1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/Support/ErrorHandling.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 41 llvm::Module &M, const llvm::TargetData &TD, 42 Diagnostic &diags) 43 : BlockModule(C, M, TD, Types, *this), Context(C), 44 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 45 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 46 VtableInfo(*this), Runtime(0), 47 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 48 VMContext(M.getContext()) { 49 50 if (!Features.ObjC1) 51 Runtime = 0; 52 else if (!Features.NeXTRuntime) 53 Runtime = CreateGNUObjCRuntime(*this); 54 else if (Features.ObjCNonFragileABI) 55 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 56 else 57 Runtime = CreateMacObjCRuntime(*this); 58 59 // If debug info generation is enabled, create the CGDebugInfo object. 60 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 61 } 62 63 CodeGenModule::~CodeGenModule() { 64 delete Runtime; 65 delete DebugInfo; 66 } 67 68 void CodeGenModule::Release() { 69 EmitDeferred(); 70 EmitCXXGlobalInitFunc(); 71 if (Runtime) 72 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 73 AddGlobalCtor(ObjCInitFunction); 74 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 75 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 76 EmitAnnotations(); 77 EmitLLVMUsed(); 78 } 79 80 /// ErrorUnsupported - Print out an error that codegen doesn't support the 81 /// specified stmt yet. 82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 83 bool OmitOnError) { 84 if (OmitOnError && getDiags().hasErrorOccurred()) 85 return; 86 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 87 "cannot compile this %0 yet"); 88 std::string Msg = Type; 89 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 90 << Msg << S->getSourceRange(); 91 } 92 93 /// ErrorUnsupported - Print out an error that codegen doesn't support the 94 /// specified decl yet. 95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 96 bool OmitOnError) { 97 if (OmitOnError && getDiags().hasErrorOccurred()) 98 return; 99 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 100 "cannot compile this %0 yet"); 101 std::string Msg = Type; 102 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 103 } 104 105 LangOptions::VisibilityMode 106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 107 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 108 if (VD->getStorageClass() == VarDecl::PrivateExtern) 109 return LangOptions::Hidden; 110 111 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 112 switch (attr->getVisibility()) { 113 default: assert(0 && "Unknown visibility!"); 114 case VisibilityAttr::DefaultVisibility: 115 return LangOptions::Default; 116 case VisibilityAttr::HiddenVisibility: 117 return LangOptions::Hidden; 118 case VisibilityAttr::ProtectedVisibility: 119 return LangOptions::Protected; 120 } 121 } 122 123 return getLangOptions().getVisibilityMode(); 124 } 125 126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 127 const Decl *D) const { 128 // Internal definitions always have default visibility. 129 if (GV->hasLocalLinkage()) { 130 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 return; 132 } 133 134 switch (getDeclVisibilityMode(D)) { 135 default: assert(0 && "Unknown visibility!"); 136 case LangOptions::Default: 137 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 138 case LangOptions::Hidden: 139 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 140 case LangOptions::Protected: 141 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 142 } 143 } 144 145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 146 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 147 148 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 149 return getMangledCXXCtorName(D, GD.getCtorType()); 150 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 151 return getMangledCXXDtorName(D, GD.getDtorType()); 152 153 return getMangledName(ND); 154 } 155 156 /// \brief Retrieves the mangled name for the given declaration. 157 /// 158 /// If the given declaration requires a mangled name, returns an 159 /// const char* containing the mangled name. Otherwise, returns 160 /// the unmangled name. 161 /// 162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 163 if (!getMangleContext().shouldMangleDeclName(ND)) { 164 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 165 return ND->getNameAsCString(); 166 } 167 168 llvm::SmallString<256> Name; 169 getMangleContext().mangleName(ND, Name); 170 Name += '\0'; 171 return UniqueMangledName(Name.begin(), Name.end()); 172 } 173 174 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 175 const char *NameEnd) { 176 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 177 178 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 179 } 180 181 /// AddGlobalCtor - Add a function to the list that will be called before 182 /// main() runs. 183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 184 // FIXME: Type coercion of void()* types. 185 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 186 } 187 188 /// AddGlobalDtor - Add a function to the list that will be called 189 /// when the module is unloaded. 190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 191 // FIXME: Type coercion of void()* types. 192 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 193 } 194 195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 196 // Ctor function type is void()*. 197 llvm::FunctionType* CtorFTy = 198 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 199 std::vector<const llvm::Type*>(), 200 false); 201 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 202 203 // Get the type of a ctor entry, { i32, void ()* }. 204 llvm::StructType* CtorStructTy = 205 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 206 llvm::PointerType::getUnqual(CtorFTy), NULL); 207 208 // Construct the constructor and destructor arrays. 209 std::vector<llvm::Constant*> Ctors; 210 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 211 std::vector<llvm::Constant*> S; 212 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 213 I->second, false)); 214 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 215 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 216 } 217 218 if (!Ctors.empty()) { 219 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 220 new llvm::GlobalVariable(TheModule, AT, false, 221 llvm::GlobalValue::AppendingLinkage, 222 llvm::ConstantArray::get(AT, Ctors), 223 GlobalName); 224 } 225 } 226 227 void CodeGenModule::EmitAnnotations() { 228 if (Annotations.empty()) 229 return; 230 231 // Create a new global variable for the ConstantStruct in the Module. 232 llvm::Constant *Array = 233 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 234 Annotations.size()), 235 Annotations); 236 llvm::GlobalValue *gv = 237 new llvm::GlobalVariable(TheModule, Array->getType(), false, 238 llvm::GlobalValue::AppendingLinkage, Array, 239 "llvm.global.annotations"); 240 gv->setSection("llvm.metadata"); 241 } 242 243 static CodeGenModule::GVALinkage 244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 245 const LangOptions &Features) { 246 // Everything located semantically within an anonymous namespace is 247 // always internal. 248 if (FD->isInAnonymousNamespace()) 249 return CodeGenModule::GVA_Internal; 250 251 // "static" functions get internal linkage. 252 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 253 return CodeGenModule::GVA_Internal; 254 255 // The kind of external linkage this function will have, if it is not 256 // inline or static. 257 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 258 if (Context.getLangOptions().CPlusPlus) { 259 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 260 261 if (TSK == TSK_ExplicitInstantiationDefinition) { 262 // If a function has been explicitly instantiated, then it should 263 // always have strong external linkage. 264 return CodeGenModule::GVA_StrongExternal; 265 } 266 267 if (TSK == TSK_ImplicitInstantiation) 268 External = CodeGenModule::GVA_TemplateInstantiation; 269 } 270 271 if (!FD->isInlined()) 272 return External; 273 274 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 275 // GNU or C99 inline semantics. Determine whether this symbol should be 276 // externally visible. 277 if (FD->isInlineDefinitionExternallyVisible()) 278 return External; 279 280 // C99 inline semantics, where the symbol is not externally visible. 281 return CodeGenModule::GVA_C99Inline; 282 } 283 284 // C++0x [temp.explicit]p9: 285 // [ Note: The intent is that an inline function that is the subject of 286 // an explicit instantiation declaration will still be implicitly 287 // instantiated when used so that the body can be considered for 288 // inlining, but that no out-of-line copy of the inline function would be 289 // generated in the translation unit. -- end note ] 290 if (FD->getTemplateSpecializationKind() 291 == TSK_ExplicitInstantiationDeclaration) 292 return CodeGenModule::GVA_C99Inline; 293 294 return CodeGenModule::GVA_CXXInline; 295 } 296 297 /// SetFunctionDefinitionAttributes - Set attributes for a global. 298 /// 299 /// FIXME: This is currently only done for aliases and functions, but not for 300 /// variables (these details are set in EmitGlobalVarDefinition for variables). 301 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 302 llvm::GlobalValue *GV) { 303 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 304 305 if (Linkage == GVA_Internal) { 306 GV->setLinkage(llvm::Function::InternalLinkage); 307 } else if (D->hasAttr<DLLExportAttr>()) { 308 GV->setLinkage(llvm::Function::DLLExportLinkage); 309 } else if (D->hasAttr<WeakAttr>()) { 310 GV->setLinkage(llvm::Function::WeakAnyLinkage); 311 } else if (Linkage == GVA_C99Inline) { 312 // In C99 mode, 'inline' functions are guaranteed to have a strong 313 // definition somewhere else, so we can use available_externally linkage. 314 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 315 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 316 // In C++, the compiler has to emit a definition in every translation unit 317 // that references the function. We should use linkonce_odr because 318 // a) if all references in this translation unit are optimized away, we 319 // don't need to codegen it. b) if the function persists, it needs to be 320 // merged with other definitions. c) C++ has the ODR, so we know the 321 // definition is dependable. 322 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 323 } else { 324 assert(Linkage == GVA_StrongExternal); 325 // Otherwise, we have strong external linkage. 326 GV->setLinkage(llvm::Function::ExternalLinkage); 327 } 328 329 SetCommonAttributes(D, GV); 330 } 331 332 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 333 const CGFunctionInfo &Info, 334 llvm::Function *F) { 335 unsigned CallingConv; 336 AttributeListType AttributeList; 337 ConstructAttributeList(Info, D, AttributeList, CallingConv); 338 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 339 AttributeList.size())); 340 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 341 } 342 343 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 344 llvm::Function *F) { 345 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 346 F->addFnAttr(llvm::Attribute::NoUnwind); 347 348 if (D->hasAttr<AlwaysInlineAttr>()) 349 F->addFnAttr(llvm::Attribute::AlwaysInline); 350 351 if (D->hasAttr<NoInlineAttr>()) 352 F->addFnAttr(llvm::Attribute::NoInline); 353 354 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 355 F->addFnAttr(llvm::Attribute::StackProtect); 356 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 357 F->addFnAttr(llvm::Attribute::StackProtectReq); 358 359 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 360 unsigned width = Context.Target.getCharWidth(); 361 F->setAlignment(AA->getAlignment() / width); 362 while ((AA = AA->getNext<AlignedAttr>())) 363 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 364 } 365 // C++ ABI requires 2-byte alignment for member functions. 366 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 367 F->setAlignment(2); 368 } 369 370 void CodeGenModule::SetCommonAttributes(const Decl *D, 371 llvm::GlobalValue *GV) { 372 setGlobalVisibility(GV, D); 373 374 if (D->hasAttr<UsedAttr>()) 375 AddUsedGlobal(GV); 376 377 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 378 GV->setSection(SA->getName()); 379 } 380 381 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 382 llvm::Function *F, 383 const CGFunctionInfo &FI) { 384 SetLLVMFunctionAttributes(D, FI, F); 385 SetLLVMFunctionAttributesForDefinition(D, F); 386 387 F->setLinkage(llvm::Function::InternalLinkage); 388 389 SetCommonAttributes(D, F); 390 } 391 392 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 393 llvm::Function *F, 394 bool IsIncompleteFunction) { 395 if (!IsIncompleteFunction) 396 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 397 398 // Only a few attributes are set on declarations; these may later be 399 // overridden by a definition. 400 401 if (FD->hasAttr<DLLImportAttr>()) { 402 F->setLinkage(llvm::Function::DLLImportLinkage); 403 } else if (FD->hasAttr<WeakAttr>() || 404 FD->hasAttr<WeakImportAttr>()) { 405 // "extern_weak" is overloaded in LLVM; we probably should have 406 // separate linkage types for this. 407 F->setLinkage(llvm::Function::ExternalWeakLinkage); 408 } else { 409 F->setLinkage(llvm::Function::ExternalLinkage); 410 } 411 412 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 413 F->setSection(SA->getName()); 414 } 415 416 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 417 assert(!GV->isDeclaration() && 418 "Only globals with definition can force usage."); 419 LLVMUsed.push_back(GV); 420 } 421 422 void CodeGenModule::EmitLLVMUsed() { 423 // Don't create llvm.used if there is no need. 424 if (LLVMUsed.empty()) 425 return; 426 427 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 428 429 // Convert LLVMUsed to what ConstantArray needs. 430 std::vector<llvm::Constant*> UsedArray; 431 UsedArray.resize(LLVMUsed.size()); 432 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 433 UsedArray[i] = 434 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 435 i8PTy); 436 } 437 438 if (UsedArray.empty()) 439 return; 440 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 441 442 llvm::GlobalVariable *GV = 443 new llvm::GlobalVariable(getModule(), ATy, false, 444 llvm::GlobalValue::AppendingLinkage, 445 llvm::ConstantArray::get(ATy, UsedArray), 446 "llvm.used"); 447 448 GV->setSection("llvm.metadata"); 449 } 450 451 void CodeGenModule::EmitDeferred() { 452 // Emit code for any potentially referenced deferred decls. Since a 453 // previously unused static decl may become used during the generation of code 454 // for a static function, iterate until no changes are made. 455 while (!DeferredDeclsToEmit.empty()) { 456 GlobalDecl D = DeferredDeclsToEmit.back(); 457 DeferredDeclsToEmit.pop_back(); 458 459 // The mangled name for the decl must have been emitted in GlobalDeclMap. 460 // Look it up to see if it was defined with a stronger definition (e.g. an 461 // extern inline function with a strong function redefinition). If so, 462 // just ignore the deferred decl. 463 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 464 assert(CGRef && "Deferred decl wasn't referenced?"); 465 466 if (!CGRef->isDeclaration()) 467 continue; 468 469 // Otherwise, emit the definition and move on to the next one. 470 EmitGlobalDefinition(D); 471 } 472 } 473 474 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 475 /// annotation information for a given GlobalValue. The annotation struct is 476 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 477 /// GlobalValue being annotated. The second field is the constant string 478 /// created from the AnnotateAttr's annotation. The third field is a constant 479 /// string containing the name of the translation unit. The fourth field is 480 /// the line number in the file of the annotated value declaration. 481 /// 482 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 483 /// appears to. 484 /// 485 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 486 const AnnotateAttr *AA, 487 unsigned LineNo) { 488 llvm::Module *M = &getModule(); 489 490 // get [N x i8] constants for the annotation string, and the filename string 491 // which are the 2nd and 3rd elements of the global annotation structure. 492 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 493 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 494 AA->getAnnotation(), true); 495 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 496 M->getModuleIdentifier(), 497 true); 498 499 // Get the two global values corresponding to the ConstantArrays we just 500 // created to hold the bytes of the strings. 501 llvm::GlobalValue *annoGV = 502 new llvm::GlobalVariable(*M, anno->getType(), false, 503 llvm::GlobalValue::PrivateLinkage, anno, 504 GV->getName()); 505 // translation unit name string, emitted into the llvm.metadata section. 506 llvm::GlobalValue *unitGV = 507 new llvm::GlobalVariable(*M, unit->getType(), false, 508 llvm::GlobalValue::PrivateLinkage, unit, 509 ".str"); 510 511 // Create the ConstantStruct for the global annotation. 512 llvm::Constant *Fields[4] = { 513 llvm::ConstantExpr::getBitCast(GV, SBP), 514 llvm::ConstantExpr::getBitCast(annoGV, SBP), 515 llvm::ConstantExpr::getBitCast(unitGV, SBP), 516 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 517 }; 518 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 519 } 520 521 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 522 // Never defer when EmitAllDecls is specified or the decl has 523 // attribute used. 524 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 525 return false; 526 527 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 528 // Constructors and destructors should never be deferred. 529 if (FD->hasAttr<ConstructorAttr>() || 530 FD->hasAttr<DestructorAttr>()) 531 return false; 532 533 // The key function for a class must never be deferred. 534 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 535 const CXXRecordDecl *RD = MD->getParent(); 536 if (MD->isOutOfLine() && RD->isDynamicClass()) { 537 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 538 if (KeyFunction && 539 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 540 return false; 541 } 542 } 543 544 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 545 546 // static, static inline, always_inline, and extern inline functions can 547 // always be deferred. Normal inline functions can be deferred in C99/C++. 548 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 549 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 550 return true; 551 return false; 552 } 553 554 const VarDecl *VD = cast<VarDecl>(Global); 555 assert(VD->isFileVarDecl() && "Invalid decl"); 556 557 // We never want to defer structs that have non-trivial constructors or 558 // destructors. 559 560 // FIXME: Handle references. 561 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 562 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 563 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 564 return false; 565 } 566 } 567 568 // Static data may be deferred, but out-of-line static data members 569 // cannot be. 570 if (VD->isInAnonymousNamespace()) 571 return true; 572 if (VD->getLinkage() == VarDecl::InternalLinkage) { 573 // Initializer has side effects? 574 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 575 return false; 576 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 577 } 578 return false; 579 } 580 581 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 582 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 583 584 // If this is an alias definition (which otherwise looks like a declaration) 585 // emit it now. 586 if (Global->hasAttr<AliasAttr>()) 587 return EmitAliasDefinition(Global); 588 589 // Ignore declarations, they will be emitted on their first use. 590 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 591 // Forward declarations are emitted lazily on first use. 592 if (!FD->isThisDeclarationADefinition()) 593 return; 594 } else { 595 const VarDecl *VD = cast<VarDecl>(Global); 596 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 597 598 if (getLangOptions().CPlusPlus && !VD->getInit()) { 599 // In C++, if this is marked "extern", defer code generation. 600 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 601 return; 602 603 // If this is a declaration of an explicit specialization of a static 604 // data member in a class template, don't emit it. 605 if (VD->isStaticDataMember() && 606 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 607 return; 608 } 609 610 // In C, if this isn't a definition, defer code generation. 611 if (!getLangOptions().CPlusPlus && !VD->getInit()) 612 return; 613 } 614 615 // Defer code generation when possible if this is a static definition, inline 616 // function etc. These we only want to emit if they are used. 617 if (MayDeferGeneration(Global)) { 618 // If the value has already been used, add it directly to the 619 // DeferredDeclsToEmit list. 620 const char *MangledName = getMangledName(GD); 621 if (GlobalDeclMap.count(MangledName)) 622 DeferredDeclsToEmit.push_back(GD); 623 else { 624 // Otherwise, remember that we saw a deferred decl with this name. The 625 // first use of the mangled name will cause it to move into 626 // DeferredDeclsToEmit. 627 DeferredDecls[MangledName] = GD; 628 } 629 return; 630 } 631 632 // Otherwise emit the definition. 633 EmitGlobalDefinition(GD); 634 } 635 636 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 637 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 638 639 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 640 Context.getSourceManager(), 641 "Generating code for declaration"); 642 643 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 644 getVtableInfo().MaybeEmitVtable(GD); 645 if (MD->isVirtual() && MD->isOutOfLine() && 646 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 647 if (isa<CXXDestructorDecl>(D)) { 648 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 649 GD.getDtorType()); 650 BuildThunksForVirtual(CanonGD); 651 } else { 652 BuildThunksForVirtual(MD->getCanonicalDecl()); 653 } 654 } 655 } 656 657 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 658 EmitCXXConstructor(CD, GD.getCtorType()); 659 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 660 EmitCXXDestructor(DD, GD.getDtorType()); 661 else if (isa<FunctionDecl>(D)) 662 EmitGlobalFunctionDefinition(GD); 663 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 664 EmitGlobalVarDefinition(VD); 665 else { 666 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 667 } 668 } 669 670 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 671 /// module, create and return an llvm Function with the specified type. If there 672 /// is something in the module with the specified name, return it potentially 673 /// bitcasted to the right type. 674 /// 675 /// If D is non-null, it specifies a decl that correspond to this. This is used 676 /// to set the attributes on the function when it is first created. 677 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 678 const llvm::Type *Ty, 679 GlobalDecl D) { 680 // Lookup the entry, lazily creating it if necessary. 681 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 682 if (Entry) { 683 if (Entry->getType()->getElementType() == Ty) 684 return Entry; 685 686 // Make sure the result is of the correct type. 687 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 688 return llvm::ConstantExpr::getBitCast(Entry, PTy); 689 } 690 691 // This function doesn't have a complete type (for example, the return 692 // type is an incomplete struct). Use a fake type instead, and make 693 // sure not to try to set attributes. 694 bool IsIncompleteFunction = false; 695 if (!isa<llvm::FunctionType>(Ty)) { 696 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 697 std::vector<const llvm::Type*>(), false); 698 IsIncompleteFunction = true; 699 } 700 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 701 llvm::Function::ExternalLinkage, 702 "", &getModule()); 703 F->setName(MangledName); 704 if (D.getDecl()) 705 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 706 IsIncompleteFunction); 707 Entry = F; 708 709 // This is the first use or definition of a mangled name. If there is a 710 // deferred decl with this name, remember that we need to emit it at the end 711 // of the file. 712 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 713 DeferredDecls.find(MangledName); 714 if (DDI != DeferredDecls.end()) { 715 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 716 // list, and remove it from DeferredDecls (since we don't need it anymore). 717 DeferredDeclsToEmit.push_back(DDI->second); 718 DeferredDecls.erase(DDI); 719 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 720 // If this the first reference to a C++ inline function in a class, queue up 721 // the deferred function body for emission. These are not seen as 722 // top-level declarations. 723 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 724 DeferredDeclsToEmit.push_back(D); 725 // A called constructor which has no definition or declaration need be 726 // synthesized. 727 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 728 if (CD->isImplicit()) 729 DeferredDeclsToEmit.push_back(D); 730 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 731 if (DD->isImplicit()) 732 DeferredDeclsToEmit.push_back(D); 733 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 734 if (MD->isCopyAssignment() && MD->isImplicit()) 735 DeferredDeclsToEmit.push_back(D); 736 } 737 } 738 739 return F; 740 } 741 742 /// GetAddrOfFunction - Return the address of the given function. If Ty is 743 /// non-null, then this function will use the specified type if it has to 744 /// create it (this occurs when we see a definition of the function). 745 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 746 const llvm::Type *Ty) { 747 // If there was no specific requested type, just convert it now. 748 if (!Ty) 749 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 750 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 751 } 752 753 /// CreateRuntimeFunction - Create a new runtime function with the specified 754 /// type and name. 755 llvm::Constant * 756 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 757 const char *Name) { 758 // Convert Name to be a uniqued string from the IdentifierInfo table. 759 Name = getContext().Idents.get(Name).getNameStart(); 760 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 761 } 762 763 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 764 if (!D->getType().isConstant(Context)) 765 return false; 766 if (Context.getLangOptions().CPlusPlus && 767 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 768 // FIXME: We should do something fancier here! 769 return false; 770 } 771 return true; 772 } 773 774 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 775 /// create and return an llvm GlobalVariable with the specified type. If there 776 /// is something in the module with the specified name, return it potentially 777 /// bitcasted to the right type. 778 /// 779 /// If D is non-null, it specifies a decl that correspond to this. This is used 780 /// to set the attributes on the global when it is first created. 781 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 782 const llvm::PointerType*Ty, 783 const VarDecl *D) { 784 // Lookup the entry, lazily creating it if necessary. 785 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 786 if (Entry) { 787 if (Entry->getType() == Ty) 788 return Entry; 789 790 // Make sure the result is of the correct type. 791 return llvm::ConstantExpr::getBitCast(Entry, Ty); 792 } 793 794 // This is the first use or definition of a mangled name. If there is a 795 // deferred decl with this name, remember that we need to emit it at the end 796 // of the file. 797 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 798 DeferredDecls.find(MangledName); 799 if (DDI != DeferredDecls.end()) { 800 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 801 // list, and remove it from DeferredDecls (since we don't need it anymore). 802 DeferredDeclsToEmit.push_back(DDI->second); 803 DeferredDecls.erase(DDI); 804 } 805 806 llvm::GlobalVariable *GV = 807 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 808 llvm::GlobalValue::ExternalLinkage, 809 0, "", 0, 810 false, Ty->getAddressSpace()); 811 GV->setName(MangledName); 812 813 // Handle things which are present even on external declarations. 814 if (D) { 815 // FIXME: This code is overly simple and should be merged with other global 816 // handling. 817 GV->setConstant(DeclIsConstantGlobal(Context, D)); 818 819 // FIXME: Merge with other attribute handling code. 820 if (D->getStorageClass() == VarDecl::PrivateExtern) 821 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 822 823 if (D->hasAttr<WeakAttr>() || 824 D->hasAttr<WeakImportAttr>()) 825 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 826 827 GV->setThreadLocal(D->isThreadSpecified()); 828 } 829 830 return Entry = GV; 831 } 832 833 834 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 835 /// given global variable. If Ty is non-null and if the global doesn't exist, 836 /// then it will be greated with the specified type instead of whatever the 837 /// normal requested type would be. 838 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 839 const llvm::Type *Ty) { 840 assert(D->hasGlobalStorage() && "Not a global variable"); 841 QualType ASTTy = D->getType(); 842 if (Ty == 0) 843 Ty = getTypes().ConvertTypeForMem(ASTTy); 844 845 const llvm::PointerType *PTy = 846 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 847 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 848 } 849 850 /// CreateRuntimeVariable - Create a new runtime global variable with the 851 /// specified type and name. 852 llvm::Constant * 853 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 854 const char *Name) { 855 // Convert Name to be a uniqued string from the IdentifierInfo table. 856 Name = getContext().Idents.get(Name).getNameStart(); 857 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 858 } 859 860 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 861 assert(!D->getInit() && "Cannot emit definite definitions here!"); 862 863 if (MayDeferGeneration(D)) { 864 // If we have not seen a reference to this variable yet, place it 865 // into the deferred declarations table to be emitted if needed 866 // later. 867 const char *MangledName = getMangledName(D); 868 if (GlobalDeclMap.count(MangledName) == 0) { 869 DeferredDecls[MangledName] = D; 870 return; 871 } 872 } 873 874 // The tentative definition is the only definition. 875 EmitGlobalVarDefinition(D); 876 } 877 878 llvm::GlobalVariable::LinkageTypes 879 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) { 880 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 881 return llvm::GlobalVariable::InternalLinkage; 882 883 if (const CXXMethodDecl *KeyFunction 884 = RD->getASTContext().getKeyFunction(RD)) { 885 // If this class has a key function, use that to determine the linkage of 886 // the vtable. 887 const FunctionDecl *Def = 0; 888 if (KeyFunction->getBody(Def)) 889 KeyFunction = cast<CXXMethodDecl>(Def); 890 891 switch (KeyFunction->getTemplateSpecializationKind()) { 892 case TSK_Undeclared: 893 case TSK_ExplicitSpecialization: 894 if (KeyFunction->isInlined()) 895 return llvm::GlobalVariable::WeakODRLinkage; 896 897 return llvm::GlobalVariable::ExternalLinkage; 898 899 case TSK_ImplicitInstantiation: 900 case TSK_ExplicitInstantiationDefinition: 901 return llvm::GlobalVariable::WeakODRLinkage; 902 903 case TSK_ExplicitInstantiationDeclaration: 904 // FIXME: Use available_externally linkage. However, this currently 905 // breaks LLVM's build due to undefined symbols. 906 // return llvm::GlobalVariable::AvailableExternallyLinkage; 907 return llvm::GlobalVariable::WeakODRLinkage; 908 } 909 } 910 911 switch (RD->getTemplateSpecializationKind()) { 912 case TSK_Undeclared: 913 case TSK_ExplicitSpecialization: 914 case TSK_ImplicitInstantiation: 915 case TSK_ExplicitInstantiationDefinition: 916 return llvm::GlobalVariable::WeakODRLinkage; 917 918 case TSK_ExplicitInstantiationDeclaration: 919 // FIXME: Use available_externally linkage. However, this currently 920 // breaks LLVM's build due to undefined symbols. 921 // return llvm::GlobalVariable::AvailableExternallyLinkage; 922 return llvm::GlobalVariable::WeakODRLinkage; 923 } 924 925 // Silence GCC warning. 926 return llvm::GlobalVariable::WeakODRLinkage; 927 } 928 929 static CodeGenModule::GVALinkage 930 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 931 // Everything located semantically within an anonymous namespace is 932 // always internal. 933 if (VD->isInAnonymousNamespace()) 934 return CodeGenModule::GVA_Internal; 935 936 // Handle linkage for static data members. 937 if (VD->isStaticDataMember()) { 938 switch (VD->getTemplateSpecializationKind()) { 939 case TSK_Undeclared: 940 case TSK_ExplicitSpecialization: 941 case TSK_ExplicitInstantiationDefinition: 942 return CodeGenModule::GVA_StrongExternal; 943 944 case TSK_ExplicitInstantiationDeclaration: 945 llvm_unreachable("Variable should not be instantiated"); 946 // Fall through to treat this like any other instantiation. 947 948 case TSK_ImplicitInstantiation: 949 return CodeGenModule::GVA_TemplateInstantiation; 950 } 951 } 952 953 if (VD->getLinkage() == VarDecl::InternalLinkage) 954 return CodeGenModule::GVA_Internal; 955 956 return CodeGenModule::GVA_StrongExternal; 957 } 958 959 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 960 llvm::Constant *Init = 0; 961 QualType ASTTy = D->getType(); 962 bool NonConstInit = false; 963 964 if (D->getInit() == 0) { 965 // This is a tentative definition; tentative definitions are 966 // implicitly initialized with { 0 }. 967 // 968 // Note that tentative definitions are only emitted at the end of 969 // a translation unit, so they should never have incomplete 970 // type. In addition, EmitTentativeDefinition makes sure that we 971 // never attempt to emit a tentative definition if a real one 972 // exists. A use may still exists, however, so we still may need 973 // to do a RAUW. 974 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 975 Init = EmitNullConstant(D->getType()); 976 } else { 977 Init = EmitConstantExpr(D->getInit(), D->getType()); 978 979 if (!Init) { 980 QualType T = D->getInit()->getType(); 981 if (getLangOptions().CPlusPlus) { 982 EmitCXXGlobalVarDeclInitFunc(D); 983 Init = EmitNullConstant(T); 984 NonConstInit = true; 985 } else { 986 ErrorUnsupported(D, "static initializer"); 987 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 988 } 989 } 990 } 991 992 const llvm::Type* InitType = Init->getType(); 993 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 994 995 // Strip off a bitcast if we got one back. 996 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 997 assert(CE->getOpcode() == llvm::Instruction::BitCast || 998 // all zero index gep. 999 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1000 Entry = CE->getOperand(0); 1001 } 1002 1003 // Entry is now either a Function or GlobalVariable. 1004 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1005 1006 // We have a definition after a declaration with the wrong type. 1007 // We must make a new GlobalVariable* and update everything that used OldGV 1008 // (a declaration or tentative definition) with the new GlobalVariable* 1009 // (which will be a definition). 1010 // 1011 // This happens if there is a prototype for a global (e.g. 1012 // "extern int x[];") and then a definition of a different type (e.g. 1013 // "int x[10];"). This also happens when an initializer has a different type 1014 // from the type of the global (this happens with unions). 1015 if (GV == 0 || 1016 GV->getType()->getElementType() != InitType || 1017 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1018 1019 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1020 GlobalDeclMap.erase(getMangledName(D)); 1021 1022 // Make a new global with the correct type, this is now guaranteed to work. 1023 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1024 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1025 1026 // Replace all uses of the old global with the new global 1027 llvm::Constant *NewPtrForOldDecl = 1028 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1029 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1030 1031 // Erase the old global, since it is no longer used. 1032 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1033 } 1034 1035 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1036 SourceManager &SM = Context.getSourceManager(); 1037 AddAnnotation(EmitAnnotateAttr(GV, AA, 1038 SM.getInstantiationLineNumber(D->getLocation()))); 1039 } 1040 1041 GV->setInitializer(Init); 1042 1043 // If it is safe to mark the global 'constant', do so now. 1044 GV->setConstant(false); 1045 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1046 GV->setConstant(true); 1047 1048 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1049 1050 // Set the llvm linkage type as appropriate. 1051 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1052 if (Linkage == GVA_Internal) 1053 GV->setLinkage(llvm::Function::InternalLinkage); 1054 else if (D->hasAttr<DLLImportAttr>()) 1055 GV->setLinkage(llvm::Function::DLLImportLinkage); 1056 else if (D->hasAttr<DLLExportAttr>()) 1057 GV->setLinkage(llvm::Function::DLLExportLinkage); 1058 else if (D->hasAttr<WeakAttr>()) { 1059 if (GV->isConstant()) 1060 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1061 else 1062 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1063 } else if (Linkage == GVA_TemplateInstantiation) 1064 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1065 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1066 !D->hasExternalStorage() && !D->getInit() && 1067 !D->getAttr<SectionAttr>()) { 1068 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1069 // common vars aren't constant even if declared const. 1070 GV->setConstant(false); 1071 } else 1072 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1073 1074 SetCommonAttributes(D, GV); 1075 1076 // Emit global variable debug information. 1077 if (CGDebugInfo *DI = getDebugInfo()) { 1078 DI->setLocation(D->getLocation()); 1079 DI->EmitGlobalVariable(GV, D); 1080 } 1081 } 1082 1083 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1084 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1085 /// existing call uses of the old function in the module, this adjusts them to 1086 /// call the new function directly. 1087 /// 1088 /// This is not just a cleanup: the always_inline pass requires direct calls to 1089 /// functions to be able to inline them. If there is a bitcast in the way, it 1090 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1091 /// run at -O0. 1092 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1093 llvm::Function *NewFn) { 1094 // If we're redefining a global as a function, don't transform it. 1095 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1096 if (OldFn == 0) return; 1097 1098 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1099 llvm::SmallVector<llvm::Value*, 4> ArgList; 1100 1101 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1102 UI != E; ) { 1103 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1104 unsigned OpNo = UI.getOperandNo(); 1105 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1106 if (!CI || OpNo != 0) continue; 1107 1108 // If the return types don't match exactly, and if the call isn't dead, then 1109 // we can't transform this call. 1110 if (CI->getType() != NewRetTy && !CI->use_empty()) 1111 continue; 1112 1113 // If the function was passed too few arguments, don't transform. If extra 1114 // arguments were passed, we silently drop them. If any of the types 1115 // mismatch, we don't transform. 1116 unsigned ArgNo = 0; 1117 bool DontTransform = false; 1118 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1119 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1120 if (CI->getNumOperands()-1 == ArgNo || 1121 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1122 DontTransform = true; 1123 break; 1124 } 1125 } 1126 if (DontTransform) 1127 continue; 1128 1129 // Okay, we can transform this. Create the new call instruction and copy 1130 // over the required information. 1131 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1132 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1133 ArgList.end(), "", CI); 1134 ArgList.clear(); 1135 if (!NewCall->getType()->isVoidTy()) 1136 NewCall->takeName(CI); 1137 NewCall->setAttributes(CI->getAttributes()); 1138 NewCall->setCallingConv(CI->getCallingConv()); 1139 1140 // Finally, remove the old call, replacing any uses with the new one. 1141 if (!CI->use_empty()) 1142 CI->replaceAllUsesWith(NewCall); 1143 1144 // Copy any custom metadata attached with CI. 1145 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1146 NewCall->setMetadata("dbg", DbgNode); 1147 CI->eraseFromParent(); 1148 } 1149 } 1150 1151 1152 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1153 const llvm::FunctionType *Ty; 1154 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1155 1156 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1157 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1158 1159 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1160 } else { 1161 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1162 1163 // As a special case, make sure that definitions of K&R function 1164 // "type foo()" aren't declared as varargs (which forces the backend 1165 // to do unnecessary work). 1166 if (D->getType()->isFunctionNoProtoType()) { 1167 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1168 // Due to stret, the lowered function could have arguments. 1169 // Just create the same type as was lowered by ConvertType 1170 // but strip off the varargs bit. 1171 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1172 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1173 } 1174 } 1175 1176 // Get or create the prototype for the function. 1177 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1178 1179 // Strip off a bitcast if we got one back. 1180 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1181 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1182 Entry = CE->getOperand(0); 1183 } 1184 1185 1186 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1187 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1188 1189 // If the types mismatch then we have to rewrite the definition. 1190 assert(OldFn->isDeclaration() && 1191 "Shouldn't replace non-declaration"); 1192 1193 // F is the Function* for the one with the wrong type, we must make a new 1194 // Function* and update everything that used F (a declaration) with the new 1195 // Function* (which will be a definition). 1196 // 1197 // This happens if there is a prototype for a function 1198 // (e.g. "int f()") and then a definition of a different type 1199 // (e.g. "int f(int x)"). Start by making a new function of the 1200 // correct type, RAUW, then steal the name. 1201 GlobalDeclMap.erase(getMangledName(D)); 1202 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1203 NewFn->takeName(OldFn); 1204 1205 // If this is an implementation of a function without a prototype, try to 1206 // replace any existing uses of the function (which may be calls) with uses 1207 // of the new function 1208 if (D->getType()->isFunctionNoProtoType()) { 1209 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1210 OldFn->removeDeadConstantUsers(); 1211 } 1212 1213 // Replace uses of F with the Function we will endow with a body. 1214 if (!Entry->use_empty()) { 1215 llvm::Constant *NewPtrForOldDecl = 1216 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1217 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1218 } 1219 1220 // Ok, delete the old function now, which is dead. 1221 OldFn->eraseFromParent(); 1222 1223 Entry = NewFn; 1224 } 1225 1226 llvm::Function *Fn = cast<llvm::Function>(Entry); 1227 1228 CodeGenFunction(*this).GenerateCode(D, Fn); 1229 1230 SetFunctionDefinitionAttributes(D, Fn); 1231 SetLLVMFunctionAttributesForDefinition(D, Fn); 1232 1233 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1234 AddGlobalCtor(Fn, CA->getPriority()); 1235 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1236 AddGlobalDtor(Fn, DA->getPriority()); 1237 } 1238 1239 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1240 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1241 assert(AA && "Not an alias?"); 1242 1243 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1244 1245 // Unique the name through the identifier table. 1246 const char *AliaseeName = AA->getAliasee().c_str(); 1247 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1248 1249 // Create a reference to the named value. This ensures that it is emitted 1250 // if a deferred decl. 1251 llvm::Constant *Aliasee; 1252 if (isa<llvm::FunctionType>(DeclTy)) 1253 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1254 else 1255 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1256 llvm::PointerType::getUnqual(DeclTy), 0); 1257 1258 // Create the new alias itself, but don't set a name yet. 1259 llvm::GlobalValue *GA = 1260 new llvm::GlobalAlias(Aliasee->getType(), 1261 llvm::Function::ExternalLinkage, 1262 "", Aliasee, &getModule()); 1263 1264 // See if there is already something with the alias' name in the module. 1265 const char *MangledName = getMangledName(D); 1266 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1267 1268 if (Entry && !Entry->isDeclaration()) { 1269 // If there is a definition in the module, then it wins over the alias. 1270 // This is dubious, but allow it to be safe. Just ignore the alias. 1271 GA->eraseFromParent(); 1272 return; 1273 } 1274 1275 if (Entry) { 1276 // If there is a declaration in the module, then we had an extern followed 1277 // by the alias, as in: 1278 // extern int test6(); 1279 // ... 1280 // int test6() __attribute__((alias("test7"))); 1281 // 1282 // Remove it and replace uses of it with the alias. 1283 1284 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1285 Entry->getType())); 1286 Entry->eraseFromParent(); 1287 } 1288 1289 // Now we know that there is no conflict, set the name. 1290 Entry = GA; 1291 GA->setName(MangledName); 1292 1293 // Set attributes which are particular to an alias; this is a 1294 // specialization of the attributes which may be set on a global 1295 // variable/function. 1296 if (D->hasAttr<DLLExportAttr>()) { 1297 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1298 // The dllexport attribute is ignored for undefined symbols. 1299 if (FD->getBody()) 1300 GA->setLinkage(llvm::Function::DLLExportLinkage); 1301 } else { 1302 GA->setLinkage(llvm::Function::DLLExportLinkage); 1303 } 1304 } else if (D->hasAttr<WeakAttr>() || 1305 D->hasAttr<WeakImportAttr>()) { 1306 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1307 } 1308 1309 SetCommonAttributes(D, GA); 1310 } 1311 1312 /// getBuiltinLibFunction - Given a builtin id for a function like 1313 /// "__builtin_fabsf", return a Function* for "fabsf". 1314 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1315 unsigned BuiltinID) { 1316 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1317 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1318 "isn't a lib fn"); 1319 1320 // Get the name, skip over the __builtin_ prefix (if necessary). 1321 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1322 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1323 Name += 10; 1324 1325 const llvm::FunctionType *Ty = 1326 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1327 1328 // Unique the name through the identifier table. 1329 Name = getContext().Idents.get(Name).getNameStart(); 1330 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1331 } 1332 1333 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1334 unsigned NumTys) { 1335 return llvm::Intrinsic::getDeclaration(&getModule(), 1336 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1337 } 1338 1339 llvm::Function *CodeGenModule::getMemCpyFn() { 1340 if (MemCpyFn) return MemCpyFn; 1341 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1342 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1343 } 1344 1345 llvm::Function *CodeGenModule::getMemMoveFn() { 1346 if (MemMoveFn) return MemMoveFn; 1347 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1348 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1349 } 1350 1351 llvm::Function *CodeGenModule::getMemSetFn() { 1352 if (MemSetFn) return MemSetFn; 1353 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1354 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1355 } 1356 1357 static llvm::StringMapEntry<llvm::Constant*> & 1358 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1359 const StringLiteral *Literal, 1360 bool TargetIsLSB, 1361 bool &IsUTF16, 1362 unsigned &StringLength) { 1363 unsigned NumBytes = Literal->getByteLength(); 1364 1365 // Check for simple case. 1366 if (!Literal->containsNonAsciiOrNull()) { 1367 StringLength = NumBytes; 1368 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1369 StringLength)); 1370 } 1371 1372 // Otherwise, convert the UTF8 literals into a byte string. 1373 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1374 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1375 UTF16 *ToPtr = &ToBuf[0]; 1376 1377 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1378 &ToPtr, ToPtr + NumBytes, 1379 strictConversion); 1380 1381 // Check for conversion failure. 1382 if (Result != conversionOK) { 1383 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1384 // this duplicate code. 1385 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1386 StringLength = NumBytes; 1387 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1388 StringLength)); 1389 } 1390 1391 // ConvertUTF8toUTF16 returns the length in ToPtr. 1392 StringLength = ToPtr - &ToBuf[0]; 1393 1394 // Render the UTF-16 string into a byte array and convert to the target byte 1395 // order. 1396 // 1397 // FIXME: This isn't something we should need to do here. 1398 llvm::SmallString<128> AsBytes; 1399 AsBytes.reserve(StringLength * 2); 1400 for (unsigned i = 0; i != StringLength; ++i) { 1401 unsigned short Val = ToBuf[i]; 1402 if (TargetIsLSB) { 1403 AsBytes.push_back(Val & 0xFF); 1404 AsBytes.push_back(Val >> 8); 1405 } else { 1406 AsBytes.push_back(Val >> 8); 1407 AsBytes.push_back(Val & 0xFF); 1408 } 1409 } 1410 // Append one extra null character, the second is automatically added by our 1411 // caller. 1412 AsBytes.push_back(0); 1413 1414 IsUTF16 = true; 1415 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1416 } 1417 1418 llvm::Constant * 1419 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1420 unsigned StringLength = 0; 1421 bool isUTF16 = false; 1422 llvm::StringMapEntry<llvm::Constant*> &Entry = 1423 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1424 getTargetData().isLittleEndian(), 1425 isUTF16, StringLength); 1426 1427 if (llvm::Constant *C = Entry.getValue()) 1428 return C; 1429 1430 llvm::Constant *Zero = 1431 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1432 llvm::Constant *Zeros[] = { Zero, Zero }; 1433 1434 // If we don't already have it, get __CFConstantStringClassReference. 1435 if (!CFConstantStringClassRef) { 1436 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1437 Ty = llvm::ArrayType::get(Ty, 0); 1438 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1439 "__CFConstantStringClassReference"); 1440 // Decay array -> ptr 1441 CFConstantStringClassRef = 1442 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1443 } 1444 1445 QualType CFTy = getContext().getCFConstantStringType(); 1446 1447 const llvm::StructType *STy = 1448 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1449 1450 std::vector<llvm::Constant*> Fields(4); 1451 1452 // Class pointer. 1453 Fields[0] = CFConstantStringClassRef; 1454 1455 // Flags. 1456 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1457 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1458 llvm::ConstantInt::get(Ty, 0x07C8); 1459 1460 // String pointer. 1461 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1462 1463 const char *Sect = 0; 1464 llvm::GlobalValue::LinkageTypes Linkage; 1465 bool isConstant; 1466 if (isUTF16) { 1467 Sect = getContext().Target.getUnicodeStringSection(); 1468 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1469 Linkage = llvm::GlobalValue::InternalLinkage; 1470 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1471 // does make plain ascii ones writable. 1472 isConstant = true; 1473 } else { 1474 Linkage = llvm::GlobalValue::PrivateLinkage; 1475 isConstant = !Features.WritableStrings; 1476 } 1477 1478 llvm::GlobalVariable *GV = 1479 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1480 ".str"); 1481 if (Sect) 1482 GV->setSection(Sect); 1483 if (isUTF16) { 1484 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1485 GV->setAlignment(Align); 1486 } 1487 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1488 1489 // String length. 1490 Ty = getTypes().ConvertType(getContext().LongTy); 1491 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1492 1493 // The struct. 1494 C = llvm::ConstantStruct::get(STy, Fields); 1495 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1496 llvm::GlobalVariable::PrivateLinkage, C, 1497 "_unnamed_cfstring_"); 1498 if (const char *Sect = getContext().Target.getCFStringSection()) 1499 GV->setSection(Sect); 1500 Entry.setValue(GV); 1501 1502 return GV; 1503 } 1504 1505 /// GetStringForStringLiteral - Return the appropriate bytes for a 1506 /// string literal, properly padded to match the literal type. 1507 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1508 const char *StrData = E->getStrData(); 1509 unsigned Len = E->getByteLength(); 1510 1511 const ConstantArrayType *CAT = 1512 getContext().getAsConstantArrayType(E->getType()); 1513 assert(CAT && "String isn't pointer or array!"); 1514 1515 // Resize the string to the right size. 1516 std::string Str(StrData, StrData+Len); 1517 uint64_t RealLen = CAT->getSize().getZExtValue(); 1518 1519 if (E->isWide()) 1520 RealLen *= getContext().Target.getWCharWidth()/8; 1521 1522 Str.resize(RealLen, '\0'); 1523 1524 return Str; 1525 } 1526 1527 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1528 /// constant array for the given string literal. 1529 llvm::Constant * 1530 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1531 // FIXME: This can be more efficient. 1532 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1533 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1534 if (S->isWide()) { 1535 llvm::Type *DestTy = 1536 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1537 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1538 } 1539 return C; 1540 } 1541 1542 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1543 /// array for the given ObjCEncodeExpr node. 1544 llvm::Constant * 1545 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1546 std::string Str; 1547 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1548 1549 return GetAddrOfConstantCString(Str); 1550 } 1551 1552 1553 /// GenerateWritableString -- Creates storage for a string literal. 1554 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1555 bool constant, 1556 CodeGenModule &CGM, 1557 const char *GlobalName) { 1558 // Create Constant for this string literal. Don't add a '\0'. 1559 llvm::Constant *C = 1560 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1561 1562 // Create a global variable for this string 1563 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1564 llvm::GlobalValue::PrivateLinkage, 1565 C, GlobalName); 1566 } 1567 1568 /// GetAddrOfConstantString - Returns a pointer to a character array 1569 /// containing the literal. This contents are exactly that of the 1570 /// given string, i.e. it will not be null terminated automatically; 1571 /// see GetAddrOfConstantCString. Note that whether the result is 1572 /// actually a pointer to an LLVM constant depends on 1573 /// Feature.WriteableStrings. 1574 /// 1575 /// The result has pointer to array type. 1576 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1577 const char *GlobalName) { 1578 bool IsConstant = !Features.WritableStrings; 1579 1580 // Get the default prefix if a name wasn't specified. 1581 if (!GlobalName) 1582 GlobalName = ".str"; 1583 1584 // Don't share any string literals if strings aren't constant. 1585 if (!IsConstant) 1586 return GenerateStringLiteral(str, false, *this, GlobalName); 1587 1588 llvm::StringMapEntry<llvm::Constant *> &Entry = 1589 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1590 1591 if (Entry.getValue()) 1592 return Entry.getValue(); 1593 1594 // Create a global variable for this. 1595 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1596 Entry.setValue(C); 1597 return C; 1598 } 1599 1600 /// GetAddrOfConstantCString - Returns a pointer to a character 1601 /// array containing the literal and a terminating '\-' 1602 /// character. The result has pointer to array type. 1603 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1604 const char *GlobalName){ 1605 return GetAddrOfConstantString(str + '\0', GlobalName); 1606 } 1607 1608 /// EmitObjCPropertyImplementations - Emit information for synthesized 1609 /// properties for an implementation. 1610 void CodeGenModule::EmitObjCPropertyImplementations(const 1611 ObjCImplementationDecl *D) { 1612 for (ObjCImplementationDecl::propimpl_iterator 1613 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1614 ObjCPropertyImplDecl *PID = *i; 1615 1616 // Dynamic is just for type-checking. 1617 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1618 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1619 1620 // Determine which methods need to be implemented, some may have 1621 // been overridden. Note that ::isSynthesized is not the method 1622 // we want, that just indicates if the decl came from a 1623 // property. What we want to know is if the method is defined in 1624 // this implementation. 1625 if (!D->getInstanceMethod(PD->getGetterName())) 1626 CodeGenFunction(*this).GenerateObjCGetter( 1627 const_cast<ObjCImplementationDecl *>(D), PID); 1628 if (!PD->isReadOnly() && 1629 !D->getInstanceMethod(PD->getSetterName())) 1630 CodeGenFunction(*this).GenerateObjCSetter( 1631 const_cast<ObjCImplementationDecl *>(D), PID); 1632 } 1633 } 1634 } 1635 1636 /// EmitNamespace - Emit all declarations in a namespace. 1637 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1638 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1639 I != E; ++I) 1640 EmitTopLevelDecl(*I); 1641 } 1642 1643 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1644 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1645 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1646 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1647 ErrorUnsupported(LSD, "linkage spec"); 1648 return; 1649 } 1650 1651 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1652 I != E; ++I) 1653 EmitTopLevelDecl(*I); 1654 } 1655 1656 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1657 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1658 // If an error has occurred, stop code generation, but continue 1659 // parsing and semantic analysis (to ensure all warnings and errors 1660 // are emitted). 1661 if (Diags.hasErrorOccurred()) 1662 return; 1663 1664 // Ignore dependent declarations. 1665 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1666 return; 1667 1668 switch (D->getKind()) { 1669 case Decl::CXXConversion: 1670 case Decl::CXXMethod: 1671 case Decl::Function: 1672 // Skip function templates 1673 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1674 return; 1675 1676 EmitGlobal(cast<FunctionDecl>(D)); 1677 break; 1678 1679 case Decl::Var: 1680 EmitGlobal(cast<VarDecl>(D)); 1681 break; 1682 1683 // C++ Decls 1684 case Decl::Namespace: 1685 EmitNamespace(cast<NamespaceDecl>(D)); 1686 break; 1687 // No code generation needed. 1688 case Decl::UsingShadow: 1689 case Decl::Using: 1690 case Decl::UsingDirective: 1691 case Decl::ClassTemplate: 1692 case Decl::FunctionTemplate: 1693 case Decl::NamespaceAlias: 1694 break; 1695 case Decl::CXXConstructor: 1696 // Skip function templates 1697 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1698 return; 1699 1700 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1701 break; 1702 case Decl::CXXDestructor: 1703 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1704 break; 1705 1706 case Decl::StaticAssert: 1707 // Nothing to do. 1708 break; 1709 1710 // Objective-C Decls 1711 1712 // Forward declarations, no (immediate) code generation. 1713 case Decl::ObjCClass: 1714 case Decl::ObjCForwardProtocol: 1715 case Decl::ObjCCategory: 1716 case Decl::ObjCInterface: 1717 break; 1718 1719 case Decl::ObjCProtocol: 1720 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1721 break; 1722 1723 case Decl::ObjCCategoryImpl: 1724 // Categories have properties but don't support synthesize so we 1725 // can ignore them here. 1726 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1727 break; 1728 1729 case Decl::ObjCImplementation: { 1730 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1731 EmitObjCPropertyImplementations(OMD); 1732 Runtime->GenerateClass(OMD); 1733 break; 1734 } 1735 case Decl::ObjCMethod: { 1736 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1737 // If this is not a prototype, emit the body. 1738 if (OMD->getBody()) 1739 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1740 break; 1741 } 1742 case Decl::ObjCCompatibleAlias: 1743 // compatibility-alias is a directive and has no code gen. 1744 break; 1745 1746 case Decl::LinkageSpec: 1747 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1748 break; 1749 1750 case Decl::FileScopeAsm: { 1751 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1752 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1753 1754 const std::string &S = getModule().getModuleInlineAsm(); 1755 if (S.empty()) 1756 getModule().setModuleInlineAsm(AsmString); 1757 else 1758 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1759 break; 1760 } 1761 1762 default: 1763 // Make sure we handled everything we should, every other kind is a 1764 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1765 // function. Need to recode Decl::Kind to do that easily. 1766 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1767 } 1768 } 1769