1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // The kind of external linkage this function will have, if it is not
251   // inline or static.
252   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253   if (Context.getLangOptions().CPlusPlus &&
254       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
255     External = CodeGenModule::GVA_TemplateInstantiation;
256 
257   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
258     // C++ member functions defined inside the class are always inline.
259     if (MD->isInline() || !MD->isOutOfLine())
260       return CodeGenModule::GVA_CXXInline;
261 
262     return External;
263   }
264 
265   // "static" functions get internal linkage.
266   if (FD->getStorageClass() == FunctionDecl::Static)
267     return CodeGenModule::GVA_Internal;
268 
269   if (!FD->isInline())
270     return External;
271 
272   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
273     // GNU or C99 inline semantics. Determine whether this symbol should be
274     // externally visible.
275     if (FD->isInlineDefinitionExternallyVisible())
276       return External;
277 
278     // C99 inline semantics, where the symbol is not externally visible.
279     return CodeGenModule::GVA_C99Inline;
280   }
281 
282   // C++ inline semantics
283   assert(Features.CPlusPlus && "Must be in C++ mode");
284   return CodeGenModule::GVA_CXXInline;
285 }
286 
287 /// SetFunctionDefinitionAttributes - Set attributes for a global.
288 ///
289 /// FIXME: This is currently only done for aliases and functions, but not for
290 /// variables (these details are set in EmitGlobalVarDefinition for variables).
291 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
292                                                     llvm::GlobalValue *GV) {
293   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
294 
295   if (Linkage == GVA_Internal) {
296     GV->setLinkage(llvm::Function::InternalLinkage);
297   } else if (D->hasAttr<DLLExportAttr>()) {
298     GV->setLinkage(llvm::Function::DLLExportLinkage);
299   } else if (D->hasAttr<WeakAttr>()) {
300     GV->setLinkage(llvm::Function::WeakAnyLinkage);
301   } else if (Linkage == GVA_C99Inline) {
302     // In C99 mode, 'inline' functions are guaranteed to have a strong
303     // definition somewhere else, so we can use available_externally linkage.
304     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
305   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
306     // In C++, the compiler has to emit a definition in every translation unit
307     // that references the function.  We should use linkonce_odr because
308     // a) if all references in this translation unit are optimized away, we
309     // don't need to codegen it.  b) if the function persists, it needs to be
310     // merged with other definitions. c) C++ has the ODR, so we know the
311     // definition is dependable.
312     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
313   } else {
314     assert(Linkage == GVA_StrongExternal);
315     // Otherwise, we have strong external linkage.
316     GV->setLinkage(llvm::Function::ExternalLinkage);
317   }
318 
319   SetCommonAttributes(D, GV);
320 }
321 
322 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
323                                               const CGFunctionInfo &Info,
324                                               llvm::Function *F) {
325   unsigned CallingConv;
326   AttributeListType AttributeList;
327   ConstructAttributeList(Info, D, AttributeList, CallingConv);
328   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
329                                           AttributeList.size()));
330   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
331 }
332 
333 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
334                                                            llvm::Function *F) {
335   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
336     F->addFnAttr(llvm::Attribute::NoUnwind);
337 
338   if (D->hasAttr<AlwaysInlineAttr>())
339     F->addFnAttr(llvm::Attribute::AlwaysInline);
340 
341   if (D->hasAttr<NoInlineAttr>())
342     F->addFnAttr(llvm::Attribute::NoInline);
343 }
344 
345 void CodeGenModule::SetCommonAttributes(const Decl *D,
346                                         llvm::GlobalValue *GV) {
347   setGlobalVisibility(GV, D);
348 
349   if (D->hasAttr<UsedAttr>())
350     AddUsedGlobal(GV);
351 
352   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
353     GV->setSection(SA->getName());
354 }
355 
356 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
357                                                   llvm::Function *F,
358                                                   const CGFunctionInfo &FI) {
359   SetLLVMFunctionAttributes(D, FI, F);
360   SetLLVMFunctionAttributesForDefinition(D, F);
361 
362   F->setLinkage(llvm::Function::InternalLinkage);
363 
364   SetCommonAttributes(D, F);
365 }
366 
367 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
368                                           llvm::Function *F,
369                                           bool IsIncompleteFunction) {
370   if (!IsIncompleteFunction)
371     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
372 
373   // Only a few attributes are set on declarations; these may later be
374   // overridden by a definition.
375 
376   if (FD->hasAttr<DLLImportAttr>()) {
377     F->setLinkage(llvm::Function::DLLImportLinkage);
378   } else if (FD->hasAttr<WeakAttr>() ||
379              FD->hasAttr<WeakImportAttr>()) {
380     // "extern_weak" is overloaded in LLVM; we probably should have
381     // separate linkage types for this.
382     F->setLinkage(llvm::Function::ExternalWeakLinkage);
383   } else {
384     F->setLinkage(llvm::Function::ExternalLinkage);
385   }
386 
387   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
388     F->setSection(SA->getName());
389 }
390 
391 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
392   assert(!GV->isDeclaration() &&
393          "Only globals with definition can force usage.");
394   LLVMUsed.push_back(GV);
395 }
396 
397 void CodeGenModule::EmitLLVMUsed() {
398   // Don't create llvm.used if there is no need.
399   if (LLVMUsed.empty())
400     return;
401 
402   llvm::Type *i8PTy =
403       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
404 
405   // Convert LLVMUsed to what ConstantArray needs.
406   std::vector<llvm::Constant*> UsedArray;
407   UsedArray.resize(LLVMUsed.size());
408   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
409     UsedArray[i] =
410      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
411                                       i8PTy);
412   }
413 
414   if (UsedArray.empty())
415     return;
416   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
417 
418   llvm::GlobalVariable *GV =
419     new llvm::GlobalVariable(getModule(), ATy, false,
420                              llvm::GlobalValue::AppendingLinkage,
421                              llvm::ConstantArray::get(ATy, UsedArray),
422                              "llvm.used");
423 
424   GV->setSection("llvm.metadata");
425 }
426 
427 void CodeGenModule::EmitDeferred() {
428   // Emit code for any potentially referenced deferred decls.  Since a
429   // previously unused static decl may become used during the generation of code
430   // for a static function, iterate until no  changes are made.
431   while (!DeferredDeclsToEmit.empty()) {
432     GlobalDecl D = DeferredDeclsToEmit.back();
433     DeferredDeclsToEmit.pop_back();
434 
435     // The mangled name for the decl must have been emitted in GlobalDeclMap.
436     // Look it up to see if it was defined with a stronger definition (e.g. an
437     // extern inline function with a strong function redefinition).  If so,
438     // just ignore the deferred decl.
439     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
440     assert(CGRef && "Deferred decl wasn't referenced?");
441 
442     if (!CGRef->isDeclaration())
443       continue;
444 
445     // Otherwise, emit the definition and move on to the next one.
446     EmitGlobalDefinition(D);
447   }
448 }
449 
450 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
451 /// annotation information for a given GlobalValue.  The annotation struct is
452 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
453 /// GlobalValue being annotated.  The second field is the constant string
454 /// created from the AnnotateAttr's annotation.  The third field is a constant
455 /// string containing the name of the translation unit.  The fourth field is
456 /// the line number in the file of the annotated value declaration.
457 ///
458 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
459 ///        appears to.
460 ///
461 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
462                                                 const AnnotateAttr *AA,
463                                                 unsigned LineNo) {
464   llvm::Module *M = &getModule();
465 
466   // get [N x i8] constants for the annotation string, and the filename string
467   // which are the 2nd and 3rd elements of the global annotation structure.
468   const llvm::Type *SBP =
469       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
470   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
471                                                   AA->getAnnotation(), true);
472   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
473                                                   M->getModuleIdentifier(),
474                                                   true);
475 
476   // Get the two global values corresponding to the ConstantArrays we just
477   // created to hold the bytes of the strings.
478   llvm::GlobalValue *annoGV =
479     new llvm::GlobalVariable(*M, anno->getType(), false,
480                              llvm::GlobalValue::PrivateLinkage, anno,
481                              GV->getName());
482   // translation unit name string, emitted into the llvm.metadata section.
483   llvm::GlobalValue *unitGV =
484     new llvm::GlobalVariable(*M, unit->getType(), false,
485                              llvm::GlobalValue::PrivateLinkage, unit,
486                              ".str");
487 
488   // Create the ConstantStruct for the global annotation.
489   llvm::Constant *Fields[4] = {
490     llvm::ConstantExpr::getBitCast(GV, SBP),
491     llvm::ConstantExpr::getBitCast(annoGV, SBP),
492     llvm::ConstantExpr::getBitCast(unitGV, SBP),
493     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
494   };
495   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
496 }
497 
498 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
499   // Never defer when EmitAllDecls is specified or the decl has
500   // attribute used.
501   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
502     return false;
503 
504   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
505     // Constructors and destructors should never be deferred.
506     if (FD->hasAttr<ConstructorAttr>() ||
507         FD->hasAttr<DestructorAttr>())
508       return false;
509 
510     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
511 
512     // static, static inline, always_inline, and extern inline functions can
513     // always be deferred.  Normal inline functions can be deferred in C99/C++.
514     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
515         Linkage == GVA_CXXInline)
516       return true;
517     return false;
518   }
519 
520   const VarDecl *VD = cast<VarDecl>(Global);
521   assert(VD->isFileVarDecl() && "Invalid decl");
522 
523   return VD->getStorageClass() == VarDecl::Static;
524 }
525 
526 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
527   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
528 
529   // If this is an alias definition (which otherwise looks like a declaration)
530   // emit it now.
531   if (Global->hasAttr<AliasAttr>())
532     return EmitAliasDefinition(Global);
533 
534   // Ignore declarations, they will be emitted on their first use.
535   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
536     // Forward declarations are emitted lazily on first use.
537     if (!FD->isThisDeclarationADefinition())
538       return;
539   } else {
540     const VarDecl *VD = cast<VarDecl>(Global);
541     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
542 
543     // In C++, if this is marked "extern", defer code generation.
544     if (getLangOptions().CPlusPlus && !VD->getInit() &&
545         (VD->getStorageClass() == VarDecl::Extern ||
546          VD->isExternC()))
547       return;
548 
549     // In C, if this isn't a definition, defer code generation.
550     if (!getLangOptions().CPlusPlus && !VD->getInit())
551       return;
552   }
553 
554   // Defer code generation when possible if this is a static definition, inline
555   // function etc.  These we only want to emit if they are used.
556   if (MayDeferGeneration(Global)) {
557     // If the value has already been used, add it directly to the
558     // DeferredDeclsToEmit list.
559     const char *MangledName = getMangledName(GD);
560     if (GlobalDeclMap.count(MangledName))
561       DeferredDeclsToEmit.push_back(GD);
562     else {
563       // Otherwise, remember that we saw a deferred decl with this name.  The
564       // first use of the mangled name will cause it to move into
565       // DeferredDeclsToEmit.
566       DeferredDecls[MangledName] = GD;
567     }
568     return;
569   }
570 
571   // Otherwise emit the definition.
572   EmitGlobalDefinition(GD);
573 }
574 
575 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
576   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
577 
578   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
579     EmitCXXConstructor(CD, GD.getCtorType());
580   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
581     EmitCXXDestructor(DD, GD.getDtorType());
582   else if (isa<FunctionDecl>(D))
583     EmitGlobalFunctionDefinition(GD);
584   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
585     EmitGlobalVarDefinition(VD);
586   else {
587     assert(0 && "Invalid argument to EmitGlobalDefinition()");
588   }
589 }
590 
591 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
592 /// module, create and return an llvm Function with the specified type. If there
593 /// is something in the module with the specified name, return it potentially
594 /// bitcasted to the right type.
595 ///
596 /// If D is non-null, it specifies a decl that correspond to this.  This is used
597 /// to set the attributes on the function when it is first created.
598 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
599                                                        const llvm::Type *Ty,
600                                                        GlobalDecl D) {
601   // Lookup the entry, lazily creating it if necessary.
602   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
603   if (Entry) {
604     if (Entry->getType()->getElementType() == Ty)
605       return Entry;
606 
607     // Make sure the result is of the correct type.
608     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
609     return llvm::ConstantExpr::getBitCast(Entry, PTy);
610   }
611 
612   // This is the first use or definition of a mangled name.  If there is a
613   // deferred decl with this name, remember that we need to emit it at the end
614   // of the file.
615   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
616     DeferredDecls.find(MangledName);
617   if (DDI != DeferredDecls.end()) {
618     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
619     // list, and remove it from DeferredDecls (since we don't need it anymore).
620     DeferredDeclsToEmit.push_back(DDI->second);
621     DeferredDecls.erase(DDI);
622   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
623     // If this the first reference to a C++ inline function in a class, queue up
624     // the deferred function body for emission.  These are not seen as
625     // top-level declarations.
626     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
627       DeferredDeclsToEmit.push_back(D);
628     // A called constructor which has no definition or declaration need be
629     // synthesized.
630     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
631       const CXXRecordDecl *ClassDecl =
632         cast<CXXRecordDecl>(CD->getDeclContext());
633       if (CD->isCopyConstructor(getContext()))
634         DeferredCopyConstructorToEmit(D);
635       else if (!ClassDecl->hasUserDeclaredConstructor())
636         DeferredDeclsToEmit.push_back(D);
637     }
638     else if (isa<CXXDestructorDecl>(FD))
639        DeferredDestructorToEmit(D);
640     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
641            if (MD->isCopyAssignment())
642              DeferredCopyAssignmentToEmit(D);
643   }
644 
645   // This function doesn't have a complete type (for example, the return
646   // type is an incomplete struct). Use a fake type instead, and make
647   // sure not to try to set attributes.
648   bool IsIncompleteFunction = false;
649   if (!isa<llvm::FunctionType>(Ty)) {
650     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
651                                  std::vector<const llvm::Type*>(), false);
652     IsIncompleteFunction = true;
653   }
654   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
655                                              llvm::Function::ExternalLinkage,
656                                              "", &getModule());
657   F->setName(MangledName);
658   if (D.getDecl())
659     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
660                           IsIncompleteFunction);
661   Entry = F;
662   return F;
663 }
664 
665 /// Defer definition of copy constructor(s) which need be implicitly defined.
666 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
667   const CXXConstructorDecl *CD =
668     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
669   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
670   if (ClassDecl->hasTrivialCopyConstructor() ||
671       ClassDecl->hasUserDeclaredCopyConstructor())
672     return;
673 
674   // First make sure all direct base classes and virtual bases and non-static
675   // data mebers which need to have their copy constructors implicitly defined
676   // are defined. 12.8.p7
677   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
678        Base != ClassDecl->bases_end(); ++Base) {
679     CXXRecordDecl *BaseClassDecl
680       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
681     if (CXXConstructorDecl *BaseCopyCtor =
682         BaseClassDecl->getCopyConstructor(Context, 0))
683       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
684   }
685 
686   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
687        FieldEnd = ClassDecl->field_end();
688        Field != FieldEnd; ++Field) {
689     QualType FieldType = Context.getCanonicalType((*Field)->getType());
690     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
691       FieldType = Array->getElementType();
692     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
693       if ((*Field)->isAnonymousStructOrUnion())
694         continue;
695       CXXRecordDecl *FieldClassDecl
696         = cast<CXXRecordDecl>(FieldClassType->getDecl());
697       if (CXXConstructorDecl *FieldCopyCtor =
698           FieldClassDecl->getCopyConstructor(Context, 0))
699         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
700     }
701   }
702   DeferredDeclsToEmit.push_back(CopyCtorDecl);
703 }
704 
705 /// Defer definition of copy assignments which need be implicitly defined.
706 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
707   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
708   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
709 
710   if (ClassDecl->hasTrivialCopyAssignment() ||
711       ClassDecl->hasUserDeclaredCopyAssignment())
712     return;
713 
714   // First make sure all direct base classes and virtual bases and non-static
715   // data mebers which need to have their copy assignments implicitly defined
716   // are defined. 12.8.p12
717   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
718        Base != ClassDecl->bases_end(); ++Base) {
719     CXXRecordDecl *BaseClassDecl
720       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
721     const CXXMethodDecl *MD = 0;
722     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
723         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
724         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
725       GetAddrOfFunction(MD, 0);
726   }
727 
728   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
729        FieldEnd = ClassDecl->field_end();
730        Field != FieldEnd; ++Field) {
731     QualType FieldType = Context.getCanonicalType((*Field)->getType());
732     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
733       FieldType = Array->getElementType();
734     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
735       if ((*Field)->isAnonymousStructOrUnion())
736         continue;
737       CXXRecordDecl *FieldClassDecl
738         = cast<CXXRecordDecl>(FieldClassType->getDecl());
739       const CXXMethodDecl *MD = 0;
740       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
741           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
742           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
743           GetAddrOfFunction(MD, 0);
744     }
745   }
746   DeferredDeclsToEmit.push_back(CopyAssignDecl);
747 }
748 
749 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
750   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
751   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
752   if (ClassDecl->hasTrivialDestructor() ||
753       ClassDecl->hasUserDeclaredDestructor())
754     return;
755 
756   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
757        Base != ClassDecl->bases_end(); ++Base) {
758     CXXRecordDecl *BaseClassDecl
759       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
760     if (const CXXDestructorDecl *BaseDtor =
761           BaseClassDecl->getDestructor(Context))
762       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
763   }
764 
765   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
766        FieldEnd = ClassDecl->field_end();
767        Field != FieldEnd; ++Field) {
768     QualType FieldType = Context.getCanonicalType((*Field)->getType());
769     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
770       FieldType = Array->getElementType();
771     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
772       if ((*Field)->isAnonymousStructOrUnion())
773         continue;
774       CXXRecordDecl *FieldClassDecl
775         = cast<CXXRecordDecl>(FieldClassType->getDecl());
776       if (const CXXDestructorDecl *FieldDtor =
777             FieldClassDecl->getDestructor(Context))
778         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
779     }
780   }
781   DeferredDeclsToEmit.push_back(DtorDecl);
782 }
783 
784 
785 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
786 /// non-null, then this function will use the specified type if it has to
787 /// create it (this occurs when we see a definition of the function).
788 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
789                                                  const llvm::Type *Ty) {
790   // If there was no specific requested type, just convert it now.
791   if (!Ty)
792     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
793   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
794 }
795 
796 /// CreateRuntimeFunction - Create a new runtime function with the specified
797 /// type and name.
798 llvm::Constant *
799 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
800                                      const char *Name) {
801   // Convert Name to be a uniqued string from the IdentifierInfo table.
802   Name = getContext().Idents.get(Name).getName();
803   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
804 }
805 
806 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
807 /// create and return an llvm GlobalVariable with the specified type.  If there
808 /// is something in the module with the specified name, return it potentially
809 /// bitcasted to the right type.
810 ///
811 /// If D is non-null, it specifies a decl that correspond to this.  This is used
812 /// to set the attributes on the global when it is first created.
813 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
814                                                      const llvm::PointerType*Ty,
815                                                      const VarDecl *D) {
816   // Lookup the entry, lazily creating it if necessary.
817   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
818   if (Entry) {
819     if (Entry->getType() == Ty)
820       return Entry;
821 
822     // Make sure the result is of the correct type.
823     return llvm::ConstantExpr::getBitCast(Entry, Ty);
824   }
825 
826   // This is the first use or definition of a mangled name.  If there is a
827   // deferred decl with this name, remember that we need to emit it at the end
828   // of the file.
829   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
830     DeferredDecls.find(MangledName);
831   if (DDI != DeferredDecls.end()) {
832     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
833     // list, and remove it from DeferredDecls (since we don't need it anymore).
834     DeferredDeclsToEmit.push_back(DDI->second);
835     DeferredDecls.erase(DDI);
836   }
837 
838   llvm::GlobalVariable *GV =
839     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
840                              llvm::GlobalValue::ExternalLinkage,
841                              0, "", 0,
842                              false, Ty->getAddressSpace());
843   GV->setName(MangledName);
844 
845   // Handle things which are present even on external declarations.
846   if (D) {
847     // FIXME: This code is overly simple and should be merged with other global
848     // handling.
849     GV->setConstant(D->getType().isConstant(Context));
850 
851     // FIXME: Merge with other attribute handling code.
852     if (D->getStorageClass() == VarDecl::PrivateExtern)
853       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
854 
855     if (D->hasAttr<WeakAttr>() ||
856         D->hasAttr<WeakImportAttr>())
857       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
858 
859     GV->setThreadLocal(D->isThreadSpecified());
860   }
861 
862   return Entry = GV;
863 }
864 
865 
866 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
867 /// given global variable.  If Ty is non-null and if the global doesn't exist,
868 /// then it will be greated with the specified type instead of whatever the
869 /// normal requested type would be.
870 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
871                                                   const llvm::Type *Ty) {
872   assert(D->hasGlobalStorage() && "Not a global variable");
873   QualType ASTTy = D->getType();
874   if (Ty == 0)
875     Ty = getTypes().ConvertTypeForMem(ASTTy);
876 
877   const llvm::PointerType *PTy =
878     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
879   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
880 }
881 
882 /// CreateRuntimeVariable - Create a new runtime global variable with the
883 /// specified type and name.
884 llvm::Constant *
885 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
886                                      const char *Name) {
887   // Convert Name to be a uniqued string from the IdentifierInfo table.
888   Name = getContext().Idents.get(Name).getName();
889   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
890 }
891 
892 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
893   assert(!D->getInit() && "Cannot emit definite definitions here!");
894 
895   if (MayDeferGeneration(D)) {
896     // If we have not seen a reference to this variable yet, place it
897     // into the deferred declarations table to be emitted if needed
898     // later.
899     const char *MangledName = getMangledName(D);
900     if (GlobalDeclMap.count(MangledName) == 0) {
901       DeferredDecls[MangledName] = D;
902       return;
903     }
904   }
905 
906   // The tentative definition is the only definition.
907   EmitGlobalVarDefinition(D);
908 }
909 
910 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
911   llvm::Constant *Init = 0;
912   QualType ASTTy = D->getType();
913 
914   if (D->getInit() == 0) {
915     // This is a tentative definition; tentative definitions are
916     // implicitly initialized with { 0 }.
917     //
918     // Note that tentative definitions are only emitted at the end of
919     // a translation unit, so they should never have incomplete
920     // type. In addition, EmitTentativeDefinition makes sure that we
921     // never attempt to emit a tentative definition if a real one
922     // exists. A use may still exists, however, so we still may need
923     // to do a RAUW.
924     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
925     Init = EmitNullConstant(D->getType());
926   } else {
927     Init = EmitConstantExpr(D->getInit(), D->getType());
928 
929     if (!Init) {
930       QualType T = D->getInit()->getType();
931       if (getLangOptions().CPlusPlus) {
932         CXXGlobalInits.push_back(D);
933         Init = EmitNullConstant(T);
934       } else {
935         ErrorUnsupported(D, "static initializer");
936         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
937       }
938     }
939   }
940 
941   const llvm::Type* InitType = Init->getType();
942   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
943 
944   // Strip off a bitcast if we got one back.
945   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
946     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
947            // all zero index gep.
948            CE->getOpcode() == llvm::Instruction::GetElementPtr);
949     Entry = CE->getOperand(0);
950   }
951 
952   // Entry is now either a Function or GlobalVariable.
953   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
954 
955   // We have a definition after a declaration with the wrong type.
956   // We must make a new GlobalVariable* and update everything that used OldGV
957   // (a declaration or tentative definition) with the new GlobalVariable*
958   // (which will be a definition).
959   //
960   // This happens if there is a prototype for a global (e.g.
961   // "extern int x[];") and then a definition of a different type (e.g.
962   // "int x[10];"). This also happens when an initializer has a different type
963   // from the type of the global (this happens with unions).
964   if (GV == 0 ||
965       GV->getType()->getElementType() != InitType ||
966       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
967 
968     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
969     GlobalDeclMap.erase(getMangledName(D));
970 
971     // Make a new global with the correct type, this is now guaranteed to work.
972     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
973     GV->takeName(cast<llvm::GlobalValue>(Entry));
974 
975     // Replace all uses of the old global with the new global
976     llvm::Constant *NewPtrForOldDecl =
977         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
978     Entry->replaceAllUsesWith(NewPtrForOldDecl);
979 
980     // Erase the old global, since it is no longer used.
981     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
982   }
983 
984   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
985     SourceManager &SM = Context.getSourceManager();
986     AddAnnotation(EmitAnnotateAttr(GV, AA,
987                               SM.getInstantiationLineNumber(D->getLocation())));
988   }
989 
990   GV->setInitializer(Init);
991 
992   // If it is safe to mark the global 'constant', do so now.
993   GV->setConstant(false);
994   if (D->getType().isConstant(Context)) {
995     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
996     // members, it cannot be declared "LLVM const".
997     GV->setConstant(true);
998   }
999 
1000   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1001 
1002   // Set the llvm linkage type as appropriate.
1003   if (D->getStorageClass() == VarDecl::Static)
1004     GV->setLinkage(llvm::Function::InternalLinkage);
1005   else if (D->hasAttr<DLLImportAttr>())
1006     GV->setLinkage(llvm::Function::DLLImportLinkage);
1007   else if (D->hasAttr<DLLExportAttr>())
1008     GV->setLinkage(llvm::Function::DLLExportLinkage);
1009   else if (D->hasAttr<WeakAttr>()) {
1010     if (GV->isConstant())
1011       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1012     else
1013       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1014   } else if (!CompileOpts.NoCommon &&
1015            !D->hasExternalStorage() && !D->getInit() &&
1016            !D->getAttr<SectionAttr>()) {
1017     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1018     // common vars aren't constant even if declared const.
1019     GV->setConstant(false);
1020   } else
1021     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1022 
1023   SetCommonAttributes(D, GV);
1024 
1025   // Emit global variable debug information.
1026   if (CGDebugInfo *DI = getDebugInfo()) {
1027     DI->setLocation(D->getLocation());
1028     DI->EmitGlobalVariable(GV, D);
1029   }
1030 }
1031 
1032 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1033 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1034 /// existing call uses of the old function in the module, this adjusts them to
1035 /// call the new function directly.
1036 ///
1037 /// This is not just a cleanup: the always_inline pass requires direct calls to
1038 /// functions to be able to inline them.  If there is a bitcast in the way, it
1039 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1040 /// run at -O0.
1041 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1042                                                       llvm::Function *NewFn) {
1043   // If we're redefining a global as a function, don't transform it.
1044   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1045   if (OldFn == 0) return;
1046 
1047   const llvm::Type *NewRetTy = NewFn->getReturnType();
1048   llvm::SmallVector<llvm::Value*, 4> ArgList;
1049 
1050   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1051        UI != E; ) {
1052     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1053     unsigned OpNo = UI.getOperandNo();
1054     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1055     if (!CI || OpNo != 0) continue;
1056 
1057     // If the return types don't match exactly, and if the call isn't dead, then
1058     // we can't transform this call.
1059     if (CI->getType() != NewRetTy && !CI->use_empty())
1060       continue;
1061 
1062     // If the function was passed too few arguments, don't transform.  If extra
1063     // arguments were passed, we silently drop them.  If any of the types
1064     // mismatch, we don't transform.
1065     unsigned ArgNo = 0;
1066     bool DontTransform = false;
1067     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1068          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1069       if (CI->getNumOperands()-1 == ArgNo ||
1070           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1071         DontTransform = true;
1072         break;
1073       }
1074     }
1075     if (DontTransform)
1076       continue;
1077 
1078     // Okay, we can transform this.  Create the new call instruction and copy
1079     // over the required information.
1080     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1081     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1082                                                      ArgList.end(), "", CI);
1083     ArgList.clear();
1084     if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext()))
1085       NewCall->takeName(CI);
1086     NewCall->setAttributes(CI->getAttributes());
1087     NewCall->setCallingConv(CI->getCallingConv());
1088 
1089     // Finally, remove the old call, replacing any uses with the new one.
1090     if (!CI->use_empty())
1091       CI->replaceAllUsesWith(NewCall);
1092     CI->eraseFromParent();
1093   }
1094 }
1095 
1096 
1097 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1098   const llvm::FunctionType *Ty;
1099   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1100 
1101   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1102     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1103 
1104     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1105   } else {
1106     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1107 
1108     // As a special case, make sure that definitions of K&R function
1109     // "type foo()" aren't declared as varargs (which forces the backend
1110     // to do unnecessary work).
1111     if (D->getType()->isFunctionNoProtoType()) {
1112       assert(Ty->isVarArg() && "Didn't lower type as expected");
1113       // Due to stret, the lowered function could have arguments.
1114       // Just create the same type as was lowered by ConvertType
1115       // but strip off the varargs bit.
1116       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1117       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1118     }
1119   }
1120 
1121   // Get or create the prototype for the function.
1122   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1123 
1124   // Strip off a bitcast if we got one back.
1125   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1126     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1127     Entry = CE->getOperand(0);
1128   }
1129 
1130 
1131   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1132     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1133 
1134     // If the types mismatch then we have to rewrite the definition.
1135     assert(OldFn->isDeclaration() &&
1136            "Shouldn't replace non-declaration");
1137 
1138     // F is the Function* for the one with the wrong type, we must make a new
1139     // Function* and update everything that used F (a declaration) with the new
1140     // Function* (which will be a definition).
1141     //
1142     // This happens if there is a prototype for a function
1143     // (e.g. "int f()") and then a definition of a different type
1144     // (e.g. "int f(int x)").  Start by making a new function of the
1145     // correct type, RAUW, then steal the name.
1146     GlobalDeclMap.erase(getMangledName(D));
1147     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1148     NewFn->takeName(OldFn);
1149 
1150     // If this is an implementation of a function without a prototype, try to
1151     // replace any existing uses of the function (which may be calls) with uses
1152     // of the new function
1153     if (D->getType()->isFunctionNoProtoType()) {
1154       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1155       OldFn->removeDeadConstantUsers();
1156     }
1157 
1158     // Replace uses of F with the Function we will endow with a body.
1159     if (!Entry->use_empty()) {
1160       llvm::Constant *NewPtrForOldDecl =
1161         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1162       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1163     }
1164 
1165     // Ok, delete the old function now, which is dead.
1166     OldFn->eraseFromParent();
1167 
1168     Entry = NewFn;
1169   }
1170 
1171   llvm::Function *Fn = cast<llvm::Function>(Entry);
1172 
1173   CodeGenFunction(*this).GenerateCode(D, Fn);
1174 
1175   SetFunctionDefinitionAttributes(D, Fn);
1176   SetLLVMFunctionAttributesForDefinition(D, Fn);
1177 
1178   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1179     AddGlobalCtor(Fn, CA->getPriority());
1180   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1181     AddGlobalDtor(Fn, DA->getPriority());
1182 }
1183 
1184 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1185   const AliasAttr *AA = D->getAttr<AliasAttr>();
1186   assert(AA && "Not an alias?");
1187 
1188   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1189 
1190   // Unique the name through the identifier table.
1191   const char *AliaseeName = AA->getAliasee().c_str();
1192   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1193 
1194   // Create a reference to the named value.  This ensures that it is emitted
1195   // if a deferred decl.
1196   llvm::Constant *Aliasee;
1197   if (isa<llvm::FunctionType>(DeclTy))
1198     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1199   else
1200     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1201                                     llvm::PointerType::getUnqual(DeclTy), 0);
1202 
1203   // Create the new alias itself, but don't set a name yet.
1204   llvm::GlobalValue *GA =
1205     new llvm::GlobalAlias(Aliasee->getType(),
1206                           llvm::Function::ExternalLinkage,
1207                           "", Aliasee, &getModule());
1208 
1209   // See if there is already something with the alias' name in the module.
1210   const char *MangledName = getMangledName(D);
1211   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1212 
1213   if (Entry && !Entry->isDeclaration()) {
1214     // If there is a definition in the module, then it wins over the alias.
1215     // This is dubious, but allow it to be safe.  Just ignore the alias.
1216     GA->eraseFromParent();
1217     return;
1218   }
1219 
1220   if (Entry) {
1221     // If there is a declaration in the module, then we had an extern followed
1222     // by the alias, as in:
1223     //   extern int test6();
1224     //   ...
1225     //   int test6() __attribute__((alias("test7")));
1226     //
1227     // Remove it and replace uses of it with the alias.
1228 
1229     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1230                                                           Entry->getType()));
1231     Entry->eraseFromParent();
1232   }
1233 
1234   // Now we know that there is no conflict, set the name.
1235   Entry = GA;
1236   GA->setName(MangledName);
1237 
1238   // Set attributes which are particular to an alias; this is a
1239   // specialization of the attributes which may be set on a global
1240   // variable/function.
1241   if (D->hasAttr<DLLExportAttr>()) {
1242     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1243       // The dllexport attribute is ignored for undefined symbols.
1244       if (FD->getBody())
1245         GA->setLinkage(llvm::Function::DLLExportLinkage);
1246     } else {
1247       GA->setLinkage(llvm::Function::DLLExportLinkage);
1248     }
1249   } else if (D->hasAttr<WeakAttr>() ||
1250              D->hasAttr<WeakImportAttr>()) {
1251     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1252   }
1253 
1254   SetCommonAttributes(D, GA);
1255 }
1256 
1257 /// getBuiltinLibFunction - Given a builtin id for a function like
1258 /// "__builtin_fabsf", return a Function* for "fabsf".
1259 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1260   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1261           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1262          "isn't a lib fn");
1263 
1264   // Get the name, skip over the __builtin_ prefix (if necessary).
1265   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1266   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1267     Name += 10;
1268 
1269   // Get the type for the builtin.
1270   ASTContext::GetBuiltinTypeError Error;
1271   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1272   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1273 
1274   const llvm::FunctionType *Ty =
1275     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1276 
1277   // Unique the name through the identifier table.
1278   Name = getContext().Idents.get(Name).getName();
1279   // FIXME: param attributes for sext/zext etc.
1280   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1281 }
1282 
1283 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1284                                             unsigned NumTys) {
1285   return llvm::Intrinsic::getDeclaration(&getModule(),
1286                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1287 }
1288 
1289 llvm::Function *CodeGenModule::getMemCpyFn() {
1290   if (MemCpyFn) return MemCpyFn;
1291   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1292   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1293 }
1294 
1295 llvm::Function *CodeGenModule::getMemMoveFn() {
1296   if (MemMoveFn) return MemMoveFn;
1297   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1298   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1299 }
1300 
1301 llvm::Function *CodeGenModule::getMemSetFn() {
1302   if (MemSetFn) return MemSetFn;
1303   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1304   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1305 }
1306 
1307 static llvm::StringMapEntry<llvm::Constant*> &
1308 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1309                          const StringLiteral *Literal,
1310                          bool TargetIsLSB,
1311                          bool &IsUTF16,
1312                          unsigned &StringLength) {
1313   unsigned NumBytes = Literal->getByteLength();
1314 
1315   // Check for simple case.
1316   if (!Literal->containsNonAsciiOrNull()) {
1317     StringLength = NumBytes;
1318     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1319                                                 StringLength));
1320   }
1321 
1322   // Otherwise, convert the UTF8 literals into a byte string.
1323   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1324   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1325   UTF16 *ToPtr = &ToBuf[0];
1326 
1327   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1328                                                &ToPtr, ToPtr + NumBytes,
1329                                                strictConversion);
1330 
1331   // Check for conversion failure.
1332   if (Result != conversionOK) {
1333     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1334     // this duplicate code.
1335     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1336     StringLength = NumBytes;
1337     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1338                                                 StringLength));
1339   }
1340 
1341   // ConvertUTF8toUTF16 returns the length in ToPtr.
1342   StringLength = ToPtr - &ToBuf[0];
1343 
1344   // Render the UTF-16 string into a byte array and convert to the target byte
1345   // order.
1346   //
1347   // FIXME: This isn't something we should need to do here.
1348   llvm::SmallString<128> AsBytes;
1349   AsBytes.reserve(StringLength * 2);
1350   for (unsigned i = 0; i != StringLength; ++i) {
1351     unsigned short Val = ToBuf[i];
1352     if (TargetIsLSB) {
1353       AsBytes.push_back(Val & 0xFF);
1354       AsBytes.push_back(Val >> 8);
1355     } else {
1356       AsBytes.push_back(Val >> 8);
1357       AsBytes.push_back(Val & 0xFF);
1358     }
1359   }
1360   // Append one extra null character, the second is automatically added by our
1361   // caller.
1362   AsBytes.push_back(0);
1363 
1364   IsUTF16 = true;
1365   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1366 }
1367 
1368 llvm::Constant *
1369 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1370   unsigned StringLength = 0;
1371   bool isUTF16 = false;
1372   llvm::StringMapEntry<llvm::Constant*> &Entry =
1373     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1374                              getTargetData().isLittleEndian(),
1375                              isUTF16, StringLength);
1376 
1377   if (llvm::Constant *C = Entry.getValue())
1378     return C;
1379 
1380   llvm::Constant *Zero =
1381       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1382   llvm::Constant *Zeros[] = { Zero, Zero };
1383 
1384   // If we don't already have it, get __CFConstantStringClassReference.
1385   if (!CFConstantStringClassRef) {
1386     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1387     Ty = llvm::ArrayType::get(Ty, 0);
1388     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1389                                            "__CFConstantStringClassReference");
1390     // Decay array -> ptr
1391     CFConstantStringClassRef =
1392       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1393   }
1394 
1395   QualType CFTy = getContext().getCFConstantStringType();
1396 
1397   const llvm::StructType *STy =
1398     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1399 
1400   std::vector<llvm::Constant*> Fields(4);
1401 
1402   // Class pointer.
1403   Fields[0] = CFConstantStringClassRef;
1404 
1405   // Flags.
1406   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1407   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1408     llvm::ConstantInt::get(Ty, 0x07C8);
1409 
1410   // String pointer.
1411   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1412 
1413   const char *Sect, *Prefix;
1414   bool isConstant;
1415   llvm::GlobalValue::LinkageTypes Linkage;
1416   if (isUTF16) {
1417     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1418     Sect = getContext().Target.getUnicodeStringSection();
1419     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1420     Linkage = llvm::GlobalValue::InternalLinkage;
1421     // FIXME: Why does GCC not set constant here?
1422     isConstant = false;
1423   } else {
1424     Prefix = ".str";
1425     Sect = getContext().Target.getCFStringDataSection();
1426     Linkage = llvm::GlobalValue::PrivateLinkage;
1427     // FIXME: -fwritable-strings should probably affect this, but we
1428     // are following gcc here.
1429     isConstant = true;
1430   }
1431   llvm::GlobalVariable *GV =
1432     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1433                              Linkage, C, Prefix);
1434   if (Sect)
1435     GV->setSection(Sect);
1436   if (isUTF16) {
1437     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1438     GV->setAlignment(Align);
1439   }
1440   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1441 
1442   // String length.
1443   Ty = getTypes().ConvertType(getContext().LongTy);
1444   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1445 
1446   // The struct.
1447   C = llvm::ConstantStruct::get(STy, Fields);
1448   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1449                                 llvm::GlobalVariable::PrivateLinkage, C,
1450                                 "_unnamed_cfstring_");
1451   if (const char *Sect = getContext().Target.getCFStringSection())
1452     GV->setSection(Sect);
1453   Entry.setValue(GV);
1454 
1455   return GV;
1456 }
1457 
1458 /// GetStringForStringLiteral - Return the appropriate bytes for a
1459 /// string literal, properly padded to match the literal type.
1460 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1461   const char *StrData = E->getStrData();
1462   unsigned Len = E->getByteLength();
1463 
1464   const ConstantArrayType *CAT =
1465     getContext().getAsConstantArrayType(E->getType());
1466   assert(CAT && "String isn't pointer or array!");
1467 
1468   // Resize the string to the right size.
1469   std::string Str(StrData, StrData+Len);
1470   uint64_t RealLen = CAT->getSize().getZExtValue();
1471 
1472   if (E->isWide())
1473     RealLen *= getContext().Target.getWCharWidth()/8;
1474 
1475   Str.resize(RealLen, '\0');
1476 
1477   return Str;
1478 }
1479 
1480 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1481 /// constant array for the given string literal.
1482 llvm::Constant *
1483 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1484   // FIXME: This can be more efficient.
1485   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1486 }
1487 
1488 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1489 /// array for the given ObjCEncodeExpr node.
1490 llvm::Constant *
1491 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1492   std::string Str;
1493   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1494 
1495   return GetAddrOfConstantCString(Str);
1496 }
1497 
1498 
1499 /// GenerateWritableString -- Creates storage for a string literal.
1500 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1501                                              bool constant,
1502                                              CodeGenModule &CGM,
1503                                              const char *GlobalName) {
1504   // Create Constant for this string literal. Don't add a '\0'.
1505   llvm::Constant *C =
1506       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1507 
1508   // Create a global variable for this string
1509   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1510                                   llvm::GlobalValue::PrivateLinkage,
1511                                   C, GlobalName);
1512 }
1513 
1514 /// GetAddrOfConstantString - Returns a pointer to a character array
1515 /// containing the literal. This contents are exactly that of the
1516 /// given string, i.e. it will not be null terminated automatically;
1517 /// see GetAddrOfConstantCString. Note that whether the result is
1518 /// actually a pointer to an LLVM constant depends on
1519 /// Feature.WriteableStrings.
1520 ///
1521 /// The result has pointer to array type.
1522 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1523                                                        const char *GlobalName) {
1524   bool IsConstant = !Features.WritableStrings;
1525 
1526   // Get the default prefix if a name wasn't specified.
1527   if (!GlobalName)
1528     GlobalName = ".str";
1529 
1530   // Don't share any string literals if strings aren't constant.
1531   if (!IsConstant)
1532     return GenerateStringLiteral(str, false, *this, GlobalName);
1533 
1534   llvm::StringMapEntry<llvm::Constant *> &Entry =
1535     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1536 
1537   if (Entry.getValue())
1538     return Entry.getValue();
1539 
1540   // Create a global variable for this.
1541   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1542   Entry.setValue(C);
1543   return C;
1544 }
1545 
1546 /// GetAddrOfConstantCString - Returns a pointer to a character
1547 /// array containing the literal and a terminating '\-'
1548 /// character. The result has pointer to array type.
1549 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1550                                                         const char *GlobalName){
1551   return GetAddrOfConstantString(str + '\0', GlobalName);
1552 }
1553 
1554 /// EmitObjCPropertyImplementations - Emit information for synthesized
1555 /// properties for an implementation.
1556 void CodeGenModule::EmitObjCPropertyImplementations(const
1557                                                     ObjCImplementationDecl *D) {
1558   for (ObjCImplementationDecl::propimpl_iterator
1559          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1560     ObjCPropertyImplDecl *PID = *i;
1561 
1562     // Dynamic is just for type-checking.
1563     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1564       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1565 
1566       // Determine which methods need to be implemented, some may have
1567       // been overridden. Note that ::isSynthesized is not the method
1568       // we want, that just indicates if the decl came from a
1569       // property. What we want to know is if the method is defined in
1570       // this implementation.
1571       if (!D->getInstanceMethod(PD->getGetterName()))
1572         CodeGenFunction(*this).GenerateObjCGetter(
1573                                  const_cast<ObjCImplementationDecl *>(D), PID);
1574       if (!PD->isReadOnly() &&
1575           !D->getInstanceMethod(PD->getSetterName()))
1576         CodeGenFunction(*this).GenerateObjCSetter(
1577                                  const_cast<ObjCImplementationDecl *>(D), PID);
1578     }
1579   }
1580 }
1581 
1582 /// EmitNamespace - Emit all declarations in a namespace.
1583 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1584   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1585        I != E; ++I)
1586     EmitTopLevelDecl(*I);
1587 }
1588 
1589 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1590 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1591   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1592       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1593     ErrorUnsupported(LSD, "linkage spec");
1594     return;
1595   }
1596 
1597   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1598        I != E; ++I)
1599     EmitTopLevelDecl(*I);
1600 }
1601 
1602 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1603 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1604   // If an error has occurred, stop code generation, but continue
1605   // parsing and semantic analysis (to ensure all warnings and errors
1606   // are emitted).
1607   if (Diags.hasErrorOccurred())
1608     return;
1609 
1610   // Ignore dependent declarations.
1611   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1612     return;
1613 
1614   switch (D->getKind()) {
1615   case Decl::CXXConversion:
1616   case Decl::CXXMethod:
1617   case Decl::Function:
1618     // Skip function templates
1619     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1620       return;
1621 
1622     EmitGlobal(cast<FunctionDecl>(D));
1623     break;
1624 
1625   case Decl::Var:
1626     EmitGlobal(cast<VarDecl>(D));
1627     break;
1628 
1629   // C++ Decls
1630   case Decl::Namespace:
1631     EmitNamespace(cast<NamespaceDecl>(D));
1632     break;
1633     // No code generation needed.
1634   case Decl::Using:
1635   case Decl::UsingDirective:
1636   case Decl::ClassTemplate:
1637   case Decl::FunctionTemplate:
1638     break;
1639   case Decl::CXXConstructor:
1640     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1641     break;
1642   case Decl::CXXDestructor:
1643     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1644     break;
1645 
1646   case Decl::StaticAssert:
1647     // Nothing to do.
1648     break;
1649 
1650   // Objective-C Decls
1651 
1652   // Forward declarations, no (immediate) code generation.
1653   case Decl::ObjCClass:
1654   case Decl::ObjCForwardProtocol:
1655   case Decl::ObjCCategory:
1656   case Decl::ObjCInterface:
1657     break;
1658 
1659   case Decl::ObjCProtocol:
1660     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1661     break;
1662 
1663   case Decl::ObjCCategoryImpl:
1664     // Categories have properties but don't support synthesize so we
1665     // can ignore them here.
1666     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1667     break;
1668 
1669   case Decl::ObjCImplementation: {
1670     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1671     EmitObjCPropertyImplementations(OMD);
1672     Runtime->GenerateClass(OMD);
1673     break;
1674   }
1675   case Decl::ObjCMethod: {
1676     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1677     // If this is not a prototype, emit the body.
1678     if (OMD->getBody())
1679       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1680     break;
1681   }
1682   case Decl::ObjCCompatibleAlias:
1683     // compatibility-alias is a directive and has no code gen.
1684     break;
1685 
1686   case Decl::LinkageSpec:
1687     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1688     break;
1689 
1690   case Decl::FileScopeAsm: {
1691     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1692     std::string AsmString(AD->getAsmString()->getStrData(),
1693                           AD->getAsmString()->getByteLength());
1694 
1695     const std::string &S = getModule().getModuleInlineAsm();
1696     if (S.empty())
1697       getModule().setModuleInlineAsm(AsmString);
1698     else
1699       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1700     break;
1701   }
1702 
1703   default:
1704     // Make sure we handled everything we should, every other kind is a
1705     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1706     // function. Need to recode Decl::Kind to do that easily.
1707     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1708   }
1709 }
1710