1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // Everything located semantically within an anonymous namespace is
251   // always internal.
252   if (FD->isInAnonymousNamespace())
253     return CodeGenModule::GVA_Internal;
254 
255   // The kind of external linkage this function will have, if it is not
256   // inline or static.
257   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
258   if (Context.getLangOptions().CPlusPlus &&
259       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
260     External = CodeGenModule::GVA_TemplateInstantiation;
261 
262   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
263     // C++ member functions defined inside the class are always inline.
264     if (MD->isInline() || !MD->isOutOfLine())
265       return CodeGenModule::GVA_CXXInline;
266 
267     return External;
268   }
269 
270   // "static" functions get internal linkage.
271   if (FD->getStorageClass() == FunctionDecl::Static)
272     return CodeGenModule::GVA_Internal;
273 
274   if (!FD->isInline())
275     return External;
276 
277   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
278     // GNU or C99 inline semantics. Determine whether this symbol should be
279     // externally visible.
280     if (FD->isInlineDefinitionExternallyVisible())
281       return External;
282 
283     // C99 inline semantics, where the symbol is not externally visible.
284     return CodeGenModule::GVA_C99Inline;
285   }
286 
287   // C++ inline semantics
288   assert(Features.CPlusPlus && "Must be in C++ mode");
289   return CodeGenModule::GVA_CXXInline;
290 }
291 
292 /// SetFunctionDefinitionAttributes - Set attributes for a global.
293 ///
294 /// FIXME: This is currently only done for aliases and functions, but not for
295 /// variables (these details are set in EmitGlobalVarDefinition for variables).
296 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
297                                                     llvm::GlobalValue *GV) {
298   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
299 
300   if (Linkage == GVA_Internal) {
301     GV->setLinkage(llvm::Function::InternalLinkage);
302   } else if (D->hasAttr<DLLExportAttr>()) {
303     GV->setLinkage(llvm::Function::DLLExportLinkage);
304   } else if (D->hasAttr<WeakAttr>()) {
305     GV->setLinkage(llvm::Function::WeakAnyLinkage);
306   } else if (Linkage == GVA_C99Inline) {
307     // In C99 mode, 'inline' functions are guaranteed to have a strong
308     // definition somewhere else, so we can use available_externally linkage.
309     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
310   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
311     // In C++, the compiler has to emit a definition in every translation unit
312     // that references the function.  We should use linkonce_odr because
313     // a) if all references in this translation unit are optimized away, we
314     // don't need to codegen it.  b) if the function persists, it needs to be
315     // merged with other definitions. c) C++ has the ODR, so we know the
316     // definition is dependable.
317     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
318   } else {
319     assert(Linkage == GVA_StrongExternal);
320     // Otherwise, we have strong external linkage.
321     GV->setLinkage(llvm::Function::ExternalLinkage);
322   }
323 
324   SetCommonAttributes(D, GV);
325 }
326 
327 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
328                                               const CGFunctionInfo &Info,
329                                               llvm::Function *F) {
330   unsigned CallingConv;
331   AttributeListType AttributeList;
332   ConstructAttributeList(Info, D, AttributeList, CallingConv);
333   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
334                                           AttributeList.size()));
335   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
336 }
337 
338 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
339                                                            llvm::Function *F) {
340   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
341     F->addFnAttr(llvm::Attribute::NoUnwind);
342 
343   if (D->hasAttr<AlwaysInlineAttr>())
344     F->addFnAttr(llvm::Attribute::AlwaysInline);
345 
346   if (D->hasAttr<NoInlineAttr>())
347     F->addFnAttr(llvm::Attribute::NoInline);
348 
349   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
350     F->setAlignment(AA->getAlignment()/8);
351   // C++ ABI requires 2-byte alignment for member functions.
352   if (F->getAlignment() < 16 && isa<CXXMethodDecl>(D))
353     F->setAlignment(16/8);
354 }
355 
356 void CodeGenModule::SetCommonAttributes(const Decl *D,
357                                         llvm::GlobalValue *GV) {
358   setGlobalVisibility(GV, D);
359 
360   if (D->hasAttr<UsedAttr>())
361     AddUsedGlobal(GV);
362 
363   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
364     GV->setSection(SA->getName());
365 }
366 
367 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
368                                                   llvm::Function *F,
369                                                   const CGFunctionInfo &FI) {
370   SetLLVMFunctionAttributes(D, FI, F);
371   SetLLVMFunctionAttributesForDefinition(D, F);
372 
373   F->setLinkage(llvm::Function::InternalLinkage);
374 
375   SetCommonAttributes(D, F);
376 }
377 
378 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
379                                           llvm::Function *F,
380                                           bool IsIncompleteFunction) {
381   if (!IsIncompleteFunction)
382     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
383 
384   // Only a few attributes are set on declarations; these may later be
385   // overridden by a definition.
386 
387   if (FD->hasAttr<DLLImportAttr>()) {
388     F->setLinkage(llvm::Function::DLLImportLinkage);
389   } else if (FD->hasAttr<WeakAttr>() ||
390              FD->hasAttr<WeakImportAttr>()) {
391     // "extern_weak" is overloaded in LLVM; we probably should have
392     // separate linkage types for this.
393     F->setLinkage(llvm::Function::ExternalWeakLinkage);
394   } else {
395     F->setLinkage(llvm::Function::ExternalLinkage);
396   }
397 
398   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
399     F->setSection(SA->getName());
400 }
401 
402 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
403   assert(!GV->isDeclaration() &&
404          "Only globals with definition can force usage.");
405   LLVMUsed.push_back(GV);
406 }
407 
408 void CodeGenModule::EmitLLVMUsed() {
409   // Don't create llvm.used if there is no need.
410   if (LLVMUsed.empty())
411     return;
412 
413   llvm::Type *i8PTy =
414       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
415 
416   // Convert LLVMUsed to what ConstantArray needs.
417   std::vector<llvm::Constant*> UsedArray;
418   UsedArray.resize(LLVMUsed.size());
419   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
420     UsedArray[i] =
421      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
422                                       i8PTy);
423   }
424 
425   if (UsedArray.empty())
426     return;
427   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
428 
429   llvm::GlobalVariable *GV =
430     new llvm::GlobalVariable(getModule(), ATy, false,
431                              llvm::GlobalValue::AppendingLinkage,
432                              llvm::ConstantArray::get(ATy, UsedArray),
433                              "llvm.used");
434 
435   GV->setSection("llvm.metadata");
436 }
437 
438 void CodeGenModule::EmitDeferred() {
439   // Emit code for any potentially referenced deferred decls.  Since a
440   // previously unused static decl may become used during the generation of code
441   // for a static function, iterate until no  changes are made.
442   while (!DeferredDeclsToEmit.empty()) {
443     GlobalDecl D = DeferredDeclsToEmit.back();
444     DeferredDeclsToEmit.pop_back();
445 
446     // The mangled name for the decl must have been emitted in GlobalDeclMap.
447     // Look it up to see if it was defined with a stronger definition (e.g. an
448     // extern inline function with a strong function redefinition).  If so,
449     // just ignore the deferred decl.
450     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
451     assert(CGRef && "Deferred decl wasn't referenced?");
452 
453     if (!CGRef->isDeclaration())
454       continue;
455 
456     // Otherwise, emit the definition and move on to the next one.
457     EmitGlobalDefinition(D);
458   }
459 }
460 
461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
462 /// annotation information for a given GlobalValue.  The annotation struct is
463 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
464 /// GlobalValue being annotated.  The second field is the constant string
465 /// created from the AnnotateAttr's annotation.  The third field is a constant
466 /// string containing the name of the translation unit.  The fourth field is
467 /// the line number in the file of the annotated value declaration.
468 ///
469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
470 ///        appears to.
471 ///
472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
473                                                 const AnnotateAttr *AA,
474                                                 unsigned LineNo) {
475   llvm::Module *M = &getModule();
476 
477   // get [N x i8] constants for the annotation string, and the filename string
478   // which are the 2nd and 3rd elements of the global annotation structure.
479   const llvm::Type *SBP =
480       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
481   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
482                                                   AA->getAnnotation(), true);
483   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
484                                                   M->getModuleIdentifier(),
485                                                   true);
486 
487   // Get the two global values corresponding to the ConstantArrays we just
488   // created to hold the bytes of the strings.
489   llvm::GlobalValue *annoGV =
490     new llvm::GlobalVariable(*M, anno->getType(), false,
491                              llvm::GlobalValue::PrivateLinkage, anno,
492                              GV->getName());
493   // translation unit name string, emitted into the llvm.metadata section.
494   llvm::GlobalValue *unitGV =
495     new llvm::GlobalVariable(*M, unit->getType(), false,
496                              llvm::GlobalValue::PrivateLinkage, unit,
497                              ".str");
498 
499   // Create the ConstantStruct for the global annotation.
500   llvm::Constant *Fields[4] = {
501     llvm::ConstantExpr::getBitCast(GV, SBP),
502     llvm::ConstantExpr::getBitCast(annoGV, SBP),
503     llvm::ConstantExpr::getBitCast(unitGV, SBP),
504     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
505   };
506   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
507 }
508 
509 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
510   // Never defer when EmitAllDecls is specified or the decl has
511   // attribute used.
512   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
513     return false;
514 
515   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
516     // Constructors and destructors should never be deferred.
517     if (FD->hasAttr<ConstructorAttr>() ||
518         FD->hasAttr<DestructorAttr>())
519       return false;
520 
521     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
522 
523     // static, static inline, always_inline, and extern inline functions can
524     // always be deferred.  Normal inline functions can be deferred in C99/C++.
525     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
526         Linkage == GVA_CXXInline)
527       return true;
528     return false;
529   }
530 
531   const VarDecl *VD = cast<VarDecl>(Global);
532   assert(VD->isFileVarDecl() && "Invalid decl");
533 
534   return VD->getStorageClass() == VarDecl::Static;
535 }
536 
537 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
538   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
539 
540   // If this is an alias definition (which otherwise looks like a declaration)
541   // emit it now.
542   if (Global->hasAttr<AliasAttr>())
543     return EmitAliasDefinition(Global);
544 
545   // Ignore declarations, they will be emitted on their first use.
546   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
547     // Forward declarations are emitted lazily on first use.
548     if (!FD->isThisDeclarationADefinition())
549       return;
550   } else {
551     const VarDecl *VD = cast<VarDecl>(Global);
552     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
553 
554     // In C++, if this is marked "extern", defer code generation.
555     if (getLangOptions().CPlusPlus && !VD->getInit() &&
556         (VD->getStorageClass() == VarDecl::Extern ||
557          VD->isExternC()))
558       return;
559 
560     // In C, if this isn't a definition, defer code generation.
561     if (!getLangOptions().CPlusPlus && !VD->getInit())
562       return;
563   }
564 
565   // Defer code generation when possible if this is a static definition, inline
566   // function etc.  These we only want to emit if they are used.
567   if (MayDeferGeneration(Global)) {
568     // If the value has already been used, add it directly to the
569     // DeferredDeclsToEmit list.
570     const char *MangledName = getMangledName(GD);
571     if (GlobalDeclMap.count(MangledName))
572       DeferredDeclsToEmit.push_back(GD);
573     else {
574       // Otherwise, remember that we saw a deferred decl with this name.  The
575       // first use of the mangled name will cause it to move into
576       // DeferredDeclsToEmit.
577       DeferredDecls[MangledName] = GD;
578     }
579     return;
580   }
581 
582   // Otherwise emit the definition.
583   EmitGlobalDefinition(GD);
584 }
585 
586 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
587   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
588 
589   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
590     EmitCXXConstructor(CD, GD.getCtorType());
591   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
592     EmitCXXDestructor(DD, GD.getDtorType());
593   else if (isa<FunctionDecl>(D))
594     EmitGlobalFunctionDefinition(GD);
595   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
596     EmitGlobalVarDefinition(VD);
597   else {
598     assert(0 && "Invalid argument to EmitGlobalDefinition()");
599   }
600 }
601 
602 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
603 /// module, create and return an llvm Function with the specified type. If there
604 /// is something in the module with the specified name, return it potentially
605 /// bitcasted to the right type.
606 ///
607 /// If D is non-null, it specifies a decl that correspond to this.  This is used
608 /// to set the attributes on the function when it is first created.
609 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
610                                                        const llvm::Type *Ty,
611                                                        GlobalDecl D) {
612   // Lookup the entry, lazily creating it if necessary.
613   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
614   if (Entry) {
615     if (Entry->getType()->getElementType() == Ty)
616       return Entry;
617 
618     // Make sure the result is of the correct type.
619     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
620     return llvm::ConstantExpr::getBitCast(Entry, PTy);
621   }
622 
623   // This is the first use or definition of a mangled name.  If there is a
624   // deferred decl with this name, remember that we need to emit it at the end
625   // of the file.
626   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
627     DeferredDecls.find(MangledName);
628   if (DDI != DeferredDecls.end()) {
629     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
630     // list, and remove it from DeferredDecls (since we don't need it anymore).
631     DeferredDeclsToEmit.push_back(DDI->second);
632     DeferredDecls.erase(DDI);
633   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
634     // If this the first reference to a C++ inline function in a class, queue up
635     // the deferred function body for emission.  These are not seen as
636     // top-level declarations.
637     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
638       DeferredDeclsToEmit.push_back(D);
639     // A called constructor which has no definition or declaration need be
640     // synthesized.
641     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
642       const CXXRecordDecl *ClassDecl =
643         cast<CXXRecordDecl>(CD->getDeclContext());
644       if (CD->isCopyConstructor(getContext()))
645         DeferredCopyConstructorToEmit(D);
646       else if (!ClassDecl->hasUserDeclaredConstructor())
647         DeferredDeclsToEmit.push_back(D);
648     }
649     else if (isa<CXXDestructorDecl>(FD))
650        DeferredDestructorToEmit(D);
651     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
652            if (MD->isCopyAssignment())
653              DeferredCopyAssignmentToEmit(D);
654   }
655 
656   // This function doesn't have a complete type (for example, the return
657   // type is an incomplete struct). Use a fake type instead, and make
658   // sure not to try to set attributes.
659   bool IsIncompleteFunction = false;
660   if (!isa<llvm::FunctionType>(Ty)) {
661     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
662                                  std::vector<const llvm::Type*>(), false);
663     IsIncompleteFunction = true;
664   }
665   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
666                                              llvm::Function::ExternalLinkage,
667                                              "", &getModule());
668   F->setName(MangledName);
669   if (D.getDecl())
670     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
671                           IsIncompleteFunction);
672   Entry = F;
673   return F;
674 }
675 
676 /// Defer definition of copy constructor(s) which need be implicitly defined.
677 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
678   const CXXConstructorDecl *CD =
679     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
680   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
681   if (ClassDecl->hasTrivialCopyConstructor() ||
682       ClassDecl->hasUserDeclaredCopyConstructor())
683     return;
684 
685   // First make sure all direct base classes and virtual bases and non-static
686   // data mebers which need to have their copy constructors implicitly defined
687   // are defined. 12.8.p7
688   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
689        Base != ClassDecl->bases_end(); ++Base) {
690     CXXRecordDecl *BaseClassDecl
691       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
692     if (CXXConstructorDecl *BaseCopyCtor =
693         BaseClassDecl->getCopyConstructor(Context, 0))
694       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
695   }
696 
697   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
698        FieldEnd = ClassDecl->field_end();
699        Field != FieldEnd; ++Field) {
700     QualType FieldType = Context.getCanonicalType((*Field)->getType());
701     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
702       FieldType = Array->getElementType();
703     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
704       if ((*Field)->isAnonymousStructOrUnion())
705         continue;
706       CXXRecordDecl *FieldClassDecl
707         = cast<CXXRecordDecl>(FieldClassType->getDecl());
708       if (CXXConstructorDecl *FieldCopyCtor =
709           FieldClassDecl->getCopyConstructor(Context, 0))
710         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
711     }
712   }
713   DeferredDeclsToEmit.push_back(CopyCtorDecl);
714 }
715 
716 /// Defer definition of copy assignments which need be implicitly defined.
717 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
718   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
719   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
720 
721   if (ClassDecl->hasTrivialCopyAssignment() ||
722       ClassDecl->hasUserDeclaredCopyAssignment())
723     return;
724 
725   // First make sure all direct base classes and virtual bases and non-static
726   // data mebers which need to have their copy assignments implicitly defined
727   // are defined. 12.8.p12
728   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
729        Base != ClassDecl->bases_end(); ++Base) {
730     CXXRecordDecl *BaseClassDecl
731       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
732     const CXXMethodDecl *MD = 0;
733     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
734         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
735         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
736       GetAddrOfFunction(MD, 0);
737   }
738 
739   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
740        FieldEnd = ClassDecl->field_end();
741        Field != FieldEnd; ++Field) {
742     QualType FieldType = Context.getCanonicalType((*Field)->getType());
743     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
744       FieldType = Array->getElementType();
745     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
746       if ((*Field)->isAnonymousStructOrUnion())
747         continue;
748       CXXRecordDecl *FieldClassDecl
749         = cast<CXXRecordDecl>(FieldClassType->getDecl());
750       const CXXMethodDecl *MD = 0;
751       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
752           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
753           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
754           GetAddrOfFunction(MD, 0);
755     }
756   }
757   DeferredDeclsToEmit.push_back(CopyAssignDecl);
758 }
759 
760 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
761   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
762   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
763   if (ClassDecl->hasTrivialDestructor() ||
764       ClassDecl->hasUserDeclaredDestructor())
765     return;
766 
767   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
768        Base != ClassDecl->bases_end(); ++Base) {
769     CXXRecordDecl *BaseClassDecl
770       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
771     if (const CXXDestructorDecl *BaseDtor =
772           BaseClassDecl->getDestructor(Context))
773       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
774   }
775 
776   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
777        FieldEnd = ClassDecl->field_end();
778        Field != FieldEnd; ++Field) {
779     QualType FieldType = Context.getCanonicalType((*Field)->getType());
780     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
781       FieldType = Array->getElementType();
782     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
783       if ((*Field)->isAnonymousStructOrUnion())
784         continue;
785       CXXRecordDecl *FieldClassDecl
786         = cast<CXXRecordDecl>(FieldClassType->getDecl());
787       if (const CXXDestructorDecl *FieldDtor =
788             FieldClassDecl->getDestructor(Context))
789         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
790     }
791   }
792   DeferredDeclsToEmit.push_back(DtorDecl);
793 }
794 
795 
796 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
797 /// non-null, then this function will use the specified type if it has to
798 /// create it (this occurs when we see a definition of the function).
799 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
800                                                  const llvm::Type *Ty) {
801   // If there was no specific requested type, just convert it now.
802   if (!Ty)
803     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
804   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
805 }
806 
807 /// CreateRuntimeFunction - Create a new runtime function with the specified
808 /// type and name.
809 llvm::Constant *
810 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
811                                      const char *Name) {
812   // Convert Name to be a uniqued string from the IdentifierInfo table.
813   Name = getContext().Idents.get(Name).getName();
814   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
815 }
816 
817 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
818 /// create and return an llvm GlobalVariable with the specified type.  If there
819 /// is something in the module with the specified name, return it potentially
820 /// bitcasted to the right type.
821 ///
822 /// If D is non-null, it specifies a decl that correspond to this.  This is used
823 /// to set the attributes on the global when it is first created.
824 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
825                                                      const llvm::PointerType*Ty,
826                                                      const VarDecl *D) {
827   // Lookup the entry, lazily creating it if necessary.
828   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
829   if (Entry) {
830     if (Entry->getType() == Ty)
831       return Entry;
832 
833     // Make sure the result is of the correct type.
834     return llvm::ConstantExpr::getBitCast(Entry, Ty);
835   }
836 
837   // This is the first use or definition of a mangled name.  If there is a
838   // deferred decl with this name, remember that we need to emit it at the end
839   // of the file.
840   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
841     DeferredDecls.find(MangledName);
842   if (DDI != DeferredDecls.end()) {
843     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
844     // list, and remove it from DeferredDecls (since we don't need it anymore).
845     DeferredDeclsToEmit.push_back(DDI->second);
846     DeferredDecls.erase(DDI);
847   }
848 
849   llvm::GlobalVariable *GV =
850     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
851                              llvm::GlobalValue::ExternalLinkage,
852                              0, "", 0,
853                              false, Ty->getAddressSpace());
854   GV->setName(MangledName);
855 
856   // Handle things which are present even on external declarations.
857   if (D) {
858     // FIXME: This code is overly simple and should be merged with other global
859     // handling.
860     GV->setConstant(D->getType().isConstant(Context));
861 
862     // FIXME: Merge with other attribute handling code.
863     if (D->getStorageClass() == VarDecl::PrivateExtern)
864       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
865 
866     if (D->hasAttr<WeakAttr>() ||
867         D->hasAttr<WeakImportAttr>())
868       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
869 
870     GV->setThreadLocal(D->isThreadSpecified());
871   }
872 
873   return Entry = GV;
874 }
875 
876 
877 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
878 /// given global variable.  If Ty is non-null and if the global doesn't exist,
879 /// then it will be greated with the specified type instead of whatever the
880 /// normal requested type would be.
881 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
882                                                   const llvm::Type *Ty) {
883   assert(D->hasGlobalStorage() && "Not a global variable");
884   QualType ASTTy = D->getType();
885   if (Ty == 0)
886     Ty = getTypes().ConvertTypeForMem(ASTTy);
887 
888   const llvm::PointerType *PTy =
889     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
890   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
891 }
892 
893 /// CreateRuntimeVariable - Create a new runtime global variable with the
894 /// specified type and name.
895 llvm::Constant *
896 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
897                                      const char *Name) {
898   // Convert Name to be a uniqued string from the IdentifierInfo table.
899   Name = getContext().Idents.get(Name).getName();
900   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
901 }
902 
903 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
904   assert(!D->getInit() && "Cannot emit definite definitions here!");
905 
906   if (MayDeferGeneration(D)) {
907     // If we have not seen a reference to this variable yet, place it
908     // into the deferred declarations table to be emitted if needed
909     // later.
910     const char *MangledName = getMangledName(D);
911     if (GlobalDeclMap.count(MangledName) == 0) {
912       DeferredDecls[MangledName] = D;
913       return;
914     }
915   }
916 
917   // The tentative definition is the only definition.
918   EmitGlobalVarDefinition(D);
919 }
920 
921 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
922   llvm::Constant *Init = 0;
923   QualType ASTTy = D->getType();
924 
925   if (D->getInit() == 0) {
926     // This is a tentative definition; tentative definitions are
927     // implicitly initialized with { 0 }.
928     //
929     // Note that tentative definitions are only emitted at the end of
930     // a translation unit, so they should never have incomplete
931     // type. In addition, EmitTentativeDefinition makes sure that we
932     // never attempt to emit a tentative definition if a real one
933     // exists. A use may still exists, however, so we still may need
934     // to do a RAUW.
935     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
936     Init = EmitNullConstant(D->getType());
937   } else {
938     Init = EmitConstantExpr(D->getInit(), D->getType());
939 
940     if (!Init) {
941       QualType T = D->getInit()->getType();
942       if (getLangOptions().CPlusPlus) {
943         CXXGlobalInits.push_back(D);
944         Init = EmitNullConstant(T);
945       } else {
946         ErrorUnsupported(D, "static initializer");
947         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
948       }
949     }
950   }
951 
952   const llvm::Type* InitType = Init->getType();
953   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
954 
955   // Strip off a bitcast if we got one back.
956   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
957     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
958            // all zero index gep.
959            CE->getOpcode() == llvm::Instruction::GetElementPtr);
960     Entry = CE->getOperand(0);
961   }
962 
963   // Entry is now either a Function or GlobalVariable.
964   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
965 
966   // We have a definition after a declaration with the wrong type.
967   // We must make a new GlobalVariable* and update everything that used OldGV
968   // (a declaration or tentative definition) with the new GlobalVariable*
969   // (which will be a definition).
970   //
971   // This happens if there is a prototype for a global (e.g.
972   // "extern int x[];") and then a definition of a different type (e.g.
973   // "int x[10];"). This also happens when an initializer has a different type
974   // from the type of the global (this happens with unions).
975   if (GV == 0 ||
976       GV->getType()->getElementType() != InitType ||
977       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
978 
979     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
980     GlobalDeclMap.erase(getMangledName(D));
981 
982     // Make a new global with the correct type, this is now guaranteed to work.
983     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
984     GV->takeName(cast<llvm::GlobalValue>(Entry));
985 
986     // Replace all uses of the old global with the new global
987     llvm::Constant *NewPtrForOldDecl =
988         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
989     Entry->replaceAllUsesWith(NewPtrForOldDecl);
990 
991     // Erase the old global, since it is no longer used.
992     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
993   }
994 
995   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
996     SourceManager &SM = Context.getSourceManager();
997     AddAnnotation(EmitAnnotateAttr(GV, AA,
998                               SM.getInstantiationLineNumber(D->getLocation())));
999   }
1000 
1001   GV->setInitializer(Init);
1002 
1003   // If it is safe to mark the global 'constant', do so now.
1004   GV->setConstant(false);
1005   if (D->getType().isConstant(Context)) {
1006     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1007     // members, it cannot be declared "LLVM const".
1008     GV->setConstant(true);
1009   }
1010 
1011   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1012 
1013   // Set the llvm linkage type as appropriate.
1014   if (D->isInAnonymousNamespace())
1015     GV->setLinkage(llvm::Function::InternalLinkage);
1016   else if (D->getStorageClass() == VarDecl::Static)
1017     GV->setLinkage(llvm::Function::InternalLinkage);
1018   else if (D->hasAttr<DLLImportAttr>())
1019     GV->setLinkage(llvm::Function::DLLImportLinkage);
1020   else if (D->hasAttr<DLLExportAttr>())
1021     GV->setLinkage(llvm::Function::DLLExportLinkage);
1022   else if (D->hasAttr<WeakAttr>()) {
1023     if (GV->isConstant())
1024       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1025     else
1026       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1027   } else if (!CompileOpts.NoCommon &&
1028            !D->hasExternalStorage() && !D->getInit() &&
1029            !D->getAttr<SectionAttr>()) {
1030     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1031     // common vars aren't constant even if declared const.
1032     GV->setConstant(false);
1033   } else
1034     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1035 
1036   SetCommonAttributes(D, GV);
1037 
1038   // Emit global variable debug information.
1039   if (CGDebugInfo *DI = getDebugInfo()) {
1040     DI->setLocation(D->getLocation());
1041     DI->EmitGlobalVariable(GV, D);
1042   }
1043 }
1044 
1045 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1046 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1047 /// existing call uses of the old function in the module, this adjusts them to
1048 /// call the new function directly.
1049 ///
1050 /// This is not just a cleanup: the always_inline pass requires direct calls to
1051 /// functions to be able to inline them.  If there is a bitcast in the way, it
1052 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1053 /// run at -O0.
1054 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1055                                                       llvm::Function *NewFn) {
1056   // If we're redefining a global as a function, don't transform it.
1057   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1058   if (OldFn == 0) return;
1059 
1060   const llvm::Type *NewRetTy = NewFn->getReturnType();
1061   llvm::SmallVector<llvm::Value*, 4> ArgList;
1062 
1063   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1064        UI != E; ) {
1065     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1066     unsigned OpNo = UI.getOperandNo();
1067     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1068     if (!CI || OpNo != 0) continue;
1069 
1070     // If the return types don't match exactly, and if the call isn't dead, then
1071     // we can't transform this call.
1072     if (CI->getType() != NewRetTy && !CI->use_empty())
1073       continue;
1074 
1075     // If the function was passed too few arguments, don't transform.  If extra
1076     // arguments were passed, we silently drop them.  If any of the types
1077     // mismatch, we don't transform.
1078     unsigned ArgNo = 0;
1079     bool DontTransform = false;
1080     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1081          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1082       if (CI->getNumOperands()-1 == ArgNo ||
1083           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1084         DontTransform = true;
1085         break;
1086       }
1087     }
1088     if (DontTransform)
1089       continue;
1090 
1091     // Okay, we can transform this.  Create the new call instruction and copy
1092     // over the required information.
1093     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1094     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1095                                                      ArgList.end(), "", CI);
1096     ArgList.clear();
1097     if (!NewCall->getType()->isVoidTy())
1098       NewCall->takeName(CI);
1099     NewCall->setAttributes(CI->getAttributes());
1100     NewCall->setCallingConv(CI->getCallingConv());
1101 
1102     // Finally, remove the old call, replacing any uses with the new one.
1103     if (!CI->use_empty())
1104       CI->replaceAllUsesWith(NewCall);
1105     CI->eraseFromParent();
1106   }
1107 }
1108 
1109 
1110 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1111   const llvm::FunctionType *Ty;
1112   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1113 
1114   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1115     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1116 
1117     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1118   } else {
1119     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1120 
1121     // As a special case, make sure that definitions of K&R function
1122     // "type foo()" aren't declared as varargs (which forces the backend
1123     // to do unnecessary work).
1124     if (D->getType()->isFunctionNoProtoType()) {
1125       assert(Ty->isVarArg() && "Didn't lower type as expected");
1126       // Due to stret, the lowered function could have arguments.
1127       // Just create the same type as was lowered by ConvertType
1128       // but strip off the varargs bit.
1129       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1130       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1131     }
1132   }
1133 
1134   // Get or create the prototype for the function.
1135   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1136 
1137   // Strip off a bitcast if we got one back.
1138   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1139     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1140     Entry = CE->getOperand(0);
1141   }
1142 
1143 
1144   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1145     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1146 
1147     // If the types mismatch then we have to rewrite the definition.
1148     assert(OldFn->isDeclaration() &&
1149            "Shouldn't replace non-declaration");
1150 
1151     // F is the Function* for the one with the wrong type, we must make a new
1152     // Function* and update everything that used F (a declaration) with the new
1153     // Function* (which will be a definition).
1154     //
1155     // This happens if there is a prototype for a function
1156     // (e.g. "int f()") and then a definition of a different type
1157     // (e.g. "int f(int x)").  Start by making a new function of the
1158     // correct type, RAUW, then steal the name.
1159     GlobalDeclMap.erase(getMangledName(D));
1160     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1161     NewFn->takeName(OldFn);
1162 
1163     // If this is an implementation of a function without a prototype, try to
1164     // replace any existing uses of the function (which may be calls) with uses
1165     // of the new function
1166     if (D->getType()->isFunctionNoProtoType()) {
1167       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1168       OldFn->removeDeadConstantUsers();
1169     }
1170 
1171     // Replace uses of F with the Function we will endow with a body.
1172     if (!Entry->use_empty()) {
1173       llvm::Constant *NewPtrForOldDecl =
1174         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1175       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1176     }
1177 
1178     // Ok, delete the old function now, which is dead.
1179     OldFn->eraseFromParent();
1180 
1181     Entry = NewFn;
1182   }
1183 
1184   llvm::Function *Fn = cast<llvm::Function>(Entry);
1185 
1186   CodeGenFunction(*this).GenerateCode(D, Fn);
1187 
1188   SetFunctionDefinitionAttributes(D, Fn);
1189   SetLLVMFunctionAttributesForDefinition(D, Fn);
1190 
1191   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1192     AddGlobalCtor(Fn, CA->getPriority());
1193   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1194     AddGlobalDtor(Fn, DA->getPriority());
1195 }
1196 
1197 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1198   const AliasAttr *AA = D->getAttr<AliasAttr>();
1199   assert(AA && "Not an alias?");
1200 
1201   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1202 
1203   // Unique the name through the identifier table.
1204   const char *AliaseeName = AA->getAliasee().c_str();
1205   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1206 
1207   // Create a reference to the named value.  This ensures that it is emitted
1208   // if a deferred decl.
1209   llvm::Constant *Aliasee;
1210   if (isa<llvm::FunctionType>(DeclTy))
1211     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1212   else
1213     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1214                                     llvm::PointerType::getUnqual(DeclTy), 0);
1215 
1216   // Create the new alias itself, but don't set a name yet.
1217   llvm::GlobalValue *GA =
1218     new llvm::GlobalAlias(Aliasee->getType(),
1219                           llvm::Function::ExternalLinkage,
1220                           "", Aliasee, &getModule());
1221 
1222   // See if there is already something with the alias' name in the module.
1223   const char *MangledName = getMangledName(D);
1224   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1225 
1226   if (Entry && !Entry->isDeclaration()) {
1227     // If there is a definition in the module, then it wins over the alias.
1228     // This is dubious, but allow it to be safe.  Just ignore the alias.
1229     GA->eraseFromParent();
1230     return;
1231   }
1232 
1233   if (Entry) {
1234     // If there is a declaration in the module, then we had an extern followed
1235     // by the alias, as in:
1236     //   extern int test6();
1237     //   ...
1238     //   int test6() __attribute__((alias("test7")));
1239     //
1240     // Remove it and replace uses of it with the alias.
1241 
1242     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1243                                                           Entry->getType()));
1244     Entry->eraseFromParent();
1245   }
1246 
1247   // Now we know that there is no conflict, set the name.
1248   Entry = GA;
1249   GA->setName(MangledName);
1250 
1251   // Set attributes which are particular to an alias; this is a
1252   // specialization of the attributes which may be set on a global
1253   // variable/function.
1254   if (D->hasAttr<DLLExportAttr>()) {
1255     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1256       // The dllexport attribute is ignored for undefined symbols.
1257       if (FD->getBody())
1258         GA->setLinkage(llvm::Function::DLLExportLinkage);
1259     } else {
1260       GA->setLinkage(llvm::Function::DLLExportLinkage);
1261     }
1262   } else if (D->hasAttr<WeakAttr>() ||
1263              D->hasAttr<WeakImportAttr>()) {
1264     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1265   }
1266 
1267   SetCommonAttributes(D, GA);
1268 }
1269 
1270 /// getBuiltinLibFunction - Given a builtin id for a function like
1271 /// "__builtin_fabsf", return a Function* for "fabsf".
1272 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1273                                                   unsigned BuiltinID) {
1274   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1275           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1276          "isn't a lib fn");
1277 
1278   // Get the name, skip over the __builtin_ prefix (if necessary).
1279   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1280   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1281     Name += 10;
1282 
1283   // Get the type for the builtin.
1284   ASTContext::GetBuiltinTypeError Error;
1285   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1286   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1287 
1288   const llvm::FunctionType *Ty =
1289     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1290 
1291   // Unique the name through the identifier table.
1292   Name = getContext().Idents.get(Name).getName();
1293   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1294 }
1295 
1296 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1297                                             unsigned NumTys) {
1298   return llvm::Intrinsic::getDeclaration(&getModule(),
1299                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1300 }
1301 
1302 llvm::Function *CodeGenModule::getMemCpyFn() {
1303   if (MemCpyFn) return MemCpyFn;
1304   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1305   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1306 }
1307 
1308 llvm::Function *CodeGenModule::getMemMoveFn() {
1309   if (MemMoveFn) return MemMoveFn;
1310   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1311   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1312 }
1313 
1314 llvm::Function *CodeGenModule::getMemSetFn() {
1315   if (MemSetFn) return MemSetFn;
1316   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1317   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1318 }
1319 
1320 static llvm::StringMapEntry<llvm::Constant*> &
1321 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1322                          const StringLiteral *Literal,
1323                          bool TargetIsLSB,
1324                          bool &IsUTF16,
1325                          unsigned &StringLength) {
1326   unsigned NumBytes = Literal->getByteLength();
1327 
1328   // Check for simple case.
1329   if (!Literal->containsNonAsciiOrNull()) {
1330     StringLength = NumBytes;
1331     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1332                                                 StringLength));
1333   }
1334 
1335   // Otherwise, convert the UTF8 literals into a byte string.
1336   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1337   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1338   UTF16 *ToPtr = &ToBuf[0];
1339 
1340   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1341                                                &ToPtr, ToPtr + NumBytes,
1342                                                strictConversion);
1343 
1344   // Check for conversion failure.
1345   if (Result != conversionOK) {
1346     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1347     // this duplicate code.
1348     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1349     StringLength = NumBytes;
1350     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1351                                                 StringLength));
1352   }
1353 
1354   // ConvertUTF8toUTF16 returns the length in ToPtr.
1355   StringLength = ToPtr - &ToBuf[0];
1356 
1357   // Render the UTF-16 string into a byte array and convert to the target byte
1358   // order.
1359   //
1360   // FIXME: This isn't something we should need to do here.
1361   llvm::SmallString<128> AsBytes;
1362   AsBytes.reserve(StringLength * 2);
1363   for (unsigned i = 0; i != StringLength; ++i) {
1364     unsigned short Val = ToBuf[i];
1365     if (TargetIsLSB) {
1366       AsBytes.push_back(Val & 0xFF);
1367       AsBytes.push_back(Val >> 8);
1368     } else {
1369       AsBytes.push_back(Val >> 8);
1370       AsBytes.push_back(Val & 0xFF);
1371     }
1372   }
1373   // Append one extra null character, the second is automatically added by our
1374   // caller.
1375   AsBytes.push_back(0);
1376 
1377   IsUTF16 = true;
1378   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1379 }
1380 
1381 llvm::Constant *
1382 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1383   unsigned StringLength = 0;
1384   bool isUTF16 = false;
1385   llvm::StringMapEntry<llvm::Constant*> &Entry =
1386     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1387                              getTargetData().isLittleEndian(),
1388                              isUTF16, StringLength);
1389 
1390   if (llvm::Constant *C = Entry.getValue())
1391     return C;
1392 
1393   llvm::Constant *Zero =
1394       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1395   llvm::Constant *Zeros[] = { Zero, Zero };
1396 
1397   // If we don't already have it, get __CFConstantStringClassReference.
1398   if (!CFConstantStringClassRef) {
1399     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1400     Ty = llvm::ArrayType::get(Ty, 0);
1401     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1402                                            "__CFConstantStringClassReference");
1403     // Decay array -> ptr
1404     CFConstantStringClassRef =
1405       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1406   }
1407 
1408   QualType CFTy = getContext().getCFConstantStringType();
1409 
1410   const llvm::StructType *STy =
1411     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1412 
1413   std::vector<llvm::Constant*> Fields(4);
1414 
1415   // Class pointer.
1416   Fields[0] = CFConstantStringClassRef;
1417 
1418   // Flags.
1419   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1420   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1421     llvm::ConstantInt::get(Ty, 0x07C8);
1422 
1423   // String pointer.
1424   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1425 
1426   const char *Sect, *Prefix;
1427   bool isConstant;
1428   llvm::GlobalValue::LinkageTypes Linkage;
1429   if (isUTF16) {
1430     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1431     Sect = getContext().Target.getUnicodeStringSection();
1432     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1433     Linkage = llvm::GlobalValue::InternalLinkage;
1434     // FIXME: Why does GCC not set constant here?
1435     isConstant = false;
1436   } else {
1437     Prefix = ".str";
1438     Sect = getContext().Target.getCFStringDataSection();
1439     Linkage = llvm::GlobalValue::PrivateLinkage;
1440     // FIXME: -fwritable-strings should probably affect this, but we
1441     // are following gcc here.
1442     isConstant = true;
1443   }
1444   llvm::GlobalVariable *GV =
1445     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1446                              Linkage, C, Prefix);
1447   if (Sect)
1448     GV->setSection(Sect);
1449   if (isUTF16) {
1450     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1451     GV->setAlignment(Align);
1452   }
1453   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1454 
1455   // String length.
1456   Ty = getTypes().ConvertType(getContext().LongTy);
1457   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1458 
1459   // The struct.
1460   C = llvm::ConstantStruct::get(STy, Fields);
1461   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1462                                 llvm::GlobalVariable::PrivateLinkage, C,
1463                                 "_unnamed_cfstring_");
1464   if (const char *Sect = getContext().Target.getCFStringSection())
1465     GV->setSection(Sect);
1466   Entry.setValue(GV);
1467 
1468   return GV;
1469 }
1470 
1471 /// GetStringForStringLiteral - Return the appropriate bytes for a
1472 /// string literal, properly padded to match the literal type.
1473 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1474   const char *StrData = E->getStrData();
1475   unsigned Len = E->getByteLength();
1476 
1477   const ConstantArrayType *CAT =
1478     getContext().getAsConstantArrayType(E->getType());
1479   assert(CAT && "String isn't pointer or array!");
1480 
1481   // Resize the string to the right size.
1482   std::string Str(StrData, StrData+Len);
1483   uint64_t RealLen = CAT->getSize().getZExtValue();
1484 
1485   if (E->isWide())
1486     RealLen *= getContext().Target.getWCharWidth()/8;
1487 
1488   Str.resize(RealLen, '\0');
1489 
1490   return Str;
1491 }
1492 
1493 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1494 /// constant array for the given string literal.
1495 llvm::Constant *
1496 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1497   // FIXME: This can be more efficient.
1498   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1499 }
1500 
1501 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1502 /// array for the given ObjCEncodeExpr node.
1503 llvm::Constant *
1504 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1505   std::string Str;
1506   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1507 
1508   return GetAddrOfConstantCString(Str);
1509 }
1510 
1511 
1512 /// GenerateWritableString -- Creates storage for a string literal.
1513 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1514                                              bool constant,
1515                                              CodeGenModule &CGM,
1516                                              const char *GlobalName) {
1517   // Create Constant for this string literal. Don't add a '\0'.
1518   llvm::Constant *C =
1519       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1520 
1521   // Create a global variable for this string
1522   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1523                                   llvm::GlobalValue::PrivateLinkage,
1524                                   C, GlobalName);
1525 }
1526 
1527 /// GetAddrOfConstantString - Returns a pointer to a character array
1528 /// containing the literal. This contents are exactly that of the
1529 /// given string, i.e. it will not be null terminated automatically;
1530 /// see GetAddrOfConstantCString. Note that whether the result is
1531 /// actually a pointer to an LLVM constant depends on
1532 /// Feature.WriteableStrings.
1533 ///
1534 /// The result has pointer to array type.
1535 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1536                                                        const char *GlobalName) {
1537   bool IsConstant = !Features.WritableStrings;
1538 
1539   // Get the default prefix if a name wasn't specified.
1540   if (!GlobalName)
1541     GlobalName = ".str";
1542 
1543   // Don't share any string literals if strings aren't constant.
1544   if (!IsConstant)
1545     return GenerateStringLiteral(str, false, *this, GlobalName);
1546 
1547   llvm::StringMapEntry<llvm::Constant *> &Entry =
1548     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1549 
1550   if (Entry.getValue())
1551     return Entry.getValue();
1552 
1553   // Create a global variable for this.
1554   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1555   Entry.setValue(C);
1556   return C;
1557 }
1558 
1559 /// GetAddrOfConstantCString - Returns a pointer to a character
1560 /// array containing the literal and a terminating '\-'
1561 /// character. The result has pointer to array type.
1562 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1563                                                         const char *GlobalName){
1564   return GetAddrOfConstantString(str + '\0', GlobalName);
1565 }
1566 
1567 /// EmitObjCPropertyImplementations - Emit information for synthesized
1568 /// properties for an implementation.
1569 void CodeGenModule::EmitObjCPropertyImplementations(const
1570                                                     ObjCImplementationDecl *D) {
1571   for (ObjCImplementationDecl::propimpl_iterator
1572          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1573     ObjCPropertyImplDecl *PID = *i;
1574 
1575     // Dynamic is just for type-checking.
1576     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1577       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1578 
1579       // Determine which methods need to be implemented, some may have
1580       // been overridden. Note that ::isSynthesized is not the method
1581       // we want, that just indicates if the decl came from a
1582       // property. What we want to know is if the method is defined in
1583       // this implementation.
1584       if (!D->getInstanceMethod(PD->getGetterName()))
1585         CodeGenFunction(*this).GenerateObjCGetter(
1586                                  const_cast<ObjCImplementationDecl *>(D), PID);
1587       if (!PD->isReadOnly() &&
1588           !D->getInstanceMethod(PD->getSetterName()))
1589         CodeGenFunction(*this).GenerateObjCSetter(
1590                                  const_cast<ObjCImplementationDecl *>(D), PID);
1591     }
1592   }
1593 }
1594 
1595 /// EmitNamespace - Emit all declarations in a namespace.
1596 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1597   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1598        I != E; ++I)
1599     EmitTopLevelDecl(*I);
1600 }
1601 
1602 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1603 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1604   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1605       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1606     ErrorUnsupported(LSD, "linkage spec");
1607     return;
1608   }
1609 
1610   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1611        I != E; ++I)
1612     EmitTopLevelDecl(*I);
1613 }
1614 
1615 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1616 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1617   // If an error has occurred, stop code generation, but continue
1618   // parsing and semantic analysis (to ensure all warnings and errors
1619   // are emitted).
1620   if (Diags.hasErrorOccurred())
1621     return;
1622 
1623   // Ignore dependent declarations.
1624   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1625     return;
1626 
1627   switch (D->getKind()) {
1628   case Decl::CXXConversion:
1629   case Decl::CXXMethod:
1630   case Decl::Function:
1631     // Skip function templates
1632     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1633       return;
1634 
1635     EmitGlobal(cast<FunctionDecl>(D));
1636     break;
1637 
1638   case Decl::Var:
1639     EmitGlobal(cast<VarDecl>(D));
1640     break;
1641 
1642   // C++ Decls
1643   case Decl::Namespace:
1644     EmitNamespace(cast<NamespaceDecl>(D));
1645     break;
1646     // No code generation needed.
1647   case Decl::Using:
1648   case Decl::UsingDirective:
1649   case Decl::ClassTemplate:
1650   case Decl::FunctionTemplate:
1651   case Decl::NamespaceAlias:
1652     break;
1653   case Decl::CXXConstructor:
1654     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1655     break;
1656   case Decl::CXXDestructor:
1657     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1658     break;
1659 
1660   case Decl::StaticAssert:
1661     // Nothing to do.
1662     break;
1663 
1664   // Objective-C Decls
1665 
1666   // Forward declarations, no (immediate) code generation.
1667   case Decl::ObjCClass:
1668   case Decl::ObjCForwardProtocol:
1669   case Decl::ObjCCategory:
1670   case Decl::ObjCInterface:
1671     break;
1672 
1673   case Decl::ObjCProtocol:
1674     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1675     break;
1676 
1677   case Decl::ObjCCategoryImpl:
1678     // Categories have properties but don't support synthesize so we
1679     // can ignore them here.
1680     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1681     break;
1682 
1683   case Decl::ObjCImplementation: {
1684     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1685     EmitObjCPropertyImplementations(OMD);
1686     Runtime->GenerateClass(OMD);
1687     break;
1688   }
1689   case Decl::ObjCMethod: {
1690     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1691     // If this is not a prototype, emit the body.
1692     if (OMD->getBody())
1693       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1694     break;
1695   }
1696   case Decl::ObjCCompatibleAlias:
1697     // compatibility-alias is a directive and has no code gen.
1698     break;
1699 
1700   case Decl::LinkageSpec:
1701     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1702     break;
1703 
1704   case Decl::FileScopeAsm: {
1705     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1706     std::string AsmString(AD->getAsmString()->getStrData(),
1707                           AD->getAsmString()->getByteLength());
1708 
1709     const std::string &S = getModule().getModuleInlineAsm();
1710     if (S.empty())
1711       getModule().setModuleInlineAsm(AsmString);
1712     else
1713       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1714     break;
1715   }
1716 
1717   default:
1718     // Make sure we handled everything we should, every other kind is a
1719     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1720     // function. Need to recode Decl::Kind to do that easily.
1721     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1722   }
1723 }
1724