1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 #include "llvm/Support/ErrorHandling.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 
38 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
39                              llvm::Module &M, const llvm::TargetData &TD,
40                              Diagnostic &diags)
41   : BlockModule(C, M, TD, Types, *this), Context(C),
42     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
43     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
44     VtableInfo(*this), Runtime(0),
45     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
46     VMContext(M.getContext()) {
47 
48   if (!Features.ObjC1)
49     Runtime = 0;
50   else if (!Features.NeXTRuntime)
51     Runtime = CreateGNUObjCRuntime(*this);
52   else if (Features.ObjCNonFragileABI)
53     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
54   else
55     Runtime = CreateMacObjCRuntime(*this);
56 
57   // If debug info generation is enabled, create the CGDebugInfo object.
58   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0;
59 }
60 
61 CodeGenModule::~CodeGenModule() {
62   delete Runtime;
63   delete DebugInfo;
64 }
65 
66 void CodeGenModule::Release() {
67   // We need to call this first because it can add deferred declarations.
68   EmitCXXGlobalInitFunc();
69 
70   EmitDeferred();
71   if (Runtime)
72     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
73       AddGlobalCtor(ObjCInitFunction);
74   EmitCtorList(GlobalCtors, "llvm.global_ctors");
75   EmitCtorList(GlobalDtors, "llvm.global_dtors");
76   EmitAnnotations();
77   EmitLLVMUsed();
78 }
79 
80 /// ErrorUnsupported - Print out an error that codegen doesn't support the
81 /// specified stmt yet.
82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
83                                      bool OmitOnError) {
84   if (OmitOnError && getDiags().hasErrorOccurred())
85     return;
86   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
87                                                "cannot compile this %0 yet");
88   std::string Msg = Type;
89   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
90     << Msg << S->getSourceRange();
91 }
92 
93 /// ErrorUnsupported - Print out an error that codegen doesn't support the
94 /// specified decl yet.
95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
96                                      bool OmitOnError) {
97   if (OmitOnError && getDiags().hasErrorOccurred())
98     return;
99   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
100                                                "cannot compile this %0 yet");
101   std::string Msg = Type;
102   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
103 }
104 
105 LangOptions::VisibilityMode
106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
107   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
108     if (VD->getStorageClass() == VarDecl::PrivateExtern)
109       return LangOptions::Hidden;
110 
111   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
112     switch (attr->getVisibility()) {
113     default: assert(0 && "Unknown visibility!");
114     case VisibilityAttr::DefaultVisibility:
115       return LangOptions::Default;
116     case VisibilityAttr::HiddenVisibility:
117       return LangOptions::Hidden;
118     case VisibilityAttr::ProtectedVisibility:
119       return LangOptions::Protected;
120     }
121   }
122 
123   return getLangOptions().getVisibilityMode();
124 }
125 
126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
127                                         const Decl *D) const {
128   // Internal definitions always have default visibility.
129   if (GV->hasLocalLinkage()) {
130     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131     return;
132   }
133 
134   switch (getDeclVisibilityMode(D)) {
135   default: assert(0 && "Unknown visibility!");
136   case LangOptions::Default:
137     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
138   case LangOptions::Hidden:
139     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
140   case LangOptions::Protected:
141     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
142   }
143 }
144 
145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
146   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
147 
148   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
149     return getMangledCXXCtorName(D, GD.getCtorType());
150   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
151     return getMangledCXXDtorName(D, GD.getDtorType());
152 
153   return getMangledName(ND);
154 }
155 
156 /// \brief Retrieves the mangled name for the given declaration.
157 ///
158 /// If the given declaration requires a mangled name, returns an
159 /// const char* containing the mangled name.  Otherwise, returns
160 /// the unmangled name.
161 ///
162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
163   // In C, functions with no attributes never need to be mangled. Fastpath them.
164   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   llvm::raw_svector_ostream Out(Name);
171   if (!mangleName(getMangleContext(), ND, Out)) {
172     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
173     return ND->getNameAsCString();
174   }
175 
176   Name += '\0';
177   return UniqueMangledName(Name.begin(), Name.end());
178 }
179 
180 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
181                                              const char *NameEnd) {
182   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
183 
184   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
185 }
186 
187 /// AddGlobalCtor - Add a function to the list that will be called before
188 /// main() runs.
189 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
190   // FIXME: Type coercion of void()* types.
191   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
192 }
193 
194 /// AddGlobalDtor - Add a function to the list that will be called
195 /// when the module is unloaded.
196 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
197   // FIXME: Type coercion of void()* types.
198   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
199 }
200 
201 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
202   // Ctor function type is void()*.
203   llvm::FunctionType* CtorFTy =
204     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
205                             std::vector<const llvm::Type*>(),
206                             false);
207   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
208 
209   // Get the type of a ctor entry, { i32, void ()* }.
210   llvm::StructType* CtorStructTy =
211     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
212                           llvm::PointerType::getUnqual(CtorFTy), NULL);
213 
214   // Construct the constructor and destructor arrays.
215   std::vector<llvm::Constant*> Ctors;
216   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
217     std::vector<llvm::Constant*> S;
218     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
219                 I->second, false));
220     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
221     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
222   }
223 
224   if (!Ctors.empty()) {
225     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
226     new llvm::GlobalVariable(TheModule, AT, false,
227                              llvm::GlobalValue::AppendingLinkage,
228                              llvm::ConstantArray::get(AT, Ctors),
229                              GlobalName);
230   }
231 }
232 
233 void CodeGenModule::EmitAnnotations() {
234   if (Annotations.empty())
235     return;
236 
237   // Create a new global variable for the ConstantStruct in the Module.
238   llvm::Constant *Array =
239   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
240                                                 Annotations.size()),
241                            Annotations);
242   llvm::GlobalValue *gv =
243   new llvm::GlobalVariable(TheModule, Array->getType(), false,
244                            llvm::GlobalValue::AppendingLinkage, Array,
245                            "llvm.global.annotations");
246   gv->setSection("llvm.metadata");
247 }
248 
249 static CodeGenModule::GVALinkage
250 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
251                       const LangOptions &Features) {
252   // Everything located semantically within an anonymous namespace is
253   // always internal.
254   if (FD->isInAnonymousNamespace())
255     return CodeGenModule::GVA_Internal;
256 
257   // "static" functions get internal linkage.
258   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
259     return CodeGenModule::GVA_Internal;
260 
261   // The kind of external linkage this function will have, if it is not
262   // inline or static.
263   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
264   if (Context.getLangOptions().CPlusPlus &&
265       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
266     External = CodeGenModule::GVA_TemplateInstantiation;
267 
268   if (!FD->isInlined())
269     return External;
270 
271   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
272     // GNU or C99 inline semantics. Determine whether this symbol should be
273     // externally visible.
274     if (FD->isInlineDefinitionExternallyVisible())
275       return External;
276 
277     // C99 inline semantics, where the symbol is not externally visible.
278     return CodeGenModule::GVA_C99Inline;
279   }
280 
281   // C++0x [temp.explicit]p9:
282   //   [ Note: The intent is that an inline function that is the subject of
283   //   an explicit instantiation declaration will still be implicitly
284   //   instantiated when used so that the body can be considered for
285   //   inlining, but that no out-of-line copy of the inline function would be
286   //   generated in the translation unit. -- end note ]
287   if (FD->getTemplateSpecializationKind()
288                                        == TSK_ExplicitInstantiationDeclaration)
289     return CodeGenModule::GVA_C99Inline;
290 
291   return CodeGenModule::GVA_CXXInline;
292 }
293 
294 /// SetFunctionDefinitionAttributes - Set attributes for a global.
295 ///
296 /// FIXME: This is currently only done for aliases and functions, but not for
297 /// variables (these details are set in EmitGlobalVarDefinition for variables).
298 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
299                                                     llvm::GlobalValue *GV) {
300   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
301 
302   if (Linkage == GVA_Internal) {
303     GV->setLinkage(llvm::Function::InternalLinkage);
304   } else if (D->hasAttr<DLLExportAttr>()) {
305     GV->setLinkage(llvm::Function::DLLExportLinkage);
306   } else if (D->hasAttr<WeakAttr>()) {
307     GV->setLinkage(llvm::Function::WeakAnyLinkage);
308   } else if (Linkage == GVA_C99Inline) {
309     // In C99 mode, 'inline' functions are guaranteed to have a strong
310     // definition somewhere else, so we can use available_externally linkage.
311     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
312   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
313     // In C++, the compiler has to emit a definition in every translation unit
314     // that references the function.  We should use linkonce_odr because
315     // a) if all references in this translation unit are optimized away, we
316     // don't need to codegen it.  b) if the function persists, it needs to be
317     // merged with other definitions. c) C++ has the ODR, so we know the
318     // definition is dependable.
319     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
320   } else {
321     assert(Linkage == GVA_StrongExternal);
322     // Otherwise, we have strong external linkage.
323     GV->setLinkage(llvm::Function::ExternalLinkage);
324   }
325 
326   SetCommonAttributes(D, GV);
327 }
328 
329 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
330                                               const CGFunctionInfo &Info,
331                                               llvm::Function *F) {
332   unsigned CallingConv;
333   AttributeListType AttributeList;
334   ConstructAttributeList(Info, D, AttributeList, CallingConv);
335   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
336                                           AttributeList.size()));
337   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
338 }
339 
340 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
341                                                            llvm::Function *F) {
342   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
343     F->addFnAttr(llvm::Attribute::NoUnwind);
344 
345   if (D->hasAttr<AlwaysInlineAttr>())
346     F->addFnAttr(llvm::Attribute::AlwaysInline);
347 
348   if (D->hasAttr<NoInlineAttr>())
349     F->addFnAttr(llvm::Attribute::NoInline);
350 
351   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
352     F->addFnAttr(llvm::Attribute::StackProtect);
353   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
354     F->addFnAttr(llvm::Attribute::StackProtectReq);
355 
356   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
357     F->setAlignment(AA->getAlignment()/8);
358   // C++ ABI requires 2-byte alignment for member functions.
359   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
360     F->setAlignment(2);
361 }
362 
363 void CodeGenModule::SetCommonAttributes(const Decl *D,
364                                         llvm::GlobalValue *GV) {
365   setGlobalVisibility(GV, D);
366 
367   if (D->hasAttr<UsedAttr>())
368     AddUsedGlobal(GV);
369 
370   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
371     GV->setSection(SA->getName());
372 }
373 
374 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
375                                                   llvm::Function *F,
376                                                   const CGFunctionInfo &FI) {
377   SetLLVMFunctionAttributes(D, FI, F);
378   SetLLVMFunctionAttributesForDefinition(D, F);
379 
380   F->setLinkage(llvm::Function::InternalLinkage);
381 
382   SetCommonAttributes(D, F);
383 }
384 
385 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
386                                           llvm::Function *F,
387                                           bool IsIncompleteFunction) {
388   if (!IsIncompleteFunction)
389     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
390 
391   // Only a few attributes are set on declarations; these may later be
392   // overridden by a definition.
393 
394   if (FD->hasAttr<DLLImportAttr>()) {
395     F->setLinkage(llvm::Function::DLLImportLinkage);
396   } else if (FD->hasAttr<WeakAttr>() ||
397              FD->hasAttr<WeakImportAttr>()) {
398     // "extern_weak" is overloaded in LLVM; we probably should have
399     // separate linkage types for this.
400     F->setLinkage(llvm::Function::ExternalWeakLinkage);
401   } else {
402     F->setLinkage(llvm::Function::ExternalLinkage);
403   }
404 
405   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
406     F->setSection(SA->getName());
407 }
408 
409 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
410   assert(!GV->isDeclaration() &&
411          "Only globals with definition can force usage.");
412   LLVMUsed.push_back(GV);
413 }
414 
415 void CodeGenModule::EmitLLVMUsed() {
416   // Don't create llvm.used if there is no need.
417   if (LLVMUsed.empty())
418     return;
419 
420   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
421 
422   // Convert LLVMUsed to what ConstantArray needs.
423   std::vector<llvm::Constant*> UsedArray;
424   UsedArray.resize(LLVMUsed.size());
425   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
426     UsedArray[i] =
427      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
428                                       i8PTy);
429   }
430 
431   if (UsedArray.empty())
432     return;
433   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
434 
435   llvm::GlobalVariable *GV =
436     new llvm::GlobalVariable(getModule(), ATy, false,
437                              llvm::GlobalValue::AppendingLinkage,
438                              llvm::ConstantArray::get(ATy, UsedArray),
439                              "llvm.used");
440 
441   GV->setSection("llvm.metadata");
442 }
443 
444 void CodeGenModule::EmitDeferred() {
445   // Emit code for any potentially referenced deferred decls.  Since a
446   // previously unused static decl may become used during the generation of code
447   // for a static function, iterate until no  changes are made.
448   while (!DeferredDeclsToEmit.empty()) {
449     GlobalDecl D = DeferredDeclsToEmit.back();
450     DeferredDeclsToEmit.pop_back();
451 
452     // The mangled name for the decl must have been emitted in GlobalDeclMap.
453     // Look it up to see if it was defined with a stronger definition (e.g. an
454     // extern inline function with a strong function redefinition).  If so,
455     // just ignore the deferred decl.
456     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
457     assert(CGRef && "Deferred decl wasn't referenced?");
458 
459     if (!CGRef->isDeclaration())
460       continue;
461 
462     // Otherwise, emit the definition and move on to the next one.
463     EmitGlobalDefinition(D);
464   }
465 }
466 
467 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
468 /// annotation information for a given GlobalValue.  The annotation struct is
469 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
470 /// GlobalValue being annotated.  The second field is the constant string
471 /// created from the AnnotateAttr's annotation.  The third field is a constant
472 /// string containing the name of the translation unit.  The fourth field is
473 /// the line number in the file of the annotated value declaration.
474 ///
475 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
476 ///        appears to.
477 ///
478 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
479                                                 const AnnotateAttr *AA,
480                                                 unsigned LineNo) {
481   llvm::Module *M = &getModule();
482 
483   // get [N x i8] constants for the annotation string, and the filename string
484   // which are the 2nd and 3rd elements of the global annotation structure.
485   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
486   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
487                                                   AA->getAnnotation(), true);
488   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
489                                                   M->getModuleIdentifier(),
490                                                   true);
491 
492   // Get the two global values corresponding to the ConstantArrays we just
493   // created to hold the bytes of the strings.
494   llvm::GlobalValue *annoGV =
495     new llvm::GlobalVariable(*M, anno->getType(), false,
496                              llvm::GlobalValue::PrivateLinkage, anno,
497                              GV->getName());
498   // translation unit name string, emitted into the llvm.metadata section.
499   llvm::GlobalValue *unitGV =
500     new llvm::GlobalVariable(*M, unit->getType(), false,
501                              llvm::GlobalValue::PrivateLinkage, unit,
502                              ".str");
503 
504   // Create the ConstantStruct for the global annotation.
505   llvm::Constant *Fields[4] = {
506     llvm::ConstantExpr::getBitCast(GV, SBP),
507     llvm::ConstantExpr::getBitCast(annoGV, SBP),
508     llvm::ConstantExpr::getBitCast(unitGV, SBP),
509     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
510   };
511   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
512 }
513 
514 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
515   // Never defer when EmitAllDecls is specified or the decl has
516   // attribute used.
517   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
518     return false;
519 
520   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
521     // Constructors and destructors should never be deferred.
522     if (FD->hasAttr<ConstructorAttr>() ||
523         FD->hasAttr<DestructorAttr>())
524       return false;
525 
526     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
527 
528     // static, static inline, always_inline, and extern inline functions can
529     // always be deferred.  Normal inline functions can be deferred in C99/C++.
530     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
531         Linkage == GVA_CXXInline)
532       return true;
533     return false;
534   }
535 
536   const VarDecl *VD = cast<VarDecl>(Global);
537   assert(VD->isFileVarDecl() && "Invalid decl");
538 
539   // We never want to defer structs that have non-trivial constructors or
540   // destructors.
541 
542   // FIXME: Handle references.
543   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
544     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
545       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
546         return false;
547     }
548   }
549 
550   // Static data may be deferred, but out-of-line static data members
551   // cannot be.
552   if (VD->isInAnonymousNamespace())
553     return true;
554   if (VD->getStorageClass() == VarDecl::Static) {
555     // Initializer has side effects?
556     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
557       return false;
558     return !(VD->isStaticDataMember() && VD->isOutOfLine());
559   }
560   return false;
561 }
562 
563 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
564   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
565 
566   // If this is an alias definition (which otherwise looks like a declaration)
567   // emit it now.
568   if (Global->hasAttr<AliasAttr>())
569     return EmitAliasDefinition(Global);
570 
571   // Ignore declarations, they will be emitted on their first use.
572   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
573     // Forward declarations are emitted lazily on first use.
574     if (!FD->isThisDeclarationADefinition())
575       return;
576   } else {
577     const VarDecl *VD = cast<VarDecl>(Global);
578     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
579 
580     // In C++, if this is marked "extern", defer code generation.
581     if (getLangOptions().CPlusPlus && !VD->getInit() &&
582         (VD->getStorageClass() == VarDecl::Extern ||
583          VD->isExternC()))
584       return;
585 
586     // In C, if this isn't a definition, defer code generation.
587     if (!getLangOptions().CPlusPlus && !VD->getInit())
588       return;
589   }
590 
591   // Defer code generation when possible if this is a static definition, inline
592   // function etc.  These we only want to emit if they are used.
593   if (MayDeferGeneration(Global)) {
594     // If the value has already been used, add it directly to the
595     // DeferredDeclsToEmit list.
596     const char *MangledName = getMangledName(GD);
597     if (GlobalDeclMap.count(MangledName))
598       DeferredDeclsToEmit.push_back(GD);
599     else {
600       // Otherwise, remember that we saw a deferred decl with this name.  The
601       // first use of the mangled name will cause it to move into
602       // DeferredDeclsToEmit.
603       DeferredDecls[MangledName] = GD;
604     }
605     return;
606   }
607 
608   // Otherwise emit the definition.
609   EmitGlobalDefinition(GD);
610 }
611 
612 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
613   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
614 
615   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
616                                  Context.getSourceManager(),
617                                  "Generating code for declaration");
618 
619   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
620     EmitCXXConstructor(CD, GD.getCtorType());
621   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
622     EmitCXXDestructor(DD, GD.getDtorType());
623   else if (isa<FunctionDecl>(D))
624     EmitGlobalFunctionDefinition(GD);
625   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
626     EmitGlobalVarDefinition(VD);
627   else {
628     assert(0 && "Invalid argument to EmitGlobalDefinition()");
629   }
630 }
631 
632 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
633 /// module, create and return an llvm Function with the specified type. If there
634 /// is something in the module with the specified name, return it potentially
635 /// bitcasted to the right type.
636 ///
637 /// If D is non-null, it specifies a decl that correspond to this.  This is used
638 /// to set the attributes on the function when it is first created.
639 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
640                                                        const llvm::Type *Ty,
641                                                        GlobalDecl D) {
642   // Lookup the entry, lazily creating it if necessary.
643   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
644   if (Entry) {
645     if (Entry->getType()->getElementType() == Ty)
646       return Entry;
647 
648     // Make sure the result is of the correct type.
649     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
650     return llvm::ConstantExpr::getBitCast(Entry, PTy);
651   }
652 
653   // This function doesn't have a complete type (for example, the return
654   // type is an incomplete struct). Use a fake type instead, and make
655   // sure not to try to set attributes.
656   bool IsIncompleteFunction = false;
657   if (!isa<llvm::FunctionType>(Ty)) {
658     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
659                                  std::vector<const llvm::Type*>(), false);
660     IsIncompleteFunction = true;
661   }
662   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
663                                              llvm::Function::ExternalLinkage,
664                                              "", &getModule());
665   F->setName(MangledName);
666   if (D.getDecl())
667     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
668                           IsIncompleteFunction);
669   Entry = F;
670 
671   // This is the first use or definition of a mangled name.  If there is a
672   // deferred decl with this name, remember that we need to emit it at the end
673   // of the file.
674   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
675     DeferredDecls.find(MangledName);
676   if (DDI != DeferredDecls.end()) {
677     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
678     // list, and remove it from DeferredDecls (since we don't need it anymore).
679     DeferredDeclsToEmit.push_back(DDI->second);
680     DeferredDecls.erase(DDI);
681   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
682     // If this the first reference to a C++ inline function in a class, queue up
683     // the deferred function body for emission.  These are not seen as
684     // top-level declarations.
685     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
686       DeferredDeclsToEmit.push_back(D);
687     // A called constructor which has no definition or declaration need be
688     // synthesized.
689     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
690       const CXXRecordDecl *ClassDecl =
691         cast<CXXRecordDecl>(CD->getDeclContext());
692       if (CD->isCopyConstructor(getContext()))
693         DeferredCopyConstructorToEmit(D);
694       else if (!ClassDecl->hasUserDeclaredConstructor())
695         DeferredDeclsToEmit.push_back(D);
696     }
697     else if (isa<CXXDestructorDecl>(FD))
698        DeferredDestructorToEmit(D);
699     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
700            if (MD->isCopyAssignment())
701              DeferredCopyAssignmentToEmit(D);
702   }
703 
704   return F;
705 }
706 
707 /// Defer definition of copy constructor(s) which need be implicitly defined.
708 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
709   const CXXConstructorDecl *CD =
710     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
711   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
712   if (ClassDecl->hasTrivialCopyConstructor() ||
713       ClassDecl->hasUserDeclaredCopyConstructor())
714     return;
715 
716   // First make sure all direct base classes and virtual bases and non-static
717   // data mebers which need to have their copy constructors implicitly defined
718   // are defined. 12.8.p7
719   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
720        Base != ClassDecl->bases_end(); ++Base) {
721     CXXRecordDecl *BaseClassDecl
722       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
723     if (CXXConstructorDecl *BaseCopyCtor =
724         BaseClassDecl->getCopyConstructor(Context, 0))
725       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
726   }
727 
728   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
729        FieldEnd = ClassDecl->field_end();
730        Field != FieldEnd; ++Field) {
731     QualType FieldType = Context.getCanonicalType((*Field)->getType());
732     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
733       FieldType = Array->getElementType();
734     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
735       if ((*Field)->isAnonymousStructOrUnion())
736         continue;
737       CXXRecordDecl *FieldClassDecl
738         = cast<CXXRecordDecl>(FieldClassType->getDecl());
739       if (CXXConstructorDecl *FieldCopyCtor =
740           FieldClassDecl->getCopyConstructor(Context, 0))
741         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
742     }
743   }
744   DeferredDeclsToEmit.push_back(CopyCtorDecl);
745 }
746 
747 /// Defer definition of copy assignments which need be implicitly defined.
748 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
749   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
750   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
751 
752   if (ClassDecl->hasTrivialCopyAssignment() ||
753       ClassDecl->hasUserDeclaredCopyAssignment())
754     return;
755 
756   // First make sure all direct base classes and virtual bases and non-static
757   // data mebers which need to have their copy assignments implicitly defined
758   // are defined. 12.8.p12
759   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
760        Base != ClassDecl->bases_end(); ++Base) {
761     CXXRecordDecl *BaseClassDecl
762       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
763     const CXXMethodDecl *MD = 0;
764     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
765         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
766         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
767       GetAddrOfFunction(MD, 0);
768   }
769 
770   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
771        FieldEnd = ClassDecl->field_end();
772        Field != FieldEnd; ++Field) {
773     QualType FieldType = Context.getCanonicalType((*Field)->getType());
774     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
775       FieldType = Array->getElementType();
776     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
777       if ((*Field)->isAnonymousStructOrUnion())
778         continue;
779       CXXRecordDecl *FieldClassDecl
780         = cast<CXXRecordDecl>(FieldClassType->getDecl());
781       const CXXMethodDecl *MD = 0;
782       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
783           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
784           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
785           GetAddrOfFunction(MD, 0);
786     }
787   }
788   DeferredDeclsToEmit.push_back(CopyAssignDecl);
789 }
790 
791 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
792   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
793   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
794   if (ClassDecl->hasTrivialDestructor() ||
795       ClassDecl->hasUserDeclaredDestructor())
796     return;
797 
798   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
799        Base != ClassDecl->bases_end(); ++Base) {
800     CXXRecordDecl *BaseClassDecl
801       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
802     if (const CXXDestructorDecl *BaseDtor =
803           BaseClassDecl->getDestructor(Context))
804       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
805   }
806 
807   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
808        FieldEnd = ClassDecl->field_end();
809        Field != FieldEnd; ++Field) {
810     QualType FieldType = Context.getCanonicalType((*Field)->getType());
811     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
812       FieldType = Array->getElementType();
813     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
814       if ((*Field)->isAnonymousStructOrUnion())
815         continue;
816       CXXRecordDecl *FieldClassDecl
817         = cast<CXXRecordDecl>(FieldClassType->getDecl());
818       if (const CXXDestructorDecl *FieldDtor =
819             FieldClassDecl->getDestructor(Context))
820         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
821     }
822   }
823   DeferredDeclsToEmit.push_back(DtorDecl);
824 }
825 
826 
827 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
828 /// non-null, then this function will use the specified type if it has to
829 /// create it (this occurs when we see a definition of the function).
830 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
831                                                  const llvm::Type *Ty) {
832   // If there was no specific requested type, just convert it now.
833   if (!Ty)
834     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
835   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
836 }
837 
838 /// CreateRuntimeFunction - Create a new runtime function with the specified
839 /// type and name.
840 llvm::Constant *
841 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
842                                      const char *Name) {
843   // Convert Name to be a uniqued string from the IdentifierInfo table.
844   Name = getContext().Idents.get(Name).getNameStart();
845   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
846 }
847 
848 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
849 /// create and return an llvm GlobalVariable with the specified type.  If there
850 /// is something in the module with the specified name, return it potentially
851 /// bitcasted to the right type.
852 ///
853 /// If D is non-null, it specifies a decl that correspond to this.  This is used
854 /// to set the attributes on the global when it is first created.
855 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
856                                                      const llvm::PointerType*Ty,
857                                                      const VarDecl *D) {
858   // Lookup the entry, lazily creating it if necessary.
859   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
860   if (Entry) {
861     if (Entry->getType() == Ty)
862       return Entry;
863 
864     // Make sure the result is of the correct type.
865     return llvm::ConstantExpr::getBitCast(Entry, Ty);
866   }
867 
868   // This is the first use or definition of a mangled name.  If there is a
869   // deferred decl with this name, remember that we need to emit it at the end
870   // of the file.
871   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
872     DeferredDecls.find(MangledName);
873   if (DDI != DeferredDecls.end()) {
874     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
875     // list, and remove it from DeferredDecls (since we don't need it anymore).
876     DeferredDeclsToEmit.push_back(DDI->second);
877     DeferredDecls.erase(DDI);
878   }
879 
880   llvm::GlobalVariable *GV =
881     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
882                              llvm::GlobalValue::ExternalLinkage,
883                              0, "", 0,
884                              false, Ty->getAddressSpace());
885   GV->setName(MangledName);
886 
887   // Handle things which are present even on external declarations.
888   if (D) {
889     // FIXME: This code is overly simple and should be merged with other global
890     // handling.
891     GV->setConstant(D->getType().isConstant(Context));
892 
893     // FIXME: Merge with other attribute handling code.
894     if (D->getStorageClass() == VarDecl::PrivateExtern)
895       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
896 
897     if (D->hasAttr<WeakAttr>() ||
898         D->hasAttr<WeakImportAttr>())
899       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
900 
901     GV->setThreadLocal(D->isThreadSpecified());
902   }
903 
904   return Entry = GV;
905 }
906 
907 
908 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
909 /// given global variable.  If Ty is non-null and if the global doesn't exist,
910 /// then it will be greated with the specified type instead of whatever the
911 /// normal requested type would be.
912 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
913                                                   const llvm::Type *Ty) {
914   assert(D->hasGlobalStorage() && "Not a global variable");
915   QualType ASTTy = D->getType();
916   if (Ty == 0)
917     Ty = getTypes().ConvertTypeForMem(ASTTy);
918 
919   const llvm::PointerType *PTy =
920     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
921   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
922 }
923 
924 /// CreateRuntimeVariable - Create a new runtime global variable with the
925 /// specified type and name.
926 llvm::Constant *
927 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
928                                      const char *Name) {
929   // Convert Name to be a uniqued string from the IdentifierInfo table.
930   Name = getContext().Idents.get(Name).getNameStart();
931   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
932 }
933 
934 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
935   assert(!D->getInit() && "Cannot emit definite definitions here!");
936 
937   if (MayDeferGeneration(D)) {
938     // If we have not seen a reference to this variable yet, place it
939     // into the deferred declarations table to be emitted if needed
940     // later.
941     const char *MangledName = getMangledName(D);
942     if (GlobalDeclMap.count(MangledName) == 0) {
943       DeferredDecls[MangledName] = D;
944       return;
945     }
946   }
947 
948   // The tentative definition is the only definition.
949   EmitGlobalVarDefinition(D);
950 }
951 
952 static CodeGenModule::GVALinkage
953 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
954   // Everything located semantically within an anonymous namespace is
955   // always internal.
956   if (VD->isInAnonymousNamespace())
957     return CodeGenModule::GVA_Internal;
958 
959   // Handle linkage for static data members.
960   if (VD->isStaticDataMember()) {
961     switch (VD->getTemplateSpecializationKind()) {
962     case TSK_Undeclared:
963     case TSK_ExplicitSpecialization:
964     case TSK_ExplicitInstantiationDefinition:
965       return CodeGenModule::GVA_StrongExternal;
966 
967     case TSK_ExplicitInstantiationDeclaration:
968       llvm::llvm_unreachable("Variable should not be instantiated");
969       // Fall through to treat this like any other instantiation.
970 
971     case TSK_ImplicitInstantiation:
972       return CodeGenModule::GVA_TemplateInstantiation;
973     }
974   }
975 
976   // Static variables get internal linkage.
977   if (VD->getStorageClass() == VarDecl::Static)
978     return CodeGenModule::GVA_Internal;
979 
980   return CodeGenModule::GVA_StrongExternal;
981 }
982 
983 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
984   llvm::Constant *Init = 0;
985   QualType ASTTy = D->getType();
986 
987   if (D->getInit() == 0) {
988     // This is a tentative definition; tentative definitions are
989     // implicitly initialized with { 0 }.
990     //
991     // Note that tentative definitions are only emitted at the end of
992     // a translation unit, so they should never have incomplete
993     // type. In addition, EmitTentativeDefinition makes sure that we
994     // never attempt to emit a tentative definition if a real one
995     // exists. A use may still exists, however, so we still may need
996     // to do a RAUW.
997     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
998     Init = EmitNullConstant(D->getType());
999   } else {
1000     Init = EmitConstantExpr(D->getInit(), D->getType());
1001 
1002     if (!Init) {
1003       QualType T = D->getInit()->getType();
1004       if (getLangOptions().CPlusPlus) {
1005         CXXGlobalInits.push_back(D);
1006         Init = EmitNullConstant(T);
1007       } else {
1008         ErrorUnsupported(D, "static initializer");
1009         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1010       }
1011     }
1012   }
1013 
1014   const llvm::Type* InitType = Init->getType();
1015   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1016 
1017   // Strip off a bitcast if we got one back.
1018   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1019     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1020            // all zero index gep.
1021            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1022     Entry = CE->getOperand(0);
1023   }
1024 
1025   // Entry is now either a Function or GlobalVariable.
1026   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1027 
1028   // We have a definition after a declaration with the wrong type.
1029   // We must make a new GlobalVariable* and update everything that used OldGV
1030   // (a declaration or tentative definition) with the new GlobalVariable*
1031   // (which will be a definition).
1032   //
1033   // This happens if there is a prototype for a global (e.g.
1034   // "extern int x[];") and then a definition of a different type (e.g.
1035   // "int x[10];"). This also happens when an initializer has a different type
1036   // from the type of the global (this happens with unions).
1037   if (GV == 0 ||
1038       GV->getType()->getElementType() != InitType ||
1039       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1040 
1041     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1042     GlobalDeclMap.erase(getMangledName(D));
1043 
1044     // Make a new global with the correct type, this is now guaranteed to work.
1045     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1046     GV->takeName(cast<llvm::GlobalValue>(Entry));
1047 
1048     // Replace all uses of the old global with the new global
1049     llvm::Constant *NewPtrForOldDecl =
1050         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1051     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1052 
1053     // Erase the old global, since it is no longer used.
1054     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1055   }
1056 
1057   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1058     SourceManager &SM = Context.getSourceManager();
1059     AddAnnotation(EmitAnnotateAttr(GV, AA,
1060                               SM.getInstantiationLineNumber(D->getLocation())));
1061   }
1062 
1063   GV->setInitializer(Init);
1064 
1065   // If it is safe to mark the global 'constant', do so now.
1066   GV->setConstant(false);
1067   if (D->getType().isConstant(Context)) {
1068     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1069     // members, it cannot be declared "LLVM const".
1070     GV->setConstant(true);
1071   }
1072 
1073   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1074 
1075   // Set the llvm linkage type as appropriate.
1076   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1077   if (Linkage == GVA_Internal)
1078     GV->setLinkage(llvm::Function::InternalLinkage);
1079   else if (D->hasAttr<DLLImportAttr>())
1080     GV->setLinkage(llvm::Function::DLLImportLinkage);
1081   else if (D->hasAttr<DLLExportAttr>())
1082     GV->setLinkage(llvm::Function::DLLExportLinkage);
1083   else if (D->hasAttr<WeakAttr>()) {
1084     if (GV->isConstant())
1085       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1086     else
1087       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1088   } else if (Linkage == GVA_TemplateInstantiation)
1089     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1090   else if (!CodeGenOpts.NoCommon &&
1091            !D->hasExternalStorage() && !D->getInit() &&
1092            !D->getAttr<SectionAttr>()) {
1093     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1094     // common vars aren't constant even if declared const.
1095     GV->setConstant(false);
1096   } else
1097     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1098 
1099   SetCommonAttributes(D, GV);
1100 
1101   // Emit global variable debug information.
1102   if (CGDebugInfo *DI = getDebugInfo()) {
1103     DI->setLocation(D->getLocation());
1104     DI->EmitGlobalVariable(GV, D);
1105   }
1106 }
1107 
1108 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1109 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1110 /// existing call uses of the old function in the module, this adjusts them to
1111 /// call the new function directly.
1112 ///
1113 /// This is not just a cleanup: the always_inline pass requires direct calls to
1114 /// functions to be able to inline them.  If there is a bitcast in the way, it
1115 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1116 /// run at -O0.
1117 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1118                                                       llvm::Function *NewFn) {
1119   // If we're redefining a global as a function, don't transform it.
1120   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1121   if (OldFn == 0) return;
1122 
1123   const llvm::Type *NewRetTy = NewFn->getReturnType();
1124   llvm::SmallVector<llvm::Value*, 4> ArgList;
1125 
1126   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1127        UI != E; ) {
1128     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1129     unsigned OpNo = UI.getOperandNo();
1130     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1131     if (!CI || OpNo != 0) continue;
1132 
1133     // If the return types don't match exactly, and if the call isn't dead, then
1134     // we can't transform this call.
1135     if (CI->getType() != NewRetTy && !CI->use_empty())
1136       continue;
1137 
1138     // If the function was passed too few arguments, don't transform.  If extra
1139     // arguments were passed, we silently drop them.  If any of the types
1140     // mismatch, we don't transform.
1141     unsigned ArgNo = 0;
1142     bool DontTransform = false;
1143     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1144          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1145       if (CI->getNumOperands()-1 == ArgNo ||
1146           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1147         DontTransform = true;
1148         break;
1149       }
1150     }
1151     if (DontTransform)
1152       continue;
1153 
1154     // Okay, we can transform this.  Create the new call instruction and copy
1155     // over the required information.
1156     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1157     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1158                                                      ArgList.end(), "", CI);
1159     ArgList.clear();
1160     if (!NewCall->getType()->isVoidTy())
1161       NewCall->takeName(CI);
1162     NewCall->setAttributes(CI->getAttributes());
1163     NewCall->setCallingConv(CI->getCallingConv());
1164 
1165     // Finally, remove the old call, replacing any uses with the new one.
1166     if (!CI->use_empty())
1167       CI->replaceAllUsesWith(NewCall);
1168 
1169     // Copy any custom metadata attached with CI.
1170     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1171     TheMetadata.copyMD(CI, NewCall);
1172 
1173     CI->eraseFromParent();
1174   }
1175 }
1176 
1177 
1178 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1179   const llvm::FunctionType *Ty;
1180   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1181 
1182   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1183     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1184 
1185     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1186   } else {
1187     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1188 
1189     // As a special case, make sure that definitions of K&R function
1190     // "type foo()" aren't declared as varargs (which forces the backend
1191     // to do unnecessary work).
1192     if (D->getType()->isFunctionNoProtoType()) {
1193       assert(Ty->isVarArg() && "Didn't lower type as expected");
1194       // Due to stret, the lowered function could have arguments.
1195       // Just create the same type as was lowered by ConvertType
1196       // but strip off the varargs bit.
1197       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1198       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1199     }
1200   }
1201 
1202   // Get or create the prototype for the function.
1203   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1204 
1205   // Strip off a bitcast if we got one back.
1206   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1207     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1208     Entry = CE->getOperand(0);
1209   }
1210 
1211 
1212   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1213     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1214 
1215     // If the types mismatch then we have to rewrite the definition.
1216     assert(OldFn->isDeclaration() &&
1217            "Shouldn't replace non-declaration");
1218 
1219     // F is the Function* for the one with the wrong type, we must make a new
1220     // Function* and update everything that used F (a declaration) with the new
1221     // Function* (which will be a definition).
1222     //
1223     // This happens if there is a prototype for a function
1224     // (e.g. "int f()") and then a definition of a different type
1225     // (e.g. "int f(int x)").  Start by making a new function of the
1226     // correct type, RAUW, then steal the name.
1227     GlobalDeclMap.erase(getMangledName(D));
1228     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1229     NewFn->takeName(OldFn);
1230 
1231     // If this is an implementation of a function without a prototype, try to
1232     // replace any existing uses of the function (which may be calls) with uses
1233     // of the new function
1234     if (D->getType()->isFunctionNoProtoType()) {
1235       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1236       OldFn->removeDeadConstantUsers();
1237     }
1238 
1239     // Replace uses of F with the Function we will endow with a body.
1240     if (!Entry->use_empty()) {
1241       llvm::Constant *NewPtrForOldDecl =
1242         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1243       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1244     }
1245 
1246     // Ok, delete the old function now, which is dead.
1247     OldFn->eraseFromParent();
1248 
1249     Entry = NewFn;
1250   }
1251 
1252   llvm::Function *Fn = cast<llvm::Function>(Entry);
1253 
1254   CodeGenFunction(*this).GenerateCode(D, Fn);
1255 
1256   SetFunctionDefinitionAttributes(D, Fn);
1257   SetLLVMFunctionAttributesForDefinition(D, Fn);
1258 
1259   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1260     AddGlobalCtor(Fn, CA->getPriority());
1261   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1262     AddGlobalDtor(Fn, DA->getPriority());
1263 }
1264 
1265 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1266   const AliasAttr *AA = D->getAttr<AliasAttr>();
1267   assert(AA && "Not an alias?");
1268 
1269   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1270 
1271   // Unique the name through the identifier table.
1272   const char *AliaseeName = AA->getAliasee().c_str();
1273   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1274 
1275   // Create a reference to the named value.  This ensures that it is emitted
1276   // if a deferred decl.
1277   llvm::Constant *Aliasee;
1278   if (isa<llvm::FunctionType>(DeclTy))
1279     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1280   else
1281     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1282                                     llvm::PointerType::getUnqual(DeclTy), 0);
1283 
1284   // Create the new alias itself, but don't set a name yet.
1285   llvm::GlobalValue *GA =
1286     new llvm::GlobalAlias(Aliasee->getType(),
1287                           llvm::Function::ExternalLinkage,
1288                           "", Aliasee, &getModule());
1289 
1290   // See if there is already something with the alias' name in the module.
1291   const char *MangledName = getMangledName(D);
1292   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1293 
1294   if (Entry && !Entry->isDeclaration()) {
1295     // If there is a definition in the module, then it wins over the alias.
1296     // This is dubious, but allow it to be safe.  Just ignore the alias.
1297     GA->eraseFromParent();
1298     return;
1299   }
1300 
1301   if (Entry) {
1302     // If there is a declaration in the module, then we had an extern followed
1303     // by the alias, as in:
1304     //   extern int test6();
1305     //   ...
1306     //   int test6() __attribute__((alias("test7")));
1307     //
1308     // Remove it and replace uses of it with the alias.
1309 
1310     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1311                                                           Entry->getType()));
1312     Entry->eraseFromParent();
1313   }
1314 
1315   // Now we know that there is no conflict, set the name.
1316   Entry = GA;
1317   GA->setName(MangledName);
1318 
1319   // Set attributes which are particular to an alias; this is a
1320   // specialization of the attributes which may be set on a global
1321   // variable/function.
1322   if (D->hasAttr<DLLExportAttr>()) {
1323     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1324       // The dllexport attribute is ignored for undefined symbols.
1325       if (FD->getBody())
1326         GA->setLinkage(llvm::Function::DLLExportLinkage);
1327     } else {
1328       GA->setLinkage(llvm::Function::DLLExportLinkage);
1329     }
1330   } else if (D->hasAttr<WeakAttr>() ||
1331              D->hasAttr<WeakImportAttr>()) {
1332     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1333   }
1334 
1335   SetCommonAttributes(D, GA);
1336 }
1337 
1338 /// getBuiltinLibFunction - Given a builtin id for a function like
1339 /// "__builtin_fabsf", return a Function* for "fabsf".
1340 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1341                                                   unsigned BuiltinID) {
1342   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1343           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1344          "isn't a lib fn");
1345 
1346   // Get the name, skip over the __builtin_ prefix (if necessary).
1347   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1348   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1349     Name += 10;
1350 
1351   // Get the type for the builtin.
1352   ASTContext::GetBuiltinTypeError Error;
1353   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1354   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1355 
1356   const llvm::FunctionType *Ty =
1357     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1358 
1359   // Unique the name through the identifier table.
1360   Name = getContext().Idents.get(Name).getNameStart();
1361   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1362 }
1363 
1364 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1365                                             unsigned NumTys) {
1366   return llvm::Intrinsic::getDeclaration(&getModule(),
1367                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1368 }
1369 
1370 llvm::Function *CodeGenModule::getMemCpyFn() {
1371   if (MemCpyFn) return MemCpyFn;
1372   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1373   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1374 }
1375 
1376 llvm::Function *CodeGenModule::getMemMoveFn() {
1377   if (MemMoveFn) return MemMoveFn;
1378   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1379   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1380 }
1381 
1382 llvm::Function *CodeGenModule::getMemSetFn() {
1383   if (MemSetFn) return MemSetFn;
1384   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1385   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1386 }
1387 
1388 static llvm::StringMapEntry<llvm::Constant*> &
1389 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1390                          const StringLiteral *Literal,
1391                          bool TargetIsLSB,
1392                          bool &IsUTF16,
1393                          unsigned &StringLength) {
1394   unsigned NumBytes = Literal->getByteLength();
1395 
1396   // Check for simple case.
1397   if (!Literal->containsNonAsciiOrNull()) {
1398     StringLength = NumBytes;
1399     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1400                                                 StringLength));
1401   }
1402 
1403   // Otherwise, convert the UTF8 literals into a byte string.
1404   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1405   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1406   UTF16 *ToPtr = &ToBuf[0];
1407 
1408   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1409                                                &ToPtr, ToPtr + NumBytes,
1410                                                strictConversion);
1411 
1412   // Check for conversion failure.
1413   if (Result != conversionOK) {
1414     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1415     // this duplicate code.
1416     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1417     StringLength = NumBytes;
1418     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1419                                                 StringLength));
1420   }
1421 
1422   // ConvertUTF8toUTF16 returns the length in ToPtr.
1423   StringLength = ToPtr - &ToBuf[0];
1424 
1425   // Render the UTF-16 string into a byte array and convert to the target byte
1426   // order.
1427   //
1428   // FIXME: This isn't something we should need to do here.
1429   llvm::SmallString<128> AsBytes;
1430   AsBytes.reserve(StringLength * 2);
1431   for (unsigned i = 0; i != StringLength; ++i) {
1432     unsigned short Val = ToBuf[i];
1433     if (TargetIsLSB) {
1434       AsBytes.push_back(Val & 0xFF);
1435       AsBytes.push_back(Val >> 8);
1436     } else {
1437       AsBytes.push_back(Val >> 8);
1438       AsBytes.push_back(Val & 0xFF);
1439     }
1440   }
1441   // Append one extra null character, the second is automatically added by our
1442   // caller.
1443   AsBytes.push_back(0);
1444 
1445   IsUTF16 = true;
1446   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1447 }
1448 
1449 llvm::Constant *
1450 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1451   unsigned StringLength = 0;
1452   bool isUTF16 = false;
1453   llvm::StringMapEntry<llvm::Constant*> &Entry =
1454     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1455                              getTargetData().isLittleEndian(),
1456                              isUTF16, StringLength);
1457 
1458   if (llvm::Constant *C = Entry.getValue())
1459     return C;
1460 
1461   llvm::Constant *Zero =
1462       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1463   llvm::Constant *Zeros[] = { Zero, Zero };
1464 
1465   // If we don't already have it, get __CFConstantStringClassReference.
1466   if (!CFConstantStringClassRef) {
1467     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1468     Ty = llvm::ArrayType::get(Ty, 0);
1469     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1470                                            "__CFConstantStringClassReference");
1471     // Decay array -> ptr
1472     CFConstantStringClassRef =
1473       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1474   }
1475 
1476   QualType CFTy = getContext().getCFConstantStringType();
1477 
1478   const llvm::StructType *STy =
1479     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1480 
1481   std::vector<llvm::Constant*> Fields(4);
1482 
1483   // Class pointer.
1484   Fields[0] = CFConstantStringClassRef;
1485 
1486   // Flags.
1487   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1488   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1489     llvm::ConstantInt::get(Ty, 0x07C8);
1490 
1491   // String pointer.
1492   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1493 
1494   const char *Sect = 0;
1495   llvm::GlobalValue::LinkageTypes Linkage;
1496   bool isConstant;
1497   if (isUTF16) {
1498     Sect = getContext().Target.getUnicodeStringSection();
1499     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1500     Linkage = llvm::GlobalValue::InternalLinkage;
1501     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1502     // does make plain ascii ones writable.
1503     isConstant = true;
1504   } else {
1505     Linkage = llvm::GlobalValue::PrivateLinkage;
1506     isConstant = !Features.WritableStrings;
1507   }
1508 
1509   llvm::GlobalVariable *GV =
1510     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1511                              ".str");
1512   if (Sect)
1513     GV->setSection(Sect);
1514   if (isUTF16) {
1515     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1516     GV->setAlignment(Align);
1517   }
1518   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1519 
1520   // String length.
1521   Ty = getTypes().ConvertType(getContext().LongTy);
1522   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1523 
1524   // The struct.
1525   C = llvm::ConstantStruct::get(STy, Fields);
1526   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1527                                 llvm::GlobalVariable::PrivateLinkage, C,
1528                                 "_unnamed_cfstring_");
1529   if (const char *Sect = getContext().Target.getCFStringSection())
1530     GV->setSection(Sect);
1531   Entry.setValue(GV);
1532 
1533   return GV;
1534 }
1535 
1536 /// GetStringForStringLiteral - Return the appropriate bytes for a
1537 /// string literal, properly padded to match the literal type.
1538 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1539   const char *StrData = E->getStrData();
1540   unsigned Len = E->getByteLength();
1541 
1542   const ConstantArrayType *CAT =
1543     getContext().getAsConstantArrayType(E->getType());
1544   assert(CAT && "String isn't pointer or array!");
1545 
1546   // Resize the string to the right size.
1547   std::string Str(StrData, StrData+Len);
1548   uint64_t RealLen = CAT->getSize().getZExtValue();
1549 
1550   if (E->isWide())
1551     RealLen *= getContext().Target.getWCharWidth()/8;
1552 
1553   Str.resize(RealLen, '\0');
1554 
1555   return Str;
1556 }
1557 
1558 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1559 /// constant array for the given string literal.
1560 llvm::Constant *
1561 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1562   // FIXME: This can be more efficient.
1563   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1564   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1565   if (S->isWide()) {
1566     llvm::Type *DestTy =
1567         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1568     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1569   }
1570   return C;
1571 }
1572 
1573 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1574 /// array for the given ObjCEncodeExpr node.
1575 llvm::Constant *
1576 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1577   std::string Str;
1578   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1579 
1580   return GetAddrOfConstantCString(Str);
1581 }
1582 
1583 
1584 /// GenerateWritableString -- Creates storage for a string literal.
1585 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1586                                              bool constant,
1587                                              CodeGenModule &CGM,
1588                                              const char *GlobalName) {
1589   // Create Constant for this string literal. Don't add a '\0'.
1590   llvm::Constant *C =
1591       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1592 
1593   // Create a global variable for this string
1594   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1595                                   llvm::GlobalValue::PrivateLinkage,
1596                                   C, GlobalName);
1597 }
1598 
1599 /// GetAddrOfConstantString - Returns a pointer to a character array
1600 /// containing the literal. This contents are exactly that of the
1601 /// given string, i.e. it will not be null terminated automatically;
1602 /// see GetAddrOfConstantCString. Note that whether the result is
1603 /// actually a pointer to an LLVM constant depends on
1604 /// Feature.WriteableStrings.
1605 ///
1606 /// The result has pointer to array type.
1607 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1608                                                        const char *GlobalName) {
1609   bool IsConstant = !Features.WritableStrings;
1610 
1611   // Get the default prefix if a name wasn't specified.
1612   if (!GlobalName)
1613     GlobalName = ".str";
1614 
1615   // Don't share any string literals if strings aren't constant.
1616   if (!IsConstant)
1617     return GenerateStringLiteral(str, false, *this, GlobalName);
1618 
1619   llvm::StringMapEntry<llvm::Constant *> &Entry =
1620     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1621 
1622   if (Entry.getValue())
1623     return Entry.getValue();
1624 
1625   // Create a global variable for this.
1626   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1627   Entry.setValue(C);
1628   return C;
1629 }
1630 
1631 /// GetAddrOfConstantCString - Returns a pointer to a character
1632 /// array containing the literal and a terminating '\-'
1633 /// character. The result has pointer to array type.
1634 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1635                                                         const char *GlobalName){
1636   return GetAddrOfConstantString(str + '\0', GlobalName);
1637 }
1638 
1639 /// EmitObjCPropertyImplementations - Emit information for synthesized
1640 /// properties for an implementation.
1641 void CodeGenModule::EmitObjCPropertyImplementations(const
1642                                                     ObjCImplementationDecl *D) {
1643   for (ObjCImplementationDecl::propimpl_iterator
1644          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1645     ObjCPropertyImplDecl *PID = *i;
1646 
1647     // Dynamic is just for type-checking.
1648     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1649       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1650 
1651       // Determine which methods need to be implemented, some may have
1652       // been overridden. Note that ::isSynthesized is not the method
1653       // we want, that just indicates if the decl came from a
1654       // property. What we want to know is if the method is defined in
1655       // this implementation.
1656       if (!D->getInstanceMethod(PD->getGetterName()))
1657         CodeGenFunction(*this).GenerateObjCGetter(
1658                                  const_cast<ObjCImplementationDecl *>(D), PID);
1659       if (!PD->isReadOnly() &&
1660           !D->getInstanceMethod(PD->getSetterName()))
1661         CodeGenFunction(*this).GenerateObjCSetter(
1662                                  const_cast<ObjCImplementationDecl *>(D), PID);
1663     }
1664   }
1665 }
1666 
1667 /// EmitNamespace - Emit all declarations in a namespace.
1668 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1669   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1670        I != E; ++I)
1671     EmitTopLevelDecl(*I);
1672 }
1673 
1674 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1675 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1676   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1677       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1678     ErrorUnsupported(LSD, "linkage spec");
1679     return;
1680   }
1681 
1682   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1683        I != E; ++I)
1684     EmitTopLevelDecl(*I);
1685 }
1686 
1687 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1688 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1689   // If an error has occurred, stop code generation, but continue
1690   // parsing and semantic analysis (to ensure all warnings and errors
1691   // are emitted).
1692   if (Diags.hasErrorOccurred())
1693     return;
1694 
1695   // Ignore dependent declarations.
1696   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1697     return;
1698 
1699   switch (D->getKind()) {
1700   case Decl::CXXConversion:
1701   case Decl::CXXMethod:
1702   case Decl::Function:
1703     // Skip function templates
1704     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1705       return;
1706 
1707     EmitGlobal(cast<FunctionDecl>(D));
1708     break;
1709 
1710   case Decl::Var:
1711     EmitGlobal(cast<VarDecl>(D));
1712     break;
1713 
1714   // C++ Decls
1715   case Decl::Namespace:
1716     EmitNamespace(cast<NamespaceDecl>(D));
1717     break;
1718     // No code generation needed.
1719   case Decl::UsingShadow:
1720   case Decl::Using:
1721   case Decl::UsingDirective:
1722   case Decl::ClassTemplate:
1723   case Decl::FunctionTemplate:
1724   case Decl::NamespaceAlias:
1725     break;
1726   case Decl::CXXConstructor:
1727     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1728     break;
1729   case Decl::CXXDestructor:
1730     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1731     break;
1732 
1733   case Decl::StaticAssert:
1734     // Nothing to do.
1735     break;
1736 
1737   // Objective-C Decls
1738 
1739   // Forward declarations, no (immediate) code generation.
1740   case Decl::ObjCClass:
1741   case Decl::ObjCForwardProtocol:
1742   case Decl::ObjCCategory:
1743   case Decl::ObjCInterface:
1744     break;
1745 
1746   case Decl::ObjCProtocol:
1747     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1748     break;
1749 
1750   case Decl::ObjCCategoryImpl:
1751     // Categories have properties but don't support synthesize so we
1752     // can ignore them here.
1753     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1754     break;
1755 
1756   case Decl::ObjCImplementation: {
1757     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1758     EmitObjCPropertyImplementations(OMD);
1759     Runtime->GenerateClass(OMD);
1760     break;
1761   }
1762   case Decl::ObjCMethod: {
1763     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1764     // If this is not a prototype, emit the body.
1765     if (OMD->getBody())
1766       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1767     break;
1768   }
1769   case Decl::ObjCCompatibleAlias:
1770     // compatibility-alias is a directive and has no code gen.
1771     break;
1772 
1773   case Decl::LinkageSpec:
1774     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1775     break;
1776 
1777   case Decl::FileScopeAsm: {
1778     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1779     std::string AsmString(AD->getAsmString()->getStrData(),
1780                           AD->getAsmString()->getByteLength());
1781 
1782     const std::string &S = getModule().getModuleInlineAsm();
1783     if (S.empty())
1784       getModule().setModuleInlineAsm(AsmString);
1785     else
1786       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1787     break;
1788   }
1789 
1790   default:
1791     // Make sure we handled everything we should, every other kind is a
1792     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1793     // function. Need to recode Decl::Kind to do that easily.
1794     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1795   }
1796 }
1797