1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
160 }
161 
162 /// AddGlobalCtor - Add a function to the list that will be called before
163 /// main() runs.
164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
165   // FIXME: Type coercion of void()* types.
166   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
167 }
168 
169 /// AddGlobalDtor - Add a function to the list that will be called
170 /// when the module is unloaded.
171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
174 }
175 
176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
177   // Ctor function type is void()*.
178   llvm::FunctionType* CtorFTy =
179     llvm::FunctionType::get(llvm::Type::VoidTy,
180                             std::vector<const llvm::Type*>(),
181                             false);
182   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
183 
184   // Get the type of a ctor entry, { i32, void ()* }.
185   llvm::StructType* CtorStructTy =
186     llvm::StructType::get(llvm::Type::Int32Ty,
187                           llvm::PointerType::getUnqual(CtorFTy), NULL);
188 
189   // Construct the constructor and destructor arrays.
190   std::vector<llvm::Constant*> Ctors;
191   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
192     std::vector<llvm::Constant*> S;
193     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
194     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
195     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
196   }
197 
198   if (!Ctors.empty()) {
199     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
200     new llvm::GlobalVariable(AT, false,
201                              llvm::GlobalValue::AppendingLinkage,
202                              llvm::ConstantArray::get(AT, Ctors),
203                              GlobalName,
204                              &TheModule);
205   }
206 }
207 
208 void CodeGenModule::EmitAnnotations() {
209   if (Annotations.empty())
210     return;
211 
212   // Create a new global variable for the ConstantStruct in the Module.
213   llvm::Constant *Array =
214   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
215                                                 Annotations.size()),
216                            Annotations);
217   llvm::GlobalValue *gv =
218   new llvm::GlobalVariable(Array->getType(), false,
219                            llvm::GlobalValue::AppendingLinkage, Array,
220                            "llvm.global.annotations", &TheModule);
221   gv->setSection("llvm.metadata");
222 }
223 
224 /// SetGlobalValueAttributes - Set attributes for a global.
225 ///
226 /// FIXME: This is currently only done for aliases and functions, but
227 /// not for variables (these details are set in
228 /// EmitGlobalVarDefinition for variables).
229 void CodeGenModule::SetGlobalValueAttributes(const Decl *D,
230                                              GVALinkage Linkage,
231                                              llvm::GlobalValue *GV,
232                                              bool ForDefinition) {
233   // FIXME: Set up linkage and many other things.  Note, this is a simple
234   // approximation of what we really want.
235   if (!ForDefinition) {
236     // Only a few attributes are set on declarations.
237 
238     // The dllimport attribute is overridden by a subsequent declaration as
239     // dllexport.
240     if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
241       // dllimport attribute can be applied only to function decls, not to
242       // definitions.
243       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
244         if (!FD->getBody())
245           GV->setLinkage(llvm::Function::DLLImportLinkage);
246       } else
247         GV->setLinkage(llvm::Function::DLLImportLinkage);
248     } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
249       // "extern_weak" is overloaded in LLVM; we probably should have
250       // separate linkage types for this.
251       GV->setLinkage(llvm::Function::ExternalWeakLinkage);
252     }
253   } else if (Linkage == GVA_Internal) {
254     GV->setLinkage(llvm::Function::InternalLinkage);
255   } else if (D->hasAttr<DLLExportAttr>()) {
256     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
257       // The dllexport attribute is ignored for undefined symbols.
258       if (FD->getBody())
259         GV->setLinkage(llvm::Function::DLLExportLinkage);
260     } else {
261       GV->setLinkage(llvm::Function::DLLExportLinkage);
262     }
263   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
264     GV->setLinkage(llvm::Function::WeakAnyLinkage);
265   } else if (Linkage == GVA_Inline || Linkage == GVA_ExternInline) {
266     GV->setLinkage(llvm::Function::WeakAnyLinkage);
267   }
268 
269   if (ForDefinition) {
270     setGlobalVisibility(GV, D);
271 
272     // Only add to llvm.used when we see a definition, otherwise we
273     // might add it multiple times or risk the value being replaced by
274     // a subsequent RAUW.
275     if (D->hasAttr<UsedAttr>())
276       AddUsedGlobal(GV);
277   }
278 
279   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
280     GV->setSection(SA->getName());
281 }
282 
283 void CodeGenModule::SetFunctionAttributes(const Decl *D,
284                                           const CGFunctionInfo &Info,
285                                           llvm::Function *F) {
286   AttributeListType AttributeList;
287   ConstructAttributeList(Info, D, AttributeList);
288 
289   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
290                                         AttributeList.size()));
291 
292   // Set the appropriate calling convention for the Function.
293   if (D->hasAttr<FastCallAttr>())
294     F->setCallingConv(llvm::CallingConv::X86_FastCall);
295 
296   if (D->hasAttr<StdCallAttr>())
297     F->setCallingConv(llvm::CallingConv::X86_StdCall);
298 }
299 
300 
301 static CodeGenModule::GVALinkage
302 GetLinkageForFunctionOrMethodDecl(const Decl *D) {
303   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
304     if (FD->getStorageClass() == FunctionDecl::Static)
305       return CodeGenModule::GVA_Internal;
306     if (FD->isInline()) {
307       if (FD->getStorageClass() == FunctionDecl::Extern)
308         return CodeGenModule::GVA_ExternInline;
309       return CodeGenModule::GVA_Inline;
310     }
311   } else {
312     assert(isa<ObjCMethodDecl>(D));
313     return CodeGenModule::GVA_Internal;
314   }
315   return CodeGenModule::GVA_Normal;
316 }
317 
318 /// SetFunctionAttributesForDefinition - Set function attributes
319 /// specific to a function definition.
320 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
321                                                        llvm::Function *F) {
322   SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true);
323 
324   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
325     F->addFnAttr(llvm::Attribute::NoUnwind);
326 
327   if (D->hasAttr<AlwaysInlineAttr>())
328     F->addFnAttr(llvm::Attribute::AlwaysInline);
329 
330   if (D->hasAttr<NoinlineAttr>())
331     F->addFnAttr(llvm::Attribute::NoInline);
332 }
333 
334 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
335                                         llvm::Function *F) {
336   SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
337 
338   SetFunctionAttributesForDefinition(MD, F);
339 }
340 
341 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
342                                           llvm::Function *F) {
343   SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
344 
345   SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false);
346 }
347 
348 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
349   assert(!GV->isDeclaration() &&
350          "Only globals with definition can force usage.");
351   LLVMUsed.push_back(GV);
352 }
353 
354 void CodeGenModule::EmitLLVMUsed() {
355   // Don't create llvm.used if there is no need.
356   if (LLVMUsed.empty())
357     return;
358 
359   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
360   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
361 
362   // Convert LLVMUsed to what ConstantArray needs.
363   std::vector<llvm::Constant*> UsedArray;
364   UsedArray.resize(LLVMUsed.size());
365   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
366     UsedArray[i] =
367      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
368   }
369 
370   llvm::GlobalVariable *GV =
371     new llvm::GlobalVariable(ATy, false,
372                              llvm::GlobalValue::AppendingLinkage,
373                              llvm::ConstantArray::get(ATy, UsedArray),
374                              "llvm.used", &getModule());
375 
376   GV->setSection("llvm.metadata");
377 }
378 
379 void CodeGenModule::EmitDeferred() {
380   // Emit code for any potentially referenced deferred decls.  Since a
381   // previously unused static decl may become used during the generation of code
382   // for a static function, iterate until no  changes are made.
383   while (!DeferredDeclsToEmit.empty()) {
384     const ValueDecl *D = DeferredDeclsToEmit.back();
385     DeferredDeclsToEmit.pop_back();
386 
387     // The mangled name for the decl must have been emitted in GlobalDeclMap.
388     // Look it up to see if it was defined with a stronger definition (e.g. an
389     // extern inline function with a strong function redefinition).  If so,
390     // just ignore the deferred decl.
391     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
392     assert(CGRef && "Deferred decl wasn't referenced?");
393 
394     if (!CGRef->isDeclaration())
395       continue;
396 
397     // Otherwise, emit the definition and move on to the next one.
398     EmitGlobalDefinition(D);
399   }
400 }
401 
402 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
403 /// annotation information for a given GlobalValue.  The annotation struct is
404 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
405 /// GlobalValue being annotated.  The second field is the constant string
406 /// created from the AnnotateAttr's annotation.  The third field is a constant
407 /// string containing the name of the translation unit.  The fourth field is
408 /// the line number in the file of the annotated value declaration.
409 ///
410 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
411 ///        appears to.
412 ///
413 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
414                                                 const AnnotateAttr *AA,
415                                                 unsigned LineNo) {
416   llvm::Module *M = &getModule();
417 
418   // get [N x i8] constants for the annotation string, and the filename string
419   // which are the 2nd and 3rd elements of the global annotation structure.
420   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
421   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
422   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
423                                                   true);
424 
425   // Get the two global values corresponding to the ConstantArrays we just
426   // created to hold the bytes of the strings.
427   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
428   llvm::GlobalValue *annoGV =
429   new llvm::GlobalVariable(anno->getType(), false,
430                            llvm::GlobalValue::InternalLinkage, anno,
431                            GV->getName() + StringPrefix, M);
432   // translation unit name string, emitted into the llvm.metadata section.
433   llvm::GlobalValue *unitGV =
434   new llvm::GlobalVariable(unit->getType(), false,
435                            llvm::GlobalValue::InternalLinkage, unit,
436                            StringPrefix, M);
437 
438   // Create the ConstantStruct that is the global annotion.
439   llvm::Constant *Fields[4] = {
440     llvm::ConstantExpr::getBitCast(GV, SBP),
441     llvm::ConstantExpr::getBitCast(annoGV, SBP),
442     llvm::ConstantExpr::getBitCast(unitGV, SBP),
443     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
444   };
445   return llvm::ConstantStruct::get(Fields, 4, false);
446 }
447 
448 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
449   // Never defer when EmitAllDecls is specified or the decl has
450   // attribute used.
451   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
452     return false;
453 
454   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
455     // Constructors and destructors should never be deferred.
456     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
457       return false;
458 
459     // FIXME: What about inline, and/or extern inline?
460     if (FD->getStorageClass() != FunctionDecl::Static)
461       return false;
462   } else {
463     const VarDecl *VD = cast<VarDecl>(Global);
464     assert(VD->isFileVarDecl() && "Invalid decl");
465 
466     if (VD->getStorageClass() != VarDecl::Static)
467       return false;
468   }
469 
470   return true;
471 }
472 
473 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
474   // If this is an alias definition (which otherwise looks like a declaration)
475   // emit it now.
476   if (Global->hasAttr<AliasAttr>())
477     return EmitAliasDefinition(Global);
478 
479   // Ignore declarations, they will be emitted on their first use.
480   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
481     // Forward declarations are emitted lazily on first use.
482     if (!FD->isThisDeclarationADefinition())
483       return;
484   } else {
485     const VarDecl *VD = cast<VarDecl>(Global);
486     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
487 
488     // Forward declarations are emitted lazily on first use.
489     if (!VD->getInit() && VD->hasExternalStorage())
490       return;
491   }
492 
493   // Defer code generation when possible if this is a static definition, inline
494   // function etc.  These we only want to emit if they are used.
495   if (MayDeferGeneration(Global)) {
496     // If the value has already been used, add it directly to the
497     // DeferredDeclsToEmit list.
498     const char *MangledName = getMangledName(Global);
499     if (GlobalDeclMap.count(MangledName))
500       DeferredDeclsToEmit.push_back(Global);
501     else {
502       // Otherwise, remember that we saw a deferred decl with this name.  The
503       // first use of the mangled name will cause it to move into
504       // DeferredDeclsToEmit.
505       DeferredDecls[MangledName] = Global;
506     }
507     return;
508   }
509 
510   // Otherwise emit the definition.
511   EmitGlobalDefinition(Global);
512 }
513 
514 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
515   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
516     EmitGlobalFunctionDefinition(FD);
517   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
518     EmitGlobalVarDefinition(VD);
519   } else {
520     assert(0 && "Invalid argument to EmitGlobalDefinition()");
521   }
522 }
523 
524 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
525 /// module, create and return an llvm Function with the specified type. If there
526 /// is something in the module with the specified name, return it potentially
527 /// bitcasted to the right type.
528 ///
529 /// If D is non-null, it specifies a decl that correspond to this.  This is used
530 /// to set the attributes on the function when it is first created.
531 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
532                                                        const llvm::Type *Ty,
533                                                        const FunctionDecl *D) {
534   // Lookup the entry, lazily creating it if necessary.
535   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
536   if (Entry) {
537     if (Entry->getType()->getElementType() == Ty)
538       return Entry;
539 
540     // Make sure the result is of the correct type.
541     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
542     return llvm::ConstantExpr::getBitCast(Entry, PTy);
543   }
544 
545   // This is the first use or definition of a mangled name.  If there is a
546   // deferred decl with this name, remember that we need to emit it at the end
547   // of the file.
548   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
549   DeferredDecls.find(MangledName);
550   if (DDI != DeferredDecls.end()) {
551     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
552     // list, and remove it from DeferredDecls (since we don't need it anymore).
553     DeferredDeclsToEmit.push_back(DDI->second);
554     DeferredDecls.erase(DDI);
555   }
556 
557   // This function doesn't have a complete type (for example, the return
558   // type is an incomplete struct). Use a fake type instead, and make
559   // sure not to try to set attributes.
560   bool ShouldSetAttributes = true;
561   if (!isa<llvm::FunctionType>(Ty)) {
562     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
563                                  std::vector<const llvm::Type*>(), false);
564     ShouldSetAttributes = false;
565   }
566   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
567                                              llvm::Function::ExternalLinkage,
568                                              "", &getModule());
569   F->setName(MangledName);
570   if (D && ShouldSetAttributes)
571     SetFunctionAttributes(D, F);
572   Entry = F;
573   return F;
574 }
575 
576 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
577 /// non-null, then this function will use the specified type if it has to
578 /// create it (this occurs when we see a definition of the function).
579 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
580                                                  const llvm::Type *Ty) {
581   // If there was no specific requested type, just convert it now.
582   if (!Ty)
583     Ty = getTypes().ConvertType(D->getType());
584   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
585 }
586 
587 /// CreateRuntimeFunction - Create a new runtime function with the specified
588 /// type and name.
589 llvm::Constant *
590 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
591                                      const char *Name) {
592   // Convert Name to be a uniqued string from the IdentifierInfo table.
593   Name = getContext().Idents.get(Name).getName();
594   return GetOrCreateLLVMFunction(Name, FTy, 0);
595 }
596 
597 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
598 /// create and return an llvm GlobalVariable with the specified type.  If there
599 /// is something in the module with the specified name, return it potentially
600 /// bitcasted to the right type.
601 ///
602 /// If D is non-null, it specifies a decl that correspond to this.  This is used
603 /// to set the attributes on the global when it is first created.
604 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
605                                                      const llvm::PointerType*Ty,
606                                                      const VarDecl *D) {
607   // Lookup the entry, lazily creating it if necessary.
608   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
609   if (Entry) {
610     if (Entry->getType() == Ty)
611       return Entry;
612 
613     // Make sure the result is of the correct type.
614     return llvm::ConstantExpr::getBitCast(Entry, Ty);
615   }
616 
617   // We don't support __thread yet.
618   if (D && D->isThreadSpecified())
619     ErrorUnsupported(D, "thread local ('__thread') variable", true);
620 
621   // This is the first use or definition of a mangled name.  If there is a
622   // deferred decl with this name, remember that we need to emit it at the end
623   // of the file.
624   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
625     DeferredDecls.find(MangledName);
626   if (DDI != DeferredDecls.end()) {
627     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
628     // list, and remove it from DeferredDecls (since we don't need it anymore).
629     DeferredDeclsToEmit.push_back(DDI->second);
630     DeferredDecls.erase(DDI);
631   }
632 
633   llvm::GlobalVariable *GV =
634     new llvm::GlobalVariable(Ty->getElementType(), false,
635                              llvm::GlobalValue::ExternalLinkage,
636                              0, "", &getModule(),
637                              0, Ty->getAddressSpace());
638   GV->setName(MangledName);
639 
640   // Handle things which are present even on external declarations.
641   if (D) {
642     // FIXME: This code is overly simple and should be merged with
643     // other global handling.
644     GV->setConstant(D->getType().isConstant(Context));
645 
646     // FIXME: Merge with other attribute handling code.
647     if (D->getStorageClass() == VarDecl::PrivateExtern)
648       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
649 
650     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
651       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
652   }
653 
654   return Entry = GV;
655 }
656 
657 
658 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
659 /// given global variable.  If Ty is non-null and if the global doesn't exist,
660 /// then it will be greated with the specified type instead of whatever the
661 /// normal requested type would be.
662 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
663                                                   const llvm::Type *Ty) {
664   assert(D->hasGlobalStorage() && "Not a global variable");
665   QualType ASTTy = D->getType();
666   if (Ty == 0)
667     Ty = getTypes().ConvertTypeForMem(ASTTy);
668 
669   const llvm::PointerType *PTy =
670     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
671   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
672 }
673 
674 /// CreateRuntimeVariable - Create a new runtime global variable with the
675 /// specified type and name.
676 llvm::Constant *
677 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
678                                      const char *Name) {
679   // Convert Name to be a uniqued string from the IdentifierInfo table.
680   Name = getContext().Idents.get(Name).getName();
681   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
682 }
683 
684 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
685   llvm::Constant *Init = 0;
686   QualType ASTTy = D->getType();
687 
688   if (D->getInit() == 0) {
689     // This is a tentative definition; tentative definitions are
690     // implicitly initialized with { 0 }
691     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
692     if (ASTTy->isIncompleteArrayType()) {
693       // An incomplete array is normally [ TYPE x 0 ], but we need
694       // to fix it to [ TYPE x 1 ].
695       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
696       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
697     }
698     Init = llvm::Constant::getNullValue(InitTy);
699   } else {
700     Init = EmitConstantExpr(D->getInit(), D->getType());
701     if (!Init) {
702       ErrorUnsupported(D, "static initializer");
703       QualType T = D->getInit()->getType();
704       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
705     }
706   }
707 
708   const llvm::Type* InitType = Init->getType();
709   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
710 
711   // Strip off a bitcast if we got one back.
712   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
713     assert(CE->getOpcode() == llvm::Instruction::BitCast);
714     Entry = CE->getOperand(0);
715   }
716 
717   // Entry is now either a Function or GlobalVariable.
718   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
719 
720   // If we already have this global and it has an initializer, then
721   // we are in the rare situation where we emitted the defining
722   // declaration of the global and are now being asked to emit a
723   // definition which would be common. This occurs, for example, in
724   // the following situation because statics can be emitted out of
725   // order:
726   //
727   //  static int x;
728   //  static int *y = &x;
729   //  static int x = 10;
730   //  int **z = &y;
731   //
732   // Bail here so we don't blow away the definition. Note that if we
733   // can't distinguish here if we emitted a definition with a null
734   // initializer, but this case is safe.
735   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
736     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
737     return;
738   }
739 
740   // We have a definition after a declaration with the wrong type.
741   // We must make a new GlobalVariable* and update everything that used OldGV
742   // (a declaration or tentative definition) with the new GlobalVariable*
743   // (which will be a definition).
744   //
745   // This happens if there is a prototype for a global (e.g.
746   // "extern int x[];") and then a definition of a different type (e.g.
747   // "int x[10];"). This also happens when an initializer has a different type
748   // from the type of the global (this happens with unions).
749   if (GV == 0 ||
750       GV->getType()->getElementType() != InitType ||
751       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
752 
753     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
754     GlobalDeclMap.erase(getMangledName(D));
755 
756     // Make a new global with the correct type, this is now guaranteed to work.
757     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
758     GV->takeName(cast<llvm::GlobalValue>(Entry));
759 
760     // Replace all uses of the old global with the new global
761     llvm::Constant *NewPtrForOldDecl =
762         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
763     Entry->replaceAllUsesWith(NewPtrForOldDecl);
764 
765     // Erase the old global, since it is no longer used.
766     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
767   }
768 
769   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
770     SourceManager &SM = Context.getSourceManager();
771     AddAnnotation(EmitAnnotateAttr(GV, AA,
772                               SM.getInstantiationLineNumber(D->getLocation())));
773   }
774 
775   GV->setInitializer(Init);
776   GV->setConstant(D->getType().isConstant(Context));
777   GV->setAlignment(getContext().getDeclAlignInBytes(D));
778 
779   // Set the llvm linkage type as appropriate.
780   if (D->getStorageClass() == VarDecl::Static)
781     GV->setLinkage(llvm::Function::InternalLinkage);
782   else if (D->hasAttr<DLLImportAttr>())
783     GV->setLinkage(llvm::Function::DLLImportLinkage);
784   else if (D->hasAttr<DLLExportAttr>())
785     GV->setLinkage(llvm::Function::DLLExportLinkage);
786   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
787     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
788   else if (!CompileOpts.NoCommon &&
789            (!D->hasExternalStorage() && !D->getInit()))
790     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
791   else
792     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
793 
794   setGlobalVisibility(GV, D);
795 
796   if (D->hasAttr<UsedAttr>())
797     AddUsedGlobal(GV);
798 
799   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
800     GV->setSection(SA->getName());
801 
802   // Emit global variable debug information.
803   if (CGDebugInfo *DI = getDebugInfo()) {
804     DI->setLocation(D->getLocation());
805     DI->EmitGlobalVariable(GV, D);
806   }
807 }
808 
809 
810 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
811   const llvm::FunctionType *Ty;
812 
813   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
814     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
815 
816     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
817   } else {
818     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
819 
820     // As a special case, make sure that definitions of K&R function
821     // "type foo()" aren't declared as varargs (which forces the backend
822     // to do unnecessary work).
823     if (D->getType()->isFunctionNoProtoType()) {
824       assert(Ty->isVarArg() && "Didn't lower type as expected");
825       // Due to stret, the lowered function could have arguments.
826       // Just create the same type as was lowered by ConvertType
827       // but strip off the varargs bit.
828       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
829       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
830     }
831   }
832 
833   // Get or create the prototype for teh function.
834   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
835 
836   // Strip off a bitcast if we got one back.
837   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
838     assert(CE->getOpcode() == llvm::Instruction::BitCast);
839     Entry = CE->getOperand(0);
840   }
841 
842 
843   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
844     // If the types mismatch then we have to rewrite the definition.
845     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
846            "Shouldn't replace non-declaration");
847 
848     // F is the Function* for the one with the wrong type, we must make a new
849     // Function* and update everything that used F (a declaration) with the new
850     // Function* (which will be a definition).
851     //
852     // This happens if there is a prototype for a function
853     // (e.g. "int f()") and then a definition of a different type
854     // (e.g. "int f(int x)").  Start by making a new function of the
855     // correct type, RAUW, then steal the name.
856     GlobalDeclMap.erase(getMangledName(D));
857     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
858     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
859 
860     // Replace uses of F with the Function we will endow with a body.
861     llvm::Constant *NewPtrForOldDecl =
862       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
863     Entry->replaceAllUsesWith(NewPtrForOldDecl);
864 
865     // Ok, delete the old function now, which is dead.
866     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
867 
868     Entry = NewFn;
869   }
870 
871   llvm::Function *Fn = cast<llvm::Function>(Entry);
872 
873   CodeGenFunction(*this).GenerateCode(D, Fn);
874 
875   SetFunctionAttributesForDefinition(D, Fn);
876 
877   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
878     AddGlobalCtor(Fn, CA->getPriority());
879   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
880     AddGlobalDtor(Fn, DA->getPriority());
881 }
882 
883 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
884   const AliasAttr *AA = D->getAttr<AliasAttr>();
885   assert(AA && "Not an alias?");
886 
887   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
888 
889   // Unique the name through the identifier table.
890   const char *AliaseeName = AA->getAliasee().c_str();
891   AliaseeName = getContext().Idents.get(AliaseeName).getName();
892 
893   // Create a reference to the named value.  This ensures that it is emitted
894   // if a deferred decl.
895   llvm::Constant *Aliasee;
896   if (isa<llvm::FunctionType>(DeclTy))
897     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
898   else
899     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
900                                     llvm::PointerType::getUnqual(DeclTy), 0);
901 
902   // Create the new alias itself, but don't set a name yet.
903   llvm::GlobalValue *GA =
904     new llvm::GlobalAlias(Aliasee->getType(),
905                           llvm::Function::ExternalLinkage,
906                           "", Aliasee, &getModule());
907 
908   // See if there is already something with the alias' name in the module.
909   const char *MangledName = getMangledName(D);
910   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
911 
912   if (Entry && !Entry->isDeclaration()) {
913     // If there is a definition in the module, then it wins over the alias.
914     // This is dubious, but allow it to be safe.  Just ignore the alias.
915     GA->eraseFromParent();
916     return;
917   }
918 
919   if (Entry) {
920     // If there is a declaration in the module, then we had an extern followed
921     // by the alias, as in:
922     //   extern int test6();
923     //   ...
924     //   int test6() __attribute__((alias("test7")));
925     //
926     // Remove it and replace uses of it with the alias.
927 
928     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
929                                                           Entry->getType()));
930     Entry->eraseFromParent();
931   }
932 
933   // Now we know that there is no conflict, set the name.
934   Entry = GA;
935   GA->setName(MangledName);
936 
937   // Alias should never be internal or inline.
938   SetGlobalValueAttributes(D, GVA_Normal, GA, true);
939 }
940 
941 /// getBuiltinLibFunction - Given a builtin id for a function like
942 /// "__builtin_fabsf", return a Function* for "fabsf".
943 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
944   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
945           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
946          "isn't a lib fn");
947 
948   // Get the name, skip over the __builtin_ prefix (if necessary).
949   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
950   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
951     Name += 10;
952 
953   // Get the type for the builtin.
954   Builtin::Context::GetBuiltinTypeError Error;
955   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
956   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
957 
958   const llvm::FunctionType *Ty =
959     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
960 
961   // Unique the name through the identifier table.
962   Name = getContext().Idents.get(Name).getName();
963   // FIXME: param attributes for sext/zext etc.
964   return GetOrCreateLLVMFunction(Name, Ty, 0);
965 }
966 
967 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
968                                             unsigned NumTys) {
969   return llvm::Intrinsic::getDeclaration(&getModule(),
970                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
971 }
972 
973 llvm::Function *CodeGenModule::getMemCpyFn() {
974   if (MemCpyFn) return MemCpyFn;
975   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
976   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
977 }
978 
979 llvm::Function *CodeGenModule::getMemMoveFn() {
980   if (MemMoveFn) return MemMoveFn;
981   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
982   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
983 }
984 
985 llvm::Function *CodeGenModule::getMemSetFn() {
986   if (MemSetFn) return MemSetFn;
987   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
988   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
989 }
990 
991 static void appendFieldAndPadding(CodeGenModule &CGM,
992                                   std::vector<llvm::Constant*>& Fields,
993                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
994                                   llvm::Constant* Field,
995                                   RecordDecl* RD, const llvm::StructType *STy) {
996   // Append the field.
997   Fields.push_back(Field);
998 
999   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1000 
1001   int NextStructFieldNo;
1002   if (!NextFieldD) {
1003     NextStructFieldNo = STy->getNumElements();
1004   } else {
1005     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1006   }
1007 
1008   // Append padding
1009   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1010     llvm::Constant *C =
1011       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1012 
1013     Fields.push_back(C);
1014   }
1015 }
1016 
1017 llvm::Constant *CodeGenModule::
1018 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1019   std::string str;
1020   unsigned StringLength;
1021 
1022   bool isUTF16 = false;
1023   if (Literal->containsNonAsciiOrNull()) {
1024     // Convert from UTF-8 to UTF-16.
1025     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1026     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1027     UTF16 *ToPtr = &ToBuf[0];
1028 
1029     ConversionResult Result;
1030     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1031                                 &ToPtr, ToPtr+Literal->getByteLength(),
1032                                 strictConversion);
1033     if (Result == conversionOK) {
1034       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1035       // without doing more surgery to this routine. Since we aren't explicitly
1036       // checking for endianness here, it's also a bug (when generating code for
1037       // a target that doesn't match the host endianness). Modeling this as an
1038       // i16 array is likely the cleanest solution.
1039       StringLength = ToPtr-&ToBuf[0];
1040       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1041       isUTF16 = true;
1042     } else if (Result == sourceIllegal) {
1043       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1044       str.assign(Literal->getStrData(), Literal->getByteLength());
1045       StringLength = str.length();
1046     } else
1047       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1048 
1049   } else {
1050     str.assign(Literal->getStrData(), Literal->getByteLength());
1051     StringLength = str.length();
1052   }
1053   llvm::StringMapEntry<llvm::Constant *> &Entry =
1054     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1055 
1056   if (llvm::Constant *C = Entry.getValue())
1057     return C;
1058 
1059   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1060   llvm::Constant *Zeros[] = { Zero, Zero };
1061 
1062   if (!CFConstantStringClassRef) {
1063     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1064     Ty = llvm::ArrayType::get(Ty, 0);
1065 
1066     // FIXME: This is fairly broken if
1067     // __CFConstantStringClassReference is already defined, in that it
1068     // will get renamed and the user will most likely see an opaque
1069     // error message. This is a general issue with relying on
1070     // particular names.
1071     llvm::GlobalVariable *GV =
1072       new llvm::GlobalVariable(Ty, false,
1073                                llvm::GlobalVariable::ExternalLinkage, 0,
1074                                "__CFConstantStringClassReference",
1075                                &getModule());
1076 
1077     // Decay array -> ptr
1078     CFConstantStringClassRef =
1079       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1080   }
1081 
1082   QualType CFTy = getContext().getCFConstantStringType();
1083   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1084 
1085   const llvm::StructType *STy =
1086     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1087 
1088   std::vector<llvm::Constant*> Fields;
1089   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1090 
1091   // Class pointer.
1092   FieldDecl *CurField = *Field++;
1093   FieldDecl *NextField = *Field++;
1094   appendFieldAndPadding(*this, Fields, CurField, NextField,
1095                         CFConstantStringClassRef, CFRD, STy);
1096 
1097   // Flags.
1098   CurField = NextField;
1099   NextField = *Field++;
1100   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1101   appendFieldAndPadding(*this, Fields, CurField, NextField,
1102                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1103                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1104                         CFRD, STy);
1105 
1106   // String pointer.
1107   CurField = NextField;
1108   NextField = *Field++;
1109   llvm::Constant *C = llvm::ConstantArray::get(str);
1110 
1111   const char *Sect, *Prefix;
1112   bool isConstant;
1113   if (isUTF16) {
1114     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1115     Sect = getContext().Target.getUnicodeStringSection();
1116     // FIXME: Why does GCC not set constant here?
1117     isConstant = false;
1118   } else {
1119     Prefix = getContext().Target.getStringSymbolPrefix(true);
1120     Sect = getContext().Target.getCFStringDataSection();
1121     // FIXME: -fwritable-strings should probably affect this, but we
1122     // are following gcc here.
1123     isConstant = true;
1124   }
1125   llvm::GlobalVariable *GV =
1126     new llvm::GlobalVariable(C->getType(), isConstant,
1127                              llvm::GlobalValue::InternalLinkage,
1128                              C, Prefix, &getModule());
1129   if (Sect)
1130     GV->setSection(Sect);
1131   if (isUTF16) {
1132     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1133     GV->setAlignment(Align);
1134   }
1135   appendFieldAndPadding(*this, Fields, CurField, NextField,
1136                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1137                         CFRD, STy);
1138 
1139   // String length.
1140   CurField = NextField;
1141   NextField = 0;
1142   Ty = getTypes().ConvertType(getContext().LongTy);
1143   appendFieldAndPadding(*this, Fields, CurField, NextField,
1144                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1145 
1146   // The struct.
1147   C = llvm::ConstantStruct::get(STy, Fields);
1148   GV = new llvm::GlobalVariable(C->getType(), true,
1149                                 llvm::GlobalVariable::InternalLinkage, C,
1150                                 getContext().Target.getCFStringSymbolPrefix(),
1151                                 &getModule());
1152   if (const char *Sect = getContext().Target.getCFStringSection())
1153     GV->setSection(Sect);
1154   Entry.setValue(GV);
1155 
1156   return GV;
1157 }
1158 
1159 /// GetStringForStringLiteral - Return the appropriate bytes for a
1160 /// string literal, properly padded to match the literal type.
1161 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1162   const char *StrData = E->getStrData();
1163   unsigned Len = E->getByteLength();
1164 
1165   const ConstantArrayType *CAT =
1166     getContext().getAsConstantArrayType(E->getType());
1167   assert(CAT && "String isn't pointer or array!");
1168 
1169   // Resize the string to the right size.
1170   std::string Str(StrData, StrData+Len);
1171   uint64_t RealLen = CAT->getSize().getZExtValue();
1172 
1173   if (E->isWide())
1174     RealLen *= getContext().Target.getWCharWidth()/8;
1175 
1176   Str.resize(RealLen, '\0');
1177 
1178   return Str;
1179 }
1180 
1181 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1182 /// constant array for the given string literal.
1183 llvm::Constant *
1184 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1185   // FIXME: This can be more efficient.
1186   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1187 }
1188 
1189 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1190 /// array for the given ObjCEncodeExpr node.
1191 llvm::Constant *
1192 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1193   std::string Str;
1194   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1195 
1196   return GetAddrOfConstantCString(Str);
1197 }
1198 
1199 
1200 /// GenerateWritableString -- Creates storage for a string literal.
1201 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1202                                              bool constant,
1203                                              CodeGenModule &CGM,
1204                                              const char *GlobalName) {
1205   // Create Constant for this string literal. Don't add a '\0'.
1206   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1207 
1208   // Create a global variable for this string
1209   return new llvm::GlobalVariable(C->getType(), constant,
1210                                   llvm::GlobalValue::InternalLinkage,
1211                                   C, GlobalName, &CGM.getModule());
1212 }
1213 
1214 /// GetAddrOfConstantString - Returns a pointer to a character array
1215 /// containing the literal. This contents are exactly that of the
1216 /// given string, i.e. it will not be null terminated automatically;
1217 /// see GetAddrOfConstantCString. Note that whether the result is
1218 /// actually a pointer to an LLVM constant depends on
1219 /// Feature.WriteableStrings.
1220 ///
1221 /// The result has pointer to array type.
1222 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1223                                                        const char *GlobalName) {
1224   bool IsConstant = !Features.WritableStrings;
1225 
1226   // Get the default prefix if a name wasn't specified.
1227   if (!GlobalName)
1228     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1229 
1230   // Don't share any string literals if strings aren't constant.
1231   if (!IsConstant)
1232     return GenerateStringLiteral(str, false, *this, GlobalName);
1233 
1234   llvm::StringMapEntry<llvm::Constant *> &Entry =
1235   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1236 
1237   if (Entry.getValue())
1238     return Entry.getValue();
1239 
1240   // Create a global variable for this.
1241   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1242   Entry.setValue(C);
1243   return C;
1244 }
1245 
1246 /// GetAddrOfConstantCString - Returns a pointer to a character
1247 /// array containing the literal and a terminating '\-'
1248 /// character. The result has pointer to array type.
1249 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1250                                                         const char *GlobalName){
1251   return GetAddrOfConstantString(str + '\0', GlobalName);
1252 }
1253 
1254 /// EmitObjCPropertyImplementations - Emit information for synthesized
1255 /// properties for an implementation.
1256 void CodeGenModule::EmitObjCPropertyImplementations(const
1257                                                     ObjCImplementationDecl *D) {
1258   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1259          e = D->propimpl_end(); i != e; ++i) {
1260     ObjCPropertyImplDecl *PID = *i;
1261 
1262     // Dynamic is just for type-checking.
1263     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1264       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1265 
1266       // Determine which methods need to be implemented, some may have
1267       // been overridden. Note that ::isSynthesized is not the method
1268       // we want, that just indicates if the decl came from a
1269       // property. What we want to know is if the method is defined in
1270       // this implementation.
1271       if (!D->getInstanceMethod(PD->getGetterName()))
1272         CodeGenFunction(*this).GenerateObjCGetter(
1273                                  const_cast<ObjCImplementationDecl *>(D), PID);
1274       if (!PD->isReadOnly() &&
1275           !D->getInstanceMethod(PD->getSetterName()))
1276         CodeGenFunction(*this).GenerateObjCSetter(
1277                                  const_cast<ObjCImplementationDecl *>(D), PID);
1278     }
1279   }
1280 }
1281 
1282 /// EmitNamespace - Emit all declarations in a namespace.
1283 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1284   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1285          E = ND->decls_end(getContext());
1286        I != E; ++I)
1287     EmitTopLevelDecl(*I);
1288 }
1289 
1290 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1291 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1292   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1293     ErrorUnsupported(LSD, "linkage spec");
1294     return;
1295   }
1296 
1297   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1298          E = LSD->decls_end(getContext());
1299        I != E; ++I)
1300     EmitTopLevelDecl(*I);
1301 }
1302 
1303 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1304 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1305   // If an error has occurred, stop code generation, but continue
1306   // parsing and semantic analysis (to ensure all warnings and errors
1307   // are emitted).
1308   if (Diags.hasErrorOccurred())
1309     return;
1310 
1311   switch (D->getKind()) {
1312   case Decl::CXXMethod:
1313   case Decl::Function:
1314   case Decl::Var:
1315     EmitGlobal(cast<ValueDecl>(D));
1316     break;
1317 
1318   case Decl::Namespace:
1319     EmitNamespace(cast<NamespaceDecl>(D));
1320     break;
1321 
1322     // Objective-C Decls
1323 
1324   // Forward declarations, no (immediate) code generation.
1325   case Decl::ObjCClass:
1326   case Decl::ObjCForwardProtocol:
1327   case Decl::ObjCCategory:
1328     break;
1329   case Decl::ObjCInterface:
1330     // If we already laid out this interface due to an @class, and if we
1331     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1332     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1333     break;
1334 
1335   case Decl::ObjCProtocol:
1336     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1337     break;
1338 
1339   case Decl::ObjCCategoryImpl:
1340     // Categories have properties but don't support synthesize so we
1341     // can ignore them here.
1342     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1343     break;
1344 
1345   case Decl::ObjCImplementation: {
1346     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1347     EmitObjCPropertyImplementations(OMD);
1348     Runtime->GenerateClass(OMD);
1349     break;
1350   }
1351   case Decl::ObjCMethod: {
1352     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1353     // If this is not a prototype, emit the body.
1354     if (OMD->getBody())
1355       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1356     break;
1357   }
1358   case Decl::ObjCCompatibleAlias:
1359     // compatibility-alias is a directive and has no code gen.
1360     break;
1361 
1362   case Decl::LinkageSpec:
1363     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1364     break;
1365 
1366   case Decl::FileScopeAsm: {
1367     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1368     std::string AsmString(AD->getAsmString()->getStrData(),
1369                           AD->getAsmString()->getByteLength());
1370 
1371     const std::string &S = getModule().getModuleInlineAsm();
1372     if (S.empty())
1373       getModule().setModuleInlineAsm(AsmString);
1374     else
1375       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1376     break;
1377   }
1378 
1379   default:
1380     // Make sure we handled everything we should, every other kind is
1381     // a non-top-level decl.  FIXME: Would be nice to have an
1382     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1383     // that easily.
1384     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1385   }
1386 }
1387