1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 160 } 161 162 /// AddGlobalCtor - Add a function to the list that will be called before 163 /// main() runs. 164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 165 // FIXME: Type coercion of void()* types. 166 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 167 } 168 169 /// AddGlobalDtor - Add a function to the list that will be called 170 /// when the module is unloaded. 171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 174 } 175 176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 177 // Ctor function type is void()*. 178 llvm::FunctionType* CtorFTy = 179 llvm::FunctionType::get(llvm::Type::VoidTy, 180 std::vector<const llvm::Type*>(), 181 false); 182 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 183 184 // Get the type of a ctor entry, { i32, void ()* }. 185 llvm::StructType* CtorStructTy = 186 llvm::StructType::get(llvm::Type::Int32Ty, 187 llvm::PointerType::getUnqual(CtorFTy), NULL); 188 189 // Construct the constructor and destructor arrays. 190 std::vector<llvm::Constant*> Ctors; 191 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 192 std::vector<llvm::Constant*> S; 193 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 194 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 195 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 196 } 197 198 if (!Ctors.empty()) { 199 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 200 new llvm::GlobalVariable(AT, false, 201 llvm::GlobalValue::AppendingLinkage, 202 llvm::ConstantArray::get(AT, Ctors), 203 GlobalName, 204 &TheModule); 205 } 206 } 207 208 void CodeGenModule::EmitAnnotations() { 209 if (Annotations.empty()) 210 return; 211 212 // Create a new global variable for the ConstantStruct in the Module. 213 llvm::Constant *Array = 214 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 215 Annotations.size()), 216 Annotations); 217 llvm::GlobalValue *gv = 218 new llvm::GlobalVariable(Array->getType(), false, 219 llvm::GlobalValue::AppendingLinkage, Array, 220 "llvm.global.annotations", &TheModule); 221 gv->setSection("llvm.metadata"); 222 } 223 224 /// SetGlobalValueAttributes - Set attributes for a global. 225 /// 226 /// FIXME: This is currently only done for aliases and functions, but 227 /// not for variables (these details are set in 228 /// EmitGlobalVarDefinition for variables). 229 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 230 GVALinkage Linkage, 231 llvm::GlobalValue *GV, 232 bool ForDefinition) { 233 // FIXME: Set up linkage and many other things. Note, this is a simple 234 // approximation of what we really want. 235 if (!ForDefinition) { 236 // Only a few attributes are set on declarations. 237 238 // The dllimport attribute is overridden by a subsequent declaration as 239 // dllexport. 240 if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 241 // dllimport attribute can be applied only to function decls, not to 242 // definitions. 243 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 244 if (!FD->getBody()) 245 GV->setLinkage(llvm::Function::DLLImportLinkage); 246 } else 247 GV->setLinkage(llvm::Function::DLLImportLinkage); 248 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 249 // "extern_weak" is overloaded in LLVM; we probably should have 250 // separate linkage types for this. 251 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 252 } 253 } else if (Linkage == GVA_Internal) { 254 GV->setLinkage(llvm::Function::InternalLinkage); 255 } else if (D->hasAttr<DLLExportAttr>()) { 256 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 257 // The dllexport attribute is ignored for undefined symbols. 258 if (FD->getBody()) 259 GV->setLinkage(llvm::Function::DLLExportLinkage); 260 } else { 261 GV->setLinkage(llvm::Function::DLLExportLinkage); 262 } 263 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 264 GV->setLinkage(llvm::Function::WeakAnyLinkage); 265 } else if (Linkage == GVA_Inline || Linkage == GVA_ExternInline) { 266 GV->setLinkage(llvm::Function::WeakAnyLinkage); 267 } 268 269 if (ForDefinition) { 270 setGlobalVisibility(GV, D); 271 272 // Only add to llvm.used when we see a definition, otherwise we 273 // might add it multiple times or risk the value being replaced by 274 // a subsequent RAUW. 275 if (D->hasAttr<UsedAttr>()) 276 AddUsedGlobal(GV); 277 } 278 279 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 280 GV->setSection(SA->getName()); 281 } 282 283 void CodeGenModule::SetFunctionAttributes(const Decl *D, 284 const CGFunctionInfo &Info, 285 llvm::Function *F) { 286 AttributeListType AttributeList; 287 ConstructAttributeList(Info, D, AttributeList); 288 289 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 290 AttributeList.size())); 291 292 // Set the appropriate calling convention for the Function. 293 if (D->hasAttr<FastCallAttr>()) 294 F->setCallingConv(llvm::CallingConv::X86_FastCall); 295 296 if (D->hasAttr<StdCallAttr>()) 297 F->setCallingConv(llvm::CallingConv::X86_StdCall); 298 } 299 300 301 static CodeGenModule::GVALinkage 302 GetLinkageForFunctionOrMethodDecl(const Decl *D) { 303 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 304 if (FD->getStorageClass() == FunctionDecl::Static) 305 return CodeGenModule::GVA_Internal; 306 if (FD->isInline()) { 307 if (FD->getStorageClass() == FunctionDecl::Extern) 308 return CodeGenModule::GVA_ExternInline; 309 return CodeGenModule::GVA_Inline; 310 } 311 } else { 312 assert(isa<ObjCMethodDecl>(D)); 313 return CodeGenModule::GVA_Internal; 314 } 315 return CodeGenModule::GVA_Normal; 316 } 317 318 /// SetFunctionAttributesForDefinition - Set function attributes 319 /// specific to a function definition. 320 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 321 llvm::Function *F) { 322 SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true); 323 324 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 325 F->addFnAttr(llvm::Attribute::NoUnwind); 326 327 if (D->hasAttr<AlwaysInlineAttr>()) 328 F->addFnAttr(llvm::Attribute::AlwaysInline); 329 330 if (D->hasAttr<NoinlineAttr>()) 331 F->addFnAttr(llvm::Attribute::NoInline); 332 } 333 334 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 335 llvm::Function *F) { 336 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 337 338 SetFunctionAttributesForDefinition(MD, F); 339 } 340 341 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 342 llvm::Function *F) { 343 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 344 345 SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false); 346 } 347 348 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 349 assert(!GV->isDeclaration() && 350 "Only globals with definition can force usage."); 351 LLVMUsed.push_back(GV); 352 } 353 354 void CodeGenModule::EmitLLVMUsed() { 355 // Don't create llvm.used if there is no need. 356 if (LLVMUsed.empty()) 357 return; 358 359 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 360 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 361 362 // Convert LLVMUsed to what ConstantArray needs. 363 std::vector<llvm::Constant*> UsedArray; 364 UsedArray.resize(LLVMUsed.size()); 365 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 366 UsedArray[i] = 367 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 368 } 369 370 llvm::GlobalVariable *GV = 371 new llvm::GlobalVariable(ATy, false, 372 llvm::GlobalValue::AppendingLinkage, 373 llvm::ConstantArray::get(ATy, UsedArray), 374 "llvm.used", &getModule()); 375 376 GV->setSection("llvm.metadata"); 377 } 378 379 void CodeGenModule::EmitDeferred() { 380 // Emit code for any potentially referenced deferred decls. Since a 381 // previously unused static decl may become used during the generation of code 382 // for a static function, iterate until no changes are made. 383 while (!DeferredDeclsToEmit.empty()) { 384 const ValueDecl *D = DeferredDeclsToEmit.back(); 385 DeferredDeclsToEmit.pop_back(); 386 387 // The mangled name for the decl must have been emitted in GlobalDeclMap. 388 // Look it up to see if it was defined with a stronger definition (e.g. an 389 // extern inline function with a strong function redefinition). If so, 390 // just ignore the deferred decl. 391 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 392 assert(CGRef && "Deferred decl wasn't referenced?"); 393 394 if (!CGRef->isDeclaration()) 395 continue; 396 397 // Otherwise, emit the definition and move on to the next one. 398 EmitGlobalDefinition(D); 399 } 400 } 401 402 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 403 /// annotation information for a given GlobalValue. The annotation struct is 404 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 405 /// GlobalValue being annotated. The second field is the constant string 406 /// created from the AnnotateAttr's annotation. The third field is a constant 407 /// string containing the name of the translation unit. The fourth field is 408 /// the line number in the file of the annotated value declaration. 409 /// 410 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 411 /// appears to. 412 /// 413 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 414 const AnnotateAttr *AA, 415 unsigned LineNo) { 416 llvm::Module *M = &getModule(); 417 418 // get [N x i8] constants for the annotation string, and the filename string 419 // which are the 2nd and 3rd elements of the global annotation structure. 420 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 421 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 422 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 423 true); 424 425 // Get the two global values corresponding to the ConstantArrays we just 426 // created to hold the bytes of the strings. 427 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 428 llvm::GlobalValue *annoGV = 429 new llvm::GlobalVariable(anno->getType(), false, 430 llvm::GlobalValue::InternalLinkage, anno, 431 GV->getName() + StringPrefix, M); 432 // translation unit name string, emitted into the llvm.metadata section. 433 llvm::GlobalValue *unitGV = 434 new llvm::GlobalVariable(unit->getType(), false, 435 llvm::GlobalValue::InternalLinkage, unit, 436 StringPrefix, M); 437 438 // Create the ConstantStruct that is the global annotion. 439 llvm::Constant *Fields[4] = { 440 llvm::ConstantExpr::getBitCast(GV, SBP), 441 llvm::ConstantExpr::getBitCast(annoGV, SBP), 442 llvm::ConstantExpr::getBitCast(unitGV, SBP), 443 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 444 }; 445 return llvm::ConstantStruct::get(Fields, 4, false); 446 } 447 448 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 449 // Never defer when EmitAllDecls is specified or the decl has 450 // attribute used. 451 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 452 return false; 453 454 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 455 // Constructors and destructors should never be deferred. 456 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 457 return false; 458 459 // FIXME: What about inline, and/or extern inline? 460 if (FD->getStorageClass() != FunctionDecl::Static) 461 return false; 462 } else { 463 const VarDecl *VD = cast<VarDecl>(Global); 464 assert(VD->isFileVarDecl() && "Invalid decl"); 465 466 if (VD->getStorageClass() != VarDecl::Static) 467 return false; 468 } 469 470 return true; 471 } 472 473 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 474 // If this is an alias definition (which otherwise looks like a declaration) 475 // emit it now. 476 if (Global->hasAttr<AliasAttr>()) 477 return EmitAliasDefinition(Global); 478 479 // Ignore declarations, they will be emitted on their first use. 480 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 481 // Forward declarations are emitted lazily on first use. 482 if (!FD->isThisDeclarationADefinition()) 483 return; 484 } else { 485 const VarDecl *VD = cast<VarDecl>(Global); 486 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 487 488 // Forward declarations are emitted lazily on first use. 489 if (!VD->getInit() && VD->hasExternalStorage()) 490 return; 491 } 492 493 // Defer code generation when possible if this is a static definition, inline 494 // function etc. These we only want to emit if they are used. 495 if (MayDeferGeneration(Global)) { 496 // If the value has already been used, add it directly to the 497 // DeferredDeclsToEmit list. 498 const char *MangledName = getMangledName(Global); 499 if (GlobalDeclMap.count(MangledName)) 500 DeferredDeclsToEmit.push_back(Global); 501 else { 502 // Otherwise, remember that we saw a deferred decl with this name. The 503 // first use of the mangled name will cause it to move into 504 // DeferredDeclsToEmit. 505 DeferredDecls[MangledName] = Global; 506 } 507 return; 508 } 509 510 // Otherwise emit the definition. 511 EmitGlobalDefinition(Global); 512 } 513 514 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 516 EmitGlobalFunctionDefinition(FD); 517 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 518 EmitGlobalVarDefinition(VD); 519 } else { 520 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 521 } 522 } 523 524 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 525 /// module, create and return an llvm Function with the specified type. If there 526 /// is something in the module with the specified name, return it potentially 527 /// bitcasted to the right type. 528 /// 529 /// If D is non-null, it specifies a decl that correspond to this. This is used 530 /// to set the attributes on the function when it is first created. 531 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 532 const llvm::Type *Ty, 533 const FunctionDecl *D) { 534 // Lookup the entry, lazily creating it if necessary. 535 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 536 if (Entry) { 537 if (Entry->getType()->getElementType() == Ty) 538 return Entry; 539 540 // Make sure the result is of the correct type. 541 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 542 return llvm::ConstantExpr::getBitCast(Entry, PTy); 543 } 544 545 // This is the first use or definition of a mangled name. If there is a 546 // deferred decl with this name, remember that we need to emit it at the end 547 // of the file. 548 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 549 DeferredDecls.find(MangledName); 550 if (DDI != DeferredDecls.end()) { 551 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 552 // list, and remove it from DeferredDecls (since we don't need it anymore). 553 DeferredDeclsToEmit.push_back(DDI->second); 554 DeferredDecls.erase(DDI); 555 } 556 557 // This function doesn't have a complete type (for example, the return 558 // type is an incomplete struct). Use a fake type instead, and make 559 // sure not to try to set attributes. 560 bool ShouldSetAttributes = true; 561 if (!isa<llvm::FunctionType>(Ty)) { 562 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 563 std::vector<const llvm::Type*>(), false); 564 ShouldSetAttributes = false; 565 } 566 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 567 llvm::Function::ExternalLinkage, 568 "", &getModule()); 569 F->setName(MangledName); 570 if (D && ShouldSetAttributes) 571 SetFunctionAttributes(D, F); 572 Entry = F; 573 return F; 574 } 575 576 /// GetAddrOfFunction - Return the address of the given function. If Ty is 577 /// non-null, then this function will use the specified type if it has to 578 /// create it (this occurs when we see a definition of the function). 579 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 580 const llvm::Type *Ty) { 581 // If there was no specific requested type, just convert it now. 582 if (!Ty) 583 Ty = getTypes().ConvertType(D->getType()); 584 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 585 } 586 587 /// CreateRuntimeFunction - Create a new runtime function with the specified 588 /// type and name. 589 llvm::Constant * 590 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 591 const char *Name) { 592 // Convert Name to be a uniqued string from the IdentifierInfo table. 593 Name = getContext().Idents.get(Name).getName(); 594 return GetOrCreateLLVMFunction(Name, FTy, 0); 595 } 596 597 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 598 /// create and return an llvm GlobalVariable with the specified type. If there 599 /// is something in the module with the specified name, return it potentially 600 /// bitcasted to the right type. 601 /// 602 /// If D is non-null, it specifies a decl that correspond to this. This is used 603 /// to set the attributes on the global when it is first created. 604 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 605 const llvm::PointerType*Ty, 606 const VarDecl *D) { 607 // Lookup the entry, lazily creating it if necessary. 608 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 609 if (Entry) { 610 if (Entry->getType() == Ty) 611 return Entry; 612 613 // Make sure the result is of the correct type. 614 return llvm::ConstantExpr::getBitCast(Entry, Ty); 615 } 616 617 // We don't support __thread yet. 618 if (D && D->isThreadSpecified()) 619 ErrorUnsupported(D, "thread local ('__thread') variable", true); 620 621 // This is the first use or definition of a mangled name. If there is a 622 // deferred decl with this name, remember that we need to emit it at the end 623 // of the file. 624 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 625 DeferredDecls.find(MangledName); 626 if (DDI != DeferredDecls.end()) { 627 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 628 // list, and remove it from DeferredDecls (since we don't need it anymore). 629 DeferredDeclsToEmit.push_back(DDI->second); 630 DeferredDecls.erase(DDI); 631 } 632 633 llvm::GlobalVariable *GV = 634 new llvm::GlobalVariable(Ty->getElementType(), false, 635 llvm::GlobalValue::ExternalLinkage, 636 0, "", &getModule(), 637 0, Ty->getAddressSpace()); 638 GV->setName(MangledName); 639 640 // Handle things which are present even on external declarations. 641 if (D) { 642 // FIXME: This code is overly simple and should be merged with 643 // other global handling. 644 GV->setConstant(D->getType().isConstant(Context)); 645 646 // FIXME: Merge with other attribute handling code. 647 if (D->getStorageClass() == VarDecl::PrivateExtern) 648 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 649 650 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 651 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 652 } 653 654 return Entry = GV; 655 } 656 657 658 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 659 /// given global variable. If Ty is non-null and if the global doesn't exist, 660 /// then it will be greated with the specified type instead of whatever the 661 /// normal requested type would be. 662 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 663 const llvm::Type *Ty) { 664 assert(D->hasGlobalStorage() && "Not a global variable"); 665 QualType ASTTy = D->getType(); 666 if (Ty == 0) 667 Ty = getTypes().ConvertTypeForMem(ASTTy); 668 669 const llvm::PointerType *PTy = 670 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 671 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 672 } 673 674 /// CreateRuntimeVariable - Create a new runtime global variable with the 675 /// specified type and name. 676 llvm::Constant * 677 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 678 const char *Name) { 679 // Convert Name to be a uniqued string from the IdentifierInfo table. 680 Name = getContext().Idents.get(Name).getName(); 681 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 682 } 683 684 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 685 llvm::Constant *Init = 0; 686 QualType ASTTy = D->getType(); 687 688 if (D->getInit() == 0) { 689 // This is a tentative definition; tentative definitions are 690 // implicitly initialized with { 0 } 691 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 692 if (ASTTy->isIncompleteArrayType()) { 693 // An incomplete array is normally [ TYPE x 0 ], but we need 694 // to fix it to [ TYPE x 1 ]. 695 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 696 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 697 } 698 Init = llvm::Constant::getNullValue(InitTy); 699 } else { 700 Init = EmitConstantExpr(D->getInit(), D->getType()); 701 if (!Init) { 702 ErrorUnsupported(D, "static initializer"); 703 QualType T = D->getInit()->getType(); 704 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 705 } 706 } 707 708 const llvm::Type* InitType = Init->getType(); 709 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 710 711 // Strip off a bitcast if we got one back. 712 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 713 assert(CE->getOpcode() == llvm::Instruction::BitCast); 714 Entry = CE->getOperand(0); 715 } 716 717 // Entry is now either a Function or GlobalVariable. 718 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 719 720 // If we already have this global and it has an initializer, then 721 // we are in the rare situation where we emitted the defining 722 // declaration of the global and are now being asked to emit a 723 // definition which would be common. This occurs, for example, in 724 // the following situation because statics can be emitted out of 725 // order: 726 // 727 // static int x; 728 // static int *y = &x; 729 // static int x = 10; 730 // int **z = &y; 731 // 732 // Bail here so we don't blow away the definition. Note that if we 733 // can't distinguish here if we emitted a definition with a null 734 // initializer, but this case is safe. 735 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 736 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 737 return; 738 } 739 740 // We have a definition after a declaration with the wrong type. 741 // We must make a new GlobalVariable* and update everything that used OldGV 742 // (a declaration or tentative definition) with the new GlobalVariable* 743 // (which will be a definition). 744 // 745 // This happens if there is a prototype for a global (e.g. 746 // "extern int x[];") and then a definition of a different type (e.g. 747 // "int x[10];"). This also happens when an initializer has a different type 748 // from the type of the global (this happens with unions). 749 if (GV == 0 || 750 GV->getType()->getElementType() != InitType || 751 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 752 753 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 754 GlobalDeclMap.erase(getMangledName(D)); 755 756 // Make a new global with the correct type, this is now guaranteed to work. 757 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 758 GV->takeName(cast<llvm::GlobalValue>(Entry)); 759 760 // Replace all uses of the old global with the new global 761 llvm::Constant *NewPtrForOldDecl = 762 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 763 Entry->replaceAllUsesWith(NewPtrForOldDecl); 764 765 // Erase the old global, since it is no longer used. 766 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 767 } 768 769 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 770 SourceManager &SM = Context.getSourceManager(); 771 AddAnnotation(EmitAnnotateAttr(GV, AA, 772 SM.getInstantiationLineNumber(D->getLocation()))); 773 } 774 775 GV->setInitializer(Init); 776 GV->setConstant(D->getType().isConstant(Context)); 777 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 778 779 // Set the llvm linkage type as appropriate. 780 if (D->getStorageClass() == VarDecl::Static) 781 GV->setLinkage(llvm::Function::InternalLinkage); 782 else if (D->hasAttr<DLLImportAttr>()) 783 GV->setLinkage(llvm::Function::DLLImportLinkage); 784 else if (D->hasAttr<DLLExportAttr>()) 785 GV->setLinkage(llvm::Function::DLLExportLinkage); 786 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 787 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 788 else if (!CompileOpts.NoCommon && 789 (!D->hasExternalStorage() && !D->getInit())) 790 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 791 else 792 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 793 794 setGlobalVisibility(GV, D); 795 796 if (D->hasAttr<UsedAttr>()) 797 AddUsedGlobal(GV); 798 799 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 800 GV->setSection(SA->getName()); 801 802 // Emit global variable debug information. 803 if (CGDebugInfo *DI = getDebugInfo()) { 804 DI->setLocation(D->getLocation()); 805 DI->EmitGlobalVariable(GV, D); 806 } 807 } 808 809 810 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 811 const llvm::FunctionType *Ty; 812 813 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 814 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 815 816 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 817 } else { 818 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 819 820 // As a special case, make sure that definitions of K&R function 821 // "type foo()" aren't declared as varargs (which forces the backend 822 // to do unnecessary work). 823 if (D->getType()->isFunctionNoProtoType()) { 824 assert(Ty->isVarArg() && "Didn't lower type as expected"); 825 // Due to stret, the lowered function could have arguments. 826 // Just create the same type as was lowered by ConvertType 827 // but strip off the varargs bit. 828 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 829 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 830 } 831 } 832 833 // Get or create the prototype for teh function. 834 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 835 836 // Strip off a bitcast if we got one back. 837 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 838 assert(CE->getOpcode() == llvm::Instruction::BitCast); 839 Entry = CE->getOperand(0); 840 } 841 842 843 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 844 // If the types mismatch then we have to rewrite the definition. 845 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 846 "Shouldn't replace non-declaration"); 847 848 // F is the Function* for the one with the wrong type, we must make a new 849 // Function* and update everything that used F (a declaration) with the new 850 // Function* (which will be a definition). 851 // 852 // This happens if there is a prototype for a function 853 // (e.g. "int f()") and then a definition of a different type 854 // (e.g. "int f(int x)"). Start by making a new function of the 855 // correct type, RAUW, then steal the name. 856 GlobalDeclMap.erase(getMangledName(D)); 857 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 858 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 859 860 // Replace uses of F with the Function we will endow with a body. 861 llvm::Constant *NewPtrForOldDecl = 862 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 863 Entry->replaceAllUsesWith(NewPtrForOldDecl); 864 865 // Ok, delete the old function now, which is dead. 866 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 867 868 Entry = NewFn; 869 } 870 871 llvm::Function *Fn = cast<llvm::Function>(Entry); 872 873 CodeGenFunction(*this).GenerateCode(D, Fn); 874 875 SetFunctionAttributesForDefinition(D, Fn); 876 877 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 878 AddGlobalCtor(Fn, CA->getPriority()); 879 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 880 AddGlobalDtor(Fn, DA->getPriority()); 881 } 882 883 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 884 const AliasAttr *AA = D->getAttr<AliasAttr>(); 885 assert(AA && "Not an alias?"); 886 887 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 888 889 // Unique the name through the identifier table. 890 const char *AliaseeName = AA->getAliasee().c_str(); 891 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 892 893 // Create a reference to the named value. This ensures that it is emitted 894 // if a deferred decl. 895 llvm::Constant *Aliasee; 896 if (isa<llvm::FunctionType>(DeclTy)) 897 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 898 else 899 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 900 llvm::PointerType::getUnqual(DeclTy), 0); 901 902 // Create the new alias itself, but don't set a name yet. 903 llvm::GlobalValue *GA = 904 new llvm::GlobalAlias(Aliasee->getType(), 905 llvm::Function::ExternalLinkage, 906 "", Aliasee, &getModule()); 907 908 // See if there is already something with the alias' name in the module. 909 const char *MangledName = getMangledName(D); 910 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 911 912 if (Entry && !Entry->isDeclaration()) { 913 // If there is a definition in the module, then it wins over the alias. 914 // This is dubious, but allow it to be safe. Just ignore the alias. 915 GA->eraseFromParent(); 916 return; 917 } 918 919 if (Entry) { 920 // If there is a declaration in the module, then we had an extern followed 921 // by the alias, as in: 922 // extern int test6(); 923 // ... 924 // int test6() __attribute__((alias("test7"))); 925 // 926 // Remove it and replace uses of it with the alias. 927 928 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 929 Entry->getType())); 930 Entry->eraseFromParent(); 931 } 932 933 // Now we know that there is no conflict, set the name. 934 Entry = GA; 935 GA->setName(MangledName); 936 937 // Alias should never be internal or inline. 938 SetGlobalValueAttributes(D, GVA_Normal, GA, true); 939 } 940 941 /// getBuiltinLibFunction - Given a builtin id for a function like 942 /// "__builtin_fabsf", return a Function* for "fabsf". 943 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 944 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 945 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 946 "isn't a lib fn"); 947 948 // Get the name, skip over the __builtin_ prefix (if necessary). 949 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 950 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 951 Name += 10; 952 953 // Get the type for the builtin. 954 Builtin::Context::GetBuiltinTypeError Error; 955 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 956 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 957 958 const llvm::FunctionType *Ty = 959 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 960 961 // Unique the name through the identifier table. 962 Name = getContext().Idents.get(Name).getName(); 963 // FIXME: param attributes for sext/zext etc. 964 return GetOrCreateLLVMFunction(Name, Ty, 0); 965 } 966 967 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 968 unsigned NumTys) { 969 return llvm::Intrinsic::getDeclaration(&getModule(), 970 (llvm::Intrinsic::ID)IID, Tys, NumTys); 971 } 972 973 llvm::Function *CodeGenModule::getMemCpyFn() { 974 if (MemCpyFn) return MemCpyFn; 975 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 976 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 977 } 978 979 llvm::Function *CodeGenModule::getMemMoveFn() { 980 if (MemMoveFn) return MemMoveFn; 981 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 982 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 983 } 984 985 llvm::Function *CodeGenModule::getMemSetFn() { 986 if (MemSetFn) return MemSetFn; 987 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 988 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 989 } 990 991 static void appendFieldAndPadding(CodeGenModule &CGM, 992 std::vector<llvm::Constant*>& Fields, 993 FieldDecl *FieldD, FieldDecl *NextFieldD, 994 llvm::Constant* Field, 995 RecordDecl* RD, const llvm::StructType *STy) { 996 // Append the field. 997 Fields.push_back(Field); 998 999 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1000 1001 int NextStructFieldNo; 1002 if (!NextFieldD) { 1003 NextStructFieldNo = STy->getNumElements(); 1004 } else { 1005 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1006 } 1007 1008 // Append padding 1009 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1010 llvm::Constant *C = 1011 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1012 1013 Fields.push_back(C); 1014 } 1015 } 1016 1017 llvm::Constant *CodeGenModule:: 1018 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1019 std::string str; 1020 unsigned StringLength; 1021 1022 bool isUTF16 = false; 1023 if (Literal->containsNonAsciiOrNull()) { 1024 // Convert from UTF-8 to UTF-16. 1025 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1026 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1027 UTF16 *ToPtr = &ToBuf[0]; 1028 1029 ConversionResult Result; 1030 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1031 &ToPtr, ToPtr+Literal->getByteLength(), 1032 strictConversion); 1033 if (Result == conversionOK) { 1034 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1035 // without doing more surgery to this routine. Since we aren't explicitly 1036 // checking for endianness here, it's also a bug (when generating code for 1037 // a target that doesn't match the host endianness). Modeling this as an 1038 // i16 array is likely the cleanest solution. 1039 StringLength = ToPtr-&ToBuf[0]; 1040 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1041 isUTF16 = true; 1042 } else if (Result == sourceIllegal) { 1043 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1044 str.assign(Literal->getStrData(), Literal->getByteLength()); 1045 StringLength = str.length(); 1046 } else 1047 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1048 1049 } else { 1050 str.assign(Literal->getStrData(), Literal->getByteLength()); 1051 StringLength = str.length(); 1052 } 1053 llvm::StringMapEntry<llvm::Constant *> &Entry = 1054 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1055 1056 if (llvm::Constant *C = Entry.getValue()) 1057 return C; 1058 1059 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1060 llvm::Constant *Zeros[] = { Zero, Zero }; 1061 1062 if (!CFConstantStringClassRef) { 1063 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1064 Ty = llvm::ArrayType::get(Ty, 0); 1065 1066 // FIXME: This is fairly broken if 1067 // __CFConstantStringClassReference is already defined, in that it 1068 // will get renamed and the user will most likely see an opaque 1069 // error message. This is a general issue with relying on 1070 // particular names. 1071 llvm::GlobalVariable *GV = 1072 new llvm::GlobalVariable(Ty, false, 1073 llvm::GlobalVariable::ExternalLinkage, 0, 1074 "__CFConstantStringClassReference", 1075 &getModule()); 1076 1077 // Decay array -> ptr 1078 CFConstantStringClassRef = 1079 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1080 } 1081 1082 QualType CFTy = getContext().getCFConstantStringType(); 1083 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1084 1085 const llvm::StructType *STy = 1086 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1087 1088 std::vector<llvm::Constant*> Fields; 1089 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1090 1091 // Class pointer. 1092 FieldDecl *CurField = *Field++; 1093 FieldDecl *NextField = *Field++; 1094 appendFieldAndPadding(*this, Fields, CurField, NextField, 1095 CFConstantStringClassRef, CFRD, STy); 1096 1097 // Flags. 1098 CurField = NextField; 1099 NextField = *Field++; 1100 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1101 appendFieldAndPadding(*this, Fields, CurField, NextField, 1102 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1103 : llvm::ConstantInt::get(Ty, 0x07C8), 1104 CFRD, STy); 1105 1106 // String pointer. 1107 CurField = NextField; 1108 NextField = *Field++; 1109 llvm::Constant *C = llvm::ConstantArray::get(str); 1110 1111 const char *Sect, *Prefix; 1112 bool isConstant; 1113 if (isUTF16) { 1114 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1115 Sect = getContext().Target.getUnicodeStringSection(); 1116 // FIXME: Why does GCC not set constant here? 1117 isConstant = false; 1118 } else { 1119 Prefix = getContext().Target.getStringSymbolPrefix(true); 1120 Sect = getContext().Target.getCFStringDataSection(); 1121 // FIXME: -fwritable-strings should probably affect this, but we 1122 // are following gcc here. 1123 isConstant = true; 1124 } 1125 llvm::GlobalVariable *GV = 1126 new llvm::GlobalVariable(C->getType(), isConstant, 1127 llvm::GlobalValue::InternalLinkage, 1128 C, Prefix, &getModule()); 1129 if (Sect) 1130 GV->setSection(Sect); 1131 if (isUTF16) { 1132 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1133 GV->setAlignment(Align); 1134 } 1135 appendFieldAndPadding(*this, Fields, CurField, NextField, 1136 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1137 CFRD, STy); 1138 1139 // String length. 1140 CurField = NextField; 1141 NextField = 0; 1142 Ty = getTypes().ConvertType(getContext().LongTy); 1143 appendFieldAndPadding(*this, Fields, CurField, NextField, 1144 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1145 1146 // The struct. 1147 C = llvm::ConstantStruct::get(STy, Fields); 1148 GV = new llvm::GlobalVariable(C->getType(), true, 1149 llvm::GlobalVariable::InternalLinkage, C, 1150 getContext().Target.getCFStringSymbolPrefix(), 1151 &getModule()); 1152 if (const char *Sect = getContext().Target.getCFStringSection()) 1153 GV->setSection(Sect); 1154 Entry.setValue(GV); 1155 1156 return GV; 1157 } 1158 1159 /// GetStringForStringLiteral - Return the appropriate bytes for a 1160 /// string literal, properly padded to match the literal type. 1161 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1162 const char *StrData = E->getStrData(); 1163 unsigned Len = E->getByteLength(); 1164 1165 const ConstantArrayType *CAT = 1166 getContext().getAsConstantArrayType(E->getType()); 1167 assert(CAT && "String isn't pointer or array!"); 1168 1169 // Resize the string to the right size. 1170 std::string Str(StrData, StrData+Len); 1171 uint64_t RealLen = CAT->getSize().getZExtValue(); 1172 1173 if (E->isWide()) 1174 RealLen *= getContext().Target.getWCharWidth()/8; 1175 1176 Str.resize(RealLen, '\0'); 1177 1178 return Str; 1179 } 1180 1181 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1182 /// constant array for the given string literal. 1183 llvm::Constant * 1184 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1185 // FIXME: This can be more efficient. 1186 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1187 } 1188 1189 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1190 /// array for the given ObjCEncodeExpr node. 1191 llvm::Constant * 1192 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1193 std::string Str; 1194 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1195 1196 return GetAddrOfConstantCString(Str); 1197 } 1198 1199 1200 /// GenerateWritableString -- Creates storage for a string literal. 1201 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1202 bool constant, 1203 CodeGenModule &CGM, 1204 const char *GlobalName) { 1205 // Create Constant for this string literal. Don't add a '\0'. 1206 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1207 1208 // Create a global variable for this string 1209 return new llvm::GlobalVariable(C->getType(), constant, 1210 llvm::GlobalValue::InternalLinkage, 1211 C, GlobalName, &CGM.getModule()); 1212 } 1213 1214 /// GetAddrOfConstantString - Returns a pointer to a character array 1215 /// containing the literal. This contents are exactly that of the 1216 /// given string, i.e. it will not be null terminated automatically; 1217 /// see GetAddrOfConstantCString. Note that whether the result is 1218 /// actually a pointer to an LLVM constant depends on 1219 /// Feature.WriteableStrings. 1220 /// 1221 /// The result has pointer to array type. 1222 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1223 const char *GlobalName) { 1224 bool IsConstant = !Features.WritableStrings; 1225 1226 // Get the default prefix if a name wasn't specified. 1227 if (!GlobalName) 1228 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1229 1230 // Don't share any string literals if strings aren't constant. 1231 if (!IsConstant) 1232 return GenerateStringLiteral(str, false, *this, GlobalName); 1233 1234 llvm::StringMapEntry<llvm::Constant *> &Entry = 1235 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1236 1237 if (Entry.getValue()) 1238 return Entry.getValue(); 1239 1240 // Create a global variable for this. 1241 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1242 Entry.setValue(C); 1243 return C; 1244 } 1245 1246 /// GetAddrOfConstantCString - Returns a pointer to a character 1247 /// array containing the literal and a terminating '\-' 1248 /// character. The result has pointer to array type. 1249 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1250 const char *GlobalName){ 1251 return GetAddrOfConstantString(str + '\0', GlobalName); 1252 } 1253 1254 /// EmitObjCPropertyImplementations - Emit information for synthesized 1255 /// properties for an implementation. 1256 void CodeGenModule::EmitObjCPropertyImplementations(const 1257 ObjCImplementationDecl *D) { 1258 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1259 e = D->propimpl_end(); i != e; ++i) { 1260 ObjCPropertyImplDecl *PID = *i; 1261 1262 // Dynamic is just for type-checking. 1263 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1264 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1265 1266 // Determine which methods need to be implemented, some may have 1267 // been overridden. Note that ::isSynthesized is not the method 1268 // we want, that just indicates if the decl came from a 1269 // property. What we want to know is if the method is defined in 1270 // this implementation. 1271 if (!D->getInstanceMethod(PD->getGetterName())) 1272 CodeGenFunction(*this).GenerateObjCGetter( 1273 const_cast<ObjCImplementationDecl *>(D), PID); 1274 if (!PD->isReadOnly() && 1275 !D->getInstanceMethod(PD->getSetterName())) 1276 CodeGenFunction(*this).GenerateObjCSetter( 1277 const_cast<ObjCImplementationDecl *>(D), PID); 1278 } 1279 } 1280 } 1281 1282 /// EmitNamespace - Emit all declarations in a namespace. 1283 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1284 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1285 E = ND->decls_end(getContext()); 1286 I != E; ++I) 1287 EmitTopLevelDecl(*I); 1288 } 1289 1290 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1291 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1292 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1293 ErrorUnsupported(LSD, "linkage spec"); 1294 return; 1295 } 1296 1297 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1298 E = LSD->decls_end(getContext()); 1299 I != E; ++I) 1300 EmitTopLevelDecl(*I); 1301 } 1302 1303 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1304 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1305 // If an error has occurred, stop code generation, but continue 1306 // parsing and semantic analysis (to ensure all warnings and errors 1307 // are emitted). 1308 if (Diags.hasErrorOccurred()) 1309 return; 1310 1311 switch (D->getKind()) { 1312 case Decl::CXXMethod: 1313 case Decl::Function: 1314 case Decl::Var: 1315 EmitGlobal(cast<ValueDecl>(D)); 1316 break; 1317 1318 case Decl::Namespace: 1319 EmitNamespace(cast<NamespaceDecl>(D)); 1320 break; 1321 1322 // Objective-C Decls 1323 1324 // Forward declarations, no (immediate) code generation. 1325 case Decl::ObjCClass: 1326 case Decl::ObjCForwardProtocol: 1327 case Decl::ObjCCategory: 1328 break; 1329 case Decl::ObjCInterface: 1330 // If we already laid out this interface due to an @class, and if we 1331 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1332 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1333 break; 1334 1335 case Decl::ObjCProtocol: 1336 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1337 break; 1338 1339 case Decl::ObjCCategoryImpl: 1340 // Categories have properties but don't support synthesize so we 1341 // can ignore them here. 1342 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1343 break; 1344 1345 case Decl::ObjCImplementation: { 1346 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1347 EmitObjCPropertyImplementations(OMD); 1348 Runtime->GenerateClass(OMD); 1349 break; 1350 } 1351 case Decl::ObjCMethod: { 1352 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1353 // If this is not a prototype, emit the body. 1354 if (OMD->getBody()) 1355 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1356 break; 1357 } 1358 case Decl::ObjCCompatibleAlias: 1359 // compatibility-alias is a directive and has no code gen. 1360 break; 1361 1362 case Decl::LinkageSpec: 1363 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1364 break; 1365 1366 case Decl::FileScopeAsm: { 1367 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1368 std::string AsmString(AD->getAsmString()->getStrData(), 1369 AD->getAsmString()->getByteLength()); 1370 1371 const std::string &S = getModule().getModuleInlineAsm(); 1372 if (S.empty()) 1373 getModule().setModuleInlineAsm(AsmString); 1374 else 1375 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1376 break; 1377 } 1378 1379 default: 1380 // Make sure we handled everything we should, every other kind is 1381 // a non-top-level decl. FIXME: Would be nice to have an 1382 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1383 // that easily. 1384 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1385 } 1386 } 1387