1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallSite.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 
62 using namespace clang;
63 using namespace CodeGen;
64 
65 static llvm::cl::opt<bool> LimitedCoverage(
66     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
67     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
68     llvm::cl::init(false));
69 
70 static const char AnnotationSection[] = "llvm.metadata";
71 
72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
73   switch (CGM.getTarget().getCXXABI().getKind()) {
74   case TargetCXXABI::GenericAArch64:
75   case TargetCXXABI::GenericARM:
76   case TargetCXXABI::iOS:
77   case TargetCXXABI::iOS64:
78   case TargetCXXABI::WatchOS:
79   case TargetCXXABI::GenericMIPS:
80   case TargetCXXABI::GenericItanium:
81   case TargetCXXABI::WebAssembly:
82     return CreateItaniumCXXABI(CGM);
83   case TargetCXXABI::Microsoft:
84     return CreateMicrosoftCXXABI(CGM);
85   }
86 
87   llvm_unreachable("invalid C++ ABI kind");
88 }
89 
90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
91                              const PreprocessorOptions &PPO,
92                              const CodeGenOptions &CGO, llvm::Module &M,
93                              DiagnosticsEngine &diags,
94                              CoverageSourceInfo *CoverageInfo)
95     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
96       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
97       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
98       VMContext(M.getContext()), Types(*this), VTables(*this),
99       SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   HalfTy = llvm::Type::getHalfTy(LLVMContext);
109   FloatTy = llvm::Type::getFloatTy(LLVMContext);
110   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
111   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
112   PointerAlignInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
114   SizeSizeInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext,
120     C.getTargetInfo().getMaxPointerWidth());
121   Int8PtrTy = Int8Ty->getPointerTo(0);
122   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
123   AllocaInt8PtrTy = Int8Ty->getPointerTo(
124       M.getDataLayout().getAllocaAddrSpace());
125   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
126 
127   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
128 
129   if (LangOpts.ObjC)
130     createObjCRuntime();
131   if (LangOpts.OpenCL)
132     createOpenCLRuntime();
133   if (LangOpts.OpenMP)
134     createOpenMPRuntime();
135   if (LangOpts.CUDA)
136     createCUDARuntime();
137 
138   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
139   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
140       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
141     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
142                                getCXXABI().getMangleContext()));
143 
144   // If debug info or coverage generation is enabled, create the CGDebugInfo
145   // object.
146   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
147       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
148     DebugInfo.reset(new CGDebugInfo(*this));
149 
150   Block.GlobalUniqueCount = 0;
151 
152   if (C.getLangOpts().ObjC)
153     ObjCData.reset(new ObjCEntrypoints());
154 
155   if (CodeGenOpts.hasProfileClangUse()) {
156     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
157         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
158     if (auto E = ReaderOrErr.takeError()) {
159       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
160                                               "Could not read profile %0: %1");
161       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
162         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
163                                   << EI.message();
164       });
165     } else
166       PGOReader = std::move(ReaderOrErr.get());
167   }
168 
169   // If coverage mapping generation is enabled, create the
170   // CoverageMappingModuleGen object.
171   if (CodeGenOpts.CoverageMapping)
172     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
173 }
174 
175 CodeGenModule::~CodeGenModule() {}
176 
177 void CodeGenModule::createObjCRuntime() {
178   // This is just isGNUFamily(), but we want to force implementors of
179   // new ABIs to decide how best to do this.
180   switch (LangOpts.ObjCRuntime.getKind()) {
181   case ObjCRuntime::GNUstep:
182   case ObjCRuntime::GCC:
183   case ObjCRuntime::ObjFW:
184     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
185     return;
186 
187   case ObjCRuntime::FragileMacOSX:
188   case ObjCRuntime::MacOSX:
189   case ObjCRuntime::iOS:
190   case ObjCRuntime::WatchOS:
191     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
192     return;
193   }
194   llvm_unreachable("bad runtime kind");
195 }
196 
197 void CodeGenModule::createOpenCLRuntime() {
198   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
199 }
200 
201 void CodeGenModule::createOpenMPRuntime() {
202   // Select a specialized code generation class based on the target, if any.
203   // If it does not exist use the default implementation.
204   switch (getTriple().getArch()) {
205   case llvm::Triple::nvptx:
206   case llvm::Triple::nvptx64:
207     assert(getLangOpts().OpenMPIsDevice &&
208            "OpenMP NVPTX is only prepared to deal with device code.");
209     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
210     break;
211   default:
212     if (LangOpts.OpenMPSimd)
213       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
214     else
215       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
216     break;
217   }
218 }
219 
220 void CodeGenModule::createCUDARuntime() {
221   CUDARuntime.reset(CreateNVCUDARuntime(*this));
222 }
223 
224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
225   Replacements[Name] = C;
226 }
227 
228 void CodeGenModule::applyReplacements() {
229   for (auto &I : Replacements) {
230     StringRef MangledName = I.first();
231     llvm::Constant *Replacement = I.second;
232     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
233     if (!Entry)
234       continue;
235     auto *OldF = cast<llvm::Function>(Entry);
236     auto *NewF = dyn_cast<llvm::Function>(Replacement);
237     if (!NewF) {
238       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
239         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
240       } else {
241         auto *CE = cast<llvm::ConstantExpr>(Replacement);
242         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
243                CE->getOpcode() == llvm::Instruction::GetElementPtr);
244         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
245       }
246     }
247 
248     // Replace old with new, but keep the old order.
249     OldF->replaceAllUsesWith(Replacement);
250     if (NewF) {
251       NewF->removeFromParent();
252       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
253                                                        NewF);
254     }
255     OldF->eraseFromParent();
256   }
257 }
258 
259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
260   GlobalValReplacements.push_back(std::make_pair(GV, C));
261 }
262 
263 void CodeGenModule::applyGlobalValReplacements() {
264   for (auto &I : GlobalValReplacements) {
265     llvm::GlobalValue *GV = I.first;
266     llvm::Constant *C = I.second;
267 
268     GV->replaceAllUsesWith(C);
269     GV->eraseFromParent();
270   }
271 }
272 
273 // This is only used in aliases that we created and we know they have a
274 // linear structure.
275 static const llvm::GlobalObject *getAliasedGlobal(
276     const llvm::GlobalIndirectSymbol &GIS) {
277   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
278   const llvm::Constant *C = &GIS;
279   for (;;) {
280     C = C->stripPointerCasts();
281     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
282       return GO;
283     // stripPointerCasts will not walk over weak aliases.
284     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
285     if (!GIS2)
286       return nullptr;
287     if (!Visited.insert(GIS2).second)
288       return nullptr;
289     C = GIS2->getIndirectSymbol();
290   }
291 }
292 
293 void CodeGenModule::checkAliases() {
294   // Check if the constructed aliases are well formed. It is really unfortunate
295   // that we have to do this in CodeGen, but we only construct mangled names
296   // and aliases during codegen.
297   bool Error = false;
298   DiagnosticsEngine &Diags = getDiags();
299   for (const GlobalDecl &GD : Aliases) {
300     const auto *D = cast<ValueDecl>(GD.getDecl());
301     SourceLocation Location;
302     bool IsIFunc = D->hasAttr<IFuncAttr>();
303     if (const Attr *A = D->getDefiningAttr())
304       Location = A->getLocation();
305     else
306       llvm_unreachable("Not an alias or ifunc?");
307     StringRef MangledName = getMangledName(GD);
308     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
309     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
310     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
311     if (!GV) {
312       Error = true;
313       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
314     } else if (GV->isDeclaration()) {
315       Error = true;
316       Diags.Report(Location, diag::err_alias_to_undefined)
317           << IsIFunc << IsIFunc;
318     } else if (IsIFunc) {
319       // Check resolver function type.
320       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
321           GV->getType()->getPointerElementType());
322       assert(FTy);
323       if (!FTy->getReturnType()->isPointerTy())
324         Diags.Report(Location, diag::err_ifunc_resolver_return);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.ControlFlowGuard) {
462     // We want function ID tables for Control Flow Guard.
463     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
464   }
465   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466     // We don't support LTO with 2 with different StrictVTablePointers
467     // FIXME: we could support it by stripping all the information introduced
468     // by StrictVTablePointers.
469 
470     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471 
472     llvm::Metadata *Ops[2] = {
473               llvm::MDString::get(VMContext, "StrictVTablePointers"),
474               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475                   llvm::Type::getInt32Ty(VMContext), 1))};
476 
477     getModule().addModuleFlag(llvm::Module::Require,
478                               "StrictVTablePointersRequirement",
479                               llvm::MDNode::get(VMContext, Ops));
480   }
481   if (DebugInfo)
482     // We support a single version in the linked module. The LLVM
483     // parser will drop debug info with a different version number
484     // (and warn about it, too).
485     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486                               llvm::DEBUG_METADATA_VERSION);
487 
488   // We need to record the widths of enums and wchar_t, so that we can generate
489   // the correct build attributes in the ARM backend. wchar_size is also used by
490   // TargetLibraryInfo.
491   uint64_t WCharWidth =
492       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494 
495   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496   if (   Arch == llvm::Triple::arm
497       || Arch == llvm::Triple::armeb
498       || Arch == llvm::Triple::thumb
499       || Arch == llvm::Triple::thumbeb) {
500     // The minimum width of an enum in bytes
501     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503   }
504 
505   if (CodeGenOpts.SanitizeCfiCrossDso) {
506     // Indicate that we want cross-DSO control flow integrity checks.
507     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508   }
509 
510   if (CodeGenOpts.CFProtectionReturn &&
511       Target.checkCFProtectionReturnSupported(getDiags())) {
512     // Indicate that we want to instrument return control flow protection.
513     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514                               1);
515   }
516 
517   if (CodeGenOpts.CFProtectionBranch &&
518       Target.checkCFProtectionBranchSupported(getDiags())) {
519     // Indicate that we want to instrument branch control flow protection.
520     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521                               1);
522   }
523 
524   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525     // Indicate whether __nvvm_reflect should be configured to flush denormal
526     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
527     // property.)
528     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529                               CodeGenOpts.FlushDenorm ? 1 : 0);
530   }
531 
532   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533   if (LangOpts.OpenCL) {
534     EmitOpenCLMetadata();
535     // Emit SPIR version.
536     if (getTriple().getArch() == llvm::Triple::spir ||
537         getTriple().getArch() == llvm::Triple::spir64) {
538       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539       // opencl.spir.version named metadata.
540       llvm::Metadata *SPIRVerElts[] = {
541           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542               Int32Ty, LangOpts.OpenCLVersion / 100)),
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545       llvm::NamedMDNode *SPIRVerMD =
546           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547       llvm::LLVMContext &Ctx = TheModule.getContext();
548       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549     }
550   }
551 
552   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553     assert(PLevel < 3 && "Invalid PIC Level");
554     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555     if (Context.getLangOpts().PIE)
556       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557   }
558 
559   if (getCodeGenOpts().CodeModel.size() > 0) {
560     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
561                   .Case("tiny", llvm::CodeModel::Tiny)
562                   .Case("small", llvm::CodeModel::Small)
563                   .Case("kernel", llvm::CodeModel::Kernel)
564                   .Case("medium", llvm::CodeModel::Medium)
565                   .Case("large", llvm::CodeModel::Large)
566                   .Default(~0u);
567     if (CM != ~0u) {
568       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
569       getModule().setCodeModel(codeModel);
570     }
571   }
572 
573   if (CodeGenOpts.NoPLT)
574     getModule().setRtLibUseGOT();
575 
576   SimplifyPersonality();
577 
578   if (getCodeGenOpts().EmitDeclMetadata)
579     EmitDeclMetadata();
580 
581   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
582     EmitCoverageFile();
583 
584   if (DebugInfo)
585     DebugInfo->finalize();
586 
587   if (getCodeGenOpts().EmitVersionIdentMetadata)
588     EmitVersionIdentMetadata();
589 
590   EmitTargetMetadata();
591 }
592 
593 void CodeGenModule::EmitOpenCLMetadata() {
594   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
595   // opencl.ocl.version named metadata node.
596   llvm::Metadata *OCLVerElts[] = {
597       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598           Int32Ty, LangOpts.OpenCLVersion / 100)),
599       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
600           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
601   llvm::NamedMDNode *OCLVerMD =
602       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
603   llvm::LLVMContext &Ctx = TheModule.getContext();
604   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
605 }
606 
607 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
608   // Make sure that this type is translated.
609   Types.UpdateCompletedType(TD);
610 }
611 
612 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
613   // Make sure that this type is translated.
614   Types.RefreshTypeCacheForClass(RD);
615 }
616 
617 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
618   if (!TBAA)
619     return nullptr;
620   return TBAA->getTypeInfo(QTy);
621 }
622 
623 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
624   if (!TBAA)
625     return TBAAAccessInfo();
626   return TBAA->getAccessInfo(AccessType);
627 }
628 
629 TBAAAccessInfo
630 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
631   if (!TBAA)
632     return TBAAAccessInfo();
633   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
634 }
635 
636 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
637   if (!TBAA)
638     return nullptr;
639   return TBAA->getTBAAStructInfo(QTy);
640 }
641 
642 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
643   if (!TBAA)
644     return nullptr;
645   return TBAA->getBaseTypeInfo(QTy);
646 }
647 
648 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
649   if (!TBAA)
650     return nullptr;
651   return TBAA->getAccessTagInfo(Info);
652 }
653 
654 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
655                                                    TBAAAccessInfo TargetInfo) {
656   if (!TBAA)
657     return TBAAAccessInfo();
658   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
659 }
660 
661 TBAAAccessInfo
662 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
663                                                    TBAAAccessInfo InfoB) {
664   if (!TBAA)
665     return TBAAAccessInfo();
666   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
667 }
668 
669 TBAAAccessInfo
670 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
671                                               TBAAAccessInfo SrcInfo) {
672   if (!TBAA)
673     return TBAAAccessInfo();
674   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
675 }
676 
677 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
678                                                 TBAAAccessInfo TBAAInfo) {
679   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
680     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
681 }
682 
683 void CodeGenModule::DecorateInstructionWithInvariantGroup(
684     llvm::Instruction *I, const CXXRecordDecl *RD) {
685   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
686                  llvm::MDNode::get(getLLVMContext(), {}));
687 }
688 
689 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
690   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
691   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
692 }
693 
694 /// ErrorUnsupported - Print out an error that codegen doesn't support the
695 /// specified stmt yet.
696 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
697   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
698                                                "cannot compile this %0 yet");
699   std::string Msg = Type;
700   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
701       << Msg << S->getSourceRange();
702 }
703 
704 /// ErrorUnsupported - Print out an error that codegen doesn't support the
705 /// specified decl yet.
706 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
707   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
708                                                "cannot compile this %0 yet");
709   std::string Msg = Type;
710   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
711 }
712 
713 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
714   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
715 }
716 
717 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
718                                         const NamedDecl *D) const {
719   if (GV->hasDLLImportStorageClass())
720     return;
721   // Internal definitions always have default visibility.
722   if (GV->hasLocalLinkage()) {
723     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
724     return;
725   }
726   if (!D)
727     return;
728   // Set visibility for definitions.
729   LinkageInfo LV = D->getLinkageAndVisibility();
730   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
731     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
732 }
733 
734 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
735                                  llvm::GlobalValue *GV) {
736   if (GV->hasLocalLinkage())
737     return true;
738 
739   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
740     return true;
741 
742   // DLLImport explicitly marks the GV as external.
743   if (GV->hasDLLImportStorageClass())
744     return false;
745 
746   const llvm::Triple &TT = CGM.getTriple();
747   if (TT.isWindowsGNUEnvironment()) {
748     // In MinGW, variables without DLLImport can still be automatically
749     // imported from a DLL by the linker; don't mark variables that
750     // potentially could come from another DLL as DSO local.
751     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
752         !GV->isThreadLocal())
753       return false;
754   }
755   // Every other GV is local on COFF.
756   // Make an exception for windows OS in the triple: Some firmware builds use
757   // *-win32-macho triples. This (accidentally?) produced windows relocations
758   // without GOT tables in older clang versions; Keep this behaviour.
759   // FIXME: even thread local variables?
760   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
761     return true;
762 
763   // Only handle COFF and ELF for now.
764   if (!TT.isOSBinFormatELF())
765     return false;
766 
767   // If this is not an executable, don't assume anything is local.
768   const auto &CGOpts = CGM.getCodeGenOpts();
769   llvm::Reloc::Model RM = CGOpts.RelocationModel;
770   const auto &LOpts = CGM.getLangOpts();
771   if (RM != llvm::Reloc::Static && !LOpts.PIE)
772     return false;
773 
774   // A definition cannot be preempted from an executable.
775   if (!GV->isDeclarationForLinker())
776     return true;
777 
778   // Most PIC code sequences that assume that a symbol is local cannot produce a
779   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
780   // depended, it seems worth it to handle it here.
781   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
782     return false;
783 
784   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
785   llvm::Triple::ArchType Arch = TT.getArch();
786   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
787       Arch == llvm::Triple::ppc64le)
788     return false;
789 
790   // If we can use copy relocations we can assume it is local.
791   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
792     if (!Var->isThreadLocal() &&
793         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
794       return true;
795 
796   // If we can use a plt entry as the symbol address we can assume it
797   // is local.
798   // FIXME: This should work for PIE, but the gold linker doesn't support it.
799   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
800     return true;
801 
802   // Otherwise don't assue it is local.
803   return false;
804 }
805 
806 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
807   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
808 }
809 
810 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
811                                           GlobalDecl GD) const {
812   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
813   // C++ destructors have a few C++ ABI specific special cases.
814   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
815     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
816     return;
817   }
818   setDLLImportDLLExport(GV, D);
819 }
820 
821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
822                                           const NamedDecl *D) const {
823   if (D && D->isExternallyVisible()) {
824     if (D->hasAttr<DLLImportAttr>())
825       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
826     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
827       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
828   }
829 }
830 
831 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
832                                     GlobalDecl GD) const {
833   setDLLImportDLLExport(GV, GD);
834   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
835 }
836 
837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
838                                     const NamedDecl *D) const {
839   setDLLImportDLLExport(GV, D);
840   setGlobalVisibilityAndLocal(GV, D);
841 }
842 
843 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
844                                                 const NamedDecl *D) const {
845   setGlobalVisibility(GV, D);
846   setDSOLocal(GV);
847 }
848 
849 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
850   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
851       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
852       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
853       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
854       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
855 }
856 
857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
858     CodeGenOptions::TLSModel M) {
859   switch (M) {
860   case CodeGenOptions::GeneralDynamicTLSModel:
861     return llvm::GlobalVariable::GeneralDynamicTLSModel;
862   case CodeGenOptions::LocalDynamicTLSModel:
863     return llvm::GlobalVariable::LocalDynamicTLSModel;
864   case CodeGenOptions::InitialExecTLSModel:
865     return llvm::GlobalVariable::InitialExecTLSModel;
866   case CodeGenOptions::LocalExecTLSModel:
867     return llvm::GlobalVariable::LocalExecTLSModel;
868   }
869   llvm_unreachable("Invalid TLS model!");
870 }
871 
872 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
873   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
874 
875   llvm::GlobalValue::ThreadLocalMode TLM;
876   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
877 
878   // Override the TLS model if it is explicitly specified.
879   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
880     TLM = GetLLVMTLSModel(Attr->getModel());
881   }
882 
883   GV->setThreadLocalMode(TLM);
884 }
885 
886 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
887                                           StringRef Name) {
888   const TargetInfo &Target = CGM.getTarget();
889   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
890 }
891 
892 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
893                                                  const CPUSpecificAttr *Attr,
894                                                  raw_ostream &Out) {
895   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
896   // supported.
897   if (Attr)
898     Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName());
899   else if (CGM.getTarget().supportsIFunc())
900     Out << ".resolver";
901 }
902 
903 static void AppendTargetMangling(const CodeGenModule &CGM,
904                                  const TargetAttr *Attr, raw_ostream &Out) {
905   if (Attr->isDefaultVersion())
906     return;
907 
908   Out << '.';
909   const TargetInfo &Target = CGM.getTarget();
910   TargetAttr::ParsedTargetAttr Info =
911       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
912         // Multiversioning doesn't allow "no-${feature}", so we can
913         // only have "+" prefixes here.
914         assert(LHS.startswith("+") && RHS.startswith("+") &&
915                "Features should always have a prefix.");
916         return Target.multiVersionSortPriority(LHS.substr(1)) >
917                Target.multiVersionSortPriority(RHS.substr(1));
918       });
919 
920   bool IsFirst = true;
921 
922   if (!Info.Architecture.empty()) {
923     IsFirst = false;
924     Out << "arch_" << Info.Architecture;
925   }
926 
927   for (StringRef Feat : Info.Features) {
928     if (!IsFirst)
929       Out << '_';
930     IsFirst = false;
931     Out << Feat.substr(1);
932   }
933 }
934 
935 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
936                                       const NamedDecl *ND,
937                                       bool OmitMultiVersionMangling = false) {
938   SmallString<256> Buffer;
939   llvm::raw_svector_ostream Out(Buffer);
940   MangleContext &MC = CGM.getCXXABI().getMangleContext();
941   if (MC.shouldMangleDeclName(ND)) {
942     llvm::raw_svector_ostream Out(Buffer);
943     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
944       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
945     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
946       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
947     else
948       MC.mangleName(ND, Out);
949   } else {
950     IdentifierInfo *II = ND->getIdentifier();
951     assert(II && "Attempt to mangle unnamed decl.");
952     const auto *FD = dyn_cast<FunctionDecl>(ND);
953 
954     if (FD &&
955         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
956       llvm::raw_svector_ostream Out(Buffer);
957       Out << "__regcall3__" << II->getName();
958     } else {
959       Out << II->getName();
960     }
961   }
962 
963   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
964     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
965       if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())
966         AppendCPUSpecificCPUDispatchMangling(
967             CGM, FD->getAttr<CPUSpecificAttr>(), Out);
968       else
969         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
970     }
971 
972   return Out.str();
973 }
974 
975 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
976                                             const FunctionDecl *FD) {
977   if (!FD->isMultiVersion())
978     return;
979 
980   // Get the name of what this would be without the 'target' attribute.  This
981   // allows us to lookup the version that was emitted when this wasn't a
982   // multiversion function.
983   std::string NonTargetName =
984       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
985   GlobalDecl OtherGD;
986   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
987     assert(OtherGD.getCanonicalDecl()
988                .getDecl()
989                ->getAsFunction()
990                ->isMultiVersion() &&
991            "Other GD should now be a multiversioned function");
992     // OtherFD is the version of this function that was mangled BEFORE
993     // becoming a MultiVersion function.  It potentially needs to be updated.
994     const FunctionDecl *OtherFD =
995         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
996     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
997     // This is so that if the initial version was already the 'default'
998     // version, we don't try to update it.
999     if (OtherName != NonTargetName) {
1000       // Remove instead of erase, since others may have stored the StringRef
1001       // to this.
1002       const auto ExistingRecord = Manglings.find(NonTargetName);
1003       if (ExistingRecord != std::end(Manglings))
1004         Manglings.remove(&(*ExistingRecord));
1005       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1006       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1007       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1008         Entry->setName(OtherName);
1009     }
1010   }
1011 }
1012 
1013 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1014   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1015 
1016   // Some ABIs don't have constructor variants.  Make sure that base and
1017   // complete constructors get mangled the same.
1018   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1019     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1020       CXXCtorType OrigCtorType = GD.getCtorType();
1021       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1022       if (OrigCtorType == Ctor_Base)
1023         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1024     }
1025   }
1026 
1027   const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl());
1028   // Since CPUSpecific can require multiple emits per decl, store the manglings
1029   // separately.
1030   if (FD &&
1031       (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) {
1032     const auto *SD = FD->getAttr<CPUSpecificAttr>();
1033 
1034     std::pair<GlobalDecl, unsigned> SpecCanonicalGD{
1035         CanonicalGD,
1036         SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()};
1037 
1038     auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD);
1039     if (FoundName != CPUSpecificMangledDeclNames.end())
1040       return FoundName->second;
1041 
1042     auto Result = CPUSpecificManglings.insert(
1043         std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD));
1044     return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first();
1045   }
1046 
1047   auto FoundName = MangledDeclNames.find(CanonicalGD);
1048   if (FoundName != MangledDeclNames.end())
1049     return FoundName->second;
1050 
1051   // Keep the first result in the case of a mangling collision.
1052   const auto *ND = cast<NamedDecl>(GD.getDecl());
1053   auto Result =
1054       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1055   return MangledDeclNames[CanonicalGD] = Result.first->first();
1056 }
1057 
1058 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1059                                              const BlockDecl *BD) {
1060   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1061   const Decl *D = GD.getDecl();
1062 
1063   SmallString<256> Buffer;
1064   llvm::raw_svector_ostream Out(Buffer);
1065   if (!D)
1066     MangleCtx.mangleGlobalBlock(BD,
1067       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1068   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1069     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1070   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1071     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1072   else
1073     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1074 
1075   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1076   return Result.first->first();
1077 }
1078 
1079 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1080   return getModule().getNamedValue(Name);
1081 }
1082 
1083 /// AddGlobalCtor - Add a function to the list that will be called before
1084 /// main() runs.
1085 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1086                                   llvm::Constant *AssociatedData) {
1087   // FIXME: Type coercion of void()* types.
1088   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1089 }
1090 
1091 /// AddGlobalDtor - Add a function to the list that will be called
1092 /// when the module is unloaded.
1093 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1094   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1095     DtorsUsingAtExit[Priority].push_back(Dtor);
1096     return;
1097   }
1098 
1099   // FIXME: Type coercion of void()* types.
1100   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1101 }
1102 
1103 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1104   if (Fns.empty()) return;
1105 
1106   // Ctor function type is void()*.
1107   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1108   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1109       TheModule.getDataLayout().getProgramAddressSpace());
1110 
1111   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1112   llvm::StructType *CtorStructTy = llvm::StructType::get(
1113       Int32Ty, CtorPFTy, VoidPtrTy);
1114 
1115   // Construct the constructor and destructor arrays.
1116   ConstantInitBuilder builder(*this);
1117   auto ctors = builder.beginArray(CtorStructTy);
1118   for (const auto &I : Fns) {
1119     auto ctor = ctors.beginStruct(CtorStructTy);
1120     ctor.addInt(Int32Ty, I.Priority);
1121     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1122     if (I.AssociatedData)
1123       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1124     else
1125       ctor.addNullPointer(VoidPtrTy);
1126     ctor.finishAndAddTo(ctors);
1127   }
1128 
1129   auto list =
1130     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1131                                 /*constant*/ false,
1132                                 llvm::GlobalValue::AppendingLinkage);
1133 
1134   // The LTO linker doesn't seem to like it when we set an alignment
1135   // on appending variables.  Take it off as a workaround.
1136   list->setAlignment(0);
1137 
1138   Fns.clear();
1139 }
1140 
1141 llvm::GlobalValue::LinkageTypes
1142 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1143   const auto *D = cast<FunctionDecl>(GD.getDecl());
1144 
1145   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1146 
1147   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1148     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1149 
1150   if (isa<CXXConstructorDecl>(D) &&
1151       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1152       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1153     // Our approach to inheriting constructors is fundamentally different from
1154     // that used by the MS ABI, so keep our inheriting constructor thunks
1155     // internal rather than trying to pick an unambiguous mangling for them.
1156     return llvm::GlobalValue::InternalLinkage;
1157   }
1158 
1159   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1160 }
1161 
1162 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1163   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1164   if (!MDS) return nullptr;
1165 
1166   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1167 }
1168 
1169 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1170                                               const CGFunctionInfo &Info,
1171                                               llvm::Function *F) {
1172   unsigned CallingConv;
1173   llvm::AttributeList PAL;
1174   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1175   F->setAttributes(PAL);
1176   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1177 }
1178 
1179 /// Determines whether the language options require us to model
1180 /// unwind exceptions.  We treat -fexceptions as mandating this
1181 /// except under the fragile ObjC ABI with only ObjC exceptions
1182 /// enabled.  This means, for example, that C with -fexceptions
1183 /// enables this.
1184 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1185   // If exceptions are completely disabled, obviously this is false.
1186   if (!LangOpts.Exceptions) return false;
1187 
1188   // If C++ exceptions are enabled, this is true.
1189   if (LangOpts.CXXExceptions) return true;
1190 
1191   // If ObjC exceptions are enabled, this depends on the ABI.
1192   if (LangOpts.ObjCExceptions) {
1193     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1194   }
1195 
1196   return true;
1197 }
1198 
1199 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1200                                                       const CXXMethodDecl *MD) {
1201   // Check that the type metadata can ever actually be used by a call.
1202   if (!CGM.getCodeGenOpts().LTOUnit ||
1203       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1204     return false;
1205 
1206   // Only functions whose address can be taken with a member function pointer
1207   // need this sort of type metadata.
1208   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1209          !isa<CXXDestructorDecl>(MD);
1210 }
1211 
1212 std::vector<const CXXRecordDecl *>
1213 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1214   llvm::SetVector<const CXXRecordDecl *> MostBases;
1215 
1216   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1217   CollectMostBases = [&](const CXXRecordDecl *RD) {
1218     if (RD->getNumBases() == 0)
1219       MostBases.insert(RD);
1220     for (const CXXBaseSpecifier &B : RD->bases())
1221       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1222   };
1223   CollectMostBases(RD);
1224   return MostBases.takeVector();
1225 }
1226 
1227 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1228                                                            llvm::Function *F) {
1229   llvm::AttrBuilder B;
1230 
1231   if (CodeGenOpts.UnwindTables)
1232     B.addAttribute(llvm::Attribute::UWTable);
1233 
1234   if (!hasUnwindExceptions(LangOpts))
1235     B.addAttribute(llvm::Attribute::NoUnwind);
1236 
1237   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1238     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1239       B.addAttribute(llvm::Attribute::StackProtect);
1240     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1241       B.addAttribute(llvm::Attribute::StackProtectStrong);
1242     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1243       B.addAttribute(llvm::Attribute::StackProtectReq);
1244   }
1245 
1246   if (!D) {
1247     // If we don't have a declaration to control inlining, the function isn't
1248     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1249     // disabled, mark the function as noinline.
1250     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1251         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1252       B.addAttribute(llvm::Attribute::NoInline);
1253 
1254     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1255     return;
1256   }
1257 
1258   // Track whether we need to add the optnone LLVM attribute,
1259   // starting with the default for this optimization level.
1260   bool ShouldAddOptNone =
1261       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1262   // We can't add optnone in the following cases, it won't pass the verifier.
1263   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1264   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1265   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1266 
1267   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1268     B.addAttribute(llvm::Attribute::OptimizeNone);
1269 
1270     // OptimizeNone implies noinline; we should not be inlining such functions.
1271     B.addAttribute(llvm::Attribute::NoInline);
1272     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1273            "OptimizeNone and AlwaysInline on same function!");
1274 
1275     // We still need to handle naked functions even though optnone subsumes
1276     // much of their semantics.
1277     if (D->hasAttr<NakedAttr>())
1278       B.addAttribute(llvm::Attribute::Naked);
1279 
1280     // OptimizeNone wins over OptimizeForSize and MinSize.
1281     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1282     F->removeFnAttr(llvm::Attribute::MinSize);
1283   } else if (D->hasAttr<NakedAttr>()) {
1284     // Naked implies noinline: we should not be inlining such functions.
1285     B.addAttribute(llvm::Attribute::Naked);
1286     B.addAttribute(llvm::Attribute::NoInline);
1287   } else if (D->hasAttr<NoDuplicateAttr>()) {
1288     B.addAttribute(llvm::Attribute::NoDuplicate);
1289   } else if (D->hasAttr<NoInlineAttr>()) {
1290     B.addAttribute(llvm::Attribute::NoInline);
1291   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1292              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1293     // (noinline wins over always_inline, and we can't specify both in IR)
1294     B.addAttribute(llvm::Attribute::AlwaysInline);
1295   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1296     // If we're not inlining, then force everything that isn't always_inline to
1297     // carry an explicit noinline attribute.
1298     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1299       B.addAttribute(llvm::Attribute::NoInline);
1300   } else {
1301     // Otherwise, propagate the inline hint attribute and potentially use its
1302     // absence to mark things as noinline.
1303     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1304       // Search function and template pattern redeclarations for inline.
1305       auto CheckForInline = [](const FunctionDecl *FD) {
1306         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1307           return Redecl->isInlineSpecified();
1308         };
1309         if (any_of(FD->redecls(), CheckRedeclForInline))
1310           return true;
1311         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1312         if (!Pattern)
1313           return false;
1314         return any_of(Pattern->redecls(), CheckRedeclForInline);
1315       };
1316       if (CheckForInline(FD)) {
1317         B.addAttribute(llvm::Attribute::InlineHint);
1318       } else if (CodeGenOpts.getInlining() ==
1319                      CodeGenOptions::OnlyHintInlining &&
1320                  !FD->isInlined() &&
1321                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1322         B.addAttribute(llvm::Attribute::NoInline);
1323       }
1324     }
1325   }
1326 
1327   // Add other optimization related attributes if we are optimizing this
1328   // function.
1329   if (!D->hasAttr<OptimizeNoneAttr>()) {
1330     if (D->hasAttr<ColdAttr>()) {
1331       if (!ShouldAddOptNone)
1332         B.addAttribute(llvm::Attribute::OptimizeForSize);
1333       B.addAttribute(llvm::Attribute::Cold);
1334     }
1335 
1336     if (D->hasAttr<MinSizeAttr>())
1337       B.addAttribute(llvm::Attribute::MinSize);
1338   }
1339 
1340   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1341 
1342   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1343   if (alignment)
1344     F->setAlignment(alignment);
1345 
1346   if (!D->hasAttr<AlignedAttr>())
1347     if (LangOpts.FunctionAlignment)
1348       F->setAlignment(1 << LangOpts.FunctionAlignment);
1349 
1350   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1351   // reserve a bit for differentiating between virtual and non-virtual member
1352   // functions. If the current target's C++ ABI requires this and this is a
1353   // member function, set its alignment accordingly.
1354   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1355     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1356       F->setAlignment(2);
1357   }
1358 
1359   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1360   if (CodeGenOpts.SanitizeCfiCrossDso)
1361     if (auto *FD = dyn_cast<FunctionDecl>(D))
1362       CreateFunctionTypeMetadataForIcall(FD, F);
1363 
1364   // Emit type metadata on member functions for member function pointer checks.
1365   // These are only ever necessary on definitions; we're guaranteed that the
1366   // definition will be present in the LTO unit as a result of LTO visibility.
1367   auto *MD = dyn_cast<CXXMethodDecl>(D);
1368   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1369     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1370       llvm::Metadata *Id =
1371           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1372               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1373       F->addTypeMetadata(0, Id);
1374     }
1375   }
1376 }
1377 
1378 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1379   const Decl *D = GD.getDecl();
1380   if (dyn_cast_or_null<NamedDecl>(D))
1381     setGVProperties(GV, GD);
1382   else
1383     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1384 
1385   if (D && D->hasAttr<UsedAttr>())
1386     addUsedGlobal(GV);
1387 
1388   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1389     const auto *VD = cast<VarDecl>(D);
1390     if (VD->getType().isConstQualified() &&
1391         VD->getStorageDuration() == SD_Static)
1392       addUsedGlobal(GV);
1393   }
1394 }
1395 
1396 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1397                                                 llvm::AttrBuilder &Attrs) {
1398   // Add target-cpu and target-features attributes to functions. If
1399   // we have a decl for the function and it has a target attribute then
1400   // parse that and add it to the feature set.
1401   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1402   std::vector<std::string> Features;
1403   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1404   FD = FD ? FD->getMostRecentDecl() : FD;
1405   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1406   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1407   bool AddedAttr = false;
1408   if (TD || SD) {
1409     llvm::StringMap<bool> FeatureMap;
1410     getFunctionFeatureMap(FeatureMap, FD);
1411 
1412     // Produce the canonical string for this set of features.
1413     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1414       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1415 
1416     // Now add the target-cpu and target-features to the function.
1417     // While we populated the feature map above, we still need to
1418     // get and parse the target attribute so we can get the cpu for
1419     // the function.
1420     if (TD) {
1421       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1422       if (ParsedAttr.Architecture != "" &&
1423           getTarget().isValidCPUName(ParsedAttr.Architecture))
1424         TargetCPU = ParsedAttr.Architecture;
1425     }
1426   } else {
1427     // Otherwise just add the existing target cpu and target features to the
1428     // function.
1429     Features = getTarget().getTargetOpts().Features;
1430   }
1431 
1432   if (TargetCPU != "") {
1433     Attrs.addAttribute("target-cpu", TargetCPU);
1434     AddedAttr = true;
1435   }
1436   if (!Features.empty()) {
1437     llvm::sort(Features);
1438     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1439     AddedAttr = true;
1440   }
1441 
1442   return AddedAttr;
1443 }
1444 
1445 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1446                                           llvm::GlobalObject *GO) {
1447   const Decl *D = GD.getDecl();
1448   SetCommonAttributes(GD, GO);
1449 
1450   if (D) {
1451     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1452       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1453         GV->addAttribute("bss-section", SA->getName());
1454       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1455         GV->addAttribute("data-section", SA->getName());
1456       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1457         GV->addAttribute("rodata-section", SA->getName());
1458     }
1459 
1460     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1461       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1462         if (!D->getAttr<SectionAttr>())
1463           F->addFnAttr("implicit-section-name", SA->getName());
1464 
1465       llvm::AttrBuilder Attrs;
1466       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1467         // We know that GetCPUAndFeaturesAttributes will always have the
1468         // newest set, since it has the newest possible FunctionDecl, so the
1469         // new ones should replace the old.
1470         F->removeFnAttr("target-cpu");
1471         F->removeFnAttr("target-features");
1472         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1473       }
1474     }
1475 
1476     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1477       GO->setSection(CSA->getName());
1478     else if (const auto *SA = D->getAttr<SectionAttr>())
1479       GO->setSection(SA->getName());
1480   }
1481 
1482   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1483 }
1484 
1485 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1486                                                   llvm::Function *F,
1487                                                   const CGFunctionInfo &FI) {
1488   const Decl *D = GD.getDecl();
1489   SetLLVMFunctionAttributes(D, FI, F);
1490   SetLLVMFunctionAttributesForDefinition(D, F);
1491 
1492   F->setLinkage(llvm::Function::InternalLinkage);
1493 
1494   setNonAliasAttributes(GD, F);
1495 }
1496 
1497 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1498   // Set linkage and visibility in case we never see a definition.
1499   LinkageInfo LV = ND->getLinkageAndVisibility();
1500   // Don't set internal linkage on declarations.
1501   // "extern_weak" is overloaded in LLVM; we probably should have
1502   // separate linkage types for this.
1503   if (isExternallyVisible(LV.getLinkage()) &&
1504       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1505     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1506 }
1507 
1508 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1509                                                        llvm::Function *F) {
1510   // Only if we are checking indirect calls.
1511   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1512     return;
1513 
1514   // Non-static class methods are handled via vtable or member function pointer
1515   // checks elsewhere.
1516   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1517     return;
1518 
1519   // Additionally, if building with cross-DSO support...
1520   if (CodeGenOpts.SanitizeCfiCrossDso) {
1521     // Skip available_externally functions. They won't be codegen'ed in the
1522     // current module anyway.
1523     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1524       return;
1525   }
1526 
1527   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1528   F->addTypeMetadata(0, MD);
1529   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1530 
1531   // Emit a hash-based bit set entry for cross-DSO calls.
1532   if (CodeGenOpts.SanitizeCfiCrossDso)
1533     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1534       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1535 }
1536 
1537 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1538                                           bool IsIncompleteFunction,
1539                                           bool IsThunk) {
1540 
1541   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1542     // If this is an intrinsic function, set the function's attributes
1543     // to the intrinsic's attributes.
1544     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1545     return;
1546   }
1547 
1548   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1549 
1550   if (!IsIncompleteFunction) {
1551     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1552     // Setup target-specific attributes.
1553     if (F->isDeclaration())
1554       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1555   }
1556 
1557   // Add the Returned attribute for "this", except for iOS 5 and earlier
1558   // where substantial code, including the libstdc++ dylib, was compiled with
1559   // GCC and does not actually return "this".
1560   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1561       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1562     assert(!F->arg_empty() &&
1563            F->arg_begin()->getType()
1564              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1565            "unexpected this return");
1566     F->addAttribute(1, llvm::Attribute::Returned);
1567   }
1568 
1569   // Only a few attributes are set on declarations; these may later be
1570   // overridden by a definition.
1571 
1572   setLinkageForGV(F, FD);
1573   setGVProperties(F, FD);
1574 
1575   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1576     F->setSection(CSA->getName());
1577   else if (const auto *SA = FD->getAttr<SectionAttr>())
1578      F->setSection(SA->getName());
1579 
1580   if (FD->isReplaceableGlobalAllocationFunction()) {
1581     // A replaceable global allocation function does not act like a builtin by
1582     // default, only if it is invoked by a new-expression or delete-expression.
1583     F->addAttribute(llvm::AttributeList::FunctionIndex,
1584                     llvm::Attribute::NoBuiltin);
1585 
1586     // A sane operator new returns a non-aliasing pointer.
1587     // FIXME: Also add NonNull attribute to the return value
1588     // for the non-nothrow forms?
1589     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1590     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1591         (Kind == OO_New || Kind == OO_Array_New))
1592       F->addAttribute(llvm::AttributeList::ReturnIndex,
1593                       llvm::Attribute::NoAlias);
1594   }
1595 
1596   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1597     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1598   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1599     if (MD->isVirtual())
1600       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1601 
1602   // Don't emit entries for function declarations in the cross-DSO mode. This
1603   // is handled with better precision by the receiving DSO.
1604   if (!CodeGenOpts.SanitizeCfiCrossDso)
1605     CreateFunctionTypeMetadataForIcall(FD, F);
1606 
1607   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1608     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1609 }
1610 
1611 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1612   assert(!GV->isDeclaration() &&
1613          "Only globals with definition can force usage.");
1614   LLVMUsed.emplace_back(GV);
1615 }
1616 
1617 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1618   assert(!GV->isDeclaration() &&
1619          "Only globals with definition can force usage.");
1620   LLVMCompilerUsed.emplace_back(GV);
1621 }
1622 
1623 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1624                      std::vector<llvm::WeakTrackingVH> &List) {
1625   // Don't create llvm.used if there is no need.
1626   if (List.empty())
1627     return;
1628 
1629   // Convert List to what ConstantArray needs.
1630   SmallVector<llvm::Constant*, 8> UsedArray;
1631   UsedArray.resize(List.size());
1632   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1633     UsedArray[i] =
1634         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1635             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1636   }
1637 
1638   if (UsedArray.empty())
1639     return;
1640   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1641 
1642   auto *GV = new llvm::GlobalVariable(
1643       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1644       llvm::ConstantArray::get(ATy, UsedArray), Name);
1645 
1646   GV->setSection("llvm.metadata");
1647 }
1648 
1649 void CodeGenModule::emitLLVMUsed() {
1650   emitUsed(*this, "llvm.used", LLVMUsed);
1651   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1652 }
1653 
1654 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1655   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1656   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1657 }
1658 
1659 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1660   llvm::SmallString<32> Opt;
1661   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1662   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1663   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1664 }
1665 
1666 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1667   auto &C = getLLVMContext();
1668   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1669       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1670 }
1671 
1672 void CodeGenModule::AddDependentLib(StringRef Lib) {
1673   llvm::SmallString<24> Opt;
1674   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1675   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1676   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1677 }
1678 
1679 /// Add link options implied by the given module, including modules
1680 /// it depends on, using a postorder walk.
1681 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1682                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1683                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1684   // Import this module's parent.
1685   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1686     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1687   }
1688 
1689   // Import this module's dependencies.
1690   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1691     if (Visited.insert(Mod->Imports[I - 1]).second)
1692       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1693   }
1694 
1695   // Add linker options to link against the libraries/frameworks
1696   // described by this module.
1697   llvm::LLVMContext &Context = CGM.getLLVMContext();
1698 
1699   // For modules that use export_as for linking, use that module
1700   // name instead.
1701   if (Mod->UseExportAsModuleLinkName)
1702     return;
1703 
1704   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1705     // Link against a framework.  Frameworks are currently Darwin only, so we
1706     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1707     if (Mod->LinkLibraries[I-1].IsFramework) {
1708       llvm::Metadata *Args[2] = {
1709           llvm::MDString::get(Context, "-framework"),
1710           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1711 
1712       Metadata.push_back(llvm::MDNode::get(Context, Args));
1713       continue;
1714     }
1715 
1716     // Link against a library.
1717     llvm::SmallString<24> Opt;
1718     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1719       Mod->LinkLibraries[I-1].Library, Opt);
1720     auto *OptString = llvm::MDString::get(Context, Opt);
1721     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1722   }
1723 }
1724 
1725 void CodeGenModule::EmitModuleLinkOptions() {
1726   // Collect the set of all of the modules we want to visit to emit link
1727   // options, which is essentially the imported modules and all of their
1728   // non-explicit child modules.
1729   llvm::SetVector<clang::Module *> LinkModules;
1730   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1731   SmallVector<clang::Module *, 16> Stack;
1732 
1733   // Seed the stack with imported modules.
1734   for (Module *M : ImportedModules) {
1735     // Do not add any link flags when an implementation TU of a module imports
1736     // a header of that same module.
1737     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1738         !getLangOpts().isCompilingModule())
1739       continue;
1740     if (Visited.insert(M).second)
1741       Stack.push_back(M);
1742   }
1743 
1744   // Find all of the modules to import, making a little effort to prune
1745   // non-leaf modules.
1746   while (!Stack.empty()) {
1747     clang::Module *Mod = Stack.pop_back_val();
1748 
1749     bool AnyChildren = false;
1750 
1751     // Visit the submodules of this module.
1752     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1753                                         SubEnd = Mod->submodule_end();
1754          Sub != SubEnd; ++Sub) {
1755       // Skip explicit children; they need to be explicitly imported to be
1756       // linked against.
1757       if ((*Sub)->IsExplicit)
1758         continue;
1759 
1760       if (Visited.insert(*Sub).second) {
1761         Stack.push_back(*Sub);
1762         AnyChildren = true;
1763       }
1764     }
1765 
1766     // We didn't find any children, so add this module to the list of
1767     // modules to link against.
1768     if (!AnyChildren) {
1769       LinkModules.insert(Mod);
1770     }
1771   }
1772 
1773   // Add link options for all of the imported modules in reverse topological
1774   // order.  We don't do anything to try to order import link flags with respect
1775   // to linker options inserted by things like #pragma comment().
1776   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1777   Visited.clear();
1778   for (Module *M : LinkModules)
1779     if (Visited.insert(M).second)
1780       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1781   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1782   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1783 
1784   // Add the linker options metadata flag.
1785   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1786   for (auto *MD : LinkerOptionsMetadata)
1787     NMD->addOperand(MD);
1788 }
1789 
1790 void CodeGenModule::EmitDeferred() {
1791   // Emit deferred declare target declarations.
1792   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1793     getOpenMPRuntime().emitDeferredTargetDecls();
1794 
1795   // Emit code for any potentially referenced deferred decls.  Since a
1796   // previously unused static decl may become used during the generation of code
1797   // for a static function, iterate until no changes are made.
1798 
1799   if (!DeferredVTables.empty()) {
1800     EmitDeferredVTables();
1801 
1802     // Emitting a vtable doesn't directly cause more vtables to
1803     // become deferred, although it can cause functions to be
1804     // emitted that then need those vtables.
1805     assert(DeferredVTables.empty());
1806   }
1807 
1808   // Stop if we're out of both deferred vtables and deferred declarations.
1809   if (DeferredDeclsToEmit.empty())
1810     return;
1811 
1812   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1813   // work, it will not interfere with this.
1814   std::vector<GlobalDecl> CurDeclsToEmit;
1815   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1816 
1817   for (GlobalDecl &D : CurDeclsToEmit) {
1818     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1819     // to get GlobalValue with exactly the type we need, not something that
1820     // might had been created for another decl with the same mangled name but
1821     // different type.
1822     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1823         GetAddrOfGlobal(D, ForDefinition));
1824 
1825     // In case of different address spaces, we may still get a cast, even with
1826     // IsForDefinition equal to true. Query mangled names table to get
1827     // GlobalValue.
1828     if (!GV)
1829       GV = GetGlobalValue(getMangledName(D));
1830 
1831     // Make sure GetGlobalValue returned non-null.
1832     assert(GV);
1833 
1834     // Check to see if we've already emitted this.  This is necessary
1835     // for a couple of reasons: first, decls can end up in the
1836     // deferred-decls queue multiple times, and second, decls can end
1837     // up with definitions in unusual ways (e.g. by an extern inline
1838     // function acquiring a strong function redefinition).  Just
1839     // ignore these cases.
1840     if (!GV->isDeclaration())
1841       continue;
1842 
1843     // Otherwise, emit the definition and move on to the next one.
1844     EmitGlobalDefinition(D, GV);
1845 
1846     // If we found out that we need to emit more decls, do that recursively.
1847     // This has the advantage that the decls are emitted in a DFS and related
1848     // ones are close together, which is convenient for testing.
1849     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1850       EmitDeferred();
1851       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1852     }
1853   }
1854 }
1855 
1856 void CodeGenModule::EmitVTablesOpportunistically() {
1857   // Try to emit external vtables as available_externally if they have emitted
1858   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1859   // is not allowed to create new references to things that need to be emitted
1860   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1861 
1862   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1863          && "Only emit opportunistic vtables with optimizations");
1864 
1865   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1866     assert(getVTables().isVTableExternal(RD) &&
1867            "This queue should only contain external vtables");
1868     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1869       VTables.GenerateClassData(RD);
1870   }
1871   OpportunisticVTables.clear();
1872 }
1873 
1874 void CodeGenModule::EmitGlobalAnnotations() {
1875   if (Annotations.empty())
1876     return;
1877 
1878   // Create a new global variable for the ConstantStruct in the Module.
1879   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1880     Annotations[0]->getType(), Annotations.size()), Annotations);
1881   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1882                                       llvm::GlobalValue::AppendingLinkage,
1883                                       Array, "llvm.global.annotations");
1884   gv->setSection(AnnotationSection);
1885 }
1886 
1887 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1888   llvm::Constant *&AStr = AnnotationStrings[Str];
1889   if (AStr)
1890     return AStr;
1891 
1892   // Not found yet, create a new global.
1893   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1894   auto *gv =
1895       new llvm::GlobalVariable(getModule(), s->getType(), true,
1896                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1897   gv->setSection(AnnotationSection);
1898   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1899   AStr = gv;
1900   return gv;
1901 }
1902 
1903 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1904   SourceManager &SM = getContext().getSourceManager();
1905   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1906   if (PLoc.isValid())
1907     return EmitAnnotationString(PLoc.getFilename());
1908   return EmitAnnotationString(SM.getBufferName(Loc));
1909 }
1910 
1911 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1912   SourceManager &SM = getContext().getSourceManager();
1913   PresumedLoc PLoc = SM.getPresumedLoc(L);
1914   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1915     SM.getExpansionLineNumber(L);
1916   return llvm::ConstantInt::get(Int32Ty, LineNo);
1917 }
1918 
1919 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1920                                                 const AnnotateAttr *AA,
1921                                                 SourceLocation L) {
1922   // Get the globals for file name, annotation, and the line number.
1923   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1924                  *UnitGV = EmitAnnotationUnit(L),
1925                  *LineNoCst = EmitAnnotationLineNo(L);
1926 
1927   // Create the ConstantStruct for the global annotation.
1928   llvm::Constant *Fields[4] = {
1929     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1930     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1931     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1932     LineNoCst
1933   };
1934   return llvm::ConstantStruct::getAnon(Fields);
1935 }
1936 
1937 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1938                                          llvm::GlobalValue *GV) {
1939   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1940   // Get the struct elements for these annotations.
1941   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1942     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1943 }
1944 
1945 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1946                                            llvm::Function *Fn,
1947                                            SourceLocation Loc) const {
1948   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1949   // Blacklist by function name.
1950   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1951     return true;
1952   // Blacklist by location.
1953   if (Loc.isValid())
1954     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1955   // If location is unknown, this may be a compiler-generated function. Assume
1956   // it's located in the main file.
1957   auto &SM = Context.getSourceManager();
1958   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1959     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1960   }
1961   return false;
1962 }
1963 
1964 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1965                                            SourceLocation Loc, QualType Ty,
1966                                            StringRef Category) const {
1967   // For now globals can be blacklisted only in ASan and KASan.
1968   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1969       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1970        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1971   if (!EnabledAsanMask)
1972     return false;
1973   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1974   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1975     return true;
1976   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1977     return true;
1978   // Check global type.
1979   if (!Ty.isNull()) {
1980     // Drill down the array types: if global variable of a fixed type is
1981     // blacklisted, we also don't instrument arrays of them.
1982     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1983       Ty = AT->getElementType();
1984     Ty = Ty.getCanonicalType().getUnqualifiedType();
1985     // We allow to blacklist only record types (classes, structs etc.)
1986     if (Ty->isRecordType()) {
1987       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1988       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1989         return true;
1990     }
1991   }
1992   return false;
1993 }
1994 
1995 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1996                                    StringRef Category) const {
1997   const auto &XRayFilter = getContext().getXRayFilter();
1998   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1999   auto Attr = ImbueAttr::NONE;
2000   if (Loc.isValid())
2001     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2002   if (Attr == ImbueAttr::NONE)
2003     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2004   switch (Attr) {
2005   case ImbueAttr::NONE:
2006     return false;
2007   case ImbueAttr::ALWAYS:
2008     Fn->addFnAttr("function-instrument", "xray-always");
2009     break;
2010   case ImbueAttr::ALWAYS_ARG1:
2011     Fn->addFnAttr("function-instrument", "xray-always");
2012     Fn->addFnAttr("xray-log-args", "1");
2013     break;
2014   case ImbueAttr::NEVER:
2015     Fn->addFnAttr("function-instrument", "xray-never");
2016     break;
2017   }
2018   return true;
2019 }
2020 
2021 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2022   // Never defer when EmitAllDecls is specified.
2023   if (LangOpts.EmitAllDecls)
2024     return true;
2025 
2026   if (CodeGenOpts.KeepStaticConsts) {
2027     const auto *VD = dyn_cast<VarDecl>(Global);
2028     if (VD && VD->getType().isConstQualified() &&
2029         VD->getStorageDuration() == SD_Static)
2030       return true;
2031   }
2032 
2033   return getContext().DeclMustBeEmitted(Global);
2034 }
2035 
2036 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2037   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2038     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2039       // Implicit template instantiations may change linkage if they are later
2040       // explicitly instantiated, so they should not be emitted eagerly.
2041       return false;
2042   if (const auto *VD = dyn_cast<VarDecl>(Global))
2043     if (Context.getInlineVariableDefinitionKind(VD) ==
2044         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2045       // A definition of an inline constexpr static data member may change
2046       // linkage later if it's redeclared outside the class.
2047       return false;
2048   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2049   // codegen for global variables, because they may be marked as threadprivate.
2050   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2051       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2052       !isTypeConstant(Global->getType(), false) &&
2053       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2054     return false;
2055 
2056   return true;
2057 }
2058 
2059 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2060     const CXXUuidofExpr* E) {
2061   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2062   // well-formed.
2063   StringRef Uuid = E->getUuidStr();
2064   std::string Name = "_GUID_" + Uuid.lower();
2065   std::replace(Name.begin(), Name.end(), '-', '_');
2066 
2067   // The UUID descriptor should be pointer aligned.
2068   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2069 
2070   // Look for an existing global.
2071   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2072     return ConstantAddress(GV, Alignment);
2073 
2074   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2075   assert(Init && "failed to initialize as constant");
2076 
2077   auto *GV = new llvm::GlobalVariable(
2078       getModule(), Init->getType(),
2079       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2080   if (supportsCOMDAT())
2081     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2082   setDSOLocal(GV);
2083   return ConstantAddress(GV, Alignment);
2084 }
2085 
2086 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2087   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2088   assert(AA && "No alias?");
2089 
2090   CharUnits Alignment = getContext().getDeclAlign(VD);
2091   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2092 
2093   // See if there is already something with the target's name in the module.
2094   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2095   if (Entry) {
2096     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2097     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2098     return ConstantAddress(Ptr, Alignment);
2099   }
2100 
2101   llvm::Constant *Aliasee;
2102   if (isa<llvm::FunctionType>(DeclTy))
2103     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2104                                       GlobalDecl(cast<FunctionDecl>(VD)),
2105                                       /*ForVTable=*/false);
2106   else
2107     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2108                                     llvm::PointerType::getUnqual(DeclTy),
2109                                     nullptr);
2110 
2111   auto *F = cast<llvm::GlobalValue>(Aliasee);
2112   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2113   WeakRefReferences.insert(F);
2114 
2115   return ConstantAddress(Aliasee, Alignment);
2116 }
2117 
2118 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2119   const auto *Global = cast<ValueDecl>(GD.getDecl());
2120 
2121   // Weak references don't produce any output by themselves.
2122   if (Global->hasAttr<WeakRefAttr>())
2123     return;
2124 
2125   // If this is an alias definition (which otherwise looks like a declaration)
2126   // emit it now.
2127   if (Global->hasAttr<AliasAttr>())
2128     return EmitAliasDefinition(GD);
2129 
2130   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2131   if (Global->hasAttr<IFuncAttr>())
2132     return emitIFuncDefinition(GD);
2133 
2134   // If this is a cpu_dispatch multiversion function, emit the resolver.
2135   if (Global->hasAttr<CPUDispatchAttr>())
2136     return emitCPUDispatchDefinition(GD);
2137 
2138   // If this is CUDA, be selective about which declarations we emit.
2139   if (LangOpts.CUDA) {
2140     if (LangOpts.CUDAIsDevice) {
2141       if (!Global->hasAttr<CUDADeviceAttr>() &&
2142           !Global->hasAttr<CUDAGlobalAttr>() &&
2143           !Global->hasAttr<CUDAConstantAttr>() &&
2144           !Global->hasAttr<CUDASharedAttr>())
2145         return;
2146     } else {
2147       // We need to emit host-side 'shadows' for all global
2148       // device-side variables because the CUDA runtime needs their
2149       // size and host-side address in order to provide access to
2150       // their device-side incarnations.
2151 
2152       // So device-only functions are the only things we skip.
2153       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2154           Global->hasAttr<CUDADeviceAttr>())
2155         return;
2156 
2157       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2158              "Expected Variable or Function");
2159     }
2160   }
2161 
2162   if (LangOpts.OpenMP) {
2163     // If this is OpenMP device, check if it is legal to emit this global
2164     // normally.
2165     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2166       return;
2167     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2168       if (MustBeEmitted(Global))
2169         EmitOMPDeclareReduction(DRD);
2170       return;
2171     }
2172   }
2173 
2174   // Ignore declarations, they will be emitted on their first use.
2175   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2176     // Forward declarations are emitted lazily on first use.
2177     if (!FD->doesThisDeclarationHaveABody()) {
2178       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2179         return;
2180 
2181       StringRef MangledName = getMangledName(GD);
2182 
2183       // Compute the function info and LLVM type.
2184       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2185       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2186 
2187       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2188                               /*DontDefer=*/false);
2189       return;
2190     }
2191   } else {
2192     const auto *VD = cast<VarDecl>(Global);
2193     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2194     // We need to emit device-side global CUDA variables even if a
2195     // variable does not have a definition -- we still need to define
2196     // host-side shadow for it.
2197     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2198                            !VD->hasDefinition() &&
2199                            (VD->hasAttr<CUDAConstantAttr>() ||
2200                             VD->hasAttr<CUDADeviceAttr>());
2201     if (!MustEmitForCuda &&
2202         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2203         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2204       if (LangOpts.OpenMP) {
2205         // Emit declaration of the must-be-emitted declare target variable.
2206         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2207                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2208           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2209             (void)GetAddrOfGlobalVar(VD);
2210           } else {
2211             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2212                    "link claue expected.");
2213             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2214           }
2215           return;
2216         }
2217       }
2218       // If this declaration may have caused an inline variable definition to
2219       // change linkage, make sure that it's emitted.
2220       if (Context.getInlineVariableDefinitionKind(VD) ==
2221           ASTContext::InlineVariableDefinitionKind::Strong)
2222         GetAddrOfGlobalVar(VD);
2223       return;
2224     }
2225   }
2226 
2227   // Defer code generation to first use when possible, e.g. if this is an inline
2228   // function. If the global must always be emitted, do it eagerly if possible
2229   // to benefit from cache locality.
2230   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2231     // Emit the definition if it can't be deferred.
2232     EmitGlobalDefinition(GD);
2233     return;
2234   }
2235 
2236   // If we're deferring emission of a C++ variable with an
2237   // initializer, remember the order in which it appeared in the file.
2238   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2239       cast<VarDecl>(Global)->hasInit()) {
2240     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2241     CXXGlobalInits.push_back(nullptr);
2242   }
2243 
2244   StringRef MangledName = getMangledName(GD);
2245   if (GetGlobalValue(MangledName) != nullptr) {
2246     // The value has already been used and should therefore be emitted.
2247     addDeferredDeclToEmit(GD);
2248   } else if (MustBeEmitted(Global)) {
2249     // The value must be emitted, but cannot be emitted eagerly.
2250     assert(!MayBeEmittedEagerly(Global));
2251     addDeferredDeclToEmit(GD);
2252   } else {
2253     // Otherwise, remember that we saw a deferred decl with this name.  The
2254     // first use of the mangled name will cause it to move into
2255     // DeferredDeclsToEmit.
2256     DeferredDecls[MangledName] = GD;
2257   }
2258 }
2259 
2260 // Check if T is a class type with a destructor that's not dllimport.
2261 static bool HasNonDllImportDtor(QualType T) {
2262   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2263     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2264       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2265         return true;
2266 
2267   return false;
2268 }
2269 
2270 namespace {
2271   struct FunctionIsDirectlyRecursive :
2272     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2273     const StringRef Name;
2274     const Builtin::Context &BI;
2275     bool Result;
2276     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2277       Name(N), BI(C), Result(false) {
2278     }
2279     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2280 
2281     bool TraverseCallExpr(CallExpr *E) {
2282       const FunctionDecl *FD = E->getDirectCallee();
2283       if (!FD)
2284         return true;
2285       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2286       if (Attr && Name == Attr->getLabel()) {
2287         Result = true;
2288         return false;
2289       }
2290       unsigned BuiltinID = FD->getBuiltinID();
2291       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2292         return true;
2293       StringRef BuiltinName = BI.getName(BuiltinID);
2294       if (BuiltinName.startswith("__builtin_") &&
2295           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2296         Result = true;
2297         return false;
2298       }
2299       return true;
2300     }
2301   };
2302 
2303   // Make sure we're not referencing non-imported vars or functions.
2304   struct DLLImportFunctionVisitor
2305       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2306     bool SafeToInline = true;
2307 
2308     bool shouldVisitImplicitCode() const { return true; }
2309 
2310     bool VisitVarDecl(VarDecl *VD) {
2311       if (VD->getTLSKind()) {
2312         // A thread-local variable cannot be imported.
2313         SafeToInline = false;
2314         return SafeToInline;
2315       }
2316 
2317       // A variable definition might imply a destructor call.
2318       if (VD->isThisDeclarationADefinition())
2319         SafeToInline = !HasNonDllImportDtor(VD->getType());
2320 
2321       return SafeToInline;
2322     }
2323 
2324     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2325       if (const auto *D = E->getTemporary()->getDestructor())
2326         SafeToInline = D->hasAttr<DLLImportAttr>();
2327       return SafeToInline;
2328     }
2329 
2330     bool VisitDeclRefExpr(DeclRefExpr *E) {
2331       ValueDecl *VD = E->getDecl();
2332       if (isa<FunctionDecl>(VD))
2333         SafeToInline = VD->hasAttr<DLLImportAttr>();
2334       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2335         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2336       return SafeToInline;
2337     }
2338 
2339     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2340       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2341       return SafeToInline;
2342     }
2343 
2344     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2345       CXXMethodDecl *M = E->getMethodDecl();
2346       if (!M) {
2347         // Call through a pointer to member function. This is safe to inline.
2348         SafeToInline = true;
2349       } else {
2350         SafeToInline = M->hasAttr<DLLImportAttr>();
2351       }
2352       return SafeToInline;
2353     }
2354 
2355     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2356       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2357       return SafeToInline;
2358     }
2359 
2360     bool VisitCXXNewExpr(CXXNewExpr *E) {
2361       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2362       return SafeToInline;
2363     }
2364   };
2365 }
2366 
2367 // isTriviallyRecursive - Check if this function calls another
2368 // decl that, because of the asm attribute or the other decl being a builtin,
2369 // ends up pointing to itself.
2370 bool
2371 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2372   StringRef Name;
2373   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2374     // asm labels are a special kind of mangling we have to support.
2375     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2376     if (!Attr)
2377       return false;
2378     Name = Attr->getLabel();
2379   } else {
2380     Name = FD->getName();
2381   }
2382 
2383   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2384   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2385   return Walker.Result;
2386 }
2387 
2388 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2389   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2390     return true;
2391   const auto *F = cast<FunctionDecl>(GD.getDecl());
2392   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2393     return false;
2394 
2395   if (F->hasAttr<DLLImportAttr>()) {
2396     // Check whether it would be safe to inline this dllimport function.
2397     DLLImportFunctionVisitor Visitor;
2398     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2399     if (!Visitor.SafeToInline)
2400       return false;
2401 
2402     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2403       // Implicit destructor invocations aren't captured in the AST, so the
2404       // check above can't see them. Check for them manually here.
2405       for (const Decl *Member : Dtor->getParent()->decls())
2406         if (isa<FieldDecl>(Member))
2407           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2408             return false;
2409       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2410         if (HasNonDllImportDtor(B.getType()))
2411           return false;
2412     }
2413   }
2414 
2415   // PR9614. Avoid cases where the source code is lying to us. An available
2416   // externally function should have an equivalent function somewhere else,
2417   // but a function that calls itself is clearly not equivalent to the real
2418   // implementation.
2419   // This happens in glibc's btowc and in some configure checks.
2420   return !isTriviallyRecursive(F);
2421 }
2422 
2423 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2424   return CodeGenOpts.OptimizationLevel > 0;
2425 }
2426 
2427 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2428   const auto *D = cast<ValueDecl>(GD.getDecl());
2429 
2430   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2431                                  Context.getSourceManager(),
2432                                  "Generating code for declaration");
2433 
2434   if (isa<FunctionDecl>(D)) {
2435     // At -O0, don't generate IR for functions with available_externally
2436     // linkage.
2437     if (!shouldEmitFunction(GD))
2438       return;
2439 
2440     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2441       // Make sure to emit the definition(s) before we emit the thunks.
2442       // This is necessary for the generation of certain thunks.
2443       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2444         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2445       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2446         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2447       else
2448         EmitGlobalFunctionDefinition(GD, GV);
2449 
2450       if (Method->isVirtual())
2451         getVTables().EmitThunks(GD);
2452 
2453       return;
2454     }
2455 
2456     return EmitGlobalFunctionDefinition(GD, GV);
2457   }
2458 
2459   if (const auto *VD = dyn_cast<VarDecl>(D))
2460     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2461 
2462   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2463 }
2464 
2465 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2466                                                       llvm::Function *NewFn);
2467 
2468 static unsigned
2469 TargetMVPriority(const TargetInfo &TI,
2470                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2471   unsigned Priority = 0;
2472   for (StringRef Feat : RO.Conditions.Features)
2473     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2474 
2475   if (!RO.Conditions.Architecture.empty())
2476     Priority = std::max(
2477         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2478   return Priority;
2479 }
2480 
2481 void CodeGenModule::emitMultiVersionFunctions() {
2482   for (GlobalDecl GD : MultiVersionFuncs) {
2483     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2484     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2485     getContext().forEachMultiversionedFunctionVersion(
2486         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2487           GlobalDecl CurGD{
2488               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2489           StringRef MangledName = getMangledName(CurGD);
2490           llvm::Constant *Func = GetGlobalValue(MangledName);
2491           if (!Func) {
2492             if (CurFD->isDefined()) {
2493               EmitGlobalFunctionDefinition(CurGD, nullptr);
2494               Func = GetGlobalValue(MangledName);
2495             } else {
2496               const CGFunctionInfo &FI =
2497                   getTypes().arrangeGlobalDeclaration(GD);
2498               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2499               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2500                                        /*DontDefer=*/false, ForDefinition);
2501             }
2502             assert(Func && "This should have just been created");
2503           }
2504 
2505           const auto *TA = CurFD->getAttr<TargetAttr>();
2506           llvm::SmallVector<StringRef, 8> Feats;
2507           TA->getAddedFeatures(Feats);
2508 
2509           Options.emplace_back(cast<llvm::Function>(Func),
2510                                TA->getArchitecture(), Feats);
2511         });
2512 
2513     llvm::Function *ResolverFunc;
2514     const TargetInfo &TI = getTarget();
2515 
2516     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2517       ResolverFunc = cast<llvm::Function>(
2518           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2519     else
2520       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2521 
2522     if (supportsCOMDAT())
2523       ResolverFunc->setComdat(
2524           getModule().getOrInsertComdat(ResolverFunc->getName()));
2525 
2526     std::stable_sort(
2527         Options.begin(), Options.end(),
2528         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2529               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2530           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2531         });
2532     CodeGenFunction CGF(*this);
2533     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2534   }
2535 }
2536 
2537 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2538   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2539   assert(FD && "Not a FunctionDecl?");
2540   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2541   assert(DD && "Not a cpu_dispatch Function?");
2542   QualType CanonTy = Context.getCanonicalType(FD->getType());
2543   llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD);
2544 
2545   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2546     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2547     DeclTy = getTypes().GetFunctionType(FInfo);
2548   }
2549 
2550   StringRef ResolverName = getMangledName(GD);
2551 
2552   llvm::Type *ResolverType;
2553   GlobalDecl ResolverGD;
2554   if (getTarget().supportsIFunc())
2555     ResolverType = llvm::FunctionType::get(
2556         llvm::PointerType::get(DeclTy,
2557                                Context.getTargetAddressSpace(FD->getType())),
2558         false);
2559   else {
2560     ResolverType = DeclTy;
2561     ResolverGD = GD;
2562   }
2563 
2564   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2565       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2566 
2567   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2568   const TargetInfo &Target = getTarget();
2569   for (const IdentifierInfo *II : DD->cpus()) {
2570     // Get the name of the target function so we can look it up/create it.
2571     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2572                               getCPUSpecificMangling(*this, II->getName());
2573     llvm::Constant *Func = GetOrCreateLLVMFunction(
2574         MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
2575         /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2576     llvm::SmallVector<StringRef, 32> Features;
2577     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2578     llvm::transform(Features, Features.begin(),
2579                     [](StringRef Str) { return Str.substr(1); });
2580     Features.erase(std::remove_if(
2581         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2582           return !Target.validateCpuSupports(Feat);
2583         }), Features.end());
2584     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2585   }
2586 
2587   llvm::sort(
2588       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2589                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2590         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2591                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2592       });
2593 
2594   // If the list contains multiple 'default' versions, such as when it contains
2595   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2596   // always run on at least a 'pentium'). We do this by deleting the 'least
2597   // advanced' (read, lowest mangling letter).
2598   while (Options.size() > 1 &&
2599          CodeGenFunction::GetX86CpuSupportsMask(
2600              (Options.end() - 2)->Conditions.Features) == 0) {
2601     StringRef LHSName = (Options.end() - 2)->Function->getName();
2602     StringRef RHSName = (Options.end() - 1)->Function->getName();
2603     if (LHSName.compare(RHSName) < 0)
2604       Options.erase(Options.end() - 2);
2605     else
2606       Options.erase(Options.end() - 1);
2607   }
2608 
2609   CodeGenFunction CGF(*this);
2610   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2611 }
2612 
2613 /// If a dispatcher for the specified mangled name is not in the module, create
2614 /// and return an llvm Function with the specified type.
2615 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2616     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2617   std::string MangledName =
2618       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2619 
2620   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2621   // a separate resolver).
2622   std::string ResolverName = MangledName;
2623   if (getTarget().supportsIFunc())
2624     ResolverName += ".ifunc";
2625   else if (FD->isTargetMultiVersion())
2626     ResolverName += ".resolver";
2627 
2628   // If this already exists, just return that one.
2629   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2630     return ResolverGV;
2631 
2632   // Since this is the first time we've created this IFunc, make sure
2633   // that we put this multiversioned function into the list to be
2634   // replaced later if necessary (target multiversioning only).
2635   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2636     MultiVersionFuncs.push_back(GD);
2637 
2638   if (getTarget().supportsIFunc()) {
2639     llvm::Type *ResolverType = llvm::FunctionType::get(
2640         llvm::PointerType::get(
2641             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2642         false);
2643     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2644         MangledName + ".resolver", ResolverType, GlobalDecl{},
2645         /*ForVTable=*/false);
2646     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2647         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2648     GIF->setName(ResolverName);
2649     SetCommonAttributes(FD, GIF);
2650 
2651     return GIF;
2652   }
2653 
2654   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2655       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2656   assert(isa<llvm::GlobalValue>(Resolver) &&
2657          "Resolver should be created for the first time");
2658   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2659   return Resolver;
2660 }
2661 
2662 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2663 /// module, create and return an llvm Function with the specified type. If there
2664 /// is something in the module with the specified name, return it potentially
2665 /// bitcasted to the right type.
2666 ///
2667 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2668 /// to set the attributes on the function when it is first created.
2669 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2670     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2671     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2672     ForDefinition_t IsForDefinition) {
2673   const Decl *D = GD.getDecl();
2674 
2675   // Any attempts to use a MultiVersion function should result in retrieving
2676   // the iFunc instead. Name Mangling will handle the rest of the changes.
2677   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2678     // For the device mark the function as one that should be emitted.
2679     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2680         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2681         !DontDefer && !IsForDefinition) {
2682       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2683         GlobalDecl GDDef;
2684         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2685           GDDef = GlobalDecl(CD, GD.getCtorType());
2686         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2687           GDDef = GlobalDecl(DD, GD.getDtorType());
2688         else
2689           GDDef = GlobalDecl(FDDef);
2690         EmitGlobal(GDDef);
2691       }
2692     }
2693 
2694     if (FD->isMultiVersion()) {
2695       const auto *TA = FD->getAttr<TargetAttr>();
2696       if (TA && TA->isDefaultVersion())
2697         UpdateMultiVersionNames(GD, FD);
2698       if (!IsForDefinition)
2699         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2700     }
2701   }
2702 
2703   // Lookup the entry, lazily creating it if necessary.
2704   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2705   if (Entry) {
2706     if (WeakRefReferences.erase(Entry)) {
2707       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2708       if (FD && !FD->hasAttr<WeakAttr>())
2709         Entry->setLinkage(llvm::Function::ExternalLinkage);
2710     }
2711 
2712     // Handle dropped DLL attributes.
2713     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2714       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2715       setDSOLocal(Entry);
2716     }
2717 
2718     // If there are two attempts to define the same mangled name, issue an
2719     // error.
2720     if (IsForDefinition && !Entry->isDeclaration()) {
2721       GlobalDecl OtherGD;
2722       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2723       // to make sure that we issue an error only once.
2724       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2725           (GD.getCanonicalDecl().getDecl() !=
2726            OtherGD.getCanonicalDecl().getDecl()) &&
2727           DiagnosedConflictingDefinitions.insert(GD).second) {
2728         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2729             << MangledName;
2730         getDiags().Report(OtherGD.getDecl()->getLocation(),
2731                           diag::note_previous_definition);
2732       }
2733     }
2734 
2735     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2736         (Entry->getType()->getElementType() == Ty)) {
2737       return Entry;
2738     }
2739 
2740     // Make sure the result is of the correct type.
2741     // (If function is requested for a definition, we always need to create a new
2742     // function, not just return a bitcast.)
2743     if (!IsForDefinition)
2744       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2745   }
2746 
2747   // This function doesn't have a complete type (for example, the return
2748   // type is an incomplete struct). Use a fake type instead, and make
2749   // sure not to try to set attributes.
2750   bool IsIncompleteFunction = false;
2751 
2752   llvm::FunctionType *FTy;
2753   if (isa<llvm::FunctionType>(Ty)) {
2754     FTy = cast<llvm::FunctionType>(Ty);
2755   } else {
2756     FTy = llvm::FunctionType::get(VoidTy, false);
2757     IsIncompleteFunction = true;
2758   }
2759 
2760   llvm::Function *F =
2761       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2762                              Entry ? StringRef() : MangledName, &getModule());
2763 
2764   // If we already created a function with the same mangled name (but different
2765   // type) before, take its name and add it to the list of functions to be
2766   // replaced with F at the end of CodeGen.
2767   //
2768   // This happens if there is a prototype for a function (e.g. "int f()") and
2769   // then a definition of a different type (e.g. "int f(int x)").
2770   if (Entry) {
2771     F->takeName(Entry);
2772 
2773     // This might be an implementation of a function without a prototype, in
2774     // which case, try to do special replacement of calls which match the new
2775     // prototype.  The really key thing here is that we also potentially drop
2776     // arguments from the call site so as to make a direct call, which makes the
2777     // inliner happier and suppresses a number of optimizer warnings (!) about
2778     // dropping arguments.
2779     if (!Entry->use_empty()) {
2780       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2781       Entry->removeDeadConstantUsers();
2782     }
2783 
2784     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2785         F, Entry->getType()->getElementType()->getPointerTo());
2786     addGlobalValReplacement(Entry, BC);
2787   }
2788 
2789   assert(F->getName() == MangledName && "name was uniqued!");
2790   if (D)
2791     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2792   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2793     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2794     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2795   }
2796 
2797   if (!DontDefer) {
2798     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2799     // each other bottoming out with the base dtor.  Therefore we emit non-base
2800     // dtors on usage, even if there is no dtor definition in the TU.
2801     if (D && isa<CXXDestructorDecl>(D) &&
2802         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2803                                            GD.getDtorType()))
2804       addDeferredDeclToEmit(GD);
2805 
2806     // This is the first use or definition of a mangled name.  If there is a
2807     // deferred decl with this name, remember that we need to emit it at the end
2808     // of the file.
2809     auto DDI = DeferredDecls.find(MangledName);
2810     if (DDI != DeferredDecls.end()) {
2811       // Move the potentially referenced deferred decl to the
2812       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2813       // don't need it anymore).
2814       addDeferredDeclToEmit(DDI->second);
2815       DeferredDecls.erase(DDI);
2816 
2817       // Otherwise, there are cases we have to worry about where we're
2818       // using a declaration for which we must emit a definition but where
2819       // we might not find a top-level definition:
2820       //   - member functions defined inline in their classes
2821       //   - friend functions defined inline in some class
2822       //   - special member functions with implicit definitions
2823       // If we ever change our AST traversal to walk into class methods,
2824       // this will be unnecessary.
2825       //
2826       // We also don't emit a definition for a function if it's going to be an
2827       // entry in a vtable, unless it's already marked as used.
2828     } else if (getLangOpts().CPlusPlus && D) {
2829       // Look for a declaration that's lexically in a record.
2830       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2831            FD = FD->getPreviousDecl()) {
2832         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2833           if (FD->doesThisDeclarationHaveABody()) {
2834             addDeferredDeclToEmit(GD.getWithDecl(FD));
2835             break;
2836           }
2837         }
2838       }
2839     }
2840   }
2841 
2842   // Make sure the result is of the requested type.
2843   if (!IsIncompleteFunction) {
2844     assert(F->getType()->getElementType() == Ty);
2845     return F;
2846   }
2847 
2848   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2849   return llvm::ConstantExpr::getBitCast(F, PTy);
2850 }
2851 
2852 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2853 /// non-null, then this function will use the specified type if it has to
2854 /// create it (this occurs when we see a definition of the function).
2855 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2856                                                  llvm::Type *Ty,
2857                                                  bool ForVTable,
2858                                                  bool DontDefer,
2859                                               ForDefinition_t IsForDefinition) {
2860   // If there was no specific requested type, just convert it now.
2861   if (!Ty) {
2862     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2863     auto CanonTy = Context.getCanonicalType(FD->getType());
2864     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2865   }
2866 
2867   // Devirtualized destructor calls may come through here instead of via
2868   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2869   // of the complete destructor when necessary.
2870   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2871     if (getTarget().getCXXABI().isMicrosoft() &&
2872         GD.getDtorType() == Dtor_Complete &&
2873         DD->getParent()->getNumVBases() == 0)
2874       GD = GlobalDecl(DD, Dtor_Base);
2875   }
2876 
2877   StringRef MangledName = getMangledName(GD);
2878   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2879                                  /*IsThunk=*/false, llvm::AttributeList(),
2880                                  IsForDefinition);
2881 }
2882 
2883 static const FunctionDecl *
2884 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2885   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2886   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2887 
2888   IdentifierInfo &CII = C.Idents.get(Name);
2889   for (const auto &Result : DC->lookup(&CII))
2890     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2891       return FD;
2892 
2893   if (!C.getLangOpts().CPlusPlus)
2894     return nullptr;
2895 
2896   // Demangle the premangled name from getTerminateFn()
2897   IdentifierInfo &CXXII =
2898       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2899           ? C.Idents.get("terminate")
2900           : C.Idents.get(Name);
2901 
2902   for (const auto &N : {"__cxxabiv1", "std"}) {
2903     IdentifierInfo &NS = C.Idents.get(N);
2904     for (const auto &Result : DC->lookup(&NS)) {
2905       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2906       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2907         for (const auto &Result : LSD->lookup(&NS))
2908           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2909             break;
2910 
2911       if (ND)
2912         for (const auto &Result : ND->lookup(&CXXII))
2913           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2914             return FD;
2915     }
2916   }
2917 
2918   return nullptr;
2919 }
2920 
2921 /// CreateRuntimeFunction - Create a new runtime function with the specified
2922 /// type and name.
2923 llvm::Constant *
2924 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2925                                      llvm::AttributeList ExtraAttrs,
2926                                      bool Local) {
2927   llvm::Constant *C =
2928       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2929                               /*DontDefer=*/false, /*IsThunk=*/false,
2930                               ExtraAttrs);
2931 
2932   if (auto *F = dyn_cast<llvm::Function>(C)) {
2933     if (F->empty()) {
2934       F->setCallingConv(getRuntimeCC());
2935 
2936       if (!Local && getTriple().isOSBinFormatCOFF() &&
2937           !getCodeGenOpts().LTOVisibilityPublicStd &&
2938           !getTriple().isWindowsGNUEnvironment()) {
2939         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2940         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2941           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2942           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2943         }
2944       }
2945       setDSOLocal(F);
2946     }
2947   }
2948 
2949   return C;
2950 }
2951 
2952 /// CreateBuiltinFunction - Create a new builtin function with the specified
2953 /// type and name.
2954 llvm::Constant *
2955 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2956                                      llvm::AttributeList ExtraAttrs) {
2957   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2958 }
2959 
2960 /// isTypeConstant - Determine whether an object of this type can be emitted
2961 /// as a constant.
2962 ///
2963 /// If ExcludeCtor is true, the duration when the object's constructor runs
2964 /// will not be considered. The caller will need to verify that the object is
2965 /// not written to during its construction.
2966 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2967   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2968     return false;
2969 
2970   if (Context.getLangOpts().CPlusPlus) {
2971     if (const CXXRecordDecl *Record
2972           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2973       return ExcludeCtor && !Record->hasMutableFields() &&
2974              Record->hasTrivialDestructor();
2975   }
2976 
2977   return true;
2978 }
2979 
2980 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2981 /// create and return an llvm GlobalVariable with the specified type.  If there
2982 /// is something in the module with the specified name, return it potentially
2983 /// bitcasted to the right type.
2984 ///
2985 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2986 /// to set the attributes on the global when it is first created.
2987 ///
2988 /// If IsForDefinition is true, it is guaranteed that an actual global with
2989 /// type Ty will be returned, not conversion of a variable with the same
2990 /// mangled name but some other type.
2991 llvm::Constant *
2992 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2993                                      llvm::PointerType *Ty,
2994                                      const VarDecl *D,
2995                                      ForDefinition_t IsForDefinition) {
2996   // Lookup the entry, lazily creating it if necessary.
2997   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2998   if (Entry) {
2999     if (WeakRefReferences.erase(Entry)) {
3000       if (D && !D->hasAttr<WeakAttr>())
3001         Entry->setLinkage(llvm::Function::ExternalLinkage);
3002     }
3003 
3004     // Handle dropped DLL attributes.
3005     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3006       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3007 
3008     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3009       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3010 
3011     if (Entry->getType() == Ty)
3012       return Entry;
3013 
3014     // If there are two attempts to define the same mangled name, issue an
3015     // error.
3016     if (IsForDefinition && !Entry->isDeclaration()) {
3017       GlobalDecl OtherGD;
3018       const VarDecl *OtherD;
3019 
3020       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3021       // to make sure that we issue an error only once.
3022       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3023           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3024           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3025           OtherD->hasInit() &&
3026           DiagnosedConflictingDefinitions.insert(D).second) {
3027         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3028             << MangledName;
3029         getDiags().Report(OtherGD.getDecl()->getLocation(),
3030                           diag::note_previous_definition);
3031       }
3032     }
3033 
3034     // Make sure the result is of the correct type.
3035     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3036       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3037 
3038     // (If global is requested for a definition, we always need to create a new
3039     // global, not just return a bitcast.)
3040     if (!IsForDefinition)
3041       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3042   }
3043 
3044   auto AddrSpace = GetGlobalVarAddressSpace(D);
3045   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3046 
3047   auto *GV = new llvm::GlobalVariable(
3048       getModule(), Ty->getElementType(), false,
3049       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3050       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3051 
3052   // If we already created a global with the same mangled name (but different
3053   // type) before, take its name and remove it from its parent.
3054   if (Entry) {
3055     GV->takeName(Entry);
3056 
3057     if (!Entry->use_empty()) {
3058       llvm::Constant *NewPtrForOldDecl =
3059           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3060       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3061     }
3062 
3063     Entry->eraseFromParent();
3064   }
3065 
3066   // This is the first use or definition of a mangled name.  If there is a
3067   // deferred decl with this name, remember that we need to emit it at the end
3068   // of the file.
3069   auto DDI = DeferredDecls.find(MangledName);
3070   if (DDI != DeferredDecls.end()) {
3071     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3072     // list, and remove it from DeferredDecls (since we don't need it anymore).
3073     addDeferredDeclToEmit(DDI->second);
3074     DeferredDecls.erase(DDI);
3075   }
3076 
3077   // Handle things which are present even on external declarations.
3078   if (D) {
3079     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3080       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3081 
3082     // FIXME: This code is overly simple and should be merged with other global
3083     // handling.
3084     GV->setConstant(isTypeConstant(D->getType(), false));
3085 
3086     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3087 
3088     setLinkageForGV(GV, D);
3089 
3090     if (D->getTLSKind()) {
3091       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3092         CXXThreadLocals.push_back(D);
3093       setTLSMode(GV, *D);
3094     }
3095 
3096     setGVProperties(GV, D);
3097 
3098     // If required by the ABI, treat declarations of static data members with
3099     // inline initializers as definitions.
3100     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3101       EmitGlobalVarDefinition(D);
3102     }
3103 
3104     // Emit section information for extern variables.
3105     if (D->hasExternalStorage()) {
3106       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3107         GV->setSection(SA->getName());
3108     }
3109 
3110     // Handle XCore specific ABI requirements.
3111     if (getTriple().getArch() == llvm::Triple::xcore &&
3112         D->getLanguageLinkage() == CLanguageLinkage &&
3113         D->getType().isConstant(Context) &&
3114         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3115       GV->setSection(".cp.rodata");
3116 
3117     // Check if we a have a const declaration with an initializer, we may be
3118     // able to emit it as available_externally to expose it's value to the
3119     // optimizer.
3120     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3121         D->getType().isConstQualified() && !GV->hasInitializer() &&
3122         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3123       const auto *Record =
3124           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3125       bool HasMutableFields = Record && Record->hasMutableFields();
3126       if (!HasMutableFields) {
3127         const VarDecl *InitDecl;
3128         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3129         if (InitExpr) {
3130           ConstantEmitter emitter(*this);
3131           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3132           if (Init) {
3133             auto *InitType = Init->getType();
3134             if (GV->getType()->getElementType() != InitType) {
3135               // The type of the initializer does not match the definition.
3136               // This happens when an initializer has a different type from
3137               // the type of the global (because of padding at the end of a
3138               // structure for instance).
3139               GV->setName(StringRef());
3140               // Make a new global with the correct type, this is now guaranteed
3141               // to work.
3142               auto *NewGV = cast<llvm::GlobalVariable>(
3143                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3144 
3145               // Erase the old global, since it is no longer used.
3146               GV->eraseFromParent();
3147               GV = NewGV;
3148             } else {
3149               GV->setInitializer(Init);
3150               GV->setConstant(true);
3151               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3152             }
3153             emitter.finalize(GV);
3154           }
3155         }
3156       }
3157     }
3158   }
3159 
3160   LangAS ExpectedAS =
3161       D ? D->getType().getAddressSpace()
3162         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3163   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3164          Ty->getPointerAddressSpace());
3165   if (AddrSpace != ExpectedAS)
3166     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3167                                                        ExpectedAS, Ty);
3168 
3169   return GV;
3170 }
3171 
3172 llvm::Constant *
3173 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3174                                ForDefinition_t IsForDefinition) {
3175   const Decl *D = GD.getDecl();
3176   if (isa<CXXConstructorDecl>(D))
3177     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3178                                 getFromCtorType(GD.getCtorType()),
3179                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3180                                 /*DontDefer=*/false, IsForDefinition);
3181   else if (isa<CXXDestructorDecl>(D))
3182     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3183                                 getFromDtorType(GD.getDtorType()),
3184                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3185                                 /*DontDefer=*/false, IsForDefinition);
3186   else if (isa<CXXMethodDecl>(D)) {
3187     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3188         cast<CXXMethodDecl>(D));
3189     auto Ty = getTypes().GetFunctionType(*FInfo);
3190     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3191                              IsForDefinition);
3192   } else if (isa<FunctionDecl>(D)) {
3193     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3194     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3195     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3196                              IsForDefinition);
3197   } else
3198     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3199                               IsForDefinition);
3200 }
3201 
3202 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3203     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3204     unsigned Alignment) {
3205   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3206   llvm::GlobalVariable *OldGV = nullptr;
3207 
3208   if (GV) {
3209     // Check if the variable has the right type.
3210     if (GV->getType()->getElementType() == Ty)
3211       return GV;
3212 
3213     // Because C++ name mangling, the only way we can end up with an already
3214     // existing global with the same name is if it has been declared extern "C".
3215     assert(GV->isDeclaration() && "Declaration has wrong type!");
3216     OldGV = GV;
3217   }
3218 
3219   // Create a new variable.
3220   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3221                                 Linkage, nullptr, Name);
3222 
3223   if (OldGV) {
3224     // Replace occurrences of the old variable if needed.
3225     GV->takeName(OldGV);
3226 
3227     if (!OldGV->use_empty()) {
3228       llvm::Constant *NewPtrForOldDecl =
3229       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3230       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3231     }
3232 
3233     OldGV->eraseFromParent();
3234   }
3235 
3236   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3237       !GV->hasAvailableExternallyLinkage())
3238     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3239 
3240   GV->setAlignment(Alignment);
3241 
3242   return GV;
3243 }
3244 
3245 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3246 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3247 /// then it will be created with the specified type instead of whatever the
3248 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3249 /// that an actual global with type Ty will be returned, not conversion of a
3250 /// variable with the same mangled name but some other type.
3251 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3252                                                   llvm::Type *Ty,
3253                                            ForDefinition_t IsForDefinition) {
3254   assert(D->hasGlobalStorage() && "Not a global variable");
3255   QualType ASTTy = D->getType();
3256   if (!Ty)
3257     Ty = getTypes().ConvertTypeForMem(ASTTy);
3258 
3259   llvm::PointerType *PTy =
3260     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3261 
3262   StringRef MangledName = getMangledName(D);
3263   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3264 }
3265 
3266 /// CreateRuntimeVariable - Create a new runtime global variable with the
3267 /// specified type and name.
3268 llvm::Constant *
3269 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3270                                      StringRef Name) {
3271   auto *Ret =
3272       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3273   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3274   return Ret;
3275 }
3276 
3277 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3278   assert(!D->getInit() && "Cannot emit definite definitions here!");
3279 
3280   StringRef MangledName = getMangledName(D);
3281   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3282 
3283   // We already have a definition, not declaration, with the same mangled name.
3284   // Emitting of declaration is not required (and actually overwrites emitted
3285   // definition).
3286   if (GV && !GV->isDeclaration())
3287     return;
3288 
3289   // If we have not seen a reference to this variable yet, place it into the
3290   // deferred declarations table to be emitted if needed later.
3291   if (!MustBeEmitted(D) && !GV) {
3292       DeferredDecls[MangledName] = D;
3293       return;
3294   }
3295 
3296   // The tentative definition is the only definition.
3297   EmitGlobalVarDefinition(D);
3298 }
3299 
3300 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3301   return Context.toCharUnitsFromBits(
3302       getDataLayout().getTypeStoreSizeInBits(Ty));
3303 }
3304 
3305 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3306   LangAS AddrSpace = LangAS::Default;
3307   if (LangOpts.OpenCL) {
3308     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3309     assert(AddrSpace == LangAS::opencl_global ||
3310            AddrSpace == LangAS::opencl_constant ||
3311            AddrSpace == LangAS::opencl_local ||
3312            AddrSpace >= LangAS::FirstTargetAddressSpace);
3313     return AddrSpace;
3314   }
3315 
3316   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3317     if (D && D->hasAttr<CUDAConstantAttr>())
3318       return LangAS::cuda_constant;
3319     else if (D && D->hasAttr<CUDASharedAttr>())
3320       return LangAS::cuda_shared;
3321     else if (D && D->hasAttr<CUDADeviceAttr>())
3322       return LangAS::cuda_device;
3323     else if (D && D->getType().isConstQualified())
3324       return LangAS::cuda_constant;
3325     else
3326       return LangAS::cuda_device;
3327   }
3328 
3329   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3330 }
3331 
3332 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3333   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3334   if (LangOpts.OpenCL)
3335     return LangAS::opencl_constant;
3336   if (auto AS = getTarget().getConstantAddressSpace())
3337     return AS.getValue();
3338   return LangAS::Default;
3339 }
3340 
3341 // In address space agnostic languages, string literals are in default address
3342 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3343 // emitted in constant address space in LLVM IR. To be consistent with other
3344 // parts of AST, string literal global variables in constant address space
3345 // need to be casted to default address space before being put into address
3346 // map and referenced by other part of CodeGen.
3347 // In OpenCL, string literals are in constant address space in AST, therefore
3348 // they should not be casted to default address space.
3349 static llvm::Constant *
3350 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3351                                        llvm::GlobalVariable *GV) {
3352   llvm::Constant *Cast = GV;
3353   if (!CGM.getLangOpts().OpenCL) {
3354     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3355       if (AS != LangAS::Default)
3356         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3357             CGM, GV, AS.getValue(), LangAS::Default,
3358             GV->getValueType()->getPointerTo(
3359                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3360     }
3361   }
3362   return Cast;
3363 }
3364 
3365 template<typename SomeDecl>
3366 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3367                                                llvm::GlobalValue *GV) {
3368   if (!getLangOpts().CPlusPlus)
3369     return;
3370 
3371   // Must have 'used' attribute, or else inline assembly can't rely on
3372   // the name existing.
3373   if (!D->template hasAttr<UsedAttr>())
3374     return;
3375 
3376   // Must have internal linkage and an ordinary name.
3377   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3378     return;
3379 
3380   // Must be in an extern "C" context. Entities declared directly within
3381   // a record are not extern "C" even if the record is in such a context.
3382   const SomeDecl *First = D->getFirstDecl();
3383   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3384     return;
3385 
3386   // OK, this is an internal linkage entity inside an extern "C" linkage
3387   // specification. Make a note of that so we can give it the "expected"
3388   // mangled name if nothing else is using that name.
3389   std::pair<StaticExternCMap::iterator, bool> R =
3390       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3391 
3392   // If we have multiple internal linkage entities with the same name
3393   // in extern "C" regions, none of them gets that name.
3394   if (!R.second)
3395     R.first->second = nullptr;
3396 }
3397 
3398 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3399   if (!CGM.supportsCOMDAT())
3400     return false;
3401 
3402   if (D.hasAttr<SelectAnyAttr>())
3403     return true;
3404 
3405   GVALinkage Linkage;
3406   if (auto *VD = dyn_cast<VarDecl>(&D))
3407     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3408   else
3409     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3410 
3411   switch (Linkage) {
3412   case GVA_Internal:
3413   case GVA_AvailableExternally:
3414   case GVA_StrongExternal:
3415     return false;
3416   case GVA_DiscardableODR:
3417   case GVA_StrongODR:
3418     return true;
3419   }
3420   llvm_unreachable("No such linkage");
3421 }
3422 
3423 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3424                                           llvm::GlobalObject &GO) {
3425   if (!shouldBeInCOMDAT(*this, D))
3426     return;
3427   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3428 }
3429 
3430 /// Pass IsTentative as true if you want to create a tentative definition.
3431 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3432                                             bool IsTentative) {
3433   // OpenCL global variables of sampler type are translated to function calls,
3434   // therefore no need to be translated.
3435   QualType ASTTy = D->getType();
3436   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3437     return;
3438 
3439   // If this is OpenMP device, check if it is legal to emit this global
3440   // normally.
3441   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3442       OpenMPRuntime->emitTargetGlobalVariable(D))
3443     return;
3444 
3445   llvm::Constant *Init = nullptr;
3446   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3447   bool NeedsGlobalCtor = false;
3448   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3449 
3450   const VarDecl *InitDecl;
3451   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3452 
3453   Optional<ConstantEmitter> emitter;
3454 
3455   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3456   // as part of their declaration."  Sema has already checked for
3457   // error cases, so we just need to set Init to UndefValue.
3458   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3459       D->hasAttr<CUDASharedAttr>())
3460     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3461   else if (!InitExpr) {
3462     // This is a tentative definition; tentative definitions are
3463     // implicitly initialized with { 0 }.
3464     //
3465     // Note that tentative definitions are only emitted at the end of
3466     // a translation unit, so they should never have incomplete
3467     // type. In addition, EmitTentativeDefinition makes sure that we
3468     // never attempt to emit a tentative definition if a real one
3469     // exists. A use may still exists, however, so we still may need
3470     // to do a RAUW.
3471     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3472     Init = EmitNullConstant(D->getType());
3473   } else {
3474     initializedGlobalDecl = GlobalDecl(D);
3475     emitter.emplace(*this);
3476     Init = emitter->tryEmitForInitializer(*InitDecl);
3477 
3478     if (!Init) {
3479       QualType T = InitExpr->getType();
3480       if (D->getType()->isReferenceType())
3481         T = D->getType();
3482 
3483       if (getLangOpts().CPlusPlus) {
3484         Init = EmitNullConstant(T);
3485         NeedsGlobalCtor = true;
3486       } else {
3487         ErrorUnsupported(D, "static initializer");
3488         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3489       }
3490     } else {
3491       // We don't need an initializer, so remove the entry for the delayed
3492       // initializer position (just in case this entry was delayed) if we
3493       // also don't need to register a destructor.
3494       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3495         DelayedCXXInitPosition.erase(D);
3496     }
3497   }
3498 
3499   llvm::Type* InitType = Init->getType();
3500   llvm::Constant *Entry =
3501       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3502 
3503   // Strip off a bitcast if we got one back.
3504   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3505     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3506            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3507            // All zero index gep.
3508            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3509     Entry = CE->getOperand(0);
3510   }
3511 
3512   // Entry is now either a Function or GlobalVariable.
3513   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3514 
3515   // We have a definition after a declaration with the wrong type.
3516   // We must make a new GlobalVariable* and update everything that used OldGV
3517   // (a declaration or tentative definition) with the new GlobalVariable*
3518   // (which will be a definition).
3519   //
3520   // This happens if there is a prototype for a global (e.g.
3521   // "extern int x[];") and then a definition of a different type (e.g.
3522   // "int x[10];"). This also happens when an initializer has a different type
3523   // from the type of the global (this happens with unions).
3524   if (!GV || GV->getType()->getElementType() != InitType ||
3525       GV->getType()->getAddressSpace() !=
3526           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3527 
3528     // Move the old entry aside so that we'll create a new one.
3529     Entry->setName(StringRef());
3530 
3531     // Make a new global with the correct type, this is now guaranteed to work.
3532     GV = cast<llvm::GlobalVariable>(
3533         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3534 
3535     // Replace all uses of the old global with the new global
3536     llvm::Constant *NewPtrForOldDecl =
3537         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3538     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3539 
3540     // Erase the old global, since it is no longer used.
3541     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3542   }
3543 
3544   MaybeHandleStaticInExternC(D, GV);
3545 
3546   if (D->hasAttr<AnnotateAttr>())
3547     AddGlobalAnnotations(D, GV);
3548 
3549   // Set the llvm linkage type as appropriate.
3550   llvm::GlobalValue::LinkageTypes Linkage =
3551       getLLVMLinkageVarDefinition(D, GV->isConstant());
3552 
3553   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3554   // the device. [...]"
3555   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3556   // __device__, declares a variable that: [...]
3557   // Is accessible from all the threads within the grid and from the host
3558   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3559   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3560   if (GV && LangOpts.CUDA) {
3561     if (LangOpts.CUDAIsDevice) {
3562       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3563         GV->setExternallyInitialized(true);
3564     } else {
3565       // Host-side shadows of external declarations of device-side
3566       // global variables become internal definitions. These have to
3567       // be internal in order to prevent name conflicts with global
3568       // host variables with the same name in a different TUs.
3569       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3570         Linkage = llvm::GlobalValue::InternalLinkage;
3571 
3572         // Shadow variables and their properties must be registered
3573         // with CUDA runtime.
3574         unsigned Flags = 0;
3575         if (!D->hasDefinition())
3576           Flags |= CGCUDARuntime::ExternDeviceVar;
3577         if (D->hasAttr<CUDAConstantAttr>())
3578           Flags |= CGCUDARuntime::ConstantDeviceVar;
3579         getCUDARuntime().registerDeviceVar(*GV, Flags);
3580       } else if (D->hasAttr<CUDASharedAttr>())
3581         // __shared__ variables are odd. Shadows do get created, but
3582         // they are not registered with the CUDA runtime, so they
3583         // can't really be used to access their device-side
3584         // counterparts. It's not clear yet whether it's nvcc's bug or
3585         // a feature, but we've got to do the same for compatibility.
3586         Linkage = llvm::GlobalValue::InternalLinkage;
3587     }
3588   }
3589 
3590   GV->setInitializer(Init);
3591   if (emitter) emitter->finalize(GV);
3592 
3593   // If it is safe to mark the global 'constant', do so now.
3594   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3595                   isTypeConstant(D->getType(), true));
3596 
3597   // If it is in a read-only section, mark it 'constant'.
3598   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3599     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3600     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3601       GV->setConstant(true);
3602   }
3603 
3604   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3605 
3606 
3607   // On Darwin, if the normal linkage of a C++ thread_local variable is
3608   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3609   // copies within a linkage unit; otherwise, the backing variable has
3610   // internal linkage and all accesses should just be calls to the
3611   // Itanium-specified entry point, which has the normal linkage of the
3612   // variable. This is to preserve the ability to change the implementation
3613   // behind the scenes.
3614   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3615       Context.getTargetInfo().getTriple().isOSDarwin() &&
3616       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3617       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3618     Linkage = llvm::GlobalValue::InternalLinkage;
3619 
3620   GV->setLinkage(Linkage);
3621   if (D->hasAttr<DLLImportAttr>())
3622     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3623   else if (D->hasAttr<DLLExportAttr>())
3624     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3625   else
3626     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3627 
3628   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3629     // common vars aren't constant even if declared const.
3630     GV->setConstant(false);
3631     // Tentative definition of global variables may be initialized with
3632     // non-zero null pointers. In this case they should have weak linkage
3633     // since common linkage must have zero initializer and must not have
3634     // explicit section therefore cannot have non-zero initial value.
3635     if (!GV->getInitializer()->isNullValue())
3636       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3637   }
3638 
3639   setNonAliasAttributes(D, GV);
3640 
3641   if (D->getTLSKind() && !GV->isThreadLocal()) {
3642     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3643       CXXThreadLocals.push_back(D);
3644     setTLSMode(GV, *D);
3645   }
3646 
3647   maybeSetTrivialComdat(*D, *GV);
3648 
3649   // Emit the initializer function if necessary.
3650   if (NeedsGlobalCtor || NeedsGlobalDtor)
3651     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3652 
3653   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3654 
3655   // Emit global variable debug information.
3656   if (CGDebugInfo *DI = getModuleDebugInfo())
3657     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3658       DI->EmitGlobalVariable(GV, D);
3659 }
3660 
3661 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3662                                       CodeGenModule &CGM, const VarDecl *D,
3663                                       bool NoCommon) {
3664   // Don't give variables common linkage if -fno-common was specified unless it
3665   // was overridden by a NoCommon attribute.
3666   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3667     return true;
3668 
3669   // C11 6.9.2/2:
3670   //   A declaration of an identifier for an object that has file scope without
3671   //   an initializer, and without a storage-class specifier or with the
3672   //   storage-class specifier static, constitutes a tentative definition.
3673   if (D->getInit() || D->hasExternalStorage())
3674     return true;
3675 
3676   // A variable cannot be both common and exist in a section.
3677   if (D->hasAttr<SectionAttr>())
3678     return true;
3679 
3680   // A variable cannot be both common and exist in a section.
3681   // We don't try to determine which is the right section in the front-end.
3682   // If no specialized section name is applicable, it will resort to default.
3683   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3684       D->hasAttr<PragmaClangDataSectionAttr>() ||
3685       D->hasAttr<PragmaClangRodataSectionAttr>())
3686     return true;
3687 
3688   // Thread local vars aren't considered common linkage.
3689   if (D->getTLSKind())
3690     return true;
3691 
3692   // Tentative definitions marked with WeakImportAttr are true definitions.
3693   if (D->hasAttr<WeakImportAttr>())
3694     return true;
3695 
3696   // A variable cannot be both common and exist in a comdat.
3697   if (shouldBeInCOMDAT(CGM, *D))
3698     return true;
3699 
3700   // Declarations with a required alignment do not have common linkage in MSVC
3701   // mode.
3702   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3703     if (D->hasAttr<AlignedAttr>())
3704       return true;
3705     QualType VarType = D->getType();
3706     if (Context.isAlignmentRequired(VarType))
3707       return true;
3708 
3709     if (const auto *RT = VarType->getAs<RecordType>()) {
3710       const RecordDecl *RD = RT->getDecl();
3711       for (const FieldDecl *FD : RD->fields()) {
3712         if (FD->isBitField())
3713           continue;
3714         if (FD->hasAttr<AlignedAttr>())
3715           return true;
3716         if (Context.isAlignmentRequired(FD->getType()))
3717           return true;
3718       }
3719     }
3720   }
3721 
3722   return false;
3723 }
3724 
3725 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3726     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3727   if (Linkage == GVA_Internal)
3728     return llvm::Function::InternalLinkage;
3729 
3730   if (D->hasAttr<WeakAttr>()) {
3731     if (IsConstantVariable)
3732       return llvm::GlobalVariable::WeakODRLinkage;
3733     else
3734       return llvm::GlobalVariable::WeakAnyLinkage;
3735   }
3736 
3737   if (const auto *FD = D->getAsFunction())
3738     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3739       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3740 
3741   // We are guaranteed to have a strong definition somewhere else,
3742   // so we can use available_externally linkage.
3743   if (Linkage == GVA_AvailableExternally)
3744     return llvm::GlobalValue::AvailableExternallyLinkage;
3745 
3746   // Note that Apple's kernel linker doesn't support symbol
3747   // coalescing, so we need to avoid linkonce and weak linkages there.
3748   // Normally, this means we just map to internal, but for explicit
3749   // instantiations we'll map to external.
3750 
3751   // In C++, the compiler has to emit a definition in every translation unit
3752   // that references the function.  We should use linkonce_odr because
3753   // a) if all references in this translation unit are optimized away, we
3754   // don't need to codegen it.  b) if the function persists, it needs to be
3755   // merged with other definitions. c) C++ has the ODR, so we know the
3756   // definition is dependable.
3757   if (Linkage == GVA_DiscardableODR)
3758     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3759                                             : llvm::Function::InternalLinkage;
3760 
3761   // An explicit instantiation of a template has weak linkage, since
3762   // explicit instantiations can occur in multiple translation units
3763   // and must all be equivalent. However, we are not allowed to
3764   // throw away these explicit instantiations.
3765   //
3766   // We don't currently support CUDA device code spread out across multiple TUs,
3767   // so say that CUDA templates are either external (for kernels) or internal.
3768   // This lets llvm perform aggressive inter-procedural optimizations.
3769   if (Linkage == GVA_StrongODR) {
3770     if (Context.getLangOpts().AppleKext)
3771       return llvm::Function::ExternalLinkage;
3772     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3773       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3774                                           : llvm::Function::InternalLinkage;
3775     return llvm::Function::WeakODRLinkage;
3776   }
3777 
3778   // C++ doesn't have tentative definitions and thus cannot have common
3779   // linkage.
3780   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3781       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3782                                  CodeGenOpts.NoCommon))
3783     return llvm::GlobalVariable::CommonLinkage;
3784 
3785   // selectany symbols are externally visible, so use weak instead of
3786   // linkonce.  MSVC optimizes away references to const selectany globals, so
3787   // all definitions should be the same and ODR linkage should be used.
3788   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3789   if (D->hasAttr<SelectAnyAttr>())
3790     return llvm::GlobalVariable::WeakODRLinkage;
3791 
3792   // Otherwise, we have strong external linkage.
3793   assert(Linkage == GVA_StrongExternal);
3794   return llvm::GlobalVariable::ExternalLinkage;
3795 }
3796 
3797 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3798     const VarDecl *VD, bool IsConstant) {
3799   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3800   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3801 }
3802 
3803 /// Replace the uses of a function that was declared with a non-proto type.
3804 /// We want to silently drop extra arguments from call sites
3805 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3806                                           llvm::Function *newFn) {
3807   // Fast path.
3808   if (old->use_empty()) return;
3809 
3810   llvm::Type *newRetTy = newFn->getReturnType();
3811   SmallVector<llvm::Value*, 4> newArgs;
3812   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3813 
3814   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3815          ui != ue; ) {
3816     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3817     llvm::User *user = use->getUser();
3818 
3819     // Recognize and replace uses of bitcasts.  Most calls to
3820     // unprototyped functions will use bitcasts.
3821     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3822       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3823         replaceUsesOfNonProtoConstant(bitcast, newFn);
3824       continue;
3825     }
3826 
3827     // Recognize calls to the function.
3828     llvm::CallSite callSite(user);
3829     if (!callSite) continue;
3830     if (!callSite.isCallee(&*use)) continue;
3831 
3832     // If the return types don't match exactly, then we can't
3833     // transform this call unless it's dead.
3834     if (callSite->getType() != newRetTy && !callSite->use_empty())
3835       continue;
3836 
3837     // Get the call site's attribute list.
3838     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3839     llvm::AttributeList oldAttrs = callSite.getAttributes();
3840 
3841     // If the function was passed too few arguments, don't transform.
3842     unsigned newNumArgs = newFn->arg_size();
3843     if (callSite.arg_size() < newNumArgs) continue;
3844 
3845     // If extra arguments were passed, we silently drop them.
3846     // If any of the types mismatch, we don't transform.
3847     unsigned argNo = 0;
3848     bool dontTransform = false;
3849     for (llvm::Argument &A : newFn->args()) {
3850       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3851         dontTransform = true;
3852         break;
3853       }
3854 
3855       // Add any parameter attributes.
3856       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3857       argNo++;
3858     }
3859     if (dontTransform)
3860       continue;
3861 
3862     // Okay, we can transform this.  Create the new call instruction and copy
3863     // over the required information.
3864     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3865 
3866     // Copy over any operand bundles.
3867     callSite.getOperandBundlesAsDefs(newBundles);
3868 
3869     llvm::CallSite newCall;
3870     if (callSite.isCall()) {
3871       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3872                                        callSite.getInstruction());
3873     } else {
3874       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3875       newCall = llvm::InvokeInst::Create(newFn,
3876                                          oldInvoke->getNormalDest(),
3877                                          oldInvoke->getUnwindDest(),
3878                                          newArgs, newBundles, "",
3879                                          callSite.getInstruction());
3880     }
3881     newArgs.clear(); // for the next iteration
3882 
3883     if (!newCall->getType()->isVoidTy())
3884       newCall->takeName(callSite.getInstruction());
3885     newCall.setAttributes(llvm::AttributeList::get(
3886         newFn->getContext(), oldAttrs.getFnAttributes(),
3887         oldAttrs.getRetAttributes(), newArgAttrs));
3888     newCall.setCallingConv(callSite.getCallingConv());
3889 
3890     // Finally, remove the old call, replacing any uses with the new one.
3891     if (!callSite->use_empty())
3892       callSite->replaceAllUsesWith(newCall.getInstruction());
3893 
3894     // Copy debug location attached to CI.
3895     if (callSite->getDebugLoc())
3896       newCall->setDebugLoc(callSite->getDebugLoc());
3897 
3898     callSite->eraseFromParent();
3899   }
3900 }
3901 
3902 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3903 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3904 /// existing call uses of the old function in the module, this adjusts them to
3905 /// call the new function directly.
3906 ///
3907 /// This is not just a cleanup: the always_inline pass requires direct calls to
3908 /// functions to be able to inline them.  If there is a bitcast in the way, it
3909 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3910 /// run at -O0.
3911 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3912                                                       llvm::Function *NewFn) {
3913   // If we're redefining a global as a function, don't transform it.
3914   if (!isa<llvm::Function>(Old)) return;
3915 
3916   replaceUsesOfNonProtoConstant(Old, NewFn);
3917 }
3918 
3919 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3920   auto DK = VD->isThisDeclarationADefinition();
3921   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3922     return;
3923 
3924   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3925   // If we have a definition, this might be a deferred decl. If the
3926   // instantiation is explicit, make sure we emit it at the end.
3927   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3928     GetAddrOfGlobalVar(VD);
3929 
3930   EmitTopLevelDecl(VD);
3931 }
3932 
3933 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3934                                                  llvm::GlobalValue *GV) {
3935   const auto *D = cast<FunctionDecl>(GD.getDecl());
3936 
3937   // Compute the function info and LLVM type.
3938   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3939   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3940 
3941   // Get or create the prototype for the function.
3942   if (!GV || (GV->getType()->getElementType() != Ty))
3943     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3944                                                    /*DontDefer=*/true,
3945                                                    ForDefinition));
3946 
3947   // Already emitted.
3948   if (!GV->isDeclaration())
3949     return;
3950 
3951   // We need to set linkage and visibility on the function before
3952   // generating code for it because various parts of IR generation
3953   // want to propagate this information down (e.g. to local static
3954   // declarations).
3955   auto *Fn = cast<llvm::Function>(GV);
3956   setFunctionLinkage(GD, Fn);
3957 
3958   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3959   setGVProperties(Fn, GD);
3960 
3961   MaybeHandleStaticInExternC(D, Fn);
3962 
3963 
3964   maybeSetTrivialComdat(*D, *Fn);
3965 
3966   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3967 
3968   setNonAliasAttributes(GD, Fn);
3969   SetLLVMFunctionAttributesForDefinition(D, Fn);
3970 
3971   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3972     AddGlobalCtor(Fn, CA->getPriority());
3973   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3974     AddGlobalDtor(Fn, DA->getPriority());
3975   if (D->hasAttr<AnnotateAttr>())
3976     AddGlobalAnnotations(D, Fn);
3977 
3978   if (D->isCPUSpecificMultiVersion()) {
3979     auto *Spec = D->getAttr<CPUSpecificAttr>();
3980     // If there is another specific version we need to emit, do so here.
3981     if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) {
3982       ++Spec->ActiveArgIndex;
3983       EmitGlobalFunctionDefinition(GD, nullptr);
3984     }
3985   }
3986 }
3987 
3988 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3989   const auto *D = cast<ValueDecl>(GD.getDecl());
3990   const AliasAttr *AA = D->getAttr<AliasAttr>();
3991   assert(AA && "Not an alias?");
3992 
3993   StringRef MangledName = getMangledName(GD);
3994 
3995   if (AA->getAliasee() == MangledName) {
3996     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3997     return;
3998   }
3999 
4000   // If there is a definition in the module, then it wins over the alias.
4001   // This is dubious, but allow it to be safe.  Just ignore the alias.
4002   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4003   if (Entry && !Entry->isDeclaration())
4004     return;
4005 
4006   Aliases.push_back(GD);
4007 
4008   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4009 
4010   // Create a reference to the named value.  This ensures that it is emitted
4011   // if a deferred decl.
4012   llvm::Constant *Aliasee;
4013   if (isa<llvm::FunctionType>(DeclTy))
4014     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4015                                       /*ForVTable=*/false);
4016   else
4017     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4018                                     llvm::PointerType::getUnqual(DeclTy),
4019                                     /*D=*/nullptr);
4020 
4021   // Create the new alias itself, but don't set a name yet.
4022   auto *GA = llvm::GlobalAlias::create(
4023       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4024 
4025   if (Entry) {
4026     if (GA->getAliasee() == Entry) {
4027       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4028       return;
4029     }
4030 
4031     assert(Entry->isDeclaration());
4032 
4033     // If there is a declaration in the module, then we had an extern followed
4034     // by the alias, as in:
4035     //   extern int test6();
4036     //   ...
4037     //   int test6() __attribute__((alias("test7")));
4038     //
4039     // Remove it and replace uses of it with the alias.
4040     GA->takeName(Entry);
4041 
4042     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4043                                                           Entry->getType()));
4044     Entry->eraseFromParent();
4045   } else {
4046     GA->setName(MangledName);
4047   }
4048 
4049   // Set attributes which are particular to an alias; this is a
4050   // specialization of the attributes which may be set on a global
4051   // variable/function.
4052   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4053       D->isWeakImported()) {
4054     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4055   }
4056 
4057   if (const auto *VD = dyn_cast<VarDecl>(D))
4058     if (VD->getTLSKind())
4059       setTLSMode(GA, *VD);
4060 
4061   SetCommonAttributes(GD, GA);
4062 }
4063 
4064 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4065   const auto *D = cast<ValueDecl>(GD.getDecl());
4066   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4067   assert(IFA && "Not an ifunc?");
4068 
4069   StringRef MangledName = getMangledName(GD);
4070 
4071   if (IFA->getResolver() == MangledName) {
4072     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4073     return;
4074   }
4075 
4076   // Report an error if some definition overrides ifunc.
4077   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4078   if (Entry && !Entry->isDeclaration()) {
4079     GlobalDecl OtherGD;
4080     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4081         DiagnosedConflictingDefinitions.insert(GD).second) {
4082       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4083           << MangledName;
4084       Diags.Report(OtherGD.getDecl()->getLocation(),
4085                    diag::note_previous_definition);
4086     }
4087     return;
4088   }
4089 
4090   Aliases.push_back(GD);
4091 
4092   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4093   llvm::Constant *Resolver =
4094       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4095                               /*ForVTable=*/false);
4096   llvm::GlobalIFunc *GIF =
4097       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4098                                 "", Resolver, &getModule());
4099   if (Entry) {
4100     if (GIF->getResolver() == Entry) {
4101       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4102       return;
4103     }
4104     assert(Entry->isDeclaration());
4105 
4106     // If there is a declaration in the module, then we had an extern followed
4107     // by the ifunc, as in:
4108     //   extern int test();
4109     //   ...
4110     //   int test() __attribute__((ifunc("resolver")));
4111     //
4112     // Remove it and replace uses of it with the ifunc.
4113     GIF->takeName(Entry);
4114 
4115     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4116                                                           Entry->getType()));
4117     Entry->eraseFromParent();
4118   } else
4119     GIF->setName(MangledName);
4120 
4121   SetCommonAttributes(GD, GIF);
4122 }
4123 
4124 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4125                                             ArrayRef<llvm::Type*> Tys) {
4126   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4127                                          Tys);
4128 }
4129 
4130 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4131 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4132                          const StringLiteral *Literal, bool TargetIsLSB,
4133                          bool &IsUTF16, unsigned &StringLength) {
4134   StringRef String = Literal->getString();
4135   unsigned NumBytes = String.size();
4136 
4137   // Check for simple case.
4138   if (!Literal->containsNonAsciiOrNull()) {
4139     StringLength = NumBytes;
4140     return *Map.insert(std::make_pair(String, nullptr)).first;
4141   }
4142 
4143   // Otherwise, convert the UTF8 literals into a string of shorts.
4144   IsUTF16 = true;
4145 
4146   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4147   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4148   llvm::UTF16 *ToPtr = &ToBuf[0];
4149 
4150   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4151                                  ToPtr + NumBytes, llvm::strictConversion);
4152 
4153   // ConvertUTF8toUTF16 returns the length in ToPtr.
4154   StringLength = ToPtr - &ToBuf[0];
4155 
4156   // Add an explicit null.
4157   *ToPtr = 0;
4158   return *Map.insert(std::make_pair(
4159                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4160                                    (StringLength + 1) * 2),
4161                          nullptr)).first;
4162 }
4163 
4164 ConstantAddress
4165 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4166   unsigned StringLength = 0;
4167   bool isUTF16 = false;
4168   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4169       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4170                                getDataLayout().isLittleEndian(), isUTF16,
4171                                StringLength);
4172 
4173   if (auto *C = Entry.second)
4174     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4175 
4176   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4177   llvm::Constant *Zeros[] = { Zero, Zero };
4178 
4179   const ASTContext &Context = getContext();
4180   const llvm::Triple &Triple = getTriple();
4181 
4182   const auto CFRuntime = getLangOpts().CFRuntime;
4183   const bool IsSwiftABI =
4184       static_cast<unsigned>(CFRuntime) >=
4185       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4186   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4187 
4188   // If we don't already have it, get __CFConstantStringClassReference.
4189   if (!CFConstantStringClassRef) {
4190     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4191     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4192     Ty = llvm::ArrayType::get(Ty, 0);
4193 
4194     switch (CFRuntime) {
4195     default: break;
4196     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4197     case LangOptions::CoreFoundationABI::Swift5_0:
4198       CFConstantStringClassName =
4199           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4200                               : "$s10Foundation19_NSCFConstantStringCN";
4201       Ty = IntPtrTy;
4202       break;
4203     case LangOptions::CoreFoundationABI::Swift4_2:
4204       CFConstantStringClassName =
4205           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4206                               : "$S10Foundation19_NSCFConstantStringCN";
4207       Ty = IntPtrTy;
4208       break;
4209     case LangOptions::CoreFoundationABI::Swift4_1:
4210       CFConstantStringClassName =
4211           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4212                               : "__T010Foundation19_NSCFConstantStringCN";
4213       Ty = IntPtrTy;
4214       break;
4215     }
4216 
4217     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4218 
4219     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4220       llvm::GlobalValue *GV = nullptr;
4221 
4222       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4223         IdentifierInfo &II = Context.Idents.get(GV->getName());
4224         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4225         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4226 
4227         const VarDecl *VD = nullptr;
4228         for (const auto &Result : DC->lookup(&II))
4229           if ((VD = dyn_cast<VarDecl>(Result)))
4230             break;
4231 
4232         if (Triple.isOSBinFormatELF()) {
4233           if (!VD)
4234             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4235         } else {
4236           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4237           if (!VD || !VD->hasAttr<DLLExportAttr>())
4238             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4239           else
4240             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4241         }
4242 
4243         setDSOLocal(GV);
4244       }
4245     }
4246 
4247     // Decay array -> ptr
4248     CFConstantStringClassRef =
4249         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4250                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4251   }
4252 
4253   QualType CFTy = Context.getCFConstantStringType();
4254 
4255   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4256 
4257   ConstantInitBuilder Builder(*this);
4258   auto Fields = Builder.beginStruct(STy);
4259 
4260   // Class pointer.
4261   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4262 
4263   // Flags.
4264   if (IsSwiftABI) {
4265     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4266     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4267   } else {
4268     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4269   }
4270 
4271   // String pointer.
4272   llvm::Constant *C = nullptr;
4273   if (isUTF16) {
4274     auto Arr = llvm::makeArrayRef(
4275         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4276         Entry.first().size() / 2);
4277     C = llvm::ConstantDataArray::get(VMContext, Arr);
4278   } else {
4279     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4280   }
4281 
4282   // Note: -fwritable-strings doesn't make the backing store strings of
4283   // CFStrings writable. (See <rdar://problem/10657500>)
4284   auto *GV =
4285       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4286                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4287   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4288   // Don't enforce the target's minimum global alignment, since the only use
4289   // of the string is via this class initializer.
4290   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4291                             : Context.getTypeAlignInChars(Context.CharTy);
4292   GV->setAlignment(Align.getQuantity());
4293 
4294   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4295   // Without it LLVM can merge the string with a non unnamed_addr one during
4296   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4297   if (Triple.isOSBinFormatMachO())
4298     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4299                            : "__TEXT,__cstring,cstring_literals");
4300   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4301   // the static linker to adjust permissions to read-only later on.
4302   else if (Triple.isOSBinFormatELF())
4303     GV->setSection(".rodata");
4304 
4305   // String.
4306   llvm::Constant *Str =
4307       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4308 
4309   if (isUTF16)
4310     // Cast the UTF16 string to the correct type.
4311     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4312   Fields.add(Str);
4313 
4314   // String length.
4315   llvm::IntegerType *LengthTy =
4316       llvm::IntegerType::get(getModule().getContext(),
4317                              Context.getTargetInfo().getLongWidth());
4318   if (IsSwiftABI) {
4319     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4320         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4321       LengthTy = Int32Ty;
4322     else
4323       LengthTy = IntPtrTy;
4324   }
4325   Fields.addInt(LengthTy, StringLength);
4326 
4327   CharUnits Alignment = getPointerAlign();
4328 
4329   // The struct.
4330   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4331                                     /*isConstant=*/false,
4332                                     llvm::GlobalVariable::PrivateLinkage);
4333   switch (Triple.getObjectFormat()) {
4334   case llvm::Triple::UnknownObjectFormat:
4335     llvm_unreachable("unknown file format");
4336   case llvm::Triple::COFF:
4337   case llvm::Triple::ELF:
4338   case llvm::Triple::Wasm:
4339     GV->setSection("cfstring");
4340     break;
4341   case llvm::Triple::MachO:
4342     GV->setSection("__DATA,__cfstring");
4343     break;
4344   }
4345   Entry.second = GV;
4346 
4347   return ConstantAddress(GV, Alignment);
4348 }
4349 
4350 bool CodeGenModule::getExpressionLocationsEnabled() const {
4351   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4352 }
4353 
4354 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4355   if (ObjCFastEnumerationStateType.isNull()) {
4356     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4357     D->startDefinition();
4358 
4359     QualType FieldTypes[] = {
4360       Context.UnsignedLongTy,
4361       Context.getPointerType(Context.getObjCIdType()),
4362       Context.getPointerType(Context.UnsignedLongTy),
4363       Context.getConstantArrayType(Context.UnsignedLongTy,
4364                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4365     };
4366 
4367     for (size_t i = 0; i < 4; ++i) {
4368       FieldDecl *Field = FieldDecl::Create(Context,
4369                                            D,
4370                                            SourceLocation(),
4371                                            SourceLocation(), nullptr,
4372                                            FieldTypes[i], /*TInfo=*/nullptr,
4373                                            /*BitWidth=*/nullptr,
4374                                            /*Mutable=*/false,
4375                                            ICIS_NoInit);
4376       Field->setAccess(AS_public);
4377       D->addDecl(Field);
4378     }
4379 
4380     D->completeDefinition();
4381     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4382   }
4383 
4384   return ObjCFastEnumerationStateType;
4385 }
4386 
4387 llvm::Constant *
4388 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4389   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4390 
4391   // Don't emit it as the address of the string, emit the string data itself
4392   // as an inline array.
4393   if (E->getCharByteWidth() == 1) {
4394     SmallString<64> Str(E->getString());
4395 
4396     // Resize the string to the right size, which is indicated by its type.
4397     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4398     Str.resize(CAT->getSize().getZExtValue());
4399     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4400   }
4401 
4402   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4403   llvm::Type *ElemTy = AType->getElementType();
4404   unsigned NumElements = AType->getNumElements();
4405 
4406   // Wide strings have either 2-byte or 4-byte elements.
4407   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4408     SmallVector<uint16_t, 32> Elements;
4409     Elements.reserve(NumElements);
4410 
4411     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4412       Elements.push_back(E->getCodeUnit(i));
4413     Elements.resize(NumElements);
4414     return llvm::ConstantDataArray::get(VMContext, Elements);
4415   }
4416 
4417   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4418   SmallVector<uint32_t, 32> Elements;
4419   Elements.reserve(NumElements);
4420 
4421   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4422     Elements.push_back(E->getCodeUnit(i));
4423   Elements.resize(NumElements);
4424   return llvm::ConstantDataArray::get(VMContext, Elements);
4425 }
4426 
4427 static llvm::GlobalVariable *
4428 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4429                       CodeGenModule &CGM, StringRef GlobalName,
4430                       CharUnits Alignment) {
4431   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4432       CGM.getStringLiteralAddressSpace());
4433 
4434   llvm::Module &M = CGM.getModule();
4435   // Create a global variable for this string
4436   auto *GV = new llvm::GlobalVariable(
4437       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4438       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4439   GV->setAlignment(Alignment.getQuantity());
4440   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4441   if (GV->isWeakForLinker()) {
4442     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4443     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4444   }
4445   CGM.setDSOLocal(GV);
4446 
4447   return GV;
4448 }
4449 
4450 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4451 /// constant array for the given string literal.
4452 ConstantAddress
4453 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4454                                                   StringRef Name) {
4455   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4456 
4457   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4458   llvm::GlobalVariable **Entry = nullptr;
4459   if (!LangOpts.WritableStrings) {
4460     Entry = &ConstantStringMap[C];
4461     if (auto GV = *Entry) {
4462       if (Alignment.getQuantity() > GV->getAlignment())
4463         GV->setAlignment(Alignment.getQuantity());
4464       return ConstantAddress(GV, Alignment);
4465     }
4466   }
4467 
4468   SmallString<256> MangledNameBuffer;
4469   StringRef GlobalVariableName;
4470   llvm::GlobalValue::LinkageTypes LT;
4471 
4472   // Mangle the string literal if that's how the ABI merges duplicate strings.
4473   // Don't do it if they are writable, since we don't want writes in one TU to
4474   // affect strings in another.
4475   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4476       !LangOpts.WritableStrings) {
4477     llvm::raw_svector_ostream Out(MangledNameBuffer);
4478     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4479     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4480     GlobalVariableName = MangledNameBuffer;
4481   } else {
4482     LT = llvm::GlobalValue::PrivateLinkage;
4483     GlobalVariableName = Name;
4484   }
4485 
4486   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4487   if (Entry)
4488     *Entry = GV;
4489 
4490   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4491                                   QualType());
4492 
4493   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4494                          Alignment);
4495 }
4496 
4497 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4498 /// array for the given ObjCEncodeExpr node.
4499 ConstantAddress
4500 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4501   std::string Str;
4502   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4503 
4504   return GetAddrOfConstantCString(Str);
4505 }
4506 
4507 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4508 /// the literal and a terminating '\0' character.
4509 /// The result has pointer to array type.
4510 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4511     const std::string &Str, const char *GlobalName) {
4512   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4513   CharUnits Alignment =
4514     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4515 
4516   llvm::Constant *C =
4517       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4518 
4519   // Don't share any string literals if strings aren't constant.
4520   llvm::GlobalVariable **Entry = nullptr;
4521   if (!LangOpts.WritableStrings) {
4522     Entry = &ConstantStringMap[C];
4523     if (auto GV = *Entry) {
4524       if (Alignment.getQuantity() > GV->getAlignment())
4525         GV->setAlignment(Alignment.getQuantity());
4526       return ConstantAddress(GV, Alignment);
4527     }
4528   }
4529 
4530   // Get the default prefix if a name wasn't specified.
4531   if (!GlobalName)
4532     GlobalName = ".str";
4533   // Create a global variable for this.
4534   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4535                                   GlobalName, Alignment);
4536   if (Entry)
4537     *Entry = GV;
4538 
4539   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4540                          Alignment);
4541 }
4542 
4543 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4544     const MaterializeTemporaryExpr *E, const Expr *Init) {
4545   assert((E->getStorageDuration() == SD_Static ||
4546           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4547   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4548 
4549   // If we're not materializing a subobject of the temporary, keep the
4550   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4551   QualType MaterializedType = Init->getType();
4552   if (Init == E->GetTemporaryExpr())
4553     MaterializedType = E->getType();
4554 
4555   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4556 
4557   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4558     return ConstantAddress(Slot, Align);
4559 
4560   // FIXME: If an externally-visible declaration extends multiple temporaries,
4561   // we need to give each temporary the same name in every translation unit (and
4562   // we also need to make the temporaries externally-visible).
4563   SmallString<256> Name;
4564   llvm::raw_svector_ostream Out(Name);
4565   getCXXABI().getMangleContext().mangleReferenceTemporary(
4566       VD, E->getManglingNumber(), Out);
4567 
4568   APValue *Value = nullptr;
4569   if (E->getStorageDuration() == SD_Static) {
4570     // We might have a cached constant initializer for this temporary. Note
4571     // that this might have a different value from the value computed by
4572     // evaluating the initializer if the surrounding constant expression
4573     // modifies the temporary.
4574     Value = getContext().getMaterializedTemporaryValue(E, false);
4575     if (Value && Value->isUninit())
4576       Value = nullptr;
4577   }
4578 
4579   // Try evaluating it now, it might have a constant initializer.
4580   Expr::EvalResult EvalResult;
4581   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4582       !EvalResult.hasSideEffects())
4583     Value = &EvalResult.Val;
4584 
4585   LangAS AddrSpace =
4586       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4587 
4588   Optional<ConstantEmitter> emitter;
4589   llvm::Constant *InitialValue = nullptr;
4590   bool Constant = false;
4591   llvm::Type *Type;
4592   if (Value) {
4593     // The temporary has a constant initializer, use it.
4594     emitter.emplace(*this);
4595     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4596                                                MaterializedType);
4597     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4598     Type = InitialValue->getType();
4599   } else {
4600     // No initializer, the initialization will be provided when we
4601     // initialize the declaration which performed lifetime extension.
4602     Type = getTypes().ConvertTypeForMem(MaterializedType);
4603   }
4604 
4605   // Create a global variable for this lifetime-extended temporary.
4606   llvm::GlobalValue::LinkageTypes Linkage =
4607       getLLVMLinkageVarDefinition(VD, Constant);
4608   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4609     const VarDecl *InitVD;
4610     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4611         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4612       // Temporaries defined inside a class get linkonce_odr linkage because the
4613       // class can be defined in multiple translation units.
4614       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4615     } else {
4616       // There is no need for this temporary to have external linkage if the
4617       // VarDecl has external linkage.
4618       Linkage = llvm::GlobalVariable::InternalLinkage;
4619     }
4620   }
4621   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4622   auto *GV = new llvm::GlobalVariable(
4623       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4624       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4625   if (emitter) emitter->finalize(GV);
4626   setGVProperties(GV, VD);
4627   GV->setAlignment(Align.getQuantity());
4628   if (supportsCOMDAT() && GV->isWeakForLinker())
4629     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4630   if (VD->getTLSKind())
4631     setTLSMode(GV, *VD);
4632   llvm::Constant *CV = GV;
4633   if (AddrSpace != LangAS::Default)
4634     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4635         *this, GV, AddrSpace, LangAS::Default,
4636         Type->getPointerTo(
4637             getContext().getTargetAddressSpace(LangAS::Default)));
4638   MaterializedGlobalTemporaryMap[E] = CV;
4639   return ConstantAddress(CV, Align);
4640 }
4641 
4642 /// EmitObjCPropertyImplementations - Emit information for synthesized
4643 /// properties for an implementation.
4644 void CodeGenModule::EmitObjCPropertyImplementations(const
4645                                                     ObjCImplementationDecl *D) {
4646   for (const auto *PID : D->property_impls()) {
4647     // Dynamic is just for type-checking.
4648     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4649       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4650 
4651       // Determine which methods need to be implemented, some may have
4652       // been overridden. Note that ::isPropertyAccessor is not the method
4653       // we want, that just indicates if the decl came from a
4654       // property. What we want to know is if the method is defined in
4655       // this implementation.
4656       if (!D->getInstanceMethod(PD->getGetterName()))
4657         CodeGenFunction(*this).GenerateObjCGetter(
4658                                  const_cast<ObjCImplementationDecl *>(D), PID);
4659       if (!PD->isReadOnly() &&
4660           !D->getInstanceMethod(PD->getSetterName()))
4661         CodeGenFunction(*this).GenerateObjCSetter(
4662                                  const_cast<ObjCImplementationDecl *>(D), PID);
4663     }
4664   }
4665 }
4666 
4667 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4668   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4669   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4670        ivar; ivar = ivar->getNextIvar())
4671     if (ivar->getType().isDestructedType())
4672       return true;
4673 
4674   return false;
4675 }
4676 
4677 static bool AllTrivialInitializers(CodeGenModule &CGM,
4678                                    ObjCImplementationDecl *D) {
4679   CodeGenFunction CGF(CGM);
4680   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4681        E = D->init_end(); B != E; ++B) {
4682     CXXCtorInitializer *CtorInitExp = *B;
4683     Expr *Init = CtorInitExp->getInit();
4684     if (!CGF.isTrivialInitializer(Init))
4685       return false;
4686   }
4687   return true;
4688 }
4689 
4690 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4691 /// for an implementation.
4692 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4693   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4694   if (needsDestructMethod(D)) {
4695     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4696     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4697     ObjCMethodDecl *DTORMethod =
4698       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4699                              cxxSelector, getContext().VoidTy, nullptr, D,
4700                              /*isInstance=*/true, /*isVariadic=*/false,
4701                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4702                              /*isDefined=*/false, ObjCMethodDecl::Required);
4703     D->addInstanceMethod(DTORMethod);
4704     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4705     D->setHasDestructors(true);
4706   }
4707 
4708   // If the implementation doesn't have any ivar initializers, we don't need
4709   // a .cxx_construct.
4710   if (D->getNumIvarInitializers() == 0 ||
4711       AllTrivialInitializers(*this, D))
4712     return;
4713 
4714   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4715   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4716   // The constructor returns 'self'.
4717   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4718                                                 D->getLocation(),
4719                                                 D->getLocation(),
4720                                                 cxxSelector,
4721                                                 getContext().getObjCIdType(),
4722                                                 nullptr, D, /*isInstance=*/true,
4723                                                 /*isVariadic=*/false,
4724                                                 /*isPropertyAccessor=*/true,
4725                                                 /*isImplicitlyDeclared=*/true,
4726                                                 /*isDefined=*/false,
4727                                                 ObjCMethodDecl::Required);
4728   D->addInstanceMethod(CTORMethod);
4729   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4730   D->setHasNonZeroConstructors(true);
4731 }
4732 
4733 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4734 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4735   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4736       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4737     ErrorUnsupported(LSD, "linkage spec");
4738     return;
4739   }
4740 
4741   EmitDeclContext(LSD);
4742 }
4743 
4744 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4745   for (auto *I : DC->decls()) {
4746     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4747     // are themselves considered "top-level", so EmitTopLevelDecl on an
4748     // ObjCImplDecl does not recursively visit them. We need to do that in
4749     // case they're nested inside another construct (LinkageSpecDecl /
4750     // ExportDecl) that does stop them from being considered "top-level".
4751     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4752       for (auto *M : OID->methods())
4753         EmitTopLevelDecl(M);
4754     }
4755 
4756     EmitTopLevelDecl(I);
4757   }
4758 }
4759 
4760 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4761 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4762   // Ignore dependent declarations.
4763   if (D->isTemplated())
4764     return;
4765 
4766   switch (D->getKind()) {
4767   case Decl::CXXConversion:
4768   case Decl::CXXMethod:
4769   case Decl::Function:
4770     EmitGlobal(cast<FunctionDecl>(D));
4771     // Always provide some coverage mapping
4772     // even for the functions that aren't emitted.
4773     AddDeferredUnusedCoverageMapping(D);
4774     break;
4775 
4776   case Decl::CXXDeductionGuide:
4777     // Function-like, but does not result in code emission.
4778     break;
4779 
4780   case Decl::Var:
4781   case Decl::Decomposition:
4782   case Decl::VarTemplateSpecialization:
4783     EmitGlobal(cast<VarDecl>(D));
4784     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4785       for (auto *B : DD->bindings())
4786         if (auto *HD = B->getHoldingVar())
4787           EmitGlobal(HD);
4788     break;
4789 
4790   // Indirect fields from global anonymous structs and unions can be
4791   // ignored; only the actual variable requires IR gen support.
4792   case Decl::IndirectField:
4793     break;
4794 
4795   // C++ Decls
4796   case Decl::Namespace:
4797     EmitDeclContext(cast<NamespaceDecl>(D));
4798     break;
4799   case Decl::ClassTemplateSpecialization: {
4800     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4801     if (DebugInfo &&
4802         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4803         Spec->hasDefinition())
4804       DebugInfo->completeTemplateDefinition(*Spec);
4805   } LLVM_FALLTHROUGH;
4806   case Decl::CXXRecord:
4807     if (DebugInfo) {
4808       if (auto *ES = D->getASTContext().getExternalSource())
4809         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4810           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4811     }
4812     // Emit any static data members, they may be definitions.
4813     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4814       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4815         EmitTopLevelDecl(I);
4816     break;
4817     // No code generation needed.
4818   case Decl::UsingShadow:
4819   case Decl::ClassTemplate:
4820   case Decl::VarTemplate:
4821   case Decl::VarTemplatePartialSpecialization:
4822   case Decl::FunctionTemplate:
4823   case Decl::TypeAliasTemplate:
4824   case Decl::Block:
4825   case Decl::Empty:
4826   case Decl::Binding:
4827     break;
4828   case Decl::Using:          // using X; [C++]
4829     if (CGDebugInfo *DI = getModuleDebugInfo())
4830         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4831     return;
4832   case Decl::NamespaceAlias:
4833     if (CGDebugInfo *DI = getModuleDebugInfo())
4834         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4835     return;
4836   case Decl::UsingDirective: // using namespace X; [C++]
4837     if (CGDebugInfo *DI = getModuleDebugInfo())
4838       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4839     return;
4840   case Decl::CXXConstructor:
4841     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4842     break;
4843   case Decl::CXXDestructor:
4844     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4845     break;
4846 
4847   case Decl::StaticAssert:
4848     // Nothing to do.
4849     break;
4850 
4851   // Objective-C Decls
4852 
4853   // Forward declarations, no (immediate) code generation.
4854   case Decl::ObjCInterface:
4855   case Decl::ObjCCategory:
4856     break;
4857 
4858   case Decl::ObjCProtocol: {
4859     auto *Proto = cast<ObjCProtocolDecl>(D);
4860     if (Proto->isThisDeclarationADefinition())
4861       ObjCRuntime->GenerateProtocol(Proto);
4862     break;
4863   }
4864 
4865   case Decl::ObjCCategoryImpl:
4866     // Categories have properties but don't support synthesize so we
4867     // can ignore them here.
4868     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4869     break;
4870 
4871   case Decl::ObjCImplementation: {
4872     auto *OMD = cast<ObjCImplementationDecl>(D);
4873     EmitObjCPropertyImplementations(OMD);
4874     EmitObjCIvarInitializations(OMD);
4875     ObjCRuntime->GenerateClass(OMD);
4876     // Emit global variable debug information.
4877     if (CGDebugInfo *DI = getModuleDebugInfo())
4878       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4879         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4880             OMD->getClassInterface()), OMD->getLocation());
4881     break;
4882   }
4883   case Decl::ObjCMethod: {
4884     auto *OMD = cast<ObjCMethodDecl>(D);
4885     // If this is not a prototype, emit the body.
4886     if (OMD->getBody())
4887       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4888     break;
4889   }
4890   case Decl::ObjCCompatibleAlias:
4891     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4892     break;
4893 
4894   case Decl::PragmaComment: {
4895     const auto *PCD = cast<PragmaCommentDecl>(D);
4896     switch (PCD->getCommentKind()) {
4897     case PCK_Unknown:
4898       llvm_unreachable("unexpected pragma comment kind");
4899     case PCK_Linker:
4900       AppendLinkerOptions(PCD->getArg());
4901       break;
4902     case PCK_Lib:
4903       if (getTarget().getTriple().isOSBinFormatELF() &&
4904           !getTarget().getTriple().isPS4())
4905         AddELFLibDirective(PCD->getArg());
4906       else
4907         AddDependentLib(PCD->getArg());
4908       break;
4909     case PCK_Compiler:
4910     case PCK_ExeStr:
4911     case PCK_User:
4912       break; // We ignore all of these.
4913     }
4914     break;
4915   }
4916 
4917   case Decl::PragmaDetectMismatch: {
4918     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4919     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4920     break;
4921   }
4922 
4923   case Decl::LinkageSpec:
4924     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4925     break;
4926 
4927   case Decl::FileScopeAsm: {
4928     // File-scope asm is ignored during device-side CUDA compilation.
4929     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4930       break;
4931     // File-scope asm is ignored during device-side OpenMP compilation.
4932     if (LangOpts.OpenMPIsDevice)
4933       break;
4934     auto *AD = cast<FileScopeAsmDecl>(D);
4935     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4936     break;
4937   }
4938 
4939   case Decl::Import: {
4940     auto *Import = cast<ImportDecl>(D);
4941 
4942     // If we've already imported this module, we're done.
4943     if (!ImportedModules.insert(Import->getImportedModule()))
4944       break;
4945 
4946     // Emit debug information for direct imports.
4947     if (!Import->getImportedOwningModule()) {
4948       if (CGDebugInfo *DI = getModuleDebugInfo())
4949         DI->EmitImportDecl(*Import);
4950     }
4951 
4952     // Find all of the submodules and emit the module initializers.
4953     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4954     SmallVector<clang::Module *, 16> Stack;
4955     Visited.insert(Import->getImportedModule());
4956     Stack.push_back(Import->getImportedModule());
4957 
4958     while (!Stack.empty()) {
4959       clang::Module *Mod = Stack.pop_back_val();
4960       if (!EmittedModuleInitializers.insert(Mod).second)
4961         continue;
4962 
4963       for (auto *D : Context.getModuleInitializers(Mod))
4964         EmitTopLevelDecl(D);
4965 
4966       // Visit the submodules of this module.
4967       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4968                                              SubEnd = Mod->submodule_end();
4969            Sub != SubEnd; ++Sub) {
4970         // Skip explicit children; they need to be explicitly imported to emit
4971         // the initializers.
4972         if ((*Sub)->IsExplicit)
4973           continue;
4974 
4975         if (Visited.insert(*Sub).second)
4976           Stack.push_back(*Sub);
4977       }
4978     }
4979     break;
4980   }
4981 
4982   case Decl::Export:
4983     EmitDeclContext(cast<ExportDecl>(D));
4984     break;
4985 
4986   case Decl::OMPThreadPrivate:
4987     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4988     break;
4989 
4990   case Decl::OMPDeclareReduction:
4991     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4992     break;
4993 
4994   case Decl::OMPRequires:
4995     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
4996     break;
4997 
4998   default:
4999     // Make sure we handled everything we should, every other kind is a
5000     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5001     // function. Need to recode Decl::Kind to do that easily.
5002     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5003     break;
5004   }
5005 }
5006 
5007 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5008   // Do we need to generate coverage mapping?
5009   if (!CodeGenOpts.CoverageMapping)
5010     return;
5011   switch (D->getKind()) {
5012   case Decl::CXXConversion:
5013   case Decl::CXXMethod:
5014   case Decl::Function:
5015   case Decl::ObjCMethod:
5016   case Decl::CXXConstructor:
5017   case Decl::CXXDestructor: {
5018     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5019       return;
5020     SourceManager &SM = getContext().getSourceManager();
5021     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5022       return;
5023     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5024     if (I == DeferredEmptyCoverageMappingDecls.end())
5025       DeferredEmptyCoverageMappingDecls[D] = true;
5026     break;
5027   }
5028   default:
5029     break;
5030   };
5031 }
5032 
5033 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5034   // Do we need to generate coverage mapping?
5035   if (!CodeGenOpts.CoverageMapping)
5036     return;
5037   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5038     if (Fn->isTemplateInstantiation())
5039       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5040   }
5041   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5042   if (I == DeferredEmptyCoverageMappingDecls.end())
5043     DeferredEmptyCoverageMappingDecls[D] = false;
5044   else
5045     I->second = false;
5046 }
5047 
5048 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5049   // We call takeVector() here to avoid use-after-free.
5050   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5051   // we deserialize function bodies to emit coverage info for them, and that
5052   // deserializes more declarations. How should we handle that case?
5053   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5054     if (!Entry.second)
5055       continue;
5056     const Decl *D = Entry.first;
5057     switch (D->getKind()) {
5058     case Decl::CXXConversion:
5059     case Decl::CXXMethod:
5060     case Decl::Function:
5061     case Decl::ObjCMethod: {
5062       CodeGenPGO PGO(*this);
5063       GlobalDecl GD(cast<FunctionDecl>(D));
5064       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5065                                   getFunctionLinkage(GD));
5066       break;
5067     }
5068     case Decl::CXXConstructor: {
5069       CodeGenPGO PGO(*this);
5070       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5071       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5072                                   getFunctionLinkage(GD));
5073       break;
5074     }
5075     case Decl::CXXDestructor: {
5076       CodeGenPGO PGO(*this);
5077       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5078       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5079                                   getFunctionLinkage(GD));
5080       break;
5081     }
5082     default:
5083       break;
5084     };
5085   }
5086 }
5087 
5088 /// Turns the given pointer into a constant.
5089 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5090                                           const void *Ptr) {
5091   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5092   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5093   return llvm::ConstantInt::get(i64, PtrInt);
5094 }
5095 
5096 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5097                                    llvm::NamedMDNode *&GlobalMetadata,
5098                                    GlobalDecl D,
5099                                    llvm::GlobalValue *Addr) {
5100   if (!GlobalMetadata)
5101     GlobalMetadata =
5102       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5103 
5104   // TODO: should we report variant information for ctors/dtors?
5105   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5106                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5107                                CGM.getLLVMContext(), D.getDecl()))};
5108   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5109 }
5110 
5111 /// For each function which is declared within an extern "C" region and marked
5112 /// as 'used', but has internal linkage, create an alias from the unmangled
5113 /// name to the mangled name if possible. People expect to be able to refer
5114 /// to such functions with an unmangled name from inline assembly within the
5115 /// same translation unit.
5116 void CodeGenModule::EmitStaticExternCAliases() {
5117   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5118     return;
5119   for (auto &I : StaticExternCValues) {
5120     IdentifierInfo *Name = I.first;
5121     llvm::GlobalValue *Val = I.second;
5122     if (Val && !getModule().getNamedValue(Name->getName()))
5123       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5124   }
5125 }
5126 
5127 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5128                                              GlobalDecl &Result) const {
5129   auto Res = Manglings.find(MangledName);
5130   if (Res == Manglings.end())
5131     return false;
5132   Result = Res->getValue();
5133   return true;
5134 }
5135 
5136 /// Emits metadata nodes associating all the global values in the
5137 /// current module with the Decls they came from.  This is useful for
5138 /// projects using IR gen as a subroutine.
5139 ///
5140 /// Since there's currently no way to associate an MDNode directly
5141 /// with an llvm::GlobalValue, we create a global named metadata
5142 /// with the name 'clang.global.decl.ptrs'.
5143 void CodeGenModule::EmitDeclMetadata() {
5144   llvm::NamedMDNode *GlobalMetadata = nullptr;
5145 
5146   for (auto &I : MangledDeclNames) {
5147     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5148     // Some mangled names don't necessarily have an associated GlobalValue
5149     // in this module, e.g. if we mangled it for DebugInfo.
5150     if (Addr)
5151       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5152   }
5153 }
5154 
5155 /// Emits metadata nodes for all the local variables in the current
5156 /// function.
5157 void CodeGenFunction::EmitDeclMetadata() {
5158   if (LocalDeclMap.empty()) return;
5159 
5160   llvm::LLVMContext &Context = getLLVMContext();
5161 
5162   // Find the unique metadata ID for this name.
5163   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5164 
5165   llvm::NamedMDNode *GlobalMetadata = nullptr;
5166 
5167   for (auto &I : LocalDeclMap) {
5168     const Decl *D = I.first;
5169     llvm::Value *Addr = I.second.getPointer();
5170     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5171       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5172       Alloca->setMetadata(
5173           DeclPtrKind, llvm::MDNode::get(
5174                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5175     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5176       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5177       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5178     }
5179   }
5180 }
5181 
5182 void CodeGenModule::EmitVersionIdentMetadata() {
5183   llvm::NamedMDNode *IdentMetadata =
5184     TheModule.getOrInsertNamedMetadata("llvm.ident");
5185   std::string Version = getClangFullVersion();
5186   llvm::LLVMContext &Ctx = TheModule.getContext();
5187 
5188   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5189   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5190 }
5191 
5192 void CodeGenModule::EmitTargetMetadata() {
5193   // Warning, new MangledDeclNames may be appended within this loop.
5194   // We rely on MapVector insertions adding new elements to the end
5195   // of the container.
5196   // FIXME: Move this loop into the one target that needs it, and only
5197   // loop over those declarations for which we couldn't emit the target
5198   // metadata when we emitted the declaration.
5199   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5200     auto Val = *(MangledDeclNames.begin() + I);
5201     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5202     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5203     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5204   }
5205 }
5206 
5207 void CodeGenModule::EmitCoverageFile() {
5208   if (getCodeGenOpts().CoverageDataFile.empty() &&
5209       getCodeGenOpts().CoverageNotesFile.empty())
5210     return;
5211 
5212   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5213   if (!CUNode)
5214     return;
5215 
5216   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5217   llvm::LLVMContext &Ctx = TheModule.getContext();
5218   auto *CoverageDataFile =
5219       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5220   auto *CoverageNotesFile =
5221       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5222   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5223     llvm::MDNode *CU = CUNode->getOperand(i);
5224     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5225     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5226   }
5227 }
5228 
5229 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5230   // Sema has checked that all uuid strings are of the form
5231   // "12345678-1234-1234-1234-1234567890ab".
5232   assert(Uuid.size() == 36);
5233   for (unsigned i = 0; i < 36; ++i) {
5234     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5235     else                                         assert(isHexDigit(Uuid[i]));
5236   }
5237 
5238   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5239   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5240 
5241   llvm::Constant *Field3[8];
5242   for (unsigned Idx = 0; Idx < 8; ++Idx)
5243     Field3[Idx] = llvm::ConstantInt::get(
5244         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5245 
5246   llvm::Constant *Fields[4] = {
5247     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5248     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5249     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5250     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5251   };
5252 
5253   return llvm::ConstantStruct::getAnon(Fields);
5254 }
5255 
5256 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5257                                                        bool ForEH) {
5258   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5259   // FIXME: should we even be calling this method if RTTI is disabled
5260   // and it's not for EH?
5261   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5262     return llvm::Constant::getNullValue(Int8PtrTy);
5263 
5264   if (ForEH && Ty->isObjCObjectPointerType() &&
5265       LangOpts.ObjCRuntime.isGNUFamily())
5266     return ObjCRuntime->GetEHType(Ty);
5267 
5268   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5269 }
5270 
5271 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5272   // Do not emit threadprivates in simd-only mode.
5273   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5274     return;
5275   for (auto RefExpr : D->varlists()) {
5276     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5277     bool PerformInit =
5278         VD->getAnyInitializer() &&
5279         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5280                                                         /*ForRef=*/false);
5281 
5282     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5283     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5284             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5285       CXXGlobalInits.push_back(InitFunction);
5286   }
5287 }
5288 
5289 llvm::Metadata *
5290 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5291                                             StringRef Suffix) {
5292   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5293   if (InternalId)
5294     return InternalId;
5295 
5296   if (isExternallyVisible(T->getLinkage())) {
5297     std::string OutName;
5298     llvm::raw_string_ostream Out(OutName);
5299     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5300     Out << Suffix;
5301 
5302     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5303   } else {
5304     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5305                                            llvm::ArrayRef<llvm::Metadata *>());
5306   }
5307 
5308   return InternalId;
5309 }
5310 
5311 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5312   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5313 }
5314 
5315 llvm::Metadata *
5316 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5317   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5318 }
5319 
5320 // Generalize pointer types to a void pointer with the qualifiers of the
5321 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5322 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5323 // 'void *'.
5324 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5325   if (!Ty->isPointerType())
5326     return Ty;
5327 
5328   return Ctx.getPointerType(
5329       QualType(Ctx.VoidTy).withCVRQualifiers(
5330           Ty->getPointeeType().getCVRQualifiers()));
5331 }
5332 
5333 // Apply type generalization to a FunctionType's return and argument types
5334 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5335   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5336     SmallVector<QualType, 8> GeneralizedParams;
5337     for (auto &Param : FnType->param_types())
5338       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5339 
5340     return Ctx.getFunctionType(
5341         GeneralizeType(Ctx, FnType->getReturnType()),
5342         GeneralizedParams, FnType->getExtProtoInfo());
5343   }
5344 
5345   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5346     return Ctx.getFunctionNoProtoType(
5347         GeneralizeType(Ctx, FnType->getReturnType()));
5348 
5349   llvm_unreachable("Encountered unknown FunctionType");
5350 }
5351 
5352 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5353   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5354                                       GeneralizedMetadataIdMap, ".generalized");
5355 }
5356 
5357 /// Returns whether this module needs the "all-vtables" type identifier.
5358 bool CodeGenModule::NeedAllVtablesTypeId() const {
5359   // Returns true if at least one of vtable-based CFI checkers is enabled and
5360   // is not in the trapping mode.
5361   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5362            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5363           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5364            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5365           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5366            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5367           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5368            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5369 }
5370 
5371 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5372                                           CharUnits Offset,
5373                                           const CXXRecordDecl *RD) {
5374   llvm::Metadata *MD =
5375       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5376   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5377 
5378   if (CodeGenOpts.SanitizeCfiCrossDso)
5379     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5380       VTable->addTypeMetadata(Offset.getQuantity(),
5381                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5382 
5383   if (NeedAllVtablesTypeId()) {
5384     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5385     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5386   }
5387 }
5388 
5389 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5390   assert(TD != nullptr);
5391   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5392 
5393   ParsedAttr.Features.erase(
5394       llvm::remove_if(ParsedAttr.Features,
5395                       [&](const std::string &Feat) {
5396                         return !Target.isValidFeatureName(
5397                             StringRef{Feat}.substr(1));
5398                       }),
5399       ParsedAttr.Features.end());
5400   return ParsedAttr;
5401 }
5402 
5403 
5404 // Fills in the supplied string map with the set of target features for the
5405 // passed in function.
5406 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5407                                           const FunctionDecl *FD) {
5408   StringRef TargetCPU = Target.getTargetOpts().CPU;
5409   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5410     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5411 
5412     // Make a copy of the features as passed on the command line into the
5413     // beginning of the additional features from the function to override.
5414     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5415                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5416                             Target.getTargetOpts().FeaturesAsWritten.end());
5417 
5418     if (ParsedAttr.Architecture != "" &&
5419         Target.isValidCPUName(ParsedAttr.Architecture))
5420       TargetCPU = ParsedAttr.Architecture;
5421 
5422     // Now populate the feature map, first with the TargetCPU which is either
5423     // the default or a new one from the target attribute string. Then we'll use
5424     // the passed in features (FeaturesAsWritten) along with the new ones from
5425     // the attribute.
5426     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5427                           ParsedAttr.Features);
5428   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5429     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5430     Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(),
5431                                              FeaturesTmp);
5432     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5433     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5434   } else {
5435     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5436                           Target.getTargetOpts().Features);
5437   }
5438 }
5439 
5440 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5441   if (!SanStats)
5442     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5443 
5444   return *SanStats;
5445 }
5446 llvm::Value *
5447 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5448                                                   CodeGenFunction &CGF) {
5449   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5450   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5451   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5452   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5453                                 "__translate_sampler_initializer"),
5454                                 {C});
5455 }
5456