1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 139 const NamedDecl *ND = GD.getDecl(); 140 141 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 142 return getMangledCXXCtorName(D, GD.getCtorType()); 143 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 144 return getMangledCXXDtorName(D, GD.getDtorType()); 145 146 return getMangledName(ND); 147 } 148 149 /// \brief Retrieves the mangled name for the given declaration. 150 /// 151 /// If the given declaration requires a mangled name, returns an 152 /// const char* containing the mangled name. Otherwise, returns 153 /// the unmangled name. 154 /// 155 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 156 // In C, functions with no attributes never need to be mangled. Fastpath them. 157 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 158 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 159 return ND->getNameAsCString(); 160 } 161 162 llvm::SmallString<256> Name; 163 llvm::raw_svector_ostream Out(Name); 164 if (!mangleName(ND, Context, Out)) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 Name += '\0'; 170 return UniqueMangledName(Name.begin(), Name.end()); 171 } 172 173 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 174 const char *NameEnd) { 175 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 176 177 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 178 } 179 180 /// AddGlobalCtor - Add a function to the list that will be called before 181 /// main() runs. 182 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 183 // FIXME: Type coercion of void()* types. 184 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 185 } 186 187 /// AddGlobalDtor - Add a function to the list that will be called 188 /// when the module is unloaded. 189 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 190 // FIXME: Type coercion of void()* types. 191 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 192 } 193 194 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 195 // Ctor function type is void()*. 196 llvm::FunctionType* CtorFTy = 197 llvm::FunctionType::get(llvm::Type::VoidTy, 198 std::vector<const llvm::Type*>(), 199 false); 200 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 201 202 // Get the type of a ctor entry, { i32, void ()* }. 203 llvm::StructType* CtorStructTy = 204 llvm::StructType::get(llvm::Type::Int32Ty, 205 llvm::PointerType::getUnqual(CtorFTy), NULL); 206 207 // Construct the constructor and destructor arrays. 208 std::vector<llvm::Constant*> Ctors; 209 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 210 std::vector<llvm::Constant*> S; 211 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 212 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 213 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 214 } 215 216 if (!Ctors.empty()) { 217 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 218 new llvm::GlobalVariable(AT, false, 219 llvm::GlobalValue::AppendingLinkage, 220 llvm::ConstantArray::get(AT, Ctors), 221 GlobalName, 222 &TheModule); 223 } 224 } 225 226 void CodeGenModule::EmitAnnotations() { 227 if (Annotations.empty()) 228 return; 229 230 // Create a new global variable for the ConstantStruct in the Module. 231 llvm::Constant *Array = 232 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 233 Annotations.size()), 234 Annotations); 235 llvm::GlobalValue *gv = 236 new llvm::GlobalVariable(Array->getType(), false, 237 llvm::GlobalValue::AppendingLinkage, Array, 238 "llvm.global.annotations", &TheModule); 239 gv->setSection("llvm.metadata"); 240 } 241 242 static CodeGenModule::GVALinkage 243 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 244 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 245 // C++ member functions defined inside the class are always inline. 246 if (MD->isInline() || !MD->isOutOfLineDefinition()) 247 return CodeGenModule::GVA_CXXInline; 248 249 return CodeGenModule::GVA_StrongExternal; 250 } 251 252 // "static" functions get internal linkage. 253 if (FD->getStorageClass() == FunctionDecl::Static) 254 return CodeGenModule::GVA_Internal; 255 256 if (!FD->isInline()) 257 return CodeGenModule::GVA_StrongExternal; 258 259 // If the inline function explicitly has the GNU inline attribute on it, or if 260 // this is C89 mode, we use to GNU semantics. 261 if (!Features.C99 && !Features.CPlusPlus) { 262 // extern inline in GNU mode is like C99 inline. 263 if (FD->getStorageClass() == FunctionDecl::Extern) 264 return CodeGenModule::GVA_C99Inline; 265 // Normal inline is a strong symbol. 266 return CodeGenModule::GVA_StrongExternal; 267 } else if (FD->hasActiveGNUInlineAttribute()) { 268 // GCC in C99 mode seems to use a different decision-making 269 // process for extern inline, which factors in previous 270 // declarations. 271 if (FD->isExternGNUInline()) 272 return CodeGenModule::GVA_C99Inline; 273 // Normal inline is a strong symbol. 274 return CodeGenModule::GVA_StrongExternal; 275 } 276 277 // The definition of inline changes based on the language. Note that we 278 // have already handled "static inline" above, with the GVA_Internal case. 279 if (Features.CPlusPlus) // inline and extern inline. 280 return CodeGenModule::GVA_CXXInline; 281 282 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 283 if (FD->isC99InlineDefinition()) 284 return CodeGenModule::GVA_C99Inline; 285 286 return CodeGenModule::GVA_StrongExternal; 287 } 288 289 /// SetFunctionDefinitionAttributes - Set attributes for a global. 290 /// 291 /// FIXME: This is currently only done for aliases and functions, but not for 292 /// variables (these details are set in EmitGlobalVarDefinition for variables). 293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 294 llvm::GlobalValue *GV) { 295 GVALinkage Linkage = GetLinkageForFunction(D, Features); 296 297 if (Linkage == GVA_Internal) { 298 GV->setLinkage(llvm::Function::InternalLinkage); 299 } else if (D->hasAttr<DLLExportAttr>()) { 300 GV->setLinkage(llvm::Function::DLLExportLinkage); 301 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 302 GV->setLinkage(llvm::Function::WeakAnyLinkage); 303 } else if (Linkage == GVA_C99Inline) { 304 // In C99 mode, 'inline' functions are guaranteed to have a strong 305 // definition somewhere else, so we can use available_externally linkage. 306 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 307 } else if (Linkage == GVA_CXXInline) { 308 // In C++, the compiler has to emit a definition in every translation unit 309 // that references the function. We should use linkonce_odr because 310 // a) if all references in this translation unit are optimized away, we 311 // don't need to codegen it. b) if the function persists, it needs to be 312 // merged with other definitions. c) C++ has the ODR, so we know the 313 // definition is dependable. 314 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 315 } else { 316 assert(Linkage == GVA_StrongExternal); 317 // Otherwise, we have strong external linkage. 318 GV->setLinkage(llvm::Function::ExternalLinkage); 319 } 320 321 SetCommonAttributes(D, GV); 322 } 323 324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 325 const CGFunctionInfo &Info, 326 llvm::Function *F) { 327 AttributeListType AttributeList; 328 ConstructAttributeList(Info, D, AttributeList); 329 330 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 331 AttributeList.size())); 332 333 // Set the appropriate calling convention for the Function. 334 if (D->hasAttr<FastCallAttr>()) 335 F->setCallingConv(llvm::CallingConv::X86_FastCall); 336 337 if (D->hasAttr<StdCallAttr>()) 338 F->setCallingConv(llvm::CallingConv::X86_StdCall); 339 } 340 341 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 342 llvm::Function *F) { 343 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 344 F->addFnAttr(llvm::Attribute::NoUnwind); 345 346 if (D->hasAttr<AlwaysInlineAttr>()) 347 F->addFnAttr(llvm::Attribute::AlwaysInline); 348 349 if (D->hasAttr<NoinlineAttr>()) 350 F->addFnAttr(llvm::Attribute::NoInline); 351 } 352 353 void CodeGenModule::SetCommonAttributes(const Decl *D, 354 llvm::GlobalValue *GV) { 355 setGlobalVisibility(GV, D); 356 357 if (D->hasAttr<UsedAttr>()) 358 AddUsedGlobal(GV); 359 360 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 361 GV->setSection(SA->getName()); 362 } 363 364 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 365 llvm::Function *F, 366 const CGFunctionInfo &FI) { 367 SetLLVMFunctionAttributes(D, FI, F); 368 SetLLVMFunctionAttributesForDefinition(D, F); 369 370 F->setLinkage(llvm::Function::InternalLinkage); 371 372 SetCommonAttributes(D, F); 373 } 374 375 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 376 llvm::Function *F) { 377 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 378 379 // Only a few attributes are set on declarations; these may later be 380 // overridden by a definition. 381 382 if (FD->hasAttr<DLLImportAttr>()) { 383 F->setLinkage(llvm::Function::DLLImportLinkage); 384 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 385 // "extern_weak" is overloaded in LLVM; we probably should have 386 // separate linkage types for this. 387 F->setLinkage(llvm::Function::ExternalWeakLinkage); 388 } else { 389 F->setLinkage(llvm::Function::ExternalLinkage); 390 } 391 392 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 393 F->setSection(SA->getName()); 394 } 395 396 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 397 assert(!GV->isDeclaration() && 398 "Only globals with definition can force usage."); 399 LLVMUsed.push_back(GV); 400 } 401 402 void CodeGenModule::EmitLLVMUsed() { 403 // Don't create llvm.used if there is no need. 404 if (LLVMUsed.empty()) 405 return; 406 407 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 408 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 409 410 // Convert LLVMUsed to what ConstantArray needs. 411 std::vector<llvm::Constant*> UsedArray; 412 UsedArray.resize(LLVMUsed.size()); 413 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 414 UsedArray[i] = 415 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 416 } 417 418 llvm::GlobalVariable *GV = 419 new llvm::GlobalVariable(ATy, false, 420 llvm::GlobalValue::AppendingLinkage, 421 llvm::ConstantArray::get(ATy, UsedArray), 422 "llvm.used", &getModule()); 423 424 GV->setSection("llvm.metadata"); 425 } 426 427 void CodeGenModule::EmitDeferred() { 428 // Emit code for any potentially referenced deferred decls. Since a 429 // previously unused static decl may become used during the generation of code 430 // for a static function, iterate until no changes are made. 431 while (!DeferredDeclsToEmit.empty()) { 432 GlobalDecl D = DeferredDeclsToEmit.back(); 433 DeferredDeclsToEmit.pop_back(); 434 435 // The mangled name for the decl must have been emitted in GlobalDeclMap. 436 // Look it up to see if it was defined with a stronger definition (e.g. an 437 // extern inline function with a strong function redefinition). If so, 438 // just ignore the deferred decl. 439 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 440 assert(CGRef && "Deferred decl wasn't referenced?"); 441 442 if (!CGRef->isDeclaration()) 443 continue; 444 445 // Otherwise, emit the definition and move on to the next one. 446 EmitGlobalDefinition(D); 447 } 448 } 449 450 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 451 /// annotation information for a given GlobalValue. The annotation struct is 452 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 453 /// GlobalValue being annotated. The second field is the constant string 454 /// created from the AnnotateAttr's annotation. The third field is a constant 455 /// string containing the name of the translation unit. The fourth field is 456 /// the line number in the file of the annotated value declaration. 457 /// 458 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 459 /// appears to. 460 /// 461 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 462 const AnnotateAttr *AA, 463 unsigned LineNo) { 464 llvm::Module *M = &getModule(); 465 466 // get [N x i8] constants for the annotation string, and the filename string 467 // which are the 2nd and 3rd elements of the global annotation structure. 468 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 469 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 470 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 471 true); 472 473 // Get the two global values corresponding to the ConstantArrays we just 474 // created to hold the bytes of the strings. 475 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 476 llvm::GlobalValue *annoGV = 477 new llvm::GlobalVariable(anno->getType(), false, 478 llvm::GlobalValue::InternalLinkage, anno, 479 GV->getName() + StringPrefix, M); 480 // translation unit name string, emitted into the llvm.metadata section. 481 llvm::GlobalValue *unitGV = 482 new llvm::GlobalVariable(unit->getType(), false, 483 llvm::GlobalValue::InternalLinkage, unit, 484 StringPrefix, M); 485 486 // Create the ConstantStruct for the global annotation. 487 llvm::Constant *Fields[4] = { 488 llvm::ConstantExpr::getBitCast(GV, SBP), 489 llvm::ConstantExpr::getBitCast(annoGV, SBP), 490 llvm::ConstantExpr::getBitCast(unitGV, SBP), 491 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 492 }; 493 return llvm::ConstantStruct::get(Fields, 4, false); 494 } 495 496 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 497 // Never defer when EmitAllDecls is specified or the decl has 498 // attribute used. 499 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 500 return false; 501 502 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 503 // Constructors and destructors should never be deferred. 504 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 505 return false; 506 507 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 508 509 // static, static inline, always_inline, and extern inline functions can 510 // always be deferred. Normal inline functions can be deferred in C99/C++. 511 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 512 Linkage == GVA_CXXInline) 513 return true; 514 return false; 515 } 516 517 const VarDecl *VD = cast<VarDecl>(Global); 518 assert(VD->isFileVarDecl() && "Invalid decl"); 519 520 return VD->getStorageClass() == VarDecl::Static; 521 } 522 523 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 524 const ValueDecl *Global = GD.getDecl(); 525 526 // If this is an alias definition (which otherwise looks like a declaration) 527 // emit it now. 528 if (Global->hasAttr<AliasAttr>()) 529 return EmitAliasDefinition(Global); 530 531 // Ignore declarations, they will be emitted on their first use. 532 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 533 // Forward declarations are emitted lazily on first use. 534 if (!FD->isThisDeclarationADefinition()) 535 return; 536 } else { 537 const VarDecl *VD = cast<VarDecl>(Global); 538 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 539 540 // In C++, if this is marked "extern", defer code generation. 541 if (getLangOptions().CPlusPlus && 542 VD->getStorageClass() == VarDecl::Extern && !VD->getInit()) 543 return; 544 545 // In C, if this isn't a definition, defer code generation. 546 if (!getLangOptions().CPlusPlus && !VD->getInit()) 547 return; 548 } 549 550 // Defer code generation when possible if this is a static definition, inline 551 // function etc. These we only want to emit if they are used. 552 if (MayDeferGeneration(Global)) { 553 // If the value has already been used, add it directly to the 554 // DeferredDeclsToEmit list. 555 const char *MangledName = getMangledName(GD); 556 if (GlobalDeclMap.count(MangledName)) 557 DeferredDeclsToEmit.push_back(GD); 558 else { 559 // Otherwise, remember that we saw a deferred decl with this name. The 560 // first use of the mangled name will cause it to move into 561 // DeferredDeclsToEmit. 562 DeferredDecls[MangledName] = GD; 563 } 564 return; 565 } 566 567 // Otherwise emit the definition. 568 EmitGlobalDefinition(GD); 569 } 570 571 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 572 const ValueDecl *D = GD.getDecl(); 573 574 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 575 EmitCXXConstructor(CD, GD.getCtorType()); 576 else if (isa<FunctionDecl>(D)) 577 EmitGlobalFunctionDefinition(GD); 578 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 579 EmitGlobalVarDefinition(VD); 580 else { 581 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 582 } 583 } 584 585 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 586 /// module, create and return an llvm Function with the specified type. If there 587 /// is something in the module with the specified name, return it potentially 588 /// bitcasted to the right type. 589 /// 590 /// If D is non-null, it specifies a decl that correspond to this. This is used 591 /// to set the attributes on the function when it is first created. 592 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 593 const llvm::Type *Ty, 594 GlobalDecl D) { 595 // Lookup the entry, lazily creating it if necessary. 596 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 597 if (Entry) { 598 if (Entry->getType()->getElementType() == Ty) 599 return Entry; 600 601 // Make sure the result is of the correct type. 602 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 603 return llvm::ConstantExpr::getBitCast(Entry, PTy); 604 } 605 606 // This is the first use or definition of a mangled name. If there is a 607 // deferred decl with this name, remember that we need to emit it at the end 608 // of the file. 609 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 610 DeferredDecls.find(MangledName); 611 if (DDI != DeferredDecls.end()) { 612 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 613 // list, and remove it from DeferredDecls (since we don't need it anymore). 614 DeferredDeclsToEmit.push_back(DDI->second); 615 DeferredDecls.erase(DDI); 616 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 617 // If this the first reference to a C++ inline function in a class, queue up 618 // the deferred function body for emission. These are not seen as 619 // top-level declarations. 620 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 621 DeferredDeclsToEmit.push_back(D); 622 } 623 624 // This function doesn't have a complete type (for example, the return 625 // type is an incomplete struct). Use a fake type instead, and make 626 // sure not to try to set attributes. 627 bool ShouldSetAttributes = true; 628 if (!isa<llvm::FunctionType>(Ty)) { 629 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 630 std::vector<const llvm::Type*>(), false); 631 ShouldSetAttributes = false; 632 } 633 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 634 llvm::Function::ExternalLinkage, 635 "", &getModule()); 636 F->setName(MangledName); 637 if (D.getDecl() && ShouldSetAttributes) 638 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F); 639 Entry = F; 640 return F; 641 } 642 643 /// GetAddrOfFunction - Return the address of the given function. If Ty is 644 /// non-null, then this function will use the specified type if it has to 645 /// create it (this occurs when we see a definition of the function). 646 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 647 const llvm::Type *Ty) { 648 // If there was no specific requested type, just convert it now. 649 if (!Ty) 650 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 651 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 652 } 653 654 /// CreateRuntimeFunction - Create a new runtime function with the specified 655 /// type and name. 656 llvm::Constant * 657 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 658 const char *Name) { 659 // Convert Name to be a uniqued string from the IdentifierInfo table. 660 Name = getContext().Idents.get(Name).getName(); 661 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 662 } 663 664 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 665 /// create and return an llvm GlobalVariable with the specified type. If there 666 /// is something in the module with the specified name, return it potentially 667 /// bitcasted to the right type. 668 /// 669 /// If D is non-null, it specifies a decl that correspond to this. This is used 670 /// to set the attributes on the global when it is first created. 671 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 672 const llvm::PointerType*Ty, 673 const VarDecl *D) { 674 // Lookup the entry, lazily creating it if necessary. 675 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 676 if (Entry) { 677 if (Entry->getType() == Ty) 678 return Entry; 679 680 // Make sure the result is of the correct type. 681 return llvm::ConstantExpr::getBitCast(Entry, Ty); 682 } 683 684 // This is the first use or definition of a mangled name. If there is a 685 // deferred decl with this name, remember that we need to emit it at the end 686 // of the file. 687 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 688 DeferredDecls.find(MangledName); 689 if (DDI != DeferredDecls.end()) { 690 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 691 // list, and remove it from DeferredDecls (since we don't need it anymore). 692 DeferredDeclsToEmit.push_back(DDI->second); 693 DeferredDecls.erase(DDI); 694 } 695 696 llvm::GlobalVariable *GV = 697 new llvm::GlobalVariable(Ty->getElementType(), false, 698 llvm::GlobalValue::ExternalLinkage, 699 0, "", &getModule(), 700 false, Ty->getAddressSpace()); 701 GV->setName(MangledName); 702 703 // Handle things which are present even on external declarations. 704 if (D) { 705 // FIXME: This code is overly simple and should be merged with other global 706 // handling. 707 GV->setConstant(D->getType().isConstant(Context)); 708 709 // FIXME: Merge with other attribute handling code. 710 if (D->getStorageClass() == VarDecl::PrivateExtern) 711 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 712 713 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 714 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 715 716 GV->setThreadLocal(D->isThreadSpecified()); 717 } 718 719 return Entry = GV; 720 } 721 722 723 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 724 /// given global variable. If Ty is non-null and if the global doesn't exist, 725 /// then it will be greated with the specified type instead of whatever the 726 /// normal requested type would be. 727 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 728 const llvm::Type *Ty) { 729 assert(D->hasGlobalStorage() && "Not a global variable"); 730 QualType ASTTy = D->getType(); 731 if (Ty == 0) 732 Ty = getTypes().ConvertTypeForMem(ASTTy); 733 734 const llvm::PointerType *PTy = 735 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 736 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 737 } 738 739 /// CreateRuntimeVariable - Create a new runtime global variable with the 740 /// specified type and name. 741 llvm::Constant * 742 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 743 const char *Name) { 744 // Convert Name to be a uniqued string from the IdentifierInfo table. 745 Name = getContext().Idents.get(Name).getName(); 746 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 747 } 748 749 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 750 assert(!D->getInit() && "Cannot emit definite definitions here!"); 751 752 if (MayDeferGeneration(D)) { 753 // If we have not seen a reference to this variable yet, place it 754 // into the deferred declarations table to be emitted if needed 755 // later. 756 const char *MangledName = getMangledName(D); 757 if (GlobalDeclMap.count(MangledName) == 0) { 758 DeferredDecls[MangledName] = GlobalDecl(D); 759 return; 760 } 761 } 762 763 // The tentative definition is the only definition. 764 EmitGlobalVarDefinition(D); 765 } 766 767 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 768 llvm::Constant *Init = 0; 769 QualType ASTTy = D->getType(); 770 771 if (D->getInit() == 0) { 772 // This is a tentative definition; tentative definitions are 773 // implicitly initialized with { 0 }. 774 // 775 // Note that tentative definitions are only emitted at the end of 776 // a translation unit, so they should never have incomplete 777 // type. In addition, EmitTentativeDefinition makes sure that we 778 // never attempt to emit a tentative definition if a real one 779 // exists. A use may still exists, however, so we still may need 780 // to do a RAUW. 781 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 782 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 783 } else { 784 Init = EmitConstantExpr(D->getInit(), D->getType()); 785 if (!Init) { 786 ErrorUnsupported(D, "static initializer"); 787 QualType T = D->getInit()->getType(); 788 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 789 } 790 } 791 792 const llvm::Type* InitType = Init->getType(); 793 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 794 795 // Strip off a bitcast if we got one back. 796 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 797 assert(CE->getOpcode() == llvm::Instruction::BitCast); 798 Entry = CE->getOperand(0); 799 } 800 801 // Entry is now either a Function or GlobalVariable. 802 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 803 804 // We have a definition after a declaration with the wrong type. 805 // We must make a new GlobalVariable* and update everything that used OldGV 806 // (a declaration or tentative definition) with the new GlobalVariable* 807 // (which will be a definition). 808 // 809 // This happens if there is a prototype for a global (e.g. 810 // "extern int x[];") and then a definition of a different type (e.g. 811 // "int x[10];"). This also happens when an initializer has a different type 812 // from the type of the global (this happens with unions). 813 if (GV == 0 || 814 GV->getType()->getElementType() != InitType || 815 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 816 817 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 818 GlobalDeclMap.erase(getMangledName(D)); 819 820 // Make a new global with the correct type, this is now guaranteed to work. 821 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 822 GV->takeName(cast<llvm::GlobalValue>(Entry)); 823 824 // Replace all uses of the old global with the new global 825 llvm::Constant *NewPtrForOldDecl = 826 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 827 Entry->replaceAllUsesWith(NewPtrForOldDecl); 828 829 // Erase the old global, since it is no longer used. 830 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 831 } 832 833 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 834 SourceManager &SM = Context.getSourceManager(); 835 AddAnnotation(EmitAnnotateAttr(GV, AA, 836 SM.getInstantiationLineNumber(D->getLocation()))); 837 } 838 839 GV->setInitializer(Init); 840 GV->setConstant(D->getType().isConstant(Context)); 841 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 842 843 // Set the llvm linkage type as appropriate. 844 if (D->getStorageClass() == VarDecl::Static) 845 GV->setLinkage(llvm::Function::InternalLinkage); 846 else if (D->hasAttr<DLLImportAttr>()) 847 GV->setLinkage(llvm::Function::DLLImportLinkage); 848 else if (D->hasAttr<DLLExportAttr>()) 849 GV->setLinkage(llvm::Function::DLLExportLinkage); 850 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 851 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 852 else if (!CompileOpts.NoCommon && 853 (!D->hasExternalStorage() && !D->getInit())) 854 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 855 else 856 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 857 858 SetCommonAttributes(D, GV); 859 860 // Emit global variable debug information. 861 if (CGDebugInfo *DI = getDebugInfo()) { 862 DI->setLocation(D->getLocation()); 863 DI->EmitGlobalVariable(GV, D); 864 } 865 } 866 867 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 868 /// implement a function with no prototype, e.g. "int foo() {}". If there are 869 /// existing call uses of the old function in the module, this adjusts them to 870 /// call the new function directly. 871 /// 872 /// This is not just a cleanup: the always_inline pass requires direct calls to 873 /// functions to be able to inline them. If there is a bitcast in the way, it 874 /// won't inline them. Instcombine normally deletes these calls, but it isn't 875 /// run at -O0. 876 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 877 llvm::Function *NewFn) { 878 // If we're redefining a global as a function, don't transform it. 879 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 880 if (OldFn == 0) return; 881 882 const llvm::Type *NewRetTy = NewFn->getReturnType(); 883 llvm::SmallVector<llvm::Value*, 4> ArgList; 884 885 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 886 UI != E; ) { 887 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 888 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 889 if (!CI) continue; 890 891 // If the return types don't match exactly, and if the call isn't dead, then 892 // we can't transform this call. 893 if (CI->getType() != NewRetTy && !CI->use_empty()) 894 continue; 895 896 // If the function was passed too few arguments, don't transform. If extra 897 // arguments were passed, we silently drop them. If any of the types 898 // mismatch, we don't transform. 899 unsigned ArgNo = 0; 900 bool DontTransform = false; 901 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 902 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 903 if (CI->getNumOperands()-1 == ArgNo || 904 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 905 DontTransform = true; 906 break; 907 } 908 } 909 if (DontTransform) 910 continue; 911 912 // Okay, we can transform this. Create the new call instruction and copy 913 // over the required information. 914 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 915 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 916 ArgList.end(), "", CI); 917 ArgList.clear(); 918 if (NewCall->getType() != llvm::Type::VoidTy) 919 NewCall->takeName(CI); 920 NewCall->setCallingConv(CI->getCallingConv()); 921 NewCall->setAttributes(CI->getAttributes()); 922 923 // Finally, remove the old call, replacing any uses with the new one. 924 if (!CI->use_empty()) 925 CI->replaceAllUsesWith(NewCall); 926 CI->eraseFromParent(); 927 } 928 } 929 930 931 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 932 const llvm::FunctionType *Ty; 933 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 934 935 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 936 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 937 938 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 939 } else { 940 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 941 942 // As a special case, make sure that definitions of K&R function 943 // "type foo()" aren't declared as varargs (which forces the backend 944 // to do unnecessary work). 945 if (D->getType()->isFunctionNoProtoType()) { 946 assert(Ty->isVarArg() && "Didn't lower type as expected"); 947 // Due to stret, the lowered function could have arguments. 948 // Just create the same type as was lowered by ConvertType 949 // but strip off the varargs bit. 950 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 951 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 952 } 953 } 954 955 // Get or create the prototype for the function. 956 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 957 958 // Strip off a bitcast if we got one back. 959 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 960 assert(CE->getOpcode() == llvm::Instruction::BitCast); 961 Entry = CE->getOperand(0); 962 } 963 964 965 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 966 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 967 968 // If the types mismatch then we have to rewrite the definition. 969 assert(OldFn->isDeclaration() && 970 "Shouldn't replace non-declaration"); 971 972 // F is the Function* for the one with the wrong type, we must make a new 973 // Function* and update everything that used F (a declaration) with the new 974 // Function* (which will be a definition). 975 // 976 // This happens if there is a prototype for a function 977 // (e.g. "int f()") and then a definition of a different type 978 // (e.g. "int f(int x)"). Start by making a new function of the 979 // correct type, RAUW, then steal the name. 980 GlobalDeclMap.erase(getMangledName(D)); 981 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 982 NewFn->takeName(OldFn); 983 984 // If this is an implementation of a function without a prototype, try to 985 // replace any existing uses of the function (which may be calls) with uses 986 // of the new function 987 if (D->getType()->isFunctionNoProtoType()) { 988 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 989 OldFn->removeDeadConstantUsers(); 990 } 991 992 // Replace uses of F with the Function we will endow with a body. 993 if (!Entry->use_empty()) { 994 llvm::Constant *NewPtrForOldDecl = 995 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 996 Entry->replaceAllUsesWith(NewPtrForOldDecl); 997 } 998 999 // Ok, delete the old function now, which is dead. 1000 OldFn->eraseFromParent(); 1001 1002 Entry = NewFn; 1003 } 1004 1005 llvm::Function *Fn = cast<llvm::Function>(Entry); 1006 1007 CodeGenFunction(*this).GenerateCode(D, Fn); 1008 1009 SetFunctionDefinitionAttributes(D, Fn); 1010 SetLLVMFunctionAttributesForDefinition(D, Fn); 1011 1012 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1013 AddGlobalCtor(Fn, CA->getPriority()); 1014 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1015 AddGlobalDtor(Fn, DA->getPriority()); 1016 } 1017 1018 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1019 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1020 assert(AA && "Not an alias?"); 1021 1022 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1023 1024 // Unique the name through the identifier table. 1025 const char *AliaseeName = AA->getAliasee().c_str(); 1026 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1027 1028 // Create a reference to the named value. This ensures that it is emitted 1029 // if a deferred decl. 1030 llvm::Constant *Aliasee; 1031 if (isa<llvm::FunctionType>(DeclTy)) 1032 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1033 else 1034 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1035 llvm::PointerType::getUnqual(DeclTy), 0); 1036 1037 // Create the new alias itself, but don't set a name yet. 1038 llvm::GlobalValue *GA = 1039 new llvm::GlobalAlias(Aliasee->getType(), 1040 llvm::Function::ExternalLinkage, 1041 "", Aliasee, &getModule()); 1042 1043 // See if there is already something with the alias' name in the module. 1044 const char *MangledName = getMangledName(D); 1045 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1046 1047 if (Entry && !Entry->isDeclaration()) { 1048 // If there is a definition in the module, then it wins over the alias. 1049 // This is dubious, but allow it to be safe. Just ignore the alias. 1050 GA->eraseFromParent(); 1051 return; 1052 } 1053 1054 if (Entry) { 1055 // If there is a declaration in the module, then we had an extern followed 1056 // by the alias, as in: 1057 // extern int test6(); 1058 // ... 1059 // int test6() __attribute__((alias("test7"))); 1060 // 1061 // Remove it and replace uses of it with the alias. 1062 1063 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1064 Entry->getType())); 1065 Entry->eraseFromParent(); 1066 } 1067 1068 // Now we know that there is no conflict, set the name. 1069 Entry = GA; 1070 GA->setName(MangledName); 1071 1072 // Set attributes which are particular to an alias; this is a 1073 // specialization of the attributes which may be set on a global 1074 // variable/function. 1075 if (D->hasAttr<DLLExportAttr>()) { 1076 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1077 // The dllexport attribute is ignored for undefined symbols. 1078 if (FD->getBody(getContext())) 1079 GA->setLinkage(llvm::Function::DLLExportLinkage); 1080 } else { 1081 GA->setLinkage(llvm::Function::DLLExportLinkage); 1082 } 1083 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 1084 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1085 } 1086 1087 SetCommonAttributes(D, GA); 1088 } 1089 1090 /// getBuiltinLibFunction - Given a builtin id for a function like 1091 /// "__builtin_fabsf", return a Function* for "fabsf". 1092 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1093 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1094 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1095 "isn't a lib fn"); 1096 1097 // Get the name, skip over the __builtin_ prefix (if necessary). 1098 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1099 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1100 Name += 10; 1101 1102 // Get the type for the builtin. 1103 Builtin::Context::GetBuiltinTypeError Error; 1104 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 1105 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 1106 1107 const llvm::FunctionType *Ty = 1108 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1109 1110 // Unique the name through the identifier table. 1111 Name = getContext().Idents.get(Name).getName(); 1112 // FIXME: param attributes for sext/zext etc. 1113 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1114 } 1115 1116 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1117 unsigned NumTys) { 1118 return llvm::Intrinsic::getDeclaration(&getModule(), 1119 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1120 } 1121 1122 llvm::Function *CodeGenModule::getMemCpyFn() { 1123 if (MemCpyFn) return MemCpyFn; 1124 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1125 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1126 } 1127 1128 llvm::Function *CodeGenModule::getMemMoveFn() { 1129 if (MemMoveFn) return MemMoveFn; 1130 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1131 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1132 } 1133 1134 llvm::Function *CodeGenModule::getMemSetFn() { 1135 if (MemSetFn) return MemSetFn; 1136 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1137 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1138 } 1139 1140 static void appendFieldAndPadding(CodeGenModule &CGM, 1141 std::vector<llvm::Constant*>& Fields, 1142 FieldDecl *FieldD, FieldDecl *NextFieldD, 1143 llvm::Constant* Field, 1144 RecordDecl* RD, const llvm::StructType *STy) { 1145 // Append the field. 1146 Fields.push_back(Field); 1147 1148 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1149 1150 int NextStructFieldNo; 1151 if (!NextFieldD) { 1152 NextStructFieldNo = STy->getNumElements(); 1153 } else { 1154 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1155 } 1156 1157 // Append padding 1158 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1159 llvm::Constant *C = 1160 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1161 1162 Fields.push_back(C); 1163 } 1164 } 1165 1166 llvm::Constant *CodeGenModule:: 1167 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1168 std::string str; 1169 unsigned StringLength = 0; 1170 1171 bool isUTF16 = false; 1172 if (Literal->containsNonAsciiOrNull()) { 1173 // Convert from UTF-8 to UTF-16. 1174 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1175 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1176 UTF16 *ToPtr = &ToBuf[0]; 1177 1178 ConversionResult Result; 1179 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1180 &ToPtr, ToPtr+Literal->getByteLength(), 1181 strictConversion); 1182 if (Result == conversionOK) { 1183 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1184 // without doing more surgery to this routine. Since we aren't explicitly 1185 // checking for endianness here, it's also a bug (when generating code for 1186 // a target that doesn't match the host endianness). Modeling this as an 1187 // i16 array is likely the cleanest solution. 1188 StringLength = ToPtr-&ToBuf[0]; 1189 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1190 isUTF16 = true; 1191 } else if (Result == sourceIllegal) { 1192 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1193 str.assign(Literal->getStrData(), Literal->getByteLength()); 1194 StringLength = str.length(); 1195 } else 1196 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1197 1198 } else { 1199 str.assign(Literal->getStrData(), Literal->getByteLength()); 1200 StringLength = str.length(); 1201 } 1202 llvm::StringMapEntry<llvm::Constant *> &Entry = 1203 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1204 1205 if (llvm::Constant *C = Entry.getValue()) 1206 return C; 1207 1208 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1209 llvm::Constant *Zeros[] = { Zero, Zero }; 1210 1211 if (!CFConstantStringClassRef) { 1212 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1213 Ty = llvm::ArrayType::get(Ty, 0); 1214 1215 // FIXME: This is fairly broken if __CFConstantStringClassReference is 1216 // already defined, in that it will get renamed and the user will most 1217 // likely see an opaque error message. This is a general issue with relying 1218 // on particular names. 1219 llvm::GlobalVariable *GV = 1220 new llvm::GlobalVariable(Ty, false, 1221 llvm::GlobalVariable::ExternalLinkage, 0, 1222 "__CFConstantStringClassReference", 1223 &getModule()); 1224 1225 // Decay array -> ptr 1226 CFConstantStringClassRef = 1227 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1228 } 1229 1230 QualType CFTy = getContext().getCFConstantStringType(); 1231 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1232 1233 const llvm::StructType *STy = 1234 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1235 1236 std::vector<llvm::Constant*> Fields; 1237 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1238 1239 // Class pointer. 1240 FieldDecl *CurField = *Field++; 1241 FieldDecl *NextField = *Field++; 1242 appendFieldAndPadding(*this, Fields, CurField, NextField, 1243 CFConstantStringClassRef, CFRD, STy); 1244 1245 // Flags. 1246 CurField = NextField; 1247 NextField = *Field++; 1248 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1249 appendFieldAndPadding(*this, Fields, CurField, NextField, 1250 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1251 : llvm::ConstantInt::get(Ty, 0x07C8), 1252 CFRD, STy); 1253 1254 // String pointer. 1255 CurField = NextField; 1256 NextField = *Field++; 1257 llvm::Constant *C = llvm::ConstantArray::get(str); 1258 1259 const char *Sect, *Prefix; 1260 bool isConstant; 1261 if (isUTF16) { 1262 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1263 Sect = getContext().Target.getUnicodeStringSection(); 1264 // FIXME: Why does GCC not set constant here? 1265 isConstant = false; 1266 } else { 1267 Prefix = getContext().Target.getStringSymbolPrefix(true); 1268 Sect = getContext().Target.getCFStringDataSection(); 1269 // FIXME: -fwritable-strings should probably affect this, but we 1270 // are following gcc here. 1271 isConstant = true; 1272 } 1273 llvm::GlobalVariable *GV = 1274 new llvm::GlobalVariable(C->getType(), isConstant, 1275 llvm::GlobalValue::InternalLinkage, 1276 C, Prefix, &getModule()); 1277 if (Sect) 1278 GV->setSection(Sect); 1279 if (isUTF16) { 1280 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1281 GV->setAlignment(Align); 1282 } 1283 appendFieldAndPadding(*this, Fields, CurField, NextField, 1284 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1285 CFRD, STy); 1286 1287 // String length. 1288 CurField = NextField; 1289 NextField = 0; 1290 Ty = getTypes().ConvertType(getContext().LongTy); 1291 appendFieldAndPadding(*this, Fields, CurField, NextField, 1292 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1293 1294 // The struct. 1295 C = llvm::ConstantStruct::get(STy, Fields); 1296 GV = new llvm::GlobalVariable(C->getType(), true, 1297 llvm::GlobalVariable::InternalLinkage, C, 1298 getContext().Target.getCFStringSymbolPrefix(), 1299 &getModule()); 1300 if (const char *Sect = getContext().Target.getCFStringSection()) 1301 GV->setSection(Sect); 1302 Entry.setValue(GV); 1303 1304 return GV; 1305 } 1306 1307 /// GetStringForStringLiteral - Return the appropriate bytes for a 1308 /// string literal, properly padded to match the literal type. 1309 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1310 const char *StrData = E->getStrData(); 1311 unsigned Len = E->getByteLength(); 1312 1313 const ConstantArrayType *CAT = 1314 getContext().getAsConstantArrayType(E->getType()); 1315 assert(CAT && "String isn't pointer or array!"); 1316 1317 // Resize the string to the right size. 1318 std::string Str(StrData, StrData+Len); 1319 uint64_t RealLen = CAT->getSize().getZExtValue(); 1320 1321 if (E->isWide()) 1322 RealLen *= getContext().Target.getWCharWidth()/8; 1323 1324 Str.resize(RealLen, '\0'); 1325 1326 return Str; 1327 } 1328 1329 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1330 /// constant array for the given string literal. 1331 llvm::Constant * 1332 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1333 // FIXME: This can be more efficient. 1334 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1335 } 1336 1337 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1338 /// array for the given ObjCEncodeExpr node. 1339 llvm::Constant * 1340 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1341 std::string Str; 1342 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1343 1344 return GetAddrOfConstantCString(Str); 1345 } 1346 1347 1348 /// GenerateWritableString -- Creates storage for a string literal. 1349 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1350 bool constant, 1351 CodeGenModule &CGM, 1352 const char *GlobalName) { 1353 // Create Constant for this string literal. Don't add a '\0'. 1354 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1355 1356 // Create a global variable for this string 1357 return new llvm::GlobalVariable(C->getType(), constant, 1358 llvm::GlobalValue::InternalLinkage, 1359 C, GlobalName, &CGM.getModule()); 1360 } 1361 1362 /// GetAddrOfConstantString - Returns a pointer to a character array 1363 /// containing the literal. This contents are exactly that of the 1364 /// given string, i.e. it will not be null terminated automatically; 1365 /// see GetAddrOfConstantCString. Note that whether the result is 1366 /// actually a pointer to an LLVM constant depends on 1367 /// Feature.WriteableStrings. 1368 /// 1369 /// The result has pointer to array type. 1370 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1371 const char *GlobalName) { 1372 bool IsConstant = !Features.WritableStrings; 1373 1374 // Get the default prefix if a name wasn't specified. 1375 if (!GlobalName) 1376 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1377 1378 // Don't share any string literals if strings aren't constant. 1379 if (!IsConstant) 1380 return GenerateStringLiteral(str, false, *this, GlobalName); 1381 1382 llvm::StringMapEntry<llvm::Constant *> &Entry = 1383 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1384 1385 if (Entry.getValue()) 1386 return Entry.getValue(); 1387 1388 // Create a global variable for this. 1389 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1390 Entry.setValue(C); 1391 return C; 1392 } 1393 1394 /// GetAddrOfConstantCString - Returns a pointer to a character 1395 /// array containing the literal and a terminating '\-' 1396 /// character. The result has pointer to array type. 1397 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1398 const char *GlobalName){ 1399 return GetAddrOfConstantString(str + '\0', GlobalName); 1400 } 1401 1402 /// EmitObjCPropertyImplementations - Emit information for synthesized 1403 /// properties for an implementation. 1404 void CodeGenModule::EmitObjCPropertyImplementations(const 1405 ObjCImplementationDecl *D) { 1406 for (ObjCImplementationDecl::propimpl_iterator 1407 i = D->propimpl_begin(getContext()), 1408 e = D->propimpl_end(getContext()); i != e; ++i) { 1409 ObjCPropertyImplDecl *PID = *i; 1410 1411 // Dynamic is just for type-checking. 1412 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1413 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1414 1415 // Determine which methods need to be implemented, some may have 1416 // been overridden. Note that ::isSynthesized is not the method 1417 // we want, that just indicates if the decl came from a 1418 // property. What we want to know is if the method is defined in 1419 // this implementation. 1420 if (!D->getInstanceMethod(getContext(), PD->getGetterName())) 1421 CodeGenFunction(*this).GenerateObjCGetter( 1422 const_cast<ObjCImplementationDecl *>(D), PID); 1423 if (!PD->isReadOnly() && 1424 !D->getInstanceMethod(getContext(), PD->getSetterName())) 1425 CodeGenFunction(*this).GenerateObjCSetter( 1426 const_cast<ObjCImplementationDecl *>(D), PID); 1427 } 1428 } 1429 } 1430 1431 /// EmitNamespace - Emit all declarations in a namespace. 1432 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1433 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1434 E = ND->decls_end(getContext()); 1435 I != E; ++I) 1436 EmitTopLevelDecl(*I); 1437 } 1438 1439 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1440 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1441 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1442 ErrorUnsupported(LSD, "linkage spec"); 1443 return; 1444 } 1445 1446 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1447 E = LSD->decls_end(getContext()); 1448 I != E; ++I) 1449 EmitTopLevelDecl(*I); 1450 } 1451 1452 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1453 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1454 // If an error has occurred, stop code generation, but continue 1455 // parsing and semantic analysis (to ensure all warnings and errors 1456 // are emitted). 1457 if (Diags.hasErrorOccurred()) 1458 return; 1459 1460 switch (D->getKind()) { 1461 case Decl::CXXMethod: 1462 case Decl::Function: 1463 case Decl::Var: 1464 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1465 break; 1466 1467 // C++ Decls 1468 case Decl::Namespace: 1469 EmitNamespace(cast<NamespaceDecl>(D)); 1470 break; 1471 case Decl::CXXConstructor: 1472 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1473 break; 1474 case Decl::CXXDestructor: 1475 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1476 break; 1477 1478 // Objective-C Decls 1479 1480 // Forward declarations, no (immediate) code generation. 1481 case Decl::ObjCClass: 1482 case Decl::ObjCForwardProtocol: 1483 case Decl::ObjCCategory: 1484 case Decl::ObjCInterface: 1485 break; 1486 1487 case Decl::ObjCProtocol: 1488 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1489 break; 1490 1491 case Decl::ObjCCategoryImpl: 1492 // Categories have properties but don't support synthesize so we 1493 // can ignore them here. 1494 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1495 break; 1496 1497 case Decl::ObjCImplementation: { 1498 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1499 EmitObjCPropertyImplementations(OMD); 1500 Runtime->GenerateClass(OMD); 1501 break; 1502 } 1503 case Decl::ObjCMethod: { 1504 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1505 // If this is not a prototype, emit the body. 1506 if (OMD->getBody(getContext())) 1507 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1508 break; 1509 } 1510 case Decl::ObjCCompatibleAlias: 1511 // compatibility-alias is a directive and has no code gen. 1512 break; 1513 1514 case Decl::LinkageSpec: 1515 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1516 break; 1517 1518 case Decl::FileScopeAsm: { 1519 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1520 std::string AsmString(AD->getAsmString()->getStrData(), 1521 AD->getAsmString()->getByteLength()); 1522 1523 const std::string &S = getModule().getModuleInlineAsm(); 1524 if (S.empty()) 1525 getModule().setModuleInlineAsm(AsmString); 1526 else 1527 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1528 break; 1529 } 1530 1531 default: 1532 // Make sure we handled everything we should, every other kind is a 1533 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1534 // function. Need to recode Decl::Kind to do that easily. 1535 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1536 } 1537 } 1538