1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
160 }
161 
162 /// AddGlobalCtor - Add a function to the list that will be called before
163 /// main() runs.
164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
165   // FIXME: Type coercion of void()* types.
166   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
167 }
168 
169 /// AddGlobalDtor - Add a function to the list that will be called
170 /// when the module is unloaded.
171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
174 }
175 
176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
177   // Ctor function type is void()*.
178   llvm::FunctionType* CtorFTy =
179     llvm::FunctionType::get(llvm::Type::VoidTy,
180                             std::vector<const llvm::Type*>(),
181                             false);
182   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
183 
184   // Get the type of a ctor entry, { i32, void ()* }.
185   llvm::StructType* CtorStructTy =
186     llvm::StructType::get(llvm::Type::Int32Ty,
187                           llvm::PointerType::getUnqual(CtorFTy), NULL);
188 
189   // Construct the constructor and destructor arrays.
190   std::vector<llvm::Constant*> Ctors;
191   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
192     std::vector<llvm::Constant*> S;
193     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
194     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
195     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
196   }
197 
198   if (!Ctors.empty()) {
199     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
200     new llvm::GlobalVariable(AT, false,
201                              llvm::GlobalValue::AppendingLinkage,
202                              llvm::ConstantArray::get(AT, Ctors),
203                              GlobalName,
204                              &TheModule);
205   }
206 }
207 
208 void CodeGenModule::EmitAnnotations() {
209   if (Annotations.empty())
210     return;
211 
212   // Create a new global variable for the ConstantStruct in the Module.
213   llvm::Constant *Array =
214   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
215                                                 Annotations.size()),
216                            Annotations);
217   llvm::GlobalValue *gv =
218   new llvm::GlobalVariable(Array->getType(), false,
219                            llvm::GlobalValue::AppendingLinkage, Array,
220                            "llvm.global.annotations", &TheModule);
221   gv->setSection("llvm.metadata");
222 }
223 
224 static CodeGenModule::GVALinkage GetLinkageForFunction(const FunctionDecl *FD) {
225   // "static" and attr(always_inline) functions get internal linkage.
226   if (FD->getStorageClass() == FunctionDecl::Static ||
227       FD->hasAttr<AlwaysInlineAttr>())
228     return CodeGenModule::GVA_Internal;
229 
230   if (FD->isInline()) {
231     if (FD->getStorageClass() == FunctionDecl::Extern)
232       return CodeGenModule::GVA_ExternInline;
233     return CodeGenModule::GVA_Inline;
234   }
235 
236   return CodeGenModule::GVA_Normal;
237 }
238 
239 /// SetFunctionDefinitionAttributes - Set attributes for a global.
240 ///
241 /// FIXME: This is currently only done for aliases and functions, but
242 /// not for variables (these details are set in
243 /// EmitGlobalVarDefinition for variables).
244 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
245                                                     llvm::GlobalValue *GV) {
246   GVALinkage Linkage = GetLinkageForFunction(D);
247 
248   if (Linkage == GVA_Internal) {
249     GV->setLinkage(llvm::Function::InternalLinkage);
250   } else if (D->hasAttr<DLLExportAttr>()) {
251     GV->setLinkage(llvm::Function::DLLExportLinkage);
252   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
253     GV->setLinkage(llvm::Function::WeakAnyLinkage);
254   } else if (Linkage == GVA_ExternInline) {
255     // "extern inline" always gets available_externally linkage, which is the
256     // strongest linkage type we can give an inline function: we don't have to
257     // codegen the definition at all, yet we know that it is "ODR".
258     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
259   } else if (Linkage == GVA_Inline) {
260     // The definition of inline changes based on the language.  Note that we
261     // have already handled "static inline" above, with the GVA_Internal case.
262     if (Features.CPlusPlus) {
263       // In C++, the compiler has to emit a definition in every translation unit
264       // that references the function.  We should use linkonce_odr because
265       // a) if all references in this translation unit are optimized away, we
266       // don't need to codegen it.  b) if the function persists, it needs to be
267       // merged with other definitions. c) C++ has the ODR, so we know the
268       // definition is dependable.
269       GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
270     } else if (Features.C99) {
271       // In C99 mode, 'inline' functions are guaranteed to have a strong
272       // definition somewhere else, so we can use available_externally linkage.
273       GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
274     } else {
275       // In C89 mode, an 'inline' function may only occur in one translation
276       // unit in the program, but may be extern'd in others.  Give it strong
277       // external linkage.
278       GV->setLinkage(llvm::Function::ExternalLinkage);
279     }
280   } else {
281     GV->setLinkage(llvm::Function::ExternalLinkage);
282   }
283 
284   SetCommonAttributes(D, GV);
285 }
286 
287 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
288                                               const CGFunctionInfo &Info,
289                                               llvm::Function *F) {
290   AttributeListType AttributeList;
291   ConstructAttributeList(Info, D, AttributeList);
292 
293   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
294                                         AttributeList.size()));
295 
296   // Set the appropriate calling convention for the Function.
297   if (D->hasAttr<FastCallAttr>())
298     F->setCallingConv(llvm::CallingConv::X86_FastCall);
299 
300   if (D->hasAttr<StdCallAttr>())
301     F->setCallingConv(llvm::CallingConv::X86_StdCall);
302 }
303 
304 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
305                                                            llvm::Function *F) {
306   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
307     F->addFnAttr(llvm::Attribute::NoUnwind);
308 
309   if (D->hasAttr<AlwaysInlineAttr>())
310     F->addFnAttr(llvm::Attribute::AlwaysInline);
311 
312   if (D->hasAttr<NoinlineAttr>())
313     F->addFnAttr(llvm::Attribute::NoInline);
314 }
315 
316 void CodeGenModule::SetCommonAttributes(const Decl *D,
317                                         llvm::GlobalValue *GV) {
318   setGlobalVisibility(GV, D);
319 
320   if (D->hasAttr<UsedAttr>())
321     AddUsedGlobal(GV);
322 
323   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
324     GV->setSection(SA->getName());
325 }
326 
327 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
328                                         llvm::Function *F) {
329   SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
330   SetLLVMFunctionAttributesForDefinition(MD, F);
331 
332   F->setLinkage(llvm::Function::InternalLinkage);
333 
334   SetCommonAttributes(MD, F);
335 }
336 
337 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
338                                           llvm::Function *F) {
339   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
340 
341   // Only a few attributes are set on declarations; these may later be
342   // overridden by a definition.
343 
344   if (FD->hasAttr<DLLImportAttr>()) {
345     F->setLinkage(llvm::Function::DLLImportLinkage);
346   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
347     // "extern_weak" is overloaded in LLVM; we probably should have
348     // separate linkage types for this.
349     F->setLinkage(llvm::Function::ExternalWeakLinkage);
350   } else {
351     F->setLinkage(llvm::Function::ExternalLinkage);
352   }
353 
354   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
355     F->setSection(SA->getName());
356 }
357 
358 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
359   assert(!GV->isDeclaration() &&
360          "Only globals with definition can force usage.");
361   LLVMUsed.push_back(GV);
362 }
363 
364 void CodeGenModule::EmitLLVMUsed() {
365   // Don't create llvm.used if there is no need.
366   if (LLVMUsed.empty())
367     return;
368 
369   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
370   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
371 
372   // Convert LLVMUsed to what ConstantArray needs.
373   std::vector<llvm::Constant*> UsedArray;
374   UsedArray.resize(LLVMUsed.size());
375   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
376     UsedArray[i] =
377      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
378   }
379 
380   llvm::GlobalVariable *GV =
381     new llvm::GlobalVariable(ATy, false,
382                              llvm::GlobalValue::AppendingLinkage,
383                              llvm::ConstantArray::get(ATy, UsedArray),
384                              "llvm.used", &getModule());
385 
386   GV->setSection("llvm.metadata");
387 }
388 
389 void CodeGenModule::EmitDeferred() {
390   // Emit code for any potentially referenced deferred decls.  Since a
391   // previously unused static decl may become used during the generation of code
392   // for a static function, iterate until no  changes are made.
393   while (!DeferredDeclsToEmit.empty()) {
394     const ValueDecl *D = DeferredDeclsToEmit.back();
395     DeferredDeclsToEmit.pop_back();
396 
397     // The mangled name for the decl must have been emitted in GlobalDeclMap.
398     // Look it up to see if it was defined with a stronger definition (e.g. an
399     // extern inline function with a strong function redefinition).  If so,
400     // just ignore the deferred decl.
401     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
402     assert(CGRef && "Deferred decl wasn't referenced?");
403 
404     if (!CGRef->isDeclaration())
405       continue;
406 
407     // Otherwise, emit the definition and move on to the next one.
408     EmitGlobalDefinition(D);
409   }
410 }
411 
412 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
413 /// annotation information for a given GlobalValue.  The annotation struct is
414 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
415 /// GlobalValue being annotated.  The second field is the constant string
416 /// created from the AnnotateAttr's annotation.  The third field is a constant
417 /// string containing the name of the translation unit.  The fourth field is
418 /// the line number in the file of the annotated value declaration.
419 ///
420 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
421 ///        appears to.
422 ///
423 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
424                                                 const AnnotateAttr *AA,
425                                                 unsigned LineNo) {
426   llvm::Module *M = &getModule();
427 
428   // get [N x i8] constants for the annotation string, and the filename string
429   // which are the 2nd and 3rd elements of the global annotation structure.
430   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
431   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
432   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
433                                                   true);
434 
435   // Get the two global values corresponding to the ConstantArrays we just
436   // created to hold the bytes of the strings.
437   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
438   llvm::GlobalValue *annoGV =
439   new llvm::GlobalVariable(anno->getType(), false,
440                            llvm::GlobalValue::InternalLinkage, anno,
441                            GV->getName() + StringPrefix, M);
442   // translation unit name string, emitted into the llvm.metadata section.
443   llvm::GlobalValue *unitGV =
444   new llvm::GlobalVariable(unit->getType(), false,
445                            llvm::GlobalValue::InternalLinkage, unit,
446                            StringPrefix, M);
447 
448   // Create the ConstantStruct that is the global annotion.
449   llvm::Constant *Fields[4] = {
450     llvm::ConstantExpr::getBitCast(GV, SBP),
451     llvm::ConstantExpr::getBitCast(annoGV, SBP),
452     llvm::ConstantExpr::getBitCast(unitGV, SBP),
453     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
454   };
455   return llvm::ConstantStruct::get(Fields, 4, false);
456 }
457 
458 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
459   // Never defer when EmitAllDecls is specified or the decl has
460   // attribute used.
461   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
462     return false;
463 
464   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
465     // Constructors and destructors should never be deferred.
466     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
467       return false;
468 
469     GVALinkage Linkage = GetLinkageForFunction(FD);
470 
471     // static, static inline, always_inline, and extern inline functions can
472     // always be deferred.
473     if (Linkage == GVA_Internal || Linkage == GVA_ExternInline)
474       return true;
475 
476     // inline functions can be deferred unless we're in C89 mode.
477     if (Linkage == GVA_Inline && (Features.C99 || Features.CPlusPlus))
478       return true;
479 
480     return false;
481   }
482 
483   const VarDecl *VD = cast<VarDecl>(Global);
484   assert(VD->isFileVarDecl() && "Invalid decl");
485   return VD->getStorageClass() == VarDecl::Static;
486 }
487 
488 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
489   // If this is an alias definition (which otherwise looks like a declaration)
490   // emit it now.
491   if (Global->hasAttr<AliasAttr>())
492     return EmitAliasDefinition(Global);
493 
494   // Ignore declarations, they will be emitted on their first use.
495   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
496     // Forward declarations are emitted lazily on first use.
497     if (!FD->isThisDeclarationADefinition())
498       return;
499   } else {
500     const VarDecl *VD = cast<VarDecl>(Global);
501     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
502 
503     // Forward declarations are emitted lazily on first use.
504     if (!VD->getInit() && VD->hasExternalStorage())
505       return;
506   }
507 
508   // Defer code generation when possible if this is a static definition, inline
509   // function etc.  These we only want to emit if they are used.
510   if (MayDeferGeneration(Global)) {
511     // If the value has already been used, add it directly to the
512     // DeferredDeclsToEmit list.
513     const char *MangledName = getMangledName(Global);
514     if (GlobalDeclMap.count(MangledName))
515       DeferredDeclsToEmit.push_back(Global);
516     else {
517       // Otherwise, remember that we saw a deferred decl with this name.  The
518       // first use of the mangled name will cause it to move into
519       // DeferredDeclsToEmit.
520       DeferredDecls[MangledName] = Global;
521     }
522     return;
523   }
524 
525   // Otherwise emit the definition.
526   EmitGlobalDefinition(Global);
527 }
528 
529 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
530   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
531     EmitGlobalFunctionDefinition(FD);
532   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
533     EmitGlobalVarDefinition(VD);
534   } else {
535     assert(0 && "Invalid argument to EmitGlobalDefinition()");
536   }
537 }
538 
539 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
540 /// module, create and return an llvm Function with the specified type. If there
541 /// is something in the module with the specified name, return it potentially
542 /// bitcasted to the right type.
543 ///
544 /// If D is non-null, it specifies a decl that correspond to this.  This is used
545 /// to set the attributes on the function when it is first created.
546 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
547                                                        const llvm::Type *Ty,
548                                                        const FunctionDecl *D) {
549   // Lookup the entry, lazily creating it if necessary.
550   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
551   if (Entry) {
552     if (Entry->getType()->getElementType() == Ty)
553       return Entry;
554 
555     // Make sure the result is of the correct type.
556     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
557     return llvm::ConstantExpr::getBitCast(Entry, PTy);
558   }
559 
560   // This is the first use or definition of a mangled name.  If there is a
561   // deferred decl with this name, remember that we need to emit it at the end
562   // of the file.
563   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
564   DeferredDecls.find(MangledName);
565   if (DDI != DeferredDecls.end()) {
566     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
567     // list, and remove it from DeferredDecls (since we don't need it anymore).
568     DeferredDeclsToEmit.push_back(DDI->second);
569     DeferredDecls.erase(DDI);
570   }
571 
572   // This function doesn't have a complete type (for example, the return
573   // type is an incomplete struct). Use a fake type instead, and make
574   // sure not to try to set attributes.
575   bool ShouldSetAttributes = true;
576   if (!isa<llvm::FunctionType>(Ty)) {
577     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
578                                  std::vector<const llvm::Type*>(), false);
579     ShouldSetAttributes = false;
580   }
581   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
582                                              llvm::Function::ExternalLinkage,
583                                              "", &getModule());
584   F->setName(MangledName);
585   if (D && ShouldSetAttributes)
586     SetFunctionAttributes(D, F);
587   Entry = F;
588   return F;
589 }
590 
591 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
592 /// non-null, then this function will use the specified type if it has to
593 /// create it (this occurs when we see a definition of the function).
594 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
595                                                  const llvm::Type *Ty) {
596   // If there was no specific requested type, just convert it now.
597   if (!Ty)
598     Ty = getTypes().ConvertType(D->getType());
599   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
600 }
601 
602 /// CreateRuntimeFunction - Create a new runtime function with the specified
603 /// type and name.
604 llvm::Constant *
605 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
606                                      const char *Name) {
607   // Convert Name to be a uniqued string from the IdentifierInfo table.
608   Name = getContext().Idents.get(Name).getName();
609   return GetOrCreateLLVMFunction(Name, FTy, 0);
610 }
611 
612 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
613 /// create and return an llvm GlobalVariable with the specified type.  If there
614 /// is something in the module with the specified name, return it potentially
615 /// bitcasted to the right type.
616 ///
617 /// If D is non-null, it specifies a decl that correspond to this.  This is used
618 /// to set the attributes on the global when it is first created.
619 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
620                                                      const llvm::PointerType*Ty,
621                                                      const VarDecl *D) {
622   // Lookup the entry, lazily creating it if necessary.
623   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
624   if (Entry) {
625     if (Entry->getType() == Ty)
626       return Entry;
627 
628     // Make sure the result is of the correct type.
629     return llvm::ConstantExpr::getBitCast(Entry, Ty);
630   }
631 
632   // We don't support __thread yet.
633   if (D && D->isThreadSpecified())
634     ErrorUnsupported(D, "thread local ('__thread') variable", true);
635 
636   // This is the first use or definition of a mangled name.  If there is a
637   // deferred decl with this name, remember that we need to emit it at the end
638   // of the file.
639   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
640     DeferredDecls.find(MangledName);
641   if (DDI != DeferredDecls.end()) {
642     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
643     // list, and remove it from DeferredDecls (since we don't need it anymore).
644     DeferredDeclsToEmit.push_back(DDI->second);
645     DeferredDecls.erase(DDI);
646   }
647 
648   llvm::GlobalVariable *GV =
649     new llvm::GlobalVariable(Ty->getElementType(), false,
650                              llvm::GlobalValue::ExternalLinkage,
651                              0, "", &getModule(),
652                              0, Ty->getAddressSpace());
653   GV->setName(MangledName);
654 
655   // Handle things which are present even on external declarations.
656   if (D) {
657     // FIXME: This code is overly simple and should be merged with
658     // other global handling.
659     GV->setConstant(D->getType().isConstant(Context));
660 
661     // FIXME: Merge with other attribute handling code.
662     if (D->getStorageClass() == VarDecl::PrivateExtern)
663       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
664 
665     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
666       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
667   }
668 
669   return Entry = GV;
670 }
671 
672 
673 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
674 /// given global variable.  If Ty is non-null and if the global doesn't exist,
675 /// then it will be greated with the specified type instead of whatever the
676 /// normal requested type would be.
677 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
678                                                   const llvm::Type *Ty) {
679   assert(D->hasGlobalStorage() && "Not a global variable");
680   QualType ASTTy = D->getType();
681   if (Ty == 0)
682     Ty = getTypes().ConvertTypeForMem(ASTTy);
683 
684   const llvm::PointerType *PTy =
685     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
686   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
687 }
688 
689 /// CreateRuntimeVariable - Create a new runtime global variable with the
690 /// specified type and name.
691 llvm::Constant *
692 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
693                                      const char *Name) {
694   // Convert Name to be a uniqued string from the IdentifierInfo table.
695   Name = getContext().Idents.get(Name).getName();
696   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
697 }
698 
699 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
700   llvm::Constant *Init = 0;
701   QualType ASTTy = D->getType();
702 
703   if (D->getInit() == 0) {
704     // This is a tentative definition; tentative definitions are
705     // implicitly initialized with { 0 }
706     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
707     if (ASTTy->isIncompleteArrayType()) {
708       // An incomplete array is normally [ TYPE x 0 ], but we need
709       // to fix it to [ TYPE x 1 ].
710       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
711       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
712     }
713     Init = llvm::Constant::getNullValue(InitTy);
714   } else {
715     Init = EmitConstantExpr(D->getInit(), D->getType());
716     if (!Init) {
717       ErrorUnsupported(D, "static initializer");
718       QualType T = D->getInit()->getType();
719       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
720     }
721   }
722 
723   const llvm::Type* InitType = Init->getType();
724   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
725 
726   // Strip off a bitcast if we got one back.
727   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
728     assert(CE->getOpcode() == llvm::Instruction::BitCast);
729     Entry = CE->getOperand(0);
730   }
731 
732   // Entry is now either a Function or GlobalVariable.
733   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
734 
735   // If we already have this global and it has an initializer, then
736   // we are in the rare situation where we emitted the defining
737   // declaration of the global and are now being asked to emit a
738   // definition which would be common. This occurs, for example, in
739   // the following situation because statics can be emitted out of
740   // order:
741   //
742   //  static int x;
743   //  static int *y = &x;
744   //  static int x = 10;
745   //  int **z = &y;
746   //
747   // Bail here so we don't blow away the definition. Note that if we
748   // can't distinguish here if we emitted a definition with a null
749   // initializer, but this case is safe.
750   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
751     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
752     return;
753   }
754 
755   // We have a definition after a declaration with the wrong type.
756   // We must make a new GlobalVariable* and update everything that used OldGV
757   // (a declaration or tentative definition) with the new GlobalVariable*
758   // (which will be a definition).
759   //
760   // This happens if there is a prototype for a global (e.g.
761   // "extern int x[];") and then a definition of a different type (e.g.
762   // "int x[10];"). This also happens when an initializer has a different type
763   // from the type of the global (this happens with unions).
764   if (GV == 0 ||
765       GV->getType()->getElementType() != InitType ||
766       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
767 
768     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
769     GlobalDeclMap.erase(getMangledName(D));
770 
771     // Make a new global with the correct type, this is now guaranteed to work.
772     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
773     GV->takeName(cast<llvm::GlobalValue>(Entry));
774 
775     // Replace all uses of the old global with the new global
776     llvm::Constant *NewPtrForOldDecl =
777         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
778     Entry->replaceAllUsesWith(NewPtrForOldDecl);
779 
780     // Erase the old global, since it is no longer used.
781     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
782   }
783 
784   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
785     SourceManager &SM = Context.getSourceManager();
786     AddAnnotation(EmitAnnotateAttr(GV, AA,
787                               SM.getInstantiationLineNumber(D->getLocation())));
788   }
789 
790   GV->setInitializer(Init);
791   GV->setConstant(D->getType().isConstant(Context));
792   GV->setAlignment(getContext().getDeclAlignInBytes(D));
793 
794   // Set the llvm linkage type as appropriate.
795   if (D->getStorageClass() == VarDecl::Static)
796     GV->setLinkage(llvm::Function::InternalLinkage);
797   else if (D->hasAttr<DLLImportAttr>())
798     GV->setLinkage(llvm::Function::DLLImportLinkage);
799   else if (D->hasAttr<DLLExportAttr>())
800     GV->setLinkage(llvm::Function::DLLExportLinkage);
801   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
802     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
803   else if (!CompileOpts.NoCommon &&
804            (!D->hasExternalStorage() && !D->getInit()))
805     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
806   else
807     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
808 
809   SetCommonAttributes(D, GV);
810 
811   // Emit global variable debug information.
812   if (CGDebugInfo *DI = getDebugInfo()) {
813     DI->setLocation(D->getLocation());
814     DI->EmitGlobalVariable(GV, D);
815   }
816 }
817 
818 
819 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
820   const llvm::FunctionType *Ty;
821 
822   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
823     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
824 
825     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
826   } else {
827     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
828 
829     // As a special case, make sure that definitions of K&R function
830     // "type foo()" aren't declared as varargs (which forces the backend
831     // to do unnecessary work).
832     if (D->getType()->isFunctionNoProtoType()) {
833       assert(Ty->isVarArg() && "Didn't lower type as expected");
834       // Due to stret, the lowered function could have arguments.
835       // Just create the same type as was lowered by ConvertType
836       // but strip off the varargs bit.
837       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
838       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
839     }
840   }
841 
842   // Get or create the prototype for teh function.
843   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
844 
845   // Strip off a bitcast if we got one back.
846   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
847     assert(CE->getOpcode() == llvm::Instruction::BitCast);
848     Entry = CE->getOperand(0);
849   }
850 
851 
852   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
853     // If the types mismatch then we have to rewrite the definition.
854     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
855            "Shouldn't replace non-declaration");
856 
857     // F is the Function* for the one with the wrong type, we must make a new
858     // Function* and update everything that used F (a declaration) with the new
859     // Function* (which will be a definition).
860     //
861     // This happens if there is a prototype for a function
862     // (e.g. "int f()") and then a definition of a different type
863     // (e.g. "int f(int x)").  Start by making a new function of the
864     // correct type, RAUW, then steal the name.
865     GlobalDeclMap.erase(getMangledName(D));
866     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
867     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
868 
869     // Replace uses of F with the Function we will endow with a body.
870     llvm::Constant *NewPtrForOldDecl =
871       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
872     Entry->replaceAllUsesWith(NewPtrForOldDecl);
873 
874     // Ok, delete the old function now, which is dead.
875     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
876 
877     Entry = NewFn;
878   }
879 
880   llvm::Function *Fn = cast<llvm::Function>(Entry);
881 
882   CodeGenFunction(*this).GenerateCode(D, Fn);
883 
884   SetFunctionDefinitionAttributes(D, Fn);
885   SetLLVMFunctionAttributesForDefinition(D, Fn);
886 
887   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
888     AddGlobalCtor(Fn, CA->getPriority());
889   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
890     AddGlobalDtor(Fn, DA->getPriority());
891 }
892 
893 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
894   const AliasAttr *AA = D->getAttr<AliasAttr>();
895   assert(AA && "Not an alias?");
896 
897   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
898 
899   // Unique the name through the identifier table.
900   const char *AliaseeName = AA->getAliasee().c_str();
901   AliaseeName = getContext().Idents.get(AliaseeName).getName();
902 
903   // Create a reference to the named value.  This ensures that it is emitted
904   // if a deferred decl.
905   llvm::Constant *Aliasee;
906   if (isa<llvm::FunctionType>(DeclTy))
907     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
908   else
909     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
910                                     llvm::PointerType::getUnqual(DeclTy), 0);
911 
912   // Create the new alias itself, but don't set a name yet.
913   llvm::GlobalValue *GA =
914     new llvm::GlobalAlias(Aliasee->getType(),
915                           llvm::Function::ExternalLinkage,
916                           "", Aliasee, &getModule());
917 
918   // See if there is already something with the alias' name in the module.
919   const char *MangledName = getMangledName(D);
920   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
921 
922   if (Entry && !Entry->isDeclaration()) {
923     // If there is a definition in the module, then it wins over the alias.
924     // This is dubious, but allow it to be safe.  Just ignore the alias.
925     GA->eraseFromParent();
926     return;
927   }
928 
929   if (Entry) {
930     // If there is a declaration in the module, then we had an extern followed
931     // by the alias, as in:
932     //   extern int test6();
933     //   ...
934     //   int test6() __attribute__((alias("test7")));
935     //
936     // Remove it and replace uses of it with the alias.
937 
938     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
939                                                           Entry->getType()));
940     Entry->eraseFromParent();
941   }
942 
943   // Now we know that there is no conflict, set the name.
944   Entry = GA;
945   GA->setName(MangledName);
946 
947   // Set attributes which are particular to an alias; this is a
948   // specialization of the attributes which may be set on a global
949   // variable/function.
950   if (D->hasAttr<DLLExportAttr>()) {
951     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
952       // The dllexport attribute is ignored for undefined symbols.
953       if (FD->getBody())
954         GA->setLinkage(llvm::Function::DLLExportLinkage);
955     } else {
956       GA->setLinkage(llvm::Function::DLLExportLinkage);
957     }
958   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
959     GA->setLinkage(llvm::Function::WeakAnyLinkage);
960   }
961 
962   SetCommonAttributes(D, GA);
963 }
964 
965 /// getBuiltinLibFunction - Given a builtin id for a function like
966 /// "__builtin_fabsf", return a Function* for "fabsf".
967 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
968   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
969           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
970          "isn't a lib fn");
971 
972   // Get the name, skip over the __builtin_ prefix (if necessary).
973   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
974   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
975     Name += 10;
976 
977   // Get the type for the builtin.
978   Builtin::Context::GetBuiltinTypeError Error;
979   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
980   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
981 
982   const llvm::FunctionType *Ty =
983     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
984 
985   // Unique the name through the identifier table.
986   Name = getContext().Idents.get(Name).getName();
987   // FIXME: param attributes for sext/zext etc.
988   return GetOrCreateLLVMFunction(Name, Ty, 0);
989 }
990 
991 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
992                                             unsigned NumTys) {
993   return llvm::Intrinsic::getDeclaration(&getModule(),
994                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
995 }
996 
997 llvm::Function *CodeGenModule::getMemCpyFn() {
998   if (MemCpyFn) return MemCpyFn;
999   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1000   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1001 }
1002 
1003 llvm::Function *CodeGenModule::getMemMoveFn() {
1004   if (MemMoveFn) return MemMoveFn;
1005   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1006   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1007 }
1008 
1009 llvm::Function *CodeGenModule::getMemSetFn() {
1010   if (MemSetFn) return MemSetFn;
1011   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1012   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1013 }
1014 
1015 static void appendFieldAndPadding(CodeGenModule &CGM,
1016                                   std::vector<llvm::Constant*>& Fields,
1017                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1018                                   llvm::Constant* Field,
1019                                   RecordDecl* RD, const llvm::StructType *STy) {
1020   // Append the field.
1021   Fields.push_back(Field);
1022 
1023   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1024 
1025   int NextStructFieldNo;
1026   if (!NextFieldD) {
1027     NextStructFieldNo = STy->getNumElements();
1028   } else {
1029     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1030   }
1031 
1032   // Append padding
1033   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1034     llvm::Constant *C =
1035       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1036 
1037     Fields.push_back(C);
1038   }
1039 }
1040 
1041 llvm::Constant *CodeGenModule::
1042 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1043   std::string str;
1044   unsigned StringLength;
1045 
1046   bool isUTF16 = false;
1047   if (Literal->containsNonAsciiOrNull()) {
1048     // Convert from UTF-8 to UTF-16.
1049     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1050     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1051     UTF16 *ToPtr = &ToBuf[0];
1052 
1053     ConversionResult Result;
1054     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1055                                 &ToPtr, ToPtr+Literal->getByteLength(),
1056                                 strictConversion);
1057     if (Result == conversionOK) {
1058       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1059       // without doing more surgery to this routine. Since we aren't explicitly
1060       // checking for endianness here, it's also a bug (when generating code for
1061       // a target that doesn't match the host endianness). Modeling this as an
1062       // i16 array is likely the cleanest solution.
1063       StringLength = ToPtr-&ToBuf[0];
1064       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1065       isUTF16 = true;
1066     } else if (Result == sourceIllegal) {
1067       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1068       str.assign(Literal->getStrData(), Literal->getByteLength());
1069       StringLength = str.length();
1070     } else
1071       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1072 
1073   } else {
1074     str.assign(Literal->getStrData(), Literal->getByteLength());
1075     StringLength = str.length();
1076   }
1077   llvm::StringMapEntry<llvm::Constant *> &Entry =
1078     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1079 
1080   if (llvm::Constant *C = Entry.getValue())
1081     return C;
1082 
1083   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1084   llvm::Constant *Zeros[] = { Zero, Zero };
1085 
1086   if (!CFConstantStringClassRef) {
1087     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1088     Ty = llvm::ArrayType::get(Ty, 0);
1089 
1090     // FIXME: This is fairly broken if
1091     // __CFConstantStringClassReference is already defined, in that it
1092     // will get renamed and the user will most likely see an opaque
1093     // error message. This is a general issue with relying on
1094     // particular names.
1095     llvm::GlobalVariable *GV =
1096       new llvm::GlobalVariable(Ty, false,
1097                                llvm::GlobalVariable::ExternalLinkage, 0,
1098                                "__CFConstantStringClassReference",
1099                                &getModule());
1100 
1101     // Decay array -> ptr
1102     CFConstantStringClassRef =
1103       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1104   }
1105 
1106   QualType CFTy = getContext().getCFConstantStringType();
1107   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1108 
1109   const llvm::StructType *STy =
1110     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1111 
1112   std::vector<llvm::Constant*> Fields;
1113   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1114 
1115   // Class pointer.
1116   FieldDecl *CurField = *Field++;
1117   FieldDecl *NextField = *Field++;
1118   appendFieldAndPadding(*this, Fields, CurField, NextField,
1119                         CFConstantStringClassRef, CFRD, STy);
1120 
1121   // Flags.
1122   CurField = NextField;
1123   NextField = *Field++;
1124   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1125   appendFieldAndPadding(*this, Fields, CurField, NextField,
1126                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1127                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1128                         CFRD, STy);
1129 
1130   // String pointer.
1131   CurField = NextField;
1132   NextField = *Field++;
1133   llvm::Constant *C = llvm::ConstantArray::get(str);
1134 
1135   const char *Sect, *Prefix;
1136   bool isConstant;
1137   if (isUTF16) {
1138     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1139     Sect = getContext().Target.getUnicodeStringSection();
1140     // FIXME: Why does GCC not set constant here?
1141     isConstant = false;
1142   } else {
1143     Prefix = getContext().Target.getStringSymbolPrefix(true);
1144     Sect = getContext().Target.getCFStringDataSection();
1145     // FIXME: -fwritable-strings should probably affect this, but we
1146     // are following gcc here.
1147     isConstant = true;
1148   }
1149   llvm::GlobalVariable *GV =
1150     new llvm::GlobalVariable(C->getType(), isConstant,
1151                              llvm::GlobalValue::InternalLinkage,
1152                              C, Prefix, &getModule());
1153   if (Sect)
1154     GV->setSection(Sect);
1155   if (isUTF16) {
1156     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1157     GV->setAlignment(Align);
1158   }
1159   appendFieldAndPadding(*this, Fields, CurField, NextField,
1160                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1161                         CFRD, STy);
1162 
1163   // String length.
1164   CurField = NextField;
1165   NextField = 0;
1166   Ty = getTypes().ConvertType(getContext().LongTy);
1167   appendFieldAndPadding(*this, Fields, CurField, NextField,
1168                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1169 
1170   // The struct.
1171   C = llvm::ConstantStruct::get(STy, Fields);
1172   GV = new llvm::GlobalVariable(C->getType(), true,
1173                                 llvm::GlobalVariable::InternalLinkage, C,
1174                                 getContext().Target.getCFStringSymbolPrefix(),
1175                                 &getModule());
1176   if (const char *Sect = getContext().Target.getCFStringSection())
1177     GV->setSection(Sect);
1178   Entry.setValue(GV);
1179 
1180   return GV;
1181 }
1182 
1183 /// GetStringForStringLiteral - Return the appropriate bytes for a
1184 /// string literal, properly padded to match the literal type.
1185 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1186   const char *StrData = E->getStrData();
1187   unsigned Len = E->getByteLength();
1188 
1189   const ConstantArrayType *CAT =
1190     getContext().getAsConstantArrayType(E->getType());
1191   assert(CAT && "String isn't pointer or array!");
1192 
1193   // Resize the string to the right size.
1194   std::string Str(StrData, StrData+Len);
1195   uint64_t RealLen = CAT->getSize().getZExtValue();
1196 
1197   if (E->isWide())
1198     RealLen *= getContext().Target.getWCharWidth()/8;
1199 
1200   Str.resize(RealLen, '\0');
1201 
1202   return Str;
1203 }
1204 
1205 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1206 /// constant array for the given string literal.
1207 llvm::Constant *
1208 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1209   // FIXME: This can be more efficient.
1210   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1211 }
1212 
1213 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1214 /// array for the given ObjCEncodeExpr node.
1215 llvm::Constant *
1216 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1217   std::string Str;
1218   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1219 
1220   return GetAddrOfConstantCString(Str);
1221 }
1222 
1223 
1224 /// GenerateWritableString -- Creates storage for a string literal.
1225 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1226                                              bool constant,
1227                                              CodeGenModule &CGM,
1228                                              const char *GlobalName) {
1229   // Create Constant for this string literal. Don't add a '\0'.
1230   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1231 
1232   // Create a global variable for this string
1233   return new llvm::GlobalVariable(C->getType(), constant,
1234                                   llvm::GlobalValue::InternalLinkage,
1235                                   C, GlobalName, &CGM.getModule());
1236 }
1237 
1238 /// GetAddrOfConstantString - Returns a pointer to a character array
1239 /// containing the literal. This contents are exactly that of the
1240 /// given string, i.e. it will not be null terminated automatically;
1241 /// see GetAddrOfConstantCString. Note that whether the result is
1242 /// actually a pointer to an LLVM constant depends on
1243 /// Feature.WriteableStrings.
1244 ///
1245 /// The result has pointer to array type.
1246 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1247                                                        const char *GlobalName) {
1248   bool IsConstant = !Features.WritableStrings;
1249 
1250   // Get the default prefix if a name wasn't specified.
1251   if (!GlobalName)
1252     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1253 
1254   // Don't share any string literals if strings aren't constant.
1255   if (!IsConstant)
1256     return GenerateStringLiteral(str, false, *this, GlobalName);
1257 
1258   llvm::StringMapEntry<llvm::Constant *> &Entry =
1259   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1260 
1261   if (Entry.getValue())
1262     return Entry.getValue();
1263 
1264   // Create a global variable for this.
1265   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1266   Entry.setValue(C);
1267   return C;
1268 }
1269 
1270 /// GetAddrOfConstantCString - Returns a pointer to a character
1271 /// array containing the literal and a terminating '\-'
1272 /// character. The result has pointer to array type.
1273 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1274                                                         const char *GlobalName){
1275   return GetAddrOfConstantString(str + '\0', GlobalName);
1276 }
1277 
1278 /// EmitObjCPropertyImplementations - Emit information for synthesized
1279 /// properties for an implementation.
1280 void CodeGenModule::EmitObjCPropertyImplementations(const
1281                                                     ObjCImplementationDecl *D) {
1282   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1283          e = D->propimpl_end(); i != e; ++i) {
1284     ObjCPropertyImplDecl *PID = *i;
1285 
1286     // Dynamic is just for type-checking.
1287     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1288       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1289 
1290       // Determine which methods need to be implemented, some may have
1291       // been overridden. Note that ::isSynthesized is not the method
1292       // we want, that just indicates if the decl came from a
1293       // property. What we want to know is if the method is defined in
1294       // this implementation.
1295       if (!D->getInstanceMethod(PD->getGetterName()))
1296         CodeGenFunction(*this).GenerateObjCGetter(
1297                                  const_cast<ObjCImplementationDecl *>(D), PID);
1298       if (!PD->isReadOnly() &&
1299           !D->getInstanceMethod(PD->getSetterName()))
1300         CodeGenFunction(*this).GenerateObjCSetter(
1301                                  const_cast<ObjCImplementationDecl *>(D), PID);
1302     }
1303   }
1304 }
1305 
1306 /// EmitNamespace - Emit all declarations in a namespace.
1307 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1308   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1309          E = ND->decls_end(getContext());
1310        I != E; ++I)
1311     EmitTopLevelDecl(*I);
1312 }
1313 
1314 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1315 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1316   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1317     ErrorUnsupported(LSD, "linkage spec");
1318     return;
1319   }
1320 
1321   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1322          E = LSD->decls_end(getContext());
1323        I != E; ++I)
1324     EmitTopLevelDecl(*I);
1325 }
1326 
1327 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1328 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1329   // If an error has occurred, stop code generation, but continue
1330   // parsing and semantic analysis (to ensure all warnings and errors
1331   // are emitted).
1332   if (Diags.hasErrorOccurred())
1333     return;
1334 
1335   switch (D->getKind()) {
1336   case Decl::CXXMethod:
1337   case Decl::Function:
1338   case Decl::Var:
1339     EmitGlobal(cast<ValueDecl>(D));
1340     break;
1341 
1342   case Decl::Namespace:
1343     EmitNamespace(cast<NamespaceDecl>(D));
1344     break;
1345 
1346     // Objective-C Decls
1347 
1348   // Forward declarations, no (immediate) code generation.
1349   case Decl::ObjCClass:
1350   case Decl::ObjCForwardProtocol:
1351   case Decl::ObjCCategory:
1352     break;
1353   case Decl::ObjCInterface:
1354     // If we already laid out this interface due to an @class, and if we
1355     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1356     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1357     break;
1358 
1359   case Decl::ObjCProtocol:
1360     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1361     break;
1362 
1363   case Decl::ObjCCategoryImpl:
1364     // Categories have properties but don't support synthesize so we
1365     // can ignore them here.
1366     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1367     break;
1368 
1369   case Decl::ObjCImplementation: {
1370     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1371     EmitObjCPropertyImplementations(OMD);
1372     Runtime->GenerateClass(OMD);
1373     break;
1374   }
1375   case Decl::ObjCMethod: {
1376     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1377     // If this is not a prototype, emit the body.
1378     if (OMD->getBody())
1379       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1380     break;
1381   }
1382   case Decl::ObjCCompatibleAlias:
1383     // compatibility-alias is a directive and has no code gen.
1384     break;
1385 
1386   case Decl::LinkageSpec:
1387     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1388     break;
1389 
1390   case Decl::FileScopeAsm: {
1391     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1392     std::string AsmString(AD->getAsmString()->getStrData(),
1393                           AD->getAsmString()->getByteLength());
1394 
1395     const std::string &S = getModule().getModuleInlineAsm();
1396     if (S.empty())
1397       getModule().setModuleInlineAsm(AsmString);
1398     else
1399       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1400     break;
1401   }
1402 
1403   default:
1404     // Make sure we handled everything we should, every other kind is
1405     // a non-top-level decl.  FIXME: Would be nice to have an
1406     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1407     // that easily.
1408     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1409   }
1410 }
1411