1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Support/ErrorHandling.h" 35 using namespace clang; 36 using namespace CodeGen; 37 38 39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 40 llvm::Module &M, const llvm::TargetData &TD, 41 Diagnostic &diags) 42 : BlockModule(C, M, TD, Types, *this), Context(C), 43 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 44 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 45 VtableInfo(*this), Runtime(0), 46 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 47 VMContext(M.getContext()) { 48 49 if (!Features.ObjC1) 50 Runtime = 0; 51 else if (!Features.NeXTRuntime) 52 Runtime = CreateGNUObjCRuntime(*this); 53 else if (Features.ObjCNonFragileABI) 54 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 55 else 56 Runtime = CreateMacObjCRuntime(*this); 57 58 // If debug info generation is enabled, create the CGDebugInfo object. 59 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 60 } 61 62 CodeGenModule::~CodeGenModule() { 63 delete Runtime; 64 delete DebugInfo; 65 } 66 67 void CodeGenModule::Release() { 68 // We need to call this first because it can add deferred declarations. 69 EmitCXXGlobalInitFunc(); 70 71 EmitDeferred(); 72 if (Runtime) 73 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 74 AddGlobalCtor(ObjCInitFunction); 75 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 76 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 77 EmitAnnotations(); 78 EmitLLVMUsed(); 79 } 80 81 /// ErrorUnsupported - Print out an error that codegen doesn't support the 82 /// specified stmt yet. 83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 84 bool OmitOnError) { 85 if (OmitOnError && getDiags().hasErrorOccurred()) 86 return; 87 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 88 "cannot compile this %0 yet"); 89 std::string Msg = Type; 90 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 91 << Msg << S->getSourceRange(); 92 } 93 94 /// ErrorUnsupported - Print out an error that codegen doesn't support the 95 /// specified decl yet. 96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 97 bool OmitOnError) { 98 if (OmitOnError && getDiags().hasErrorOccurred()) 99 return; 100 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 101 "cannot compile this %0 yet"); 102 std::string Msg = Type; 103 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 104 } 105 106 LangOptions::VisibilityMode 107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 108 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 109 if (VD->getStorageClass() == VarDecl::PrivateExtern) 110 return LangOptions::Hidden; 111 112 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 113 switch (attr->getVisibility()) { 114 default: assert(0 && "Unknown visibility!"); 115 case VisibilityAttr::DefaultVisibility: 116 return LangOptions::Default; 117 case VisibilityAttr::HiddenVisibility: 118 return LangOptions::Hidden; 119 case VisibilityAttr::ProtectedVisibility: 120 return LangOptions::Protected; 121 } 122 } 123 124 return getLangOptions().getVisibilityMode(); 125 } 126 127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 128 const Decl *D) const { 129 // Internal definitions always have default visibility. 130 if (GV->hasLocalLinkage()) { 131 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 return; 133 } 134 135 switch (getDeclVisibilityMode(D)) { 136 default: assert(0 && "Unknown visibility!"); 137 case LangOptions::Default: 138 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 139 case LangOptions::Hidden: 140 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 141 case LangOptions::Protected: 142 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 143 } 144 } 145 146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 147 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 148 149 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 150 return getMangledCXXCtorName(D, GD.getCtorType()); 151 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 152 return getMangledCXXDtorName(D, GD.getDtorType()); 153 154 return getMangledName(ND); 155 } 156 157 /// \brief Retrieves the mangled name for the given declaration. 158 /// 159 /// If the given declaration requires a mangled name, returns an 160 /// const char* containing the mangled name. Otherwise, returns 161 /// the unmangled name. 162 /// 163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 164 if (!getMangleContext().shouldMangleDeclName(ND)) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 llvm::SmallString<256> Name; 170 getMangleContext().mangleName(ND, Name); 171 Name += '\0'; 172 return UniqueMangledName(Name.begin(), Name.end()); 173 } 174 175 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 176 const char *NameEnd) { 177 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 178 179 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 180 } 181 182 /// AddGlobalCtor - Add a function to the list that will be called before 183 /// main() runs. 184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 185 // FIXME: Type coercion of void()* types. 186 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 187 } 188 189 /// AddGlobalDtor - Add a function to the list that will be called 190 /// when the module is unloaded. 191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 192 // FIXME: Type coercion of void()* types. 193 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 194 } 195 196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 197 // Ctor function type is void()*. 198 llvm::FunctionType* CtorFTy = 199 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 200 std::vector<const llvm::Type*>(), 201 false); 202 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 203 204 // Get the type of a ctor entry, { i32, void ()* }. 205 llvm::StructType* CtorStructTy = 206 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 207 llvm::PointerType::getUnqual(CtorFTy), NULL); 208 209 // Construct the constructor and destructor arrays. 210 std::vector<llvm::Constant*> Ctors; 211 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 212 std::vector<llvm::Constant*> S; 213 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 214 I->second, false)); 215 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 llvm::ConstantArray::get(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // Everything located semantically within an anonymous namespace is 248 // always internal. 249 if (FD->isInAnonymousNamespace()) 250 return CodeGenModule::GVA_Internal; 251 252 // "static" functions get internal linkage. 253 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 254 return CodeGenModule::GVA_Internal; 255 256 // The kind of external linkage this function will have, if it is not 257 // inline or static. 258 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 259 if (Context.getLangOptions().CPlusPlus && 260 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 261 External = CodeGenModule::GVA_TemplateInstantiation; 262 263 if (!FD->isInlined()) 264 return External; 265 266 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 267 // GNU or C99 inline semantics. Determine whether this symbol should be 268 // externally visible. 269 if (FD->isInlineDefinitionExternallyVisible()) 270 return External; 271 272 // C99 inline semantics, where the symbol is not externally visible. 273 return CodeGenModule::GVA_C99Inline; 274 } 275 276 // C++0x [temp.explicit]p9: 277 // [ Note: The intent is that an inline function that is the subject of 278 // an explicit instantiation declaration will still be implicitly 279 // instantiated when used so that the body can be considered for 280 // inlining, but that no out-of-line copy of the inline function would be 281 // generated in the translation unit. -- end note ] 282 if (FD->getTemplateSpecializationKind() 283 == TSK_ExplicitInstantiationDeclaration) 284 return CodeGenModule::GVA_C99Inline; 285 286 return CodeGenModule::GVA_CXXInline; 287 } 288 289 /// SetFunctionDefinitionAttributes - Set attributes for a global. 290 /// 291 /// FIXME: This is currently only done for aliases and functions, but not for 292 /// variables (these details are set in EmitGlobalVarDefinition for variables). 293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 294 llvm::GlobalValue *GV) { 295 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 296 297 if (Linkage == GVA_Internal) { 298 GV->setLinkage(llvm::Function::InternalLinkage); 299 } else if (D->hasAttr<DLLExportAttr>()) { 300 GV->setLinkage(llvm::Function::DLLExportLinkage); 301 } else if (D->hasAttr<WeakAttr>()) { 302 GV->setLinkage(llvm::Function::WeakAnyLinkage); 303 } else if (Linkage == GVA_C99Inline) { 304 // In C99 mode, 'inline' functions are guaranteed to have a strong 305 // definition somewhere else, so we can use available_externally linkage. 306 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 307 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 308 // In C++, the compiler has to emit a definition in every translation unit 309 // that references the function. We should use linkonce_odr because 310 // a) if all references in this translation unit are optimized away, we 311 // don't need to codegen it. b) if the function persists, it needs to be 312 // merged with other definitions. c) C++ has the ODR, so we know the 313 // definition is dependable. 314 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 315 } else { 316 assert(Linkage == GVA_StrongExternal); 317 // Otherwise, we have strong external linkage. 318 GV->setLinkage(llvm::Function::ExternalLinkage); 319 } 320 321 SetCommonAttributes(D, GV); 322 } 323 324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 325 const CGFunctionInfo &Info, 326 llvm::Function *F) { 327 unsigned CallingConv; 328 AttributeListType AttributeList; 329 ConstructAttributeList(Info, D, AttributeList, CallingConv); 330 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 331 AttributeList.size())); 332 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 333 } 334 335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 336 llvm::Function *F) { 337 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 338 F->addFnAttr(llvm::Attribute::NoUnwind); 339 340 if (D->hasAttr<AlwaysInlineAttr>()) 341 F->addFnAttr(llvm::Attribute::AlwaysInline); 342 343 if (D->hasAttr<NoInlineAttr>()) 344 F->addFnAttr(llvm::Attribute::NoInline); 345 346 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 347 F->addFnAttr(llvm::Attribute::StackProtect); 348 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 349 F->addFnAttr(llvm::Attribute::StackProtectReq); 350 351 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 352 unsigned width = Context.Target.getCharWidth(); 353 F->setAlignment(AA->getAlignment() / width); 354 while ((AA = AA->getNext<AlignedAttr>())) 355 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 356 } 357 // C++ ABI requires 2-byte alignment for member functions. 358 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 359 F->setAlignment(2); 360 } 361 362 void CodeGenModule::SetCommonAttributes(const Decl *D, 363 llvm::GlobalValue *GV) { 364 setGlobalVisibility(GV, D); 365 366 if (D->hasAttr<UsedAttr>()) 367 AddUsedGlobal(GV); 368 369 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 370 GV->setSection(SA->getName()); 371 } 372 373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 374 llvm::Function *F, 375 const CGFunctionInfo &FI) { 376 SetLLVMFunctionAttributes(D, FI, F); 377 SetLLVMFunctionAttributesForDefinition(D, F); 378 379 F->setLinkage(llvm::Function::InternalLinkage); 380 381 SetCommonAttributes(D, F); 382 } 383 384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 385 llvm::Function *F, 386 bool IsIncompleteFunction) { 387 if (!IsIncompleteFunction) 388 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 389 390 // Only a few attributes are set on declarations; these may later be 391 // overridden by a definition. 392 393 if (FD->hasAttr<DLLImportAttr>()) { 394 F->setLinkage(llvm::Function::DLLImportLinkage); 395 } else if (FD->hasAttr<WeakAttr>() || 396 FD->hasAttr<WeakImportAttr>()) { 397 // "extern_weak" is overloaded in LLVM; we probably should have 398 // separate linkage types for this. 399 F->setLinkage(llvm::Function::ExternalWeakLinkage); 400 } else { 401 F->setLinkage(llvm::Function::ExternalLinkage); 402 } 403 404 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 405 F->setSection(SA->getName()); 406 } 407 408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 409 assert(!GV->isDeclaration() && 410 "Only globals with definition can force usage."); 411 LLVMUsed.push_back(GV); 412 } 413 414 void CodeGenModule::EmitLLVMUsed() { 415 // Don't create llvm.used if there is no need. 416 if (LLVMUsed.empty()) 417 return; 418 419 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 420 421 // Convert LLVMUsed to what ConstantArray needs. 422 std::vector<llvm::Constant*> UsedArray; 423 UsedArray.resize(LLVMUsed.size()); 424 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 425 UsedArray[i] = 426 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 427 i8PTy); 428 } 429 430 if (UsedArray.empty()) 431 return; 432 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 433 434 llvm::GlobalVariable *GV = 435 new llvm::GlobalVariable(getModule(), ATy, false, 436 llvm::GlobalValue::AppendingLinkage, 437 llvm::ConstantArray::get(ATy, UsedArray), 438 "llvm.used"); 439 440 GV->setSection("llvm.metadata"); 441 } 442 443 void CodeGenModule::EmitDeferred() { 444 // Emit code for any potentially referenced deferred decls. Since a 445 // previously unused static decl may become used during the generation of code 446 // for a static function, iterate until no changes are made. 447 while (!DeferredDeclsToEmit.empty()) { 448 GlobalDecl D = DeferredDeclsToEmit.back(); 449 DeferredDeclsToEmit.pop_back(); 450 451 // The mangled name for the decl must have been emitted in GlobalDeclMap. 452 // Look it up to see if it was defined with a stronger definition (e.g. an 453 // extern inline function with a strong function redefinition). If so, 454 // just ignore the deferred decl. 455 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 456 assert(CGRef && "Deferred decl wasn't referenced?"); 457 458 if (!CGRef->isDeclaration()) 459 continue; 460 461 // Otherwise, emit the definition and move on to the next one. 462 EmitGlobalDefinition(D); 463 } 464 } 465 466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 467 /// annotation information for a given GlobalValue. The annotation struct is 468 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 469 /// GlobalValue being annotated. The second field is the constant string 470 /// created from the AnnotateAttr's annotation. The third field is a constant 471 /// string containing the name of the translation unit. The fourth field is 472 /// the line number in the file of the annotated value declaration. 473 /// 474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 475 /// appears to. 476 /// 477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 478 const AnnotateAttr *AA, 479 unsigned LineNo) { 480 llvm::Module *M = &getModule(); 481 482 // get [N x i8] constants for the annotation string, and the filename string 483 // which are the 2nd and 3rd elements of the global annotation structure. 484 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 485 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 486 AA->getAnnotation(), true); 487 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 488 M->getModuleIdentifier(), 489 true); 490 491 // Get the two global values corresponding to the ConstantArrays we just 492 // created to hold the bytes of the strings. 493 llvm::GlobalValue *annoGV = 494 new llvm::GlobalVariable(*M, anno->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, anno, 496 GV->getName()); 497 // translation unit name string, emitted into the llvm.metadata section. 498 llvm::GlobalValue *unitGV = 499 new llvm::GlobalVariable(*M, unit->getType(), false, 500 llvm::GlobalValue::PrivateLinkage, unit, 501 ".str"); 502 503 // Create the ConstantStruct for the global annotation. 504 llvm::Constant *Fields[4] = { 505 llvm::ConstantExpr::getBitCast(GV, SBP), 506 llvm::ConstantExpr::getBitCast(annoGV, SBP), 507 llvm::ConstantExpr::getBitCast(unitGV, SBP), 508 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 509 }; 510 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 511 } 512 513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 514 // Never defer when EmitAllDecls is specified or the decl has 515 // attribute used. 516 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 517 return false; 518 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 520 // Constructors and destructors should never be deferred. 521 if (FD->hasAttr<ConstructorAttr>() || 522 FD->hasAttr<DestructorAttr>()) 523 return false; 524 525 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 526 527 // static, static inline, always_inline, and extern inline functions can 528 // always be deferred. Normal inline functions can be deferred in C99/C++. 529 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 530 Linkage == GVA_CXXInline) 531 return true; 532 return false; 533 } 534 535 const VarDecl *VD = cast<VarDecl>(Global); 536 assert(VD->isFileVarDecl() && "Invalid decl"); 537 538 // We never want to defer structs that have non-trivial constructors or 539 // destructors. 540 541 // FIXME: Handle references. 542 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 543 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 544 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 545 return false; 546 } 547 } 548 549 // Static data may be deferred, but out-of-line static data members 550 // cannot be. 551 if (VD->isInAnonymousNamespace()) 552 return true; 553 if (VD->getLinkage() == VarDecl::InternalLinkage) { 554 // Initializer has side effects? 555 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 556 return false; 557 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 558 } 559 return false; 560 } 561 562 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 563 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 564 565 // If this is an alias definition (which otherwise looks like a declaration) 566 // emit it now. 567 if (Global->hasAttr<AliasAttr>()) 568 return EmitAliasDefinition(Global); 569 570 // Ignore declarations, they will be emitted on their first use. 571 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 572 // Forward declarations are emitted lazily on first use. 573 if (!FD->isThisDeclarationADefinition()) 574 return; 575 } else { 576 const VarDecl *VD = cast<VarDecl>(Global); 577 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 578 579 if (getLangOptions().CPlusPlus && !VD->getInit()) { 580 // In C++, if this is marked "extern", defer code generation. 581 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 582 return; 583 584 // If this is a declaration of an explicit specialization of a static 585 // data member in a class template, don't emit it. 586 if (VD->isStaticDataMember() && 587 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 588 return; 589 } 590 591 // In C, if this isn't a definition, defer code generation. 592 if (!getLangOptions().CPlusPlus && !VD->getInit()) 593 return; 594 } 595 596 // Defer code generation when possible if this is a static definition, inline 597 // function etc. These we only want to emit if they are used. 598 if (MayDeferGeneration(Global)) { 599 // If the value has already been used, add it directly to the 600 // DeferredDeclsToEmit list. 601 const char *MangledName = getMangledName(GD); 602 if (GlobalDeclMap.count(MangledName)) 603 DeferredDeclsToEmit.push_back(GD); 604 else { 605 // Otherwise, remember that we saw a deferred decl with this name. The 606 // first use of the mangled name will cause it to move into 607 // DeferredDeclsToEmit. 608 DeferredDecls[MangledName] = GD; 609 } 610 return; 611 } 612 613 // Otherwise emit the definition. 614 EmitGlobalDefinition(GD); 615 } 616 617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 618 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 619 620 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 621 Context.getSourceManager(), 622 "Generating code for declaration"); 623 624 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 625 getVtableInfo().MaybeEmitVtable(GD); 626 if (MD->isVirtual() && MD->isOutOfLine() && 627 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 628 if (isa<CXXDestructorDecl>(D)) { 629 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 630 GD.getDtorType()); 631 BuildThunksForVirtual(CanonGD); 632 } else { 633 BuildThunksForVirtual(MD->getCanonicalDecl()); 634 } 635 } 636 } 637 638 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 639 EmitCXXConstructor(CD, GD.getCtorType()); 640 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 641 EmitCXXDestructor(DD, GD.getDtorType()); 642 else if (isa<FunctionDecl>(D)) 643 EmitGlobalFunctionDefinition(GD); 644 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 645 EmitGlobalVarDefinition(VD); 646 else { 647 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 648 } 649 } 650 651 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 652 /// module, create and return an llvm Function with the specified type. If there 653 /// is something in the module with the specified name, return it potentially 654 /// bitcasted to the right type. 655 /// 656 /// If D is non-null, it specifies a decl that correspond to this. This is used 657 /// to set the attributes on the function when it is first created. 658 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 659 const llvm::Type *Ty, 660 GlobalDecl D) { 661 // Lookup the entry, lazily creating it if necessary. 662 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 663 if (Entry) { 664 if (Entry->getType()->getElementType() == Ty) 665 return Entry; 666 667 // Make sure the result is of the correct type. 668 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 669 return llvm::ConstantExpr::getBitCast(Entry, PTy); 670 } 671 672 // This function doesn't have a complete type (for example, the return 673 // type is an incomplete struct). Use a fake type instead, and make 674 // sure not to try to set attributes. 675 bool IsIncompleteFunction = false; 676 if (!isa<llvm::FunctionType>(Ty)) { 677 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 678 std::vector<const llvm::Type*>(), false); 679 IsIncompleteFunction = true; 680 } 681 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 682 llvm::Function::ExternalLinkage, 683 "", &getModule()); 684 F->setName(MangledName); 685 if (D.getDecl()) 686 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 687 IsIncompleteFunction); 688 Entry = F; 689 690 // This is the first use or definition of a mangled name. If there is a 691 // deferred decl with this name, remember that we need to emit it at the end 692 // of the file. 693 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 694 DeferredDecls.find(MangledName); 695 if (DDI != DeferredDecls.end()) { 696 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 697 // list, and remove it from DeferredDecls (since we don't need it anymore). 698 DeferredDeclsToEmit.push_back(DDI->second); 699 DeferredDecls.erase(DDI); 700 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 701 // If this the first reference to a C++ inline function in a class, queue up 702 // the deferred function body for emission. These are not seen as 703 // top-level declarations. 704 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 705 DeferredDeclsToEmit.push_back(D); 706 // A called constructor which has no definition or declaration need be 707 // synthesized. 708 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 709 if (CD->isImplicit()) 710 DeferredDeclsToEmit.push_back(D); 711 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 712 if (DD->isImplicit()) 713 DeferredDeclsToEmit.push_back(D); 714 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 715 if (MD->isCopyAssignment() && MD->isImplicit()) 716 DeferredDeclsToEmit.push_back(D); 717 } 718 } 719 720 return F; 721 } 722 723 /// GetAddrOfFunction - Return the address of the given function. If Ty is 724 /// non-null, then this function will use the specified type if it has to 725 /// create it (this occurs when we see a definition of the function). 726 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 727 const llvm::Type *Ty) { 728 // If there was no specific requested type, just convert it now. 729 if (!Ty) 730 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 731 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 732 } 733 734 /// CreateRuntimeFunction - Create a new runtime function with the specified 735 /// type and name. 736 llvm::Constant * 737 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 738 const char *Name) { 739 // Convert Name to be a uniqued string from the IdentifierInfo table. 740 Name = getContext().Idents.get(Name).getNameStart(); 741 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 742 } 743 744 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 745 /// create and return an llvm GlobalVariable with the specified type. If there 746 /// is something in the module with the specified name, return it potentially 747 /// bitcasted to the right type. 748 /// 749 /// If D is non-null, it specifies a decl that correspond to this. This is used 750 /// to set the attributes on the global when it is first created. 751 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 752 const llvm::PointerType*Ty, 753 const VarDecl *D) { 754 // Lookup the entry, lazily creating it if necessary. 755 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 756 if (Entry) { 757 if (Entry->getType() == Ty) 758 return Entry; 759 760 // Make sure the result is of the correct type. 761 return llvm::ConstantExpr::getBitCast(Entry, Ty); 762 } 763 764 // This is the first use or definition of a mangled name. If there is a 765 // deferred decl with this name, remember that we need to emit it at the end 766 // of the file. 767 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 768 DeferredDecls.find(MangledName); 769 if (DDI != DeferredDecls.end()) { 770 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 771 // list, and remove it from DeferredDecls (since we don't need it anymore). 772 DeferredDeclsToEmit.push_back(DDI->second); 773 DeferredDecls.erase(DDI); 774 } 775 776 llvm::GlobalVariable *GV = 777 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 778 llvm::GlobalValue::ExternalLinkage, 779 0, "", 0, 780 false, Ty->getAddressSpace()); 781 GV->setName(MangledName); 782 783 // Handle things which are present even on external declarations. 784 if (D) { 785 // FIXME: This code is overly simple and should be merged with other global 786 // handling. 787 GV->setConstant(D->getType().isConstant(Context)); 788 789 // FIXME: Merge with other attribute handling code. 790 if (D->getStorageClass() == VarDecl::PrivateExtern) 791 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 792 793 if (D->hasAttr<WeakAttr>() || 794 D->hasAttr<WeakImportAttr>()) 795 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 796 797 GV->setThreadLocal(D->isThreadSpecified()); 798 } 799 800 return Entry = GV; 801 } 802 803 804 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 805 /// given global variable. If Ty is non-null and if the global doesn't exist, 806 /// then it will be greated with the specified type instead of whatever the 807 /// normal requested type would be. 808 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 809 const llvm::Type *Ty) { 810 assert(D->hasGlobalStorage() && "Not a global variable"); 811 QualType ASTTy = D->getType(); 812 if (Ty == 0) 813 Ty = getTypes().ConvertTypeForMem(ASTTy); 814 815 const llvm::PointerType *PTy = 816 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 817 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 818 } 819 820 /// CreateRuntimeVariable - Create a new runtime global variable with the 821 /// specified type and name. 822 llvm::Constant * 823 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 824 const char *Name) { 825 // Convert Name to be a uniqued string from the IdentifierInfo table. 826 Name = getContext().Idents.get(Name).getNameStart(); 827 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 828 } 829 830 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 831 assert(!D->getInit() && "Cannot emit definite definitions here!"); 832 833 if (MayDeferGeneration(D)) { 834 // If we have not seen a reference to this variable yet, place it 835 // into the deferred declarations table to be emitted if needed 836 // later. 837 const char *MangledName = getMangledName(D); 838 if (GlobalDeclMap.count(MangledName) == 0) { 839 DeferredDecls[MangledName] = D; 840 return; 841 } 842 } 843 844 // The tentative definition is the only definition. 845 EmitGlobalVarDefinition(D); 846 } 847 848 static CodeGenModule::GVALinkage 849 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 850 // Everything located semantically within an anonymous namespace is 851 // always internal. 852 if (VD->isInAnonymousNamespace()) 853 return CodeGenModule::GVA_Internal; 854 855 // Handle linkage for static data members. 856 if (VD->isStaticDataMember()) { 857 switch (VD->getTemplateSpecializationKind()) { 858 case TSK_Undeclared: 859 case TSK_ExplicitSpecialization: 860 case TSK_ExplicitInstantiationDefinition: 861 return CodeGenModule::GVA_StrongExternal; 862 863 case TSK_ExplicitInstantiationDeclaration: 864 llvm::llvm_unreachable("Variable should not be instantiated"); 865 // Fall through to treat this like any other instantiation. 866 867 case TSK_ImplicitInstantiation: 868 return CodeGenModule::GVA_TemplateInstantiation; 869 } 870 } 871 872 if (VD->getLinkage() == VarDecl::InternalLinkage) 873 return CodeGenModule::GVA_Internal; 874 875 return CodeGenModule::GVA_StrongExternal; 876 } 877 878 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 879 llvm::Constant *Init = 0; 880 QualType ASTTy = D->getType(); 881 882 if (D->getInit() == 0) { 883 // This is a tentative definition; tentative definitions are 884 // implicitly initialized with { 0 }. 885 // 886 // Note that tentative definitions are only emitted at the end of 887 // a translation unit, so they should never have incomplete 888 // type. In addition, EmitTentativeDefinition makes sure that we 889 // never attempt to emit a tentative definition if a real one 890 // exists. A use may still exists, however, so we still may need 891 // to do a RAUW. 892 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 893 Init = EmitNullConstant(D->getType()); 894 } else { 895 Init = EmitConstantExpr(D->getInit(), D->getType()); 896 897 if (!Init) { 898 QualType T = D->getInit()->getType(); 899 if (getLangOptions().CPlusPlus) { 900 CXXGlobalInits.push_back(D); 901 Init = EmitNullConstant(T); 902 } else { 903 ErrorUnsupported(D, "static initializer"); 904 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 905 } 906 } 907 } 908 909 const llvm::Type* InitType = Init->getType(); 910 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 911 912 // Strip off a bitcast if we got one back. 913 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 914 assert(CE->getOpcode() == llvm::Instruction::BitCast || 915 // all zero index gep. 916 CE->getOpcode() == llvm::Instruction::GetElementPtr); 917 Entry = CE->getOperand(0); 918 } 919 920 // Entry is now either a Function or GlobalVariable. 921 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 922 923 // We have a definition after a declaration with the wrong type. 924 // We must make a new GlobalVariable* and update everything that used OldGV 925 // (a declaration or tentative definition) with the new GlobalVariable* 926 // (which will be a definition). 927 // 928 // This happens if there is a prototype for a global (e.g. 929 // "extern int x[];") and then a definition of a different type (e.g. 930 // "int x[10];"). This also happens when an initializer has a different type 931 // from the type of the global (this happens with unions). 932 if (GV == 0 || 933 GV->getType()->getElementType() != InitType || 934 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 935 936 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 937 GlobalDeclMap.erase(getMangledName(D)); 938 939 // Make a new global with the correct type, this is now guaranteed to work. 940 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 941 GV->takeName(cast<llvm::GlobalValue>(Entry)); 942 943 // Replace all uses of the old global with the new global 944 llvm::Constant *NewPtrForOldDecl = 945 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 946 Entry->replaceAllUsesWith(NewPtrForOldDecl); 947 948 // Erase the old global, since it is no longer used. 949 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 950 } 951 952 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 953 SourceManager &SM = Context.getSourceManager(); 954 AddAnnotation(EmitAnnotateAttr(GV, AA, 955 SM.getInstantiationLineNumber(D->getLocation()))); 956 } 957 958 GV->setInitializer(Init); 959 960 // If it is safe to mark the global 'constant', do so now. 961 GV->setConstant(false); 962 if (D->getType().isConstant(Context)) { 963 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 964 // members, it cannot be declared "LLVM const". 965 GV->setConstant(true); 966 } 967 968 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 969 970 // Set the llvm linkage type as appropriate. 971 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 972 if (Linkage == GVA_Internal) 973 GV->setLinkage(llvm::Function::InternalLinkage); 974 else if (D->hasAttr<DLLImportAttr>()) 975 GV->setLinkage(llvm::Function::DLLImportLinkage); 976 else if (D->hasAttr<DLLExportAttr>()) 977 GV->setLinkage(llvm::Function::DLLExportLinkage); 978 else if (D->hasAttr<WeakAttr>()) { 979 if (GV->isConstant()) 980 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 981 else 982 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 983 } else if (Linkage == GVA_TemplateInstantiation) 984 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 985 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 986 !D->hasExternalStorage() && !D->getInit() && 987 !D->getAttr<SectionAttr>()) { 988 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 989 // common vars aren't constant even if declared const. 990 GV->setConstant(false); 991 } else 992 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 993 994 SetCommonAttributes(D, GV); 995 996 // Emit global variable debug information. 997 if (CGDebugInfo *DI = getDebugInfo()) { 998 DI->setLocation(D->getLocation()); 999 DI->EmitGlobalVariable(GV, D); 1000 } 1001 } 1002 1003 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1004 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1005 /// existing call uses of the old function in the module, this adjusts them to 1006 /// call the new function directly. 1007 /// 1008 /// This is not just a cleanup: the always_inline pass requires direct calls to 1009 /// functions to be able to inline them. If there is a bitcast in the way, it 1010 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1011 /// run at -O0. 1012 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1013 llvm::Function *NewFn) { 1014 // If we're redefining a global as a function, don't transform it. 1015 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1016 if (OldFn == 0) return; 1017 1018 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1019 llvm::SmallVector<llvm::Value*, 4> ArgList; 1020 1021 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1022 UI != E; ) { 1023 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1024 unsigned OpNo = UI.getOperandNo(); 1025 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1026 if (!CI || OpNo != 0) continue; 1027 1028 // If the return types don't match exactly, and if the call isn't dead, then 1029 // we can't transform this call. 1030 if (CI->getType() != NewRetTy && !CI->use_empty()) 1031 continue; 1032 1033 // If the function was passed too few arguments, don't transform. If extra 1034 // arguments were passed, we silently drop them. If any of the types 1035 // mismatch, we don't transform. 1036 unsigned ArgNo = 0; 1037 bool DontTransform = false; 1038 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1039 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1040 if (CI->getNumOperands()-1 == ArgNo || 1041 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1042 DontTransform = true; 1043 break; 1044 } 1045 } 1046 if (DontTransform) 1047 continue; 1048 1049 // Okay, we can transform this. Create the new call instruction and copy 1050 // over the required information. 1051 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1052 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1053 ArgList.end(), "", CI); 1054 ArgList.clear(); 1055 if (!NewCall->getType()->isVoidTy()) 1056 NewCall->takeName(CI); 1057 NewCall->setAttributes(CI->getAttributes()); 1058 NewCall->setCallingConv(CI->getCallingConv()); 1059 1060 // Finally, remove the old call, replacing any uses with the new one. 1061 if (!CI->use_empty()) 1062 CI->replaceAllUsesWith(NewCall); 1063 1064 // Copy any custom metadata attached with CI. 1065 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1066 TheMetadata.copyMD(CI, NewCall); 1067 1068 CI->eraseFromParent(); 1069 } 1070 } 1071 1072 1073 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1074 const llvm::FunctionType *Ty; 1075 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1076 1077 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1078 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1079 1080 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1081 } else { 1082 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1083 1084 // As a special case, make sure that definitions of K&R function 1085 // "type foo()" aren't declared as varargs (which forces the backend 1086 // to do unnecessary work). 1087 if (D->getType()->isFunctionNoProtoType()) { 1088 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1089 // Due to stret, the lowered function could have arguments. 1090 // Just create the same type as was lowered by ConvertType 1091 // but strip off the varargs bit. 1092 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1093 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1094 } 1095 } 1096 1097 // Get or create the prototype for the function. 1098 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1099 1100 // Strip off a bitcast if we got one back. 1101 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1102 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1103 Entry = CE->getOperand(0); 1104 } 1105 1106 1107 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1108 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1109 1110 // If the types mismatch then we have to rewrite the definition. 1111 assert(OldFn->isDeclaration() && 1112 "Shouldn't replace non-declaration"); 1113 1114 // F is the Function* for the one with the wrong type, we must make a new 1115 // Function* and update everything that used F (a declaration) with the new 1116 // Function* (which will be a definition). 1117 // 1118 // This happens if there is a prototype for a function 1119 // (e.g. "int f()") and then a definition of a different type 1120 // (e.g. "int f(int x)"). Start by making a new function of the 1121 // correct type, RAUW, then steal the name. 1122 GlobalDeclMap.erase(getMangledName(D)); 1123 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1124 NewFn->takeName(OldFn); 1125 1126 // If this is an implementation of a function without a prototype, try to 1127 // replace any existing uses of the function (which may be calls) with uses 1128 // of the new function 1129 if (D->getType()->isFunctionNoProtoType()) { 1130 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1131 OldFn->removeDeadConstantUsers(); 1132 } 1133 1134 // Replace uses of F with the Function we will endow with a body. 1135 if (!Entry->use_empty()) { 1136 llvm::Constant *NewPtrForOldDecl = 1137 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1138 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1139 } 1140 1141 // Ok, delete the old function now, which is dead. 1142 OldFn->eraseFromParent(); 1143 1144 Entry = NewFn; 1145 } 1146 1147 llvm::Function *Fn = cast<llvm::Function>(Entry); 1148 1149 CodeGenFunction(*this).GenerateCode(D, Fn); 1150 1151 SetFunctionDefinitionAttributes(D, Fn); 1152 SetLLVMFunctionAttributesForDefinition(D, Fn); 1153 1154 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1155 AddGlobalCtor(Fn, CA->getPriority()); 1156 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1157 AddGlobalDtor(Fn, DA->getPriority()); 1158 } 1159 1160 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1161 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1162 assert(AA && "Not an alias?"); 1163 1164 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1165 1166 // Unique the name through the identifier table. 1167 const char *AliaseeName = AA->getAliasee().c_str(); 1168 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1169 1170 // Create a reference to the named value. This ensures that it is emitted 1171 // if a deferred decl. 1172 llvm::Constant *Aliasee; 1173 if (isa<llvm::FunctionType>(DeclTy)) 1174 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1175 else 1176 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1177 llvm::PointerType::getUnqual(DeclTy), 0); 1178 1179 // Create the new alias itself, but don't set a name yet. 1180 llvm::GlobalValue *GA = 1181 new llvm::GlobalAlias(Aliasee->getType(), 1182 llvm::Function::ExternalLinkage, 1183 "", Aliasee, &getModule()); 1184 1185 // See if there is already something with the alias' name in the module. 1186 const char *MangledName = getMangledName(D); 1187 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1188 1189 if (Entry && !Entry->isDeclaration()) { 1190 // If there is a definition in the module, then it wins over the alias. 1191 // This is dubious, but allow it to be safe. Just ignore the alias. 1192 GA->eraseFromParent(); 1193 return; 1194 } 1195 1196 if (Entry) { 1197 // If there is a declaration in the module, then we had an extern followed 1198 // by the alias, as in: 1199 // extern int test6(); 1200 // ... 1201 // int test6() __attribute__((alias("test7"))); 1202 // 1203 // Remove it and replace uses of it with the alias. 1204 1205 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1206 Entry->getType())); 1207 Entry->eraseFromParent(); 1208 } 1209 1210 // Now we know that there is no conflict, set the name. 1211 Entry = GA; 1212 GA->setName(MangledName); 1213 1214 // Set attributes which are particular to an alias; this is a 1215 // specialization of the attributes which may be set on a global 1216 // variable/function. 1217 if (D->hasAttr<DLLExportAttr>()) { 1218 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1219 // The dllexport attribute is ignored for undefined symbols. 1220 if (FD->getBody()) 1221 GA->setLinkage(llvm::Function::DLLExportLinkage); 1222 } else { 1223 GA->setLinkage(llvm::Function::DLLExportLinkage); 1224 } 1225 } else if (D->hasAttr<WeakAttr>() || 1226 D->hasAttr<WeakImportAttr>()) { 1227 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1228 } 1229 1230 SetCommonAttributes(D, GA); 1231 } 1232 1233 /// getBuiltinLibFunction - Given a builtin id for a function like 1234 /// "__builtin_fabsf", return a Function* for "fabsf". 1235 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1236 unsigned BuiltinID) { 1237 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1238 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1239 "isn't a lib fn"); 1240 1241 // Get the name, skip over the __builtin_ prefix (if necessary). 1242 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1243 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1244 Name += 10; 1245 1246 // Get the type for the builtin. 1247 ASTContext::GetBuiltinTypeError Error; 1248 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1249 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1250 1251 const llvm::FunctionType *Ty = 1252 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1253 1254 // Unique the name through the identifier table. 1255 Name = getContext().Idents.get(Name).getNameStart(); 1256 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1257 } 1258 1259 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1260 unsigned NumTys) { 1261 return llvm::Intrinsic::getDeclaration(&getModule(), 1262 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1263 } 1264 1265 llvm::Function *CodeGenModule::getMemCpyFn() { 1266 if (MemCpyFn) return MemCpyFn; 1267 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1268 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1269 } 1270 1271 llvm::Function *CodeGenModule::getMemMoveFn() { 1272 if (MemMoveFn) return MemMoveFn; 1273 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1274 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1275 } 1276 1277 llvm::Function *CodeGenModule::getMemSetFn() { 1278 if (MemSetFn) return MemSetFn; 1279 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1280 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1281 } 1282 1283 static llvm::StringMapEntry<llvm::Constant*> & 1284 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1285 const StringLiteral *Literal, 1286 bool TargetIsLSB, 1287 bool &IsUTF16, 1288 unsigned &StringLength) { 1289 unsigned NumBytes = Literal->getByteLength(); 1290 1291 // Check for simple case. 1292 if (!Literal->containsNonAsciiOrNull()) { 1293 StringLength = NumBytes; 1294 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1295 StringLength)); 1296 } 1297 1298 // Otherwise, convert the UTF8 literals into a byte string. 1299 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1300 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1301 UTF16 *ToPtr = &ToBuf[0]; 1302 1303 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1304 &ToPtr, ToPtr + NumBytes, 1305 strictConversion); 1306 1307 // Check for conversion failure. 1308 if (Result != conversionOK) { 1309 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1310 // this duplicate code. 1311 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1312 StringLength = NumBytes; 1313 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1314 StringLength)); 1315 } 1316 1317 // ConvertUTF8toUTF16 returns the length in ToPtr. 1318 StringLength = ToPtr - &ToBuf[0]; 1319 1320 // Render the UTF-16 string into a byte array and convert to the target byte 1321 // order. 1322 // 1323 // FIXME: This isn't something we should need to do here. 1324 llvm::SmallString<128> AsBytes; 1325 AsBytes.reserve(StringLength * 2); 1326 for (unsigned i = 0; i != StringLength; ++i) { 1327 unsigned short Val = ToBuf[i]; 1328 if (TargetIsLSB) { 1329 AsBytes.push_back(Val & 0xFF); 1330 AsBytes.push_back(Val >> 8); 1331 } else { 1332 AsBytes.push_back(Val >> 8); 1333 AsBytes.push_back(Val & 0xFF); 1334 } 1335 } 1336 // Append one extra null character, the second is automatically added by our 1337 // caller. 1338 AsBytes.push_back(0); 1339 1340 IsUTF16 = true; 1341 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1342 } 1343 1344 llvm::Constant * 1345 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1346 unsigned StringLength = 0; 1347 bool isUTF16 = false; 1348 llvm::StringMapEntry<llvm::Constant*> &Entry = 1349 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1350 getTargetData().isLittleEndian(), 1351 isUTF16, StringLength); 1352 1353 if (llvm::Constant *C = Entry.getValue()) 1354 return C; 1355 1356 llvm::Constant *Zero = 1357 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1358 llvm::Constant *Zeros[] = { Zero, Zero }; 1359 1360 // If we don't already have it, get __CFConstantStringClassReference. 1361 if (!CFConstantStringClassRef) { 1362 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1363 Ty = llvm::ArrayType::get(Ty, 0); 1364 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1365 "__CFConstantStringClassReference"); 1366 // Decay array -> ptr 1367 CFConstantStringClassRef = 1368 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1369 } 1370 1371 QualType CFTy = getContext().getCFConstantStringType(); 1372 1373 const llvm::StructType *STy = 1374 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1375 1376 std::vector<llvm::Constant*> Fields(4); 1377 1378 // Class pointer. 1379 Fields[0] = CFConstantStringClassRef; 1380 1381 // Flags. 1382 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1383 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1384 llvm::ConstantInt::get(Ty, 0x07C8); 1385 1386 // String pointer. 1387 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1388 1389 const char *Sect = 0; 1390 llvm::GlobalValue::LinkageTypes Linkage; 1391 bool isConstant; 1392 if (isUTF16) { 1393 Sect = getContext().Target.getUnicodeStringSection(); 1394 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1395 Linkage = llvm::GlobalValue::InternalLinkage; 1396 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1397 // does make plain ascii ones writable. 1398 isConstant = true; 1399 } else { 1400 Linkage = llvm::GlobalValue::PrivateLinkage; 1401 isConstant = !Features.WritableStrings; 1402 } 1403 1404 llvm::GlobalVariable *GV = 1405 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1406 ".str"); 1407 if (Sect) 1408 GV->setSection(Sect); 1409 if (isUTF16) { 1410 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1411 GV->setAlignment(Align); 1412 } 1413 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1414 1415 // String length. 1416 Ty = getTypes().ConvertType(getContext().LongTy); 1417 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1418 1419 // The struct. 1420 C = llvm::ConstantStruct::get(STy, Fields); 1421 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1422 llvm::GlobalVariable::PrivateLinkage, C, 1423 "_unnamed_cfstring_"); 1424 if (const char *Sect = getContext().Target.getCFStringSection()) 1425 GV->setSection(Sect); 1426 Entry.setValue(GV); 1427 1428 return GV; 1429 } 1430 1431 /// GetStringForStringLiteral - Return the appropriate bytes for a 1432 /// string literal, properly padded to match the literal type. 1433 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1434 const char *StrData = E->getStrData(); 1435 unsigned Len = E->getByteLength(); 1436 1437 const ConstantArrayType *CAT = 1438 getContext().getAsConstantArrayType(E->getType()); 1439 assert(CAT && "String isn't pointer or array!"); 1440 1441 // Resize the string to the right size. 1442 std::string Str(StrData, StrData+Len); 1443 uint64_t RealLen = CAT->getSize().getZExtValue(); 1444 1445 if (E->isWide()) 1446 RealLen *= getContext().Target.getWCharWidth()/8; 1447 1448 Str.resize(RealLen, '\0'); 1449 1450 return Str; 1451 } 1452 1453 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1454 /// constant array for the given string literal. 1455 llvm::Constant * 1456 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1457 // FIXME: This can be more efficient. 1458 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1459 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1460 if (S->isWide()) { 1461 llvm::Type *DestTy = 1462 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1463 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1464 } 1465 return C; 1466 } 1467 1468 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1469 /// array for the given ObjCEncodeExpr node. 1470 llvm::Constant * 1471 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1472 std::string Str; 1473 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1474 1475 return GetAddrOfConstantCString(Str); 1476 } 1477 1478 1479 /// GenerateWritableString -- Creates storage for a string literal. 1480 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1481 bool constant, 1482 CodeGenModule &CGM, 1483 const char *GlobalName) { 1484 // Create Constant for this string literal. Don't add a '\0'. 1485 llvm::Constant *C = 1486 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1487 1488 // Create a global variable for this string 1489 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1490 llvm::GlobalValue::PrivateLinkage, 1491 C, GlobalName); 1492 } 1493 1494 /// GetAddrOfConstantString - Returns a pointer to a character array 1495 /// containing the literal. This contents are exactly that of the 1496 /// given string, i.e. it will not be null terminated automatically; 1497 /// see GetAddrOfConstantCString. Note that whether the result is 1498 /// actually a pointer to an LLVM constant depends on 1499 /// Feature.WriteableStrings. 1500 /// 1501 /// The result has pointer to array type. 1502 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1503 const char *GlobalName) { 1504 bool IsConstant = !Features.WritableStrings; 1505 1506 // Get the default prefix if a name wasn't specified. 1507 if (!GlobalName) 1508 GlobalName = ".str"; 1509 1510 // Don't share any string literals if strings aren't constant. 1511 if (!IsConstant) 1512 return GenerateStringLiteral(str, false, *this, GlobalName); 1513 1514 llvm::StringMapEntry<llvm::Constant *> &Entry = 1515 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1516 1517 if (Entry.getValue()) 1518 return Entry.getValue(); 1519 1520 // Create a global variable for this. 1521 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1522 Entry.setValue(C); 1523 return C; 1524 } 1525 1526 /// GetAddrOfConstantCString - Returns a pointer to a character 1527 /// array containing the literal and a terminating '\-' 1528 /// character. The result has pointer to array type. 1529 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1530 const char *GlobalName){ 1531 return GetAddrOfConstantString(str + '\0', GlobalName); 1532 } 1533 1534 /// EmitObjCPropertyImplementations - Emit information for synthesized 1535 /// properties for an implementation. 1536 void CodeGenModule::EmitObjCPropertyImplementations(const 1537 ObjCImplementationDecl *D) { 1538 for (ObjCImplementationDecl::propimpl_iterator 1539 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1540 ObjCPropertyImplDecl *PID = *i; 1541 1542 // Dynamic is just for type-checking. 1543 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1544 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1545 1546 // Determine which methods need to be implemented, some may have 1547 // been overridden. Note that ::isSynthesized is not the method 1548 // we want, that just indicates if the decl came from a 1549 // property. What we want to know is if the method is defined in 1550 // this implementation. 1551 if (!D->getInstanceMethod(PD->getGetterName())) 1552 CodeGenFunction(*this).GenerateObjCGetter( 1553 const_cast<ObjCImplementationDecl *>(D), PID); 1554 if (!PD->isReadOnly() && 1555 !D->getInstanceMethod(PD->getSetterName())) 1556 CodeGenFunction(*this).GenerateObjCSetter( 1557 const_cast<ObjCImplementationDecl *>(D), PID); 1558 } 1559 } 1560 } 1561 1562 /// EmitNamespace - Emit all declarations in a namespace. 1563 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1564 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1565 I != E; ++I) 1566 EmitTopLevelDecl(*I); 1567 } 1568 1569 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1570 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1571 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1572 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1573 ErrorUnsupported(LSD, "linkage spec"); 1574 return; 1575 } 1576 1577 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1578 I != E; ++I) 1579 EmitTopLevelDecl(*I); 1580 } 1581 1582 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1583 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1584 // If an error has occurred, stop code generation, but continue 1585 // parsing and semantic analysis (to ensure all warnings and errors 1586 // are emitted). 1587 if (Diags.hasErrorOccurred()) 1588 return; 1589 1590 // Ignore dependent declarations. 1591 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1592 return; 1593 1594 switch (D->getKind()) { 1595 case Decl::CXXConversion: 1596 case Decl::CXXMethod: 1597 case Decl::Function: 1598 // Skip function templates 1599 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1600 return; 1601 1602 EmitGlobal(cast<FunctionDecl>(D)); 1603 break; 1604 1605 case Decl::Var: 1606 EmitGlobal(cast<VarDecl>(D)); 1607 break; 1608 1609 // C++ Decls 1610 case Decl::Namespace: 1611 EmitNamespace(cast<NamespaceDecl>(D)); 1612 break; 1613 // No code generation needed. 1614 case Decl::UsingShadow: 1615 case Decl::Using: 1616 case Decl::UsingDirective: 1617 case Decl::ClassTemplate: 1618 case Decl::FunctionTemplate: 1619 case Decl::NamespaceAlias: 1620 break; 1621 case Decl::CXXConstructor: 1622 // Skip function templates 1623 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1624 return; 1625 1626 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1627 break; 1628 case Decl::CXXDestructor: 1629 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1630 break; 1631 1632 case Decl::StaticAssert: 1633 // Nothing to do. 1634 break; 1635 1636 // Objective-C Decls 1637 1638 // Forward declarations, no (immediate) code generation. 1639 case Decl::ObjCClass: 1640 case Decl::ObjCForwardProtocol: 1641 case Decl::ObjCCategory: 1642 case Decl::ObjCInterface: 1643 break; 1644 1645 case Decl::ObjCProtocol: 1646 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1647 break; 1648 1649 case Decl::ObjCCategoryImpl: 1650 // Categories have properties but don't support synthesize so we 1651 // can ignore them here. 1652 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1653 break; 1654 1655 case Decl::ObjCImplementation: { 1656 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1657 EmitObjCPropertyImplementations(OMD); 1658 Runtime->GenerateClass(OMD); 1659 break; 1660 } 1661 case Decl::ObjCMethod: { 1662 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1663 // If this is not a prototype, emit the body. 1664 if (OMD->getBody()) 1665 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1666 break; 1667 } 1668 case Decl::ObjCCompatibleAlias: 1669 // compatibility-alias is a directive and has no code gen. 1670 break; 1671 1672 case Decl::LinkageSpec: 1673 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1674 break; 1675 1676 case Decl::FileScopeAsm: { 1677 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1678 std::string AsmString(AD->getAsmString()->getStrData(), 1679 AD->getAsmString()->getByteLength()); 1680 1681 const std::string &S = getModule().getModuleInlineAsm(); 1682 if (S.empty()) 1683 getModule().setModuleInlineAsm(AsmString); 1684 else 1685 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1686 break; 1687 } 1688 1689 default: 1690 // Make sure we handled everything we should, every other kind is a 1691 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1692 // function. Need to recode Decl::Kind to do that easily. 1693 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1694 } 1695 } 1696