1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 160 } 161 162 /// AddGlobalCtor - Add a function to the list that will be called before 163 /// main() runs. 164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 165 // FIXME: Type coercion of void()* types. 166 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 167 } 168 169 /// AddGlobalDtor - Add a function to the list that will be called 170 /// when the module is unloaded. 171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 174 } 175 176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 177 // Ctor function type is void()*. 178 llvm::FunctionType* CtorFTy = 179 llvm::FunctionType::get(llvm::Type::VoidTy, 180 std::vector<const llvm::Type*>(), 181 false); 182 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 183 184 // Get the type of a ctor entry, { i32, void ()* }. 185 llvm::StructType* CtorStructTy = 186 llvm::StructType::get(llvm::Type::Int32Ty, 187 llvm::PointerType::getUnqual(CtorFTy), NULL); 188 189 // Construct the constructor and destructor arrays. 190 std::vector<llvm::Constant*> Ctors; 191 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 192 std::vector<llvm::Constant*> S; 193 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 194 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 195 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 196 } 197 198 if (!Ctors.empty()) { 199 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 200 new llvm::GlobalVariable(AT, false, 201 llvm::GlobalValue::AppendingLinkage, 202 llvm::ConstantArray::get(AT, Ctors), 203 GlobalName, 204 &TheModule); 205 } 206 } 207 208 void CodeGenModule::EmitAnnotations() { 209 if (Annotations.empty()) 210 return; 211 212 // Create a new global variable for the ConstantStruct in the Module. 213 llvm::Constant *Array = 214 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 215 Annotations.size()), 216 Annotations); 217 llvm::GlobalValue *gv = 218 new llvm::GlobalVariable(Array->getType(), false, 219 llvm::GlobalValue::AppendingLinkage, Array, 220 "llvm.global.annotations", &TheModule); 221 gv->setSection("llvm.metadata"); 222 } 223 224 static CodeGenModule::GVALinkage GetLinkageForFunction(const FunctionDecl *FD) { 225 // "static" and attr(always_inline) functions get internal linkage. 226 if (FD->getStorageClass() == FunctionDecl::Static || 227 FD->hasAttr<AlwaysInlineAttr>()) 228 return CodeGenModule::GVA_Internal; 229 230 if (FD->isInline()) { 231 if (FD->getStorageClass() == FunctionDecl::Extern) 232 return CodeGenModule::GVA_ExternInline; 233 return CodeGenModule::GVA_Inline; 234 } 235 236 return CodeGenModule::GVA_Normal; 237 } 238 239 /// SetFunctionDefinitionAttributes - Set attributes for a global. 240 /// 241 /// FIXME: This is currently only done for aliases and functions, but 242 /// not for variables (these details are set in 243 /// EmitGlobalVarDefinition for variables). 244 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 245 llvm::GlobalValue *GV) { 246 GVALinkage Linkage = GetLinkageForFunction(D); 247 248 if (Linkage == GVA_Internal) { 249 GV->setLinkage(llvm::Function::InternalLinkage); 250 } else if (D->hasAttr<DLLExportAttr>()) { 251 GV->setLinkage(llvm::Function::DLLExportLinkage); 252 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 253 GV->setLinkage(llvm::Function::WeakAnyLinkage); 254 } else if (Linkage == GVA_ExternInline) { 255 // "extern inline" always gets available_externally linkage, which is the 256 // strongest linkage type we can give an inline function: we don't have to 257 // codegen the definition at all, yet we know that it is "ODR". 258 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 259 } else if (Linkage == GVA_Inline) { 260 // The definition of inline changes based on the language. Note that we 261 // have already handled "static inline" above, with the GVA_Internal case. 262 if (Features.CPlusPlus) { 263 // In C++, the compiler has to emit a definition in every translation unit 264 // that references the function. We should use linkonce_odr because 265 // a) if all references in this translation unit are optimized away, we 266 // don't need to codegen it. b) if the function persists, it needs to be 267 // merged with other definitions. c) C++ has the ODR, so we know the 268 // definition is dependable. 269 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 270 } else if (Features.C99) { 271 // In C99 mode, 'inline' functions are guaranteed to have a strong 272 // definition somewhere else, so we can use available_externally linkage. 273 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 274 } else { 275 // In C89 mode, an 'inline' function may only occur in one translation 276 // unit in the program, but may be extern'd in others. Give it strong 277 // external linkage. 278 GV->setLinkage(llvm::Function::ExternalLinkage); 279 } 280 } else { 281 GV->setLinkage(llvm::Function::ExternalLinkage); 282 } 283 284 SetCommonAttributes(D, GV); 285 } 286 287 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 288 const CGFunctionInfo &Info, 289 llvm::Function *F) { 290 AttributeListType AttributeList; 291 ConstructAttributeList(Info, D, AttributeList); 292 293 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 294 AttributeList.size())); 295 296 // Set the appropriate calling convention for the Function. 297 if (D->hasAttr<FastCallAttr>()) 298 F->setCallingConv(llvm::CallingConv::X86_FastCall); 299 300 if (D->hasAttr<StdCallAttr>()) 301 F->setCallingConv(llvm::CallingConv::X86_StdCall); 302 } 303 304 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 305 llvm::Function *F) { 306 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 307 F->addFnAttr(llvm::Attribute::NoUnwind); 308 309 if (D->hasAttr<AlwaysInlineAttr>()) 310 F->addFnAttr(llvm::Attribute::AlwaysInline); 311 312 if (D->hasAttr<NoinlineAttr>()) 313 F->addFnAttr(llvm::Attribute::NoInline); 314 } 315 316 void CodeGenModule::SetCommonAttributes(const Decl *D, 317 llvm::GlobalValue *GV) { 318 setGlobalVisibility(GV, D); 319 320 if (D->hasAttr<UsedAttr>()) 321 AddUsedGlobal(GV); 322 323 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 324 GV->setSection(SA->getName()); 325 } 326 327 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 328 llvm::Function *F) { 329 SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 330 SetLLVMFunctionAttributesForDefinition(MD, F); 331 332 F->setLinkage(llvm::Function::InternalLinkage); 333 334 SetCommonAttributes(MD, F); 335 } 336 337 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 338 llvm::Function *F) { 339 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 340 341 // Only a few attributes are set on declarations; these may later be 342 // overridden by a definition. 343 344 if (FD->hasAttr<DLLImportAttr>()) { 345 F->setLinkage(llvm::Function::DLLImportLinkage); 346 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 347 // "extern_weak" is overloaded in LLVM; we probably should have 348 // separate linkage types for this. 349 F->setLinkage(llvm::Function::ExternalWeakLinkage); 350 } else { 351 F->setLinkage(llvm::Function::ExternalLinkage); 352 } 353 354 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 355 F->setSection(SA->getName()); 356 } 357 358 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 359 assert(!GV->isDeclaration() && 360 "Only globals with definition can force usage."); 361 LLVMUsed.push_back(GV); 362 } 363 364 void CodeGenModule::EmitLLVMUsed() { 365 // Don't create llvm.used if there is no need. 366 if (LLVMUsed.empty()) 367 return; 368 369 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 370 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 371 372 // Convert LLVMUsed to what ConstantArray needs. 373 std::vector<llvm::Constant*> UsedArray; 374 UsedArray.resize(LLVMUsed.size()); 375 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 376 UsedArray[i] = 377 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 378 } 379 380 llvm::GlobalVariable *GV = 381 new llvm::GlobalVariable(ATy, false, 382 llvm::GlobalValue::AppendingLinkage, 383 llvm::ConstantArray::get(ATy, UsedArray), 384 "llvm.used", &getModule()); 385 386 GV->setSection("llvm.metadata"); 387 } 388 389 void CodeGenModule::EmitDeferred() { 390 // Emit code for any potentially referenced deferred decls. Since a 391 // previously unused static decl may become used during the generation of code 392 // for a static function, iterate until no changes are made. 393 while (!DeferredDeclsToEmit.empty()) { 394 const ValueDecl *D = DeferredDeclsToEmit.back(); 395 DeferredDeclsToEmit.pop_back(); 396 397 // The mangled name for the decl must have been emitted in GlobalDeclMap. 398 // Look it up to see if it was defined with a stronger definition (e.g. an 399 // extern inline function with a strong function redefinition). If so, 400 // just ignore the deferred decl. 401 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 402 assert(CGRef && "Deferred decl wasn't referenced?"); 403 404 if (!CGRef->isDeclaration()) 405 continue; 406 407 // Otherwise, emit the definition and move on to the next one. 408 EmitGlobalDefinition(D); 409 } 410 } 411 412 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 413 /// annotation information for a given GlobalValue. The annotation struct is 414 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 415 /// GlobalValue being annotated. The second field is the constant string 416 /// created from the AnnotateAttr's annotation. The third field is a constant 417 /// string containing the name of the translation unit. The fourth field is 418 /// the line number in the file of the annotated value declaration. 419 /// 420 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 421 /// appears to. 422 /// 423 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 424 const AnnotateAttr *AA, 425 unsigned LineNo) { 426 llvm::Module *M = &getModule(); 427 428 // get [N x i8] constants for the annotation string, and the filename string 429 // which are the 2nd and 3rd elements of the global annotation structure. 430 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 431 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 432 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 433 true); 434 435 // Get the two global values corresponding to the ConstantArrays we just 436 // created to hold the bytes of the strings. 437 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 438 llvm::GlobalValue *annoGV = 439 new llvm::GlobalVariable(anno->getType(), false, 440 llvm::GlobalValue::InternalLinkage, anno, 441 GV->getName() + StringPrefix, M); 442 // translation unit name string, emitted into the llvm.metadata section. 443 llvm::GlobalValue *unitGV = 444 new llvm::GlobalVariable(unit->getType(), false, 445 llvm::GlobalValue::InternalLinkage, unit, 446 StringPrefix, M); 447 448 // Create the ConstantStruct that is the global annotion. 449 llvm::Constant *Fields[4] = { 450 llvm::ConstantExpr::getBitCast(GV, SBP), 451 llvm::ConstantExpr::getBitCast(annoGV, SBP), 452 llvm::ConstantExpr::getBitCast(unitGV, SBP), 453 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 454 }; 455 return llvm::ConstantStruct::get(Fields, 4, false); 456 } 457 458 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 459 // Never defer when EmitAllDecls is specified or the decl has 460 // attribute used. 461 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 462 return false; 463 464 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 465 // Constructors and destructors should never be deferred. 466 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 467 return false; 468 469 GVALinkage Linkage = GetLinkageForFunction(FD); 470 471 // static, static inline, always_inline, and extern inline functions can 472 // always be deferred. 473 if (Linkage == GVA_Internal || Linkage == GVA_ExternInline) 474 return true; 475 476 // inline functions can be deferred unless we're in C89 mode. 477 if (Linkage == GVA_Inline && (Features.C99 || Features.CPlusPlus)) 478 return true; 479 480 return false; 481 } 482 483 const VarDecl *VD = cast<VarDecl>(Global); 484 assert(VD->isFileVarDecl() && "Invalid decl"); 485 return VD->getStorageClass() == VarDecl::Static; 486 } 487 488 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 489 // If this is an alias definition (which otherwise looks like a declaration) 490 // emit it now. 491 if (Global->hasAttr<AliasAttr>()) 492 return EmitAliasDefinition(Global); 493 494 // Ignore declarations, they will be emitted on their first use. 495 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 496 // Forward declarations are emitted lazily on first use. 497 if (!FD->isThisDeclarationADefinition()) 498 return; 499 } else { 500 const VarDecl *VD = cast<VarDecl>(Global); 501 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 502 503 // Forward declarations are emitted lazily on first use. 504 if (!VD->getInit() && VD->hasExternalStorage()) 505 return; 506 } 507 508 // Defer code generation when possible if this is a static definition, inline 509 // function etc. These we only want to emit if they are used. 510 if (MayDeferGeneration(Global)) { 511 // If the value has already been used, add it directly to the 512 // DeferredDeclsToEmit list. 513 const char *MangledName = getMangledName(Global); 514 if (GlobalDeclMap.count(MangledName)) 515 DeferredDeclsToEmit.push_back(Global); 516 else { 517 // Otherwise, remember that we saw a deferred decl with this name. The 518 // first use of the mangled name will cause it to move into 519 // DeferredDeclsToEmit. 520 DeferredDecls[MangledName] = Global; 521 } 522 return; 523 } 524 525 // Otherwise emit the definition. 526 EmitGlobalDefinition(Global); 527 } 528 529 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 530 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 531 EmitGlobalFunctionDefinition(FD); 532 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 533 EmitGlobalVarDefinition(VD); 534 } else { 535 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 536 } 537 } 538 539 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 540 /// module, create and return an llvm Function with the specified type. If there 541 /// is something in the module with the specified name, return it potentially 542 /// bitcasted to the right type. 543 /// 544 /// If D is non-null, it specifies a decl that correspond to this. This is used 545 /// to set the attributes on the function when it is first created. 546 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 547 const llvm::Type *Ty, 548 const FunctionDecl *D) { 549 // Lookup the entry, lazily creating it if necessary. 550 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 551 if (Entry) { 552 if (Entry->getType()->getElementType() == Ty) 553 return Entry; 554 555 // Make sure the result is of the correct type. 556 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 557 return llvm::ConstantExpr::getBitCast(Entry, PTy); 558 } 559 560 // This is the first use or definition of a mangled name. If there is a 561 // deferred decl with this name, remember that we need to emit it at the end 562 // of the file. 563 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 564 DeferredDecls.find(MangledName); 565 if (DDI != DeferredDecls.end()) { 566 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 567 // list, and remove it from DeferredDecls (since we don't need it anymore). 568 DeferredDeclsToEmit.push_back(DDI->second); 569 DeferredDecls.erase(DDI); 570 } 571 572 // This function doesn't have a complete type (for example, the return 573 // type is an incomplete struct). Use a fake type instead, and make 574 // sure not to try to set attributes. 575 bool ShouldSetAttributes = true; 576 if (!isa<llvm::FunctionType>(Ty)) { 577 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 578 std::vector<const llvm::Type*>(), false); 579 ShouldSetAttributes = false; 580 } 581 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 582 llvm::Function::ExternalLinkage, 583 "", &getModule()); 584 F->setName(MangledName); 585 if (D && ShouldSetAttributes) 586 SetFunctionAttributes(D, F); 587 Entry = F; 588 return F; 589 } 590 591 /// GetAddrOfFunction - Return the address of the given function. If Ty is 592 /// non-null, then this function will use the specified type if it has to 593 /// create it (this occurs when we see a definition of the function). 594 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 595 const llvm::Type *Ty) { 596 // If there was no specific requested type, just convert it now. 597 if (!Ty) 598 Ty = getTypes().ConvertType(D->getType()); 599 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 600 } 601 602 /// CreateRuntimeFunction - Create a new runtime function with the specified 603 /// type and name. 604 llvm::Constant * 605 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 606 const char *Name) { 607 // Convert Name to be a uniqued string from the IdentifierInfo table. 608 Name = getContext().Idents.get(Name).getName(); 609 return GetOrCreateLLVMFunction(Name, FTy, 0); 610 } 611 612 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 613 /// create and return an llvm GlobalVariable with the specified type. If there 614 /// is something in the module with the specified name, return it potentially 615 /// bitcasted to the right type. 616 /// 617 /// If D is non-null, it specifies a decl that correspond to this. This is used 618 /// to set the attributes on the global when it is first created. 619 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 620 const llvm::PointerType*Ty, 621 const VarDecl *D) { 622 // Lookup the entry, lazily creating it if necessary. 623 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 624 if (Entry) { 625 if (Entry->getType() == Ty) 626 return Entry; 627 628 // Make sure the result is of the correct type. 629 return llvm::ConstantExpr::getBitCast(Entry, Ty); 630 } 631 632 // We don't support __thread yet. 633 if (D && D->isThreadSpecified()) 634 ErrorUnsupported(D, "thread local ('__thread') variable", true); 635 636 // This is the first use or definition of a mangled name. If there is a 637 // deferred decl with this name, remember that we need to emit it at the end 638 // of the file. 639 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 640 DeferredDecls.find(MangledName); 641 if (DDI != DeferredDecls.end()) { 642 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 643 // list, and remove it from DeferredDecls (since we don't need it anymore). 644 DeferredDeclsToEmit.push_back(DDI->second); 645 DeferredDecls.erase(DDI); 646 } 647 648 llvm::GlobalVariable *GV = 649 new llvm::GlobalVariable(Ty->getElementType(), false, 650 llvm::GlobalValue::ExternalLinkage, 651 0, "", &getModule(), 652 0, Ty->getAddressSpace()); 653 GV->setName(MangledName); 654 655 // Handle things which are present even on external declarations. 656 if (D) { 657 // FIXME: This code is overly simple and should be merged with 658 // other global handling. 659 GV->setConstant(D->getType().isConstant(Context)); 660 661 // FIXME: Merge with other attribute handling code. 662 if (D->getStorageClass() == VarDecl::PrivateExtern) 663 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 664 665 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 666 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 667 } 668 669 return Entry = GV; 670 } 671 672 673 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 674 /// given global variable. If Ty is non-null and if the global doesn't exist, 675 /// then it will be greated with the specified type instead of whatever the 676 /// normal requested type would be. 677 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 678 const llvm::Type *Ty) { 679 assert(D->hasGlobalStorage() && "Not a global variable"); 680 QualType ASTTy = D->getType(); 681 if (Ty == 0) 682 Ty = getTypes().ConvertTypeForMem(ASTTy); 683 684 const llvm::PointerType *PTy = 685 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 686 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 687 } 688 689 /// CreateRuntimeVariable - Create a new runtime global variable with the 690 /// specified type and name. 691 llvm::Constant * 692 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 693 const char *Name) { 694 // Convert Name to be a uniqued string from the IdentifierInfo table. 695 Name = getContext().Idents.get(Name).getName(); 696 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 697 } 698 699 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 700 llvm::Constant *Init = 0; 701 QualType ASTTy = D->getType(); 702 703 if (D->getInit() == 0) { 704 // This is a tentative definition; tentative definitions are 705 // implicitly initialized with { 0 } 706 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 707 if (ASTTy->isIncompleteArrayType()) { 708 // An incomplete array is normally [ TYPE x 0 ], but we need 709 // to fix it to [ TYPE x 1 ]. 710 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 711 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 712 } 713 Init = llvm::Constant::getNullValue(InitTy); 714 } else { 715 Init = EmitConstantExpr(D->getInit(), D->getType()); 716 if (!Init) { 717 ErrorUnsupported(D, "static initializer"); 718 QualType T = D->getInit()->getType(); 719 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 720 } 721 } 722 723 const llvm::Type* InitType = Init->getType(); 724 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 725 726 // Strip off a bitcast if we got one back. 727 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 728 assert(CE->getOpcode() == llvm::Instruction::BitCast); 729 Entry = CE->getOperand(0); 730 } 731 732 // Entry is now either a Function or GlobalVariable. 733 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 734 735 // If we already have this global and it has an initializer, then 736 // we are in the rare situation where we emitted the defining 737 // declaration of the global and are now being asked to emit a 738 // definition which would be common. This occurs, for example, in 739 // the following situation because statics can be emitted out of 740 // order: 741 // 742 // static int x; 743 // static int *y = &x; 744 // static int x = 10; 745 // int **z = &y; 746 // 747 // Bail here so we don't blow away the definition. Note that if we 748 // can't distinguish here if we emitted a definition with a null 749 // initializer, but this case is safe. 750 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 751 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 752 return; 753 } 754 755 // We have a definition after a declaration with the wrong type. 756 // We must make a new GlobalVariable* and update everything that used OldGV 757 // (a declaration or tentative definition) with the new GlobalVariable* 758 // (which will be a definition). 759 // 760 // This happens if there is a prototype for a global (e.g. 761 // "extern int x[];") and then a definition of a different type (e.g. 762 // "int x[10];"). This also happens when an initializer has a different type 763 // from the type of the global (this happens with unions). 764 if (GV == 0 || 765 GV->getType()->getElementType() != InitType || 766 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 767 768 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 769 GlobalDeclMap.erase(getMangledName(D)); 770 771 // Make a new global with the correct type, this is now guaranteed to work. 772 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 773 GV->takeName(cast<llvm::GlobalValue>(Entry)); 774 775 // Replace all uses of the old global with the new global 776 llvm::Constant *NewPtrForOldDecl = 777 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 778 Entry->replaceAllUsesWith(NewPtrForOldDecl); 779 780 // Erase the old global, since it is no longer used. 781 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 782 } 783 784 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 785 SourceManager &SM = Context.getSourceManager(); 786 AddAnnotation(EmitAnnotateAttr(GV, AA, 787 SM.getInstantiationLineNumber(D->getLocation()))); 788 } 789 790 GV->setInitializer(Init); 791 GV->setConstant(D->getType().isConstant(Context)); 792 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 793 794 // Set the llvm linkage type as appropriate. 795 if (D->getStorageClass() == VarDecl::Static) 796 GV->setLinkage(llvm::Function::InternalLinkage); 797 else if (D->hasAttr<DLLImportAttr>()) 798 GV->setLinkage(llvm::Function::DLLImportLinkage); 799 else if (D->hasAttr<DLLExportAttr>()) 800 GV->setLinkage(llvm::Function::DLLExportLinkage); 801 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 802 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 803 else if (!CompileOpts.NoCommon && 804 (!D->hasExternalStorage() && !D->getInit())) 805 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 806 else 807 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 808 809 SetCommonAttributes(D, GV); 810 811 // Emit global variable debug information. 812 if (CGDebugInfo *DI = getDebugInfo()) { 813 DI->setLocation(D->getLocation()); 814 DI->EmitGlobalVariable(GV, D); 815 } 816 } 817 818 819 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 820 const llvm::FunctionType *Ty; 821 822 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 823 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 824 825 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 826 } else { 827 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 828 829 // As a special case, make sure that definitions of K&R function 830 // "type foo()" aren't declared as varargs (which forces the backend 831 // to do unnecessary work). 832 if (D->getType()->isFunctionNoProtoType()) { 833 assert(Ty->isVarArg() && "Didn't lower type as expected"); 834 // Due to stret, the lowered function could have arguments. 835 // Just create the same type as was lowered by ConvertType 836 // but strip off the varargs bit. 837 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 838 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 839 } 840 } 841 842 // Get or create the prototype for teh function. 843 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 844 845 // Strip off a bitcast if we got one back. 846 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 847 assert(CE->getOpcode() == llvm::Instruction::BitCast); 848 Entry = CE->getOperand(0); 849 } 850 851 852 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 853 // If the types mismatch then we have to rewrite the definition. 854 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 855 "Shouldn't replace non-declaration"); 856 857 // F is the Function* for the one with the wrong type, we must make a new 858 // Function* and update everything that used F (a declaration) with the new 859 // Function* (which will be a definition). 860 // 861 // This happens if there is a prototype for a function 862 // (e.g. "int f()") and then a definition of a different type 863 // (e.g. "int f(int x)"). Start by making a new function of the 864 // correct type, RAUW, then steal the name. 865 GlobalDeclMap.erase(getMangledName(D)); 866 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 867 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 868 869 // Replace uses of F with the Function we will endow with a body. 870 llvm::Constant *NewPtrForOldDecl = 871 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 872 Entry->replaceAllUsesWith(NewPtrForOldDecl); 873 874 // Ok, delete the old function now, which is dead. 875 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 876 877 Entry = NewFn; 878 } 879 880 llvm::Function *Fn = cast<llvm::Function>(Entry); 881 882 CodeGenFunction(*this).GenerateCode(D, Fn); 883 884 SetFunctionDefinitionAttributes(D, Fn); 885 SetLLVMFunctionAttributesForDefinition(D, Fn); 886 887 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 888 AddGlobalCtor(Fn, CA->getPriority()); 889 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 890 AddGlobalDtor(Fn, DA->getPriority()); 891 } 892 893 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 894 const AliasAttr *AA = D->getAttr<AliasAttr>(); 895 assert(AA && "Not an alias?"); 896 897 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 898 899 // Unique the name through the identifier table. 900 const char *AliaseeName = AA->getAliasee().c_str(); 901 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 902 903 // Create a reference to the named value. This ensures that it is emitted 904 // if a deferred decl. 905 llvm::Constant *Aliasee; 906 if (isa<llvm::FunctionType>(DeclTy)) 907 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 908 else 909 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 910 llvm::PointerType::getUnqual(DeclTy), 0); 911 912 // Create the new alias itself, but don't set a name yet. 913 llvm::GlobalValue *GA = 914 new llvm::GlobalAlias(Aliasee->getType(), 915 llvm::Function::ExternalLinkage, 916 "", Aliasee, &getModule()); 917 918 // See if there is already something with the alias' name in the module. 919 const char *MangledName = getMangledName(D); 920 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 921 922 if (Entry && !Entry->isDeclaration()) { 923 // If there is a definition in the module, then it wins over the alias. 924 // This is dubious, but allow it to be safe. Just ignore the alias. 925 GA->eraseFromParent(); 926 return; 927 } 928 929 if (Entry) { 930 // If there is a declaration in the module, then we had an extern followed 931 // by the alias, as in: 932 // extern int test6(); 933 // ... 934 // int test6() __attribute__((alias("test7"))); 935 // 936 // Remove it and replace uses of it with the alias. 937 938 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 939 Entry->getType())); 940 Entry->eraseFromParent(); 941 } 942 943 // Now we know that there is no conflict, set the name. 944 Entry = GA; 945 GA->setName(MangledName); 946 947 // Set attributes which are particular to an alias; this is a 948 // specialization of the attributes which may be set on a global 949 // variable/function. 950 if (D->hasAttr<DLLExportAttr>()) { 951 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 952 // The dllexport attribute is ignored for undefined symbols. 953 if (FD->getBody()) 954 GA->setLinkage(llvm::Function::DLLExportLinkage); 955 } else { 956 GA->setLinkage(llvm::Function::DLLExportLinkage); 957 } 958 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 959 GA->setLinkage(llvm::Function::WeakAnyLinkage); 960 } 961 962 SetCommonAttributes(D, GA); 963 } 964 965 /// getBuiltinLibFunction - Given a builtin id for a function like 966 /// "__builtin_fabsf", return a Function* for "fabsf". 967 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 968 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 969 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 970 "isn't a lib fn"); 971 972 // Get the name, skip over the __builtin_ prefix (if necessary). 973 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 974 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 975 Name += 10; 976 977 // Get the type for the builtin. 978 Builtin::Context::GetBuiltinTypeError Error; 979 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 980 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 981 982 const llvm::FunctionType *Ty = 983 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 984 985 // Unique the name through the identifier table. 986 Name = getContext().Idents.get(Name).getName(); 987 // FIXME: param attributes for sext/zext etc. 988 return GetOrCreateLLVMFunction(Name, Ty, 0); 989 } 990 991 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 992 unsigned NumTys) { 993 return llvm::Intrinsic::getDeclaration(&getModule(), 994 (llvm::Intrinsic::ID)IID, Tys, NumTys); 995 } 996 997 llvm::Function *CodeGenModule::getMemCpyFn() { 998 if (MemCpyFn) return MemCpyFn; 999 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1000 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1001 } 1002 1003 llvm::Function *CodeGenModule::getMemMoveFn() { 1004 if (MemMoveFn) return MemMoveFn; 1005 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1006 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1007 } 1008 1009 llvm::Function *CodeGenModule::getMemSetFn() { 1010 if (MemSetFn) return MemSetFn; 1011 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1012 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1013 } 1014 1015 static void appendFieldAndPadding(CodeGenModule &CGM, 1016 std::vector<llvm::Constant*>& Fields, 1017 FieldDecl *FieldD, FieldDecl *NextFieldD, 1018 llvm::Constant* Field, 1019 RecordDecl* RD, const llvm::StructType *STy) { 1020 // Append the field. 1021 Fields.push_back(Field); 1022 1023 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1024 1025 int NextStructFieldNo; 1026 if (!NextFieldD) { 1027 NextStructFieldNo = STy->getNumElements(); 1028 } else { 1029 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1030 } 1031 1032 // Append padding 1033 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1034 llvm::Constant *C = 1035 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1036 1037 Fields.push_back(C); 1038 } 1039 } 1040 1041 llvm::Constant *CodeGenModule:: 1042 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1043 std::string str; 1044 unsigned StringLength; 1045 1046 bool isUTF16 = false; 1047 if (Literal->containsNonAsciiOrNull()) { 1048 // Convert from UTF-8 to UTF-16. 1049 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1050 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1051 UTF16 *ToPtr = &ToBuf[0]; 1052 1053 ConversionResult Result; 1054 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1055 &ToPtr, ToPtr+Literal->getByteLength(), 1056 strictConversion); 1057 if (Result == conversionOK) { 1058 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1059 // without doing more surgery to this routine. Since we aren't explicitly 1060 // checking for endianness here, it's also a bug (when generating code for 1061 // a target that doesn't match the host endianness). Modeling this as an 1062 // i16 array is likely the cleanest solution. 1063 StringLength = ToPtr-&ToBuf[0]; 1064 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1065 isUTF16 = true; 1066 } else if (Result == sourceIllegal) { 1067 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1068 str.assign(Literal->getStrData(), Literal->getByteLength()); 1069 StringLength = str.length(); 1070 } else 1071 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1072 1073 } else { 1074 str.assign(Literal->getStrData(), Literal->getByteLength()); 1075 StringLength = str.length(); 1076 } 1077 llvm::StringMapEntry<llvm::Constant *> &Entry = 1078 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1079 1080 if (llvm::Constant *C = Entry.getValue()) 1081 return C; 1082 1083 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1084 llvm::Constant *Zeros[] = { Zero, Zero }; 1085 1086 if (!CFConstantStringClassRef) { 1087 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1088 Ty = llvm::ArrayType::get(Ty, 0); 1089 1090 // FIXME: This is fairly broken if 1091 // __CFConstantStringClassReference is already defined, in that it 1092 // will get renamed and the user will most likely see an opaque 1093 // error message. This is a general issue with relying on 1094 // particular names. 1095 llvm::GlobalVariable *GV = 1096 new llvm::GlobalVariable(Ty, false, 1097 llvm::GlobalVariable::ExternalLinkage, 0, 1098 "__CFConstantStringClassReference", 1099 &getModule()); 1100 1101 // Decay array -> ptr 1102 CFConstantStringClassRef = 1103 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1104 } 1105 1106 QualType CFTy = getContext().getCFConstantStringType(); 1107 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1108 1109 const llvm::StructType *STy = 1110 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1111 1112 std::vector<llvm::Constant*> Fields; 1113 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1114 1115 // Class pointer. 1116 FieldDecl *CurField = *Field++; 1117 FieldDecl *NextField = *Field++; 1118 appendFieldAndPadding(*this, Fields, CurField, NextField, 1119 CFConstantStringClassRef, CFRD, STy); 1120 1121 // Flags. 1122 CurField = NextField; 1123 NextField = *Field++; 1124 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1125 appendFieldAndPadding(*this, Fields, CurField, NextField, 1126 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1127 : llvm::ConstantInt::get(Ty, 0x07C8), 1128 CFRD, STy); 1129 1130 // String pointer. 1131 CurField = NextField; 1132 NextField = *Field++; 1133 llvm::Constant *C = llvm::ConstantArray::get(str); 1134 1135 const char *Sect, *Prefix; 1136 bool isConstant; 1137 if (isUTF16) { 1138 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1139 Sect = getContext().Target.getUnicodeStringSection(); 1140 // FIXME: Why does GCC not set constant here? 1141 isConstant = false; 1142 } else { 1143 Prefix = getContext().Target.getStringSymbolPrefix(true); 1144 Sect = getContext().Target.getCFStringDataSection(); 1145 // FIXME: -fwritable-strings should probably affect this, but we 1146 // are following gcc here. 1147 isConstant = true; 1148 } 1149 llvm::GlobalVariable *GV = 1150 new llvm::GlobalVariable(C->getType(), isConstant, 1151 llvm::GlobalValue::InternalLinkage, 1152 C, Prefix, &getModule()); 1153 if (Sect) 1154 GV->setSection(Sect); 1155 if (isUTF16) { 1156 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1157 GV->setAlignment(Align); 1158 } 1159 appendFieldAndPadding(*this, Fields, CurField, NextField, 1160 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1161 CFRD, STy); 1162 1163 // String length. 1164 CurField = NextField; 1165 NextField = 0; 1166 Ty = getTypes().ConvertType(getContext().LongTy); 1167 appendFieldAndPadding(*this, Fields, CurField, NextField, 1168 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1169 1170 // The struct. 1171 C = llvm::ConstantStruct::get(STy, Fields); 1172 GV = new llvm::GlobalVariable(C->getType(), true, 1173 llvm::GlobalVariable::InternalLinkage, C, 1174 getContext().Target.getCFStringSymbolPrefix(), 1175 &getModule()); 1176 if (const char *Sect = getContext().Target.getCFStringSection()) 1177 GV->setSection(Sect); 1178 Entry.setValue(GV); 1179 1180 return GV; 1181 } 1182 1183 /// GetStringForStringLiteral - Return the appropriate bytes for a 1184 /// string literal, properly padded to match the literal type. 1185 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1186 const char *StrData = E->getStrData(); 1187 unsigned Len = E->getByteLength(); 1188 1189 const ConstantArrayType *CAT = 1190 getContext().getAsConstantArrayType(E->getType()); 1191 assert(CAT && "String isn't pointer or array!"); 1192 1193 // Resize the string to the right size. 1194 std::string Str(StrData, StrData+Len); 1195 uint64_t RealLen = CAT->getSize().getZExtValue(); 1196 1197 if (E->isWide()) 1198 RealLen *= getContext().Target.getWCharWidth()/8; 1199 1200 Str.resize(RealLen, '\0'); 1201 1202 return Str; 1203 } 1204 1205 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1206 /// constant array for the given string literal. 1207 llvm::Constant * 1208 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1209 // FIXME: This can be more efficient. 1210 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1211 } 1212 1213 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1214 /// array for the given ObjCEncodeExpr node. 1215 llvm::Constant * 1216 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1217 std::string Str; 1218 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1219 1220 return GetAddrOfConstantCString(Str); 1221 } 1222 1223 1224 /// GenerateWritableString -- Creates storage for a string literal. 1225 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1226 bool constant, 1227 CodeGenModule &CGM, 1228 const char *GlobalName) { 1229 // Create Constant for this string literal. Don't add a '\0'. 1230 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1231 1232 // Create a global variable for this string 1233 return new llvm::GlobalVariable(C->getType(), constant, 1234 llvm::GlobalValue::InternalLinkage, 1235 C, GlobalName, &CGM.getModule()); 1236 } 1237 1238 /// GetAddrOfConstantString - Returns a pointer to a character array 1239 /// containing the literal. This contents are exactly that of the 1240 /// given string, i.e. it will not be null terminated automatically; 1241 /// see GetAddrOfConstantCString. Note that whether the result is 1242 /// actually a pointer to an LLVM constant depends on 1243 /// Feature.WriteableStrings. 1244 /// 1245 /// The result has pointer to array type. 1246 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1247 const char *GlobalName) { 1248 bool IsConstant = !Features.WritableStrings; 1249 1250 // Get the default prefix if a name wasn't specified. 1251 if (!GlobalName) 1252 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1253 1254 // Don't share any string literals if strings aren't constant. 1255 if (!IsConstant) 1256 return GenerateStringLiteral(str, false, *this, GlobalName); 1257 1258 llvm::StringMapEntry<llvm::Constant *> &Entry = 1259 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1260 1261 if (Entry.getValue()) 1262 return Entry.getValue(); 1263 1264 // Create a global variable for this. 1265 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1266 Entry.setValue(C); 1267 return C; 1268 } 1269 1270 /// GetAddrOfConstantCString - Returns a pointer to a character 1271 /// array containing the literal and a terminating '\-' 1272 /// character. The result has pointer to array type. 1273 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1274 const char *GlobalName){ 1275 return GetAddrOfConstantString(str + '\0', GlobalName); 1276 } 1277 1278 /// EmitObjCPropertyImplementations - Emit information for synthesized 1279 /// properties for an implementation. 1280 void CodeGenModule::EmitObjCPropertyImplementations(const 1281 ObjCImplementationDecl *D) { 1282 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1283 e = D->propimpl_end(); i != e; ++i) { 1284 ObjCPropertyImplDecl *PID = *i; 1285 1286 // Dynamic is just for type-checking. 1287 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1288 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1289 1290 // Determine which methods need to be implemented, some may have 1291 // been overridden. Note that ::isSynthesized is not the method 1292 // we want, that just indicates if the decl came from a 1293 // property. What we want to know is if the method is defined in 1294 // this implementation. 1295 if (!D->getInstanceMethod(PD->getGetterName())) 1296 CodeGenFunction(*this).GenerateObjCGetter( 1297 const_cast<ObjCImplementationDecl *>(D), PID); 1298 if (!PD->isReadOnly() && 1299 !D->getInstanceMethod(PD->getSetterName())) 1300 CodeGenFunction(*this).GenerateObjCSetter( 1301 const_cast<ObjCImplementationDecl *>(D), PID); 1302 } 1303 } 1304 } 1305 1306 /// EmitNamespace - Emit all declarations in a namespace. 1307 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1308 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1309 E = ND->decls_end(getContext()); 1310 I != E; ++I) 1311 EmitTopLevelDecl(*I); 1312 } 1313 1314 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1315 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1316 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1317 ErrorUnsupported(LSD, "linkage spec"); 1318 return; 1319 } 1320 1321 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1322 E = LSD->decls_end(getContext()); 1323 I != E; ++I) 1324 EmitTopLevelDecl(*I); 1325 } 1326 1327 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1328 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1329 // If an error has occurred, stop code generation, but continue 1330 // parsing and semantic analysis (to ensure all warnings and errors 1331 // are emitted). 1332 if (Diags.hasErrorOccurred()) 1333 return; 1334 1335 switch (D->getKind()) { 1336 case Decl::CXXMethod: 1337 case Decl::Function: 1338 case Decl::Var: 1339 EmitGlobal(cast<ValueDecl>(D)); 1340 break; 1341 1342 case Decl::Namespace: 1343 EmitNamespace(cast<NamespaceDecl>(D)); 1344 break; 1345 1346 // Objective-C Decls 1347 1348 // Forward declarations, no (immediate) code generation. 1349 case Decl::ObjCClass: 1350 case Decl::ObjCForwardProtocol: 1351 case Decl::ObjCCategory: 1352 break; 1353 case Decl::ObjCInterface: 1354 // If we already laid out this interface due to an @class, and if we 1355 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1356 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1357 break; 1358 1359 case Decl::ObjCProtocol: 1360 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1361 break; 1362 1363 case Decl::ObjCCategoryImpl: 1364 // Categories have properties but don't support synthesize so we 1365 // can ignore them here. 1366 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1367 break; 1368 1369 case Decl::ObjCImplementation: { 1370 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1371 EmitObjCPropertyImplementations(OMD); 1372 Runtime->GenerateClass(OMD); 1373 break; 1374 } 1375 case Decl::ObjCMethod: { 1376 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1377 // If this is not a prototype, emit the body. 1378 if (OMD->getBody()) 1379 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1380 break; 1381 } 1382 case Decl::ObjCCompatibleAlias: 1383 // compatibility-alias is a directive and has no code gen. 1384 break; 1385 1386 case Decl::LinkageSpec: 1387 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1388 break; 1389 1390 case Decl::FileScopeAsm: { 1391 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1392 std::string AsmString(AD->getAsmString()->getStrData(), 1393 AD->getAsmString()->getByteLength()); 1394 1395 const std::string &S = getModule().getModuleInlineAsm(); 1396 if (S.empty()) 1397 getModule().setModuleInlineAsm(AsmString); 1398 else 1399 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1400 break; 1401 } 1402 1403 default: 1404 // Make sure we handled everything we should, every other kind is 1405 // a non-top-level decl. FIXME: Would be nice to have an 1406 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1407 // that easily. 1408 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1409 } 1410 } 1411