl::ObjCCompatibleAlias: 1748 // compatibility-alias is a directive and has no code gen. 1749 break; 1750 1751 case Decl::LinkageSpec: 1752 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1753 break; 1754 1755 case Decl::FileScopeAsm: { 1756 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1757 std::string AsmString(AD->getAsmString()->getStrData(), 1758 AD->getAsmString()->getByteLength()); 1759 1760 const std::string &S = getModule().getModuleInlineAsm(); 1761 if (S.empty()) 1762 getModule().setModuleInlineAsm(AsmString); 1763 else 1764 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1765 break; 1766 } 1767 1768 default: 1769 // Make sure we handled everything we should, every other kind is a 1770 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1771 // function. Need to recode Decl::Kind to do that easily. 1772 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1773 } 1774 } 1775