1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Support/ErrorHandling.h"
36 using namespace clang;
37 using namespace CodeGen;
38 
39 
40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
41                              llvm::Module &M, const llvm::TargetData &TD,
42                              Diagnostic &diags)
43   : BlockModule(C, M, TD, Types, *this), Context(C),
44     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
45     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
46     VtableInfo(*this), Runtime(0),
47     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
48     VMContext(M.getContext()) {
49 
50   if (!Features.ObjC1)
51     Runtime = 0;
52   else if (!Features.NeXTRuntime)
53     Runtime = CreateGNUObjCRuntime(*this);
54   else if (Features.ObjCNonFragileABI)
55     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
56   else
57     Runtime = CreateMacObjCRuntime(*this);
58 
59   // If debug info generation is enabled, create the CGDebugInfo object.
60   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
61 }
62 
63 CodeGenModule::~CodeGenModule() {
64   delete Runtime;
65   delete DebugInfo;
66 }
67 
68 void CodeGenModule::Release() {
69   EmitDeferred();
70   EmitCXXGlobalInitFunc();
71   if (Runtime)
72     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
73       AddGlobalCtor(ObjCInitFunction);
74   EmitCtorList(GlobalCtors, "llvm.global_ctors");
75   EmitCtorList(GlobalDtors, "llvm.global_dtors");
76   EmitAnnotations();
77   EmitLLVMUsed();
78 }
79 
80 /// ErrorUnsupported - Print out an error that codegen doesn't support the
81 /// specified stmt yet.
82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
83                                      bool OmitOnError) {
84   if (OmitOnError && getDiags().hasErrorOccurred())
85     return;
86   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
87                                                "cannot compile this %0 yet");
88   std::string Msg = Type;
89   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
90     << Msg << S->getSourceRange();
91 }
92 
93 /// ErrorUnsupported - Print out an error that codegen doesn't support the
94 /// specified decl yet.
95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
96                                      bool OmitOnError) {
97   if (OmitOnError && getDiags().hasErrorOccurred())
98     return;
99   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
100                                                "cannot compile this %0 yet");
101   std::string Msg = Type;
102   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
103 }
104 
105 LangOptions::VisibilityMode
106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
107   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
108     if (VD->getStorageClass() == VarDecl::PrivateExtern)
109       return LangOptions::Hidden;
110 
111   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
112     switch (attr->getVisibility()) {
113     default: assert(0 && "Unknown visibility!");
114     case VisibilityAttr::DefaultVisibility:
115       return LangOptions::Default;
116     case VisibilityAttr::HiddenVisibility:
117       return LangOptions::Hidden;
118     case VisibilityAttr::ProtectedVisibility:
119       return LangOptions::Protected;
120     }
121   }
122 
123   return getLangOptions().getVisibilityMode();
124 }
125 
126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
127                                         const Decl *D) const {
128   // Internal definitions always have default visibility.
129   if (GV->hasLocalLinkage()) {
130     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131     return;
132   }
133 
134   switch (getDeclVisibilityMode(D)) {
135   default: assert(0 && "Unknown visibility!");
136   case LangOptions::Default:
137     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
138   case LangOptions::Hidden:
139     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
140   case LangOptions::Protected:
141     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
142   }
143 }
144 
145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
146   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
147 
148   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
149     return getMangledCXXCtorName(D, GD.getCtorType());
150   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
151     return getMangledCXXDtorName(D, GD.getDtorType());
152 
153   return getMangledName(ND);
154 }
155 
156 /// \brief Retrieves the mangled name for the given declaration.
157 ///
158 /// If the given declaration requires a mangled name, returns an
159 /// const char* containing the mangled name.  Otherwise, returns
160 /// the unmangled name.
161 ///
162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
163   if (!getMangleContext().shouldMangleDeclName(ND)) {
164     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165     return ND->getNameAsCString();
166   }
167 
168   llvm::SmallString<256> Name;
169   getMangleContext().mangleName(ND, Name);
170   Name += '\0';
171   return UniqueMangledName(Name.begin(), Name.end());
172 }
173 
174 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                              const char *NameEnd) {
176   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177 
178   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179 }
180 
181 /// AddGlobalCtor - Add a function to the list that will be called before
182 /// main() runs.
183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184   // FIXME: Type coercion of void()* types.
185   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186 }
187 
188 /// AddGlobalDtor - Add a function to the list that will be called
189 /// when the module is unloaded.
190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191   // FIXME: Type coercion of void()* types.
192   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193 }
194 
195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196   // Ctor function type is void()*.
197   llvm::FunctionType* CtorFTy =
198     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
199                             std::vector<const llvm::Type*>(),
200                             false);
201   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202 
203   // Get the type of a ctor entry, { i32, void ()* }.
204   llvm::StructType* CtorStructTy =
205     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
206                           llvm::PointerType::getUnqual(CtorFTy), NULL);
207 
208   // Construct the constructor and destructor arrays.
209   std::vector<llvm::Constant*> Ctors;
210   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211     std::vector<llvm::Constant*> S;
212     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
213                 I->second, false));
214     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
215     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
216   }
217 
218   if (!Ctors.empty()) {
219     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
220     new llvm::GlobalVariable(TheModule, AT, false,
221                              llvm::GlobalValue::AppendingLinkage,
222                              llvm::ConstantArray::get(AT, Ctors),
223                              GlobalName);
224   }
225 }
226 
227 void CodeGenModule::EmitAnnotations() {
228   if (Annotations.empty())
229     return;
230 
231   // Create a new global variable for the ConstantStruct in the Module.
232   llvm::Constant *Array =
233   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                 Annotations.size()),
235                            Annotations);
236   llvm::GlobalValue *gv =
237   new llvm::GlobalVariable(TheModule, Array->getType(), false,
238                            llvm::GlobalValue::AppendingLinkage, Array,
239                            "llvm.global.annotations");
240   gv->setSection("llvm.metadata");
241 }
242 
243 static CodeGenModule::GVALinkage
244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
245                       const LangOptions &Features) {
246   // Everything located semantically within an anonymous namespace is
247   // always internal.
248   if (FD->isInAnonymousNamespace())
249     return CodeGenModule::GVA_Internal;
250 
251   // "static" functions get internal linkage.
252   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
253     return CodeGenModule::GVA_Internal;
254 
255   // The kind of external linkage this function will have, if it is not
256   // inline or static.
257   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
258   if (Context.getLangOptions().CPlusPlus) {
259     TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
260 
261     if (TSK == TSK_ExplicitInstantiationDefinition) {
262       // If a function has been explicitly instantiated, then it should
263       // always have strong external linkage.
264       return CodeGenModule::GVA_StrongExternal;
265     }
266 
267     if (TSK == TSK_ImplicitInstantiation)
268       External = CodeGenModule::GVA_TemplateInstantiation;
269   }
270 
271   if (!FD->isInlined())
272     return External;
273 
274   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
275     // GNU or C99 inline semantics. Determine whether this symbol should be
276     // externally visible.
277     if (FD->isInlineDefinitionExternallyVisible())
278       return External;
279 
280     // C99 inline semantics, where the symbol is not externally visible.
281     return CodeGenModule::GVA_C99Inline;
282   }
283 
284   // C++0x [temp.explicit]p9:
285   //   [ Note: The intent is that an inline function that is the subject of
286   //   an explicit instantiation declaration will still be implicitly
287   //   instantiated when used so that the body can be considered for
288   //   inlining, but that no out-of-line copy of the inline function would be
289   //   generated in the translation unit. -- end note ]
290   if (FD->getTemplateSpecializationKind()
291                                        == TSK_ExplicitInstantiationDeclaration)
292     return CodeGenModule::GVA_C99Inline;
293 
294   return CodeGenModule::GVA_CXXInline;
295 }
296 
297 /// SetFunctionDefinitionAttributes - Set attributes for a global.
298 ///
299 /// FIXME: This is currently only done for aliases and functions, but not for
300 /// variables (these details are set in EmitGlobalVarDefinition for variables).
301 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
302                                                     llvm::GlobalValue *GV) {
303   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
304 
305   if (Linkage == GVA_Internal) {
306     GV->setLinkage(llvm::Function::InternalLinkage);
307   } else if (D->hasAttr<DLLExportAttr>()) {
308     GV->setLinkage(llvm::Function::DLLExportLinkage);
309   } else if (D->hasAttr<WeakAttr>()) {
310     GV->setLinkage(llvm::Function::WeakAnyLinkage);
311   } else if (Linkage == GVA_C99Inline) {
312     // In C99 mode, 'inline' functions are guaranteed to have a strong
313     // definition somewhere else, so we can use available_externally linkage.
314     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
315   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
316     // In C++, the compiler has to emit a definition in every translation unit
317     // that references the function.  We should use linkonce_odr because
318     // a) if all references in this translation unit are optimized away, we
319     // don't need to codegen it.  b) if the function persists, it needs to be
320     // merged with other definitions. c) C++ has the ODR, so we know the
321     // definition is dependable.
322     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
323   } else {
324     assert(Linkage == GVA_StrongExternal);
325     // Otherwise, we have strong external linkage.
326     GV->setLinkage(llvm::Function::ExternalLinkage);
327   }
328 
329   SetCommonAttributes(D, GV);
330 }
331 
332 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
333                                               const CGFunctionInfo &Info,
334                                               llvm::Function *F) {
335   unsigned CallingConv;
336   AttributeListType AttributeList;
337   ConstructAttributeList(Info, D, AttributeList, CallingConv);
338   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
339                                           AttributeList.size()));
340   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
341 }
342 
343 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
344                                                            llvm::Function *F) {
345   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
346     F->addFnAttr(llvm::Attribute::NoUnwind);
347 
348   if (D->hasAttr<AlwaysInlineAttr>())
349     F->addFnAttr(llvm::Attribute::AlwaysInline);
350 
351   if (D->hasAttr<NoInlineAttr>())
352     F->addFnAttr(llvm::Attribute::NoInline);
353 
354   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
355     F->addFnAttr(llvm::Attribute::StackProtect);
356   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
357     F->addFnAttr(llvm::Attribute::StackProtectReq);
358 
359   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
360     unsigned width = Context.Target.getCharWidth();
361     F->setAlignment(AA->getAlignment() / width);
362     while ((AA = AA->getNext<AlignedAttr>()))
363       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
364   }
365   // C++ ABI requires 2-byte alignment for member functions.
366   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
367     F->setAlignment(2);
368 }
369 
370 void CodeGenModule::SetCommonAttributes(const Decl *D,
371                                         llvm::GlobalValue *GV) {
372   setGlobalVisibility(GV, D);
373 
374   if (D->hasAttr<UsedAttr>())
375     AddUsedGlobal(GV);
376 
377   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
378     GV->setSection(SA->getName());
379 }
380 
381 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
382                                                   llvm::Function *F,
383                                                   const CGFunctionInfo &FI) {
384   SetLLVMFunctionAttributes(D, FI, F);
385   SetLLVMFunctionAttributesForDefinition(D, F);
386 
387   F->setLinkage(llvm::Function::InternalLinkage);
388 
389   SetCommonAttributes(D, F);
390 }
391 
392 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
393                                           llvm::Function *F,
394                                           bool IsIncompleteFunction) {
395   if (!IsIncompleteFunction)
396     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
397 
398   // Only a few attributes are set on declarations; these may later be
399   // overridden by a definition.
400 
401   if (FD->hasAttr<DLLImportAttr>()) {
402     F->setLinkage(llvm::Function::DLLImportLinkage);
403   } else if (FD->hasAttr<WeakAttr>() ||
404              FD->hasAttr<WeakImportAttr>()) {
405     // "extern_weak" is overloaded in LLVM; we probably should have
406     // separate linkage types for this.
407     F->setLinkage(llvm::Function::ExternalWeakLinkage);
408   } else {
409     F->setLinkage(llvm::Function::ExternalLinkage);
410   }
411 
412   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
413     F->setSection(SA->getName());
414 }
415 
416 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
417   assert(!GV->isDeclaration() &&
418          "Only globals with definition can force usage.");
419   LLVMUsed.push_back(GV);
420 }
421 
422 void CodeGenModule::EmitLLVMUsed() {
423   // Don't create llvm.used if there is no need.
424   if (LLVMUsed.empty())
425     return;
426 
427   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
428 
429   // Convert LLVMUsed to what ConstantArray needs.
430   std::vector<llvm::Constant*> UsedArray;
431   UsedArray.resize(LLVMUsed.size());
432   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
433     UsedArray[i] =
434      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
435                                       i8PTy);
436   }
437 
438   if (UsedArray.empty())
439     return;
440   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
441 
442   llvm::GlobalVariable *GV =
443     new llvm::GlobalVariable(getModule(), ATy, false,
444                              llvm::GlobalValue::AppendingLinkage,
445                              llvm::ConstantArray::get(ATy, UsedArray),
446                              "llvm.used");
447 
448   GV->setSection("llvm.metadata");
449 }
450 
451 void CodeGenModule::EmitDeferred() {
452   // Emit code for any potentially referenced deferred decls.  Since a
453   // previously unused static decl may become used during the generation of code
454   // for a static function, iterate until no  changes are made.
455   while (!DeferredDeclsToEmit.empty()) {
456     GlobalDecl D = DeferredDeclsToEmit.back();
457     DeferredDeclsToEmit.pop_back();
458 
459     // The mangled name for the decl must have been emitted in GlobalDeclMap.
460     // Look it up to see if it was defined with a stronger definition (e.g. an
461     // extern inline function with a strong function redefinition).  If so,
462     // just ignore the deferred decl.
463     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
464     assert(CGRef && "Deferred decl wasn't referenced?");
465 
466     if (!CGRef->isDeclaration())
467       continue;
468 
469     // Otherwise, emit the definition and move on to the next one.
470     EmitGlobalDefinition(D);
471   }
472 }
473 
474 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
475 /// annotation information for a given GlobalValue.  The annotation struct is
476 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
477 /// GlobalValue being annotated.  The second field is the constant string
478 /// created from the AnnotateAttr's annotation.  The third field is a constant
479 /// string containing the name of the translation unit.  The fourth field is
480 /// the line number in the file of the annotated value declaration.
481 ///
482 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
483 ///        appears to.
484 ///
485 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
486                                                 const AnnotateAttr *AA,
487                                                 unsigned LineNo) {
488   llvm::Module *M = &getModule();
489 
490   // get [N x i8] constants for the annotation string, and the filename string
491   // which are the 2nd and 3rd elements of the global annotation structure.
492   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
493   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
494                                                   AA->getAnnotation(), true);
495   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
496                                                   M->getModuleIdentifier(),
497                                                   true);
498 
499   // Get the two global values corresponding to the ConstantArrays we just
500   // created to hold the bytes of the strings.
501   llvm::GlobalValue *annoGV =
502     new llvm::GlobalVariable(*M, anno->getType(), false,
503                              llvm::GlobalValue::PrivateLinkage, anno,
504                              GV->getName());
505   // translation unit name string, emitted into the llvm.metadata section.
506   llvm::GlobalValue *unitGV =
507     new llvm::GlobalVariable(*M, unit->getType(), false,
508                              llvm::GlobalValue::PrivateLinkage, unit,
509                              ".str");
510 
511   // Create the ConstantStruct for the global annotation.
512   llvm::Constant *Fields[4] = {
513     llvm::ConstantExpr::getBitCast(GV, SBP),
514     llvm::ConstantExpr::getBitCast(annoGV, SBP),
515     llvm::ConstantExpr::getBitCast(unitGV, SBP),
516     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
517   };
518   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
519 }
520 
521 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
522   // Never defer when EmitAllDecls is specified or the decl has
523   // attribute used.
524   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
525     return false;
526 
527   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
528     // Constructors and destructors should never be deferred.
529     if (FD->hasAttr<ConstructorAttr>() ||
530         FD->hasAttr<DestructorAttr>())
531       return false;
532 
533     // The key function for a class must never be deferred.
534     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
535       const CXXRecordDecl *RD = MD->getParent();
536       if (MD->isOutOfLine() && RD->isDynamicClass()) {
537         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
538         if (KeyFunction &&
539             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
540           return false;
541       }
542     }
543 
544     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
545 
546     // static, static inline, always_inline, and extern inline functions can
547     // always be deferred.  Normal inline functions can be deferred in C99/C++.
548     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
549         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
550       return true;
551     return false;
552   }
553 
554   const VarDecl *VD = cast<VarDecl>(Global);
555   assert(VD->isFileVarDecl() && "Invalid decl");
556 
557   // We never want to defer structs that have non-trivial constructors or
558   // destructors.
559 
560   // FIXME: Handle references.
561   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
562     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
563       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
564         return false;
565     }
566   }
567 
568   // Static data may be deferred, but out-of-line static data members
569   // cannot be.
570   if (VD->isInAnonymousNamespace())
571     return true;
572   if (VD->getLinkage() == VarDecl::InternalLinkage) {
573     // Initializer has side effects?
574     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
575       return false;
576     return !(VD->isStaticDataMember() && VD->isOutOfLine());
577   }
578   return false;
579 }
580 
581 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
582   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
583 
584   // If this is an alias definition (which otherwise looks like a declaration)
585   // emit it now.
586   if (Global->hasAttr<AliasAttr>())
587     return EmitAliasDefinition(Global);
588 
589   // Ignore declarations, they will be emitted on their first use.
590   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
591     // Forward declarations are emitted lazily on first use.
592     if (!FD->isThisDeclarationADefinition())
593       return;
594   } else {
595     const VarDecl *VD = cast<VarDecl>(Global);
596     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
597 
598     if (getLangOptions().CPlusPlus && !VD->getInit()) {
599       // In C++, if this is marked "extern", defer code generation.
600       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
601         return;
602 
603       // If this is a declaration of an explicit specialization of a static
604       // data member in a class template, don't emit it.
605       if (VD->isStaticDataMember() &&
606           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
607         return;
608     }
609 
610     // In C, if this isn't a definition, defer code generation.
611     if (!getLangOptions().CPlusPlus && !VD->getInit())
612       return;
613   }
614 
615   // Defer code generation when possible if this is a static definition, inline
616   // function etc.  These we only want to emit if they are used.
617   if (MayDeferGeneration(Global)) {
618     // If the value has already been used, add it directly to the
619     // DeferredDeclsToEmit list.
620     const char *MangledName = getMangledName(GD);
621     if (GlobalDeclMap.count(MangledName))
622       DeferredDeclsToEmit.push_back(GD);
623     else {
624       // Otherwise, remember that we saw a deferred decl with this name.  The
625       // first use of the mangled name will cause it to move into
626       // DeferredDeclsToEmit.
627       DeferredDecls[MangledName] = GD;
628     }
629     return;
630   }
631 
632   // Otherwise emit the definition.
633   EmitGlobalDefinition(GD);
634 }
635 
636 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
637   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
638 
639   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
640                                  Context.getSourceManager(),
641                                  "Generating code for declaration");
642 
643   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
644     getVtableInfo().MaybeEmitVtable(GD);
645     if (MD->isVirtual() && MD->isOutOfLine() &&
646         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
647       if (isa<CXXDestructorDecl>(D)) {
648         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
649                            GD.getDtorType());
650         BuildThunksForVirtual(CanonGD);
651       } else {
652         BuildThunksForVirtual(MD->getCanonicalDecl());
653       }
654     }
655   }
656 
657   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
658     EmitCXXConstructor(CD, GD.getCtorType());
659   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
660     EmitCXXDestructor(DD, GD.getDtorType());
661   else if (isa<FunctionDecl>(D))
662     EmitGlobalFunctionDefinition(GD);
663   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
664     EmitGlobalVarDefinition(VD);
665   else {
666     assert(0 && "Invalid argument to EmitGlobalDefinition()");
667   }
668 }
669 
670 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
671 /// module, create and return an llvm Function with the specified type. If there
672 /// is something in the module with the specified name, return it potentially
673 /// bitcasted to the right type.
674 ///
675 /// If D is non-null, it specifies a decl that correspond to this.  This is used
676 /// to set the attributes on the function when it is first created.
677 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
678                                                        const llvm::Type *Ty,
679                                                        GlobalDecl D) {
680   // Lookup the entry, lazily creating it if necessary.
681   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
682   if (Entry) {
683     if (Entry->getType()->getElementType() == Ty)
684       return Entry;
685 
686     // Make sure the result is of the correct type.
687     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
688     return llvm::ConstantExpr::getBitCast(Entry, PTy);
689   }
690 
691   // This function doesn't have a complete type (for example, the return
692   // type is an incomplete struct). Use a fake type instead, and make
693   // sure not to try to set attributes.
694   bool IsIncompleteFunction = false;
695   if (!isa<llvm::FunctionType>(Ty)) {
696     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
697                                  std::vector<const llvm::Type*>(), false);
698     IsIncompleteFunction = true;
699   }
700   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
701                                              llvm::Function::ExternalLinkage,
702                                              "", &getModule());
703   F->setName(MangledName);
704   if (D.getDecl())
705     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
706                           IsIncompleteFunction);
707   Entry = F;
708 
709   // This is the first use or definition of a mangled name.  If there is a
710   // deferred decl with this name, remember that we need to emit it at the end
711   // of the file.
712   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
713     DeferredDecls.find(MangledName);
714   if (DDI != DeferredDecls.end()) {
715     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
716     // list, and remove it from DeferredDecls (since we don't need it anymore).
717     DeferredDeclsToEmit.push_back(DDI->second);
718     DeferredDecls.erase(DDI);
719   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
720     // If this the first reference to a C++ inline function in a class, queue up
721     // the deferred function body for emission.  These are not seen as
722     // top-level declarations.
723     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
724       DeferredDeclsToEmit.push_back(D);
725     // A called constructor which has no definition or declaration need be
726     // synthesized.
727     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
728       if (CD->isImplicit())
729         DeferredDeclsToEmit.push_back(D);
730     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
731       if (DD->isImplicit())
732         DeferredDeclsToEmit.push_back(D);
733     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
734       if (MD->isCopyAssignment() && MD->isImplicit())
735         DeferredDeclsToEmit.push_back(D);
736     }
737   }
738 
739   return F;
740 }
741 
742 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
743 /// non-null, then this function will use the specified type if it has to
744 /// create it (this occurs when we see a definition of the function).
745 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
746                                                  const llvm::Type *Ty) {
747   // If there was no specific requested type, just convert it now.
748   if (!Ty)
749     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
750   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
751 }
752 
753 /// CreateRuntimeFunction - Create a new runtime function with the specified
754 /// type and name.
755 llvm::Constant *
756 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
757                                      const char *Name) {
758   // Convert Name to be a uniqued string from the IdentifierInfo table.
759   Name = getContext().Idents.get(Name).getNameStart();
760   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
761 }
762 
763 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
764   if (!D->getType().isConstant(Context))
765     return false;
766   if (Context.getLangOptions().CPlusPlus &&
767       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
768     // FIXME: We should do something fancier here!
769     return false;
770   }
771   return true;
772 }
773 
774 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
775 /// create and return an llvm GlobalVariable with the specified type.  If there
776 /// is something in the module with the specified name, return it potentially
777 /// bitcasted to the right type.
778 ///
779 /// If D is non-null, it specifies a decl that correspond to this.  This is used
780 /// to set the attributes on the global when it is first created.
781 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
782                                                      const llvm::PointerType*Ty,
783                                                      const VarDecl *D) {
784   // Lookup the entry, lazily creating it if necessary.
785   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
786   if (Entry) {
787     if (Entry->getType() == Ty)
788       return Entry;
789 
790     // Make sure the result is of the correct type.
791     return llvm::ConstantExpr::getBitCast(Entry, Ty);
792   }
793 
794   // This is the first use or definition of a mangled name.  If there is a
795   // deferred decl with this name, remember that we need to emit it at the end
796   // of the file.
797   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
798     DeferredDecls.find(MangledName);
799   if (DDI != DeferredDecls.end()) {
800     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
801     // list, and remove it from DeferredDecls (since we don't need it anymore).
802     DeferredDeclsToEmit.push_back(DDI->second);
803     DeferredDecls.erase(DDI);
804   }
805 
806   llvm::GlobalVariable *GV =
807     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
808                              llvm::GlobalValue::ExternalLinkage,
809                              0, "", 0,
810                              false, Ty->getAddressSpace());
811   GV->setName(MangledName);
812 
813   // Handle things which are present even on external declarations.
814   if (D) {
815     // FIXME: This code is overly simple and should be merged with other global
816     // handling.
817     GV->setConstant(DeclIsConstantGlobal(Context, D));
818 
819     // FIXME: Merge with other attribute handling code.
820     if (D->getStorageClass() == VarDecl::PrivateExtern)
821       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
822 
823     if (D->hasAttr<WeakAttr>() ||
824         D->hasAttr<WeakImportAttr>())
825       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
826 
827     GV->setThreadLocal(D->isThreadSpecified());
828   }
829 
830   return Entry = GV;
831 }
832 
833 
834 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
835 /// given global variable.  If Ty is non-null and if the global doesn't exist,
836 /// then it will be greated with the specified type instead of whatever the
837 /// normal requested type would be.
838 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
839                                                   const llvm::Type *Ty) {
840   assert(D->hasGlobalStorage() && "Not a global variable");
841   QualType ASTTy = D->getType();
842   if (Ty == 0)
843     Ty = getTypes().ConvertTypeForMem(ASTTy);
844 
845   const llvm::PointerType *PTy =
846     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
847   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
848 }
849 
850 /// CreateRuntimeVariable - Create a new runtime global variable with the
851 /// specified type and name.
852 llvm::Constant *
853 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
854                                      const char *Name) {
855   // Convert Name to be a uniqued string from the IdentifierInfo table.
856   Name = getContext().Idents.get(Name).getNameStart();
857   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
858 }
859 
860 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
861   assert(!D->getInit() && "Cannot emit definite definitions here!");
862 
863   if (MayDeferGeneration(D)) {
864     // If we have not seen a reference to this variable yet, place it
865     // into the deferred declarations table to be emitted if needed
866     // later.
867     const char *MangledName = getMangledName(D);
868     if (GlobalDeclMap.count(MangledName) == 0) {
869       DeferredDecls[MangledName] = D;
870       return;
871     }
872   }
873 
874   // The tentative definition is the only definition.
875   EmitGlobalVarDefinition(D);
876 }
877 
878 llvm::GlobalVariable::LinkageTypes
879 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
880   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
881     return llvm::GlobalVariable::InternalLinkage;
882 
883   if (const CXXMethodDecl *KeyFunction
884                                     = RD->getASTContext().getKeyFunction(RD)) {
885     // If this class has a key function, use that to determine the linkage of
886     // the vtable.
887     const FunctionDecl *Def = 0;
888     if (KeyFunction->getBody(Def))
889       KeyFunction = cast<CXXMethodDecl>(Def);
890 
891     switch (KeyFunction->getTemplateSpecializationKind()) {
892       case TSK_Undeclared:
893       case TSK_ExplicitSpecialization:
894         if (KeyFunction->isInlined())
895           return llvm::GlobalVariable::WeakODRLinkage;
896 
897         return llvm::GlobalVariable::ExternalLinkage;
898 
899       case TSK_ImplicitInstantiation:
900       case TSK_ExplicitInstantiationDefinition:
901         return llvm::GlobalVariable::WeakODRLinkage;
902 
903       case TSK_ExplicitInstantiationDeclaration:
904         // FIXME: Use available_externally linkage. However, this currently
905         // breaks LLVM's build due to undefined symbols.
906         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
907         return llvm::GlobalVariable::WeakODRLinkage;
908     }
909   }
910 
911   switch (RD->getTemplateSpecializationKind()) {
912   case TSK_Undeclared:
913   case TSK_ExplicitSpecialization:
914   case TSK_ImplicitInstantiation:
915   case TSK_ExplicitInstantiationDefinition:
916     return llvm::GlobalVariable::WeakODRLinkage;
917 
918   case TSK_ExplicitInstantiationDeclaration:
919     // FIXME: Use available_externally linkage. However, this currently
920     // breaks LLVM's build due to undefined symbols.
921     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
922     return llvm::GlobalVariable::WeakODRLinkage;
923   }
924 
925   // Silence GCC warning.
926   return llvm::GlobalVariable::WeakODRLinkage;
927 }
928 
929 static CodeGenModule::GVALinkage
930 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
931   // Everything located semantically within an anonymous namespace is
932   // always internal.
933   if (VD->isInAnonymousNamespace())
934     return CodeGenModule::GVA_Internal;
935 
936   // Handle linkage for static data members.
937   if (VD->isStaticDataMember()) {
938     switch (VD->getTemplateSpecializationKind()) {
939     case TSK_Undeclared:
940     case TSK_ExplicitSpecialization:
941     case TSK_ExplicitInstantiationDefinition:
942       return CodeGenModule::GVA_StrongExternal;
943 
944     case TSK_ExplicitInstantiationDeclaration:
945       llvm_unreachable("Variable should not be instantiated");
946       // Fall through to treat this like any other instantiation.
947 
948     case TSK_ImplicitInstantiation:
949       return CodeGenModule::GVA_TemplateInstantiation;
950     }
951   }
952 
953   if (VD->getLinkage() == VarDecl::InternalLinkage)
954     return CodeGenModule::GVA_Internal;
955 
956   return CodeGenModule::GVA_StrongExternal;
957 }
958 
959 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
960   llvm::Constant *Init = 0;
961   QualType ASTTy = D->getType();
962   bool NonConstInit = false;
963 
964   if (D->getInit() == 0) {
965     // This is a tentative definition; tentative definitions are
966     // implicitly initialized with { 0 }.
967     //
968     // Note that tentative definitions are only emitted at the end of
969     // a translation unit, so they should never have incomplete
970     // type. In addition, EmitTentativeDefinition makes sure that we
971     // never attempt to emit a tentative definition if a real one
972     // exists. A use may still exists, however, so we still may need
973     // to do a RAUW.
974     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
975     Init = EmitNullConstant(D->getType());
976   } else {
977     Init = EmitConstantExpr(D->getInit(), D->getType());
978 
979     if (!Init) {
980       QualType T = D->getInit()->getType();
981       if (getLangOptions().CPlusPlus) {
982         EmitCXXGlobalVarDeclInitFunc(D);
983         Init = EmitNullConstant(T);
984         NonConstInit = true;
985       } else {
986         ErrorUnsupported(D, "static initializer");
987         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
988       }
989     }
990   }
991 
992   const llvm::Type* InitType = Init->getType();
993   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
994 
995   // Strip off a bitcast if we got one back.
996   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
997     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
998            // all zero index gep.
999            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1000     Entry = CE->getOperand(0);
1001   }
1002 
1003   // Entry is now either a Function or GlobalVariable.
1004   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1005 
1006   // We have a definition after a declaration with the wrong type.
1007   // We must make a new GlobalVariable* and update everything that used OldGV
1008   // (a declaration or tentative definition) with the new GlobalVariable*
1009   // (which will be a definition).
1010   //
1011   // This happens if there is a prototype for a global (e.g.
1012   // "extern int x[];") and then a definition of a different type (e.g.
1013   // "int x[10];"). This also happens when an initializer has a different type
1014   // from the type of the global (this happens with unions).
1015   if (GV == 0 ||
1016       GV->getType()->getElementType() != InitType ||
1017       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1018 
1019     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1020     GlobalDeclMap.erase(getMangledName(D));
1021 
1022     // Make a new global with the correct type, this is now guaranteed to work.
1023     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1024     GV->takeName(cast<llvm::GlobalValue>(Entry));
1025 
1026     // Replace all uses of the old global with the new global
1027     llvm::Constant *NewPtrForOldDecl =
1028         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1029     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1030 
1031     // Erase the old global, since it is no longer used.
1032     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1033   }
1034 
1035   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1036     SourceManager &SM = Context.getSourceManager();
1037     AddAnnotation(EmitAnnotateAttr(GV, AA,
1038                               SM.getInstantiationLineNumber(D->getLocation())));
1039   }
1040 
1041   GV->setInitializer(Init);
1042 
1043   // If it is safe to mark the global 'constant', do so now.
1044   GV->setConstant(false);
1045   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1046     GV->setConstant(true);
1047 
1048   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1049 
1050   // Set the llvm linkage type as appropriate.
1051   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1052   if (Linkage == GVA_Internal)
1053     GV->setLinkage(llvm::Function::InternalLinkage);
1054   else if (D->hasAttr<DLLImportAttr>())
1055     GV->setLinkage(llvm::Function::DLLImportLinkage);
1056   else if (D->hasAttr<DLLExportAttr>())
1057     GV->setLinkage(llvm::Function::DLLExportLinkage);
1058   else if (D->hasAttr<WeakAttr>()) {
1059     if (GV->isConstant())
1060       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1061     else
1062       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1063   } else if (Linkage == GVA_TemplateInstantiation)
1064     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1065   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1066            !D->hasExternalStorage() && !D->getInit() &&
1067            !D->getAttr<SectionAttr>()) {
1068     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1069     // common vars aren't constant even if declared const.
1070     GV->setConstant(false);
1071   } else
1072     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1073 
1074   SetCommonAttributes(D, GV);
1075 
1076   // Emit global variable debug information.
1077   if (CGDebugInfo *DI = getDebugInfo()) {
1078     DI->setLocation(D->getLocation());
1079     DI->EmitGlobalVariable(GV, D);
1080   }
1081 }
1082 
1083 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1084 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1085 /// existing call uses of the old function in the module, this adjusts them to
1086 /// call the new function directly.
1087 ///
1088 /// This is not just a cleanup: the always_inline pass requires direct calls to
1089 /// functions to be able to inline them.  If there is a bitcast in the way, it
1090 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1091 /// run at -O0.
1092 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1093                                                       llvm::Function *NewFn) {
1094   // If we're redefining a global as a function, don't transform it.
1095   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1096   if (OldFn == 0) return;
1097 
1098   const llvm::Type *NewRetTy = NewFn->getReturnType();
1099   llvm::SmallVector<llvm::Value*, 4> ArgList;
1100 
1101   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1102        UI != E; ) {
1103     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1104     unsigned OpNo = UI.getOperandNo();
1105     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1106     if (!CI || OpNo != 0) continue;
1107 
1108     // If the return types don't match exactly, and if the call isn't dead, then
1109     // we can't transform this call.
1110     if (CI->getType() != NewRetTy && !CI->use_empty())
1111       continue;
1112 
1113     // If the function was passed too few arguments, don't transform.  If extra
1114     // arguments were passed, we silently drop them.  If any of the types
1115     // mismatch, we don't transform.
1116     unsigned ArgNo = 0;
1117     bool DontTransform = false;
1118     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1119          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1120       if (CI->getNumOperands()-1 == ArgNo ||
1121           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1122         DontTransform = true;
1123         break;
1124       }
1125     }
1126     if (DontTransform)
1127       continue;
1128 
1129     // Okay, we can transform this.  Create the new call instruction and copy
1130     // over the required information.
1131     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1132     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1133                                                      ArgList.end(), "", CI);
1134     ArgList.clear();
1135     if (!NewCall->getType()->isVoidTy())
1136       NewCall->takeName(CI);
1137     NewCall->setAttributes(CI->getAttributes());
1138     NewCall->setCallingConv(CI->getCallingConv());
1139 
1140     // Finally, remove the old call, replacing any uses with the new one.
1141     if (!CI->use_empty())
1142       CI->replaceAllUsesWith(NewCall);
1143 
1144     // Copy any custom metadata attached with CI.
1145     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1146       NewCall->setMetadata("dbg", DbgNode);
1147     CI->eraseFromParent();
1148   }
1149 }
1150 
1151 
1152 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1153   const llvm::FunctionType *Ty;
1154   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1155 
1156   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1157     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1158 
1159     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1160   } else {
1161     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1162 
1163     // As a special case, make sure that definitions of K&R function
1164     // "type foo()" aren't declared as varargs (which forces the backend
1165     // to do unnecessary work).
1166     if (D->getType()->isFunctionNoProtoType()) {
1167       assert(Ty->isVarArg() && "Didn't lower type as expected");
1168       // Due to stret, the lowered function could have arguments.
1169       // Just create the same type as was lowered by ConvertType
1170       // but strip off the varargs bit.
1171       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1172       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1173     }
1174   }
1175 
1176   // Get or create the prototype for the function.
1177   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1178 
1179   // Strip off a bitcast if we got one back.
1180   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1181     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1182     Entry = CE->getOperand(0);
1183   }
1184 
1185 
1186   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1187     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1188 
1189     // If the types mismatch then we have to rewrite the definition.
1190     assert(OldFn->isDeclaration() &&
1191            "Shouldn't replace non-declaration");
1192 
1193     // F is the Function* for the one with the wrong type, we must make a new
1194     // Function* and update everything that used F (a declaration) with the new
1195     // Function* (which will be a definition).
1196     //
1197     // This happens if there is a prototype for a function
1198     // (e.g. "int f()") and then a definition of a different type
1199     // (e.g. "int f(int x)").  Start by making a new function of the
1200     // correct type, RAUW, then steal the name.
1201     GlobalDeclMap.erase(getMangledName(D));
1202     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1203     NewFn->takeName(OldFn);
1204 
1205     // If this is an implementation of a function without a prototype, try to
1206     // replace any existing uses of the function (which may be calls) with uses
1207     // of the new function
1208     if (D->getType()->isFunctionNoProtoType()) {
1209       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1210       OldFn->removeDeadConstantUsers();
1211     }
1212 
1213     // Replace uses of F with the Function we will endow with a body.
1214     if (!Entry->use_empty()) {
1215       llvm::Constant *NewPtrForOldDecl =
1216         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1217       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1218     }
1219 
1220     // Ok, delete the old function now, which is dead.
1221     OldFn->eraseFromParent();
1222 
1223     Entry = NewFn;
1224   }
1225 
1226   llvm::Function *Fn = cast<llvm::Function>(Entry);
1227 
1228   CodeGenFunction(*this).GenerateCode(D, Fn);
1229 
1230   SetFunctionDefinitionAttributes(D, Fn);
1231   SetLLVMFunctionAttributesForDefinition(D, Fn);
1232 
1233   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1234     AddGlobalCtor(Fn, CA->getPriority());
1235   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1236     AddGlobalDtor(Fn, DA->getPriority());
1237 }
1238 
1239 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1240   const AliasAttr *AA = D->getAttr<AliasAttr>();
1241   assert(AA && "Not an alias?");
1242 
1243   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1244 
1245   // Unique the name through the identifier table.
1246   const char *AliaseeName = AA->getAliasee().c_str();
1247   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1248 
1249   // Create a reference to the named value.  This ensures that it is emitted
1250   // if a deferred decl.
1251   llvm::Constant *Aliasee;
1252   if (isa<llvm::FunctionType>(DeclTy))
1253     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1254   else
1255     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1256                                     llvm::PointerType::getUnqual(DeclTy), 0);
1257 
1258   // Create the new alias itself, but don't set a name yet.
1259   llvm::GlobalValue *GA =
1260     new llvm::GlobalAlias(Aliasee->getType(),
1261                           llvm::Function::ExternalLinkage,
1262                           "", Aliasee, &getModule());
1263 
1264   // See if there is already something with the alias' name in the module.
1265   const char *MangledName = getMangledName(D);
1266   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1267 
1268   if (Entry && !Entry->isDeclaration()) {
1269     // If there is a definition in the module, then it wins over the alias.
1270     // This is dubious, but allow it to be safe.  Just ignore the alias.
1271     GA->eraseFromParent();
1272     return;
1273   }
1274 
1275   if (Entry) {
1276     // If there is a declaration in the module, then we had an extern followed
1277     // by the alias, as in:
1278     //   extern int test6();
1279     //   ...
1280     //   int test6() __attribute__((alias("test7")));
1281     //
1282     // Remove it and replace uses of it with the alias.
1283 
1284     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1285                                                           Entry->getType()));
1286     Entry->eraseFromParent();
1287   }
1288 
1289   // Now we know that there is no conflict, set the name.
1290   Entry = GA;
1291   GA->setName(MangledName);
1292 
1293   // Set attributes which are particular to an alias; this is a
1294   // specialization of the attributes which may be set on a global
1295   // variable/function.
1296   if (D->hasAttr<DLLExportAttr>()) {
1297     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1298       // The dllexport attribute is ignored for undefined symbols.
1299       if (FD->getBody())
1300         GA->setLinkage(llvm::Function::DLLExportLinkage);
1301     } else {
1302       GA->setLinkage(llvm::Function::DLLExportLinkage);
1303     }
1304   } else if (D->hasAttr<WeakAttr>() ||
1305              D->hasAttr<WeakImportAttr>()) {
1306     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1307   }
1308 
1309   SetCommonAttributes(D, GA);
1310 }
1311 
1312 /// getBuiltinLibFunction - Given a builtin id for a function like
1313 /// "__builtin_fabsf", return a Function* for "fabsf".
1314 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1315                                                   unsigned BuiltinID) {
1316   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1317           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1318          "isn't a lib fn");
1319 
1320   // Get the name, skip over the __builtin_ prefix (if necessary).
1321   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1322   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1323     Name += 10;
1324 
1325   const llvm::FunctionType *Ty =
1326     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1327 
1328   // Unique the name through the identifier table.
1329   Name = getContext().Idents.get(Name).getNameStart();
1330   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1331 }
1332 
1333 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1334                                             unsigned NumTys) {
1335   return llvm::Intrinsic::getDeclaration(&getModule(),
1336                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1337 }
1338 
1339 llvm::Function *CodeGenModule::getMemCpyFn() {
1340   if (MemCpyFn) return MemCpyFn;
1341   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1342   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1343 }
1344 
1345 llvm::Function *CodeGenModule::getMemMoveFn() {
1346   if (MemMoveFn) return MemMoveFn;
1347   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1348   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1349 }
1350 
1351 llvm::Function *CodeGenModule::getMemSetFn() {
1352   if (MemSetFn) return MemSetFn;
1353   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1354   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1355 }
1356 
1357 static llvm::StringMapEntry<llvm::Constant*> &
1358 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1359                          const StringLiteral *Literal,
1360                          bool TargetIsLSB,
1361                          bool &IsUTF16,
1362                          unsigned &StringLength) {
1363   unsigned NumBytes = Literal->getByteLength();
1364 
1365   // Check for simple case.
1366   if (!Literal->containsNonAsciiOrNull()) {
1367     StringLength = NumBytes;
1368     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1369                                                 StringLength));
1370   }
1371 
1372   // Otherwise, convert the UTF8 literals into a byte string.
1373   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1374   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1375   UTF16 *ToPtr = &ToBuf[0];
1376 
1377   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1378                                                &ToPtr, ToPtr + NumBytes,
1379                                                strictConversion);
1380 
1381   // Check for conversion failure.
1382   if (Result != conversionOK) {
1383     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1384     // this duplicate code.
1385     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1386     StringLength = NumBytes;
1387     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1388                                                 StringLength));
1389   }
1390 
1391   // ConvertUTF8toUTF16 returns the length in ToPtr.
1392   StringLength = ToPtr - &ToBuf[0];
1393 
1394   // Render the UTF-16 string into a byte array and convert to the target byte
1395   // order.
1396   //
1397   // FIXME: This isn't something we should need to do here.
1398   llvm::SmallString<128> AsBytes;
1399   AsBytes.reserve(StringLength * 2);
1400   for (unsigned i = 0; i != StringLength; ++i) {
1401     unsigned short Val = ToBuf[i];
1402     if (TargetIsLSB) {
1403       AsBytes.push_back(Val & 0xFF);
1404       AsBytes.push_back(Val >> 8);
1405     } else {
1406       AsBytes.push_back(Val >> 8);
1407       AsBytes.push_back(Val & 0xFF);
1408     }
1409   }
1410   // Append one extra null character, the second is automatically added by our
1411   // caller.
1412   AsBytes.push_back(0);
1413 
1414   IsUTF16 = true;
1415   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1416 }
1417 
1418 llvm::Constant *
1419 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1420   unsigned StringLength = 0;
1421   bool isUTF16 = false;
1422   llvm::StringMapEntry<llvm::Constant*> &Entry =
1423     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1424                              getTargetData().isLittleEndian(),
1425                              isUTF16, StringLength);
1426 
1427   if (llvm::Constant *C = Entry.getValue())
1428     return C;
1429 
1430   llvm::Constant *Zero =
1431       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1432   llvm::Constant *Zeros[] = { Zero, Zero };
1433 
1434   // If we don't already have it, get __CFConstantStringClassReference.
1435   if (!CFConstantStringClassRef) {
1436     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1437     Ty = llvm::ArrayType::get(Ty, 0);
1438     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1439                                            "__CFConstantStringClassReference");
1440     // Decay array -> ptr
1441     CFConstantStringClassRef =
1442       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1443   }
1444 
1445   QualType CFTy = getContext().getCFConstantStringType();
1446 
1447   const llvm::StructType *STy =
1448     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1449 
1450   std::vector<llvm::Constant*> Fields(4);
1451 
1452   // Class pointer.
1453   Fields[0] = CFConstantStringClassRef;
1454 
1455   // Flags.
1456   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1457   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1458     llvm::ConstantInt::get(Ty, 0x07C8);
1459 
1460   // String pointer.
1461   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1462 
1463   const char *Sect = 0;
1464   llvm::GlobalValue::LinkageTypes Linkage;
1465   bool isConstant;
1466   if (isUTF16) {
1467     Sect = getContext().Target.getUnicodeStringSection();
1468     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1469     Linkage = llvm::GlobalValue::InternalLinkage;
1470     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1471     // does make plain ascii ones writable.
1472     isConstant = true;
1473   } else {
1474     Linkage = llvm::GlobalValue::PrivateLinkage;
1475     isConstant = !Features.WritableStrings;
1476   }
1477 
1478   llvm::GlobalVariable *GV =
1479     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1480                              ".str");
1481   if (Sect)
1482     GV->setSection(Sect);
1483   if (isUTF16) {
1484     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1485     GV->setAlignment(Align);
1486   }
1487   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1488 
1489   // String length.
1490   Ty = getTypes().ConvertType(getContext().LongTy);
1491   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1492 
1493   // The struct.
1494   C = llvm::ConstantStruct::get(STy, Fields);
1495   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1496                                 llvm::GlobalVariable::PrivateLinkage, C,
1497                                 "_unnamed_cfstring_");
1498   if (const char *Sect = getContext().Target.getCFStringSection())
1499     GV->setSection(Sect);
1500   Entry.setValue(GV);
1501 
1502   return GV;
1503 }
1504 
1505 /// GetStringForStringLiteral - Return the appropriate bytes for a
1506 /// string literal, properly padded to match the literal type.
1507 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1508   const char *StrData = E->getStrData();
1509   unsigned Len = E->getByteLength();
1510 
1511   const ConstantArrayType *CAT =
1512     getContext().getAsConstantArrayType(E->getType());
1513   assert(CAT && "String isn't pointer or array!");
1514 
1515   // Resize the string to the right size.
1516   std::string Str(StrData, StrData+Len);
1517   uint64_t RealLen = CAT->getSize().getZExtValue();
1518 
1519   if (E->isWide())
1520     RealLen *= getContext().Target.getWCharWidth()/8;
1521 
1522   Str.resize(RealLen, '\0');
1523 
1524   return Str;
1525 }
1526 
1527 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1528 /// constant array for the given string literal.
1529 llvm::Constant *
1530 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1531   // FIXME: This can be more efficient.
1532   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1533   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1534   if (S->isWide()) {
1535     llvm::Type *DestTy =
1536         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1537     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1538   }
1539   return C;
1540 }
1541 
1542 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1543 /// array for the given ObjCEncodeExpr node.
1544 llvm::Constant *
1545 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1546   std::string Str;
1547   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1548 
1549   return GetAddrOfConstantCString(Str);
1550 }
1551 
1552 
1553 /// GenerateWritableString -- Creates storage for a string literal.
1554 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1555                                              bool constant,
1556                                              CodeGenModule &CGM,
1557                                              const char *GlobalName) {
1558   // Create Constant for this string literal. Don't add a '\0'.
1559   llvm::Constant *C =
1560       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1561 
1562   // Create a global variable for this string
1563   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1564                                   llvm::GlobalValue::PrivateLinkage,
1565                                   C, GlobalName);
1566 }
1567 
1568 /// GetAddrOfConstantString - Returns a pointer to a character array
1569 /// containing the literal. This contents are exactly that of the
1570 /// given string, i.e. it will not be null terminated automatically;
1571 /// see GetAddrOfConstantCString. Note that whether the result is
1572 /// actually a pointer to an LLVM constant depends on
1573 /// Feature.WriteableStrings.
1574 ///
1575 /// The result has pointer to array type.
1576 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1577                                                        const char *GlobalName) {
1578   bool IsConstant = !Features.WritableStrings;
1579 
1580   // Get the default prefix if a name wasn't specified.
1581   if (!GlobalName)
1582     GlobalName = ".str";
1583 
1584   // Don't share any string literals if strings aren't constant.
1585   if (!IsConstant)
1586     return GenerateStringLiteral(str, false, *this, GlobalName);
1587 
1588   llvm::StringMapEntry<llvm::Constant *> &Entry =
1589     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1590 
1591   if (Entry.getValue())
1592     return Entry.getValue();
1593 
1594   // Create a global variable for this.
1595   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1596   Entry.setValue(C);
1597   return C;
1598 }
1599 
1600 /// GetAddrOfConstantCString - Returns a pointer to a character
1601 /// array containing the literal and a terminating '\-'
1602 /// character. The result has pointer to array type.
1603 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1604                                                         const char *GlobalName){
1605   return GetAddrOfConstantString(str + '\0', GlobalName);
1606 }
1607 
1608 /// EmitObjCPropertyImplementations - Emit information for synthesized
1609 /// properties for an implementation.
1610 void CodeGenModule::EmitObjCPropertyImplementations(const
1611                                                     ObjCImplementationDecl *D) {
1612   for (ObjCImplementationDecl::propimpl_iterator
1613          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1614     ObjCPropertyImplDecl *PID = *i;
1615 
1616     // Dynamic is just for type-checking.
1617     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1618       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1619 
1620       // Determine which methods need to be implemented, some may have
1621       // been overridden. Note that ::isSynthesized is not the method
1622       // we want, that just indicates if the decl came from a
1623       // property. What we want to know is if the method is defined in
1624       // this implementation.
1625       if (!D->getInstanceMethod(PD->getGetterName()))
1626         CodeGenFunction(*this).GenerateObjCGetter(
1627                                  const_cast<ObjCImplementationDecl *>(D), PID);
1628       if (!PD->isReadOnly() &&
1629           !D->getInstanceMethod(PD->getSetterName()))
1630         CodeGenFunction(*this).GenerateObjCSetter(
1631                                  const_cast<ObjCImplementationDecl *>(D), PID);
1632     }
1633   }
1634 }
1635 
1636 /// EmitNamespace - Emit all declarations in a namespace.
1637 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1638   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1639        I != E; ++I)
1640     EmitTopLevelDecl(*I);
1641 }
1642 
1643 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1644 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1645   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1646       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1647     ErrorUnsupported(LSD, "linkage spec");
1648     return;
1649   }
1650 
1651   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1652        I != E; ++I)
1653     EmitTopLevelDecl(*I);
1654 }
1655 
1656 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1657 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1658   // If an error has occurred, stop code generation, but continue
1659   // parsing and semantic analysis (to ensure all warnings and errors
1660   // are emitted).
1661   if (Diags.hasErrorOccurred())
1662     return;
1663 
1664   // Ignore dependent declarations.
1665   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1666     return;
1667 
1668   switch (D->getKind()) {
1669   case Decl::CXXConversion:
1670   case Decl::CXXMethod:
1671   case Decl::Function:
1672     // Skip function templates
1673     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1674       return;
1675 
1676     EmitGlobal(cast<FunctionDecl>(D));
1677     break;
1678 
1679   case Decl::Var:
1680     EmitGlobal(cast<VarDecl>(D));
1681     break;
1682 
1683   // C++ Decls
1684   case Decl::Namespace:
1685     EmitNamespace(cast<NamespaceDecl>(D));
1686     break;
1687     // No code generation needed.
1688   case Decl::UsingShadow:
1689   case Decl::Using:
1690   case Decl::UsingDirective:
1691   case Decl::ClassTemplate:
1692   case Decl::FunctionTemplate:
1693   case Decl::NamespaceAlias:
1694     break;
1695   case Decl::CXXConstructor:
1696     // Skip function templates
1697     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1698       return;
1699 
1700     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1701     break;
1702   case Decl::CXXDestructor:
1703     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1704     break;
1705 
1706   case Decl::StaticAssert:
1707     // Nothing to do.
1708     break;
1709 
1710   // Objective-C Decls
1711 
1712   // Forward declarations, no (immediate) code generation.
1713   case Decl::ObjCClass:
1714   case Decl::ObjCForwardProtocol:
1715   case Decl::ObjCCategory:
1716   case Decl::ObjCInterface:
1717     break;
1718 
1719   case Decl::ObjCProtocol:
1720     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1721     break;
1722 
1723   case Decl::ObjCCategoryImpl:
1724     // Categories have properties but don't support synthesize so we
1725     // can ignore them here.
1726     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1727     break;
1728 
1729   case Decl::ObjCImplementation: {
1730     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1731     EmitObjCPropertyImplementations(OMD);
1732     Runtime->GenerateClass(OMD);
1733     break;
1734   }
1735   case Decl::ObjCMethod: {
1736     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1737     // If this is not a prototype, emit the body.
1738     if (OMD->getBody())
1739       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1740     break;
1741   }
1742   case Decl::ObjCCompatibleAlias:
1743     // compatibility-alias is a directive and has no code gen.
1744     break;
1745 
1746   case Decl::LinkageSpec:
1747     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1748     break;
1749 
1750   case Decl::FileScopeAsm: {
1751     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1752     llvm::StringRef AsmString = AD->getAsmString()->getString();
1753 
1754     const std::string &S = getModule().getModuleInlineAsm();
1755     if (S.empty())
1756       getModule().setModuleInlineAsm(AsmString);
1757     else
1758       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1759     break;
1760   }
1761 
1762   default:
1763     // Make sure we handled everything we should, every other kind is a
1764     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1765     // function. Need to recode Decl::Kind to do that easily.
1766     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1767   }
1768 }
1769