1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
405                                              llvm::Module &M) {
406   if (!LO.VisibilityFromDLLStorageClass)
407     return;
408 
409   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
410       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
411   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
412       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
413   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
414       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
415   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
416       CodeGenModule::GetLLVMVisibility(
417           LO.getExternDeclNoDLLStorageClassVisibility());
418 
419   for (llvm::GlobalValue &GV : M.global_values()) {
420     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
421       continue;
422 
423     // Reset DSO locality before setting the visibility. This removes
424     // any effects that visibility options and annotations may have
425     // had on the DSO locality. Setting the visibility will implicitly set
426     // appropriate globals to DSO Local; however, this will be pessimistic
427     // w.r.t. to the normal compiler IRGen.
428     GV.setDSOLocal(false);
429 
430     if (GV.isDeclarationForLinker()) {
431       GV.setVisibility(GV.getDLLStorageClass() ==
432                                llvm::GlobalValue::DLLImportStorageClass
433                            ? ExternDeclDLLImportVisibility
434                            : ExternDeclNoDLLStorageClassVisibility);
435     } else {
436       GV.setVisibility(GV.getDLLStorageClass() ==
437                                llvm::GlobalValue::DLLExportStorageClass
438                            ? DLLExportVisibility
439                            : NoDLLStorageClassVisibility);
440     }
441 
442     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
443   }
444 }
445 
446 void CodeGenModule::Release() {
447   EmitDeferred();
448   EmitVTablesOpportunistically();
449   applyGlobalValReplacements();
450   applyReplacements();
451   checkAliases();
452   emitMultiVersionFunctions();
453   EmitCXXGlobalInitFunc();
454   EmitCXXGlobalCleanUpFunc();
455   registerGlobalDtorsWithAtExit();
456   EmitCXXThreadLocalInitFunc();
457   if (ObjCRuntime)
458     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
459       AddGlobalCtor(ObjCInitFunction);
460   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
461       CUDARuntime) {
462     if (llvm::Function *CudaCtorFunction =
463             CUDARuntime->makeModuleCtorFunction())
464       AddGlobalCtor(CudaCtorFunction);
465   }
466   if (OpenMPRuntime) {
467     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
468             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
469       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
470     }
471     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
472     OpenMPRuntime->clear();
473   }
474   if (PGOReader) {
475     getModule().setProfileSummary(
476         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
477         llvm::ProfileSummary::PSK_Instr);
478     if (PGOStats.hasDiagnostics())
479       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
480   }
481   EmitCtorList(GlobalCtors, "llvm.global_ctors");
482   EmitCtorList(GlobalDtors, "llvm.global_dtors");
483   EmitGlobalAnnotations();
484   EmitStaticExternCAliases();
485   EmitDeferredUnusedCoverageMappings();
486   if (CoverageMapping)
487     CoverageMapping->emit();
488   if (CodeGenOpts.SanitizeCfiCrossDso) {
489     CodeGenFunction(*this).EmitCfiCheckFail();
490     CodeGenFunction(*this).EmitCfiCheckStub();
491   }
492   emitAtAvailableLinkGuard();
493   if (Context.getTargetInfo().getTriple().isWasm() &&
494       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
495     EmitMainVoidAlias();
496   }
497   emitLLVMUsed();
498   if (SanStats)
499     SanStats->finish();
500 
501   if (CodeGenOpts.Autolink &&
502       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
503     EmitModuleLinkOptions();
504   }
505 
506   // On ELF we pass the dependent library specifiers directly to the linker
507   // without manipulating them. This is in contrast to other platforms where
508   // they are mapped to a specific linker option by the compiler. This
509   // difference is a result of the greater variety of ELF linkers and the fact
510   // that ELF linkers tend to handle libraries in a more complicated fashion
511   // than on other platforms. This forces us to defer handling the dependent
512   // libs to the linker.
513   //
514   // CUDA/HIP device and host libraries are different. Currently there is no
515   // way to differentiate dependent libraries for host or device. Existing
516   // usage of #pragma comment(lib, *) is intended for host libraries on
517   // Windows. Therefore emit llvm.dependent-libraries only for host.
518   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
519     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
520     for (auto *MD : ELFDependentLibraries)
521       NMD->addOperand(MD);
522   }
523 
524   // Record mregparm value now so it is visible through rest of codegen.
525   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
526     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
527                               CodeGenOpts.NumRegisterParameters);
528 
529   if (CodeGenOpts.DwarfVersion) {
530     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
531                               CodeGenOpts.DwarfVersion);
532   }
533 
534   if (Context.getLangOpts().SemanticInterposition)
535     // Require various optimization to respect semantic interposition.
536     getModule().setSemanticInterposition(1);
537   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
538     // Allow dso_local on applicable targets.
539     getModule().setSemanticInterposition(0);
540 
541   if (CodeGenOpts.EmitCodeView) {
542     // Indicate that we want CodeView in the metadata.
543     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
544   }
545   if (CodeGenOpts.CodeViewGHash) {
546     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
547   }
548   if (CodeGenOpts.ControlFlowGuard) {
549     // Function ID tables and checks for Control Flow Guard (cfguard=2).
550     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
551   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
552     // Function ID tables for Control Flow Guard (cfguard=1).
553     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
554   }
555   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
556     // We don't support LTO with 2 with different StrictVTablePointers
557     // FIXME: we could support it by stripping all the information introduced
558     // by StrictVTablePointers.
559 
560     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
561 
562     llvm::Metadata *Ops[2] = {
563               llvm::MDString::get(VMContext, "StrictVTablePointers"),
564               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
565                   llvm::Type::getInt32Ty(VMContext), 1))};
566 
567     getModule().addModuleFlag(llvm::Module::Require,
568                               "StrictVTablePointersRequirement",
569                               llvm::MDNode::get(VMContext, Ops));
570   }
571   if (getModuleDebugInfo())
572     // We support a single version in the linked module. The LLVM
573     // parser will drop debug info with a different version number
574     // (and warn about it, too).
575     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
576                               llvm::DEBUG_METADATA_VERSION);
577 
578   // We need to record the widths of enums and wchar_t, so that we can generate
579   // the correct build attributes in the ARM backend. wchar_size is also used by
580   // TargetLibraryInfo.
581   uint64_t WCharWidth =
582       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
583   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
584 
585   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
586   if (   Arch == llvm::Triple::arm
587       || Arch == llvm::Triple::armeb
588       || Arch == llvm::Triple::thumb
589       || Arch == llvm::Triple::thumbeb) {
590     // The minimum width of an enum in bytes
591     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
592     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
593   }
594 
595   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
596     StringRef ABIStr = Target.getABI();
597     llvm::LLVMContext &Ctx = TheModule.getContext();
598     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
599                               llvm::MDString::get(Ctx, ABIStr));
600   }
601 
602   if (CodeGenOpts.SanitizeCfiCrossDso) {
603     // Indicate that we want cross-DSO control flow integrity checks.
604     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
605   }
606 
607   if (CodeGenOpts.WholeProgramVTables) {
608     // Indicate whether VFE was enabled for this module, so that the
609     // vcall_visibility metadata added under whole program vtables is handled
610     // appropriately in the optimizer.
611     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
612                               CodeGenOpts.VirtualFunctionElimination);
613   }
614 
615   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
616     getModule().addModuleFlag(llvm::Module::Override,
617                               "CFI Canonical Jump Tables",
618                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
619   }
620 
621   if (CodeGenOpts.CFProtectionReturn &&
622       Target.checkCFProtectionReturnSupported(getDiags())) {
623     // Indicate that we want to instrument return control flow protection.
624     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
625                               1);
626   }
627 
628   if (CodeGenOpts.CFProtectionBranch &&
629       Target.checkCFProtectionBranchSupported(getDiags())) {
630     // Indicate that we want to instrument branch control flow protection.
631     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
632                               1);
633   }
634 
635   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
636       Arch == llvm::Triple::aarch64_be) {
637     getModule().addModuleFlag(llvm::Module::Error,
638                               "branch-target-enforcement",
639                               LangOpts.BranchTargetEnforcement);
640 
641     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
642                               LangOpts.hasSignReturnAddress());
643 
644     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
645                               LangOpts.isSignReturnAddressScopeAll());
646 
647     getModule().addModuleFlag(llvm::Module::Error,
648                               "sign-return-address-with-bkey",
649                               !LangOpts.isSignReturnAddressWithAKey());
650   }
651 
652   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
653     llvm::LLVMContext &Ctx = TheModule.getContext();
654     getModule().addModuleFlag(
655         llvm::Module::Error, "MemProfProfileFilename",
656         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
657   }
658 
659   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
660     // Indicate whether __nvvm_reflect should be configured to flush denormal
661     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
662     // property.)
663     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
664                               CodeGenOpts.FP32DenormalMode.Output !=
665                                   llvm::DenormalMode::IEEE);
666   }
667 
668   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
669   if (LangOpts.OpenCL) {
670     EmitOpenCLMetadata();
671     // Emit SPIR version.
672     if (getTriple().isSPIR()) {
673       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
674       // opencl.spir.version named metadata.
675       // C++ is backwards compatible with OpenCL v2.0.
676       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
677       llvm::Metadata *SPIRVerElts[] = {
678           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679               Int32Ty, Version / 100)),
680           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
681               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
682       llvm::NamedMDNode *SPIRVerMD =
683           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
684       llvm::LLVMContext &Ctx = TheModule.getContext();
685       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
686     }
687   }
688 
689   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
690     assert(PLevel < 3 && "Invalid PIC Level");
691     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
692     if (Context.getLangOpts().PIE)
693       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
694   }
695 
696   if (getCodeGenOpts().CodeModel.size() > 0) {
697     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
698                   .Case("tiny", llvm::CodeModel::Tiny)
699                   .Case("small", llvm::CodeModel::Small)
700                   .Case("kernel", llvm::CodeModel::Kernel)
701                   .Case("medium", llvm::CodeModel::Medium)
702                   .Case("large", llvm::CodeModel::Large)
703                   .Default(~0u);
704     if (CM != ~0u) {
705       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
706       getModule().setCodeModel(codeModel);
707     }
708   }
709 
710   if (CodeGenOpts.NoPLT)
711     getModule().setRtLibUseGOT();
712 
713   SimplifyPersonality();
714 
715   if (getCodeGenOpts().EmitDeclMetadata)
716     EmitDeclMetadata();
717 
718   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
719     EmitCoverageFile();
720 
721   if (CGDebugInfo *DI = getModuleDebugInfo())
722     DI->finalize();
723 
724   if (getCodeGenOpts().EmitVersionIdentMetadata)
725     EmitVersionIdentMetadata();
726 
727   if (!getCodeGenOpts().RecordCommandLine.empty())
728     EmitCommandLineMetadata();
729 
730   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
731 
732   EmitBackendOptionsMetadata(getCodeGenOpts());
733 
734   // Set visibility from DLL storage class
735   // We do this at the end of LLVM IR generation; after any operation
736   // that might affect the DLL storage class or the visibility, and
737   // before anything that might act on these.
738   setVisibilityFromDLLStorageClass(LangOpts, getModule());
739 }
740 
741 void CodeGenModule::EmitOpenCLMetadata() {
742   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
743   // opencl.ocl.version named metadata node.
744   // C++ is backwards compatible with OpenCL v2.0.
745   // FIXME: We might need to add CXX version at some point too?
746   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
747   llvm::Metadata *OCLVerElts[] = {
748       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
749           Int32Ty, Version / 100)),
750       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
751           Int32Ty, (Version % 100) / 10))};
752   llvm::NamedMDNode *OCLVerMD =
753       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
754   llvm::LLVMContext &Ctx = TheModule.getContext();
755   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
756 }
757 
758 void CodeGenModule::EmitBackendOptionsMetadata(
759     const CodeGenOptions CodeGenOpts) {
760   switch (getTriple().getArch()) {
761   default:
762     break;
763   case llvm::Triple::riscv32:
764   case llvm::Triple::riscv64:
765     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
766                               CodeGenOpts.SmallDataLimit);
767     break;
768   }
769 }
770 
771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
772   // Make sure that this type is translated.
773   Types.UpdateCompletedType(TD);
774 }
775 
776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
777   // Make sure that this type is translated.
778   Types.RefreshTypeCacheForClass(RD);
779 }
780 
781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
782   if (!TBAA)
783     return nullptr;
784   return TBAA->getTypeInfo(QTy);
785 }
786 
787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
788   if (!TBAA)
789     return TBAAAccessInfo();
790   if (getLangOpts().CUDAIsDevice) {
791     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
792     // access info.
793     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
794       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
795           nullptr)
796         return TBAAAccessInfo();
797     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
798       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
799           nullptr)
800         return TBAAAccessInfo();
801     }
802   }
803   return TBAA->getAccessInfo(AccessType);
804 }
805 
806 TBAAAccessInfo
807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
808   if (!TBAA)
809     return TBAAAccessInfo();
810   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
811 }
812 
813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
814   if (!TBAA)
815     return nullptr;
816   return TBAA->getTBAAStructInfo(QTy);
817 }
818 
819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
820   if (!TBAA)
821     return nullptr;
822   return TBAA->getBaseTypeInfo(QTy);
823 }
824 
825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
826   if (!TBAA)
827     return nullptr;
828   return TBAA->getAccessTagInfo(Info);
829 }
830 
831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
832                                                    TBAAAccessInfo TargetInfo) {
833   if (!TBAA)
834     return TBAAAccessInfo();
835   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
836 }
837 
838 TBAAAccessInfo
839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
840                                                    TBAAAccessInfo InfoB) {
841   if (!TBAA)
842     return TBAAAccessInfo();
843   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
844 }
845 
846 TBAAAccessInfo
847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
848                                               TBAAAccessInfo SrcInfo) {
849   if (!TBAA)
850     return TBAAAccessInfo();
851   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
852 }
853 
854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
855                                                 TBAAAccessInfo TBAAInfo) {
856   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
857     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
858 }
859 
860 void CodeGenModule::DecorateInstructionWithInvariantGroup(
861     llvm::Instruction *I, const CXXRecordDecl *RD) {
862   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
863                  llvm::MDNode::get(getLLVMContext(), {}));
864 }
865 
866 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
867   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
868   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
869 }
870 
871 /// ErrorUnsupported - Print out an error that codegen doesn't support the
872 /// specified stmt yet.
873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
874   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
875                                                "cannot compile this %0 yet");
876   std::string Msg = Type;
877   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
878       << Msg << S->getSourceRange();
879 }
880 
881 /// ErrorUnsupported - Print out an error that codegen doesn't support the
882 /// specified decl yet.
883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
884   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
885                                                "cannot compile this %0 yet");
886   std::string Msg = Type;
887   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
888 }
889 
890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
891   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
892 }
893 
894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
895                                         const NamedDecl *D) const {
896   if (GV->hasDLLImportStorageClass())
897     return;
898   // Internal definitions always have default visibility.
899   if (GV->hasLocalLinkage()) {
900     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
901     return;
902   }
903   if (!D)
904     return;
905   // Set visibility for definitions, and for declarations if requested globally
906   // or set explicitly.
907   LinkageInfo LV = D->getLinkageAndVisibility();
908   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
909       !GV->isDeclarationForLinker())
910     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
911 }
912 
913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
914                                  llvm::GlobalValue *GV) {
915   if (GV->hasLocalLinkage())
916     return true;
917 
918   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
919     return true;
920 
921   // DLLImport explicitly marks the GV as external.
922   if (GV->hasDLLImportStorageClass())
923     return false;
924 
925   const llvm::Triple &TT = CGM.getTriple();
926   if (TT.isWindowsGNUEnvironment()) {
927     // In MinGW, variables without DLLImport can still be automatically
928     // imported from a DLL by the linker; don't mark variables that
929     // potentially could come from another DLL as DSO local.
930     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
931         !GV->isThreadLocal())
932       return false;
933   }
934 
935   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
936   // remain unresolved in the link, they can be resolved to zero, which is
937   // outside the current DSO.
938   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
939     return false;
940 
941   // Every other GV is local on COFF.
942   // Make an exception for windows OS in the triple: Some firmware builds use
943   // *-win32-macho triples. This (accidentally?) produced windows relocations
944   // without GOT tables in older clang versions; Keep this behaviour.
945   // FIXME: even thread local variables?
946   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
947     return true;
948 
949   // Only handle COFF and ELF for now.
950   if (!TT.isOSBinFormatELF())
951     return false;
952 
953   // If this is not an executable, don't assume anything is local.
954   const auto &CGOpts = CGM.getCodeGenOpts();
955   llvm::Reloc::Model RM = CGOpts.RelocationModel;
956   const auto &LOpts = CGM.getLangOpts();
957   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
958     // On ELF, if -fno-semantic-interposition is specified, we can set dso_local
959     // if using a local alias is preferable (can avoid GOT indirection).
960     // Currently only x86 supports local alias.
961     if (!TT.isOSBinFormatELF() ||
962         !CGM.getLangOpts().ExplicitNoSemanticInterposition ||
963         !GV->canBenefitFromLocalAlias())
964       return false;
965     // The allowed targets need to match AsmPrinter::getSymbolPreferLocal.
966     return TT.isX86();
967   }
968 
969   // A definition cannot be preempted from an executable.
970   if (!GV->isDeclarationForLinker())
971     return true;
972 
973   // Most PIC code sequences that assume that a symbol is local cannot produce a
974   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
975   // depended, it seems worth it to handle it here.
976   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
977     return false;
978 
979   // PowerPC64 prefers TOC indirection to avoid copy relocations.
980   if (TT.isPPC64())
981     return false;
982 
983   // If we can use copy relocations we can assume it is local.
984   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
985     if (!Var->isThreadLocal() &&
986         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
987       return true;
988 
989   // If we can use a plt entry as the symbol address we can assume it
990   // is local.
991   // FIXME: This should work for PIE, but the gold linker doesn't support it.
992   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
993     return true;
994 
995   // Otherwise don't assume it is local.
996   return false;
997 }
998 
999 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1000   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1001 }
1002 
1003 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1004                                           GlobalDecl GD) const {
1005   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1006   // C++ destructors have a few C++ ABI specific special cases.
1007   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1008     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1009     return;
1010   }
1011   setDLLImportDLLExport(GV, D);
1012 }
1013 
1014 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1015                                           const NamedDecl *D) const {
1016   if (D && D->isExternallyVisible()) {
1017     if (D->hasAttr<DLLImportAttr>())
1018       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1019     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1020       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1021   }
1022 }
1023 
1024 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1025                                     GlobalDecl GD) const {
1026   setDLLImportDLLExport(GV, GD);
1027   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1028 }
1029 
1030 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1031                                     const NamedDecl *D) const {
1032   setDLLImportDLLExport(GV, D);
1033   setGVPropertiesAux(GV, D);
1034 }
1035 
1036 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1037                                        const NamedDecl *D) const {
1038   setGlobalVisibility(GV, D);
1039   setDSOLocal(GV);
1040   GV->setPartition(CodeGenOpts.SymbolPartition);
1041 }
1042 
1043 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1044   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1045       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1046       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1047       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1048       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1049 }
1050 
1051 llvm::GlobalVariable::ThreadLocalMode
1052 CodeGenModule::GetDefaultLLVMTLSModel() const {
1053   switch (CodeGenOpts.getDefaultTLSModel()) {
1054   case CodeGenOptions::GeneralDynamicTLSModel:
1055     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1056   case CodeGenOptions::LocalDynamicTLSModel:
1057     return llvm::GlobalVariable::LocalDynamicTLSModel;
1058   case CodeGenOptions::InitialExecTLSModel:
1059     return llvm::GlobalVariable::InitialExecTLSModel;
1060   case CodeGenOptions::LocalExecTLSModel:
1061     return llvm::GlobalVariable::LocalExecTLSModel;
1062   }
1063   llvm_unreachable("Invalid TLS model!");
1064 }
1065 
1066 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1067   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1068 
1069   llvm::GlobalValue::ThreadLocalMode TLM;
1070   TLM = GetDefaultLLVMTLSModel();
1071 
1072   // Override the TLS model if it is explicitly specified.
1073   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1074     TLM = GetLLVMTLSModel(Attr->getModel());
1075   }
1076 
1077   GV->setThreadLocalMode(TLM);
1078 }
1079 
1080 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1081                                           StringRef Name) {
1082   const TargetInfo &Target = CGM.getTarget();
1083   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1084 }
1085 
1086 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1087                                                  const CPUSpecificAttr *Attr,
1088                                                  unsigned CPUIndex,
1089                                                  raw_ostream &Out) {
1090   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1091   // supported.
1092   if (Attr)
1093     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1094   else if (CGM.getTarget().supportsIFunc())
1095     Out << ".resolver";
1096 }
1097 
1098 static void AppendTargetMangling(const CodeGenModule &CGM,
1099                                  const TargetAttr *Attr, raw_ostream &Out) {
1100   if (Attr->isDefaultVersion())
1101     return;
1102 
1103   Out << '.';
1104   const TargetInfo &Target = CGM.getTarget();
1105   ParsedTargetAttr Info =
1106       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1107         // Multiversioning doesn't allow "no-${feature}", so we can
1108         // only have "+" prefixes here.
1109         assert(LHS.startswith("+") && RHS.startswith("+") &&
1110                "Features should always have a prefix.");
1111         return Target.multiVersionSortPriority(LHS.substr(1)) >
1112                Target.multiVersionSortPriority(RHS.substr(1));
1113       });
1114 
1115   bool IsFirst = true;
1116 
1117   if (!Info.Architecture.empty()) {
1118     IsFirst = false;
1119     Out << "arch_" << Info.Architecture;
1120   }
1121 
1122   for (StringRef Feat : Info.Features) {
1123     if (!IsFirst)
1124       Out << '_';
1125     IsFirst = false;
1126     Out << Feat.substr(1);
1127   }
1128 }
1129 
1130 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1131                                       const NamedDecl *ND,
1132                                       bool OmitMultiVersionMangling = false) {
1133   SmallString<256> Buffer;
1134   llvm::raw_svector_ostream Out(Buffer);
1135   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1136   if (MC.shouldMangleDeclName(ND))
1137     MC.mangleName(GD.getWithDecl(ND), Out);
1138   else {
1139     IdentifierInfo *II = ND->getIdentifier();
1140     assert(II && "Attempt to mangle unnamed decl.");
1141     const auto *FD = dyn_cast<FunctionDecl>(ND);
1142 
1143     if (FD &&
1144         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1145       Out << "__regcall3__" << II->getName();
1146     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1147                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1148       Out << "__device_stub__" << II->getName();
1149     } else {
1150       Out << II->getName();
1151     }
1152   }
1153 
1154   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1155     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1156       switch (FD->getMultiVersionKind()) {
1157       case MultiVersionKind::CPUDispatch:
1158       case MultiVersionKind::CPUSpecific:
1159         AppendCPUSpecificCPUDispatchMangling(CGM,
1160                                              FD->getAttr<CPUSpecificAttr>(),
1161                                              GD.getMultiVersionIndex(), Out);
1162         break;
1163       case MultiVersionKind::Target:
1164         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1165         break;
1166       case MultiVersionKind::None:
1167         llvm_unreachable("None multiversion type isn't valid here");
1168       }
1169     }
1170 
1171   return std::string(Out.str());
1172 }
1173 
1174 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1175                                             const FunctionDecl *FD) {
1176   if (!FD->isMultiVersion())
1177     return;
1178 
1179   // Get the name of what this would be without the 'target' attribute.  This
1180   // allows us to lookup the version that was emitted when this wasn't a
1181   // multiversion function.
1182   std::string NonTargetName =
1183       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1184   GlobalDecl OtherGD;
1185   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1186     assert(OtherGD.getCanonicalDecl()
1187                .getDecl()
1188                ->getAsFunction()
1189                ->isMultiVersion() &&
1190            "Other GD should now be a multiversioned function");
1191     // OtherFD is the version of this function that was mangled BEFORE
1192     // becoming a MultiVersion function.  It potentially needs to be updated.
1193     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1194                                       .getDecl()
1195                                       ->getAsFunction()
1196                                       ->getMostRecentDecl();
1197     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1198     // This is so that if the initial version was already the 'default'
1199     // version, we don't try to update it.
1200     if (OtherName != NonTargetName) {
1201       // Remove instead of erase, since others may have stored the StringRef
1202       // to this.
1203       const auto ExistingRecord = Manglings.find(NonTargetName);
1204       if (ExistingRecord != std::end(Manglings))
1205         Manglings.remove(&(*ExistingRecord));
1206       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1207       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1208       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1209         Entry->setName(OtherName);
1210     }
1211   }
1212 }
1213 
1214 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1215   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1216 
1217   // Some ABIs don't have constructor variants.  Make sure that base and
1218   // complete constructors get mangled the same.
1219   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1220     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1221       CXXCtorType OrigCtorType = GD.getCtorType();
1222       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1223       if (OrigCtorType == Ctor_Base)
1224         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1225     }
1226   }
1227 
1228   auto FoundName = MangledDeclNames.find(CanonicalGD);
1229   if (FoundName != MangledDeclNames.end())
1230     return FoundName->second;
1231 
1232   // Keep the first result in the case of a mangling collision.
1233   const auto *ND = cast<NamedDecl>(GD.getDecl());
1234   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1235 
1236   // Ensure either we have different ABIs between host and device compilations,
1237   // says host compilation following MSVC ABI but device compilation follows
1238   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1239   // mangling should be the same after name stubbing. The later checking is
1240   // very important as the device kernel name being mangled in host-compilation
1241   // is used to resolve the device binaries to be executed. Inconsistent naming
1242   // result in undefined behavior. Even though we cannot check that naming
1243   // directly between host- and device-compilations, the host- and
1244   // device-mangling in host compilation could help catching certain ones.
1245   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1246          getLangOpts().CUDAIsDevice ||
1247          (getContext().getAuxTargetInfo() &&
1248           (getContext().getAuxTargetInfo()->getCXXABI() !=
1249            getContext().getTargetInfo().getCXXABI())) ||
1250          getCUDARuntime().getDeviceSideName(ND) ==
1251              getMangledNameImpl(
1252                  *this,
1253                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1254                  ND));
1255 
1256   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1257   return MangledDeclNames[CanonicalGD] = Result.first->first();
1258 }
1259 
1260 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1261                                              const BlockDecl *BD) {
1262   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1263   const Decl *D = GD.getDecl();
1264 
1265   SmallString<256> Buffer;
1266   llvm::raw_svector_ostream Out(Buffer);
1267   if (!D)
1268     MangleCtx.mangleGlobalBlock(BD,
1269       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1270   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1271     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1272   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1273     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1274   else
1275     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1276 
1277   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1278   return Result.first->first();
1279 }
1280 
1281 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1282   return getModule().getNamedValue(Name);
1283 }
1284 
1285 /// AddGlobalCtor - Add a function to the list that will be called before
1286 /// main() runs.
1287 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1288                                   llvm::Constant *AssociatedData) {
1289   // FIXME: Type coercion of void()* types.
1290   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1291 }
1292 
1293 /// AddGlobalDtor - Add a function to the list that will be called
1294 /// when the module is unloaded.
1295 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1296                                   bool IsDtorAttrFunc) {
1297   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1298       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1299     DtorsUsingAtExit[Priority].push_back(Dtor);
1300     return;
1301   }
1302 
1303   // FIXME: Type coercion of void()* types.
1304   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1305 }
1306 
1307 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1308   if (Fns.empty()) return;
1309 
1310   // Ctor function type is void()*.
1311   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1312   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1313       TheModule.getDataLayout().getProgramAddressSpace());
1314 
1315   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1316   llvm::StructType *CtorStructTy = llvm::StructType::get(
1317       Int32Ty, CtorPFTy, VoidPtrTy);
1318 
1319   // Construct the constructor and destructor arrays.
1320   ConstantInitBuilder builder(*this);
1321   auto ctors = builder.beginArray(CtorStructTy);
1322   for (const auto &I : Fns) {
1323     auto ctor = ctors.beginStruct(CtorStructTy);
1324     ctor.addInt(Int32Ty, I.Priority);
1325     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1326     if (I.AssociatedData)
1327       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1328     else
1329       ctor.addNullPointer(VoidPtrTy);
1330     ctor.finishAndAddTo(ctors);
1331   }
1332 
1333   auto list =
1334     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1335                                 /*constant*/ false,
1336                                 llvm::GlobalValue::AppendingLinkage);
1337 
1338   // The LTO linker doesn't seem to like it when we set an alignment
1339   // on appending variables.  Take it off as a workaround.
1340   list->setAlignment(llvm::None);
1341 
1342   Fns.clear();
1343 }
1344 
1345 llvm::GlobalValue::LinkageTypes
1346 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1347   const auto *D = cast<FunctionDecl>(GD.getDecl());
1348 
1349   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1350 
1351   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1352     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1353 
1354   if (isa<CXXConstructorDecl>(D) &&
1355       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1356       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1357     // Our approach to inheriting constructors is fundamentally different from
1358     // that used by the MS ABI, so keep our inheriting constructor thunks
1359     // internal rather than trying to pick an unambiguous mangling for them.
1360     return llvm::GlobalValue::InternalLinkage;
1361   }
1362 
1363   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1364 }
1365 
1366 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1367   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1368   if (!MDS) return nullptr;
1369 
1370   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1371 }
1372 
1373 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1374                                               const CGFunctionInfo &Info,
1375                                               llvm::Function *F) {
1376   unsigned CallingConv;
1377   llvm::AttributeList PAL;
1378   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1379   F->setAttributes(PAL);
1380   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1381 }
1382 
1383 static void removeImageAccessQualifier(std::string& TyName) {
1384   std::string ReadOnlyQual("__read_only");
1385   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1386   if (ReadOnlyPos != std::string::npos)
1387     // "+ 1" for the space after access qualifier.
1388     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1389   else {
1390     std::string WriteOnlyQual("__write_only");
1391     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1392     if (WriteOnlyPos != std::string::npos)
1393       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1394     else {
1395       std::string ReadWriteQual("__read_write");
1396       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1397       if (ReadWritePos != std::string::npos)
1398         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1399     }
1400   }
1401 }
1402 
1403 // Returns the address space id that should be produced to the
1404 // kernel_arg_addr_space metadata. This is always fixed to the ids
1405 // as specified in the SPIR 2.0 specification in order to differentiate
1406 // for example in clGetKernelArgInfo() implementation between the address
1407 // spaces with targets without unique mapping to the OpenCL address spaces
1408 // (basically all single AS CPUs).
1409 static unsigned ArgInfoAddressSpace(LangAS AS) {
1410   switch (AS) {
1411   case LangAS::opencl_global:
1412     return 1;
1413   case LangAS::opencl_constant:
1414     return 2;
1415   case LangAS::opencl_local:
1416     return 3;
1417   case LangAS::opencl_generic:
1418     return 4; // Not in SPIR 2.0 specs.
1419   case LangAS::opencl_global_device:
1420     return 5;
1421   case LangAS::opencl_global_host:
1422     return 6;
1423   default:
1424     return 0; // Assume private.
1425   }
1426 }
1427 
1428 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1429                                          const FunctionDecl *FD,
1430                                          CodeGenFunction *CGF) {
1431   assert(((FD && CGF) || (!FD && !CGF)) &&
1432          "Incorrect use - FD and CGF should either be both null or not!");
1433   // Create MDNodes that represent the kernel arg metadata.
1434   // Each MDNode is a list in the form of "key", N number of values which is
1435   // the same number of values as their are kernel arguments.
1436 
1437   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1438 
1439   // MDNode for the kernel argument address space qualifiers.
1440   SmallVector<llvm::Metadata *, 8> addressQuals;
1441 
1442   // MDNode for the kernel argument access qualifiers (images only).
1443   SmallVector<llvm::Metadata *, 8> accessQuals;
1444 
1445   // MDNode for the kernel argument type names.
1446   SmallVector<llvm::Metadata *, 8> argTypeNames;
1447 
1448   // MDNode for the kernel argument base type names.
1449   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1450 
1451   // MDNode for the kernel argument type qualifiers.
1452   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1453 
1454   // MDNode for the kernel argument names.
1455   SmallVector<llvm::Metadata *, 8> argNames;
1456 
1457   if (FD && CGF)
1458     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1459       const ParmVarDecl *parm = FD->getParamDecl(i);
1460       QualType ty = parm->getType();
1461       std::string typeQuals;
1462 
1463       if (ty->isPointerType()) {
1464         QualType pointeeTy = ty->getPointeeType();
1465 
1466         // Get address qualifier.
1467         addressQuals.push_back(
1468             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1469                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1470 
1471         // Get argument type name.
1472         std::string typeName =
1473             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1474 
1475         // Turn "unsigned type" to "utype"
1476         std::string::size_type pos = typeName.find("unsigned");
1477         if (pointeeTy.isCanonical() && pos != std::string::npos)
1478           typeName.erase(pos + 1, 8);
1479 
1480         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1481 
1482         std::string baseTypeName =
1483             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1484                 Policy) +
1485             "*";
1486 
1487         // Turn "unsigned type" to "utype"
1488         pos = baseTypeName.find("unsigned");
1489         if (pos != std::string::npos)
1490           baseTypeName.erase(pos + 1, 8);
1491 
1492         argBaseTypeNames.push_back(
1493             llvm::MDString::get(VMContext, baseTypeName));
1494 
1495         // Get argument type qualifiers:
1496         if (ty.isRestrictQualified())
1497           typeQuals = "restrict";
1498         if (pointeeTy.isConstQualified() ||
1499             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1500           typeQuals += typeQuals.empty() ? "const" : " const";
1501         if (pointeeTy.isVolatileQualified())
1502           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1503       } else {
1504         uint32_t AddrSpc = 0;
1505         bool isPipe = ty->isPipeType();
1506         if (ty->isImageType() || isPipe)
1507           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1508 
1509         addressQuals.push_back(
1510             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1511 
1512         // Get argument type name.
1513         std::string typeName;
1514         if (isPipe)
1515           typeName = ty.getCanonicalType()
1516                          ->castAs<PipeType>()
1517                          ->getElementType()
1518                          .getAsString(Policy);
1519         else
1520           typeName = ty.getUnqualifiedType().getAsString(Policy);
1521 
1522         // Turn "unsigned type" to "utype"
1523         std::string::size_type pos = typeName.find("unsigned");
1524         if (ty.isCanonical() && pos != std::string::npos)
1525           typeName.erase(pos + 1, 8);
1526 
1527         std::string baseTypeName;
1528         if (isPipe)
1529           baseTypeName = ty.getCanonicalType()
1530                              ->castAs<PipeType>()
1531                              ->getElementType()
1532                              .getCanonicalType()
1533                              .getAsString(Policy);
1534         else
1535           baseTypeName =
1536               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1537 
1538         // Remove access qualifiers on images
1539         // (as they are inseparable from type in clang implementation,
1540         // but OpenCL spec provides a special query to get access qualifier
1541         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1542         if (ty->isImageType()) {
1543           removeImageAccessQualifier(typeName);
1544           removeImageAccessQualifier(baseTypeName);
1545         }
1546 
1547         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1548 
1549         // Turn "unsigned type" to "utype"
1550         pos = baseTypeName.find("unsigned");
1551         if (pos != std::string::npos)
1552           baseTypeName.erase(pos + 1, 8);
1553 
1554         argBaseTypeNames.push_back(
1555             llvm::MDString::get(VMContext, baseTypeName));
1556 
1557         if (isPipe)
1558           typeQuals = "pipe";
1559       }
1560 
1561       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1562 
1563       // Get image and pipe access qualifier:
1564       if (ty->isImageType() || ty->isPipeType()) {
1565         const Decl *PDecl = parm;
1566         if (auto *TD = dyn_cast<TypedefType>(ty))
1567           PDecl = TD->getDecl();
1568         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1569         if (A && A->isWriteOnly())
1570           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1571         else if (A && A->isReadWrite())
1572           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1573         else
1574           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1575       } else
1576         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1577 
1578       // Get argument name.
1579       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1580     }
1581 
1582   Fn->setMetadata("kernel_arg_addr_space",
1583                   llvm::MDNode::get(VMContext, addressQuals));
1584   Fn->setMetadata("kernel_arg_access_qual",
1585                   llvm::MDNode::get(VMContext, accessQuals));
1586   Fn->setMetadata("kernel_arg_type",
1587                   llvm::MDNode::get(VMContext, argTypeNames));
1588   Fn->setMetadata("kernel_arg_base_type",
1589                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1590   Fn->setMetadata("kernel_arg_type_qual",
1591                   llvm::MDNode::get(VMContext, argTypeQuals));
1592   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1593     Fn->setMetadata("kernel_arg_name",
1594                     llvm::MDNode::get(VMContext, argNames));
1595 }
1596 
1597 /// Determines whether the language options require us to model
1598 /// unwind exceptions.  We treat -fexceptions as mandating this
1599 /// except under the fragile ObjC ABI with only ObjC exceptions
1600 /// enabled.  This means, for example, that C with -fexceptions
1601 /// enables this.
1602 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1603   // If exceptions are completely disabled, obviously this is false.
1604   if (!LangOpts.Exceptions) return false;
1605 
1606   // If C++ exceptions are enabled, this is true.
1607   if (LangOpts.CXXExceptions) return true;
1608 
1609   // If ObjC exceptions are enabled, this depends on the ABI.
1610   if (LangOpts.ObjCExceptions) {
1611     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1612   }
1613 
1614   return true;
1615 }
1616 
1617 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1618                                                       const CXXMethodDecl *MD) {
1619   // Check that the type metadata can ever actually be used by a call.
1620   if (!CGM.getCodeGenOpts().LTOUnit ||
1621       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1622     return false;
1623 
1624   // Only functions whose address can be taken with a member function pointer
1625   // need this sort of type metadata.
1626   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1627          !isa<CXXDestructorDecl>(MD);
1628 }
1629 
1630 std::vector<const CXXRecordDecl *>
1631 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1632   llvm::SetVector<const CXXRecordDecl *> MostBases;
1633 
1634   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1635   CollectMostBases = [&](const CXXRecordDecl *RD) {
1636     if (RD->getNumBases() == 0)
1637       MostBases.insert(RD);
1638     for (const CXXBaseSpecifier &B : RD->bases())
1639       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1640   };
1641   CollectMostBases(RD);
1642   return MostBases.takeVector();
1643 }
1644 
1645 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1646                                                            llvm::Function *F) {
1647   llvm::AttrBuilder B;
1648 
1649   if (CodeGenOpts.UnwindTables)
1650     B.addAttribute(llvm::Attribute::UWTable);
1651 
1652   if (CodeGenOpts.StackClashProtector)
1653     B.addAttribute("probe-stack", "inline-asm");
1654 
1655   if (!hasUnwindExceptions(LangOpts))
1656     B.addAttribute(llvm::Attribute::NoUnwind);
1657 
1658   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1659     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1660       B.addAttribute(llvm::Attribute::StackProtect);
1661     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1662       B.addAttribute(llvm::Attribute::StackProtectStrong);
1663     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1664       B.addAttribute(llvm::Attribute::StackProtectReq);
1665   }
1666 
1667   if (!D) {
1668     // If we don't have a declaration to control inlining, the function isn't
1669     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1670     // disabled, mark the function as noinline.
1671     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1672         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1673       B.addAttribute(llvm::Attribute::NoInline);
1674 
1675     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1676     return;
1677   }
1678 
1679   // Track whether we need to add the optnone LLVM attribute,
1680   // starting with the default for this optimization level.
1681   bool ShouldAddOptNone =
1682       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1683   // We can't add optnone in the following cases, it won't pass the verifier.
1684   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1685   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1686 
1687   // Add optnone, but do so only if the function isn't always_inline.
1688   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1689       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1690     B.addAttribute(llvm::Attribute::OptimizeNone);
1691 
1692     // OptimizeNone implies noinline; we should not be inlining such functions.
1693     B.addAttribute(llvm::Attribute::NoInline);
1694 
1695     // We still need to handle naked functions even though optnone subsumes
1696     // much of their semantics.
1697     if (D->hasAttr<NakedAttr>())
1698       B.addAttribute(llvm::Attribute::Naked);
1699 
1700     // OptimizeNone wins over OptimizeForSize and MinSize.
1701     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1702     F->removeFnAttr(llvm::Attribute::MinSize);
1703   } else if (D->hasAttr<NakedAttr>()) {
1704     // Naked implies noinline: we should not be inlining such functions.
1705     B.addAttribute(llvm::Attribute::Naked);
1706     B.addAttribute(llvm::Attribute::NoInline);
1707   } else if (D->hasAttr<NoDuplicateAttr>()) {
1708     B.addAttribute(llvm::Attribute::NoDuplicate);
1709   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1710     // Add noinline if the function isn't always_inline.
1711     B.addAttribute(llvm::Attribute::NoInline);
1712   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1713              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1714     // (noinline wins over always_inline, and we can't specify both in IR)
1715     B.addAttribute(llvm::Attribute::AlwaysInline);
1716   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1717     // If we're not inlining, then force everything that isn't always_inline to
1718     // carry an explicit noinline attribute.
1719     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1720       B.addAttribute(llvm::Attribute::NoInline);
1721   } else {
1722     // Otherwise, propagate the inline hint attribute and potentially use its
1723     // absence to mark things as noinline.
1724     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1725       // Search function and template pattern redeclarations for inline.
1726       auto CheckForInline = [](const FunctionDecl *FD) {
1727         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1728           return Redecl->isInlineSpecified();
1729         };
1730         if (any_of(FD->redecls(), CheckRedeclForInline))
1731           return true;
1732         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1733         if (!Pattern)
1734           return false;
1735         return any_of(Pattern->redecls(), CheckRedeclForInline);
1736       };
1737       if (CheckForInline(FD)) {
1738         B.addAttribute(llvm::Attribute::InlineHint);
1739       } else if (CodeGenOpts.getInlining() ==
1740                      CodeGenOptions::OnlyHintInlining &&
1741                  !FD->isInlined() &&
1742                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1743         B.addAttribute(llvm::Attribute::NoInline);
1744       }
1745     }
1746   }
1747 
1748   // Add other optimization related attributes if we are optimizing this
1749   // function.
1750   if (!D->hasAttr<OptimizeNoneAttr>()) {
1751     if (D->hasAttr<ColdAttr>()) {
1752       if (!ShouldAddOptNone)
1753         B.addAttribute(llvm::Attribute::OptimizeForSize);
1754       B.addAttribute(llvm::Attribute::Cold);
1755     }
1756     if (D->hasAttr<HotAttr>())
1757       B.addAttribute(llvm::Attribute::Hot);
1758     if (D->hasAttr<MinSizeAttr>())
1759       B.addAttribute(llvm::Attribute::MinSize);
1760   }
1761 
1762   if (D->hasAttr<NoMergeAttr>())
1763     B.addAttribute(llvm::Attribute::NoMerge);
1764 
1765   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1766 
1767   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1768   if (alignment)
1769     F->setAlignment(llvm::Align(alignment));
1770 
1771   if (!D->hasAttr<AlignedAttr>())
1772     if (LangOpts.FunctionAlignment)
1773       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1774 
1775   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1776   // reserve a bit for differentiating between virtual and non-virtual member
1777   // functions. If the current target's C++ ABI requires this and this is a
1778   // member function, set its alignment accordingly.
1779   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1780     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1781       F->setAlignment(llvm::Align(2));
1782   }
1783 
1784   // In the cross-dso CFI mode with canonical jump tables, we want !type
1785   // attributes on definitions only.
1786   if (CodeGenOpts.SanitizeCfiCrossDso &&
1787       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1788     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1789       // Skip available_externally functions. They won't be codegen'ed in the
1790       // current module anyway.
1791       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1792         CreateFunctionTypeMetadataForIcall(FD, F);
1793     }
1794   }
1795 
1796   // Emit type metadata on member functions for member function pointer checks.
1797   // These are only ever necessary on definitions; we're guaranteed that the
1798   // definition will be present in the LTO unit as a result of LTO visibility.
1799   auto *MD = dyn_cast<CXXMethodDecl>(D);
1800   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1801     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1802       llvm::Metadata *Id =
1803           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1804               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1805       F->addTypeMetadata(0, Id);
1806     }
1807   }
1808 }
1809 
1810 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1811                                                   llvm::Function *F) {
1812   if (D->hasAttr<StrictFPAttr>()) {
1813     llvm::AttrBuilder FuncAttrs;
1814     FuncAttrs.addAttribute("strictfp");
1815     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1816   }
1817 }
1818 
1819 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1820   const Decl *D = GD.getDecl();
1821   if (dyn_cast_or_null<NamedDecl>(D))
1822     setGVProperties(GV, GD);
1823   else
1824     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1825 
1826   if (D && D->hasAttr<UsedAttr>())
1827     addUsedGlobal(GV);
1828 
1829   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1830     const auto *VD = cast<VarDecl>(D);
1831     if (VD->getType().isConstQualified() &&
1832         VD->getStorageDuration() == SD_Static)
1833       addUsedGlobal(GV);
1834   }
1835 }
1836 
1837 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1838                                                 llvm::AttrBuilder &Attrs) {
1839   // Add target-cpu and target-features attributes to functions. If
1840   // we have a decl for the function and it has a target attribute then
1841   // parse that and add it to the feature set.
1842   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1843   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1844   std::vector<std::string> Features;
1845   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1846   FD = FD ? FD->getMostRecentDecl() : FD;
1847   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1848   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1849   bool AddedAttr = false;
1850   if (TD || SD) {
1851     llvm::StringMap<bool> FeatureMap;
1852     getContext().getFunctionFeatureMap(FeatureMap, GD);
1853 
1854     // Produce the canonical string for this set of features.
1855     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1856       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1857 
1858     // Now add the target-cpu and target-features to the function.
1859     // While we populated the feature map above, we still need to
1860     // get and parse the target attribute so we can get the cpu for
1861     // the function.
1862     if (TD) {
1863       ParsedTargetAttr ParsedAttr = TD->parse();
1864       if (!ParsedAttr.Architecture.empty() &&
1865           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1866         TargetCPU = ParsedAttr.Architecture;
1867         TuneCPU = ""; // Clear the tune CPU.
1868       }
1869       if (!ParsedAttr.Tune.empty() &&
1870           getTarget().isValidCPUName(ParsedAttr.Tune))
1871         TuneCPU = ParsedAttr.Tune;
1872     }
1873   } else {
1874     // Otherwise just add the existing target cpu and target features to the
1875     // function.
1876     Features = getTarget().getTargetOpts().Features;
1877   }
1878 
1879   if (!TargetCPU.empty()) {
1880     Attrs.addAttribute("target-cpu", TargetCPU);
1881     AddedAttr = true;
1882   }
1883   if (!TuneCPU.empty()) {
1884     Attrs.addAttribute("tune-cpu", TuneCPU);
1885     AddedAttr = true;
1886   }
1887   if (!Features.empty()) {
1888     llvm::sort(Features);
1889     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1890     AddedAttr = true;
1891   }
1892 
1893   return AddedAttr;
1894 }
1895 
1896 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1897                                           llvm::GlobalObject *GO) {
1898   const Decl *D = GD.getDecl();
1899   SetCommonAttributes(GD, GO);
1900 
1901   if (D) {
1902     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1903       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1904         GV->addAttribute("bss-section", SA->getName());
1905       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1906         GV->addAttribute("data-section", SA->getName());
1907       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1908         GV->addAttribute("rodata-section", SA->getName());
1909       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1910         GV->addAttribute("relro-section", SA->getName());
1911     }
1912 
1913     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1914       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1915         if (!D->getAttr<SectionAttr>())
1916           F->addFnAttr("implicit-section-name", SA->getName());
1917 
1918       llvm::AttrBuilder Attrs;
1919       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1920         // We know that GetCPUAndFeaturesAttributes will always have the
1921         // newest set, since it has the newest possible FunctionDecl, so the
1922         // new ones should replace the old.
1923         llvm::AttrBuilder RemoveAttrs;
1924         RemoveAttrs.addAttribute("target-cpu");
1925         RemoveAttrs.addAttribute("target-features");
1926         RemoveAttrs.addAttribute("tune-cpu");
1927         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1928         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1929       }
1930     }
1931 
1932     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1933       GO->setSection(CSA->getName());
1934     else if (const auto *SA = D->getAttr<SectionAttr>())
1935       GO->setSection(SA->getName());
1936   }
1937 
1938   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1939 }
1940 
1941 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1942                                                   llvm::Function *F,
1943                                                   const CGFunctionInfo &FI) {
1944   const Decl *D = GD.getDecl();
1945   SetLLVMFunctionAttributes(GD, FI, F);
1946   SetLLVMFunctionAttributesForDefinition(D, F);
1947 
1948   F->setLinkage(llvm::Function::InternalLinkage);
1949 
1950   setNonAliasAttributes(GD, F);
1951 }
1952 
1953 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1954   // Set linkage and visibility in case we never see a definition.
1955   LinkageInfo LV = ND->getLinkageAndVisibility();
1956   // Don't set internal linkage on declarations.
1957   // "extern_weak" is overloaded in LLVM; we probably should have
1958   // separate linkage types for this.
1959   if (isExternallyVisible(LV.getLinkage()) &&
1960       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1961     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1962 }
1963 
1964 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1965                                                        llvm::Function *F) {
1966   // Only if we are checking indirect calls.
1967   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1968     return;
1969 
1970   // Non-static class methods are handled via vtable or member function pointer
1971   // checks elsewhere.
1972   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1973     return;
1974 
1975   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1976   F->addTypeMetadata(0, MD);
1977   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1978 
1979   // Emit a hash-based bit set entry for cross-DSO calls.
1980   if (CodeGenOpts.SanitizeCfiCrossDso)
1981     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1982       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1983 }
1984 
1985 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1986                                           bool IsIncompleteFunction,
1987                                           bool IsThunk) {
1988 
1989   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1990     // If this is an intrinsic function, set the function's attributes
1991     // to the intrinsic's attributes.
1992     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1993     return;
1994   }
1995 
1996   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1997 
1998   if (!IsIncompleteFunction)
1999     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
2000 
2001   // Add the Returned attribute for "this", except for iOS 5 and earlier
2002   // where substantial code, including the libstdc++ dylib, was compiled with
2003   // GCC and does not actually return "this".
2004   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2005       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2006     assert(!F->arg_empty() &&
2007            F->arg_begin()->getType()
2008              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2009            "unexpected this return");
2010     F->addAttribute(1, llvm::Attribute::Returned);
2011   }
2012 
2013   // Only a few attributes are set on declarations; these may later be
2014   // overridden by a definition.
2015 
2016   setLinkageForGV(F, FD);
2017   setGVProperties(F, FD);
2018 
2019   // Setup target-specific attributes.
2020   if (!IsIncompleteFunction && F->isDeclaration())
2021     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2022 
2023   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2024     F->setSection(CSA->getName());
2025   else if (const auto *SA = FD->getAttr<SectionAttr>())
2026      F->setSection(SA->getName());
2027 
2028   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2029   if (FD->isInlineBuiltinDeclaration()) {
2030     const FunctionDecl *FDBody;
2031     bool HasBody = FD->hasBody(FDBody);
2032     (void)HasBody;
2033     assert(HasBody && "Inline builtin declarations should always have an "
2034                       "available body!");
2035     if (shouldEmitFunction(FDBody))
2036       F->addAttribute(llvm::AttributeList::FunctionIndex,
2037                       llvm::Attribute::NoBuiltin);
2038   }
2039 
2040   if (FD->isReplaceableGlobalAllocationFunction()) {
2041     // A replaceable global allocation function does not act like a builtin by
2042     // default, only if it is invoked by a new-expression or delete-expression.
2043     F->addAttribute(llvm::AttributeList::FunctionIndex,
2044                     llvm::Attribute::NoBuiltin);
2045   }
2046 
2047   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2048     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2049   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2050     if (MD->isVirtual())
2051       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2052 
2053   // Don't emit entries for function declarations in the cross-DSO mode. This
2054   // is handled with better precision by the receiving DSO. But if jump tables
2055   // are non-canonical then we need type metadata in order to produce the local
2056   // jump table.
2057   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2058       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2059     CreateFunctionTypeMetadataForIcall(FD, F);
2060 
2061   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2062     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2063 
2064   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2065     // Annotate the callback behavior as metadata:
2066     //  - The callback callee (as argument number).
2067     //  - The callback payloads (as argument numbers).
2068     llvm::LLVMContext &Ctx = F->getContext();
2069     llvm::MDBuilder MDB(Ctx);
2070 
2071     // The payload indices are all but the first one in the encoding. The first
2072     // identifies the callback callee.
2073     int CalleeIdx = *CB->encoding_begin();
2074     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2075     F->addMetadata(llvm::LLVMContext::MD_callback,
2076                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2077                                                CalleeIdx, PayloadIndices,
2078                                                /* VarArgsArePassed */ false)}));
2079   }
2080 }
2081 
2082 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2083   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2084          "Only globals with definition can force usage.");
2085   LLVMUsed.emplace_back(GV);
2086 }
2087 
2088 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2089   assert(!GV->isDeclaration() &&
2090          "Only globals with definition can force usage.");
2091   LLVMCompilerUsed.emplace_back(GV);
2092 }
2093 
2094 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2095                      std::vector<llvm::WeakTrackingVH> &List) {
2096   // Don't create llvm.used if there is no need.
2097   if (List.empty())
2098     return;
2099 
2100   // Convert List to what ConstantArray needs.
2101   SmallVector<llvm::Constant*, 8> UsedArray;
2102   UsedArray.resize(List.size());
2103   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2104     UsedArray[i] =
2105         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2106             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2107   }
2108 
2109   if (UsedArray.empty())
2110     return;
2111   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2112 
2113   auto *GV = new llvm::GlobalVariable(
2114       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2115       llvm::ConstantArray::get(ATy, UsedArray), Name);
2116 
2117   GV->setSection("llvm.metadata");
2118 }
2119 
2120 void CodeGenModule::emitLLVMUsed() {
2121   emitUsed(*this, "llvm.used", LLVMUsed);
2122   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2123 }
2124 
2125 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2126   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2127   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2128 }
2129 
2130 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2131   llvm::SmallString<32> Opt;
2132   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2133   if (Opt.empty())
2134     return;
2135   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2136   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2137 }
2138 
2139 void CodeGenModule::AddDependentLib(StringRef Lib) {
2140   auto &C = getLLVMContext();
2141   if (getTarget().getTriple().isOSBinFormatELF()) {
2142       ELFDependentLibraries.push_back(
2143         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2144     return;
2145   }
2146 
2147   llvm::SmallString<24> Opt;
2148   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2149   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2150   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2151 }
2152 
2153 /// Add link options implied by the given module, including modules
2154 /// it depends on, using a postorder walk.
2155 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2156                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2157                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2158   // Import this module's parent.
2159   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2160     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2161   }
2162 
2163   // Import this module's dependencies.
2164   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2165     if (Visited.insert(Mod->Imports[I - 1]).second)
2166       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2167   }
2168 
2169   // Add linker options to link against the libraries/frameworks
2170   // described by this module.
2171   llvm::LLVMContext &Context = CGM.getLLVMContext();
2172   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2173 
2174   // For modules that use export_as for linking, use that module
2175   // name instead.
2176   if (Mod->UseExportAsModuleLinkName)
2177     return;
2178 
2179   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2180     // Link against a framework.  Frameworks are currently Darwin only, so we
2181     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2182     if (Mod->LinkLibraries[I-1].IsFramework) {
2183       llvm::Metadata *Args[2] = {
2184           llvm::MDString::get(Context, "-framework"),
2185           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2186 
2187       Metadata.push_back(llvm::MDNode::get(Context, Args));
2188       continue;
2189     }
2190 
2191     // Link against a library.
2192     if (IsELF) {
2193       llvm::Metadata *Args[2] = {
2194           llvm::MDString::get(Context, "lib"),
2195           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2196       };
2197       Metadata.push_back(llvm::MDNode::get(Context, Args));
2198     } else {
2199       llvm::SmallString<24> Opt;
2200       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2201           Mod->LinkLibraries[I - 1].Library, Opt);
2202       auto *OptString = llvm::MDString::get(Context, Opt);
2203       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2204     }
2205   }
2206 }
2207 
2208 void CodeGenModule::EmitModuleLinkOptions() {
2209   // Collect the set of all of the modules we want to visit to emit link
2210   // options, which is essentially the imported modules and all of their
2211   // non-explicit child modules.
2212   llvm::SetVector<clang::Module *> LinkModules;
2213   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2214   SmallVector<clang::Module *, 16> Stack;
2215 
2216   // Seed the stack with imported modules.
2217   for (Module *M : ImportedModules) {
2218     // Do not add any link flags when an implementation TU of a module imports
2219     // a header of that same module.
2220     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2221         !getLangOpts().isCompilingModule())
2222       continue;
2223     if (Visited.insert(M).second)
2224       Stack.push_back(M);
2225   }
2226 
2227   // Find all of the modules to import, making a little effort to prune
2228   // non-leaf modules.
2229   while (!Stack.empty()) {
2230     clang::Module *Mod = Stack.pop_back_val();
2231 
2232     bool AnyChildren = false;
2233 
2234     // Visit the submodules of this module.
2235     for (const auto &SM : Mod->submodules()) {
2236       // Skip explicit children; they need to be explicitly imported to be
2237       // linked against.
2238       if (SM->IsExplicit)
2239         continue;
2240 
2241       if (Visited.insert(SM).second) {
2242         Stack.push_back(SM);
2243         AnyChildren = true;
2244       }
2245     }
2246 
2247     // We didn't find any children, so add this module to the list of
2248     // modules to link against.
2249     if (!AnyChildren) {
2250       LinkModules.insert(Mod);
2251     }
2252   }
2253 
2254   // Add link options for all of the imported modules in reverse topological
2255   // order.  We don't do anything to try to order import link flags with respect
2256   // to linker options inserted by things like #pragma comment().
2257   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2258   Visited.clear();
2259   for (Module *M : LinkModules)
2260     if (Visited.insert(M).second)
2261       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2262   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2263   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2264 
2265   // Add the linker options metadata flag.
2266   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2267   for (auto *MD : LinkerOptionsMetadata)
2268     NMD->addOperand(MD);
2269 }
2270 
2271 void CodeGenModule::EmitDeferred() {
2272   // Emit deferred declare target declarations.
2273   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2274     getOpenMPRuntime().emitDeferredTargetDecls();
2275 
2276   // Emit code for any potentially referenced deferred decls.  Since a
2277   // previously unused static decl may become used during the generation of code
2278   // for a static function, iterate until no changes are made.
2279 
2280   if (!DeferredVTables.empty()) {
2281     EmitDeferredVTables();
2282 
2283     // Emitting a vtable doesn't directly cause more vtables to
2284     // become deferred, although it can cause functions to be
2285     // emitted that then need those vtables.
2286     assert(DeferredVTables.empty());
2287   }
2288 
2289   // Emit CUDA/HIP static device variables referenced by host code only.
2290   if (getLangOpts().CUDA)
2291     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2292       DeferredDeclsToEmit.push_back(V);
2293 
2294   // Stop if we're out of both deferred vtables and deferred declarations.
2295   if (DeferredDeclsToEmit.empty())
2296     return;
2297 
2298   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2299   // work, it will not interfere with this.
2300   std::vector<GlobalDecl> CurDeclsToEmit;
2301   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2302 
2303   for (GlobalDecl &D : CurDeclsToEmit) {
2304     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2305     // to get GlobalValue with exactly the type we need, not something that
2306     // might had been created for another decl with the same mangled name but
2307     // different type.
2308     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2309         GetAddrOfGlobal(D, ForDefinition));
2310 
2311     // In case of different address spaces, we may still get a cast, even with
2312     // IsForDefinition equal to true. Query mangled names table to get
2313     // GlobalValue.
2314     if (!GV)
2315       GV = GetGlobalValue(getMangledName(D));
2316 
2317     // Make sure GetGlobalValue returned non-null.
2318     assert(GV);
2319 
2320     // Check to see if we've already emitted this.  This is necessary
2321     // for a couple of reasons: first, decls can end up in the
2322     // deferred-decls queue multiple times, and second, decls can end
2323     // up with definitions in unusual ways (e.g. by an extern inline
2324     // function acquiring a strong function redefinition).  Just
2325     // ignore these cases.
2326     if (!GV->isDeclaration())
2327       continue;
2328 
2329     // If this is OpenMP, check if it is legal to emit this global normally.
2330     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2331       continue;
2332 
2333     // Otherwise, emit the definition and move on to the next one.
2334     EmitGlobalDefinition(D, GV);
2335 
2336     // If we found out that we need to emit more decls, do that recursively.
2337     // This has the advantage that the decls are emitted in a DFS and related
2338     // ones are close together, which is convenient for testing.
2339     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2340       EmitDeferred();
2341       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2342     }
2343   }
2344 }
2345 
2346 void CodeGenModule::EmitVTablesOpportunistically() {
2347   // Try to emit external vtables as available_externally if they have emitted
2348   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2349   // is not allowed to create new references to things that need to be emitted
2350   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2351 
2352   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2353          && "Only emit opportunistic vtables with optimizations");
2354 
2355   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2356     assert(getVTables().isVTableExternal(RD) &&
2357            "This queue should only contain external vtables");
2358     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2359       VTables.GenerateClassData(RD);
2360   }
2361   OpportunisticVTables.clear();
2362 }
2363 
2364 void CodeGenModule::EmitGlobalAnnotations() {
2365   if (Annotations.empty())
2366     return;
2367 
2368   // Create a new global variable for the ConstantStruct in the Module.
2369   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2370     Annotations[0]->getType(), Annotations.size()), Annotations);
2371   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2372                                       llvm::GlobalValue::AppendingLinkage,
2373                                       Array, "llvm.global.annotations");
2374   gv->setSection(AnnotationSection);
2375 }
2376 
2377 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2378   llvm::Constant *&AStr = AnnotationStrings[Str];
2379   if (AStr)
2380     return AStr;
2381 
2382   // Not found yet, create a new global.
2383   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2384   auto *gv =
2385       new llvm::GlobalVariable(getModule(), s->getType(), true,
2386                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2387   gv->setSection(AnnotationSection);
2388   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2389   AStr = gv;
2390   return gv;
2391 }
2392 
2393 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2394   SourceManager &SM = getContext().getSourceManager();
2395   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2396   if (PLoc.isValid())
2397     return EmitAnnotationString(PLoc.getFilename());
2398   return EmitAnnotationString(SM.getBufferName(Loc));
2399 }
2400 
2401 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2402   SourceManager &SM = getContext().getSourceManager();
2403   PresumedLoc PLoc = SM.getPresumedLoc(L);
2404   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2405     SM.getExpansionLineNumber(L);
2406   return llvm::ConstantInt::get(Int32Ty, LineNo);
2407 }
2408 
2409 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2410   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2411   if (Exprs.empty())
2412     return llvm::ConstantPointerNull::get(Int8PtrTy);
2413 
2414   llvm::FoldingSetNodeID ID;
2415   for (Expr *E : Exprs) {
2416     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2417   }
2418   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2419   if (Lookup)
2420     return Lookup;
2421 
2422   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2423   LLVMArgs.reserve(Exprs.size());
2424   ConstantEmitter ConstEmiter(*this);
2425   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2426     const auto *CE = cast<clang::ConstantExpr>(E);
2427     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2428                                     CE->getType());
2429   });
2430   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2431   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2432                                       llvm::GlobalValue::PrivateLinkage, Struct,
2433                                       ".args");
2434   GV->setSection(AnnotationSection);
2435   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2436   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2437 
2438   Lookup = Bitcasted;
2439   return Bitcasted;
2440 }
2441 
2442 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2443                                                 const AnnotateAttr *AA,
2444                                                 SourceLocation L) {
2445   // Get the globals for file name, annotation, and the line number.
2446   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2447                  *UnitGV = EmitAnnotationUnit(L),
2448                  *LineNoCst = EmitAnnotationLineNo(L),
2449                  *Args = EmitAnnotationArgs(AA);
2450 
2451   llvm::Constant *ASZeroGV = GV;
2452   if (GV->getAddressSpace() != 0) {
2453     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2454                    GV, GV->getValueType()->getPointerTo(0));
2455   }
2456 
2457   // Create the ConstantStruct for the global annotation.
2458   llvm::Constant *Fields[] = {
2459       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2460       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2461       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2462       LineNoCst,
2463       Args,
2464   };
2465   return llvm::ConstantStruct::getAnon(Fields);
2466 }
2467 
2468 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2469                                          llvm::GlobalValue *GV) {
2470   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2471   // Get the struct elements for these annotations.
2472   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2473     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2474 }
2475 
2476 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2477                                            llvm::Function *Fn,
2478                                            SourceLocation Loc) const {
2479   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2480   // Blacklist by function name.
2481   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2482     return true;
2483   // Blacklist by location.
2484   if (Loc.isValid())
2485     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2486   // If location is unknown, this may be a compiler-generated function. Assume
2487   // it's located in the main file.
2488   auto &SM = Context.getSourceManager();
2489   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2490     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2491   }
2492   return false;
2493 }
2494 
2495 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2496                                            SourceLocation Loc, QualType Ty,
2497                                            StringRef Category) const {
2498   // For now globals can be blacklisted only in ASan and KASan.
2499   const SanitizerMask EnabledAsanMask =
2500       LangOpts.Sanitize.Mask &
2501       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2502        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2503        SanitizerKind::MemTag);
2504   if (!EnabledAsanMask)
2505     return false;
2506   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2507   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2508     return true;
2509   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2510     return true;
2511   // Check global type.
2512   if (!Ty.isNull()) {
2513     // Drill down the array types: if global variable of a fixed type is
2514     // blacklisted, we also don't instrument arrays of them.
2515     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2516       Ty = AT->getElementType();
2517     Ty = Ty.getCanonicalType().getUnqualifiedType();
2518     // We allow to blacklist only record types (classes, structs etc.)
2519     if (Ty->isRecordType()) {
2520       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2521       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2522         return true;
2523     }
2524   }
2525   return false;
2526 }
2527 
2528 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2529                                    StringRef Category) const {
2530   const auto &XRayFilter = getContext().getXRayFilter();
2531   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2532   auto Attr = ImbueAttr::NONE;
2533   if (Loc.isValid())
2534     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2535   if (Attr == ImbueAttr::NONE)
2536     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2537   switch (Attr) {
2538   case ImbueAttr::NONE:
2539     return false;
2540   case ImbueAttr::ALWAYS:
2541     Fn->addFnAttr("function-instrument", "xray-always");
2542     break;
2543   case ImbueAttr::ALWAYS_ARG1:
2544     Fn->addFnAttr("function-instrument", "xray-always");
2545     Fn->addFnAttr("xray-log-args", "1");
2546     break;
2547   case ImbueAttr::NEVER:
2548     Fn->addFnAttr("function-instrument", "xray-never");
2549     break;
2550   }
2551   return true;
2552 }
2553 
2554 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2555   // Never defer when EmitAllDecls is specified.
2556   if (LangOpts.EmitAllDecls)
2557     return true;
2558 
2559   if (CodeGenOpts.KeepStaticConsts) {
2560     const auto *VD = dyn_cast<VarDecl>(Global);
2561     if (VD && VD->getType().isConstQualified() &&
2562         VD->getStorageDuration() == SD_Static)
2563       return true;
2564   }
2565 
2566   return getContext().DeclMustBeEmitted(Global);
2567 }
2568 
2569 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2570   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2571     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2572       // Implicit template instantiations may change linkage if they are later
2573       // explicitly instantiated, so they should not be emitted eagerly.
2574       return false;
2575     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2576     // not emit them eagerly unless we sure that the function must be emitted on
2577     // the host.
2578     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2579         !LangOpts.OpenMPIsDevice &&
2580         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2581         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2582       return false;
2583   }
2584   if (const auto *VD = dyn_cast<VarDecl>(Global))
2585     if (Context.getInlineVariableDefinitionKind(VD) ==
2586         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2587       // A definition of an inline constexpr static data member may change
2588       // linkage later if it's redeclared outside the class.
2589       return false;
2590   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2591   // codegen for global variables, because they may be marked as threadprivate.
2592   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2593       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2594       !isTypeConstant(Global->getType(), false) &&
2595       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2596     return false;
2597 
2598   return true;
2599 }
2600 
2601 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2602   StringRef Name = getMangledName(GD);
2603 
2604   // The UUID descriptor should be pointer aligned.
2605   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2606 
2607   // Look for an existing global.
2608   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2609     return ConstantAddress(GV, Alignment);
2610 
2611   ConstantEmitter Emitter(*this);
2612   llvm::Constant *Init;
2613 
2614   APValue &V = GD->getAsAPValue();
2615   if (!V.isAbsent()) {
2616     // If possible, emit the APValue version of the initializer. In particular,
2617     // this gets the type of the constant right.
2618     Init = Emitter.emitForInitializer(
2619         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2620   } else {
2621     // As a fallback, directly construct the constant.
2622     // FIXME: This may get padding wrong under esoteric struct layout rules.
2623     // MSVC appears to create a complete type 'struct __s_GUID' that it
2624     // presumably uses to represent these constants.
2625     MSGuidDecl::Parts Parts = GD->getParts();
2626     llvm::Constant *Fields[4] = {
2627         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2628         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2629         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2630         llvm::ConstantDataArray::getRaw(
2631             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2632             Int8Ty)};
2633     Init = llvm::ConstantStruct::getAnon(Fields);
2634   }
2635 
2636   auto *GV = new llvm::GlobalVariable(
2637       getModule(), Init->getType(),
2638       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2639   if (supportsCOMDAT())
2640     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2641   setDSOLocal(GV);
2642 
2643   llvm::Constant *Addr = GV;
2644   if (!V.isAbsent()) {
2645     Emitter.finalize(GV);
2646   } else {
2647     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2648     Addr = llvm::ConstantExpr::getBitCast(
2649         GV, Ty->getPointerTo(GV->getAddressSpace()));
2650   }
2651   return ConstantAddress(Addr, Alignment);
2652 }
2653 
2654 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2655     const TemplateParamObjectDecl *TPO) {
2656   StringRef Name = getMangledName(TPO);
2657   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2658 
2659   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2660     return ConstantAddress(GV, Alignment);
2661 
2662   ConstantEmitter Emitter(*this);
2663   llvm::Constant *Init = Emitter.emitForInitializer(
2664         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2665 
2666   if (!Init) {
2667     ErrorUnsupported(TPO, "template parameter object");
2668     return ConstantAddress::invalid();
2669   }
2670 
2671   auto *GV = new llvm::GlobalVariable(
2672       getModule(), Init->getType(),
2673       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2674   if (supportsCOMDAT())
2675     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2676   Emitter.finalize(GV);
2677 
2678   return ConstantAddress(GV, Alignment);
2679 }
2680 
2681 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2682   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2683   assert(AA && "No alias?");
2684 
2685   CharUnits Alignment = getContext().getDeclAlign(VD);
2686   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2687 
2688   // See if there is already something with the target's name in the module.
2689   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2690   if (Entry) {
2691     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2692     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2693     return ConstantAddress(Ptr, Alignment);
2694   }
2695 
2696   llvm::Constant *Aliasee;
2697   if (isa<llvm::FunctionType>(DeclTy))
2698     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2699                                       GlobalDecl(cast<FunctionDecl>(VD)),
2700                                       /*ForVTable=*/false);
2701   else
2702     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2703                                     llvm::PointerType::getUnqual(DeclTy),
2704                                     nullptr);
2705 
2706   auto *F = cast<llvm::GlobalValue>(Aliasee);
2707   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2708   WeakRefReferences.insert(F);
2709 
2710   return ConstantAddress(Aliasee, Alignment);
2711 }
2712 
2713 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2714   const auto *Global = cast<ValueDecl>(GD.getDecl());
2715 
2716   // Weak references don't produce any output by themselves.
2717   if (Global->hasAttr<WeakRefAttr>())
2718     return;
2719 
2720   // If this is an alias definition (which otherwise looks like a declaration)
2721   // emit it now.
2722   if (Global->hasAttr<AliasAttr>())
2723     return EmitAliasDefinition(GD);
2724 
2725   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2726   if (Global->hasAttr<IFuncAttr>())
2727     return emitIFuncDefinition(GD);
2728 
2729   // If this is a cpu_dispatch multiversion function, emit the resolver.
2730   if (Global->hasAttr<CPUDispatchAttr>())
2731     return emitCPUDispatchDefinition(GD);
2732 
2733   // If this is CUDA, be selective about which declarations we emit.
2734   if (LangOpts.CUDA) {
2735     if (LangOpts.CUDAIsDevice) {
2736       if (!Global->hasAttr<CUDADeviceAttr>() &&
2737           !Global->hasAttr<CUDAGlobalAttr>() &&
2738           !Global->hasAttr<CUDAConstantAttr>() &&
2739           !Global->hasAttr<CUDASharedAttr>() &&
2740           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2741           !Global->getType()->isCUDADeviceBuiltinTextureType())
2742         return;
2743     } else {
2744       // We need to emit host-side 'shadows' for all global
2745       // device-side variables because the CUDA runtime needs their
2746       // size and host-side address in order to provide access to
2747       // their device-side incarnations.
2748 
2749       // So device-only functions are the only things we skip.
2750       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2751           Global->hasAttr<CUDADeviceAttr>())
2752         return;
2753 
2754       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2755              "Expected Variable or Function");
2756     }
2757   }
2758 
2759   if (LangOpts.OpenMP) {
2760     // If this is OpenMP, check if it is legal to emit this global normally.
2761     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2762       return;
2763     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2764       if (MustBeEmitted(Global))
2765         EmitOMPDeclareReduction(DRD);
2766       return;
2767     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2768       if (MustBeEmitted(Global))
2769         EmitOMPDeclareMapper(DMD);
2770       return;
2771     }
2772   }
2773 
2774   // Ignore declarations, they will be emitted on their first use.
2775   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2776     // Forward declarations are emitted lazily on first use.
2777     if (!FD->doesThisDeclarationHaveABody()) {
2778       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2779         return;
2780 
2781       StringRef MangledName = getMangledName(GD);
2782 
2783       // Compute the function info and LLVM type.
2784       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2785       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2786 
2787       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2788                               /*DontDefer=*/false);
2789       return;
2790     }
2791   } else {
2792     const auto *VD = cast<VarDecl>(Global);
2793     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2794     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2795         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2796       if (LangOpts.OpenMP) {
2797         // Emit declaration of the must-be-emitted declare target variable.
2798         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2799                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2800           bool UnifiedMemoryEnabled =
2801               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2802           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2803               !UnifiedMemoryEnabled) {
2804             (void)GetAddrOfGlobalVar(VD);
2805           } else {
2806             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2807                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2808                      UnifiedMemoryEnabled)) &&
2809                    "Link clause or to clause with unified memory expected.");
2810             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2811           }
2812 
2813           return;
2814         }
2815       }
2816       // If this declaration may have caused an inline variable definition to
2817       // change linkage, make sure that it's emitted.
2818       if (Context.getInlineVariableDefinitionKind(VD) ==
2819           ASTContext::InlineVariableDefinitionKind::Strong)
2820         GetAddrOfGlobalVar(VD);
2821       return;
2822     }
2823   }
2824 
2825   // Defer code generation to first use when possible, e.g. if this is an inline
2826   // function. If the global must always be emitted, do it eagerly if possible
2827   // to benefit from cache locality.
2828   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2829     // Emit the definition if it can't be deferred.
2830     EmitGlobalDefinition(GD);
2831     return;
2832   }
2833 
2834   // If we're deferring emission of a C++ variable with an
2835   // initializer, remember the order in which it appeared in the file.
2836   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2837       cast<VarDecl>(Global)->hasInit()) {
2838     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2839     CXXGlobalInits.push_back(nullptr);
2840   }
2841 
2842   StringRef MangledName = getMangledName(GD);
2843   if (GetGlobalValue(MangledName) != nullptr) {
2844     // The value has already been used and should therefore be emitted.
2845     addDeferredDeclToEmit(GD);
2846   } else if (MustBeEmitted(Global)) {
2847     // The value must be emitted, but cannot be emitted eagerly.
2848     assert(!MayBeEmittedEagerly(Global));
2849     addDeferredDeclToEmit(GD);
2850   } else {
2851     // Otherwise, remember that we saw a deferred decl with this name.  The
2852     // first use of the mangled name will cause it to move into
2853     // DeferredDeclsToEmit.
2854     DeferredDecls[MangledName] = GD;
2855   }
2856 }
2857 
2858 // Check if T is a class type with a destructor that's not dllimport.
2859 static bool HasNonDllImportDtor(QualType T) {
2860   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2861     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2862       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2863         return true;
2864 
2865   return false;
2866 }
2867 
2868 namespace {
2869   struct FunctionIsDirectlyRecursive
2870       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2871     const StringRef Name;
2872     const Builtin::Context &BI;
2873     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2874         : Name(N), BI(C) {}
2875 
2876     bool VisitCallExpr(const CallExpr *E) {
2877       const FunctionDecl *FD = E->getDirectCallee();
2878       if (!FD)
2879         return false;
2880       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2881       if (Attr && Name == Attr->getLabel())
2882         return true;
2883       unsigned BuiltinID = FD->getBuiltinID();
2884       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2885         return false;
2886       StringRef BuiltinName = BI.getName(BuiltinID);
2887       if (BuiltinName.startswith("__builtin_") &&
2888           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2889         return true;
2890       }
2891       return false;
2892     }
2893 
2894     bool VisitStmt(const Stmt *S) {
2895       for (const Stmt *Child : S->children())
2896         if (Child && this->Visit(Child))
2897           return true;
2898       return false;
2899     }
2900   };
2901 
2902   // Make sure we're not referencing non-imported vars or functions.
2903   struct DLLImportFunctionVisitor
2904       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2905     bool SafeToInline = true;
2906 
2907     bool shouldVisitImplicitCode() const { return true; }
2908 
2909     bool VisitVarDecl(VarDecl *VD) {
2910       if (VD->getTLSKind()) {
2911         // A thread-local variable cannot be imported.
2912         SafeToInline = false;
2913         return SafeToInline;
2914       }
2915 
2916       // A variable definition might imply a destructor call.
2917       if (VD->isThisDeclarationADefinition())
2918         SafeToInline = !HasNonDllImportDtor(VD->getType());
2919 
2920       return SafeToInline;
2921     }
2922 
2923     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2924       if (const auto *D = E->getTemporary()->getDestructor())
2925         SafeToInline = D->hasAttr<DLLImportAttr>();
2926       return SafeToInline;
2927     }
2928 
2929     bool VisitDeclRefExpr(DeclRefExpr *E) {
2930       ValueDecl *VD = E->getDecl();
2931       if (isa<FunctionDecl>(VD))
2932         SafeToInline = VD->hasAttr<DLLImportAttr>();
2933       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2934         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2935       return SafeToInline;
2936     }
2937 
2938     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2939       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2940       return SafeToInline;
2941     }
2942 
2943     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2944       CXXMethodDecl *M = E->getMethodDecl();
2945       if (!M) {
2946         // Call through a pointer to member function. This is safe to inline.
2947         SafeToInline = true;
2948       } else {
2949         SafeToInline = M->hasAttr<DLLImportAttr>();
2950       }
2951       return SafeToInline;
2952     }
2953 
2954     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2955       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2956       return SafeToInline;
2957     }
2958 
2959     bool VisitCXXNewExpr(CXXNewExpr *E) {
2960       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2961       return SafeToInline;
2962     }
2963   };
2964 }
2965 
2966 // isTriviallyRecursive - Check if this function calls another
2967 // decl that, because of the asm attribute or the other decl being a builtin,
2968 // ends up pointing to itself.
2969 bool
2970 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2971   StringRef Name;
2972   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2973     // asm labels are a special kind of mangling we have to support.
2974     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2975     if (!Attr)
2976       return false;
2977     Name = Attr->getLabel();
2978   } else {
2979     Name = FD->getName();
2980   }
2981 
2982   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2983   const Stmt *Body = FD->getBody();
2984   return Body ? Walker.Visit(Body) : false;
2985 }
2986 
2987 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2988   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2989     return true;
2990   const auto *F = cast<FunctionDecl>(GD.getDecl());
2991   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2992     return false;
2993 
2994   if (F->hasAttr<DLLImportAttr>()) {
2995     // Check whether it would be safe to inline this dllimport function.
2996     DLLImportFunctionVisitor Visitor;
2997     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2998     if (!Visitor.SafeToInline)
2999       return false;
3000 
3001     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3002       // Implicit destructor invocations aren't captured in the AST, so the
3003       // check above can't see them. Check for them manually here.
3004       for (const Decl *Member : Dtor->getParent()->decls())
3005         if (isa<FieldDecl>(Member))
3006           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3007             return false;
3008       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3009         if (HasNonDllImportDtor(B.getType()))
3010           return false;
3011     }
3012   }
3013 
3014   // PR9614. Avoid cases where the source code is lying to us. An available
3015   // externally function should have an equivalent function somewhere else,
3016   // but a function that calls itself through asm label/`__builtin_` trickery is
3017   // clearly not equivalent to the real implementation.
3018   // This happens in glibc's btowc and in some configure checks.
3019   return !isTriviallyRecursive(F);
3020 }
3021 
3022 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3023   return CodeGenOpts.OptimizationLevel > 0;
3024 }
3025 
3026 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3027                                                        llvm::GlobalValue *GV) {
3028   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3029 
3030   if (FD->isCPUSpecificMultiVersion()) {
3031     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3032     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3033       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3034     // Requires multiple emits.
3035   } else
3036     EmitGlobalFunctionDefinition(GD, GV);
3037 }
3038 
3039 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3040   const auto *D = cast<ValueDecl>(GD.getDecl());
3041 
3042   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3043                                  Context.getSourceManager(),
3044                                  "Generating code for declaration");
3045 
3046   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3047     // At -O0, don't generate IR for functions with available_externally
3048     // linkage.
3049     if (!shouldEmitFunction(GD))
3050       return;
3051 
3052     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3053       std::string Name;
3054       llvm::raw_string_ostream OS(Name);
3055       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3056                                /*Qualified=*/true);
3057       return Name;
3058     });
3059 
3060     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3061       // Make sure to emit the definition(s) before we emit the thunks.
3062       // This is necessary for the generation of certain thunks.
3063       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3064         ABI->emitCXXStructor(GD);
3065       else if (FD->isMultiVersion())
3066         EmitMultiVersionFunctionDefinition(GD, GV);
3067       else
3068         EmitGlobalFunctionDefinition(GD, GV);
3069 
3070       if (Method->isVirtual())
3071         getVTables().EmitThunks(GD);
3072 
3073       return;
3074     }
3075 
3076     if (FD->isMultiVersion())
3077       return EmitMultiVersionFunctionDefinition(GD, GV);
3078     return EmitGlobalFunctionDefinition(GD, GV);
3079   }
3080 
3081   if (const auto *VD = dyn_cast<VarDecl>(D))
3082     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3083 
3084   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3085 }
3086 
3087 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3088                                                       llvm::Function *NewFn);
3089 
3090 static unsigned
3091 TargetMVPriority(const TargetInfo &TI,
3092                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3093   unsigned Priority = 0;
3094   for (StringRef Feat : RO.Conditions.Features)
3095     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3096 
3097   if (!RO.Conditions.Architecture.empty())
3098     Priority = std::max(
3099         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3100   return Priority;
3101 }
3102 
3103 void CodeGenModule::emitMultiVersionFunctions() {
3104   for (GlobalDecl GD : MultiVersionFuncs) {
3105     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3106     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3107     getContext().forEachMultiversionedFunctionVersion(
3108         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3109           GlobalDecl CurGD{
3110               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3111           StringRef MangledName = getMangledName(CurGD);
3112           llvm::Constant *Func = GetGlobalValue(MangledName);
3113           if (!Func) {
3114             if (CurFD->isDefined()) {
3115               EmitGlobalFunctionDefinition(CurGD, nullptr);
3116               Func = GetGlobalValue(MangledName);
3117             } else {
3118               const CGFunctionInfo &FI =
3119                   getTypes().arrangeGlobalDeclaration(GD);
3120               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3121               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3122                                        /*DontDefer=*/false, ForDefinition);
3123             }
3124             assert(Func && "This should have just been created");
3125           }
3126 
3127           const auto *TA = CurFD->getAttr<TargetAttr>();
3128           llvm::SmallVector<StringRef, 8> Feats;
3129           TA->getAddedFeatures(Feats);
3130 
3131           Options.emplace_back(cast<llvm::Function>(Func),
3132                                TA->getArchitecture(), Feats);
3133         });
3134 
3135     llvm::Function *ResolverFunc;
3136     const TargetInfo &TI = getTarget();
3137 
3138     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3139       ResolverFunc = cast<llvm::Function>(
3140           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3141       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3142     } else {
3143       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3144     }
3145 
3146     if (supportsCOMDAT())
3147       ResolverFunc->setComdat(
3148           getModule().getOrInsertComdat(ResolverFunc->getName()));
3149 
3150     llvm::stable_sort(
3151         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3152                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3153           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3154         });
3155     CodeGenFunction CGF(*this);
3156     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3157   }
3158 }
3159 
3160 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3161   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3162   assert(FD && "Not a FunctionDecl?");
3163   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3164   assert(DD && "Not a cpu_dispatch Function?");
3165   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3166 
3167   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3168     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3169     DeclTy = getTypes().GetFunctionType(FInfo);
3170   }
3171 
3172   StringRef ResolverName = getMangledName(GD);
3173 
3174   llvm::Type *ResolverType;
3175   GlobalDecl ResolverGD;
3176   if (getTarget().supportsIFunc())
3177     ResolverType = llvm::FunctionType::get(
3178         llvm::PointerType::get(DeclTy,
3179                                Context.getTargetAddressSpace(FD->getType())),
3180         false);
3181   else {
3182     ResolverType = DeclTy;
3183     ResolverGD = GD;
3184   }
3185 
3186   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3187       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3188   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3189   if (supportsCOMDAT())
3190     ResolverFunc->setComdat(
3191         getModule().getOrInsertComdat(ResolverFunc->getName()));
3192 
3193   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3194   const TargetInfo &Target = getTarget();
3195   unsigned Index = 0;
3196   for (const IdentifierInfo *II : DD->cpus()) {
3197     // Get the name of the target function so we can look it up/create it.
3198     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3199                               getCPUSpecificMangling(*this, II->getName());
3200 
3201     llvm::Constant *Func = GetGlobalValue(MangledName);
3202 
3203     if (!Func) {
3204       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3205       if (ExistingDecl.getDecl() &&
3206           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3207         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3208         Func = GetGlobalValue(MangledName);
3209       } else {
3210         if (!ExistingDecl.getDecl())
3211           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3212 
3213       Func = GetOrCreateLLVMFunction(
3214           MangledName, DeclTy, ExistingDecl,
3215           /*ForVTable=*/false, /*DontDefer=*/true,
3216           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3217       }
3218     }
3219 
3220     llvm::SmallVector<StringRef, 32> Features;
3221     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3222     llvm::transform(Features, Features.begin(),
3223                     [](StringRef Str) { return Str.substr(1); });
3224     Features.erase(std::remove_if(
3225         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3226           return !Target.validateCpuSupports(Feat);
3227         }), Features.end());
3228     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3229     ++Index;
3230   }
3231 
3232   llvm::sort(
3233       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3234                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3235         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3236                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3237       });
3238 
3239   // If the list contains multiple 'default' versions, such as when it contains
3240   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3241   // always run on at least a 'pentium'). We do this by deleting the 'least
3242   // advanced' (read, lowest mangling letter).
3243   while (Options.size() > 1 &&
3244          CodeGenFunction::GetX86CpuSupportsMask(
3245              (Options.end() - 2)->Conditions.Features) == 0) {
3246     StringRef LHSName = (Options.end() - 2)->Function->getName();
3247     StringRef RHSName = (Options.end() - 1)->Function->getName();
3248     if (LHSName.compare(RHSName) < 0)
3249       Options.erase(Options.end() - 2);
3250     else
3251       Options.erase(Options.end() - 1);
3252   }
3253 
3254   CodeGenFunction CGF(*this);
3255   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3256 
3257   if (getTarget().supportsIFunc()) {
3258     std::string AliasName = getMangledNameImpl(
3259         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3260     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3261     if (!AliasFunc) {
3262       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3263           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3264           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3265       auto *GA = llvm::GlobalAlias::create(
3266          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3267       GA->setLinkage(llvm::Function::WeakODRLinkage);
3268       SetCommonAttributes(GD, GA);
3269     }
3270   }
3271 }
3272 
3273 /// If a dispatcher for the specified mangled name is not in the module, create
3274 /// and return an llvm Function with the specified type.
3275 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3276     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3277   std::string MangledName =
3278       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3279 
3280   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3281   // a separate resolver).
3282   std::string ResolverName = MangledName;
3283   if (getTarget().supportsIFunc())
3284     ResolverName += ".ifunc";
3285   else if (FD->isTargetMultiVersion())
3286     ResolverName += ".resolver";
3287 
3288   // If this already exists, just return that one.
3289   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3290     return ResolverGV;
3291 
3292   // Since this is the first time we've created this IFunc, make sure
3293   // that we put this multiversioned function into the list to be
3294   // replaced later if necessary (target multiversioning only).
3295   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3296     MultiVersionFuncs.push_back(GD);
3297 
3298   if (getTarget().supportsIFunc()) {
3299     llvm::Type *ResolverType = llvm::FunctionType::get(
3300         llvm::PointerType::get(
3301             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3302         false);
3303     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3304         MangledName + ".resolver", ResolverType, GlobalDecl{},
3305         /*ForVTable=*/false);
3306     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3307         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3308     GIF->setName(ResolverName);
3309     SetCommonAttributes(FD, GIF);
3310 
3311     return GIF;
3312   }
3313 
3314   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3315       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3316   assert(isa<llvm::GlobalValue>(Resolver) &&
3317          "Resolver should be created for the first time");
3318   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3319   return Resolver;
3320 }
3321 
3322 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3323 /// module, create and return an llvm Function with the specified type. If there
3324 /// is something in the module with the specified name, return it potentially
3325 /// bitcasted to the right type.
3326 ///
3327 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3328 /// to set the attributes on the function when it is first created.
3329 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3330     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3331     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3332     ForDefinition_t IsForDefinition) {
3333   const Decl *D = GD.getDecl();
3334 
3335   // Any attempts to use a MultiVersion function should result in retrieving
3336   // the iFunc instead. Name Mangling will handle the rest of the changes.
3337   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3338     // For the device mark the function as one that should be emitted.
3339     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3340         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3341         !DontDefer && !IsForDefinition) {
3342       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3343         GlobalDecl GDDef;
3344         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3345           GDDef = GlobalDecl(CD, GD.getCtorType());
3346         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3347           GDDef = GlobalDecl(DD, GD.getDtorType());
3348         else
3349           GDDef = GlobalDecl(FDDef);
3350         EmitGlobal(GDDef);
3351       }
3352     }
3353 
3354     if (FD->isMultiVersion()) {
3355       if (FD->hasAttr<TargetAttr>())
3356         UpdateMultiVersionNames(GD, FD);
3357       if (!IsForDefinition)
3358         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3359     }
3360   }
3361 
3362   // Lookup the entry, lazily creating it if necessary.
3363   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3364   if (Entry) {
3365     if (WeakRefReferences.erase(Entry)) {
3366       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3367       if (FD && !FD->hasAttr<WeakAttr>())
3368         Entry->setLinkage(llvm::Function::ExternalLinkage);
3369     }
3370 
3371     // Handle dropped DLL attributes.
3372     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3373       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3374       setDSOLocal(Entry);
3375     }
3376 
3377     // If there are two attempts to define the same mangled name, issue an
3378     // error.
3379     if (IsForDefinition && !Entry->isDeclaration()) {
3380       GlobalDecl OtherGD;
3381       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3382       // to make sure that we issue an error only once.
3383       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3384           (GD.getCanonicalDecl().getDecl() !=
3385            OtherGD.getCanonicalDecl().getDecl()) &&
3386           DiagnosedConflictingDefinitions.insert(GD).second) {
3387         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3388             << MangledName;
3389         getDiags().Report(OtherGD.getDecl()->getLocation(),
3390                           diag::note_previous_definition);
3391       }
3392     }
3393 
3394     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3395         (Entry->getValueType() == Ty)) {
3396       return Entry;
3397     }
3398 
3399     // Make sure the result is of the correct type.
3400     // (If function is requested for a definition, we always need to create a new
3401     // function, not just return a bitcast.)
3402     if (!IsForDefinition)
3403       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3404   }
3405 
3406   // This function doesn't have a complete type (for example, the return
3407   // type is an incomplete struct). Use a fake type instead, and make
3408   // sure not to try to set attributes.
3409   bool IsIncompleteFunction = false;
3410 
3411   llvm::FunctionType *FTy;
3412   if (isa<llvm::FunctionType>(Ty)) {
3413     FTy = cast<llvm::FunctionType>(Ty);
3414   } else {
3415     FTy = llvm::FunctionType::get(VoidTy, false);
3416     IsIncompleteFunction = true;
3417   }
3418 
3419   llvm::Function *F =
3420       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3421                              Entry ? StringRef() : MangledName, &getModule());
3422 
3423   // If we already created a function with the same mangled name (but different
3424   // type) before, take its name and add it to the list of functions to be
3425   // replaced with F at the end of CodeGen.
3426   //
3427   // This happens if there is a prototype for a function (e.g. "int f()") and
3428   // then a definition of a different type (e.g. "int f(int x)").
3429   if (Entry) {
3430     F->takeName(Entry);
3431 
3432     // This might be an implementation of a function without a prototype, in
3433     // which case, try to do special replacement of calls which match the new
3434     // prototype.  The really key thing here is that we also potentially drop
3435     // arguments from the call site so as to make a direct call, which makes the
3436     // inliner happier and suppresses a number of optimizer warnings (!) about
3437     // dropping arguments.
3438     if (!Entry->use_empty()) {
3439       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3440       Entry->removeDeadConstantUsers();
3441     }
3442 
3443     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3444         F, Entry->getValueType()->getPointerTo());
3445     addGlobalValReplacement(Entry, BC);
3446   }
3447 
3448   assert(F->getName() == MangledName && "name was uniqued!");
3449   if (D)
3450     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3451   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3452     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3453     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3454   }
3455 
3456   if (!DontDefer) {
3457     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3458     // each other bottoming out with the base dtor.  Therefore we emit non-base
3459     // dtors on usage, even if there is no dtor definition in the TU.
3460     if (D && isa<CXXDestructorDecl>(D) &&
3461         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3462                                            GD.getDtorType()))
3463       addDeferredDeclToEmit(GD);
3464 
3465     // This is the first use or definition of a mangled name.  If there is a
3466     // deferred decl with this name, remember that we need to emit it at the end
3467     // of the file.
3468     auto DDI = DeferredDecls.find(MangledName);
3469     if (DDI != DeferredDecls.end()) {
3470       // Move the potentially referenced deferred decl to the
3471       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3472       // don't need it anymore).
3473       addDeferredDeclToEmit(DDI->second);
3474       DeferredDecls.erase(DDI);
3475 
3476       // Otherwise, there are cases we have to worry about where we're
3477       // using a declaration for which we must emit a definition but where
3478       // we might not find a top-level definition:
3479       //   - member functions defined inline in their classes
3480       //   - friend functions defined inline in some class
3481       //   - special member functions with implicit definitions
3482       // If we ever change our AST traversal to walk into class methods,
3483       // this will be unnecessary.
3484       //
3485       // We also don't emit a definition for a function if it's going to be an
3486       // entry in a vtable, unless it's already marked as used.
3487     } else if (getLangOpts().CPlusPlus && D) {
3488       // Look for a declaration that's lexically in a record.
3489       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3490            FD = FD->getPreviousDecl()) {
3491         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3492           if (FD->doesThisDeclarationHaveABody()) {
3493             addDeferredDeclToEmit(GD.getWithDecl(FD));
3494             break;
3495           }
3496         }
3497       }
3498     }
3499   }
3500 
3501   // Make sure the result is of the requested type.
3502   if (!IsIncompleteFunction) {
3503     assert(F->getFunctionType() == Ty);
3504     return F;
3505   }
3506 
3507   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3508   return llvm::ConstantExpr::getBitCast(F, PTy);
3509 }
3510 
3511 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3512 /// non-null, then this function will use the specified type if it has to
3513 /// create it (this occurs when we see a definition of the function).
3514 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3515                                                  llvm::Type *Ty,
3516                                                  bool ForVTable,
3517                                                  bool DontDefer,
3518                                               ForDefinition_t IsForDefinition) {
3519   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3520          "consteval function should never be emitted");
3521   // If there was no specific requested type, just convert it now.
3522   if (!Ty) {
3523     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3524     Ty = getTypes().ConvertType(FD->getType());
3525   }
3526 
3527   // Devirtualized destructor calls may come through here instead of via
3528   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3529   // of the complete destructor when necessary.
3530   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3531     if (getTarget().getCXXABI().isMicrosoft() &&
3532         GD.getDtorType() == Dtor_Complete &&
3533         DD->getParent()->getNumVBases() == 0)
3534       GD = GlobalDecl(DD, Dtor_Base);
3535   }
3536 
3537   StringRef MangledName = getMangledName(GD);
3538   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3539                                  /*IsThunk=*/false, llvm::AttributeList(),
3540                                  IsForDefinition);
3541 }
3542 
3543 static const FunctionDecl *
3544 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3545   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3546   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3547 
3548   IdentifierInfo &CII = C.Idents.get(Name);
3549   for (const auto &Result : DC->lookup(&CII))
3550     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3551       return FD;
3552 
3553   if (!C.getLangOpts().CPlusPlus)
3554     return nullptr;
3555 
3556   // Demangle the premangled name from getTerminateFn()
3557   IdentifierInfo &CXXII =
3558       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3559           ? C.Idents.get("terminate")
3560           : C.Idents.get(Name);
3561 
3562   for (const auto &N : {"__cxxabiv1", "std"}) {
3563     IdentifierInfo &NS = C.Idents.get(N);
3564     for (const auto &Result : DC->lookup(&NS)) {
3565       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3566       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3567         for (const auto &Result : LSD->lookup(&NS))
3568           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3569             break;
3570 
3571       if (ND)
3572         for (const auto &Result : ND->lookup(&CXXII))
3573           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3574             return FD;
3575     }
3576   }
3577 
3578   return nullptr;
3579 }
3580 
3581 /// CreateRuntimeFunction - Create a new runtime function with the specified
3582 /// type and name.
3583 llvm::FunctionCallee
3584 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3585                                      llvm::AttributeList ExtraAttrs, bool Local,
3586                                      bool AssumeConvergent) {
3587   if (AssumeConvergent) {
3588     ExtraAttrs =
3589         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3590                                 llvm::Attribute::Convergent);
3591   }
3592 
3593   llvm::Constant *C =
3594       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3595                               /*DontDefer=*/false, /*IsThunk=*/false,
3596                               ExtraAttrs);
3597 
3598   if (auto *F = dyn_cast<llvm::Function>(C)) {
3599     if (F->empty()) {
3600       F->setCallingConv(getRuntimeCC());
3601 
3602       // In Windows Itanium environments, try to mark runtime functions
3603       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3604       // will link their standard library statically or dynamically. Marking
3605       // functions imported when they are not imported can cause linker errors
3606       // and warnings.
3607       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3608           !getCodeGenOpts().LTOVisibilityPublicStd) {
3609         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3610         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3611           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3612           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3613         }
3614       }
3615       setDSOLocal(F);
3616     }
3617   }
3618 
3619   return {FTy, C};
3620 }
3621 
3622 /// isTypeConstant - Determine whether an object of this type can be emitted
3623 /// as a constant.
3624 ///
3625 /// If ExcludeCtor is true, the duration when the object's constructor runs
3626 /// will not be considered. The caller will need to verify that the object is
3627 /// not written to during its construction.
3628 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3629   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3630     return false;
3631 
3632   if (Context.getLangOpts().CPlusPlus) {
3633     if (const CXXRecordDecl *Record
3634           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3635       return ExcludeCtor && !Record->hasMutableFields() &&
3636              Record->hasTrivialDestructor();
3637   }
3638 
3639   return true;
3640 }
3641 
3642 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3643 /// create and return an llvm GlobalVariable with the specified type.  If there
3644 /// is something in the module with the specified name, return it potentially
3645 /// bitcasted to the right type.
3646 ///
3647 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3648 /// to set the attributes on the global when it is first created.
3649 ///
3650 /// If IsForDefinition is true, it is guaranteed that an actual global with
3651 /// type Ty will be returned, not conversion of a variable with the same
3652 /// mangled name but some other type.
3653 llvm::Constant *
3654 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3655                                      llvm::PointerType *Ty,
3656                                      const VarDecl *D,
3657                                      ForDefinition_t IsForDefinition) {
3658   // Lookup the entry, lazily creating it if necessary.
3659   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3660   if (Entry) {
3661     if (WeakRefReferences.erase(Entry)) {
3662       if (D && !D->hasAttr<WeakAttr>())
3663         Entry->setLinkage(llvm::Function::ExternalLinkage);
3664     }
3665 
3666     // Handle dropped DLL attributes.
3667     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3668       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3669 
3670     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3671       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3672 
3673     if (Entry->getType() == Ty)
3674       return Entry;
3675 
3676     // If there are two attempts to define the same mangled name, issue an
3677     // error.
3678     if (IsForDefinition && !Entry->isDeclaration()) {
3679       GlobalDecl OtherGD;
3680       const VarDecl *OtherD;
3681 
3682       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3683       // to make sure that we issue an error only once.
3684       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3685           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3686           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3687           OtherD->hasInit() &&
3688           DiagnosedConflictingDefinitions.insert(D).second) {
3689         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3690             << MangledName;
3691         getDiags().Report(OtherGD.getDecl()->getLocation(),
3692                           diag::note_previous_definition);
3693       }
3694     }
3695 
3696     // Make sure the result is of the correct type.
3697     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3698       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3699 
3700     // (If global is requested for a definition, we always need to create a new
3701     // global, not just return a bitcast.)
3702     if (!IsForDefinition)
3703       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3704   }
3705 
3706   auto AddrSpace = GetGlobalVarAddressSpace(D);
3707   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3708 
3709   auto *GV = new llvm::GlobalVariable(
3710       getModule(), Ty->getElementType(), false,
3711       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3712       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3713 
3714   // If we already created a global with the same mangled name (but different
3715   // type) before, take its name and remove it from its parent.
3716   if (Entry) {
3717     GV->takeName(Entry);
3718 
3719     if (!Entry->use_empty()) {
3720       llvm::Constant *NewPtrForOldDecl =
3721           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3722       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3723     }
3724 
3725     Entry->eraseFromParent();
3726   }
3727 
3728   // This is the first use or definition of a mangled name.  If there is a
3729   // deferred decl with this name, remember that we need to emit it at the end
3730   // of the file.
3731   auto DDI = DeferredDecls.find(MangledName);
3732   if (DDI != DeferredDecls.end()) {
3733     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3734     // list, and remove it from DeferredDecls (since we don't need it anymore).
3735     addDeferredDeclToEmit(DDI->second);
3736     DeferredDecls.erase(DDI);
3737   }
3738 
3739   // Handle things which are present even on external declarations.
3740   if (D) {
3741     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3742       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3743 
3744     // FIXME: This code is overly simple and should be merged with other global
3745     // handling.
3746     GV->setConstant(isTypeConstant(D->getType(), false));
3747 
3748     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3749 
3750     setLinkageForGV(GV, D);
3751 
3752     if (D->getTLSKind()) {
3753       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3754         CXXThreadLocals.push_back(D);
3755       setTLSMode(GV, *D);
3756     }
3757 
3758     setGVProperties(GV, D);
3759 
3760     // If required by the ABI, treat declarations of static data members with
3761     // inline initializers as definitions.
3762     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3763       EmitGlobalVarDefinition(D);
3764     }
3765 
3766     // Emit section information for extern variables.
3767     if (D->hasExternalStorage()) {
3768       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3769         GV->setSection(SA->getName());
3770     }
3771 
3772     // Handle XCore specific ABI requirements.
3773     if (getTriple().getArch() == llvm::Triple::xcore &&
3774         D->getLanguageLinkage() == CLanguageLinkage &&
3775         D->getType().isConstant(Context) &&
3776         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3777       GV->setSection(".cp.rodata");
3778 
3779     // Check if we a have a const declaration with an initializer, we may be
3780     // able to emit it as available_externally to expose it's value to the
3781     // optimizer.
3782     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3783         D->getType().isConstQualified() && !GV->hasInitializer() &&
3784         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3785       const auto *Record =
3786           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3787       bool HasMutableFields = Record && Record->hasMutableFields();
3788       if (!HasMutableFields) {
3789         const VarDecl *InitDecl;
3790         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3791         if (InitExpr) {
3792           ConstantEmitter emitter(*this);
3793           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3794           if (Init) {
3795             auto *InitType = Init->getType();
3796             if (GV->getValueType() != InitType) {
3797               // The type of the initializer does not match the definition.
3798               // This happens when an initializer has a different type from
3799               // the type of the global (because of padding at the end of a
3800               // structure for instance).
3801               GV->setName(StringRef());
3802               // Make a new global with the correct type, this is now guaranteed
3803               // to work.
3804               auto *NewGV = cast<llvm::GlobalVariable>(
3805                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3806                       ->stripPointerCasts());
3807 
3808               // Erase the old global, since it is no longer used.
3809               GV->eraseFromParent();
3810               GV = NewGV;
3811             } else {
3812               GV->setInitializer(Init);
3813               GV->setConstant(true);
3814               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3815             }
3816             emitter.finalize(GV);
3817           }
3818         }
3819       }
3820     }
3821   }
3822 
3823   if (GV->isDeclaration())
3824     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3825 
3826   LangAS ExpectedAS =
3827       D ? D->getType().getAddressSpace()
3828         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3829   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3830          Ty->getPointerAddressSpace());
3831   if (AddrSpace != ExpectedAS)
3832     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3833                                                        ExpectedAS, Ty);
3834 
3835   return GV;
3836 }
3837 
3838 llvm::Constant *
3839 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3840   const Decl *D = GD.getDecl();
3841 
3842   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3843     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3844                                 /*DontDefer=*/false, IsForDefinition);
3845 
3846   if (isa<CXXMethodDecl>(D)) {
3847     auto FInfo =
3848         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3849     auto Ty = getTypes().GetFunctionType(*FInfo);
3850     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3851                              IsForDefinition);
3852   }
3853 
3854   if (isa<FunctionDecl>(D)) {
3855     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3856     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3857     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3858                              IsForDefinition);
3859   }
3860 
3861   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3862 }
3863 
3864 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3865     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3866     unsigned Alignment) {
3867   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3868   llvm::GlobalVariable *OldGV = nullptr;
3869 
3870   if (GV) {
3871     // Check if the variable has the right type.
3872     if (GV->getValueType() == Ty)
3873       return GV;
3874 
3875     // Because C++ name mangling, the only way we can end up with an already
3876     // existing global with the same name is if it has been declared extern "C".
3877     assert(GV->isDeclaration() && "Declaration has wrong type!");
3878     OldGV = GV;
3879   }
3880 
3881   // Create a new variable.
3882   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3883                                 Linkage, nullptr, Name);
3884 
3885   if (OldGV) {
3886     // Replace occurrences of the old variable if needed.
3887     GV->takeName(OldGV);
3888 
3889     if (!OldGV->use_empty()) {
3890       llvm::Constant *NewPtrForOldDecl =
3891       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3892       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3893     }
3894 
3895     OldGV->eraseFromParent();
3896   }
3897 
3898   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3899       !GV->hasAvailableExternallyLinkage())
3900     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3901 
3902   GV->setAlignment(llvm::MaybeAlign(Alignment));
3903 
3904   return GV;
3905 }
3906 
3907 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3908 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3909 /// then it will be created with the specified type instead of whatever the
3910 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3911 /// that an actual global with type Ty will be returned, not conversion of a
3912 /// variable with the same mangled name but some other type.
3913 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3914                                                   llvm::Type *Ty,
3915                                            ForDefinition_t IsForDefinition) {
3916   assert(D->hasGlobalStorage() && "Not a global variable");
3917   QualType ASTTy = D->getType();
3918   if (!Ty)
3919     Ty = getTypes().ConvertTypeForMem(ASTTy);
3920 
3921   llvm::PointerType *PTy =
3922     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3923 
3924   StringRef MangledName = getMangledName(D);
3925   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3926 }
3927 
3928 /// CreateRuntimeVariable - Create a new runtime global variable with the
3929 /// specified type and name.
3930 llvm::Constant *
3931 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3932                                      StringRef Name) {
3933   auto PtrTy =
3934       getContext().getLangOpts().OpenCL
3935           ? llvm::PointerType::get(
3936                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3937           : llvm::PointerType::getUnqual(Ty);
3938   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3939   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3940   return Ret;
3941 }
3942 
3943 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3944   assert(!D->getInit() && "Cannot emit definite definitions here!");
3945 
3946   StringRef MangledName = getMangledName(D);
3947   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3948 
3949   // We already have a definition, not declaration, with the same mangled name.
3950   // Emitting of declaration is not required (and actually overwrites emitted
3951   // definition).
3952   if (GV && !GV->isDeclaration())
3953     return;
3954 
3955   // If we have not seen a reference to this variable yet, place it into the
3956   // deferred declarations table to be emitted if needed later.
3957   if (!MustBeEmitted(D) && !GV) {
3958       DeferredDecls[MangledName] = D;
3959       return;
3960   }
3961 
3962   // The tentative definition is the only definition.
3963   EmitGlobalVarDefinition(D);
3964 }
3965 
3966 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3967   EmitExternalVarDeclaration(D);
3968 }
3969 
3970 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3971   return Context.toCharUnitsFromBits(
3972       getDataLayout().getTypeStoreSizeInBits(Ty));
3973 }
3974 
3975 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3976   LangAS AddrSpace = LangAS::Default;
3977   if (LangOpts.OpenCL) {
3978     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3979     assert(AddrSpace == LangAS::opencl_global ||
3980            AddrSpace == LangAS::opencl_global_device ||
3981            AddrSpace == LangAS::opencl_global_host ||
3982            AddrSpace == LangAS::opencl_constant ||
3983            AddrSpace == LangAS::opencl_local ||
3984            AddrSpace >= LangAS::FirstTargetAddressSpace);
3985     return AddrSpace;
3986   }
3987 
3988   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3989     if (D && D->hasAttr<CUDAConstantAttr>())
3990       return LangAS::cuda_constant;
3991     else if (D && D->hasAttr<CUDASharedAttr>())
3992       return LangAS::cuda_shared;
3993     else if (D && D->hasAttr<CUDADeviceAttr>())
3994       return LangAS::cuda_device;
3995     else if (D && D->getType().isConstQualified())
3996       return LangAS::cuda_constant;
3997     else
3998       return LangAS::cuda_device;
3999   }
4000 
4001   if (LangOpts.OpenMP) {
4002     LangAS AS;
4003     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4004       return AS;
4005   }
4006   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4007 }
4008 
4009 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
4010   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4011   if (LangOpts.OpenCL)
4012     return LangAS::opencl_constant;
4013   if (auto AS = getTarget().getConstantAddressSpace())
4014     return AS.getValue();
4015   return LangAS::Default;
4016 }
4017 
4018 // In address space agnostic languages, string literals are in default address
4019 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4020 // emitted in constant address space in LLVM IR. To be consistent with other
4021 // parts of AST, string literal global variables in constant address space
4022 // need to be casted to default address space before being put into address
4023 // map and referenced by other part of CodeGen.
4024 // In OpenCL, string literals are in constant address space in AST, therefore
4025 // they should not be casted to default address space.
4026 static llvm::Constant *
4027 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4028                                        llvm::GlobalVariable *GV) {
4029   llvm::Constant *Cast = GV;
4030   if (!CGM.getLangOpts().OpenCL) {
4031     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4032       if (AS != LangAS::Default)
4033         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4034             CGM, GV, AS.getValue(), LangAS::Default,
4035             GV->getValueType()->getPointerTo(
4036                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4037     }
4038   }
4039   return Cast;
4040 }
4041 
4042 template<typename SomeDecl>
4043 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4044                                                llvm::GlobalValue *GV) {
4045   if (!getLangOpts().CPlusPlus)
4046     return;
4047 
4048   // Must have 'used' attribute, or else inline assembly can't rely on
4049   // the name existing.
4050   if (!D->template hasAttr<UsedAttr>())
4051     return;
4052 
4053   // Must have internal linkage and an ordinary name.
4054   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4055     return;
4056 
4057   // Must be in an extern "C" context. Entities declared directly within
4058   // a record are not extern "C" even if the record is in such a context.
4059   const SomeDecl *First = D->getFirstDecl();
4060   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4061     return;
4062 
4063   // OK, this is an internal linkage entity inside an extern "C" linkage
4064   // specification. Make a note of that so we can give it the "expected"
4065   // mangled name if nothing else is using that name.
4066   std::pair<StaticExternCMap::iterator, bool> R =
4067       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4068 
4069   // If we have multiple internal linkage entities with the same name
4070   // in extern "C" regions, none of them gets that name.
4071   if (!R.second)
4072     R.first->second = nullptr;
4073 }
4074 
4075 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4076   if (!CGM.supportsCOMDAT())
4077     return false;
4078 
4079   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4080   // them being "merged" by the COMDAT Folding linker optimization.
4081   if (D.hasAttr<CUDAGlobalAttr>())
4082     return false;
4083 
4084   if (D.hasAttr<SelectAnyAttr>())
4085     return true;
4086 
4087   GVALinkage Linkage;
4088   if (auto *VD = dyn_cast<VarDecl>(&D))
4089     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4090   else
4091     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4092 
4093   switch (Linkage) {
4094   case GVA_Internal:
4095   case GVA_AvailableExternally:
4096   case GVA_StrongExternal:
4097     return false;
4098   case GVA_DiscardableODR:
4099   case GVA_StrongODR:
4100     return true;
4101   }
4102   llvm_unreachable("No such linkage");
4103 }
4104 
4105 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4106                                           llvm::GlobalObject &GO) {
4107   if (!shouldBeInCOMDAT(*this, D))
4108     return;
4109   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4110 }
4111 
4112 /// Pass IsTentative as true if you want to create a tentative definition.
4113 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4114                                             bool IsTentative) {
4115   // OpenCL global variables of sampler type are translated to function calls,
4116   // therefore no need to be translated.
4117   QualType ASTTy = D->getType();
4118   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4119     return;
4120 
4121   // If this is OpenMP device, check if it is legal to emit this global
4122   // normally.
4123   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4124       OpenMPRuntime->emitTargetGlobalVariable(D))
4125     return;
4126 
4127   llvm::Constant *Init = nullptr;
4128   bool NeedsGlobalCtor = false;
4129   bool NeedsGlobalDtor =
4130       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4131 
4132   const VarDecl *InitDecl;
4133   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4134 
4135   Optional<ConstantEmitter> emitter;
4136 
4137   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4138   // as part of their declaration."  Sema has already checked for
4139   // error cases, so we just need to set Init to UndefValue.
4140   bool IsCUDASharedVar =
4141       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4142   // Shadows of initialized device-side global variables are also left
4143   // undefined.
4144   bool IsCUDAShadowVar =
4145       !getLangOpts().CUDAIsDevice &&
4146       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4147        D->hasAttr<CUDASharedAttr>());
4148   bool IsCUDADeviceShadowVar =
4149       getLangOpts().CUDAIsDevice &&
4150       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4151        D->getType()->isCUDADeviceBuiltinTextureType());
4152   // HIP pinned shadow of initialized host-side global variables are also
4153   // left undefined.
4154   if (getLangOpts().CUDA &&
4155       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4156     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4157   else if (D->hasAttr<LoaderUninitializedAttr>())
4158     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4159   else if (!InitExpr) {
4160     // This is a tentative definition; tentative definitions are
4161     // implicitly initialized with { 0 }.
4162     //
4163     // Note that tentative definitions are only emitted at the end of
4164     // a translation unit, so they should never have incomplete
4165     // type. In addition, EmitTentativeDefinition makes sure that we
4166     // never attempt to emit a tentative definition if a real one
4167     // exists. A use may still exists, however, so we still may need
4168     // to do a RAUW.
4169     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4170     Init = EmitNullConstant(D->getType());
4171   } else {
4172     initializedGlobalDecl = GlobalDecl(D);
4173     emitter.emplace(*this);
4174     Init = emitter->tryEmitForInitializer(*InitDecl);
4175 
4176     if (!Init) {
4177       QualType T = InitExpr->getType();
4178       if (D->getType()->isReferenceType())
4179         T = D->getType();
4180 
4181       if (getLangOpts().CPlusPlus) {
4182         Init = EmitNullConstant(T);
4183         NeedsGlobalCtor = true;
4184       } else {
4185         ErrorUnsupported(D, "static initializer");
4186         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4187       }
4188     } else {
4189       // We don't need an initializer, so remove the entry for the delayed
4190       // initializer position (just in case this entry was delayed) if we
4191       // also don't need to register a destructor.
4192       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4193         DelayedCXXInitPosition.erase(D);
4194     }
4195   }
4196 
4197   llvm::Type* InitType = Init->getType();
4198   llvm::Constant *Entry =
4199       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4200 
4201   // Strip off pointer casts if we got them.
4202   Entry = Entry->stripPointerCasts();
4203 
4204   // Entry is now either a Function or GlobalVariable.
4205   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4206 
4207   // We have a definition after a declaration with the wrong type.
4208   // We must make a new GlobalVariable* and update everything that used OldGV
4209   // (a declaration or tentative definition) with the new GlobalVariable*
4210   // (which will be a definition).
4211   //
4212   // This happens if there is a prototype for a global (e.g.
4213   // "extern int x[];") and then a definition of a different type (e.g.
4214   // "int x[10];"). This also happens when an initializer has a different type
4215   // from the type of the global (this happens with unions).
4216   if (!GV || GV->getValueType() != InitType ||
4217       GV->getType()->getAddressSpace() !=
4218           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4219 
4220     // Move the old entry aside so that we'll create a new one.
4221     Entry->setName(StringRef());
4222 
4223     // Make a new global with the correct type, this is now guaranteed to work.
4224     GV = cast<llvm::GlobalVariable>(
4225         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4226             ->stripPointerCasts());
4227 
4228     // Replace all uses of the old global with the new global
4229     llvm::Constant *NewPtrForOldDecl =
4230         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4231     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4232 
4233     // Erase the old global, since it is no longer used.
4234     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4235   }
4236 
4237   MaybeHandleStaticInExternC(D, GV);
4238 
4239   if (D->hasAttr<AnnotateAttr>())
4240     AddGlobalAnnotations(D, GV);
4241 
4242   // Set the llvm linkage type as appropriate.
4243   llvm::GlobalValue::LinkageTypes Linkage =
4244       getLLVMLinkageVarDefinition(D, GV->isConstant());
4245 
4246   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4247   // the device. [...]"
4248   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4249   // __device__, declares a variable that: [...]
4250   // Is accessible from all the threads within the grid and from the host
4251   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4252   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4253   if (GV && LangOpts.CUDA) {
4254     if (LangOpts.CUDAIsDevice) {
4255       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4256           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4257         GV->setExternallyInitialized(true);
4258     } else {
4259       // Host-side shadows of external declarations of device-side
4260       // global variables become internal definitions. These have to
4261       // be internal in order to prevent name conflicts with global
4262       // host variables with the same name in a different TUs.
4263       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4264         Linkage = llvm::GlobalValue::InternalLinkage;
4265         // Shadow variables and their properties must be registered with CUDA
4266         // runtime. Skip Extern global variables, which will be registered in
4267         // the TU where they are defined.
4268         //
4269         // Don't register a C++17 inline variable. The local symbol can be
4270         // discarded and referencing a discarded local symbol from outside the
4271         // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4272         // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4273         if (!D->hasExternalStorage() && !D->isInline())
4274           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4275                                              D->hasAttr<CUDAConstantAttr>());
4276       } else if (D->hasAttr<CUDASharedAttr>()) {
4277         // __shared__ variables are odd. Shadows do get created, but
4278         // they are not registered with the CUDA runtime, so they
4279         // can't really be used to access their device-side
4280         // counterparts. It's not clear yet whether it's nvcc's bug or
4281         // a feature, but we've got to do the same for compatibility.
4282         Linkage = llvm::GlobalValue::InternalLinkage;
4283       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4284                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4285         // Builtin surfaces and textures and their template arguments are
4286         // also registered with CUDA runtime.
4287         Linkage = llvm::GlobalValue::InternalLinkage;
4288         const ClassTemplateSpecializationDecl *TD =
4289             cast<ClassTemplateSpecializationDecl>(
4290                 D->getType()->getAs<RecordType>()->getDecl());
4291         const TemplateArgumentList &Args = TD->getTemplateArgs();
4292         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4293           assert(Args.size() == 2 &&
4294                  "Unexpected number of template arguments of CUDA device "
4295                  "builtin surface type.");
4296           auto SurfType = Args[1].getAsIntegral();
4297           if (!D->hasExternalStorage())
4298             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4299                                                 SurfType.getSExtValue());
4300         } else {
4301           assert(Args.size() == 3 &&
4302                  "Unexpected number of template arguments of CUDA device "
4303                  "builtin texture type.");
4304           auto TexType = Args[1].getAsIntegral();
4305           auto Normalized = Args[2].getAsIntegral();
4306           if (!D->hasExternalStorage())
4307             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4308                                                TexType.getSExtValue(),
4309                                                Normalized.getZExtValue());
4310         }
4311       }
4312     }
4313   }
4314 
4315   GV->setInitializer(Init);
4316   if (emitter)
4317     emitter->finalize(GV);
4318 
4319   // If it is safe to mark the global 'constant', do so now.
4320   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4321                   isTypeConstant(D->getType(), true));
4322 
4323   // If it is in a read-only section, mark it 'constant'.
4324   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4325     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4326     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4327       GV->setConstant(true);
4328   }
4329 
4330   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4331 
4332   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4333   // function is only defined alongside the variable, not also alongside
4334   // callers. Normally, all accesses to a thread_local go through the
4335   // thread-wrapper in order to ensure initialization has occurred, underlying
4336   // variable will never be used other than the thread-wrapper, so it can be
4337   // converted to internal linkage.
4338   //
4339   // However, if the variable has the 'constinit' attribute, it _can_ be
4340   // referenced directly, without calling the thread-wrapper, so the linkage
4341   // must not be changed.
4342   //
4343   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4344   // weak or linkonce, the de-duplication semantics are important to preserve,
4345   // so we don't change the linkage.
4346   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4347       Linkage == llvm::GlobalValue::ExternalLinkage &&
4348       Context.getTargetInfo().getTriple().isOSDarwin() &&
4349       !D->hasAttr<ConstInitAttr>())
4350     Linkage = llvm::GlobalValue::InternalLinkage;
4351 
4352   GV->setLinkage(Linkage);
4353   if (D->hasAttr<DLLImportAttr>())
4354     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4355   else if (D->hasAttr<DLLExportAttr>())
4356     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4357   else
4358     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4359 
4360   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4361     // common vars aren't constant even if declared const.
4362     GV->setConstant(false);
4363     // Tentative definition of global variables may be initialized with
4364     // non-zero null pointers. In this case they should have weak linkage
4365     // since common linkage must have zero initializer and must not have
4366     // explicit section therefore cannot have non-zero initial value.
4367     if (!GV->getInitializer()->isNullValue())
4368       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4369   }
4370 
4371   setNonAliasAttributes(D, GV);
4372 
4373   if (D->getTLSKind() && !GV->isThreadLocal()) {
4374     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4375       CXXThreadLocals.push_back(D);
4376     setTLSMode(GV, *D);
4377   }
4378 
4379   maybeSetTrivialComdat(*D, *GV);
4380 
4381   // Emit the initializer function if necessary.
4382   if (NeedsGlobalCtor || NeedsGlobalDtor)
4383     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4384 
4385   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4386 
4387   // Emit global variable debug information.
4388   if (CGDebugInfo *DI = getModuleDebugInfo())
4389     if (getCodeGenOpts().hasReducedDebugInfo())
4390       DI->EmitGlobalVariable(GV, D);
4391 }
4392 
4393 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4394   if (CGDebugInfo *DI = getModuleDebugInfo())
4395     if (getCodeGenOpts().hasReducedDebugInfo()) {
4396       QualType ASTTy = D->getType();
4397       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4398       llvm::PointerType *PTy =
4399           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4400       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4401       DI->EmitExternalVariable(
4402           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4403     }
4404 }
4405 
4406 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4407                                       CodeGenModule &CGM, const VarDecl *D,
4408                                       bool NoCommon) {
4409   // Don't give variables common linkage if -fno-common was specified unless it
4410   // was overridden by a NoCommon attribute.
4411   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4412     return true;
4413 
4414   // C11 6.9.2/2:
4415   //   A declaration of an identifier for an object that has file scope without
4416   //   an initializer, and without a storage-class specifier or with the
4417   //   storage-class specifier static, constitutes a tentative definition.
4418   if (D->getInit() || D->hasExternalStorage())
4419     return true;
4420 
4421   // A variable cannot be both common and exist in a section.
4422   if (D->hasAttr<SectionAttr>())
4423     return true;
4424 
4425   // A variable cannot be both common and exist in a section.
4426   // We don't try to determine which is the right section in the front-end.
4427   // If no specialized section name is applicable, it will resort to default.
4428   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4429       D->hasAttr<PragmaClangDataSectionAttr>() ||
4430       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4431       D->hasAttr<PragmaClangRodataSectionAttr>())
4432     return true;
4433 
4434   // Thread local vars aren't considered common linkage.
4435   if (D->getTLSKind())
4436     return true;
4437 
4438   // Tentative definitions marked with WeakImportAttr are true definitions.
4439   if (D->hasAttr<WeakImportAttr>())
4440     return true;
4441 
4442   // A variable cannot be both common and exist in a comdat.
4443   if (shouldBeInCOMDAT(CGM, *D))
4444     return true;
4445 
4446   // Declarations with a required alignment do not have common linkage in MSVC
4447   // mode.
4448   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4449     if (D->hasAttr<AlignedAttr>())
4450       return true;
4451     QualType VarType = D->getType();
4452     if (Context.isAlignmentRequired(VarType))
4453       return true;
4454 
4455     if (const auto *RT = VarType->getAs<RecordType>()) {
4456       const RecordDecl *RD = RT->getDecl();
4457       for (const FieldDecl *FD : RD->fields()) {
4458         if (FD->isBitField())
4459           continue;
4460         if (FD->hasAttr<AlignedAttr>())
4461           return true;
4462         if (Context.isAlignmentRequired(FD->getType()))
4463           return true;
4464       }
4465     }
4466   }
4467 
4468   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4469   // common symbols, so symbols with greater alignment requirements cannot be
4470   // common.
4471   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4472   // alignments for common symbols via the aligncomm directive, so this
4473   // restriction only applies to MSVC environments.
4474   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4475       Context.getTypeAlignIfKnown(D->getType()) >
4476           Context.toBits(CharUnits::fromQuantity(32)))
4477     return true;
4478 
4479   return false;
4480 }
4481 
4482 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4483     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4484   if (Linkage == GVA_Internal)
4485     return llvm::Function::InternalLinkage;
4486 
4487   if (D->hasAttr<WeakAttr>()) {
4488     if (IsConstantVariable)
4489       return llvm::GlobalVariable::WeakODRLinkage;
4490     else
4491       return llvm::GlobalVariable::WeakAnyLinkage;
4492   }
4493 
4494   if (const auto *FD = D->getAsFunction())
4495     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4496       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4497 
4498   // We are guaranteed to have a strong definition somewhere else,
4499   // so we can use available_externally linkage.
4500   if (Linkage == GVA_AvailableExternally)
4501     return llvm::GlobalValue::AvailableExternallyLinkage;
4502 
4503   // Note that Apple's kernel linker doesn't support symbol
4504   // coalescing, so we need to avoid linkonce and weak linkages there.
4505   // Normally, this means we just map to internal, but for explicit
4506   // instantiations we'll map to external.
4507 
4508   // In C++, the compiler has to emit a definition in every translation unit
4509   // that references the function.  We should use linkonce_odr because
4510   // a) if all references in this translation unit are optimized away, we
4511   // don't need to codegen it.  b) if the function persists, it needs to be
4512   // merged with other definitions. c) C++ has the ODR, so we know the
4513   // definition is dependable.
4514   if (Linkage == GVA_DiscardableODR)
4515     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4516                                             : llvm::Function::InternalLinkage;
4517 
4518   // An explicit instantiation of a template has weak linkage, since
4519   // explicit instantiations can occur in multiple translation units
4520   // and must all be equivalent. However, we are not allowed to
4521   // throw away these explicit instantiations.
4522   //
4523   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4524   // so say that CUDA templates are either external (for kernels) or internal.
4525   // This lets llvm perform aggressive inter-procedural optimizations. For
4526   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4527   // therefore we need to follow the normal linkage paradigm.
4528   if (Linkage == GVA_StrongODR) {
4529     if (getLangOpts().AppleKext)
4530       return llvm::Function::ExternalLinkage;
4531     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4532         !getLangOpts().GPURelocatableDeviceCode)
4533       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4534                                           : llvm::Function::InternalLinkage;
4535     return llvm::Function::WeakODRLinkage;
4536   }
4537 
4538   // C++ doesn't have tentative definitions and thus cannot have common
4539   // linkage.
4540   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4541       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4542                                  CodeGenOpts.NoCommon))
4543     return llvm::GlobalVariable::CommonLinkage;
4544 
4545   // selectany symbols are externally visible, so use weak instead of
4546   // linkonce.  MSVC optimizes away references to const selectany globals, so
4547   // all definitions should be the same and ODR linkage should be used.
4548   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4549   if (D->hasAttr<SelectAnyAttr>())
4550     return llvm::GlobalVariable::WeakODRLinkage;
4551 
4552   // Otherwise, we have strong external linkage.
4553   assert(Linkage == GVA_StrongExternal);
4554   return llvm::GlobalVariable::ExternalLinkage;
4555 }
4556 
4557 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4558     const VarDecl *VD, bool IsConstant) {
4559   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4560   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4561 }
4562 
4563 /// Replace the uses of a function that was declared with a non-proto type.
4564 /// We want to silently drop extra arguments from call sites
4565 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4566                                           llvm::Function *newFn) {
4567   // Fast path.
4568   if (old->use_empty()) return;
4569 
4570   llvm::Type *newRetTy = newFn->getReturnType();
4571   SmallVector<llvm::Value*, 4> newArgs;
4572   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4573 
4574   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4575          ui != ue; ) {
4576     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4577     llvm::User *user = use->getUser();
4578 
4579     // Recognize and replace uses of bitcasts.  Most calls to
4580     // unprototyped functions will use bitcasts.
4581     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4582       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4583         replaceUsesOfNonProtoConstant(bitcast, newFn);
4584       continue;
4585     }
4586 
4587     // Recognize calls to the function.
4588     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4589     if (!callSite) continue;
4590     if (!callSite->isCallee(&*use))
4591       continue;
4592 
4593     // If the return types don't match exactly, then we can't
4594     // transform this call unless it's dead.
4595     if (callSite->getType() != newRetTy && !callSite->use_empty())
4596       continue;
4597 
4598     // Get the call site's attribute list.
4599     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4600     llvm::AttributeList oldAttrs = callSite->getAttributes();
4601 
4602     // If the function was passed too few arguments, don't transform.
4603     unsigned newNumArgs = newFn->arg_size();
4604     if (callSite->arg_size() < newNumArgs)
4605       continue;
4606 
4607     // If extra arguments were passed, we silently drop them.
4608     // If any of the types mismatch, we don't transform.
4609     unsigned argNo = 0;
4610     bool dontTransform = false;
4611     for (llvm::Argument &A : newFn->args()) {
4612       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4613         dontTransform = true;
4614         break;
4615       }
4616 
4617       // Add any parameter attributes.
4618       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4619       argNo++;
4620     }
4621     if (dontTransform)
4622       continue;
4623 
4624     // Okay, we can transform this.  Create the new call instruction and copy
4625     // over the required information.
4626     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4627 
4628     // Copy over any operand bundles.
4629     callSite->getOperandBundlesAsDefs(newBundles);
4630 
4631     llvm::CallBase *newCall;
4632     if (dyn_cast<llvm::CallInst>(callSite)) {
4633       newCall =
4634           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4635     } else {
4636       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4637       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4638                                          oldInvoke->getUnwindDest(), newArgs,
4639                                          newBundles, "", callSite);
4640     }
4641     newArgs.clear(); // for the next iteration
4642 
4643     if (!newCall->getType()->isVoidTy())
4644       newCall->takeName(callSite);
4645     newCall->setAttributes(llvm::AttributeList::get(
4646         newFn->getContext(), oldAttrs.getFnAttributes(),
4647         oldAttrs.getRetAttributes(), newArgAttrs));
4648     newCall->setCallingConv(callSite->getCallingConv());
4649 
4650     // Finally, remove the old call, replacing any uses with the new one.
4651     if (!callSite->use_empty())
4652       callSite->replaceAllUsesWith(newCall);
4653 
4654     // Copy debug location attached to CI.
4655     if (callSite->getDebugLoc())
4656       newCall->setDebugLoc(callSite->getDebugLoc());
4657 
4658     callSite->eraseFromParent();
4659   }
4660 }
4661 
4662 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4663 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4664 /// existing call uses of the old function in the module, this adjusts them to
4665 /// call the new function directly.
4666 ///
4667 /// This is not just a cleanup: the always_inline pass requires direct calls to
4668 /// functions to be able to inline them.  If there is a bitcast in the way, it
4669 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4670 /// run at -O0.
4671 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4672                                                       llvm::Function *NewFn) {
4673   // If we're redefining a global as a function, don't transform it.
4674   if (!isa<llvm::Function>(Old)) return;
4675 
4676   replaceUsesOfNonProtoConstant(Old, NewFn);
4677 }
4678 
4679 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4680   auto DK = VD->isThisDeclarationADefinition();
4681   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4682     return;
4683 
4684   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4685   // If we have a definition, this might be a deferred decl. If the
4686   // instantiation is explicit, make sure we emit it at the end.
4687   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4688     GetAddrOfGlobalVar(VD);
4689 
4690   EmitTopLevelDecl(VD);
4691 }
4692 
4693 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4694                                                  llvm::GlobalValue *GV) {
4695   const auto *D = cast<FunctionDecl>(GD.getDecl());
4696 
4697   // Compute the function info and LLVM type.
4698   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4699   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4700 
4701   // Get or create the prototype for the function.
4702   if (!GV || (GV->getValueType() != Ty))
4703     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4704                                                    /*DontDefer=*/true,
4705                                                    ForDefinition));
4706 
4707   // Already emitted.
4708   if (!GV->isDeclaration())
4709     return;
4710 
4711   // We need to set linkage and visibility on the function before
4712   // generating code for it because various parts of IR generation
4713   // want to propagate this information down (e.g. to local static
4714   // declarations).
4715   auto *Fn = cast<llvm::Function>(GV);
4716   setFunctionLinkage(GD, Fn);
4717 
4718   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4719   setGVProperties(Fn, GD);
4720 
4721   MaybeHandleStaticInExternC(D, Fn);
4722 
4723   maybeSetTrivialComdat(*D, *Fn);
4724 
4725   // Set CodeGen attributes that represent floating point environment.
4726   setLLVMFunctionFEnvAttributes(D, Fn);
4727 
4728   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4729 
4730   setNonAliasAttributes(GD, Fn);
4731   SetLLVMFunctionAttributesForDefinition(D, Fn);
4732 
4733   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4734     AddGlobalCtor(Fn, CA->getPriority());
4735   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4736     AddGlobalDtor(Fn, DA->getPriority(), true);
4737   if (D->hasAttr<AnnotateAttr>())
4738     AddGlobalAnnotations(D, Fn);
4739 }
4740 
4741 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4742   const auto *D = cast<ValueDecl>(GD.getDecl());
4743   const AliasAttr *AA = D->getAttr<AliasAttr>();
4744   assert(AA && "Not an alias?");
4745 
4746   StringRef MangledName = getMangledName(GD);
4747 
4748   if (AA->getAliasee() == MangledName) {
4749     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4750     return;
4751   }
4752 
4753   // If there is a definition in the module, then it wins over the alias.
4754   // This is dubious, but allow it to be safe.  Just ignore the alias.
4755   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4756   if (Entry && !Entry->isDeclaration())
4757     return;
4758 
4759   Aliases.push_back(GD);
4760 
4761   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4762 
4763   // Create a reference to the named value.  This ensures that it is emitted
4764   // if a deferred decl.
4765   llvm::Constant *Aliasee;
4766   llvm::GlobalValue::LinkageTypes LT;
4767   if (isa<llvm::FunctionType>(DeclTy)) {
4768     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4769                                       /*ForVTable=*/false);
4770     LT = getFunctionLinkage(GD);
4771   } else {
4772     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4773                                     llvm::PointerType::getUnqual(DeclTy),
4774                                     /*D=*/nullptr);
4775     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4776       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4777     else
4778       LT = getFunctionLinkage(GD);
4779   }
4780 
4781   // Create the new alias itself, but don't set a name yet.
4782   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4783   auto *GA =
4784       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4785 
4786   if (Entry) {
4787     if (GA->getAliasee() == Entry) {
4788       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4789       return;
4790     }
4791 
4792     assert(Entry->isDeclaration());
4793 
4794     // If there is a declaration in the module, then we had an extern followed
4795     // by the alias, as in:
4796     //   extern int test6();
4797     //   ...
4798     //   int test6() __attribute__((alias("test7")));
4799     //
4800     // Remove it and replace uses of it with the alias.
4801     GA->takeName(Entry);
4802 
4803     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4804                                                           Entry->getType()));
4805     Entry->eraseFromParent();
4806   } else {
4807     GA->setName(MangledName);
4808   }
4809 
4810   // Set attributes which are particular to an alias; this is a
4811   // specialization of the attributes which may be set on a global
4812   // variable/function.
4813   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4814       D->isWeakImported()) {
4815     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4816   }
4817 
4818   if (const auto *VD = dyn_cast<VarDecl>(D))
4819     if (VD->getTLSKind())
4820       setTLSMode(GA, *VD);
4821 
4822   SetCommonAttributes(GD, GA);
4823 }
4824 
4825 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4826   const auto *D = cast<ValueDecl>(GD.getDecl());
4827   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4828   assert(IFA && "Not an ifunc?");
4829 
4830   StringRef MangledName = getMangledName(GD);
4831 
4832   if (IFA->getResolver() == MangledName) {
4833     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4834     return;
4835   }
4836 
4837   // Report an error if some definition overrides ifunc.
4838   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4839   if (Entry && !Entry->isDeclaration()) {
4840     GlobalDecl OtherGD;
4841     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4842         DiagnosedConflictingDefinitions.insert(GD).second) {
4843       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4844           << MangledName;
4845       Diags.Report(OtherGD.getDecl()->getLocation(),
4846                    diag::note_previous_definition);
4847     }
4848     return;
4849   }
4850 
4851   Aliases.push_back(GD);
4852 
4853   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4854   llvm::Constant *Resolver =
4855       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4856                               /*ForVTable=*/false);
4857   llvm::GlobalIFunc *GIF =
4858       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4859                                 "", Resolver, &getModule());
4860   if (Entry) {
4861     if (GIF->getResolver() == Entry) {
4862       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4863       return;
4864     }
4865     assert(Entry->isDeclaration());
4866 
4867     // If there is a declaration in the module, then we had an extern followed
4868     // by the ifunc, as in:
4869     //   extern int test();
4870     //   ...
4871     //   int test() __attribute__((ifunc("resolver")));
4872     //
4873     // Remove it and replace uses of it with the ifunc.
4874     GIF->takeName(Entry);
4875 
4876     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4877                                                           Entry->getType()));
4878     Entry->eraseFromParent();
4879   } else
4880     GIF->setName(MangledName);
4881 
4882   SetCommonAttributes(GD, GIF);
4883 }
4884 
4885 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4886                                             ArrayRef<llvm::Type*> Tys) {
4887   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4888                                          Tys);
4889 }
4890 
4891 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4892 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4893                          const StringLiteral *Literal, bool TargetIsLSB,
4894                          bool &IsUTF16, unsigned &StringLength) {
4895   StringRef String = Literal->getString();
4896   unsigned NumBytes = String.size();
4897 
4898   // Check for simple case.
4899   if (!Literal->containsNonAsciiOrNull()) {
4900     StringLength = NumBytes;
4901     return *Map.insert(std::make_pair(String, nullptr)).first;
4902   }
4903 
4904   // Otherwise, convert the UTF8 literals into a string of shorts.
4905   IsUTF16 = true;
4906 
4907   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4908   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4909   llvm::UTF16 *ToPtr = &ToBuf[0];
4910 
4911   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4912                                  ToPtr + NumBytes, llvm::strictConversion);
4913 
4914   // ConvertUTF8toUTF16 returns the length in ToPtr.
4915   StringLength = ToPtr - &ToBuf[0];
4916 
4917   // Add an explicit null.
4918   *ToPtr = 0;
4919   return *Map.insert(std::make_pair(
4920                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4921                                    (StringLength + 1) * 2),
4922                          nullptr)).first;
4923 }
4924 
4925 ConstantAddress
4926 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4927   unsigned StringLength = 0;
4928   bool isUTF16 = false;
4929   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4930       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4931                                getDataLayout().isLittleEndian(), isUTF16,
4932                                StringLength);
4933 
4934   if (auto *C = Entry.second)
4935     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4936 
4937   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4938   llvm::Constant *Zeros[] = { Zero, Zero };
4939 
4940   const ASTContext &Context = getContext();
4941   const llvm::Triple &Triple = getTriple();
4942 
4943   const auto CFRuntime = getLangOpts().CFRuntime;
4944   const bool IsSwiftABI =
4945       static_cast<unsigned>(CFRuntime) >=
4946       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4947   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4948 
4949   // If we don't already have it, get __CFConstantStringClassReference.
4950   if (!CFConstantStringClassRef) {
4951     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4952     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4953     Ty = llvm::ArrayType::get(Ty, 0);
4954 
4955     switch (CFRuntime) {
4956     default: break;
4957     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4958     case LangOptions::CoreFoundationABI::Swift5_0:
4959       CFConstantStringClassName =
4960           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4961                               : "$s10Foundation19_NSCFConstantStringCN";
4962       Ty = IntPtrTy;
4963       break;
4964     case LangOptions::CoreFoundationABI::Swift4_2:
4965       CFConstantStringClassName =
4966           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4967                               : "$S10Foundation19_NSCFConstantStringCN";
4968       Ty = IntPtrTy;
4969       break;
4970     case LangOptions::CoreFoundationABI::Swift4_1:
4971       CFConstantStringClassName =
4972           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4973                               : "__T010Foundation19_NSCFConstantStringCN";
4974       Ty = IntPtrTy;
4975       break;
4976     }
4977 
4978     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4979 
4980     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4981       llvm::GlobalValue *GV = nullptr;
4982 
4983       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4984         IdentifierInfo &II = Context.Idents.get(GV->getName());
4985         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4986         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4987 
4988         const VarDecl *VD = nullptr;
4989         for (const auto &Result : DC->lookup(&II))
4990           if ((VD = dyn_cast<VarDecl>(Result)))
4991             break;
4992 
4993         if (Triple.isOSBinFormatELF()) {
4994           if (!VD)
4995             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4996         } else {
4997           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4998           if (!VD || !VD->hasAttr<DLLExportAttr>())
4999             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5000           else
5001             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5002         }
5003 
5004         setDSOLocal(GV);
5005       }
5006     }
5007 
5008     // Decay array -> ptr
5009     CFConstantStringClassRef =
5010         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5011                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5012   }
5013 
5014   QualType CFTy = Context.getCFConstantStringType();
5015 
5016   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5017 
5018   ConstantInitBuilder Builder(*this);
5019   auto Fields = Builder.beginStruct(STy);
5020 
5021   // Class pointer.
5022   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5023 
5024   // Flags.
5025   if (IsSwiftABI) {
5026     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5027     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5028   } else {
5029     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5030   }
5031 
5032   // String pointer.
5033   llvm::Constant *C = nullptr;
5034   if (isUTF16) {
5035     auto Arr = llvm::makeArrayRef(
5036         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5037         Entry.first().size() / 2);
5038     C = llvm::ConstantDataArray::get(VMContext, Arr);
5039   } else {
5040     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5041   }
5042 
5043   // Note: -fwritable-strings doesn't make the backing store strings of
5044   // CFStrings writable. (See <rdar://problem/10657500>)
5045   auto *GV =
5046       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5047                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5048   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5049   // Don't enforce the target's minimum global alignment, since the only use
5050   // of the string is via this class initializer.
5051   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5052                             : Context.getTypeAlignInChars(Context.CharTy);
5053   GV->setAlignment(Align.getAsAlign());
5054 
5055   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5056   // Without it LLVM can merge the string with a non unnamed_addr one during
5057   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5058   if (Triple.isOSBinFormatMachO())
5059     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5060                            : "__TEXT,__cstring,cstring_literals");
5061   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5062   // the static linker to adjust permissions to read-only later on.
5063   else if (Triple.isOSBinFormatELF())
5064     GV->setSection(".rodata");
5065 
5066   // String.
5067   llvm::Constant *Str =
5068       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5069 
5070   if (isUTF16)
5071     // Cast the UTF16 string to the correct type.
5072     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5073   Fields.add(Str);
5074 
5075   // String length.
5076   llvm::IntegerType *LengthTy =
5077       llvm::IntegerType::get(getModule().getContext(),
5078                              Context.getTargetInfo().getLongWidth());
5079   if (IsSwiftABI) {
5080     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5081         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5082       LengthTy = Int32Ty;
5083     else
5084       LengthTy = IntPtrTy;
5085   }
5086   Fields.addInt(LengthTy, StringLength);
5087 
5088   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5089   // properly aligned on 32-bit platforms.
5090   CharUnits Alignment =
5091       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5092 
5093   // The struct.
5094   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5095                                     /*isConstant=*/false,
5096                                     llvm::GlobalVariable::PrivateLinkage);
5097   GV->addAttribute("objc_arc_inert");
5098   switch (Triple.getObjectFormat()) {
5099   case llvm::Triple::UnknownObjectFormat:
5100     llvm_unreachable("unknown file format");
5101   case llvm::Triple::GOFF:
5102     llvm_unreachable("GOFF is not yet implemented");
5103   case llvm::Triple::XCOFF:
5104     llvm_unreachable("XCOFF is not yet implemented");
5105   case llvm::Triple::COFF:
5106   case llvm::Triple::ELF:
5107   case llvm::Triple::Wasm:
5108     GV->setSection("cfstring");
5109     break;
5110   case llvm::Triple::MachO:
5111     GV->setSection("__DATA,__cfstring");
5112     break;
5113   }
5114   Entry.second = GV;
5115 
5116   return ConstantAddress(GV, Alignment);
5117 }
5118 
5119 bool CodeGenModule::getExpressionLocationsEnabled() const {
5120   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5121 }
5122 
5123 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5124   if (ObjCFastEnumerationStateType.isNull()) {
5125     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5126     D->startDefinition();
5127 
5128     QualType FieldTypes[] = {
5129       Context.UnsignedLongTy,
5130       Context.getPointerType(Context.getObjCIdType()),
5131       Context.getPointerType(Context.UnsignedLongTy),
5132       Context.getConstantArrayType(Context.UnsignedLongTy,
5133                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5134     };
5135 
5136     for (size_t i = 0; i < 4; ++i) {
5137       FieldDecl *Field = FieldDecl::Create(Context,
5138                                            D,
5139                                            SourceLocation(),
5140                                            SourceLocation(), nullptr,
5141                                            FieldTypes[i], /*TInfo=*/nullptr,
5142                                            /*BitWidth=*/nullptr,
5143                                            /*Mutable=*/false,
5144                                            ICIS_NoInit);
5145       Field->setAccess(AS_public);
5146       D->addDecl(Field);
5147     }
5148 
5149     D->completeDefinition();
5150     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5151   }
5152 
5153   return ObjCFastEnumerationStateType;
5154 }
5155 
5156 llvm::Constant *
5157 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5158   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5159 
5160   // Don't emit it as the address of the string, emit the string data itself
5161   // as an inline array.
5162   if (E->getCharByteWidth() == 1) {
5163     SmallString<64> Str(E->getString());
5164 
5165     // Resize the string to the right size, which is indicated by its type.
5166     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5167     Str.resize(CAT->getSize().getZExtValue());
5168     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5169   }
5170 
5171   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5172   llvm::Type *ElemTy = AType->getElementType();
5173   unsigned NumElements = AType->getNumElements();
5174 
5175   // Wide strings have either 2-byte or 4-byte elements.
5176   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5177     SmallVector<uint16_t, 32> Elements;
5178     Elements.reserve(NumElements);
5179 
5180     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5181       Elements.push_back(E->getCodeUnit(i));
5182     Elements.resize(NumElements);
5183     return llvm::ConstantDataArray::get(VMContext, Elements);
5184   }
5185 
5186   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5187   SmallVector<uint32_t, 32> Elements;
5188   Elements.reserve(NumElements);
5189 
5190   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5191     Elements.push_back(E->getCodeUnit(i));
5192   Elements.resize(NumElements);
5193   return llvm::ConstantDataArray::get(VMContext, Elements);
5194 }
5195 
5196 static llvm::GlobalVariable *
5197 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5198                       CodeGenModule &CGM, StringRef GlobalName,
5199                       CharUnits Alignment) {
5200   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5201       CGM.getStringLiteralAddressSpace());
5202 
5203   llvm::Module &M = CGM.getModule();
5204   // Create a global variable for this string
5205   auto *GV = new llvm::GlobalVariable(
5206       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5207       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5208   GV->setAlignment(Alignment.getAsAlign());
5209   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5210   if (GV->isWeakForLinker()) {
5211     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5212     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5213   }
5214   CGM.setDSOLocal(GV);
5215 
5216   return GV;
5217 }
5218 
5219 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5220 /// constant array for the given string literal.
5221 ConstantAddress
5222 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5223                                                   StringRef Name) {
5224   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5225 
5226   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5227   llvm::GlobalVariable **Entry = nullptr;
5228   if (!LangOpts.WritableStrings) {
5229     Entry = &ConstantStringMap[C];
5230     if (auto GV = *Entry) {
5231       if (Alignment.getQuantity() > GV->getAlignment())
5232         GV->setAlignment(Alignment.getAsAlign());
5233       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5234                              Alignment);
5235     }
5236   }
5237 
5238   SmallString<256> MangledNameBuffer;
5239   StringRef GlobalVariableName;
5240   llvm::GlobalValue::LinkageTypes LT;
5241 
5242   // Mangle the string literal if that's how the ABI merges duplicate strings.
5243   // Don't do it if they are writable, since we don't want writes in one TU to
5244   // affect strings in another.
5245   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5246       !LangOpts.WritableStrings) {
5247     llvm::raw_svector_ostream Out(MangledNameBuffer);
5248     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5249     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5250     GlobalVariableName = MangledNameBuffer;
5251   } else {
5252     LT = llvm::GlobalValue::PrivateLinkage;
5253     GlobalVariableName = Name;
5254   }
5255 
5256   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5257   if (Entry)
5258     *Entry = GV;
5259 
5260   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5261                                   QualType());
5262 
5263   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5264                          Alignment);
5265 }
5266 
5267 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5268 /// array for the given ObjCEncodeExpr node.
5269 ConstantAddress
5270 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5271   std::string Str;
5272   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5273 
5274   return GetAddrOfConstantCString(Str);
5275 }
5276 
5277 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5278 /// the literal and a terminating '\0' character.
5279 /// The result has pointer to array type.
5280 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5281     const std::string &Str, const char *GlobalName) {
5282   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5283   CharUnits Alignment =
5284     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5285 
5286   llvm::Constant *C =
5287       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5288 
5289   // Don't share any string literals if strings aren't constant.
5290   llvm::GlobalVariable **Entry = nullptr;
5291   if (!LangOpts.WritableStrings) {
5292     Entry = &ConstantStringMap[C];
5293     if (auto GV = *Entry) {
5294       if (Alignment.getQuantity() > GV->getAlignment())
5295         GV->setAlignment(Alignment.getAsAlign());
5296       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5297                              Alignment);
5298     }
5299   }
5300 
5301   // Get the default prefix if a name wasn't specified.
5302   if (!GlobalName)
5303     GlobalName = ".str";
5304   // Create a global variable for this.
5305   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5306                                   GlobalName, Alignment);
5307   if (Entry)
5308     *Entry = GV;
5309 
5310   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5311                          Alignment);
5312 }
5313 
5314 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5315     const MaterializeTemporaryExpr *E, const Expr *Init) {
5316   assert((E->getStorageDuration() == SD_Static ||
5317           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5318   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5319 
5320   // If we're not materializing a subobject of the temporary, keep the
5321   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5322   QualType MaterializedType = Init->getType();
5323   if (Init == E->getSubExpr())
5324     MaterializedType = E->getType();
5325 
5326   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5327 
5328   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5329     return ConstantAddress(Slot, Align);
5330 
5331   // FIXME: If an externally-visible declaration extends multiple temporaries,
5332   // we need to give each temporary the same name in every translation unit (and
5333   // we also need to make the temporaries externally-visible).
5334   SmallString<256> Name;
5335   llvm::raw_svector_ostream Out(Name);
5336   getCXXABI().getMangleContext().mangleReferenceTemporary(
5337       VD, E->getManglingNumber(), Out);
5338 
5339   APValue *Value = nullptr;
5340   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5341     // If the initializer of the extending declaration is a constant
5342     // initializer, we should have a cached constant initializer for this
5343     // temporary. Note that this might have a different value from the value
5344     // computed by evaluating the initializer if the surrounding constant
5345     // expression modifies the temporary.
5346     Value = E->getOrCreateValue(false);
5347   }
5348 
5349   // Try evaluating it now, it might have a constant initializer.
5350   Expr::EvalResult EvalResult;
5351   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5352       !EvalResult.hasSideEffects())
5353     Value = &EvalResult.Val;
5354 
5355   LangAS AddrSpace =
5356       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5357 
5358   Optional<ConstantEmitter> emitter;
5359   llvm::Constant *InitialValue = nullptr;
5360   bool Constant = false;
5361   llvm::Type *Type;
5362   if (Value) {
5363     // The temporary has a constant initializer, use it.
5364     emitter.emplace(*this);
5365     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5366                                                MaterializedType);
5367     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5368     Type = InitialValue->getType();
5369   } else {
5370     // No initializer, the initialization will be provided when we
5371     // initialize the declaration which performed lifetime extension.
5372     Type = getTypes().ConvertTypeForMem(MaterializedType);
5373   }
5374 
5375   // Create a global variable for this lifetime-extended temporary.
5376   llvm::GlobalValue::LinkageTypes Linkage =
5377       getLLVMLinkageVarDefinition(VD, Constant);
5378   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5379     const VarDecl *InitVD;
5380     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5381         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5382       // Temporaries defined inside a class get linkonce_odr linkage because the
5383       // class can be defined in multiple translation units.
5384       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5385     } else {
5386       // There is no need for this temporary to have external linkage if the
5387       // VarDecl has external linkage.
5388       Linkage = llvm::GlobalVariable::InternalLinkage;
5389     }
5390   }
5391   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5392   auto *GV = new llvm::GlobalVariable(
5393       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5394       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5395   if (emitter) emitter->finalize(GV);
5396   setGVProperties(GV, VD);
5397   GV->setAlignment(Align.getAsAlign());
5398   if (supportsCOMDAT() && GV->isWeakForLinker())
5399     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5400   if (VD->getTLSKind())
5401     setTLSMode(GV, *VD);
5402   llvm::Constant *CV = GV;
5403   if (AddrSpace != LangAS::Default)
5404     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5405         *this, GV, AddrSpace, LangAS::Default,
5406         Type->getPointerTo(
5407             getContext().getTargetAddressSpace(LangAS::Default)));
5408   MaterializedGlobalTemporaryMap[E] = CV;
5409   return ConstantAddress(CV, Align);
5410 }
5411 
5412 /// EmitObjCPropertyImplementations - Emit information for synthesized
5413 /// properties for an implementation.
5414 void CodeGenModule::EmitObjCPropertyImplementations(const
5415                                                     ObjCImplementationDecl *D) {
5416   for (const auto *PID : D->property_impls()) {
5417     // Dynamic is just for type-checking.
5418     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5419       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5420 
5421       // Determine which methods need to be implemented, some may have
5422       // been overridden. Note that ::isPropertyAccessor is not the method
5423       // we want, that just indicates if the decl came from a
5424       // property. What we want to know is if the method is defined in
5425       // this implementation.
5426       auto *Getter = PID->getGetterMethodDecl();
5427       if (!Getter || Getter->isSynthesizedAccessorStub())
5428         CodeGenFunction(*this).GenerateObjCGetter(
5429             const_cast<ObjCImplementationDecl *>(D), PID);
5430       auto *Setter = PID->getSetterMethodDecl();
5431       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5432         CodeGenFunction(*this).GenerateObjCSetter(
5433                                  const_cast<ObjCImplementationDecl *>(D), PID);
5434     }
5435   }
5436 }
5437 
5438 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5439   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5440   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5441        ivar; ivar = ivar->getNextIvar())
5442     if (ivar->getType().isDestructedType())
5443       return true;
5444 
5445   return false;
5446 }
5447 
5448 static bool AllTrivialInitializers(CodeGenModule &CGM,
5449                                    ObjCImplementationDecl *D) {
5450   CodeGenFunction CGF(CGM);
5451   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5452        E = D->init_end(); B != E; ++B) {
5453     CXXCtorInitializer *CtorInitExp = *B;
5454     Expr *Init = CtorInitExp->getInit();
5455     if (!CGF.isTrivialInitializer(Init))
5456       return false;
5457   }
5458   return true;
5459 }
5460 
5461 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5462 /// for an implementation.
5463 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5464   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5465   if (needsDestructMethod(D)) {
5466     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5467     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5468     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5469         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5470         getContext().VoidTy, nullptr, D,
5471         /*isInstance=*/true, /*isVariadic=*/false,
5472         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5473         /*isImplicitlyDeclared=*/true,
5474         /*isDefined=*/false, ObjCMethodDecl::Required);
5475     D->addInstanceMethod(DTORMethod);
5476     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5477     D->setHasDestructors(true);
5478   }
5479 
5480   // If the implementation doesn't have any ivar initializers, we don't need
5481   // a .cxx_construct.
5482   if (D->getNumIvarInitializers() == 0 ||
5483       AllTrivialInitializers(*this, D))
5484     return;
5485 
5486   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5487   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5488   // The constructor returns 'self'.
5489   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5490       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5491       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5492       /*isVariadic=*/false,
5493       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5494       /*isImplicitlyDeclared=*/true,
5495       /*isDefined=*/false, ObjCMethodDecl::Required);
5496   D->addInstanceMethod(CTORMethod);
5497   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5498   D->setHasNonZeroConstructors(true);
5499 }
5500 
5501 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5502 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5503   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5504       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5505     ErrorUnsupported(LSD, "linkage spec");
5506     return;
5507   }
5508 
5509   EmitDeclContext(LSD);
5510 }
5511 
5512 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5513   for (auto *I : DC->decls()) {
5514     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5515     // are themselves considered "top-level", so EmitTopLevelDecl on an
5516     // ObjCImplDecl does not recursively visit them. We need to do that in
5517     // case they're nested inside another construct (LinkageSpecDecl /
5518     // ExportDecl) that does stop them from being considered "top-level".
5519     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5520       for (auto *M : OID->methods())
5521         EmitTopLevelDecl(M);
5522     }
5523 
5524     EmitTopLevelDecl(I);
5525   }
5526 }
5527 
5528 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5529 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5530   // Ignore dependent declarations.
5531   if (D->isTemplated())
5532     return;
5533 
5534   // Consteval function shouldn't be emitted.
5535   if (auto *FD = dyn_cast<FunctionDecl>(D))
5536     if (FD->isConsteval())
5537       return;
5538 
5539   switch (D->getKind()) {
5540   case Decl::CXXConversion:
5541   case Decl::CXXMethod:
5542   case Decl::Function:
5543     EmitGlobal(cast<FunctionDecl>(D));
5544     // Always provide some coverage mapping
5545     // even for the functions that aren't emitted.
5546     AddDeferredUnusedCoverageMapping(D);
5547     break;
5548 
5549   case Decl::CXXDeductionGuide:
5550     // Function-like, but does not result in code emission.
5551     break;
5552 
5553   case Decl::Var:
5554   case Decl::Decomposition:
5555   case Decl::VarTemplateSpecialization:
5556     EmitGlobal(cast<VarDecl>(D));
5557     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5558       for (auto *B : DD->bindings())
5559         if (auto *HD = B->getHoldingVar())
5560           EmitGlobal(HD);
5561     break;
5562 
5563   // Indirect fields from global anonymous structs and unions can be
5564   // ignored; only the actual variable requires IR gen support.
5565   case Decl::IndirectField:
5566     break;
5567 
5568   // C++ Decls
5569   case Decl::Namespace:
5570     EmitDeclContext(cast<NamespaceDecl>(D));
5571     break;
5572   case Decl::ClassTemplateSpecialization: {
5573     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5574     if (CGDebugInfo *DI = getModuleDebugInfo())
5575       if (Spec->getSpecializationKind() ==
5576               TSK_ExplicitInstantiationDefinition &&
5577           Spec->hasDefinition())
5578         DI->completeTemplateDefinition(*Spec);
5579   } LLVM_FALLTHROUGH;
5580   case Decl::CXXRecord: {
5581     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5582     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5583       if (CRD->hasDefinition())
5584         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5585       if (auto *ES = D->getASTContext().getExternalSource())
5586         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5587           DI->completeUnusedClass(*CRD);
5588     }
5589     // Emit any static data members, they may be definitions.
5590     for (auto *I : CRD->decls())
5591       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5592         EmitTopLevelDecl(I);
5593     break;
5594   }
5595     // No code generation needed.
5596   case Decl::UsingShadow:
5597   case Decl::ClassTemplate:
5598   case Decl::VarTemplate:
5599   case Decl::Concept:
5600   case Decl::VarTemplatePartialSpecialization:
5601   case Decl::FunctionTemplate:
5602   case Decl::TypeAliasTemplate:
5603   case Decl::Block:
5604   case Decl::Empty:
5605   case Decl::Binding:
5606     break;
5607   case Decl::Using:          // using X; [C++]
5608     if (CGDebugInfo *DI = getModuleDebugInfo())
5609         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5610     break;
5611   case Decl::NamespaceAlias:
5612     if (CGDebugInfo *DI = getModuleDebugInfo())
5613         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5614     break;
5615   case Decl::UsingDirective: // using namespace X; [C++]
5616     if (CGDebugInfo *DI = getModuleDebugInfo())
5617       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5618     break;
5619   case Decl::CXXConstructor:
5620     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5621     break;
5622   case Decl::CXXDestructor:
5623     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5624     break;
5625 
5626   case Decl::StaticAssert:
5627     // Nothing to do.
5628     break;
5629 
5630   // Objective-C Decls
5631 
5632   // Forward declarations, no (immediate) code generation.
5633   case Decl::ObjCInterface:
5634   case Decl::ObjCCategory:
5635     break;
5636 
5637   case Decl::ObjCProtocol: {
5638     auto *Proto = cast<ObjCProtocolDecl>(D);
5639     if (Proto->isThisDeclarationADefinition())
5640       ObjCRuntime->GenerateProtocol(Proto);
5641     break;
5642   }
5643 
5644   case Decl::ObjCCategoryImpl:
5645     // Categories have properties but don't support synthesize so we
5646     // can ignore them here.
5647     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5648     break;
5649 
5650   case Decl::ObjCImplementation: {
5651     auto *OMD = cast<ObjCImplementationDecl>(D);
5652     EmitObjCPropertyImplementations(OMD);
5653     EmitObjCIvarInitializations(OMD);
5654     ObjCRuntime->GenerateClass(OMD);
5655     // Emit global variable debug information.
5656     if (CGDebugInfo *DI = getModuleDebugInfo())
5657       if (getCodeGenOpts().hasReducedDebugInfo())
5658         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5659             OMD->getClassInterface()), OMD->getLocation());
5660     break;
5661   }
5662   case Decl::ObjCMethod: {
5663     auto *OMD = cast<ObjCMethodDecl>(D);
5664     // If this is not a prototype, emit the body.
5665     if (OMD->getBody())
5666       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5667     break;
5668   }
5669   case Decl::ObjCCompatibleAlias:
5670     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5671     break;
5672 
5673   case Decl::PragmaComment: {
5674     const auto *PCD = cast<PragmaCommentDecl>(D);
5675     switch (PCD->getCommentKind()) {
5676     case PCK_Unknown:
5677       llvm_unreachable("unexpected pragma comment kind");
5678     case PCK_Linker:
5679       AppendLinkerOptions(PCD->getArg());
5680       break;
5681     case PCK_Lib:
5682         AddDependentLib(PCD->getArg());
5683       break;
5684     case PCK_Compiler:
5685     case PCK_ExeStr:
5686     case PCK_User:
5687       break; // We ignore all of these.
5688     }
5689     break;
5690   }
5691 
5692   case Decl::PragmaDetectMismatch: {
5693     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5694     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5695     break;
5696   }
5697 
5698   case Decl::LinkageSpec:
5699     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5700     break;
5701 
5702   case Decl::FileScopeAsm: {
5703     // File-scope asm is ignored during device-side CUDA compilation.
5704     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5705       break;
5706     // File-scope asm is ignored during device-side OpenMP compilation.
5707     if (LangOpts.OpenMPIsDevice)
5708       break;
5709     auto *AD = cast<FileScopeAsmDecl>(D);
5710     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5711     break;
5712   }
5713 
5714   case Decl::Import: {
5715     auto *Import = cast<ImportDecl>(D);
5716 
5717     // If we've already imported this module, we're done.
5718     if (!ImportedModules.insert(Import->getImportedModule()))
5719       break;
5720 
5721     // Emit debug information for direct imports.
5722     if (!Import->getImportedOwningModule()) {
5723       if (CGDebugInfo *DI = getModuleDebugInfo())
5724         DI->EmitImportDecl(*Import);
5725     }
5726 
5727     // Find all of the submodules and emit the module initializers.
5728     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5729     SmallVector<clang::Module *, 16> Stack;
5730     Visited.insert(Import->getImportedModule());
5731     Stack.push_back(Import->getImportedModule());
5732 
5733     while (!Stack.empty()) {
5734       clang::Module *Mod = Stack.pop_back_val();
5735       if (!EmittedModuleInitializers.insert(Mod).second)
5736         continue;
5737 
5738       for (auto *D : Context.getModuleInitializers(Mod))
5739         EmitTopLevelDecl(D);
5740 
5741       // Visit the submodules of this module.
5742       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5743                                              SubEnd = Mod->submodule_end();
5744            Sub != SubEnd; ++Sub) {
5745         // Skip explicit children; they need to be explicitly imported to emit
5746         // the initializers.
5747         if ((*Sub)->IsExplicit)
5748           continue;
5749 
5750         if (Visited.insert(*Sub).second)
5751           Stack.push_back(*Sub);
5752       }
5753     }
5754     break;
5755   }
5756 
5757   case Decl::Export:
5758     EmitDeclContext(cast<ExportDecl>(D));
5759     break;
5760 
5761   case Decl::OMPThreadPrivate:
5762     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5763     break;
5764 
5765   case Decl::OMPAllocate:
5766     break;
5767 
5768   case Decl::OMPDeclareReduction:
5769     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5770     break;
5771 
5772   case Decl::OMPDeclareMapper:
5773     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5774     break;
5775 
5776   case Decl::OMPRequires:
5777     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5778     break;
5779 
5780   case Decl::Typedef:
5781   case Decl::TypeAlias: // using foo = bar; [C++11]
5782     if (CGDebugInfo *DI = getModuleDebugInfo())
5783       DI->EmitAndRetainType(
5784           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5785     break;
5786 
5787   case Decl::Record:
5788     if (CGDebugInfo *DI = getModuleDebugInfo())
5789       if (cast<RecordDecl>(D)->getDefinition())
5790         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5791     break;
5792 
5793   case Decl::Enum:
5794     if (CGDebugInfo *DI = getModuleDebugInfo())
5795       if (cast<EnumDecl>(D)->getDefinition())
5796         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5797     break;
5798 
5799   default:
5800     // Make sure we handled everything we should, every other kind is a
5801     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5802     // function. Need to recode Decl::Kind to do that easily.
5803     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5804     break;
5805   }
5806 }
5807 
5808 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5809   // Do we need to generate coverage mapping?
5810   if (!CodeGenOpts.CoverageMapping)
5811     return;
5812   switch (D->getKind()) {
5813   case Decl::CXXConversion:
5814   case Decl::CXXMethod:
5815   case Decl::Function:
5816   case Decl::ObjCMethod:
5817   case Decl::CXXConstructor:
5818   case Decl::CXXDestructor: {
5819     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5820       break;
5821     SourceManager &SM = getContext().getSourceManager();
5822     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5823       break;
5824     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5825     if (I == DeferredEmptyCoverageMappingDecls.end())
5826       DeferredEmptyCoverageMappingDecls[D] = true;
5827     break;
5828   }
5829   default:
5830     break;
5831   };
5832 }
5833 
5834 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5835   // Do we need to generate coverage mapping?
5836   if (!CodeGenOpts.CoverageMapping)
5837     return;
5838   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5839     if (Fn->isTemplateInstantiation())
5840       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5841   }
5842   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5843   if (I == DeferredEmptyCoverageMappingDecls.end())
5844     DeferredEmptyCoverageMappingDecls[D] = false;
5845   else
5846     I->second = false;
5847 }
5848 
5849 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5850   // We call takeVector() here to avoid use-after-free.
5851   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5852   // we deserialize function bodies to emit coverage info for them, and that
5853   // deserializes more declarations. How should we handle that case?
5854   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5855     if (!Entry.second)
5856       continue;
5857     const Decl *D = Entry.first;
5858     switch (D->getKind()) {
5859     case Decl::CXXConversion:
5860     case Decl::CXXMethod:
5861     case Decl::Function:
5862     case Decl::ObjCMethod: {
5863       CodeGenPGO PGO(*this);
5864       GlobalDecl GD(cast<FunctionDecl>(D));
5865       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5866                                   getFunctionLinkage(GD));
5867       break;
5868     }
5869     case Decl::CXXConstructor: {
5870       CodeGenPGO PGO(*this);
5871       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5872       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5873                                   getFunctionLinkage(GD));
5874       break;
5875     }
5876     case Decl::CXXDestructor: {
5877       CodeGenPGO PGO(*this);
5878       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5879       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5880                                   getFunctionLinkage(GD));
5881       break;
5882     }
5883     default:
5884       break;
5885     };
5886   }
5887 }
5888 
5889 void CodeGenModule::EmitMainVoidAlias() {
5890   // In order to transition away from "__original_main" gracefully, emit an
5891   // alias for "main" in the no-argument case so that libc can detect when
5892   // new-style no-argument main is in used.
5893   if (llvm::Function *F = getModule().getFunction("main")) {
5894     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5895         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5896       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5897   }
5898 }
5899 
5900 /// Turns the given pointer into a constant.
5901 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5902                                           const void *Ptr) {
5903   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5904   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5905   return llvm::ConstantInt::get(i64, PtrInt);
5906 }
5907 
5908 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5909                                    llvm::NamedMDNode *&GlobalMetadata,
5910                                    GlobalDecl D,
5911                                    llvm::GlobalValue *Addr) {
5912   if (!GlobalMetadata)
5913     GlobalMetadata =
5914       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5915 
5916   // TODO: should we report variant information for ctors/dtors?
5917   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5918                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5919                                CGM.getLLVMContext(), D.getDecl()))};
5920   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5921 }
5922 
5923 /// For each function which is declared within an extern "C" region and marked
5924 /// as 'used', but has internal linkage, create an alias from the unmangled
5925 /// name to the mangled name if possible. People expect to be able to refer
5926 /// to such functions with an unmangled name from inline assembly within the
5927 /// same translation unit.
5928 void CodeGenModule::EmitStaticExternCAliases() {
5929   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5930     return;
5931   for (auto &I : StaticExternCValues) {
5932     IdentifierInfo *Name = I.first;
5933     llvm::GlobalValue *Val = I.second;
5934     if (Val && !getModule().getNamedValue(Name->getName()))
5935       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5936   }
5937 }
5938 
5939 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5940                                              GlobalDecl &Result) const {
5941   auto Res = Manglings.find(MangledName);
5942   if (Res == Manglings.end())
5943     return false;
5944   Result = Res->getValue();
5945   return true;
5946 }
5947 
5948 /// Emits metadata nodes associating all the global values in the
5949 /// current module with the Decls they came from.  This is useful for
5950 /// projects using IR gen as a subroutine.
5951 ///
5952 /// Since there's currently no way to associate an MDNode directly
5953 /// with an llvm::GlobalValue, we create a global named metadata
5954 /// with the name 'clang.global.decl.ptrs'.
5955 void CodeGenModule::EmitDeclMetadata() {
5956   llvm::NamedMDNode *GlobalMetadata = nullptr;
5957 
5958   for (auto &I : MangledDeclNames) {
5959     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5960     // Some mangled names don't necessarily have an associated GlobalValue
5961     // in this module, e.g. if we mangled it for DebugInfo.
5962     if (Addr)
5963       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5964   }
5965 }
5966 
5967 /// Emits metadata nodes for all the local variables in the current
5968 /// function.
5969 void CodeGenFunction::EmitDeclMetadata() {
5970   if (LocalDeclMap.empty()) return;
5971 
5972   llvm::LLVMContext &Context = getLLVMContext();
5973 
5974   // Find the unique metadata ID for this name.
5975   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5976 
5977   llvm::NamedMDNode *GlobalMetadata = nullptr;
5978 
5979   for (auto &I : LocalDeclMap) {
5980     const Decl *D = I.first;
5981     llvm::Value *Addr = I.second.getPointer();
5982     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5983       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5984       Alloca->setMetadata(
5985           DeclPtrKind, llvm::MDNode::get(
5986                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5987     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5988       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5989       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5990     }
5991   }
5992 }
5993 
5994 void CodeGenModule::EmitVersionIdentMetadata() {
5995   llvm::NamedMDNode *IdentMetadata =
5996     TheModule.getOrInsertNamedMetadata("llvm.ident");
5997   std::string Version = getClangFullVersion();
5998   llvm::LLVMContext &Ctx = TheModule.getContext();
5999 
6000   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6001   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6002 }
6003 
6004 void CodeGenModule::EmitCommandLineMetadata() {
6005   llvm::NamedMDNode *CommandLineMetadata =
6006     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6007   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6008   llvm::LLVMContext &Ctx = TheModule.getContext();
6009 
6010   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6011   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6012 }
6013 
6014 void CodeGenModule::EmitCoverageFile() {
6015   if (getCodeGenOpts().CoverageDataFile.empty() &&
6016       getCodeGenOpts().CoverageNotesFile.empty())
6017     return;
6018 
6019   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6020   if (!CUNode)
6021     return;
6022 
6023   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6024   llvm::LLVMContext &Ctx = TheModule.getContext();
6025   auto *CoverageDataFile =
6026       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6027   auto *CoverageNotesFile =
6028       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6029   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6030     llvm::MDNode *CU = CUNode->getOperand(i);
6031     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6032     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6033   }
6034 }
6035 
6036 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6037                                                        bool ForEH) {
6038   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6039   // FIXME: should we even be calling this method if RTTI is disabled
6040   // and it's not for EH?
6041   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6042       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6043        getTriple().isNVPTX()))
6044     return llvm::Constant::getNullValue(Int8PtrTy);
6045 
6046   if (ForEH && Ty->isObjCObjectPointerType() &&
6047       LangOpts.ObjCRuntime.isGNUFamily())
6048     return ObjCRuntime->GetEHType(Ty);
6049 
6050   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6051 }
6052 
6053 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6054   // Do not emit threadprivates in simd-only mode.
6055   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6056     return;
6057   for (auto RefExpr : D->varlists()) {
6058     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6059     bool PerformInit =
6060         VD->getAnyInitializer() &&
6061         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6062                                                         /*ForRef=*/false);
6063 
6064     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6065     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6066             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6067       CXXGlobalInits.push_back(InitFunction);
6068   }
6069 }
6070 
6071 llvm::Metadata *
6072 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6073                                             StringRef Suffix) {
6074   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6075   if (InternalId)
6076     return InternalId;
6077 
6078   if (isExternallyVisible(T->getLinkage())) {
6079     std::string OutName;
6080     llvm::raw_string_ostream Out(OutName);
6081     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6082     Out << Suffix;
6083 
6084     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6085   } else {
6086     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6087                                            llvm::ArrayRef<llvm::Metadata *>());
6088   }
6089 
6090   return InternalId;
6091 }
6092 
6093 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6094   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6095 }
6096 
6097 llvm::Metadata *
6098 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6099   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6100 }
6101 
6102 // Generalize pointer types to a void pointer with the qualifiers of the
6103 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6104 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6105 // 'void *'.
6106 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6107   if (!Ty->isPointerType())
6108     return Ty;
6109 
6110   return Ctx.getPointerType(
6111       QualType(Ctx.VoidTy).withCVRQualifiers(
6112           Ty->getPointeeType().getCVRQualifiers()));
6113 }
6114 
6115 // Apply type generalization to a FunctionType's return and argument types
6116 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6117   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6118     SmallVector<QualType, 8> GeneralizedParams;
6119     for (auto &Param : FnType->param_types())
6120       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6121 
6122     return Ctx.getFunctionType(
6123         GeneralizeType(Ctx, FnType->getReturnType()),
6124         GeneralizedParams, FnType->getExtProtoInfo());
6125   }
6126 
6127   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6128     return Ctx.getFunctionNoProtoType(
6129         GeneralizeType(Ctx, FnType->getReturnType()));
6130 
6131   llvm_unreachable("Encountered unknown FunctionType");
6132 }
6133 
6134 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6135   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6136                                       GeneralizedMetadataIdMap, ".generalized");
6137 }
6138 
6139 /// Returns whether this module needs the "all-vtables" type identifier.
6140 bool CodeGenModule::NeedAllVtablesTypeId() const {
6141   // Returns true if at least one of vtable-based CFI checkers is enabled and
6142   // is not in the trapping mode.
6143   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6144            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6145           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6146            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6147           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6148            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6149           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6150            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6151 }
6152 
6153 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6154                                           CharUnits Offset,
6155                                           const CXXRecordDecl *RD) {
6156   llvm::Metadata *MD =
6157       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6158   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6159 
6160   if (CodeGenOpts.SanitizeCfiCrossDso)
6161     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6162       VTable->addTypeMetadata(Offset.getQuantity(),
6163                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6164 
6165   if (NeedAllVtablesTypeId()) {
6166     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6167     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6168   }
6169 }
6170 
6171 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6172   if (!SanStats)
6173     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6174 
6175   return *SanStats;
6176 }
6177 llvm::Value *
6178 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6179                                                   CodeGenFunction &CGF) {
6180   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6181   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6182   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6183   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6184                                 "__translate_sampler_initializer"),
6185                                 {C});
6186 }
6187 
6188 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6189     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6190   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6191                                  /* forPointeeType= */ true);
6192 }
6193 
6194 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6195                                                  LValueBaseInfo *BaseInfo,
6196                                                  TBAAAccessInfo *TBAAInfo,
6197                                                  bool forPointeeType) {
6198   if (TBAAInfo)
6199     *TBAAInfo = getTBAAAccessInfo(T);
6200 
6201   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6202   // that doesn't return the information we need to compute BaseInfo.
6203 
6204   // Honor alignment typedef attributes even on incomplete types.
6205   // We also honor them straight for C++ class types, even as pointees;
6206   // there's an expressivity gap here.
6207   if (auto TT = T->getAs<TypedefType>()) {
6208     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6209       if (BaseInfo)
6210         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6211       return getContext().toCharUnitsFromBits(Align);
6212     }
6213   }
6214 
6215   bool AlignForArray = T->isArrayType();
6216 
6217   // Analyze the base element type, so we don't get confused by incomplete
6218   // array types.
6219   T = getContext().getBaseElementType(T);
6220 
6221   if (T->isIncompleteType()) {
6222     // We could try to replicate the logic from
6223     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6224     // type is incomplete, so it's impossible to test. We could try to reuse
6225     // getTypeAlignIfKnown, but that doesn't return the information we need
6226     // to set BaseInfo.  So just ignore the possibility that the alignment is
6227     // greater than one.
6228     if (BaseInfo)
6229       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6230     return CharUnits::One();
6231   }
6232 
6233   if (BaseInfo)
6234     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6235 
6236   CharUnits Alignment;
6237   const CXXRecordDecl *RD;
6238   if (T.getQualifiers().hasUnaligned()) {
6239     Alignment = CharUnits::One();
6240   } else if (forPointeeType && !AlignForArray &&
6241              (RD = T->getAsCXXRecordDecl())) {
6242     // For C++ class pointees, we don't know whether we're pointing at a
6243     // base or a complete object, so we generally need to use the
6244     // non-virtual alignment.
6245     Alignment = getClassPointerAlignment(RD);
6246   } else {
6247     Alignment = getContext().getTypeAlignInChars(T);
6248   }
6249 
6250   // Cap to the global maximum type alignment unless the alignment
6251   // was somehow explicit on the type.
6252   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6253     if (Alignment.getQuantity() > MaxAlign &&
6254         !getContext().isAlignmentRequired(T))
6255       Alignment = CharUnits::fromQuantity(MaxAlign);
6256   }
6257   return Alignment;
6258 }
6259 
6260 bool CodeGenModule::stopAutoInit() {
6261   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6262   if (StopAfter) {
6263     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6264     // used
6265     if (NumAutoVarInit >= StopAfter) {
6266       return true;
6267     }
6268     if (!NumAutoVarInit) {
6269       unsigned DiagID = getDiags().getCustomDiagID(
6270           DiagnosticsEngine::Warning,
6271           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6272           "number of times ftrivial-auto-var-init=%1 gets applied.");
6273       getDiags().Report(DiagID)
6274           << StopAfter
6275           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6276                       LangOptions::TrivialAutoVarInitKind::Zero
6277                   ? "zero"
6278                   : "pattern");
6279     }
6280     ++NumAutoVarInit;
6281   }
6282   return false;
6283 }
6284