1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Support/ErrorHandling.h"
35 using namespace clang;
36 using namespace CodeGen;
37 
38 
39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
40                              llvm::Module &M, const llvm::TargetData &TD,
41                              Diagnostic &diags)
42   : BlockModule(C, M, TD, Types, *this), Context(C),
43     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
44     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
45     VtableInfo(*this), Runtime(0),
46     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
47     VMContext(M.getContext()) {
48 
49   if (!Features.ObjC1)
50     Runtime = 0;
51   else if (!Features.NeXTRuntime)
52     Runtime = CreateGNUObjCRuntime(*this);
53   else if (Features.ObjCNonFragileABI)
54     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
55   else
56     Runtime = CreateMacObjCRuntime(*this);
57 
58   // If debug info generation is enabled, create the CGDebugInfo object.
59   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
60 }
61 
62 CodeGenModule::~CodeGenModule() {
63   delete Runtime;
64   delete DebugInfo;
65 }
66 
67 void CodeGenModule::Release() {
68   // We need to call this first because it can add deferred declarations.
69   EmitCXXGlobalInitFunc();
70 
71   EmitDeferred();
72   if (Runtime)
73     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
74       AddGlobalCtor(ObjCInitFunction);
75   EmitCtorList(GlobalCtors, "llvm.global_ctors");
76   EmitCtorList(GlobalDtors, "llvm.global_dtors");
77   EmitAnnotations();
78   EmitLLVMUsed();
79 }
80 
81 /// ErrorUnsupported - Print out an error that codegen doesn't support the
82 /// specified stmt yet.
83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
84                                      bool OmitOnError) {
85   if (OmitOnError && getDiags().hasErrorOccurred())
86     return;
87   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
88                                                "cannot compile this %0 yet");
89   std::string Msg = Type;
90   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
91     << Msg << S->getSourceRange();
92 }
93 
94 /// ErrorUnsupported - Print out an error that codegen doesn't support the
95 /// specified decl yet.
96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
97                                      bool OmitOnError) {
98   if (OmitOnError && getDiags().hasErrorOccurred())
99     return;
100   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
101                                                "cannot compile this %0 yet");
102   std::string Msg = Type;
103   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
104 }
105 
106 LangOptions::VisibilityMode
107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
108   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
109     if (VD->getStorageClass() == VarDecl::PrivateExtern)
110       return LangOptions::Hidden;
111 
112   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
113     switch (attr->getVisibility()) {
114     default: assert(0 && "Unknown visibility!");
115     case VisibilityAttr::DefaultVisibility:
116       return LangOptions::Default;
117     case VisibilityAttr::HiddenVisibility:
118       return LangOptions::Hidden;
119     case VisibilityAttr::ProtectedVisibility:
120       return LangOptions::Protected;
121     }
122   }
123 
124   return getLangOptions().getVisibilityMode();
125 }
126 
127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
128                                         const Decl *D) const {
129   // Internal definitions always have default visibility.
130   if (GV->hasLocalLinkage()) {
131     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132     return;
133   }
134 
135   switch (getDeclVisibilityMode(D)) {
136   default: assert(0 && "Unknown visibility!");
137   case LangOptions::Default:
138     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
139   case LangOptions::Hidden:
140     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
141   case LangOptions::Protected:
142     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
143   }
144 }
145 
146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
147   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
148 
149   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
150     return getMangledCXXCtorName(D, GD.getCtorType());
151   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
152     return getMangledCXXDtorName(D, GD.getDtorType());
153 
154   return getMangledName(ND);
155 }
156 
157 /// \brief Retrieves the mangled name for the given declaration.
158 ///
159 /// If the given declaration requires a mangled name, returns an
160 /// const char* containing the mangled name.  Otherwise, returns
161 /// the unmangled name.
162 ///
163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
164   if (!getMangleContext().shouldMangleDeclName(ND)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   getMangleContext().mangleName(ND, Name);
171   Name += '\0';
172   return UniqueMangledName(Name.begin(), Name.end());
173 }
174 
175 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                              const char *NameEnd) {
177   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178 
179   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180 }
181 
182 /// AddGlobalCtor - Add a function to the list that will be called before
183 /// main() runs.
184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185   // FIXME: Type coercion of void()* types.
186   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187 }
188 
189 /// AddGlobalDtor - Add a function to the list that will be called
190 /// when the module is unloaded.
191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192   // FIXME: Type coercion of void()* types.
193   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194 }
195 
196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197   // Ctor function type is void()*.
198   llvm::FunctionType* CtorFTy =
199     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
200                             std::vector<const llvm::Type*>(),
201                             false);
202   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203 
204   // Get the type of a ctor entry, { i32, void ()* }.
205   llvm::StructType* CtorStructTy =
206     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
207                           llvm::PointerType::getUnqual(CtorFTy), NULL);
208 
209   // Construct the constructor and destructor arrays.
210   std::vector<llvm::Constant*> Ctors;
211   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212     std::vector<llvm::Constant*> S;
213     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
214                 I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // Everything located semantically within an anonymous namespace is
248   // always internal.
249   if (FD->isInAnonymousNamespace())
250     return CodeGenModule::GVA_Internal;
251 
252   // "static" functions get internal linkage.
253   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus &&
260       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261     External = CodeGenModule::GVA_TemplateInstantiation;
262 
263   if (!FD->isInlined())
264     return External;
265 
266   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
267     // GNU or C99 inline semantics. Determine whether this symbol should be
268     // externally visible.
269     if (FD->isInlineDefinitionExternallyVisible())
270       return External;
271 
272     // C99 inline semantics, where the symbol is not externally visible.
273     return CodeGenModule::GVA_C99Inline;
274   }
275 
276   // C++0x [temp.explicit]p9:
277   //   [ Note: The intent is that an inline function that is the subject of
278   //   an explicit instantiation declaration will still be implicitly
279   //   instantiated when used so that the body can be considered for
280   //   inlining, but that no out-of-line copy of the inline function would be
281   //   generated in the translation unit. -- end note ]
282   if (FD->getTemplateSpecializationKind()
283                                        == TSK_ExplicitInstantiationDeclaration)
284     return CodeGenModule::GVA_C99Inline;
285 
286   return CodeGenModule::GVA_CXXInline;
287 }
288 
289 /// SetFunctionDefinitionAttributes - Set attributes for a global.
290 ///
291 /// FIXME: This is currently only done for aliases and functions, but not for
292 /// variables (these details are set in EmitGlobalVarDefinition for variables).
293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
294                                                     llvm::GlobalValue *GV) {
295   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
296 
297   if (Linkage == GVA_Internal) {
298     GV->setLinkage(llvm::Function::InternalLinkage);
299   } else if (D->hasAttr<DLLExportAttr>()) {
300     GV->setLinkage(llvm::Function::DLLExportLinkage);
301   } else if (D->hasAttr<WeakAttr>()) {
302     GV->setLinkage(llvm::Function::WeakAnyLinkage);
303   } else if (Linkage == GVA_C99Inline) {
304     // In C99 mode, 'inline' functions are guaranteed to have a strong
305     // definition somewhere else, so we can use available_externally linkage.
306     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
307   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
308     // In C++, the compiler has to emit a definition in every translation unit
309     // that references the function.  We should use linkonce_odr because
310     // a) if all references in this translation unit are optimized away, we
311     // don't need to codegen it.  b) if the function persists, it needs to be
312     // merged with other definitions. c) C++ has the ODR, so we know the
313     // definition is dependable.
314     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
315   } else {
316     assert(Linkage == GVA_StrongExternal);
317     // Otherwise, we have strong external linkage.
318     GV->setLinkage(llvm::Function::ExternalLinkage);
319   }
320 
321   SetCommonAttributes(D, GV);
322 }
323 
324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
325                                               const CGFunctionInfo &Info,
326                                               llvm::Function *F) {
327   unsigned CallingConv;
328   AttributeListType AttributeList;
329   ConstructAttributeList(Info, D, AttributeList, CallingConv);
330   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
331                                           AttributeList.size()));
332   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
333 }
334 
335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
336                                                            llvm::Function *F) {
337   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
338     F->addFnAttr(llvm::Attribute::NoUnwind);
339 
340   if (D->hasAttr<AlwaysInlineAttr>())
341     F->addFnAttr(llvm::Attribute::AlwaysInline);
342 
343   if (D->hasAttr<NoInlineAttr>())
344     F->addFnAttr(llvm::Attribute::NoInline);
345 
346   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
347     F->addFnAttr(llvm::Attribute::StackProtect);
348   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
349     F->addFnAttr(llvm::Attribute::StackProtectReq);
350 
351   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
352     unsigned width = Context.Target.getCharWidth();
353     F->setAlignment(AA->getAlignment() / width);
354     while ((AA = AA->getNext<AlignedAttr>()))
355       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
356   }
357   // C++ ABI requires 2-byte alignment for member functions.
358   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
359     F->setAlignment(2);
360 }
361 
362 void CodeGenModule::SetCommonAttributes(const Decl *D,
363                                         llvm::GlobalValue *GV) {
364   setGlobalVisibility(GV, D);
365 
366   if (D->hasAttr<UsedAttr>())
367     AddUsedGlobal(GV);
368 
369   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
370     GV->setSection(SA->getName());
371 }
372 
373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
374                                                   llvm::Function *F,
375                                                   const CGFunctionInfo &FI) {
376   SetLLVMFunctionAttributes(D, FI, F);
377   SetLLVMFunctionAttributesForDefinition(D, F);
378 
379   F->setLinkage(llvm::Function::InternalLinkage);
380 
381   SetCommonAttributes(D, F);
382 }
383 
384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
385                                           llvm::Function *F,
386                                           bool IsIncompleteFunction) {
387   if (!IsIncompleteFunction)
388     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
389 
390   // Only a few attributes are set on declarations; these may later be
391   // overridden by a definition.
392 
393   if (FD->hasAttr<DLLImportAttr>()) {
394     F->setLinkage(llvm::Function::DLLImportLinkage);
395   } else if (FD->hasAttr<WeakAttr>() ||
396              FD->hasAttr<WeakImportAttr>()) {
397     // "extern_weak" is overloaded in LLVM; we probably should have
398     // separate linkage types for this.
399     F->setLinkage(llvm::Function::ExternalWeakLinkage);
400   } else {
401     F->setLinkage(llvm::Function::ExternalLinkage);
402   }
403 
404   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
405     F->setSection(SA->getName());
406 }
407 
408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
409   assert(!GV->isDeclaration() &&
410          "Only globals with definition can force usage.");
411   LLVMUsed.push_back(GV);
412 }
413 
414 void CodeGenModule::EmitLLVMUsed() {
415   // Don't create llvm.used if there is no need.
416   if (LLVMUsed.empty())
417     return;
418 
419   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
420 
421   // Convert LLVMUsed to what ConstantArray needs.
422   std::vector<llvm::Constant*> UsedArray;
423   UsedArray.resize(LLVMUsed.size());
424   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
425     UsedArray[i] =
426      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
427                                       i8PTy);
428   }
429 
430   if (UsedArray.empty())
431     return;
432   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
433 
434   llvm::GlobalVariable *GV =
435     new llvm::GlobalVariable(getModule(), ATy, false,
436                              llvm::GlobalValue::AppendingLinkage,
437                              llvm::ConstantArray::get(ATy, UsedArray),
438                              "llvm.used");
439 
440   GV->setSection("llvm.metadata");
441 }
442 
443 void CodeGenModule::EmitDeferred() {
444   // Emit code for any potentially referenced deferred decls.  Since a
445   // previously unused static decl may become used during the generation of code
446   // for a static function, iterate until no  changes are made.
447   while (!DeferredDeclsToEmit.empty()) {
448     GlobalDecl D = DeferredDeclsToEmit.back();
449     DeferredDeclsToEmit.pop_back();
450 
451     // The mangled name for the decl must have been emitted in GlobalDeclMap.
452     // Look it up to see if it was defined with a stronger definition (e.g. an
453     // extern inline function with a strong function redefinition).  If so,
454     // just ignore the deferred decl.
455     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
456     assert(CGRef && "Deferred decl wasn't referenced?");
457 
458     if (!CGRef->isDeclaration())
459       continue;
460 
461     // Otherwise, emit the definition and move on to the next one.
462     EmitGlobalDefinition(D);
463   }
464 }
465 
466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
467 /// annotation information for a given GlobalValue.  The annotation struct is
468 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
469 /// GlobalValue being annotated.  The second field is the constant string
470 /// created from the AnnotateAttr's annotation.  The third field is a constant
471 /// string containing the name of the translation unit.  The fourth field is
472 /// the line number in the file of the annotated value declaration.
473 ///
474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
475 ///        appears to.
476 ///
477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
478                                                 const AnnotateAttr *AA,
479                                                 unsigned LineNo) {
480   llvm::Module *M = &getModule();
481 
482   // get [N x i8] constants for the annotation string, and the filename string
483   // which are the 2nd and 3rd elements of the global annotation structure.
484   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
485   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
486                                                   AA->getAnnotation(), true);
487   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
488                                                   M->getModuleIdentifier(),
489                                                   true);
490 
491   // Get the two global values corresponding to the ConstantArrays we just
492   // created to hold the bytes of the strings.
493   llvm::GlobalValue *annoGV =
494     new llvm::GlobalVariable(*M, anno->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, anno,
496                              GV->getName());
497   // translation unit name string, emitted into the llvm.metadata section.
498   llvm::GlobalValue *unitGV =
499     new llvm::GlobalVariable(*M, unit->getType(), false,
500                              llvm::GlobalValue::PrivateLinkage, unit,
501                              ".str");
502 
503   // Create the ConstantStruct for the global annotation.
504   llvm::Constant *Fields[4] = {
505     llvm::ConstantExpr::getBitCast(GV, SBP),
506     llvm::ConstantExpr::getBitCast(annoGV, SBP),
507     llvm::ConstantExpr::getBitCast(unitGV, SBP),
508     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
509   };
510   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
511 }
512 
513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
514   // Never defer when EmitAllDecls is specified or the decl has
515   // attribute used.
516   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
517     return false;
518 
519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
520     // Constructors and destructors should never be deferred.
521     if (FD->hasAttr<ConstructorAttr>() ||
522         FD->hasAttr<DestructorAttr>())
523       return false;
524 
525     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
526 
527     // static, static inline, always_inline, and extern inline functions can
528     // always be deferred.  Normal inline functions can be deferred in C99/C++.
529     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
530         Linkage == GVA_CXXInline)
531       return true;
532     return false;
533   }
534 
535   const VarDecl *VD = cast<VarDecl>(Global);
536   assert(VD->isFileVarDecl() && "Invalid decl");
537 
538   // We never want to defer structs that have non-trivial constructors or
539   // destructors.
540 
541   // FIXME: Handle references.
542   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
543     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
544       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
545         return false;
546     }
547   }
548 
549   // Static data may be deferred, but out-of-line static data members
550   // cannot be.
551   if (VD->isInAnonymousNamespace())
552     return true;
553   if (VD->getLinkage() == VarDecl::InternalLinkage) {
554     // Initializer has side effects?
555     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
556       return false;
557     return !(VD->isStaticDataMember() && VD->isOutOfLine());
558   }
559   return false;
560 }
561 
562 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
563   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
564 
565   // If this is an alias definition (which otherwise looks like a declaration)
566   // emit it now.
567   if (Global->hasAttr<AliasAttr>())
568     return EmitAliasDefinition(Global);
569 
570   // Ignore declarations, they will be emitted on their first use.
571   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
572     // Forward declarations are emitted lazily on first use.
573     if (!FD->isThisDeclarationADefinition())
574       return;
575   } else {
576     const VarDecl *VD = cast<VarDecl>(Global);
577     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
578 
579     if (getLangOptions().CPlusPlus && !VD->getInit()) {
580       // In C++, if this is marked "extern", defer code generation.
581       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
582         return;
583 
584       // If this is a declaration of an explicit specialization of a static
585       // data member in a class template, don't emit it.
586       if (VD->isStaticDataMember() &&
587           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
588         return;
589     }
590 
591     // In C, if this isn't a definition, defer code generation.
592     if (!getLangOptions().CPlusPlus && !VD->getInit())
593       return;
594   }
595 
596   // Defer code generation when possible if this is a static definition, inline
597   // function etc.  These we only want to emit if they are used.
598   if (MayDeferGeneration(Global)) {
599     // If the value has already been used, add it directly to the
600     // DeferredDeclsToEmit list.
601     const char *MangledName = getMangledName(GD);
602     if (GlobalDeclMap.count(MangledName))
603       DeferredDeclsToEmit.push_back(GD);
604     else {
605       // Otherwise, remember that we saw a deferred decl with this name.  The
606       // first use of the mangled name will cause it to move into
607       // DeferredDeclsToEmit.
608       DeferredDecls[MangledName] = GD;
609     }
610     return;
611   }
612 
613   // Otherwise emit the definition.
614   EmitGlobalDefinition(GD);
615 }
616 
617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
618   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
619 
620   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
621                                  Context.getSourceManager(),
622                                  "Generating code for declaration");
623 
624   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
625     getVtableInfo().MaybeEmitVtable(GD);
626     if (MD->isVirtual() && MD->isOutOfLine() &&
627         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
628       if (isa<CXXDestructorDecl>(D)) {
629         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
630                            GD.getDtorType());
631         BuildThunksForVirtual(CanonGD);
632       } else {
633         BuildThunksForVirtual(MD->getCanonicalDecl());
634       }
635     }
636   }
637 
638   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
639     EmitCXXConstructor(CD, GD.getCtorType());
640   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
641     EmitCXXDestructor(DD, GD.getDtorType());
642   else if (isa<FunctionDecl>(D))
643     EmitGlobalFunctionDefinition(GD);
644   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
645     EmitGlobalVarDefinition(VD);
646   else {
647     assert(0 && "Invalid argument to EmitGlobalDefinition()");
648   }
649 }
650 
651 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
652 /// module, create and return an llvm Function with the specified type. If there
653 /// is something in the module with the specified name, return it potentially
654 /// bitcasted to the right type.
655 ///
656 /// If D is non-null, it specifies a decl that correspond to this.  This is used
657 /// to set the attributes on the function when it is first created.
658 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
659                                                        const llvm::Type *Ty,
660                                                        GlobalDecl D) {
661   // Lookup the entry, lazily creating it if necessary.
662   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
663   if (Entry) {
664     if (Entry->getType()->getElementType() == Ty)
665       return Entry;
666 
667     // Make sure the result is of the correct type.
668     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
669     return llvm::ConstantExpr::getBitCast(Entry, PTy);
670   }
671 
672   // This function doesn't have a complete type (for example, the return
673   // type is an incomplete struct). Use a fake type instead, and make
674   // sure not to try to set attributes.
675   bool IsIncompleteFunction = false;
676   if (!isa<llvm::FunctionType>(Ty)) {
677     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
678                                  std::vector<const llvm::Type*>(), false);
679     IsIncompleteFunction = true;
680   }
681   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
682                                              llvm::Function::ExternalLinkage,
683                                              "", &getModule());
684   F->setName(MangledName);
685   if (D.getDecl())
686     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
687                           IsIncompleteFunction);
688   Entry = F;
689 
690   // This is the first use or definition of a mangled name.  If there is a
691   // deferred decl with this name, remember that we need to emit it at the end
692   // of the file.
693   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
694     DeferredDecls.find(MangledName);
695   if (DDI != DeferredDecls.end()) {
696     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
697     // list, and remove it from DeferredDecls (since we don't need it anymore).
698     DeferredDeclsToEmit.push_back(DDI->second);
699     DeferredDecls.erase(DDI);
700   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
701     // If this the first reference to a C++ inline function in a class, queue up
702     // the deferred function body for emission.  These are not seen as
703     // top-level declarations.
704     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
705       DeferredDeclsToEmit.push_back(D);
706     // A called constructor which has no definition or declaration need be
707     // synthesized.
708     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
709       if (CD->isImplicit())
710         DeferredDeclsToEmit.push_back(D);
711     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
712       if (DD->isImplicit())
713         DeferredDeclsToEmit.push_back(D);
714     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
715       if (MD->isCopyAssignment() && MD->isImplicit())
716         DeferredDeclsToEmit.push_back(D);
717     }
718   }
719 
720   return F;
721 }
722 
723 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
724 /// non-null, then this function will use the specified type if it has to
725 /// create it (this occurs when we see a definition of the function).
726 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
727                                                  const llvm::Type *Ty) {
728   // If there was no specific requested type, just convert it now.
729   if (!Ty)
730     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
731   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
732 }
733 
734 /// CreateRuntimeFunction - Create a new runtime function with the specified
735 /// type and name.
736 llvm::Constant *
737 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
738                                      const char *Name) {
739   // Convert Name to be a uniqued string from the IdentifierInfo table.
740   Name = getContext().Idents.get(Name).getNameStart();
741   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
742 }
743 
744 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
745 /// create and return an llvm GlobalVariable with the specified type.  If there
746 /// is something in the module with the specified name, return it potentially
747 /// bitcasted to the right type.
748 ///
749 /// If D is non-null, it specifies a decl that correspond to this.  This is used
750 /// to set the attributes on the global when it is first created.
751 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
752                                                      const llvm::PointerType*Ty,
753                                                      const VarDecl *D) {
754   // Lookup the entry, lazily creating it if necessary.
755   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
756   if (Entry) {
757     if (Entry->getType() == Ty)
758       return Entry;
759 
760     // Make sure the result is of the correct type.
761     return llvm::ConstantExpr::getBitCast(Entry, Ty);
762   }
763 
764   // This is the first use or definition of a mangled name.  If there is a
765   // deferred decl with this name, remember that we need to emit it at the end
766   // of the file.
767   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
768     DeferredDecls.find(MangledName);
769   if (DDI != DeferredDecls.end()) {
770     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
771     // list, and remove it from DeferredDecls (since we don't need it anymore).
772     DeferredDeclsToEmit.push_back(DDI->second);
773     DeferredDecls.erase(DDI);
774   }
775 
776   llvm::GlobalVariable *GV =
777     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
778                              llvm::GlobalValue::ExternalLinkage,
779                              0, "", 0,
780                              false, Ty->getAddressSpace());
781   GV->setName(MangledName);
782 
783   // Handle things which are present even on external declarations.
784   if (D) {
785     // FIXME: This code is overly simple and should be merged with other global
786     // handling.
787     GV->setConstant(D->getType().isConstant(Context));
788 
789     // FIXME: Merge with other attribute handling code.
790     if (D->getStorageClass() == VarDecl::PrivateExtern)
791       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
792 
793     if (D->hasAttr<WeakAttr>() ||
794         D->hasAttr<WeakImportAttr>())
795       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
796 
797     GV->setThreadLocal(D->isThreadSpecified());
798   }
799 
800   return Entry = GV;
801 }
802 
803 
804 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
805 /// given global variable.  If Ty is non-null and if the global doesn't exist,
806 /// then it will be greated with the specified type instead of whatever the
807 /// normal requested type would be.
808 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
809                                                   const llvm::Type *Ty) {
810   assert(D->hasGlobalStorage() && "Not a global variable");
811   QualType ASTTy = D->getType();
812   if (Ty == 0)
813     Ty = getTypes().ConvertTypeForMem(ASTTy);
814 
815   const llvm::PointerType *PTy =
816     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
817   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
818 }
819 
820 /// CreateRuntimeVariable - Create a new runtime global variable with the
821 /// specified type and name.
822 llvm::Constant *
823 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
824                                      const char *Name) {
825   // Convert Name to be a uniqued string from the IdentifierInfo table.
826   Name = getContext().Idents.get(Name).getNameStart();
827   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
828 }
829 
830 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
831   assert(!D->getInit() && "Cannot emit definite definitions here!");
832 
833   if (MayDeferGeneration(D)) {
834     // If we have not seen a reference to this variable yet, place it
835     // into the deferred declarations table to be emitted if needed
836     // later.
837     const char *MangledName = getMangledName(D);
838     if (GlobalDeclMap.count(MangledName) == 0) {
839       DeferredDecls[MangledName] = D;
840       return;
841     }
842   }
843 
844   // The tentative definition is the only definition.
845   EmitGlobalVarDefinition(D);
846 }
847 
848 static CodeGenModule::GVALinkage
849 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
850   // Everything located semantically within an anonymous namespace is
851   // always internal.
852   if (VD->isInAnonymousNamespace())
853     return CodeGenModule::GVA_Internal;
854 
855   // Handle linkage for static data members.
856   if (VD->isStaticDataMember()) {
857     switch (VD->getTemplateSpecializationKind()) {
858     case TSK_Undeclared:
859     case TSK_ExplicitSpecialization:
860     case TSK_ExplicitInstantiationDefinition:
861       return CodeGenModule::GVA_StrongExternal;
862 
863     case TSK_ExplicitInstantiationDeclaration:
864       llvm::llvm_unreachable("Variable should not be instantiated");
865       // Fall through to treat this like any other instantiation.
866 
867     case TSK_ImplicitInstantiation:
868       return CodeGenModule::GVA_TemplateInstantiation;
869     }
870   }
871 
872   if (VD->getLinkage() == VarDecl::InternalLinkage)
873     return CodeGenModule::GVA_Internal;
874 
875   return CodeGenModule::GVA_StrongExternal;
876 }
877 
878 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
879   llvm::Constant *Init = 0;
880   QualType ASTTy = D->getType();
881 
882   if (D->getInit() == 0) {
883     // This is a tentative definition; tentative definitions are
884     // implicitly initialized with { 0 }.
885     //
886     // Note that tentative definitions are only emitted at the end of
887     // a translation unit, so they should never have incomplete
888     // type. In addition, EmitTentativeDefinition makes sure that we
889     // never attempt to emit a tentative definition if a real one
890     // exists. A use may still exists, however, so we still may need
891     // to do a RAUW.
892     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
893     Init = EmitNullConstant(D->getType());
894   } else {
895     Init = EmitConstantExpr(D->getInit(), D->getType());
896 
897     if (!Init) {
898       QualType T = D->getInit()->getType();
899       if (getLangOptions().CPlusPlus) {
900         CXXGlobalInits.push_back(D);
901         Init = EmitNullConstant(T);
902       } else {
903         ErrorUnsupported(D, "static initializer");
904         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
905       }
906     }
907   }
908 
909   const llvm::Type* InitType = Init->getType();
910   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
911 
912   // Strip off a bitcast if we got one back.
913   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
914     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
915            // all zero index gep.
916            CE->getOpcode() == llvm::Instruction::GetElementPtr);
917     Entry = CE->getOperand(0);
918   }
919 
920   // Entry is now either a Function or GlobalVariable.
921   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
922 
923   // We have a definition after a declaration with the wrong type.
924   // We must make a new GlobalVariable* and update everything that used OldGV
925   // (a declaration or tentative definition) with the new GlobalVariable*
926   // (which will be a definition).
927   //
928   // This happens if there is a prototype for a global (e.g.
929   // "extern int x[];") and then a definition of a different type (e.g.
930   // "int x[10];"). This also happens when an initializer has a different type
931   // from the type of the global (this happens with unions).
932   if (GV == 0 ||
933       GV->getType()->getElementType() != InitType ||
934       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
935 
936     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
937     GlobalDeclMap.erase(getMangledName(D));
938 
939     // Make a new global with the correct type, this is now guaranteed to work.
940     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
941     GV->takeName(cast<llvm::GlobalValue>(Entry));
942 
943     // Replace all uses of the old global with the new global
944     llvm::Constant *NewPtrForOldDecl =
945         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
946     Entry->replaceAllUsesWith(NewPtrForOldDecl);
947 
948     // Erase the old global, since it is no longer used.
949     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
950   }
951 
952   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
953     SourceManager &SM = Context.getSourceManager();
954     AddAnnotation(EmitAnnotateAttr(GV, AA,
955                               SM.getInstantiationLineNumber(D->getLocation())));
956   }
957 
958   GV->setInitializer(Init);
959 
960   // If it is safe to mark the global 'constant', do so now.
961   GV->setConstant(false);
962   if (D->getType().isConstant(Context)) {
963     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
964     // members, it cannot be declared "LLVM const".
965     GV->setConstant(true);
966   }
967 
968   GV->setAlignment(getContext().getDeclAlignInBytes(D));
969 
970   // Set the llvm linkage type as appropriate.
971   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
972   if (Linkage == GVA_Internal)
973     GV->setLinkage(llvm::Function::InternalLinkage);
974   else if (D->hasAttr<DLLImportAttr>())
975     GV->setLinkage(llvm::Function::DLLImportLinkage);
976   else if (D->hasAttr<DLLExportAttr>())
977     GV->setLinkage(llvm::Function::DLLExportLinkage);
978   else if (D->hasAttr<WeakAttr>()) {
979     if (GV->isConstant())
980       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
981     else
982       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
983   } else if (Linkage == GVA_TemplateInstantiation)
984     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
985   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
986            !D->hasExternalStorage() && !D->getInit() &&
987            !D->getAttr<SectionAttr>()) {
988     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
989     // common vars aren't constant even if declared const.
990     GV->setConstant(false);
991   } else
992     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
993 
994   SetCommonAttributes(D, GV);
995 
996   // Emit global variable debug information.
997   if (CGDebugInfo *DI = getDebugInfo()) {
998     DI->setLocation(D->getLocation());
999     DI->EmitGlobalVariable(GV, D);
1000   }
1001 }
1002 
1003 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1004 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1005 /// existing call uses of the old function in the module, this adjusts them to
1006 /// call the new function directly.
1007 ///
1008 /// This is not just a cleanup: the always_inline pass requires direct calls to
1009 /// functions to be able to inline them.  If there is a bitcast in the way, it
1010 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1011 /// run at -O0.
1012 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1013                                                       llvm::Function *NewFn) {
1014   // If we're redefining a global as a function, don't transform it.
1015   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1016   if (OldFn == 0) return;
1017 
1018   const llvm::Type *NewRetTy = NewFn->getReturnType();
1019   llvm::SmallVector<llvm::Value*, 4> ArgList;
1020 
1021   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1022        UI != E; ) {
1023     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1024     unsigned OpNo = UI.getOperandNo();
1025     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1026     if (!CI || OpNo != 0) continue;
1027 
1028     // If the return types don't match exactly, and if the call isn't dead, then
1029     // we can't transform this call.
1030     if (CI->getType() != NewRetTy && !CI->use_empty())
1031       continue;
1032 
1033     // If the function was passed too few arguments, don't transform.  If extra
1034     // arguments were passed, we silently drop them.  If any of the types
1035     // mismatch, we don't transform.
1036     unsigned ArgNo = 0;
1037     bool DontTransform = false;
1038     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1039          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1040       if (CI->getNumOperands()-1 == ArgNo ||
1041           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1042         DontTransform = true;
1043         break;
1044       }
1045     }
1046     if (DontTransform)
1047       continue;
1048 
1049     // Okay, we can transform this.  Create the new call instruction and copy
1050     // over the required information.
1051     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1052     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1053                                                      ArgList.end(), "", CI);
1054     ArgList.clear();
1055     if (!NewCall->getType()->isVoidTy())
1056       NewCall->takeName(CI);
1057     NewCall->setAttributes(CI->getAttributes());
1058     NewCall->setCallingConv(CI->getCallingConv());
1059 
1060     // Finally, remove the old call, replacing any uses with the new one.
1061     if (!CI->use_empty())
1062       CI->replaceAllUsesWith(NewCall);
1063 
1064     // Copy any custom metadata attached with CI.
1065     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1066     TheMetadata.copyMD(CI, NewCall);
1067 
1068     CI->eraseFromParent();
1069   }
1070 }
1071 
1072 
1073 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1074   const llvm::FunctionType *Ty;
1075   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1076 
1077   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1078     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1079 
1080     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1081   } else {
1082     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1083 
1084     // As a special case, make sure that definitions of K&R function
1085     // "type foo()" aren't declared as varargs (which forces the backend
1086     // to do unnecessary work).
1087     if (D->getType()->isFunctionNoProtoType()) {
1088       assert(Ty->isVarArg() && "Didn't lower type as expected");
1089       // Due to stret, the lowered function could have arguments.
1090       // Just create the same type as was lowered by ConvertType
1091       // but strip off the varargs bit.
1092       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1093       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1094     }
1095   }
1096 
1097   // Get or create the prototype for the function.
1098   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1099 
1100   // Strip off a bitcast if we got one back.
1101   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1102     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1103     Entry = CE->getOperand(0);
1104   }
1105 
1106 
1107   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1108     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1109 
1110     // If the types mismatch then we have to rewrite the definition.
1111     assert(OldFn->isDeclaration() &&
1112            "Shouldn't replace non-declaration");
1113 
1114     // F is the Function* for the one with the wrong type, we must make a new
1115     // Function* and update everything that used F (a declaration) with the new
1116     // Function* (which will be a definition).
1117     //
1118     // This happens if there is a prototype for a function
1119     // (e.g. "int f()") and then a definition of a different type
1120     // (e.g. "int f(int x)").  Start by making a new function of the
1121     // correct type, RAUW, then steal the name.
1122     GlobalDeclMap.erase(getMangledName(D));
1123     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1124     NewFn->takeName(OldFn);
1125 
1126     // If this is an implementation of a function without a prototype, try to
1127     // replace any existing uses of the function (which may be calls) with uses
1128     // of the new function
1129     if (D->getType()->isFunctionNoProtoType()) {
1130       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1131       OldFn->removeDeadConstantUsers();
1132     }
1133 
1134     // Replace uses of F with the Function we will endow with a body.
1135     if (!Entry->use_empty()) {
1136       llvm::Constant *NewPtrForOldDecl =
1137         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1138       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1139     }
1140 
1141     // Ok, delete the old function now, which is dead.
1142     OldFn->eraseFromParent();
1143 
1144     Entry = NewFn;
1145   }
1146 
1147   llvm::Function *Fn = cast<llvm::Function>(Entry);
1148 
1149   CodeGenFunction(*this).GenerateCode(D, Fn);
1150 
1151   SetFunctionDefinitionAttributes(D, Fn);
1152   SetLLVMFunctionAttributesForDefinition(D, Fn);
1153 
1154   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1155     AddGlobalCtor(Fn, CA->getPriority());
1156   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1157     AddGlobalDtor(Fn, DA->getPriority());
1158 }
1159 
1160 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1161   const AliasAttr *AA = D->getAttr<AliasAttr>();
1162   assert(AA && "Not an alias?");
1163 
1164   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1165 
1166   // Unique the name through the identifier table.
1167   const char *AliaseeName = AA->getAliasee().c_str();
1168   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1169 
1170   // Create a reference to the named value.  This ensures that it is emitted
1171   // if a deferred decl.
1172   llvm::Constant *Aliasee;
1173   if (isa<llvm::FunctionType>(DeclTy))
1174     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1175   else
1176     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1177                                     llvm::PointerType::getUnqual(DeclTy), 0);
1178 
1179   // Create the new alias itself, but don't set a name yet.
1180   llvm::GlobalValue *GA =
1181     new llvm::GlobalAlias(Aliasee->getType(),
1182                           llvm::Function::ExternalLinkage,
1183                           "", Aliasee, &getModule());
1184 
1185   // See if there is already something with the alias' name in the module.
1186   const char *MangledName = getMangledName(D);
1187   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1188 
1189   if (Entry && !Entry->isDeclaration()) {
1190     // If there is a definition in the module, then it wins over the alias.
1191     // This is dubious, but allow it to be safe.  Just ignore the alias.
1192     GA->eraseFromParent();
1193     return;
1194   }
1195 
1196   if (Entry) {
1197     // If there is a declaration in the module, then we had an extern followed
1198     // by the alias, as in:
1199     //   extern int test6();
1200     //   ...
1201     //   int test6() __attribute__((alias("test7")));
1202     //
1203     // Remove it and replace uses of it with the alias.
1204 
1205     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1206                                                           Entry->getType()));
1207     Entry->eraseFromParent();
1208   }
1209 
1210   // Now we know that there is no conflict, set the name.
1211   Entry = GA;
1212   GA->setName(MangledName);
1213 
1214   // Set attributes which are particular to an alias; this is a
1215   // specialization of the attributes which may be set on a global
1216   // variable/function.
1217   if (D->hasAttr<DLLExportAttr>()) {
1218     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1219       // The dllexport attribute is ignored for undefined symbols.
1220       if (FD->getBody())
1221         GA->setLinkage(llvm::Function::DLLExportLinkage);
1222     } else {
1223       GA->setLinkage(llvm::Function::DLLExportLinkage);
1224     }
1225   } else if (D->hasAttr<WeakAttr>() ||
1226              D->hasAttr<WeakImportAttr>()) {
1227     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1228   }
1229 
1230   SetCommonAttributes(D, GA);
1231 }
1232 
1233 /// getBuiltinLibFunction - Given a builtin id for a function like
1234 /// "__builtin_fabsf", return a Function* for "fabsf".
1235 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1236                                                   unsigned BuiltinID) {
1237   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1238           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1239          "isn't a lib fn");
1240 
1241   // Get the name, skip over the __builtin_ prefix (if necessary).
1242   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1243   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1244     Name += 10;
1245 
1246   // Get the type for the builtin.
1247   ASTContext::GetBuiltinTypeError Error;
1248   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1249   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1250 
1251   const llvm::FunctionType *Ty =
1252     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1253 
1254   // Unique the name through the identifier table.
1255   Name = getContext().Idents.get(Name).getNameStart();
1256   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1257 }
1258 
1259 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1260                                             unsigned NumTys) {
1261   return llvm::Intrinsic::getDeclaration(&getModule(),
1262                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1263 }
1264 
1265 llvm::Function *CodeGenModule::getMemCpyFn() {
1266   if (MemCpyFn) return MemCpyFn;
1267   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1268   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1269 }
1270 
1271 llvm::Function *CodeGenModule::getMemMoveFn() {
1272   if (MemMoveFn) return MemMoveFn;
1273   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1274   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1275 }
1276 
1277 llvm::Function *CodeGenModule::getMemSetFn() {
1278   if (MemSetFn) return MemSetFn;
1279   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1280   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1281 }
1282 
1283 static llvm::StringMapEntry<llvm::Constant*> &
1284 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1285                          const StringLiteral *Literal,
1286                          bool TargetIsLSB,
1287                          bool &IsUTF16,
1288                          unsigned &StringLength) {
1289   unsigned NumBytes = Literal->getByteLength();
1290 
1291   // Check for simple case.
1292   if (!Literal->containsNonAsciiOrNull()) {
1293     StringLength = NumBytes;
1294     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1295                                                 StringLength));
1296   }
1297 
1298   // Otherwise, convert the UTF8 literals into a byte string.
1299   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1300   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1301   UTF16 *ToPtr = &ToBuf[0];
1302 
1303   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1304                                                &ToPtr, ToPtr + NumBytes,
1305                                                strictConversion);
1306 
1307   // Check for conversion failure.
1308   if (Result != conversionOK) {
1309     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1310     // this duplicate code.
1311     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1312     StringLength = NumBytes;
1313     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1314                                                 StringLength));
1315   }
1316 
1317   // ConvertUTF8toUTF16 returns the length in ToPtr.
1318   StringLength = ToPtr - &ToBuf[0];
1319 
1320   // Render the UTF-16 string into a byte array and convert to the target byte
1321   // order.
1322   //
1323   // FIXME: This isn't something we should need to do here.
1324   llvm::SmallString<128> AsBytes;
1325   AsBytes.reserve(StringLength * 2);
1326   for (unsigned i = 0; i != StringLength; ++i) {
1327     unsigned short Val = ToBuf[i];
1328     if (TargetIsLSB) {
1329       AsBytes.push_back(Val & 0xFF);
1330       AsBytes.push_back(Val >> 8);
1331     } else {
1332       AsBytes.push_back(Val >> 8);
1333       AsBytes.push_back(Val & 0xFF);
1334     }
1335   }
1336   // Append one extra null character, the second is automatically added by our
1337   // caller.
1338   AsBytes.push_back(0);
1339 
1340   IsUTF16 = true;
1341   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1342 }
1343 
1344 llvm::Constant *
1345 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1346   unsigned StringLength = 0;
1347   bool isUTF16 = false;
1348   llvm::StringMapEntry<llvm::Constant*> &Entry =
1349     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1350                              getTargetData().isLittleEndian(),
1351                              isUTF16, StringLength);
1352 
1353   if (llvm::Constant *C = Entry.getValue())
1354     return C;
1355 
1356   llvm::Constant *Zero =
1357       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1358   llvm::Constant *Zeros[] = { Zero, Zero };
1359 
1360   // If we don't already have it, get __CFConstantStringClassReference.
1361   if (!CFConstantStringClassRef) {
1362     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1363     Ty = llvm::ArrayType::get(Ty, 0);
1364     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1365                                            "__CFConstantStringClassReference");
1366     // Decay array -> ptr
1367     CFConstantStringClassRef =
1368       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1369   }
1370 
1371   QualType CFTy = getContext().getCFConstantStringType();
1372 
1373   const llvm::StructType *STy =
1374     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1375 
1376   std::vector<llvm::Constant*> Fields(4);
1377 
1378   // Class pointer.
1379   Fields[0] = CFConstantStringClassRef;
1380 
1381   // Flags.
1382   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1383   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1384     llvm::ConstantInt::get(Ty, 0x07C8);
1385 
1386   // String pointer.
1387   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1388 
1389   const char *Sect = 0;
1390   llvm::GlobalValue::LinkageTypes Linkage;
1391   bool isConstant;
1392   if (isUTF16) {
1393     Sect = getContext().Target.getUnicodeStringSection();
1394     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1395     Linkage = llvm::GlobalValue::InternalLinkage;
1396     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1397     // does make plain ascii ones writable.
1398     isConstant = true;
1399   } else {
1400     Linkage = llvm::GlobalValue::PrivateLinkage;
1401     isConstant = !Features.WritableStrings;
1402   }
1403 
1404   llvm::GlobalVariable *GV =
1405     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1406                              ".str");
1407   if (Sect)
1408     GV->setSection(Sect);
1409   if (isUTF16) {
1410     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1411     GV->setAlignment(Align);
1412   }
1413   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1414 
1415   // String length.
1416   Ty = getTypes().ConvertType(getContext().LongTy);
1417   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1418 
1419   // The struct.
1420   C = llvm::ConstantStruct::get(STy, Fields);
1421   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1422                                 llvm::GlobalVariable::PrivateLinkage, C,
1423                                 "_unnamed_cfstring_");
1424   if (const char *Sect = getContext().Target.getCFStringSection())
1425     GV->setSection(Sect);
1426   Entry.setValue(GV);
1427 
1428   return GV;
1429 }
1430 
1431 /// GetStringForStringLiteral - Return the appropriate bytes for a
1432 /// string literal, properly padded to match the literal type.
1433 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1434   const char *StrData = E->getStrData();
1435   unsigned Len = E->getByteLength();
1436 
1437   const ConstantArrayType *CAT =
1438     getContext().getAsConstantArrayType(E->getType());
1439   assert(CAT && "String isn't pointer or array!");
1440 
1441   // Resize the string to the right size.
1442   std::string Str(StrData, StrData+Len);
1443   uint64_t RealLen = CAT->getSize().getZExtValue();
1444 
1445   if (E->isWide())
1446     RealLen *= getContext().Target.getWCharWidth()/8;
1447 
1448   Str.resize(RealLen, '\0');
1449 
1450   return Str;
1451 }
1452 
1453 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1454 /// constant array for the given string literal.
1455 llvm::Constant *
1456 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1457   // FIXME: This can be more efficient.
1458   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1459   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1460   if (S->isWide()) {
1461     llvm::Type *DestTy =
1462         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1463     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1464   }
1465   return C;
1466 }
1467 
1468 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1469 /// array for the given ObjCEncodeExpr node.
1470 llvm::Constant *
1471 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1472   std::string Str;
1473   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1474 
1475   return GetAddrOfConstantCString(Str);
1476 }
1477 
1478 
1479 /// GenerateWritableString -- Creates storage for a string literal.
1480 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1481                                              bool constant,
1482                                              CodeGenModule &CGM,
1483                                              const char *GlobalName) {
1484   // Create Constant for this string literal. Don't add a '\0'.
1485   llvm::Constant *C =
1486       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1487 
1488   // Create a global variable for this string
1489   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1490                                   llvm::GlobalValue::PrivateLinkage,
1491                                   C, GlobalName);
1492 }
1493 
1494 /// GetAddrOfConstantString - Returns a pointer to a character array
1495 /// containing the literal. This contents are exactly that of the
1496 /// given string, i.e. it will not be null terminated automatically;
1497 /// see GetAddrOfConstantCString. Note that whether the result is
1498 /// actually a pointer to an LLVM constant depends on
1499 /// Feature.WriteableStrings.
1500 ///
1501 /// The result has pointer to array type.
1502 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1503                                                        const char *GlobalName) {
1504   bool IsConstant = !Features.WritableStrings;
1505 
1506   // Get the default prefix if a name wasn't specified.
1507   if (!GlobalName)
1508     GlobalName = ".str";
1509 
1510   // Don't share any string literals if strings aren't constant.
1511   if (!IsConstant)
1512     return GenerateStringLiteral(str, false, *this, GlobalName);
1513 
1514   llvm::StringMapEntry<llvm::Constant *> &Entry =
1515     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1516 
1517   if (Entry.getValue())
1518     return Entry.getValue();
1519 
1520   // Create a global variable for this.
1521   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1522   Entry.setValue(C);
1523   return C;
1524 }
1525 
1526 /// GetAddrOfConstantCString - Returns a pointer to a character
1527 /// array containing the literal and a terminating '\-'
1528 /// character. The result has pointer to array type.
1529 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1530                                                         const char *GlobalName){
1531   return GetAddrOfConstantString(str + '\0', GlobalName);
1532 }
1533 
1534 /// EmitObjCPropertyImplementations - Emit information for synthesized
1535 /// properties for an implementation.
1536 void CodeGenModule::EmitObjCPropertyImplementations(const
1537                                                     ObjCImplementationDecl *D) {
1538   for (ObjCImplementationDecl::propimpl_iterator
1539          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1540     ObjCPropertyImplDecl *PID = *i;
1541 
1542     // Dynamic is just for type-checking.
1543     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1544       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1545 
1546       // Determine which methods need to be implemented, some may have
1547       // been overridden. Note that ::isSynthesized is not the method
1548       // we want, that just indicates if the decl came from a
1549       // property. What we want to know is if the method is defined in
1550       // this implementation.
1551       if (!D->getInstanceMethod(PD->getGetterName()))
1552         CodeGenFunction(*this).GenerateObjCGetter(
1553                                  const_cast<ObjCImplementationDecl *>(D), PID);
1554       if (!PD->isReadOnly() &&
1555           !D->getInstanceMethod(PD->getSetterName()))
1556         CodeGenFunction(*this).GenerateObjCSetter(
1557                                  const_cast<ObjCImplementationDecl *>(D), PID);
1558     }
1559   }
1560 }
1561 
1562 /// EmitNamespace - Emit all declarations in a namespace.
1563 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1564   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1565        I != E; ++I)
1566     EmitTopLevelDecl(*I);
1567 }
1568 
1569 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1570 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1571   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1572       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1573     ErrorUnsupported(LSD, "linkage spec");
1574     return;
1575   }
1576 
1577   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1578        I != E; ++I)
1579     EmitTopLevelDecl(*I);
1580 }
1581 
1582 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1583 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1584   // If an error has occurred, stop code generation, but continue
1585   // parsing and semantic analysis (to ensure all warnings and errors
1586   // are emitted).
1587   if (Diags.hasErrorOccurred())
1588     return;
1589 
1590   // Ignore dependent declarations.
1591   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1592     return;
1593 
1594   switch (D->getKind()) {
1595   case Decl::CXXConversion:
1596   case Decl::CXXMethod:
1597   case Decl::Function:
1598     // Skip function templates
1599     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1600       return;
1601 
1602     EmitGlobal(cast<FunctionDecl>(D));
1603     break;
1604 
1605   case Decl::Var:
1606     EmitGlobal(cast<VarDecl>(D));
1607     break;
1608 
1609   // C++ Decls
1610   case Decl::Namespace:
1611     EmitNamespace(cast<NamespaceDecl>(D));
1612     break;
1613     // No code generation needed.
1614   case Decl::UsingShadow:
1615   case Decl::Using:
1616   case Decl::UsingDirective:
1617   case Decl::ClassTemplate:
1618   case Decl::FunctionTemplate:
1619   case Decl::NamespaceAlias:
1620     break;
1621   case Decl::CXXConstructor:
1622     // Skip function templates
1623     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1624       return;
1625 
1626     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1627     break;
1628   case Decl::CXXDestructor:
1629     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1630     break;
1631 
1632   case Decl::StaticAssert:
1633     // Nothing to do.
1634     break;
1635 
1636   // Objective-C Decls
1637 
1638   // Forward declarations, no (immediate) code generation.
1639   case Decl::ObjCClass:
1640   case Decl::ObjCForwardProtocol:
1641   case Decl::ObjCCategory:
1642   case Decl::ObjCInterface:
1643     break;
1644 
1645   case Decl::ObjCProtocol:
1646     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1647     break;
1648 
1649   case Decl::ObjCCategoryImpl:
1650     // Categories have properties but don't support synthesize so we
1651     // can ignore them here.
1652     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1653     break;
1654 
1655   case Decl::ObjCImplementation: {
1656     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1657     EmitObjCPropertyImplementations(OMD);
1658     Runtime->GenerateClass(OMD);
1659     break;
1660   }
1661   case Decl::ObjCMethod: {
1662     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1663     // If this is not a prototype, emit the body.
1664     if (OMD->getBody())
1665       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1666     break;
1667   }
1668   case Decl::ObjCCompatibleAlias:
1669     // compatibility-alias is a directive and has no code gen.
1670     break;
1671 
1672   case Decl::LinkageSpec:
1673     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1674     break;
1675 
1676   case Decl::FileScopeAsm: {
1677     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1678     std::string AsmString(AD->getAsmString()->getStrData(),
1679                           AD->getAsmString()->getByteLength());
1680 
1681     const std::string &S = getModule().getModuleInlineAsm();
1682     if (S.empty())
1683       getModule().setModuleInlineAsm(AsmString);
1684     else
1685       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1686     break;
1687   }
1688 
1689   default:
1690     // Make sure we handled everything we should, every other kind is a
1691     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1692     // function. Need to recode Decl::Kind to do that easily.
1693     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1694   }
1695 }
1696