1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/Support/ErrorHandling.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 41 llvm::Module &M, const llvm::TargetData &TD, 42 Diagnostic &diags) 43 : BlockModule(C, M, TD, Types, *this), Context(C), 44 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 45 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 46 VtableInfo(*this), Runtime(0), 47 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 48 VMContext(M.getContext()) { 49 50 if (!Features.ObjC1) 51 Runtime = 0; 52 else if (!Features.NeXTRuntime) 53 Runtime = CreateGNUObjCRuntime(*this); 54 else if (Features.ObjCNonFragileABI) 55 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 56 else 57 Runtime = CreateMacObjCRuntime(*this); 58 59 // If debug info generation is enabled, create the CGDebugInfo object. 60 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 61 } 62 63 CodeGenModule::~CodeGenModule() { 64 delete Runtime; 65 delete DebugInfo; 66 } 67 68 void CodeGenModule::Release() { 69 // We need to call this first because it can add deferred declarations. 70 EmitCXXGlobalInitFunc(); 71 72 EmitDeferred(); 73 if (Runtime) 74 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 75 AddGlobalCtor(ObjCInitFunction); 76 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 77 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 78 EmitAnnotations(); 79 EmitLLVMUsed(); 80 } 81 82 /// ErrorUnsupported - Print out an error that codegen doesn't support the 83 /// specified stmt yet. 84 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 85 bool OmitOnError) { 86 if (OmitOnError && getDiags().hasErrorOccurred()) 87 return; 88 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 89 "cannot compile this %0 yet"); 90 std::string Msg = Type; 91 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 92 << Msg << S->getSourceRange(); 93 } 94 95 /// ErrorUnsupported - Print out an error that codegen doesn't support the 96 /// specified decl yet. 97 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 98 bool OmitOnError) { 99 if (OmitOnError && getDiags().hasErrorOccurred()) 100 return; 101 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 102 "cannot compile this %0 yet"); 103 std::string Msg = Type; 104 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 105 } 106 107 LangOptions::VisibilityMode 108 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 109 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 110 if (VD->getStorageClass() == VarDecl::PrivateExtern) 111 return LangOptions::Hidden; 112 113 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 114 switch (attr->getVisibility()) { 115 default: assert(0 && "Unknown visibility!"); 116 case VisibilityAttr::DefaultVisibility: 117 return LangOptions::Default; 118 case VisibilityAttr::HiddenVisibility: 119 return LangOptions::Hidden; 120 case VisibilityAttr::ProtectedVisibility: 121 return LangOptions::Protected; 122 } 123 } 124 125 return getLangOptions().getVisibilityMode(); 126 } 127 128 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 129 const Decl *D) const { 130 // Internal definitions always have default visibility. 131 if (GV->hasLocalLinkage()) { 132 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 133 return; 134 } 135 136 switch (getDeclVisibilityMode(D)) { 137 default: assert(0 && "Unknown visibility!"); 138 case LangOptions::Default: 139 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 140 case LangOptions::Hidden: 141 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 142 case LangOptions::Protected: 143 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 144 } 145 } 146 147 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 148 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 149 150 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 151 return getMangledCXXCtorName(D, GD.getCtorType()); 152 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 153 return getMangledCXXDtorName(D, GD.getDtorType()); 154 155 return getMangledName(ND); 156 } 157 158 /// \brief Retrieves the mangled name for the given declaration. 159 /// 160 /// If the given declaration requires a mangled name, returns an 161 /// const char* containing the mangled name. Otherwise, returns 162 /// the unmangled name. 163 /// 164 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 165 if (!getMangleContext().shouldMangleDeclName(ND)) { 166 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 167 return ND->getNameAsCString(); 168 } 169 170 llvm::SmallString<256> Name; 171 getMangleContext().mangleName(ND, Name); 172 Name += '\0'; 173 return UniqueMangledName(Name.begin(), Name.end()); 174 } 175 176 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 177 const char *NameEnd) { 178 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 179 180 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 181 } 182 183 /// AddGlobalCtor - Add a function to the list that will be called before 184 /// main() runs. 185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 186 // FIXME: Type coercion of void()* types. 187 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 188 } 189 190 /// AddGlobalDtor - Add a function to the list that will be called 191 /// when the module is unloaded. 192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 193 // FIXME: Type coercion of void()* types. 194 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 195 } 196 197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 198 // Ctor function type is void()*. 199 llvm::FunctionType* CtorFTy = 200 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 201 std::vector<const llvm::Type*>(), 202 false); 203 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 204 205 // Get the type of a ctor entry, { i32, void ()* }. 206 llvm::StructType* CtorStructTy = 207 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 208 llvm::PointerType::getUnqual(CtorFTy), NULL); 209 210 // Construct the constructor and destructor arrays. 211 std::vector<llvm::Constant*> Ctors; 212 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 213 std::vector<llvm::Constant*> S; 214 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 215 I->second, false)); 216 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 217 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 218 } 219 220 if (!Ctors.empty()) { 221 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 222 new llvm::GlobalVariable(TheModule, AT, false, 223 llvm::GlobalValue::AppendingLinkage, 224 llvm::ConstantArray::get(AT, Ctors), 225 GlobalName); 226 } 227 } 228 229 void CodeGenModule::EmitAnnotations() { 230 if (Annotations.empty()) 231 return; 232 233 // Create a new global variable for the ConstantStruct in the Module. 234 llvm::Constant *Array = 235 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 236 Annotations.size()), 237 Annotations); 238 llvm::GlobalValue *gv = 239 new llvm::GlobalVariable(TheModule, Array->getType(), false, 240 llvm::GlobalValue::AppendingLinkage, Array, 241 "llvm.global.annotations"); 242 gv->setSection("llvm.metadata"); 243 } 244 245 static CodeGenModule::GVALinkage 246 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 247 const LangOptions &Features) { 248 // Everything located semantically within an anonymous namespace is 249 // always internal. 250 if (FD->isInAnonymousNamespace()) 251 return CodeGenModule::GVA_Internal; 252 253 // "static" functions get internal linkage. 254 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 255 return CodeGenModule::GVA_Internal; 256 257 // The kind of external linkage this function will have, if it is not 258 // inline or static. 259 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 260 if (Context.getLangOptions().CPlusPlus) { 261 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 262 263 if (TSK == TSK_ExplicitInstantiationDefinition) { 264 // If a function has been explicitly instantiated, then it should 265 // always have strong external linkage. 266 return CodeGenModule::GVA_StrongExternal; 267 } 268 269 if (TSK == TSK_ImplicitInstantiation) 270 External = CodeGenModule::GVA_TemplateInstantiation; 271 } 272 273 if (!FD->isInlined()) 274 return External; 275 276 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 277 // GNU or C99 inline semantics. Determine whether this symbol should be 278 // externally visible. 279 if (FD->isInlineDefinitionExternallyVisible()) 280 return External; 281 282 // C99 inline semantics, where the symbol is not externally visible. 283 return CodeGenModule::GVA_C99Inline; 284 } 285 286 // C++0x [temp.explicit]p9: 287 // [ Note: The intent is that an inline function that is the subject of 288 // an explicit instantiation declaration will still be implicitly 289 // instantiated when used so that the body can be considered for 290 // inlining, but that no out-of-line copy of the inline function would be 291 // generated in the translation unit. -- end note ] 292 if (FD->getTemplateSpecializationKind() 293 == TSK_ExplicitInstantiationDeclaration) 294 return CodeGenModule::GVA_C99Inline; 295 296 return CodeGenModule::GVA_CXXInline; 297 } 298 299 /// SetFunctionDefinitionAttributes - Set attributes for a global. 300 /// 301 /// FIXME: This is currently only done for aliases and functions, but not for 302 /// variables (these details are set in EmitGlobalVarDefinition for variables). 303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 304 llvm::GlobalValue *GV) { 305 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 306 307 if (Linkage == GVA_Internal) { 308 GV->setLinkage(llvm::Function::InternalLinkage); 309 } else if (D->hasAttr<DLLExportAttr>()) { 310 GV->setLinkage(llvm::Function::DLLExportLinkage); 311 } else if (D->hasAttr<WeakAttr>()) { 312 GV->setLinkage(llvm::Function::WeakAnyLinkage); 313 } else if (Linkage == GVA_C99Inline) { 314 // In C99 mode, 'inline' functions are guaranteed to have a strong 315 // definition somewhere else, so we can use available_externally linkage. 316 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 317 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 318 // In C++, the compiler has to emit a definition in every translation unit 319 // that references the function. We should use linkonce_odr because 320 // a) if all references in this translation unit are optimized away, we 321 // don't need to codegen it. b) if the function persists, it needs to be 322 // merged with other definitions. c) C++ has the ODR, so we know the 323 // definition is dependable. 324 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 325 } else { 326 assert(Linkage == GVA_StrongExternal); 327 // Otherwise, we have strong external linkage. 328 GV->setLinkage(llvm::Function::ExternalLinkage); 329 } 330 331 SetCommonAttributes(D, GV); 332 } 333 334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 335 const CGFunctionInfo &Info, 336 llvm::Function *F) { 337 unsigned CallingConv; 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList, CallingConv); 340 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 341 AttributeList.size())); 342 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 343 } 344 345 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 346 llvm::Function *F) { 347 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 348 F->addFnAttr(llvm::Attribute::NoUnwind); 349 350 if (D->hasAttr<AlwaysInlineAttr>()) 351 F->addFnAttr(llvm::Attribute::AlwaysInline); 352 353 if (D->hasAttr<NoInlineAttr>()) 354 F->addFnAttr(llvm::Attribute::NoInline); 355 356 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 357 F->addFnAttr(llvm::Attribute::StackProtect); 358 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 359 F->addFnAttr(llvm::Attribute::StackProtectReq); 360 361 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 362 unsigned width = Context.Target.getCharWidth(); 363 F->setAlignment(AA->getAlignment() / width); 364 while ((AA = AA->getNext<AlignedAttr>())) 365 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 366 } 367 // C++ ABI requires 2-byte alignment for member functions. 368 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 369 F->setAlignment(2); 370 } 371 372 void CodeGenModule::SetCommonAttributes(const Decl *D, 373 llvm::GlobalValue *GV) { 374 setGlobalVisibility(GV, D); 375 376 if (D->hasAttr<UsedAttr>()) 377 AddUsedGlobal(GV); 378 379 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 380 GV->setSection(SA->getName()); 381 } 382 383 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 384 llvm::Function *F, 385 const CGFunctionInfo &FI) { 386 SetLLVMFunctionAttributes(D, FI, F); 387 SetLLVMFunctionAttributesForDefinition(D, F); 388 389 F->setLinkage(llvm::Function::InternalLinkage); 390 391 SetCommonAttributes(D, F); 392 } 393 394 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 395 llvm::Function *F, 396 bool IsIncompleteFunction) { 397 if (!IsIncompleteFunction) 398 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 399 400 // Only a few attributes are set on declarations; these may later be 401 // overridden by a definition. 402 403 if (FD->hasAttr<DLLImportAttr>()) { 404 F->setLinkage(llvm::Function::DLLImportLinkage); 405 } else if (FD->hasAttr<WeakAttr>() || 406 FD->hasAttr<WeakImportAttr>()) { 407 // "extern_weak" is overloaded in LLVM; we probably should have 408 // separate linkage types for this. 409 F->setLinkage(llvm::Function::ExternalWeakLinkage); 410 } else { 411 F->setLinkage(llvm::Function::ExternalLinkage); 412 } 413 414 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 415 F->setSection(SA->getName()); 416 } 417 418 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 419 assert(!GV->isDeclaration() && 420 "Only globals with definition can force usage."); 421 LLVMUsed.push_back(GV); 422 } 423 424 void CodeGenModule::EmitLLVMUsed() { 425 // Don't create llvm.used if there is no need. 426 if (LLVMUsed.empty()) 427 return; 428 429 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 430 431 // Convert LLVMUsed to what ConstantArray needs. 432 std::vector<llvm::Constant*> UsedArray; 433 UsedArray.resize(LLVMUsed.size()); 434 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 435 UsedArray[i] = 436 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 437 i8PTy); 438 } 439 440 if (UsedArray.empty()) 441 return; 442 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 443 444 llvm::GlobalVariable *GV = 445 new llvm::GlobalVariable(getModule(), ATy, false, 446 llvm::GlobalValue::AppendingLinkage, 447 llvm::ConstantArray::get(ATy, UsedArray), 448 "llvm.used"); 449 450 GV->setSection("llvm.metadata"); 451 } 452 453 void CodeGenModule::EmitDeferred() { 454 // Emit code for any potentially referenced deferred decls. Since a 455 // previously unused static decl may become used during the generation of code 456 // for a static function, iterate until no changes are made. 457 while (!DeferredDeclsToEmit.empty()) { 458 GlobalDecl D = DeferredDeclsToEmit.back(); 459 DeferredDeclsToEmit.pop_back(); 460 461 // The mangled name for the decl must have been emitted in GlobalDeclMap. 462 // Look it up to see if it was defined with a stronger definition (e.g. an 463 // extern inline function with a strong function redefinition). If so, 464 // just ignore the deferred decl. 465 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 466 assert(CGRef && "Deferred decl wasn't referenced?"); 467 468 if (!CGRef->isDeclaration()) 469 continue; 470 471 // Skip available externally functions at -O0 472 // FIXME: these aren't instantiated yet, so we can't yet do this. 473 if (0 && getCodeGenOpts().OptimizationLevel == 0) 474 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D.getDecl())) { 475 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 476 477 if (Linkage == GVA_C99Inline) 478 continue; 479 } 480 481 // Otherwise, emit the definition and move on to the next one. 482 EmitGlobalDefinition(D); 483 } 484 } 485 486 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 487 /// annotation information for a given GlobalValue. The annotation struct is 488 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 489 /// GlobalValue being annotated. The second field is the constant string 490 /// created from the AnnotateAttr's annotation. The third field is a constant 491 /// string containing the name of the translation unit. The fourth field is 492 /// the line number in the file of the annotated value declaration. 493 /// 494 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 495 /// appears to. 496 /// 497 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 498 const AnnotateAttr *AA, 499 unsigned LineNo) { 500 llvm::Module *M = &getModule(); 501 502 // get [N x i8] constants for the annotation string, and the filename string 503 // which are the 2nd and 3rd elements of the global annotation structure. 504 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 505 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 506 AA->getAnnotation(), true); 507 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 508 M->getModuleIdentifier(), 509 true); 510 511 // Get the two global values corresponding to the ConstantArrays we just 512 // created to hold the bytes of the strings. 513 llvm::GlobalValue *annoGV = 514 new llvm::GlobalVariable(*M, anno->getType(), false, 515 llvm::GlobalValue::PrivateLinkage, anno, 516 GV->getName()); 517 // translation unit name string, emitted into the llvm.metadata section. 518 llvm::GlobalValue *unitGV = 519 new llvm::GlobalVariable(*M, unit->getType(), false, 520 llvm::GlobalValue::PrivateLinkage, unit, 521 ".str"); 522 523 // Create the ConstantStruct for the global annotation. 524 llvm::Constant *Fields[4] = { 525 llvm::ConstantExpr::getBitCast(GV, SBP), 526 llvm::ConstantExpr::getBitCast(annoGV, SBP), 527 llvm::ConstantExpr::getBitCast(unitGV, SBP), 528 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 529 }; 530 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 531 } 532 533 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 534 // Never defer when EmitAllDecls is specified or the decl has 535 // attribute used. 536 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 537 return false; 538 539 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 540 // Constructors and destructors should never be deferred. 541 if (FD->hasAttr<ConstructorAttr>() || 542 FD->hasAttr<DestructorAttr>()) 543 return false; 544 545 // The key function for a class must never be deferred. 546 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 547 const CXXRecordDecl *RD = MD->getParent(); 548 if (MD->isOutOfLine() && RD->isDynamicClass()) { 549 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 550 if (KeyFunction && 551 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 552 return false; 553 } 554 } 555 556 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 557 558 // static, static inline, always_inline, and extern inline functions can 559 // always be deferred. Normal inline functions can be deferred in C99/C++. 560 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 561 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 562 return true; 563 return false; 564 } 565 566 const VarDecl *VD = cast<VarDecl>(Global); 567 assert(VD->isFileVarDecl() && "Invalid decl"); 568 569 // We never want to defer structs that have non-trivial constructors or 570 // destructors. 571 572 // FIXME: Handle references. 573 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 574 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 575 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 576 return false; 577 } 578 } 579 580 // Static data may be deferred, but out-of-line static data members 581 // cannot be. 582 if (VD->isInAnonymousNamespace()) 583 return true; 584 if (VD->getLinkage() == VarDecl::InternalLinkage) { 585 // Initializer has side effects? 586 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 587 return false; 588 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 589 } 590 return false; 591 } 592 593 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 594 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 595 596 // If this is an alias definition (which otherwise looks like a declaration) 597 // emit it now. 598 if (Global->hasAttr<AliasAttr>()) 599 return EmitAliasDefinition(Global); 600 601 // Ignore declarations, they will be emitted on their first use. 602 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 603 // Forward declarations are emitted lazily on first use. 604 if (!FD->isThisDeclarationADefinition()) 605 return; 606 } else { 607 const VarDecl *VD = cast<VarDecl>(Global); 608 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 609 610 if (getLangOptions().CPlusPlus && !VD->getInit()) { 611 // In C++, if this is marked "extern", defer code generation. 612 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 613 return; 614 615 // If this is a declaration of an explicit specialization of a static 616 // data member in a class template, don't emit it. 617 if (VD->isStaticDataMember() && 618 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 619 return; 620 } 621 622 // In C, if this isn't a definition, defer code generation. 623 if (!getLangOptions().CPlusPlus && !VD->getInit()) 624 return; 625 } 626 627 // Defer code generation when possible if this is a static definition, inline 628 // function etc. These we only want to emit if they are used. 629 if (MayDeferGeneration(Global)) { 630 // If the value has already been used, add it directly to the 631 // DeferredDeclsToEmit list. 632 const char *MangledName = getMangledName(GD); 633 if (GlobalDeclMap.count(MangledName)) 634 DeferredDeclsToEmit.push_back(GD); 635 else { 636 // Otherwise, remember that we saw a deferred decl with this name. The 637 // first use of the mangled name will cause it to move into 638 // DeferredDeclsToEmit. 639 DeferredDecls[MangledName] = GD; 640 } 641 return; 642 } 643 644 // Otherwise emit the definition. 645 EmitGlobalDefinition(GD); 646 } 647 648 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 649 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 650 651 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 652 Context.getSourceManager(), 653 "Generating code for declaration"); 654 655 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 656 getVtableInfo().MaybeEmitVtable(GD); 657 if (MD->isVirtual() && MD->isOutOfLine() && 658 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 659 if (isa<CXXDestructorDecl>(D)) { 660 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 661 GD.getDtorType()); 662 BuildThunksForVirtual(CanonGD); 663 } else { 664 BuildThunksForVirtual(MD->getCanonicalDecl()); 665 } 666 } 667 } 668 669 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 670 EmitCXXConstructor(CD, GD.getCtorType()); 671 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 672 EmitCXXDestructor(DD, GD.getDtorType()); 673 else if (isa<FunctionDecl>(D)) 674 EmitGlobalFunctionDefinition(GD); 675 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 676 EmitGlobalVarDefinition(VD); 677 else { 678 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 679 } 680 } 681 682 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 683 /// module, create and return an llvm Function with the specified type. If there 684 /// is something in the module with the specified name, return it potentially 685 /// bitcasted to the right type. 686 /// 687 /// If D is non-null, it specifies a decl that correspond to this. This is used 688 /// to set the attributes on the function when it is first created. 689 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 690 const llvm::Type *Ty, 691 GlobalDecl D) { 692 // Lookup the entry, lazily creating it if necessary. 693 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 694 if (Entry) { 695 if (Entry->getType()->getElementType() == Ty) 696 return Entry; 697 698 // Make sure the result is of the correct type. 699 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 700 return llvm::ConstantExpr::getBitCast(Entry, PTy); 701 } 702 703 // This function doesn't have a complete type (for example, the return 704 // type is an incomplete struct). Use a fake type instead, and make 705 // sure not to try to set attributes. 706 bool IsIncompleteFunction = false; 707 if (!isa<llvm::FunctionType>(Ty)) { 708 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 709 std::vector<const llvm::Type*>(), false); 710 IsIncompleteFunction = true; 711 } 712 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 713 llvm::Function::ExternalLinkage, 714 "", &getModule()); 715 F->setName(MangledName); 716 if (D.getDecl()) 717 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 718 IsIncompleteFunction); 719 Entry = F; 720 721 // This is the first use or definition of a mangled name. If there is a 722 // deferred decl with this name, remember that we need to emit it at the end 723 // of the file. 724 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 725 DeferredDecls.find(MangledName); 726 if (DDI != DeferredDecls.end()) { 727 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 728 // list, and remove it from DeferredDecls (since we don't need it anymore). 729 DeferredDeclsToEmit.push_back(DDI->second); 730 DeferredDecls.erase(DDI); 731 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 732 // If this the first reference to a C++ inline function in a class, queue up 733 // the deferred function body for emission. These are not seen as 734 // top-level declarations. 735 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 736 DeferredDeclsToEmit.push_back(D); 737 // A called constructor which has no definition or declaration need be 738 // synthesized. 739 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 740 if (CD->isImplicit()) 741 DeferredDeclsToEmit.push_back(D); 742 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 743 if (DD->isImplicit()) 744 DeferredDeclsToEmit.push_back(D); 745 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 746 if (MD->isCopyAssignment() && MD->isImplicit()) 747 DeferredDeclsToEmit.push_back(D); 748 } 749 } 750 751 return F; 752 } 753 754 /// GetAddrOfFunction - Return the address of the given function. If Ty is 755 /// non-null, then this function will use the specified type if it has to 756 /// create it (this occurs when we see a definition of the function). 757 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 758 const llvm::Type *Ty) { 759 // If there was no specific requested type, just convert it now. 760 if (!Ty) 761 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 762 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 763 } 764 765 /// CreateRuntimeFunction - Create a new runtime function with the specified 766 /// type and name. 767 llvm::Constant * 768 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 769 const char *Name) { 770 // Convert Name to be a uniqued string from the IdentifierInfo table. 771 Name = getContext().Idents.get(Name).getNameStart(); 772 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 773 } 774 775 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 776 if (!D->getType().isConstant(Context)) 777 return false; 778 if (Context.getLangOptions().CPlusPlus && 779 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 780 // FIXME: We should do something fancier here! 781 return false; 782 } 783 return true; 784 } 785 786 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 787 /// create and return an llvm GlobalVariable with the specified type. If there 788 /// is something in the module with the specified name, return it potentially 789 /// bitcasted to the right type. 790 /// 791 /// If D is non-null, it specifies a decl that correspond to this. This is used 792 /// to set the attributes on the global when it is first created. 793 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 794 const llvm::PointerType*Ty, 795 const VarDecl *D) { 796 // Lookup the entry, lazily creating it if necessary. 797 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 798 if (Entry) { 799 if (Entry->getType() == Ty) 800 return Entry; 801 802 // Make sure the result is of the correct type. 803 return llvm::ConstantExpr::getBitCast(Entry, Ty); 804 } 805 806 // This is the first use or definition of a mangled name. If there is a 807 // deferred decl with this name, remember that we need to emit it at the end 808 // of the file. 809 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 810 DeferredDecls.find(MangledName); 811 if (DDI != DeferredDecls.end()) { 812 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 813 // list, and remove it from DeferredDecls (since we don't need it anymore). 814 DeferredDeclsToEmit.push_back(DDI->second); 815 DeferredDecls.erase(DDI); 816 } 817 818 llvm::GlobalVariable *GV = 819 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 820 llvm::GlobalValue::ExternalLinkage, 821 0, "", 0, 822 false, Ty->getAddressSpace()); 823 GV->setName(MangledName); 824 825 // Handle things which are present even on external declarations. 826 if (D) { 827 // FIXME: This code is overly simple and should be merged with other global 828 // handling. 829 GV->setConstant(DeclIsConstantGlobal(Context, D)); 830 831 // FIXME: Merge with other attribute handling code. 832 if (D->getStorageClass() == VarDecl::PrivateExtern) 833 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 834 835 if (D->hasAttr<WeakAttr>() || 836 D->hasAttr<WeakImportAttr>()) 837 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 838 839 GV->setThreadLocal(D->isThreadSpecified()); 840 } 841 842 return Entry = GV; 843 } 844 845 846 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 847 /// given global variable. If Ty is non-null and if the global doesn't exist, 848 /// then it will be greated with the specified type instead of whatever the 849 /// normal requested type would be. 850 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 851 const llvm::Type *Ty) { 852 assert(D->hasGlobalStorage() && "Not a global variable"); 853 QualType ASTTy = D->getType(); 854 if (Ty == 0) 855 Ty = getTypes().ConvertTypeForMem(ASTTy); 856 857 const llvm::PointerType *PTy = 858 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 859 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 860 } 861 862 /// CreateRuntimeVariable - Create a new runtime global variable with the 863 /// specified type and name. 864 llvm::Constant * 865 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 866 const char *Name) { 867 // Convert Name to be a uniqued string from the IdentifierInfo table. 868 Name = getContext().Idents.get(Name).getNameStart(); 869 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 870 } 871 872 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 873 assert(!D->getInit() && "Cannot emit definite definitions here!"); 874 875 if (MayDeferGeneration(D)) { 876 // If we have not seen a reference to this variable yet, place it 877 // into the deferred declarations table to be emitted if needed 878 // later. 879 const char *MangledName = getMangledName(D); 880 if (GlobalDeclMap.count(MangledName) == 0) { 881 DeferredDecls[MangledName] = D; 882 return; 883 } 884 } 885 886 // The tentative definition is the only definition. 887 EmitGlobalVarDefinition(D); 888 } 889 890 llvm::GlobalVariable::LinkageTypes 891 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) { 892 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 893 return llvm::GlobalVariable::InternalLinkage; 894 895 if (const CXXMethodDecl *KeyFunction 896 = RD->getASTContext().getKeyFunction(RD)) { 897 // If this class has a key function, use that to determine the linkage of 898 // the vtable. 899 const FunctionDecl *Def = 0; 900 if (KeyFunction->getBody(Def)) 901 KeyFunction = cast<CXXMethodDecl>(Def); 902 903 switch (KeyFunction->getTemplateSpecializationKind()) { 904 case TSK_Undeclared: 905 case TSK_ExplicitSpecialization: 906 if (KeyFunction->isInlined()) 907 return llvm::GlobalVariable::WeakODRLinkage; 908 909 return llvm::GlobalVariable::ExternalLinkage; 910 911 case TSK_ImplicitInstantiation: 912 case TSK_ExplicitInstantiationDefinition: 913 return llvm::GlobalVariable::WeakODRLinkage; 914 915 case TSK_ExplicitInstantiationDeclaration: 916 // FIXME: Use available_externally linkage. However, this currently 917 // breaks LLVM's build due to undefined symbols. 918 // return llvm::GlobalVariable::AvailableExternallyLinkage; 919 return llvm::GlobalVariable::WeakODRLinkage; 920 } 921 } 922 923 switch (RD->getTemplateSpecializationKind()) { 924 case TSK_Undeclared: 925 case TSK_ExplicitSpecialization: 926 case TSK_ImplicitInstantiation: 927 case TSK_ExplicitInstantiationDefinition: 928 return llvm::GlobalVariable::WeakODRLinkage; 929 930 case TSK_ExplicitInstantiationDeclaration: 931 // FIXME: Use available_externally linkage. However, this currently 932 // breaks LLVM's build due to undefined symbols. 933 // return llvm::GlobalVariable::AvailableExternallyLinkage; 934 return llvm::GlobalVariable::WeakODRLinkage; 935 } 936 937 // Silence GCC warning. 938 return llvm::GlobalVariable::WeakODRLinkage; 939 } 940 941 static CodeGenModule::GVALinkage 942 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 943 // Everything located semantically within an anonymous namespace is 944 // always internal. 945 if (VD->isInAnonymousNamespace()) 946 return CodeGenModule::GVA_Internal; 947 948 // Handle linkage for static data members. 949 if (VD->isStaticDataMember()) { 950 switch (VD->getTemplateSpecializationKind()) { 951 case TSK_Undeclared: 952 case TSK_ExplicitSpecialization: 953 case TSK_ExplicitInstantiationDefinition: 954 return CodeGenModule::GVA_StrongExternal; 955 956 case TSK_ExplicitInstantiationDeclaration: 957 llvm_unreachable("Variable should not be instantiated"); 958 // Fall through to treat this like any other instantiation. 959 960 case TSK_ImplicitInstantiation: 961 return CodeGenModule::GVA_TemplateInstantiation; 962 } 963 } 964 965 if (VD->getLinkage() == VarDecl::InternalLinkage) 966 return CodeGenModule::GVA_Internal; 967 968 return CodeGenModule::GVA_StrongExternal; 969 } 970 971 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 972 llvm::Constant *Init = 0; 973 QualType ASTTy = D->getType(); 974 975 if (D->getInit() == 0) { 976 // This is a tentative definition; tentative definitions are 977 // implicitly initialized with { 0 }. 978 // 979 // Note that tentative definitions are only emitted at the end of 980 // a translation unit, so they should never have incomplete 981 // type. In addition, EmitTentativeDefinition makes sure that we 982 // never attempt to emit a tentative definition if a real one 983 // exists. A use may still exists, however, so we still may need 984 // to do a RAUW. 985 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 986 Init = EmitNullConstant(D->getType()); 987 } else { 988 Init = EmitConstantExpr(D->getInit(), D->getType()); 989 990 if (!Init) { 991 QualType T = D->getInit()->getType(); 992 if (getLangOptions().CPlusPlus) { 993 CXXGlobalInits.push_back(D); 994 Init = EmitNullConstant(T); 995 } else { 996 ErrorUnsupported(D, "static initializer"); 997 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 998 } 999 } 1000 } 1001 1002 const llvm::Type* InitType = Init->getType(); 1003 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1004 1005 // Strip off a bitcast if we got one back. 1006 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1007 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1008 // all zero index gep. 1009 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1010 Entry = CE->getOperand(0); 1011 } 1012 1013 // Entry is now either a Function or GlobalVariable. 1014 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1015 1016 // We have a definition after a declaration with the wrong type. 1017 // We must make a new GlobalVariable* and update everything that used OldGV 1018 // (a declaration or tentative definition) with the new GlobalVariable* 1019 // (which will be a definition). 1020 // 1021 // This happens if there is a prototype for a global (e.g. 1022 // "extern int x[];") and then a definition of a different type (e.g. 1023 // "int x[10];"). This also happens when an initializer has a different type 1024 // from the type of the global (this happens with unions). 1025 if (GV == 0 || 1026 GV->getType()->getElementType() != InitType || 1027 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1028 1029 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1030 GlobalDeclMap.erase(getMangledName(D)); 1031 1032 // Make a new global with the correct type, this is now guaranteed to work. 1033 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1034 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1035 1036 // Replace all uses of the old global with the new global 1037 llvm::Constant *NewPtrForOldDecl = 1038 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1039 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1040 1041 // Erase the old global, since it is no longer used. 1042 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1043 } 1044 1045 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1046 SourceManager &SM = Context.getSourceManager(); 1047 AddAnnotation(EmitAnnotateAttr(GV, AA, 1048 SM.getInstantiationLineNumber(D->getLocation()))); 1049 } 1050 1051 GV->setInitializer(Init); 1052 1053 // If it is safe to mark the global 'constant', do so now. 1054 GV->setConstant(false); 1055 if (DeclIsConstantGlobal(Context, D)) 1056 GV->setConstant(true); 1057 1058 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1059 1060 // Set the llvm linkage type as appropriate. 1061 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1062 if (Linkage == GVA_Internal) 1063 GV->setLinkage(llvm::Function::InternalLinkage); 1064 else if (D->hasAttr<DLLImportAttr>()) 1065 GV->setLinkage(llvm::Function::DLLImportLinkage); 1066 else if (D->hasAttr<DLLExportAttr>()) 1067 GV->setLinkage(llvm::Function::DLLExportLinkage); 1068 else if (D->hasAttr<WeakAttr>()) { 1069 if (GV->isConstant()) 1070 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1071 else 1072 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1073 } else if (Linkage == GVA_TemplateInstantiation) 1074 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1075 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1076 !D->hasExternalStorage() && !D->getInit() && 1077 !D->getAttr<SectionAttr>()) { 1078 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1079 // common vars aren't constant even if declared const. 1080 GV->setConstant(false); 1081 } else 1082 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1083 1084 SetCommonAttributes(D, GV); 1085 1086 // Emit global variable debug information. 1087 if (CGDebugInfo *DI = getDebugInfo()) { 1088 DI->setLocation(D->getLocation()); 1089 DI->EmitGlobalVariable(GV, D); 1090 } 1091 } 1092 1093 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1094 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1095 /// existing call uses of the old function in the module, this adjusts them to 1096 /// call the new function directly. 1097 /// 1098 /// This is not just a cleanup: the always_inline pass requires direct calls to 1099 /// functions to be able to inline them. If there is a bitcast in the way, it 1100 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1101 /// run at -O0. 1102 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1103 llvm::Function *NewFn) { 1104 // If we're redefining a global as a function, don't transform it. 1105 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1106 if (OldFn == 0) return; 1107 1108 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1109 llvm::SmallVector<llvm::Value*, 4> ArgList; 1110 1111 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1112 UI != E; ) { 1113 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1114 unsigned OpNo = UI.getOperandNo(); 1115 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1116 if (!CI || OpNo != 0) continue; 1117 1118 // If the return types don't match exactly, and if the call isn't dead, then 1119 // we can't transform this call. 1120 if (CI->getType() != NewRetTy && !CI->use_empty()) 1121 continue; 1122 1123 // If the function was passed too few arguments, don't transform. If extra 1124 // arguments were passed, we silently drop them. If any of the types 1125 // mismatch, we don't transform. 1126 unsigned ArgNo = 0; 1127 bool DontTransform = false; 1128 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1129 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1130 if (CI->getNumOperands()-1 == ArgNo || 1131 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1132 DontTransform = true; 1133 break; 1134 } 1135 } 1136 if (DontTransform) 1137 continue; 1138 1139 // Okay, we can transform this. Create the new call instruction and copy 1140 // over the required information. 1141 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1142 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1143 ArgList.end(), "", CI); 1144 ArgList.clear(); 1145 if (!NewCall->getType()->isVoidTy()) 1146 NewCall->takeName(CI); 1147 NewCall->setAttributes(CI->getAttributes()); 1148 NewCall->setCallingConv(CI->getCallingConv()); 1149 1150 // Finally, remove the old call, replacing any uses with the new one. 1151 if (!CI->use_empty()) 1152 CI->replaceAllUsesWith(NewCall); 1153 1154 // Copy any custom metadata attached with CI. 1155 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1156 NewCall->setMetadata("dbg", DbgNode); 1157 CI->eraseFromParent(); 1158 } 1159 } 1160 1161 1162 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1163 const llvm::FunctionType *Ty; 1164 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1165 1166 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1167 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1168 1169 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1170 } else { 1171 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1172 1173 // As a special case, make sure that definitions of K&R function 1174 // "type foo()" aren't declared as varargs (which forces the backend 1175 // to do unnecessary work). 1176 if (D->getType()->isFunctionNoProtoType()) { 1177 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1178 // Due to stret, the lowered function could have arguments. 1179 // Just create the same type as was lowered by ConvertType 1180 // but strip off the varargs bit. 1181 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1182 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1183 } 1184 } 1185 1186 // Get or create the prototype for the function. 1187 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1188 1189 // Strip off a bitcast if we got one back. 1190 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1191 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1192 Entry = CE->getOperand(0); 1193 } 1194 1195 1196 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1197 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1198 1199 // If the types mismatch then we have to rewrite the definition. 1200 assert(OldFn->isDeclaration() && 1201 "Shouldn't replace non-declaration"); 1202 1203 // F is the Function* for the one with the wrong type, we must make a new 1204 // Function* and update everything that used F (a declaration) with the new 1205 // Function* (which will be a definition). 1206 // 1207 // This happens if there is a prototype for a function 1208 // (e.g. "int f()") and then a definition of a different type 1209 // (e.g. "int f(int x)"). Start by making a new function of the 1210 // correct type, RAUW, then steal the name. 1211 GlobalDeclMap.erase(getMangledName(D)); 1212 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1213 NewFn->takeName(OldFn); 1214 1215 // If this is an implementation of a function without a prototype, try to 1216 // replace any existing uses of the function (which may be calls) with uses 1217 // of the new function 1218 if (D->getType()->isFunctionNoProtoType()) { 1219 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1220 OldFn->removeDeadConstantUsers(); 1221 } 1222 1223 // Replace uses of F with the Function we will endow with a body. 1224 if (!Entry->use_empty()) { 1225 llvm::Constant *NewPtrForOldDecl = 1226 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1227 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1228 } 1229 1230 // Ok, delete the old function now, which is dead. 1231 OldFn->eraseFromParent(); 1232 1233 Entry = NewFn; 1234 } 1235 1236 llvm::Function *Fn = cast<llvm::Function>(Entry); 1237 1238 CodeGenFunction(*this).GenerateCode(D, Fn); 1239 1240 SetFunctionDefinitionAttributes(D, Fn); 1241 SetLLVMFunctionAttributesForDefinition(D, Fn); 1242 1243 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1244 AddGlobalCtor(Fn, CA->getPriority()); 1245 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1246 AddGlobalDtor(Fn, DA->getPriority()); 1247 } 1248 1249 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1250 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1251 assert(AA && "Not an alias?"); 1252 1253 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1254 1255 // Unique the name through the identifier table. 1256 const char *AliaseeName = AA->getAliasee().c_str(); 1257 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1258 1259 // Create a reference to the named value. This ensures that it is emitted 1260 // if a deferred decl. 1261 llvm::Constant *Aliasee; 1262 if (isa<llvm::FunctionType>(DeclTy)) 1263 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1264 else 1265 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1266 llvm::PointerType::getUnqual(DeclTy), 0); 1267 1268 // Create the new alias itself, but don't set a name yet. 1269 llvm::GlobalValue *GA = 1270 new llvm::GlobalAlias(Aliasee->getType(), 1271 llvm::Function::ExternalLinkage, 1272 "", Aliasee, &getModule()); 1273 1274 // See if there is already something with the alias' name in the module. 1275 const char *MangledName = getMangledName(D); 1276 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1277 1278 if (Entry && !Entry->isDeclaration()) { 1279 // If there is a definition in the module, then it wins over the alias. 1280 // This is dubious, but allow it to be safe. Just ignore the alias. 1281 GA->eraseFromParent(); 1282 return; 1283 } 1284 1285 if (Entry) { 1286 // If there is a declaration in the module, then we had an extern followed 1287 // by the alias, as in: 1288 // extern int test6(); 1289 // ... 1290 // int test6() __attribute__((alias("test7"))); 1291 // 1292 // Remove it and replace uses of it with the alias. 1293 1294 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1295 Entry->getType())); 1296 Entry->eraseFromParent(); 1297 } 1298 1299 // Now we know that there is no conflict, set the name. 1300 Entry = GA; 1301 GA->setName(MangledName); 1302 1303 // Set attributes which are particular to an alias; this is a 1304 // specialization of the attributes which may be set on a global 1305 // variable/function. 1306 if (D->hasAttr<DLLExportAttr>()) { 1307 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1308 // The dllexport attribute is ignored for undefined symbols. 1309 if (FD->getBody()) 1310 GA->setLinkage(llvm::Function::DLLExportLinkage); 1311 } else { 1312 GA->setLinkage(llvm::Function::DLLExportLinkage); 1313 } 1314 } else if (D->hasAttr<WeakAttr>() || 1315 D->hasAttr<WeakImportAttr>()) { 1316 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1317 } 1318 1319 SetCommonAttributes(D, GA); 1320 } 1321 1322 /// getBuiltinLibFunction - Given a builtin id for a function like 1323 /// "__builtin_fabsf", return a Function* for "fabsf". 1324 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1325 unsigned BuiltinID) { 1326 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1327 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1328 "isn't a lib fn"); 1329 1330 // Get the name, skip over the __builtin_ prefix (if necessary). 1331 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1332 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1333 Name += 10; 1334 1335 const llvm::FunctionType *Ty = 1336 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1337 1338 // Unique the name through the identifier table. 1339 Name = getContext().Idents.get(Name).getNameStart(); 1340 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1341 } 1342 1343 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1344 unsigned NumTys) { 1345 return llvm::Intrinsic::getDeclaration(&getModule(), 1346 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1347 } 1348 1349 llvm::Function *CodeGenModule::getMemCpyFn() { 1350 if (MemCpyFn) return MemCpyFn; 1351 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1352 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1353 } 1354 1355 llvm::Function *CodeGenModule::getMemMoveFn() { 1356 if (MemMoveFn) return MemMoveFn; 1357 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1358 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1359 } 1360 1361 llvm::Function *CodeGenModule::getMemSetFn() { 1362 if (MemSetFn) return MemSetFn; 1363 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1364 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1365 } 1366 1367 static llvm::StringMapEntry<llvm::Constant*> & 1368 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1369 const StringLiteral *Literal, 1370 bool TargetIsLSB, 1371 bool &IsUTF16, 1372 unsigned &StringLength) { 1373 unsigned NumBytes = Literal->getByteLength(); 1374 1375 // Check for simple case. 1376 if (!Literal->containsNonAsciiOrNull()) { 1377 StringLength = NumBytes; 1378 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1379 StringLength)); 1380 } 1381 1382 // Otherwise, convert the UTF8 literals into a byte string. 1383 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1384 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1385 UTF16 *ToPtr = &ToBuf[0]; 1386 1387 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1388 &ToPtr, ToPtr + NumBytes, 1389 strictConversion); 1390 1391 // Check for conversion failure. 1392 if (Result != conversionOK) { 1393 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1394 // this duplicate code. 1395 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1396 StringLength = NumBytes; 1397 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1398 StringLength)); 1399 } 1400 1401 // ConvertUTF8toUTF16 returns the length in ToPtr. 1402 StringLength = ToPtr - &ToBuf[0]; 1403 1404 // Render the UTF-16 string into a byte array and convert to the target byte 1405 // order. 1406 // 1407 // FIXME: This isn't something we should need to do here. 1408 llvm::SmallString<128> AsBytes; 1409 AsBytes.reserve(StringLength * 2); 1410 for (unsigned i = 0; i != StringLength; ++i) { 1411 unsigned short Val = ToBuf[i]; 1412 if (TargetIsLSB) { 1413 AsBytes.push_back(Val & 0xFF); 1414 AsBytes.push_back(Val >> 8); 1415 } else { 1416 AsBytes.push_back(Val >> 8); 1417 AsBytes.push_back(Val & 0xFF); 1418 } 1419 } 1420 // Append one extra null character, the second is automatically added by our 1421 // caller. 1422 AsBytes.push_back(0); 1423 1424 IsUTF16 = true; 1425 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1426 } 1427 1428 llvm::Constant * 1429 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1430 unsigned StringLength = 0; 1431 bool isUTF16 = false; 1432 llvm::StringMapEntry<llvm::Constant*> &Entry = 1433 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1434 getTargetData().isLittleEndian(), 1435 isUTF16, StringLength); 1436 1437 if (llvm::Constant *C = Entry.getValue()) 1438 return C; 1439 1440 llvm::Constant *Zero = 1441 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1442 llvm::Constant *Zeros[] = { Zero, Zero }; 1443 1444 // If we don't already have it, get __CFConstantStringClassReference. 1445 if (!CFConstantStringClassRef) { 1446 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1447 Ty = llvm::ArrayType::get(Ty, 0); 1448 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1449 "__CFConstantStringClassReference"); 1450 // Decay array -> ptr 1451 CFConstantStringClassRef = 1452 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1453 } 1454 1455 QualType CFTy = getContext().getCFConstantStringType(); 1456 1457 const llvm::StructType *STy = 1458 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1459 1460 std::vector<llvm::Constant*> Fields(4); 1461 1462 // Class pointer. 1463 Fields[0] = CFConstantStringClassRef; 1464 1465 // Flags. 1466 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1467 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1468 llvm::ConstantInt::get(Ty, 0x07C8); 1469 1470 // String pointer. 1471 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1472 1473 const char *Sect = 0; 1474 llvm::GlobalValue::LinkageTypes Linkage; 1475 bool isConstant; 1476 if (isUTF16) { 1477 Sect = getContext().Target.getUnicodeStringSection(); 1478 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1479 Linkage = llvm::GlobalValue::InternalLinkage; 1480 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1481 // does make plain ascii ones writable. 1482 isConstant = true; 1483 } else { 1484 Linkage = llvm::GlobalValue::PrivateLinkage; 1485 isConstant = !Features.WritableStrings; 1486 } 1487 1488 llvm::GlobalVariable *GV = 1489 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1490 ".str"); 1491 if (Sect) 1492 GV->setSection(Sect); 1493 if (isUTF16) { 1494 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1495 GV->setAlignment(Align); 1496 } 1497 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1498 1499 // String length. 1500 Ty = getTypes().ConvertType(getContext().LongTy); 1501 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1502 1503 // The struct. 1504 C = llvm::ConstantStruct::get(STy, Fields); 1505 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1506 llvm::GlobalVariable::PrivateLinkage, C, 1507 "_unnamed_cfstring_"); 1508 if (const char *Sect = getContext().Target.getCFStringSection()) 1509 GV->setSection(Sect); 1510 Entry.setValue(GV); 1511 1512 return GV; 1513 } 1514 1515 /// GetStringForStringLiteral - Return the appropriate bytes for a 1516 /// string literal, properly padded to match the literal type. 1517 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1518 const char *StrData = E->getStrData(); 1519 unsigned Len = E->getByteLength(); 1520 1521 const ConstantArrayType *CAT = 1522 getContext().getAsConstantArrayType(E->getType()); 1523 assert(CAT && "String isn't pointer or array!"); 1524 1525 // Resize the string to the right size. 1526 std::string Str(StrData, StrData+Len); 1527 uint64_t RealLen = CAT->getSize().getZExtValue(); 1528 1529 if (E->isWide()) 1530 RealLen *= getContext().Target.getWCharWidth()/8; 1531 1532 Str.resize(RealLen, '\0'); 1533 1534 return Str; 1535 } 1536 1537 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1538 /// constant array for the given string literal. 1539 llvm::Constant * 1540 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1541 // FIXME: This can be more efficient. 1542 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1543 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1544 if (S->isWide()) { 1545 llvm::Type *DestTy = 1546 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1547 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1548 } 1549 return C; 1550 } 1551 1552 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1553 /// array for the given ObjCEncodeExpr node. 1554 llvm::Constant * 1555 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1556 std::string Str; 1557 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1558 1559 return GetAddrOfConstantCString(Str); 1560 } 1561 1562 1563 /// GenerateWritableString -- Creates storage for a string literal. 1564 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1565 bool constant, 1566 CodeGenModule &CGM, 1567 const char *GlobalName) { 1568 // Create Constant for this string literal. Don't add a '\0'. 1569 llvm::Constant *C = 1570 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1571 1572 // Create a global variable for this string 1573 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1574 llvm::GlobalValue::PrivateLinkage, 1575 C, GlobalName); 1576 } 1577 1578 /// GetAddrOfConstantString - Returns a pointer to a character array 1579 /// containing the literal. This contents are exactly that of the 1580 /// given string, i.e. it will not be null terminated automatically; 1581 /// see GetAddrOfConstantCString. Note that whether the result is 1582 /// actually a pointer to an LLVM constant depends on 1583 /// Feature.WriteableStrings. 1584 /// 1585 /// The result has pointer to array type. 1586 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1587 const char *GlobalName) { 1588 bool IsConstant = !Features.WritableStrings; 1589 1590 // Get the default prefix if a name wasn't specified. 1591 if (!GlobalName) 1592 GlobalName = ".str"; 1593 1594 // Don't share any string literals if strings aren't constant. 1595 if (!IsConstant) 1596 return GenerateStringLiteral(str, false, *this, GlobalName); 1597 1598 llvm::StringMapEntry<llvm::Constant *> &Entry = 1599 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1600 1601 if (Entry.getValue()) 1602 return Entry.getValue(); 1603 1604 // Create a global variable for this. 1605 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1606 Entry.setValue(C); 1607 return C; 1608 } 1609 1610 /// GetAddrOfConstantCString - Returns a pointer to a character 1611 /// array containing the literal and a terminating '\-' 1612 /// character. The result has pointer to array type. 1613 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1614 const char *GlobalName){ 1615 return GetAddrOfConstantString(str + '\0', GlobalName); 1616 } 1617 1618 /// EmitObjCPropertyImplementations - Emit information for synthesized 1619 /// properties for an implementation. 1620 void CodeGenModule::EmitObjCPropertyImplementations(const 1621 ObjCImplementationDecl *D) { 1622 for (ObjCImplementationDecl::propimpl_iterator 1623 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1624 ObjCPropertyImplDecl *PID = *i; 1625 1626 // Dynamic is just for type-checking. 1627 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1628 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1629 1630 // Determine which methods need to be implemented, some may have 1631 // been overridden. Note that ::isSynthesized is not the method 1632 // we want, that just indicates if the decl came from a 1633 // property. What we want to know is if the method is defined in 1634 // this implementation. 1635 if (!D->getInstanceMethod(PD->getGetterName())) 1636 CodeGenFunction(*this).GenerateObjCGetter( 1637 const_cast<ObjCImplementationDecl *>(D), PID); 1638 if (!PD->isReadOnly() && 1639 !D->getInstanceMethod(PD->getSetterName())) 1640 CodeGenFunction(*this).GenerateObjCSetter( 1641 const_cast<ObjCImplementationDecl *>(D), PID); 1642 } 1643 } 1644 } 1645 1646 /// EmitNamespace - Emit all declarations in a namespace. 1647 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1648 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1649 I != E; ++I) 1650 EmitTopLevelDecl(*I); 1651 } 1652 1653 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1654 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1655 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1656 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1657 ErrorUnsupported(LSD, "linkage spec"); 1658 return; 1659 } 1660 1661 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1662 I != E; ++I) 1663 EmitTopLevelDecl(*I); 1664 } 1665 1666 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1667 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1668 // If an error has occurred, stop code generation, but continue 1669 // parsing and semantic analysis (to ensure all warnings and errors 1670 // are emitted). 1671 if (Diags.hasErrorOccurred()) 1672 return; 1673 1674 // Ignore dependent declarations. 1675 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1676 return; 1677 1678 switch (D->getKind()) { 1679 case Decl::CXXConversion: 1680 case Decl::CXXMethod: 1681 case Decl::Function: 1682 // Skip function templates 1683 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1684 return; 1685 1686 EmitGlobal(cast<FunctionDecl>(D)); 1687 break; 1688 1689 case Decl::Var: 1690 EmitGlobal(cast<VarDecl>(D)); 1691 break; 1692 1693 // C++ Decls 1694 case Decl::Namespace: 1695 EmitNamespace(cast<NamespaceDecl>(D)); 1696 break; 1697 // No code generation needed. 1698 case Decl::UsingShadow: 1699 case Decl::Using: 1700 case Decl::UsingDirective: 1701 case Decl::ClassTemplate: 1702 case Decl::FunctionTemplate: 1703 case Decl::NamespaceAlias: 1704 break; 1705 case Decl::CXXConstructor: 1706 // Skip function templates 1707 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1708 return; 1709 1710 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1711 break; 1712 case Decl::CXXDestructor: 1713 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1714 break; 1715 1716 case Decl::StaticAssert: 1717 // Nothing to do. 1718 break; 1719 1720 // Objective-C Decls 1721 1722 // Forward declarations, no (immediate) code generation. 1723 case Decl::ObjCClass: 1724 case Decl::ObjCForwardProtocol: 1725 case Decl::ObjCCategory: 1726 case Decl::ObjCInterface: 1727 break; 1728 1729 case Decl::ObjCProtocol: 1730 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1731 break; 1732 1733 case Decl::ObjCCategoryImpl: 1734 // Categories have properties but don't support synthesize so we 1735 // can ignore them here. 1736 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1737 break; 1738 1739 case Decl::ObjCImplementation: { 1740 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1741 EmitObjCPropertyImplementations(OMD); 1742 Runtime->GenerateClass(OMD); 1743 break; 1744 } 1745 case Decl::ObjCMethod: { 1746 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1747 // If this is not a prototype, emit the body. 1748 if (OMD->getBody()) 1749 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1750 break; 1751 } 1752 case Decl::ObjCCompatibleAlias: 1753 // compatibility-alias is a directive and has no code gen. 1754 break; 1755 1756 case Decl::LinkageSpec: 1757 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1758 break; 1759 1760 case Decl::FileScopeAsm: { 1761 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1762 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1763 1764 const std::string &S = getModule().getModuleInlineAsm(); 1765 if (S.empty()) 1766 getModule().setModuleInlineAsm(AsmString); 1767 else 1768 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1769 break; 1770 } 1771 1772 default: 1773 // Make sure we handled everything we should, every other kind is a 1774 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1775 // function. Need to recode Decl::Kind to do that easily. 1776 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1777 } 1778 } 1779