1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/ConstantInitBuilder.h" 47 #include "clang/Frontend/FrontendDiagnostic.h" 48 #include "llvm/ADT/StringSwitch.h" 49 #include "llvm/ADT/Triple.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ProfileSummary.h" 58 #include "llvm/ProfileData/InstrProfReader.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ConvertUTF.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MD5.h" 64 #include "llvm/Support/TimeProfiler.h" 65 66 using namespace clang; 67 using namespace CodeGen; 68 69 static llvm::cl::opt<bool> LimitedCoverage( 70 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 71 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 72 llvm::cl::init(false)); 73 74 static const char AnnotationSection[] = "llvm.metadata"; 75 76 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 77 switch (CGM.getTarget().getCXXABI().getKind()) { 78 case TargetCXXABI::Fuchsia: 79 case TargetCXXABI::GenericAArch64: 80 case TargetCXXABI::GenericARM: 81 case TargetCXXABI::iOS: 82 case TargetCXXABI::iOS64: 83 case TargetCXXABI::WatchOS: 84 case TargetCXXABI::GenericMIPS: 85 case TargetCXXABI::GenericItanium: 86 case TargetCXXABI::WebAssembly: 87 case TargetCXXABI::XL: 88 return CreateItaniumCXXABI(CGM); 89 case TargetCXXABI::Microsoft: 90 return CreateMicrosoftCXXABI(CGM); 91 } 92 93 llvm_unreachable("invalid C++ ABI kind"); 94 } 95 96 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 97 const PreprocessorOptions &PPO, 98 const CodeGenOptions &CGO, llvm::Module &M, 99 DiagnosticsEngine &diags, 100 CoverageSourceInfo *CoverageInfo) 101 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 102 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 103 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 104 VMContext(M.getContext()), Types(*this), VTables(*this), 105 SanitizerMD(new SanitizerMetadata(*this)) { 106 107 // Initialize the type cache. 108 llvm::LLVMContext &LLVMContext = M.getContext(); 109 VoidTy = llvm::Type::getVoidTy(LLVMContext); 110 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 111 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 112 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 113 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 114 HalfTy = llvm::Type::getHalfTy(LLVMContext); 115 FloatTy = llvm::Type::getFloatTy(LLVMContext); 116 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 117 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 118 PointerAlignInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 120 SizeSizeInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 122 IntAlignInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 124 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 125 IntPtrTy = llvm::IntegerType::get(LLVMContext, 126 C.getTargetInfo().getMaxPointerWidth()); 127 Int8PtrTy = Int8Ty->getPointerTo(0); 128 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 129 AllocaInt8PtrTy = Int8Ty->getPointerTo( 130 M.getDataLayout().getAllocaAddrSpace()); 131 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 132 133 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 134 135 if (LangOpts.ObjC) 136 createObjCRuntime(); 137 if (LangOpts.OpenCL) 138 createOpenCLRuntime(); 139 if (LangOpts.OpenMP) 140 createOpenMPRuntime(); 141 if (LangOpts.CUDA) 142 createCUDARuntime(); 143 144 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 145 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 146 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 147 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 148 getCXXABI().getMangleContext())); 149 150 // If debug info or coverage generation is enabled, create the CGDebugInfo 151 // object. 152 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 153 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 154 DebugInfo.reset(new CGDebugInfo(*this)); 155 156 Block.GlobalUniqueCount = 0; 157 158 if (C.getLangOpts().ObjC) 159 ObjCData.reset(new ObjCEntrypoints()); 160 161 if (CodeGenOpts.hasProfileClangUse()) { 162 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 163 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 164 if (auto E = ReaderOrErr.takeError()) { 165 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 166 "Could not read profile %0: %1"); 167 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 168 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 169 << EI.message(); 170 }); 171 } else 172 PGOReader = std::move(ReaderOrErr.get()); 173 } 174 175 // If coverage mapping generation is enabled, create the 176 // CoverageMappingModuleGen object. 177 if (CodeGenOpts.CoverageMapping) 178 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 179 } 180 181 CodeGenModule::~CodeGenModule() {} 182 183 void CodeGenModule::createObjCRuntime() { 184 // This is just isGNUFamily(), but we want to force implementors of 185 // new ABIs to decide how best to do this. 186 switch (LangOpts.ObjCRuntime.getKind()) { 187 case ObjCRuntime::GNUstep: 188 case ObjCRuntime::GCC: 189 case ObjCRuntime::ObjFW: 190 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 191 return; 192 193 case ObjCRuntime::FragileMacOSX: 194 case ObjCRuntime::MacOSX: 195 case ObjCRuntime::iOS: 196 case ObjCRuntime::WatchOS: 197 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 198 return; 199 } 200 llvm_unreachable("bad runtime kind"); 201 } 202 203 void CodeGenModule::createOpenCLRuntime() { 204 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 205 } 206 207 void CodeGenModule::createOpenMPRuntime() { 208 // Select a specialized code generation class based on the target, if any. 209 // If it does not exist use the default implementation. 210 switch (getTriple().getArch()) { 211 case llvm::Triple::nvptx: 212 case llvm::Triple::nvptx64: 213 assert(getLangOpts().OpenMPIsDevice && 214 "OpenMP NVPTX is only prepared to deal with device code."); 215 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 216 break; 217 default: 218 if (LangOpts.OpenMPSimd) 219 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 220 else 221 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 222 break; 223 } 224 225 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 226 // but we are not there yet so they both reside in CGModule for now and the 227 // OpenMP-IR-Builder is opt-in only. 228 if (LangOpts.OpenMPIRBuilder) { 229 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 230 OMPBuilder->initialize(); 231 } 232 } 233 234 void CodeGenModule::createCUDARuntime() { 235 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 236 } 237 238 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 239 Replacements[Name] = C; 240 } 241 242 void CodeGenModule::applyReplacements() { 243 for (auto &I : Replacements) { 244 StringRef MangledName = I.first(); 245 llvm::Constant *Replacement = I.second; 246 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 247 if (!Entry) 248 continue; 249 auto *OldF = cast<llvm::Function>(Entry); 250 auto *NewF = dyn_cast<llvm::Function>(Replacement); 251 if (!NewF) { 252 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 253 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 254 } else { 255 auto *CE = cast<llvm::ConstantExpr>(Replacement); 256 assert(CE->getOpcode() == llvm::Instruction::BitCast || 257 CE->getOpcode() == llvm::Instruction::GetElementPtr); 258 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 259 } 260 } 261 262 // Replace old with new, but keep the old order. 263 OldF->replaceAllUsesWith(Replacement); 264 if (NewF) { 265 NewF->removeFromParent(); 266 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 267 NewF); 268 } 269 OldF->eraseFromParent(); 270 } 271 } 272 273 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 274 GlobalValReplacements.push_back(std::make_pair(GV, C)); 275 } 276 277 void CodeGenModule::applyGlobalValReplacements() { 278 for (auto &I : GlobalValReplacements) { 279 llvm::GlobalValue *GV = I.first; 280 llvm::Constant *C = I.second; 281 282 GV->replaceAllUsesWith(C); 283 GV->eraseFromParent(); 284 } 285 } 286 287 // This is only used in aliases that we created and we know they have a 288 // linear structure. 289 static const llvm::GlobalObject *getAliasedGlobal( 290 const llvm::GlobalIndirectSymbol &GIS) { 291 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 292 const llvm::Constant *C = &GIS; 293 for (;;) { 294 C = C->stripPointerCasts(); 295 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 296 return GO; 297 // stripPointerCasts will not walk over weak aliases. 298 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 299 if (!GIS2) 300 return nullptr; 301 if (!Visited.insert(GIS2).second) 302 return nullptr; 303 C = GIS2->getIndirectSymbol(); 304 } 305 } 306 307 void CodeGenModule::checkAliases() { 308 // Check if the constructed aliases are well formed. It is really unfortunate 309 // that we have to do this in CodeGen, but we only construct mangled names 310 // and aliases during codegen. 311 bool Error = false; 312 DiagnosticsEngine &Diags = getDiags(); 313 for (const GlobalDecl &GD : Aliases) { 314 const auto *D = cast<ValueDecl>(GD.getDecl()); 315 SourceLocation Location; 316 bool IsIFunc = D->hasAttr<IFuncAttr>(); 317 if (const Attr *A = D->getDefiningAttr()) 318 Location = A->getLocation(); 319 else 320 llvm_unreachable("Not an alias or ifunc?"); 321 StringRef MangledName = getMangledName(GD); 322 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 323 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 324 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 325 if (!GV) { 326 Error = true; 327 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 328 } else if (GV->isDeclaration()) { 329 Error = true; 330 Diags.Report(Location, diag::err_alias_to_undefined) 331 << IsIFunc << IsIFunc; 332 } else if (IsIFunc) { 333 // Check resolver function type. 334 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 335 GV->getType()->getPointerElementType()); 336 assert(FTy); 337 if (!FTy->getReturnType()->isPointerTy()) 338 Diags.Report(Location, diag::err_ifunc_resolver_return); 339 } 340 341 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 342 llvm::GlobalValue *AliaseeGV; 343 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 344 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 345 else 346 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 347 348 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 349 StringRef AliasSection = SA->getName(); 350 if (AliasSection != AliaseeGV->getSection()) 351 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 352 << AliasSection << IsIFunc << IsIFunc; 353 } 354 355 // We have to handle alias to weak aliases in here. LLVM itself disallows 356 // this since the object semantics would not match the IL one. For 357 // compatibility with gcc we implement it by just pointing the alias 358 // to its aliasee's aliasee. We also warn, since the user is probably 359 // expecting the link to be weak. 360 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 361 if (GA->isInterposable()) { 362 Diags.Report(Location, diag::warn_alias_to_weak_alias) 363 << GV->getName() << GA->getName() << IsIFunc; 364 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 365 GA->getIndirectSymbol(), Alias->getType()); 366 Alias->setIndirectSymbol(Aliasee); 367 } 368 } 369 } 370 if (!Error) 371 return; 372 373 for (const GlobalDecl &GD : Aliases) { 374 StringRef MangledName = getMangledName(GD); 375 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 376 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 377 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 378 Alias->eraseFromParent(); 379 } 380 } 381 382 void CodeGenModule::clear() { 383 DeferredDeclsToEmit.clear(); 384 if (OpenMPRuntime) 385 OpenMPRuntime->clear(); 386 } 387 388 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 389 StringRef MainFile) { 390 if (!hasDiagnostics()) 391 return; 392 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 393 if (MainFile.empty()) 394 MainFile = "<stdin>"; 395 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 396 } else { 397 if (Mismatched > 0) 398 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 399 400 if (Missing > 0) 401 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 402 } 403 } 404 405 void CodeGenModule::Release() { 406 EmitDeferred(); 407 EmitVTablesOpportunistically(); 408 applyGlobalValReplacements(); 409 applyReplacements(); 410 checkAliases(); 411 emitMultiVersionFunctions(); 412 EmitCXXGlobalInitFunc(); 413 EmitCXXGlobalDtorFunc(); 414 registerGlobalDtorsWithAtExit(); 415 EmitCXXThreadLocalInitFunc(); 416 if (ObjCRuntime) 417 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 418 AddGlobalCtor(ObjCInitFunction); 419 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 420 CUDARuntime) { 421 if (llvm::Function *CudaCtorFunction = 422 CUDARuntime->makeModuleCtorFunction()) 423 AddGlobalCtor(CudaCtorFunction); 424 } 425 if (OpenMPRuntime) { 426 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 427 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 428 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 429 } 430 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 431 OpenMPRuntime->clear(); 432 } 433 if (PGOReader) { 434 getModule().setProfileSummary( 435 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 436 llvm::ProfileSummary::PSK_Instr); 437 if (PGOStats.hasDiagnostics()) 438 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 439 } 440 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 441 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 442 EmitGlobalAnnotations(); 443 EmitStaticExternCAliases(); 444 EmitDeferredUnusedCoverageMappings(); 445 if (CoverageMapping) 446 CoverageMapping->emit(); 447 if (CodeGenOpts.SanitizeCfiCrossDso) { 448 CodeGenFunction(*this).EmitCfiCheckFail(); 449 CodeGenFunction(*this).EmitCfiCheckStub(); 450 } 451 emitAtAvailableLinkGuard(); 452 if (Context.getTargetInfo().getTriple().isWasm() && 453 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 454 EmitMainVoidAlias(); 455 } 456 emitLLVMUsed(); 457 if (SanStats) 458 SanStats->finish(); 459 460 if (CodeGenOpts.Autolink && 461 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 462 EmitModuleLinkOptions(); 463 } 464 465 // On ELF we pass the dependent library specifiers directly to the linker 466 // without manipulating them. This is in contrast to other platforms where 467 // they are mapped to a specific linker option by the compiler. This 468 // difference is a result of the greater variety of ELF linkers and the fact 469 // that ELF linkers tend to handle libraries in a more complicated fashion 470 // than on other platforms. This forces us to defer handling the dependent 471 // libs to the linker. 472 // 473 // CUDA/HIP device and host libraries are different. Currently there is no 474 // way to differentiate dependent libraries for host or device. Existing 475 // usage of #pragma comment(lib, *) is intended for host libraries on 476 // Windows. Therefore emit llvm.dependent-libraries only for host. 477 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 478 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 479 for (auto *MD : ELFDependentLibraries) 480 NMD->addOperand(MD); 481 } 482 483 // Record mregparm value now so it is visible through rest of codegen. 484 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 485 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 486 CodeGenOpts.NumRegisterParameters); 487 488 if (CodeGenOpts.DwarfVersion) { 489 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 490 CodeGenOpts.DwarfVersion); 491 } 492 493 if (Context.getLangOpts().SemanticInterposition) 494 // Require various optimization to respect semantic interposition. 495 getModule().setSemanticInterposition(1); 496 497 if (CodeGenOpts.EmitCodeView) { 498 // Indicate that we want CodeView in the metadata. 499 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 500 } 501 if (CodeGenOpts.CodeViewGHash) { 502 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 503 } 504 if (CodeGenOpts.ControlFlowGuard) { 505 // Function ID tables and checks for Control Flow Guard (cfguard=2). 506 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 507 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 508 // Function ID tables for Control Flow Guard (cfguard=1). 509 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 510 } 511 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 512 // We don't support LTO with 2 with different StrictVTablePointers 513 // FIXME: we could support it by stripping all the information introduced 514 // by StrictVTablePointers. 515 516 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 517 518 llvm::Metadata *Ops[2] = { 519 llvm::MDString::get(VMContext, "StrictVTablePointers"), 520 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 521 llvm::Type::getInt32Ty(VMContext), 1))}; 522 523 getModule().addModuleFlag(llvm::Module::Require, 524 "StrictVTablePointersRequirement", 525 llvm::MDNode::get(VMContext, Ops)); 526 } 527 if (DebugInfo) 528 // We support a single version in the linked module. The LLVM 529 // parser will drop debug info with a different version number 530 // (and warn about it, too). 531 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 532 llvm::DEBUG_METADATA_VERSION); 533 534 // We need to record the widths of enums and wchar_t, so that we can generate 535 // the correct build attributes in the ARM backend. wchar_size is also used by 536 // TargetLibraryInfo. 537 uint64_t WCharWidth = 538 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 539 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 540 541 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 542 if ( Arch == llvm::Triple::arm 543 || Arch == llvm::Triple::armeb 544 || Arch == llvm::Triple::thumb 545 || Arch == llvm::Triple::thumbeb) { 546 // The minimum width of an enum in bytes 547 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 548 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 549 } 550 551 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 552 StringRef ABIStr = Target.getABI(); 553 llvm::LLVMContext &Ctx = TheModule.getContext(); 554 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 555 llvm::MDString::get(Ctx, ABIStr)); 556 } 557 558 if (CodeGenOpts.SanitizeCfiCrossDso) { 559 // Indicate that we want cross-DSO control flow integrity checks. 560 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 561 } 562 563 if (CodeGenOpts.WholeProgramVTables) { 564 // Indicate whether VFE was enabled for this module, so that the 565 // vcall_visibility metadata added under whole program vtables is handled 566 // appropriately in the optimizer. 567 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 568 CodeGenOpts.VirtualFunctionElimination); 569 } 570 571 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 572 getModule().addModuleFlag(llvm::Module::Override, 573 "CFI Canonical Jump Tables", 574 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 575 } 576 577 if (CodeGenOpts.CFProtectionReturn && 578 Target.checkCFProtectionReturnSupported(getDiags())) { 579 // Indicate that we want to instrument return control flow protection. 580 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 581 1); 582 } 583 584 if (CodeGenOpts.CFProtectionBranch && 585 Target.checkCFProtectionBranchSupported(getDiags())) { 586 // Indicate that we want to instrument branch control flow protection. 587 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 588 1); 589 } 590 591 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 592 // Indicate whether __nvvm_reflect should be configured to flush denormal 593 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 594 // property.) 595 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 596 CodeGenOpts.FP32DenormalMode.Output != 597 llvm::DenormalMode::IEEE); 598 } 599 600 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 601 if (LangOpts.OpenCL) { 602 EmitOpenCLMetadata(); 603 // Emit SPIR version. 604 if (getTriple().isSPIR()) { 605 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 606 // opencl.spir.version named metadata. 607 // C++ is backwards compatible with OpenCL v2.0. 608 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 609 llvm::Metadata *SPIRVerElts[] = { 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 Int32Ty, Version / 100)), 612 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 613 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 614 llvm::NamedMDNode *SPIRVerMD = 615 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 616 llvm::LLVMContext &Ctx = TheModule.getContext(); 617 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 618 } 619 } 620 621 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 622 assert(PLevel < 3 && "Invalid PIC Level"); 623 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 624 if (Context.getLangOpts().PIE) 625 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 626 } 627 628 if (getCodeGenOpts().CodeModel.size() > 0) { 629 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 630 .Case("tiny", llvm::CodeModel::Tiny) 631 .Case("small", llvm::CodeModel::Small) 632 .Case("kernel", llvm::CodeModel::Kernel) 633 .Case("medium", llvm::CodeModel::Medium) 634 .Case("large", llvm::CodeModel::Large) 635 .Default(~0u); 636 if (CM != ~0u) { 637 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 638 getModule().setCodeModel(codeModel); 639 } 640 } 641 642 if (CodeGenOpts.NoPLT) 643 getModule().setRtLibUseGOT(); 644 645 SimplifyPersonality(); 646 647 if (getCodeGenOpts().EmitDeclMetadata) 648 EmitDeclMetadata(); 649 650 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 651 EmitCoverageFile(); 652 653 if (DebugInfo) 654 DebugInfo->finalize(); 655 656 if (getCodeGenOpts().EmitVersionIdentMetadata) 657 EmitVersionIdentMetadata(); 658 659 if (!getCodeGenOpts().RecordCommandLine.empty()) 660 EmitCommandLineMetadata(); 661 662 EmitTargetMetadata(); 663 664 EmitBackendOptionsMetadata(getCodeGenOpts()); 665 } 666 667 void CodeGenModule::EmitOpenCLMetadata() { 668 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 669 // opencl.ocl.version named metadata node. 670 // C++ is backwards compatible with OpenCL v2.0. 671 // FIXME: We might need to add CXX version at some point too? 672 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 673 llvm::Metadata *OCLVerElts[] = { 674 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 675 Int32Ty, Version / 100)), 676 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 677 Int32Ty, (Version % 100) / 10))}; 678 llvm::NamedMDNode *OCLVerMD = 679 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 680 llvm::LLVMContext &Ctx = TheModule.getContext(); 681 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 682 } 683 684 void CodeGenModule::EmitBackendOptionsMetadata( 685 const CodeGenOptions CodeGenOpts) { 686 switch (getTriple().getArch()) { 687 default: 688 break; 689 case llvm::Triple::riscv32: 690 case llvm::Triple::riscv64: 691 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 692 CodeGenOpts.SmallDataLimit); 693 break; 694 } 695 } 696 697 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 698 // Make sure that this type is translated. 699 Types.UpdateCompletedType(TD); 700 } 701 702 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 703 // Make sure that this type is translated. 704 Types.RefreshTypeCacheForClass(RD); 705 } 706 707 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 708 if (!TBAA) 709 return nullptr; 710 return TBAA->getTypeInfo(QTy); 711 } 712 713 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 714 if (!TBAA) 715 return TBAAAccessInfo(); 716 if (getLangOpts().CUDAIsDevice) { 717 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 718 // access info. 719 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 720 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 721 nullptr) 722 return TBAAAccessInfo(); 723 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 724 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 725 nullptr) 726 return TBAAAccessInfo(); 727 } 728 } 729 return TBAA->getAccessInfo(AccessType); 730 } 731 732 TBAAAccessInfo 733 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 734 if (!TBAA) 735 return TBAAAccessInfo(); 736 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 737 } 738 739 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 740 if (!TBAA) 741 return nullptr; 742 return TBAA->getTBAAStructInfo(QTy); 743 } 744 745 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 746 if (!TBAA) 747 return nullptr; 748 return TBAA->getBaseTypeInfo(QTy); 749 } 750 751 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 752 if (!TBAA) 753 return nullptr; 754 return TBAA->getAccessTagInfo(Info); 755 } 756 757 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 758 TBAAAccessInfo TargetInfo) { 759 if (!TBAA) 760 return TBAAAccessInfo(); 761 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 762 } 763 764 TBAAAccessInfo 765 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 766 TBAAAccessInfo InfoB) { 767 if (!TBAA) 768 return TBAAAccessInfo(); 769 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 770 } 771 772 TBAAAccessInfo 773 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 774 TBAAAccessInfo SrcInfo) { 775 if (!TBAA) 776 return TBAAAccessInfo(); 777 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 778 } 779 780 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 781 TBAAAccessInfo TBAAInfo) { 782 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 783 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 784 } 785 786 void CodeGenModule::DecorateInstructionWithInvariantGroup( 787 llvm::Instruction *I, const CXXRecordDecl *RD) { 788 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 789 llvm::MDNode::get(getLLVMContext(), {})); 790 } 791 792 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 793 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 794 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 795 } 796 797 /// ErrorUnsupported - Print out an error that codegen doesn't support the 798 /// specified stmt yet. 799 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 800 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 801 "cannot compile this %0 yet"); 802 std::string Msg = Type; 803 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 804 << Msg << S->getSourceRange(); 805 } 806 807 /// ErrorUnsupported - Print out an error that codegen doesn't support the 808 /// specified decl yet. 809 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 810 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 811 "cannot compile this %0 yet"); 812 std::string Msg = Type; 813 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 814 } 815 816 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 817 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 818 } 819 820 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 821 const NamedDecl *D) const { 822 if (GV->hasDLLImportStorageClass()) 823 return; 824 // Internal definitions always have default visibility. 825 if (GV->hasLocalLinkage()) { 826 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 827 return; 828 } 829 if (!D) 830 return; 831 // Set visibility for definitions, and for declarations if requested globally 832 // or set explicitly. 833 LinkageInfo LV = D->getLinkageAndVisibility(); 834 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 835 !GV->isDeclarationForLinker()) 836 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 837 } 838 839 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 840 llvm::GlobalValue *GV) { 841 if (GV->hasLocalLinkage()) 842 return true; 843 844 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 845 return true; 846 847 // DLLImport explicitly marks the GV as external. 848 if (GV->hasDLLImportStorageClass()) 849 return false; 850 851 const llvm::Triple &TT = CGM.getTriple(); 852 if (TT.isWindowsGNUEnvironment()) { 853 // In MinGW, variables without DLLImport can still be automatically 854 // imported from a DLL by the linker; don't mark variables that 855 // potentially could come from another DLL as DSO local. 856 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 857 !GV->isThreadLocal()) 858 return false; 859 } 860 861 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 862 // remain unresolved in the link, they can be resolved to zero, which is 863 // outside the current DSO. 864 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 865 return false; 866 867 // Every other GV is local on COFF. 868 // Make an exception for windows OS in the triple: Some firmware builds use 869 // *-win32-macho triples. This (accidentally?) produced windows relocations 870 // without GOT tables in older clang versions; Keep this behaviour. 871 // FIXME: even thread local variables? 872 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 873 return true; 874 875 // Only handle COFF and ELF for now. 876 if (!TT.isOSBinFormatELF()) 877 return false; 878 879 // If this is not an executable, don't assume anything is local. 880 const auto &CGOpts = CGM.getCodeGenOpts(); 881 llvm::Reloc::Model RM = CGOpts.RelocationModel; 882 const auto &LOpts = CGM.getLangOpts(); 883 if (RM != llvm::Reloc::Static && !LOpts.PIE) 884 return false; 885 886 // A definition cannot be preempted from an executable. 887 if (!GV->isDeclarationForLinker()) 888 return true; 889 890 // Most PIC code sequences that assume that a symbol is local cannot produce a 891 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 892 // depended, it seems worth it to handle it here. 893 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 894 return false; 895 896 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 897 llvm::Triple::ArchType Arch = TT.getArch(); 898 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 899 Arch == llvm::Triple::ppc64le) 900 return false; 901 902 // If we can use copy relocations we can assume it is local. 903 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 904 if (!Var->isThreadLocal() && 905 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 906 return true; 907 908 // If we can use a plt entry as the symbol address we can assume it 909 // is local. 910 // FIXME: This should work for PIE, but the gold linker doesn't support it. 911 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 912 return true; 913 914 // Otherwise don't assume it is local. 915 return false; 916 } 917 918 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 919 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 920 } 921 922 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 923 GlobalDecl GD) const { 924 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 925 // C++ destructors have a few C++ ABI specific special cases. 926 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 927 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 928 return; 929 } 930 setDLLImportDLLExport(GV, D); 931 } 932 933 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 934 const NamedDecl *D) const { 935 if (D && D->isExternallyVisible()) { 936 if (D->hasAttr<DLLImportAttr>()) 937 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 938 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 939 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 940 } 941 } 942 943 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 944 GlobalDecl GD) const { 945 setDLLImportDLLExport(GV, GD); 946 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 947 } 948 949 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 950 const NamedDecl *D) const { 951 setDLLImportDLLExport(GV, D); 952 setGVPropertiesAux(GV, D); 953 } 954 955 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 956 const NamedDecl *D) const { 957 setGlobalVisibility(GV, D); 958 setDSOLocal(GV); 959 GV->setPartition(CodeGenOpts.SymbolPartition); 960 } 961 962 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 963 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 964 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 965 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 966 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 967 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 968 } 969 970 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 971 CodeGenOptions::TLSModel M) { 972 switch (M) { 973 case CodeGenOptions::GeneralDynamicTLSModel: 974 return llvm::GlobalVariable::GeneralDynamicTLSModel; 975 case CodeGenOptions::LocalDynamicTLSModel: 976 return llvm::GlobalVariable::LocalDynamicTLSModel; 977 case CodeGenOptions::InitialExecTLSModel: 978 return llvm::GlobalVariable::InitialExecTLSModel; 979 case CodeGenOptions::LocalExecTLSModel: 980 return llvm::GlobalVariable::LocalExecTLSModel; 981 } 982 llvm_unreachable("Invalid TLS model!"); 983 } 984 985 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 986 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 987 988 llvm::GlobalValue::ThreadLocalMode TLM; 989 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 990 991 // Override the TLS model if it is explicitly specified. 992 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 993 TLM = GetLLVMTLSModel(Attr->getModel()); 994 } 995 996 GV->setThreadLocalMode(TLM); 997 } 998 999 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1000 StringRef Name) { 1001 const TargetInfo &Target = CGM.getTarget(); 1002 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1003 } 1004 1005 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1006 const CPUSpecificAttr *Attr, 1007 unsigned CPUIndex, 1008 raw_ostream &Out) { 1009 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1010 // supported. 1011 if (Attr) 1012 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1013 else if (CGM.getTarget().supportsIFunc()) 1014 Out << ".resolver"; 1015 } 1016 1017 static void AppendTargetMangling(const CodeGenModule &CGM, 1018 const TargetAttr *Attr, raw_ostream &Out) { 1019 if (Attr->isDefaultVersion()) 1020 return; 1021 1022 Out << '.'; 1023 const TargetInfo &Target = CGM.getTarget(); 1024 ParsedTargetAttr Info = 1025 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1026 // Multiversioning doesn't allow "no-${feature}", so we can 1027 // only have "+" prefixes here. 1028 assert(LHS.startswith("+") && RHS.startswith("+") && 1029 "Features should always have a prefix."); 1030 return Target.multiVersionSortPriority(LHS.substr(1)) > 1031 Target.multiVersionSortPriority(RHS.substr(1)); 1032 }); 1033 1034 bool IsFirst = true; 1035 1036 if (!Info.Architecture.empty()) { 1037 IsFirst = false; 1038 Out << "arch_" << Info.Architecture; 1039 } 1040 1041 for (StringRef Feat : Info.Features) { 1042 if (!IsFirst) 1043 Out << '_'; 1044 IsFirst = false; 1045 Out << Feat.substr(1); 1046 } 1047 } 1048 1049 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1050 const NamedDecl *ND, 1051 bool OmitMultiVersionMangling = false) { 1052 SmallString<256> Buffer; 1053 llvm::raw_svector_ostream Out(Buffer); 1054 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1055 if (MC.shouldMangleDeclName(ND)) 1056 MC.mangleName(GD.getWithDecl(ND), Out); 1057 else { 1058 IdentifierInfo *II = ND->getIdentifier(); 1059 assert(II && "Attempt to mangle unnamed decl."); 1060 const auto *FD = dyn_cast<FunctionDecl>(ND); 1061 1062 if (FD && 1063 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1064 Out << "__regcall3__" << II->getName(); 1065 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1066 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1067 Out << "__device_stub__" << II->getName(); 1068 } else { 1069 Out << II->getName(); 1070 } 1071 } 1072 1073 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1074 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1075 switch (FD->getMultiVersionKind()) { 1076 case MultiVersionKind::CPUDispatch: 1077 case MultiVersionKind::CPUSpecific: 1078 AppendCPUSpecificCPUDispatchMangling(CGM, 1079 FD->getAttr<CPUSpecificAttr>(), 1080 GD.getMultiVersionIndex(), Out); 1081 break; 1082 case MultiVersionKind::Target: 1083 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1084 break; 1085 case MultiVersionKind::None: 1086 llvm_unreachable("None multiversion type isn't valid here"); 1087 } 1088 } 1089 1090 return std::string(Out.str()); 1091 } 1092 1093 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1094 const FunctionDecl *FD) { 1095 if (!FD->isMultiVersion()) 1096 return; 1097 1098 // Get the name of what this would be without the 'target' attribute. This 1099 // allows us to lookup the version that was emitted when this wasn't a 1100 // multiversion function. 1101 std::string NonTargetName = 1102 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1103 GlobalDecl OtherGD; 1104 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1105 assert(OtherGD.getCanonicalDecl() 1106 .getDecl() 1107 ->getAsFunction() 1108 ->isMultiVersion() && 1109 "Other GD should now be a multiversioned function"); 1110 // OtherFD is the version of this function that was mangled BEFORE 1111 // becoming a MultiVersion function. It potentially needs to be updated. 1112 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1113 .getDecl() 1114 ->getAsFunction() 1115 ->getMostRecentDecl(); 1116 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1117 // This is so that if the initial version was already the 'default' 1118 // version, we don't try to update it. 1119 if (OtherName != NonTargetName) { 1120 // Remove instead of erase, since others may have stored the StringRef 1121 // to this. 1122 const auto ExistingRecord = Manglings.find(NonTargetName); 1123 if (ExistingRecord != std::end(Manglings)) 1124 Manglings.remove(&(*ExistingRecord)); 1125 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1126 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1127 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1128 Entry->setName(OtherName); 1129 } 1130 } 1131 } 1132 1133 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1134 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1135 1136 // Some ABIs don't have constructor variants. Make sure that base and 1137 // complete constructors get mangled the same. 1138 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1139 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1140 CXXCtorType OrigCtorType = GD.getCtorType(); 1141 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1142 if (OrigCtorType == Ctor_Base) 1143 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1144 } 1145 } 1146 1147 auto FoundName = MangledDeclNames.find(CanonicalGD); 1148 if (FoundName != MangledDeclNames.end()) 1149 return FoundName->second; 1150 1151 // Keep the first result in the case of a mangling collision. 1152 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1153 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1154 1155 // Ensure either we have different ABIs between host and device compilations, 1156 // says host compilation following MSVC ABI but device compilation follows 1157 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1158 // mangling should be the same after name stubbing. The later checking is 1159 // very important as the device kernel name being mangled in host-compilation 1160 // is used to resolve the device binaries to be executed. Inconsistent naming 1161 // result in undefined behavior. Even though we cannot check that naming 1162 // directly between host- and device-compilations, the host- and 1163 // device-mangling in host compilation could help catching certain ones. 1164 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1165 getLangOpts().CUDAIsDevice || 1166 (getContext().getAuxTargetInfo() && 1167 (getContext().getAuxTargetInfo()->getCXXABI() != 1168 getContext().getTargetInfo().getCXXABI())) || 1169 getCUDARuntime().getDeviceSideName(ND) == 1170 getMangledNameImpl( 1171 *this, 1172 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1173 ND)); 1174 1175 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1176 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1177 } 1178 1179 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1180 const BlockDecl *BD) { 1181 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1182 const Decl *D = GD.getDecl(); 1183 1184 SmallString<256> Buffer; 1185 llvm::raw_svector_ostream Out(Buffer); 1186 if (!D) 1187 MangleCtx.mangleGlobalBlock(BD, 1188 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1189 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1190 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1191 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1192 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1193 else 1194 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1195 1196 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1197 return Result.first->first(); 1198 } 1199 1200 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1201 return getModule().getNamedValue(Name); 1202 } 1203 1204 /// AddGlobalCtor - Add a function to the list that will be called before 1205 /// main() runs. 1206 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1207 llvm::Constant *AssociatedData) { 1208 // FIXME: Type coercion of void()* types. 1209 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1210 } 1211 1212 /// AddGlobalDtor - Add a function to the list that will be called 1213 /// when the module is unloaded. 1214 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1215 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1216 DtorsUsingAtExit[Priority].push_back(Dtor); 1217 return; 1218 } 1219 1220 // FIXME: Type coercion of void()* types. 1221 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1222 } 1223 1224 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1225 if (Fns.empty()) return; 1226 1227 // Ctor function type is void()*. 1228 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1229 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1230 TheModule.getDataLayout().getProgramAddressSpace()); 1231 1232 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1233 llvm::StructType *CtorStructTy = llvm::StructType::get( 1234 Int32Ty, CtorPFTy, VoidPtrTy); 1235 1236 // Construct the constructor and destructor arrays. 1237 ConstantInitBuilder builder(*this); 1238 auto ctors = builder.beginArray(CtorStructTy); 1239 for (const auto &I : Fns) { 1240 auto ctor = ctors.beginStruct(CtorStructTy); 1241 ctor.addInt(Int32Ty, I.Priority); 1242 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1243 if (I.AssociatedData) 1244 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1245 else 1246 ctor.addNullPointer(VoidPtrTy); 1247 ctor.finishAndAddTo(ctors); 1248 } 1249 1250 auto list = 1251 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1252 /*constant*/ false, 1253 llvm::GlobalValue::AppendingLinkage); 1254 1255 // The LTO linker doesn't seem to like it when we set an alignment 1256 // on appending variables. Take it off as a workaround. 1257 list->setAlignment(llvm::None); 1258 1259 Fns.clear(); 1260 } 1261 1262 llvm::GlobalValue::LinkageTypes 1263 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1264 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1265 1266 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1267 1268 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1269 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1270 1271 if (isa<CXXConstructorDecl>(D) && 1272 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1273 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1274 // Our approach to inheriting constructors is fundamentally different from 1275 // that used by the MS ABI, so keep our inheriting constructor thunks 1276 // internal rather than trying to pick an unambiguous mangling for them. 1277 return llvm::GlobalValue::InternalLinkage; 1278 } 1279 1280 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1281 } 1282 1283 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1284 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1285 if (!MDS) return nullptr; 1286 1287 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1288 } 1289 1290 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1291 const CGFunctionInfo &Info, 1292 llvm::Function *F) { 1293 unsigned CallingConv; 1294 llvm::AttributeList PAL; 1295 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1296 F->setAttributes(PAL); 1297 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1298 } 1299 1300 static void removeImageAccessQualifier(std::string& TyName) { 1301 std::string ReadOnlyQual("__read_only"); 1302 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1303 if (ReadOnlyPos != std::string::npos) 1304 // "+ 1" for the space after access qualifier. 1305 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1306 else { 1307 std::string WriteOnlyQual("__write_only"); 1308 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1309 if (WriteOnlyPos != std::string::npos) 1310 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1311 else { 1312 std::string ReadWriteQual("__read_write"); 1313 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1314 if (ReadWritePos != std::string::npos) 1315 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1316 } 1317 } 1318 } 1319 1320 // Returns the address space id that should be produced to the 1321 // kernel_arg_addr_space metadata. This is always fixed to the ids 1322 // as specified in the SPIR 2.0 specification in order to differentiate 1323 // for example in clGetKernelArgInfo() implementation between the address 1324 // spaces with targets without unique mapping to the OpenCL address spaces 1325 // (basically all single AS CPUs). 1326 static unsigned ArgInfoAddressSpace(LangAS AS) { 1327 switch (AS) { 1328 case LangAS::opencl_global: return 1; 1329 case LangAS::opencl_constant: return 2; 1330 case LangAS::opencl_local: return 3; 1331 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1332 default: 1333 return 0; // Assume private. 1334 } 1335 } 1336 1337 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1338 const FunctionDecl *FD, 1339 CodeGenFunction *CGF) { 1340 assert(((FD && CGF) || (!FD && !CGF)) && 1341 "Incorrect use - FD and CGF should either be both null or not!"); 1342 // Create MDNodes that represent the kernel arg metadata. 1343 // Each MDNode is a list in the form of "key", N number of values which is 1344 // the same number of values as their are kernel arguments. 1345 1346 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1347 1348 // MDNode for the kernel argument address space qualifiers. 1349 SmallVector<llvm::Metadata *, 8> addressQuals; 1350 1351 // MDNode for the kernel argument access qualifiers (images only). 1352 SmallVector<llvm::Metadata *, 8> accessQuals; 1353 1354 // MDNode for the kernel argument type names. 1355 SmallVector<llvm::Metadata *, 8> argTypeNames; 1356 1357 // MDNode for the kernel argument base type names. 1358 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1359 1360 // MDNode for the kernel argument type qualifiers. 1361 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1362 1363 // MDNode for the kernel argument names. 1364 SmallVector<llvm::Metadata *, 8> argNames; 1365 1366 if (FD && CGF) 1367 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1368 const ParmVarDecl *parm = FD->getParamDecl(i); 1369 QualType ty = parm->getType(); 1370 std::string typeQuals; 1371 1372 if (ty->isPointerType()) { 1373 QualType pointeeTy = ty->getPointeeType(); 1374 1375 // Get address qualifier. 1376 addressQuals.push_back( 1377 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1378 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1379 1380 // Get argument type name. 1381 std::string typeName = 1382 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1383 1384 // Turn "unsigned type" to "utype" 1385 std::string::size_type pos = typeName.find("unsigned"); 1386 if (pointeeTy.isCanonical() && pos != std::string::npos) 1387 typeName.erase(pos + 1, 8); 1388 1389 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1390 1391 std::string baseTypeName = 1392 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1393 Policy) + 1394 "*"; 1395 1396 // Turn "unsigned type" to "utype" 1397 pos = baseTypeName.find("unsigned"); 1398 if (pos != std::string::npos) 1399 baseTypeName.erase(pos + 1, 8); 1400 1401 argBaseTypeNames.push_back( 1402 llvm::MDString::get(VMContext, baseTypeName)); 1403 1404 // Get argument type qualifiers: 1405 if (ty.isRestrictQualified()) 1406 typeQuals = "restrict"; 1407 if (pointeeTy.isConstQualified() || 1408 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1409 typeQuals += typeQuals.empty() ? "const" : " const"; 1410 if (pointeeTy.isVolatileQualified()) 1411 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1412 } else { 1413 uint32_t AddrSpc = 0; 1414 bool isPipe = ty->isPipeType(); 1415 if (ty->isImageType() || isPipe) 1416 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1417 1418 addressQuals.push_back( 1419 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1420 1421 // Get argument type name. 1422 std::string typeName; 1423 if (isPipe) 1424 typeName = ty.getCanonicalType() 1425 ->castAs<PipeType>() 1426 ->getElementType() 1427 .getAsString(Policy); 1428 else 1429 typeName = ty.getUnqualifiedType().getAsString(Policy); 1430 1431 // Turn "unsigned type" to "utype" 1432 std::string::size_type pos = typeName.find("unsigned"); 1433 if (ty.isCanonical() && pos != std::string::npos) 1434 typeName.erase(pos + 1, 8); 1435 1436 std::string baseTypeName; 1437 if (isPipe) 1438 baseTypeName = ty.getCanonicalType() 1439 ->castAs<PipeType>() 1440 ->getElementType() 1441 .getCanonicalType() 1442 .getAsString(Policy); 1443 else 1444 baseTypeName = 1445 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1446 1447 // Remove access qualifiers on images 1448 // (as they are inseparable from type in clang implementation, 1449 // but OpenCL spec provides a special query to get access qualifier 1450 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1451 if (ty->isImageType()) { 1452 removeImageAccessQualifier(typeName); 1453 removeImageAccessQualifier(baseTypeName); 1454 } 1455 1456 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1457 1458 // Turn "unsigned type" to "utype" 1459 pos = baseTypeName.find("unsigned"); 1460 if (pos != std::string::npos) 1461 baseTypeName.erase(pos + 1, 8); 1462 1463 argBaseTypeNames.push_back( 1464 llvm::MDString::get(VMContext, baseTypeName)); 1465 1466 if (isPipe) 1467 typeQuals = "pipe"; 1468 } 1469 1470 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1471 1472 // Get image and pipe access qualifier: 1473 if (ty->isImageType() || ty->isPipeType()) { 1474 const Decl *PDecl = parm; 1475 if (auto *TD = dyn_cast<TypedefType>(ty)) 1476 PDecl = TD->getDecl(); 1477 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1478 if (A && A->isWriteOnly()) 1479 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1480 else if (A && A->isReadWrite()) 1481 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1482 else 1483 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1484 } else 1485 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1486 1487 // Get argument name. 1488 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1489 } 1490 1491 Fn->setMetadata("kernel_arg_addr_space", 1492 llvm::MDNode::get(VMContext, addressQuals)); 1493 Fn->setMetadata("kernel_arg_access_qual", 1494 llvm::MDNode::get(VMContext, accessQuals)); 1495 Fn->setMetadata("kernel_arg_type", 1496 llvm::MDNode::get(VMContext, argTypeNames)); 1497 Fn->setMetadata("kernel_arg_base_type", 1498 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1499 Fn->setMetadata("kernel_arg_type_qual", 1500 llvm::MDNode::get(VMContext, argTypeQuals)); 1501 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1502 Fn->setMetadata("kernel_arg_name", 1503 llvm::MDNode::get(VMContext, argNames)); 1504 } 1505 1506 /// Determines whether the language options require us to model 1507 /// unwind exceptions. We treat -fexceptions as mandating this 1508 /// except under the fragile ObjC ABI with only ObjC exceptions 1509 /// enabled. This means, for example, that C with -fexceptions 1510 /// enables this. 1511 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1512 // If exceptions are completely disabled, obviously this is false. 1513 if (!LangOpts.Exceptions) return false; 1514 1515 // If C++ exceptions are enabled, this is true. 1516 if (LangOpts.CXXExceptions) return true; 1517 1518 // If ObjC exceptions are enabled, this depends on the ABI. 1519 if (LangOpts.ObjCExceptions) { 1520 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1521 } 1522 1523 return true; 1524 } 1525 1526 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1527 const CXXMethodDecl *MD) { 1528 // Check that the type metadata can ever actually be used by a call. 1529 if (!CGM.getCodeGenOpts().LTOUnit || 1530 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1531 return false; 1532 1533 // Only functions whose address can be taken with a member function pointer 1534 // need this sort of type metadata. 1535 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1536 !isa<CXXDestructorDecl>(MD); 1537 } 1538 1539 std::vector<const CXXRecordDecl *> 1540 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1541 llvm::SetVector<const CXXRecordDecl *> MostBases; 1542 1543 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1544 CollectMostBases = [&](const CXXRecordDecl *RD) { 1545 if (RD->getNumBases() == 0) 1546 MostBases.insert(RD); 1547 for (const CXXBaseSpecifier &B : RD->bases()) 1548 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1549 }; 1550 CollectMostBases(RD); 1551 return MostBases.takeVector(); 1552 } 1553 1554 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1555 llvm::Function *F) { 1556 llvm::AttrBuilder B; 1557 1558 if (CodeGenOpts.UnwindTables) 1559 B.addAttribute(llvm::Attribute::UWTable); 1560 1561 if (CodeGenOpts.StackClashProtector) 1562 B.addAttribute("probe-stack", "inline-asm"); 1563 1564 if (!hasUnwindExceptions(LangOpts)) 1565 B.addAttribute(llvm::Attribute::NoUnwind); 1566 1567 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1568 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1569 B.addAttribute(llvm::Attribute::StackProtect); 1570 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1571 B.addAttribute(llvm::Attribute::StackProtectStrong); 1572 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1573 B.addAttribute(llvm::Attribute::StackProtectReq); 1574 } 1575 1576 if (!D) { 1577 // If we don't have a declaration to control inlining, the function isn't 1578 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1579 // disabled, mark the function as noinline. 1580 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1581 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1582 B.addAttribute(llvm::Attribute::NoInline); 1583 1584 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1585 return; 1586 } 1587 1588 // Track whether we need to add the optnone LLVM attribute, 1589 // starting with the default for this optimization level. 1590 bool ShouldAddOptNone = 1591 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1592 // We can't add optnone in the following cases, it won't pass the verifier. 1593 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1594 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1595 1596 // Add optnone, but do so only if the function isn't always_inline. 1597 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1598 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1599 B.addAttribute(llvm::Attribute::OptimizeNone); 1600 1601 // OptimizeNone implies noinline; we should not be inlining such functions. 1602 B.addAttribute(llvm::Attribute::NoInline); 1603 1604 // We still need to handle naked functions even though optnone subsumes 1605 // much of their semantics. 1606 if (D->hasAttr<NakedAttr>()) 1607 B.addAttribute(llvm::Attribute::Naked); 1608 1609 // OptimizeNone wins over OptimizeForSize and MinSize. 1610 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1611 F->removeFnAttr(llvm::Attribute::MinSize); 1612 } else if (D->hasAttr<NakedAttr>()) { 1613 // Naked implies noinline: we should not be inlining such functions. 1614 B.addAttribute(llvm::Attribute::Naked); 1615 B.addAttribute(llvm::Attribute::NoInline); 1616 } else if (D->hasAttr<NoDuplicateAttr>()) { 1617 B.addAttribute(llvm::Attribute::NoDuplicate); 1618 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1619 // Add noinline if the function isn't always_inline. 1620 B.addAttribute(llvm::Attribute::NoInline); 1621 } else if (D->hasAttr<AlwaysInlineAttr>() && 1622 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1623 // (noinline wins over always_inline, and we can't specify both in IR) 1624 B.addAttribute(llvm::Attribute::AlwaysInline); 1625 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1626 // If we're not inlining, then force everything that isn't always_inline to 1627 // carry an explicit noinline attribute. 1628 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1629 B.addAttribute(llvm::Attribute::NoInline); 1630 } else { 1631 // Otherwise, propagate the inline hint attribute and potentially use its 1632 // absence to mark things as noinline. 1633 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1634 // Search function and template pattern redeclarations for inline. 1635 auto CheckForInline = [](const FunctionDecl *FD) { 1636 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1637 return Redecl->isInlineSpecified(); 1638 }; 1639 if (any_of(FD->redecls(), CheckRedeclForInline)) 1640 return true; 1641 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1642 if (!Pattern) 1643 return false; 1644 return any_of(Pattern->redecls(), CheckRedeclForInline); 1645 }; 1646 if (CheckForInline(FD)) { 1647 B.addAttribute(llvm::Attribute::InlineHint); 1648 } else if (CodeGenOpts.getInlining() == 1649 CodeGenOptions::OnlyHintInlining && 1650 !FD->isInlined() && 1651 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1652 B.addAttribute(llvm::Attribute::NoInline); 1653 } 1654 } 1655 } 1656 1657 // Add other optimization related attributes if we are optimizing this 1658 // function. 1659 if (!D->hasAttr<OptimizeNoneAttr>()) { 1660 if (D->hasAttr<ColdAttr>()) { 1661 if (!ShouldAddOptNone) 1662 B.addAttribute(llvm::Attribute::OptimizeForSize); 1663 B.addAttribute(llvm::Attribute::Cold); 1664 } 1665 1666 if (D->hasAttr<MinSizeAttr>()) 1667 B.addAttribute(llvm::Attribute::MinSize); 1668 } 1669 1670 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1671 1672 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1673 if (alignment) 1674 F->setAlignment(llvm::Align(alignment)); 1675 1676 if (!D->hasAttr<AlignedAttr>()) 1677 if (LangOpts.FunctionAlignment) 1678 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1679 1680 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1681 // reserve a bit for differentiating between virtual and non-virtual member 1682 // functions. If the current target's C++ ABI requires this and this is a 1683 // member function, set its alignment accordingly. 1684 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1685 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1686 F->setAlignment(llvm::Align(2)); 1687 } 1688 1689 // In the cross-dso CFI mode with canonical jump tables, we want !type 1690 // attributes on definitions only. 1691 if (CodeGenOpts.SanitizeCfiCrossDso && 1692 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1693 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1694 // Skip available_externally functions. They won't be codegen'ed in the 1695 // current module anyway. 1696 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1697 CreateFunctionTypeMetadataForIcall(FD, F); 1698 } 1699 } 1700 1701 // Emit type metadata on member functions for member function pointer checks. 1702 // These are only ever necessary on definitions; we're guaranteed that the 1703 // definition will be present in the LTO unit as a result of LTO visibility. 1704 auto *MD = dyn_cast<CXXMethodDecl>(D); 1705 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1706 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1707 llvm::Metadata *Id = 1708 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1709 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1710 F->addTypeMetadata(0, Id); 1711 } 1712 } 1713 } 1714 1715 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1716 const Decl *D = GD.getDecl(); 1717 if (dyn_cast_or_null<NamedDecl>(D)) 1718 setGVProperties(GV, GD); 1719 else 1720 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1721 1722 if (D && D->hasAttr<UsedAttr>()) 1723 addUsedGlobal(GV); 1724 1725 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1726 const auto *VD = cast<VarDecl>(D); 1727 if (VD->getType().isConstQualified() && 1728 VD->getStorageDuration() == SD_Static) 1729 addUsedGlobal(GV); 1730 } 1731 } 1732 1733 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1734 llvm::AttrBuilder &Attrs) { 1735 // Add target-cpu and target-features attributes to functions. If 1736 // we have a decl for the function and it has a target attribute then 1737 // parse that and add it to the feature set. 1738 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1739 std::vector<std::string> Features; 1740 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1741 FD = FD ? FD->getMostRecentDecl() : FD; 1742 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1743 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1744 bool AddedAttr = false; 1745 if (TD || SD) { 1746 llvm::StringMap<bool> FeatureMap; 1747 getContext().getFunctionFeatureMap(FeatureMap, GD); 1748 1749 // Produce the canonical string for this set of features. 1750 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1751 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1752 1753 // Now add the target-cpu and target-features to the function. 1754 // While we populated the feature map above, we still need to 1755 // get and parse the target attribute so we can get the cpu for 1756 // the function. 1757 if (TD) { 1758 ParsedTargetAttr ParsedAttr = TD->parse(); 1759 if (ParsedAttr.Architecture != "" && 1760 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1761 TargetCPU = ParsedAttr.Architecture; 1762 } 1763 } else { 1764 // Otherwise just add the existing target cpu and target features to the 1765 // function. 1766 Features = getTarget().getTargetOpts().Features; 1767 } 1768 1769 if (TargetCPU != "") { 1770 Attrs.addAttribute("target-cpu", TargetCPU); 1771 AddedAttr = true; 1772 } 1773 if (!Features.empty()) { 1774 llvm::sort(Features); 1775 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1776 AddedAttr = true; 1777 } 1778 1779 return AddedAttr; 1780 } 1781 1782 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1783 llvm::GlobalObject *GO) { 1784 const Decl *D = GD.getDecl(); 1785 SetCommonAttributes(GD, GO); 1786 1787 if (D) { 1788 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1789 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1790 GV->addAttribute("bss-section", SA->getName()); 1791 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1792 GV->addAttribute("data-section", SA->getName()); 1793 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1794 GV->addAttribute("rodata-section", SA->getName()); 1795 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1796 GV->addAttribute("relro-section", SA->getName()); 1797 } 1798 1799 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1800 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1801 if (!D->getAttr<SectionAttr>()) 1802 F->addFnAttr("implicit-section-name", SA->getName()); 1803 1804 llvm::AttrBuilder Attrs; 1805 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1806 // We know that GetCPUAndFeaturesAttributes will always have the 1807 // newest set, since it has the newest possible FunctionDecl, so the 1808 // new ones should replace the old. 1809 F->removeFnAttr("target-cpu"); 1810 F->removeFnAttr("target-features"); 1811 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1812 } 1813 } 1814 1815 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1816 GO->setSection(CSA->getName()); 1817 else if (const auto *SA = D->getAttr<SectionAttr>()) 1818 GO->setSection(SA->getName()); 1819 } 1820 1821 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1822 } 1823 1824 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1825 llvm::Function *F, 1826 const CGFunctionInfo &FI) { 1827 const Decl *D = GD.getDecl(); 1828 SetLLVMFunctionAttributes(GD, FI, F); 1829 SetLLVMFunctionAttributesForDefinition(D, F); 1830 1831 F->setLinkage(llvm::Function::InternalLinkage); 1832 1833 setNonAliasAttributes(GD, F); 1834 } 1835 1836 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1837 // Set linkage and visibility in case we never see a definition. 1838 LinkageInfo LV = ND->getLinkageAndVisibility(); 1839 // Don't set internal linkage on declarations. 1840 // "extern_weak" is overloaded in LLVM; we probably should have 1841 // separate linkage types for this. 1842 if (isExternallyVisible(LV.getLinkage()) && 1843 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1844 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1845 } 1846 1847 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1848 llvm::Function *F) { 1849 // Only if we are checking indirect calls. 1850 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1851 return; 1852 1853 // Non-static class methods are handled via vtable or member function pointer 1854 // checks elsewhere. 1855 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1856 return; 1857 1858 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1859 F->addTypeMetadata(0, MD); 1860 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1861 1862 // Emit a hash-based bit set entry for cross-DSO calls. 1863 if (CodeGenOpts.SanitizeCfiCrossDso) 1864 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1865 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1866 } 1867 1868 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1869 bool IsIncompleteFunction, 1870 bool IsThunk) { 1871 1872 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1873 // If this is an intrinsic function, set the function's attributes 1874 // to the intrinsic's attributes. 1875 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1876 return; 1877 } 1878 1879 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1880 1881 if (!IsIncompleteFunction) 1882 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1883 1884 // Add the Returned attribute for "this", except for iOS 5 and earlier 1885 // where substantial code, including the libstdc++ dylib, was compiled with 1886 // GCC and does not actually return "this". 1887 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1888 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1889 assert(!F->arg_empty() && 1890 F->arg_begin()->getType() 1891 ->canLosslesslyBitCastTo(F->getReturnType()) && 1892 "unexpected this return"); 1893 F->addAttribute(1, llvm::Attribute::Returned); 1894 } 1895 1896 // Only a few attributes are set on declarations; these may later be 1897 // overridden by a definition. 1898 1899 setLinkageForGV(F, FD); 1900 setGVProperties(F, FD); 1901 1902 // Setup target-specific attributes. 1903 if (!IsIncompleteFunction && F->isDeclaration()) 1904 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1905 1906 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1907 F->setSection(CSA->getName()); 1908 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1909 F->setSection(SA->getName()); 1910 1911 if (FD->isInlineBuiltinDeclaration()) { 1912 F->addAttribute(llvm::AttributeList::FunctionIndex, 1913 llvm::Attribute::NoBuiltin); 1914 } 1915 1916 if (FD->isReplaceableGlobalAllocationFunction()) { 1917 // A replaceable global allocation function does not act like a builtin by 1918 // default, only if it is invoked by a new-expression or delete-expression. 1919 F->addAttribute(llvm::AttributeList::FunctionIndex, 1920 llvm::Attribute::NoBuiltin); 1921 } 1922 1923 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1924 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1925 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1926 if (MD->isVirtual()) 1927 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1928 1929 // Don't emit entries for function declarations in the cross-DSO mode. This 1930 // is handled with better precision by the receiving DSO. But if jump tables 1931 // are non-canonical then we need type metadata in order to produce the local 1932 // jump table. 1933 if (!CodeGenOpts.SanitizeCfiCrossDso || 1934 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1935 CreateFunctionTypeMetadataForIcall(FD, F); 1936 1937 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1938 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1939 1940 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1941 // Annotate the callback behavior as metadata: 1942 // - The callback callee (as argument number). 1943 // - The callback payloads (as argument numbers). 1944 llvm::LLVMContext &Ctx = F->getContext(); 1945 llvm::MDBuilder MDB(Ctx); 1946 1947 // The payload indices are all but the first one in the encoding. The first 1948 // identifies the callback callee. 1949 int CalleeIdx = *CB->encoding_begin(); 1950 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1951 F->addMetadata(llvm::LLVMContext::MD_callback, 1952 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1953 CalleeIdx, PayloadIndices, 1954 /* VarArgsArePassed */ false)})); 1955 } 1956 } 1957 1958 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV, bool SkipCheck) { 1959 assert(SkipCheck || (!GV->isDeclaration() && 1960 "Only globals with definition can force usage.")); 1961 LLVMUsed.emplace_back(GV); 1962 } 1963 1964 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1965 assert(!GV->isDeclaration() && 1966 "Only globals with definition can force usage."); 1967 LLVMCompilerUsed.emplace_back(GV); 1968 } 1969 1970 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1971 std::vector<llvm::WeakTrackingVH> &List) { 1972 // Don't create llvm.used if there is no need. 1973 if (List.empty()) 1974 return; 1975 1976 // Convert List to what ConstantArray needs. 1977 SmallVector<llvm::Constant*, 8> UsedArray; 1978 UsedArray.resize(List.size()); 1979 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1980 UsedArray[i] = 1981 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1982 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1983 } 1984 1985 if (UsedArray.empty()) 1986 return; 1987 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1988 1989 auto *GV = new llvm::GlobalVariable( 1990 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1991 llvm::ConstantArray::get(ATy, UsedArray), Name); 1992 1993 GV->setSection("llvm.metadata"); 1994 } 1995 1996 void CodeGenModule::emitLLVMUsed() { 1997 emitUsed(*this, "llvm.used", LLVMUsed); 1998 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1999 } 2000 2001 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2002 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2003 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2004 } 2005 2006 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2007 llvm::SmallString<32> Opt; 2008 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2009 if (Opt.empty()) 2010 return; 2011 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2012 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2013 } 2014 2015 void CodeGenModule::AddDependentLib(StringRef Lib) { 2016 auto &C = getLLVMContext(); 2017 if (getTarget().getTriple().isOSBinFormatELF()) { 2018 ELFDependentLibraries.push_back( 2019 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2020 return; 2021 } 2022 2023 llvm::SmallString<24> Opt; 2024 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2025 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2026 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2027 } 2028 2029 /// Add link options implied by the given module, including modules 2030 /// it depends on, using a postorder walk. 2031 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2032 SmallVectorImpl<llvm::MDNode *> &Metadata, 2033 llvm::SmallPtrSet<Module *, 16> &Visited) { 2034 // Import this module's parent. 2035 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2036 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2037 } 2038 2039 // Import this module's dependencies. 2040 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2041 if (Visited.insert(Mod->Imports[I - 1]).second) 2042 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2043 } 2044 2045 // Add linker options to link against the libraries/frameworks 2046 // described by this module. 2047 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2048 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2049 2050 // For modules that use export_as for linking, use that module 2051 // name instead. 2052 if (Mod->UseExportAsModuleLinkName) 2053 return; 2054 2055 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2056 // Link against a framework. Frameworks are currently Darwin only, so we 2057 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2058 if (Mod->LinkLibraries[I-1].IsFramework) { 2059 llvm::Metadata *Args[2] = { 2060 llvm::MDString::get(Context, "-framework"), 2061 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2062 2063 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2064 continue; 2065 } 2066 2067 // Link against a library. 2068 if (IsELF) { 2069 llvm::Metadata *Args[2] = { 2070 llvm::MDString::get(Context, "lib"), 2071 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2072 }; 2073 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2074 } else { 2075 llvm::SmallString<24> Opt; 2076 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2077 Mod->LinkLibraries[I - 1].Library, Opt); 2078 auto *OptString = llvm::MDString::get(Context, Opt); 2079 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2080 } 2081 } 2082 } 2083 2084 void CodeGenModule::EmitModuleLinkOptions() { 2085 // Collect the set of all of the modules we want to visit to emit link 2086 // options, which is essentially the imported modules and all of their 2087 // non-explicit child modules. 2088 llvm::SetVector<clang::Module *> LinkModules; 2089 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2090 SmallVector<clang::Module *, 16> Stack; 2091 2092 // Seed the stack with imported modules. 2093 for (Module *M : ImportedModules) { 2094 // Do not add any link flags when an implementation TU of a module imports 2095 // a header of that same module. 2096 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2097 !getLangOpts().isCompilingModule()) 2098 continue; 2099 if (Visited.insert(M).second) 2100 Stack.push_back(M); 2101 } 2102 2103 // Find all of the modules to import, making a little effort to prune 2104 // non-leaf modules. 2105 while (!Stack.empty()) { 2106 clang::Module *Mod = Stack.pop_back_val(); 2107 2108 bool AnyChildren = false; 2109 2110 // Visit the submodules of this module. 2111 for (const auto &SM : Mod->submodules()) { 2112 // Skip explicit children; they need to be explicitly imported to be 2113 // linked against. 2114 if (SM->IsExplicit) 2115 continue; 2116 2117 if (Visited.insert(SM).second) { 2118 Stack.push_back(SM); 2119 AnyChildren = true; 2120 } 2121 } 2122 2123 // We didn't find any children, so add this module to the list of 2124 // modules to link against. 2125 if (!AnyChildren) { 2126 LinkModules.insert(Mod); 2127 } 2128 } 2129 2130 // Add link options for all of the imported modules in reverse topological 2131 // order. We don't do anything to try to order import link flags with respect 2132 // to linker options inserted by things like #pragma comment(). 2133 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2134 Visited.clear(); 2135 for (Module *M : LinkModules) 2136 if (Visited.insert(M).second) 2137 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2138 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2139 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2140 2141 // Add the linker options metadata flag. 2142 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2143 for (auto *MD : LinkerOptionsMetadata) 2144 NMD->addOperand(MD); 2145 } 2146 2147 void CodeGenModule::EmitDeferred() { 2148 // Emit deferred declare target declarations. 2149 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2150 getOpenMPRuntime().emitDeferredTargetDecls(); 2151 2152 // Emit code for any potentially referenced deferred decls. Since a 2153 // previously unused static decl may become used during the generation of code 2154 // for a static function, iterate until no changes are made. 2155 2156 if (!DeferredVTables.empty()) { 2157 EmitDeferredVTables(); 2158 2159 // Emitting a vtable doesn't directly cause more vtables to 2160 // become deferred, although it can cause functions to be 2161 // emitted that then need those vtables. 2162 assert(DeferredVTables.empty()); 2163 } 2164 2165 // Stop if we're out of both deferred vtables and deferred declarations. 2166 if (DeferredDeclsToEmit.empty()) 2167 return; 2168 2169 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2170 // work, it will not interfere with this. 2171 std::vector<GlobalDecl> CurDeclsToEmit; 2172 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2173 2174 for (GlobalDecl &D : CurDeclsToEmit) { 2175 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2176 // to get GlobalValue with exactly the type we need, not something that 2177 // might had been created for another decl with the same mangled name but 2178 // different type. 2179 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2180 GetAddrOfGlobal(D, ForDefinition)); 2181 2182 // In case of different address spaces, we may still get a cast, even with 2183 // IsForDefinition equal to true. Query mangled names table to get 2184 // GlobalValue. 2185 if (!GV) 2186 GV = GetGlobalValue(getMangledName(D)); 2187 2188 // Make sure GetGlobalValue returned non-null. 2189 assert(GV); 2190 2191 // Check to see if we've already emitted this. This is necessary 2192 // for a couple of reasons: first, decls can end up in the 2193 // deferred-decls queue multiple times, and second, decls can end 2194 // up with definitions in unusual ways (e.g. by an extern inline 2195 // function acquiring a strong function redefinition). Just 2196 // ignore these cases. 2197 if (!GV->isDeclaration()) 2198 continue; 2199 2200 // If this is OpenMP, check if it is legal to emit this global normally. 2201 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2202 continue; 2203 2204 // Otherwise, emit the definition and move on to the next one. 2205 EmitGlobalDefinition(D, GV); 2206 2207 // If we found out that we need to emit more decls, do that recursively. 2208 // This has the advantage that the decls are emitted in a DFS and related 2209 // ones are close together, which is convenient for testing. 2210 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2211 EmitDeferred(); 2212 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2213 } 2214 } 2215 } 2216 2217 void CodeGenModule::EmitVTablesOpportunistically() { 2218 // Try to emit external vtables as available_externally if they have emitted 2219 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2220 // is not allowed to create new references to things that need to be emitted 2221 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2222 2223 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2224 && "Only emit opportunistic vtables with optimizations"); 2225 2226 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2227 assert(getVTables().isVTableExternal(RD) && 2228 "This queue should only contain external vtables"); 2229 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2230 VTables.GenerateClassData(RD); 2231 } 2232 OpportunisticVTables.clear(); 2233 } 2234 2235 void CodeGenModule::EmitGlobalAnnotations() { 2236 if (Annotations.empty()) 2237 return; 2238 2239 // Create a new global variable for the ConstantStruct in the Module. 2240 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2241 Annotations[0]->getType(), Annotations.size()), Annotations); 2242 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2243 llvm::GlobalValue::AppendingLinkage, 2244 Array, "llvm.global.annotations"); 2245 gv->setSection(AnnotationSection); 2246 } 2247 2248 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2249 llvm::Constant *&AStr = AnnotationStrings[Str]; 2250 if (AStr) 2251 return AStr; 2252 2253 // Not found yet, create a new global. 2254 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2255 auto *gv = 2256 new llvm::GlobalVariable(getModule(), s->getType(), true, 2257 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2258 gv->setSection(AnnotationSection); 2259 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2260 AStr = gv; 2261 return gv; 2262 } 2263 2264 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2265 SourceManager &SM = getContext().getSourceManager(); 2266 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2267 if (PLoc.isValid()) 2268 return EmitAnnotationString(PLoc.getFilename()); 2269 return EmitAnnotationString(SM.getBufferName(Loc)); 2270 } 2271 2272 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2273 SourceManager &SM = getContext().getSourceManager(); 2274 PresumedLoc PLoc = SM.getPresumedLoc(L); 2275 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2276 SM.getExpansionLineNumber(L); 2277 return llvm::ConstantInt::get(Int32Ty, LineNo); 2278 } 2279 2280 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2281 const AnnotateAttr *AA, 2282 SourceLocation L) { 2283 // Get the globals for file name, annotation, and the line number. 2284 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2285 *UnitGV = EmitAnnotationUnit(L), 2286 *LineNoCst = EmitAnnotationLineNo(L); 2287 2288 llvm::Constant *ASZeroGV = GV; 2289 if (GV->getAddressSpace() != 0) { 2290 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2291 GV, GV->getValueType()->getPointerTo(0)); 2292 } 2293 2294 // Create the ConstantStruct for the global annotation. 2295 llvm::Constant *Fields[4] = { 2296 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2297 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2298 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2299 LineNoCst 2300 }; 2301 return llvm::ConstantStruct::getAnon(Fields); 2302 } 2303 2304 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2305 llvm::GlobalValue *GV) { 2306 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2307 // Get the struct elements for these annotations. 2308 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2309 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2310 } 2311 2312 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2313 llvm::Function *Fn, 2314 SourceLocation Loc) const { 2315 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2316 // Blacklist by function name. 2317 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2318 return true; 2319 // Blacklist by location. 2320 if (Loc.isValid()) 2321 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2322 // If location is unknown, this may be a compiler-generated function. Assume 2323 // it's located in the main file. 2324 auto &SM = Context.getSourceManager(); 2325 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2326 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2327 } 2328 return false; 2329 } 2330 2331 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2332 SourceLocation Loc, QualType Ty, 2333 StringRef Category) const { 2334 // For now globals can be blacklisted only in ASan and KASan. 2335 const SanitizerMask EnabledAsanMask = 2336 LangOpts.Sanitize.Mask & 2337 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2338 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2339 SanitizerKind::MemTag); 2340 if (!EnabledAsanMask) 2341 return false; 2342 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2343 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2344 return true; 2345 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2346 return true; 2347 // Check global type. 2348 if (!Ty.isNull()) { 2349 // Drill down the array types: if global variable of a fixed type is 2350 // blacklisted, we also don't instrument arrays of them. 2351 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2352 Ty = AT->getElementType(); 2353 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2354 // We allow to blacklist only record types (classes, structs etc.) 2355 if (Ty->isRecordType()) { 2356 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2357 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2358 return true; 2359 } 2360 } 2361 return false; 2362 } 2363 2364 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2365 StringRef Category) const { 2366 const auto &XRayFilter = getContext().getXRayFilter(); 2367 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2368 auto Attr = ImbueAttr::NONE; 2369 if (Loc.isValid()) 2370 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2371 if (Attr == ImbueAttr::NONE) 2372 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2373 switch (Attr) { 2374 case ImbueAttr::NONE: 2375 return false; 2376 case ImbueAttr::ALWAYS: 2377 Fn->addFnAttr("function-instrument", "xray-always"); 2378 break; 2379 case ImbueAttr::ALWAYS_ARG1: 2380 Fn->addFnAttr("function-instrument", "xray-always"); 2381 Fn->addFnAttr("xray-log-args", "1"); 2382 break; 2383 case ImbueAttr::NEVER: 2384 Fn->addFnAttr("function-instrument", "xray-never"); 2385 break; 2386 } 2387 return true; 2388 } 2389 2390 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2391 // Never defer when EmitAllDecls is specified. 2392 if (LangOpts.EmitAllDecls) 2393 return true; 2394 2395 if (CodeGenOpts.KeepStaticConsts) { 2396 const auto *VD = dyn_cast<VarDecl>(Global); 2397 if (VD && VD->getType().isConstQualified() && 2398 VD->getStorageDuration() == SD_Static) 2399 return true; 2400 } 2401 2402 return getContext().DeclMustBeEmitted(Global); 2403 } 2404 2405 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2406 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2407 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2408 // Implicit template instantiations may change linkage if they are later 2409 // explicitly instantiated, so they should not be emitted eagerly. 2410 return false; 2411 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2412 // not emit them eagerly unless we sure that the function must be emitted on 2413 // the host. 2414 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2415 !LangOpts.OpenMPIsDevice && 2416 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2417 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2418 return false; 2419 } 2420 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2421 if (Context.getInlineVariableDefinitionKind(VD) == 2422 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2423 // A definition of an inline constexpr static data member may change 2424 // linkage later if it's redeclared outside the class. 2425 return false; 2426 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2427 // codegen for global variables, because they may be marked as threadprivate. 2428 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2429 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2430 !isTypeConstant(Global->getType(), false) && 2431 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2432 return false; 2433 2434 return true; 2435 } 2436 2437 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2438 const CXXUuidofExpr* E) { 2439 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2440 // well-formed. 2441 StringRef Uuid = E->getUuidStr(); 2442 std::string Name = "_GUID_" + Uuid.lower(); 2443 std::replace(Name.begin(), Name.end(), '-', '_'); 2444 2445 // The UUID descriptor should be pointer aligned. 2446 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2447 2448 // Look for an existing global. 2449 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2450 return ConstantAddress(GV, Alignment); 2451 2452 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2453 assert(Init && "failed to initialize as constant"); 2454 2455 auto *GV = new llvm::GlobalVariable( 2456 getModule(), Init->getType(), 2457 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2458 if (supportsCOMDAT()) 2459 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2460 setDSOLocal(GV); 2461 return ConstantAddress(GV, Alignment); 2462 } 2463 2464 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2465 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2466 assert(AA && "No alias?"); 2467 2468 CharUnits Alignment = getContext().getDeclAlign(VD); 2469 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2470 2471 // See if there is already something with the target's name in the module. 2472 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2473 if (Entry) { 2474 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2475 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2476 return ConstantAddress(Ptr, Alignment); 2477 } 2478 2479 llvm::Constant *Aliasee; 2480 if (isa<llvm::FunctionType>(DeclTy)) 2481 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2482 GlobalDecl(cast<FunctionDecl>(VD)), 2483 /*ForVTable=*/false); 2484 else 2485 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2486 llvm::PointerType::getUnqual(DeclTy), 2487 nullptr); 2488 2489 auto *F = cast<llvm::GlobalValue>(Aliasee); 2490 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2491 WeakRefReferences.insert(F); 2492 2493 return ConstantAddress(Aliasee, Alignment); 2494 } 2495 2496 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2497 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2498 2499 // Weak references don't produce any output by themselves. 2500 if (Global->hasAttr<WeakRefAttr>()) 2501 return; 2502 2503 // If this is an alias definition (which otherwise looks like a declaration) 2504 // emit it now. 2505 if (Global->hasAttr<AliasAttr>()) 2506 return EmitAliasDefinition(GD); 2507 2508 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2509 if (Global->hasAttr<IFuncAttr>()) 2510 return emitIFuncDefinition(GD); 2511 2512 // If this is a cpu_dispatch multiversion function, emit the resolver. 2513 if (Global->hasAttr<CPUDispatchAttr>()) 2514 return emitCPUDispatchDefinition(GD); 2515 2516 // If this is CUDA, be selective about which declarations we emit. 2517 if (LangOpts.CUDA) { 2518 if (LangOpts.CUDAIsDevice) { 2519 if (!Global->hasAttr<CUDADeviceAttr>() && 2520 !Global->hasAttr<CUDAGlobalAttr>() && 2521 !Global->hasAttr<CUDAConstantAttr>() && 2522 !Global->hasAttr<CUDASharedAttr>() && 2523 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()) && 2524 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2525 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2526 return; 2527 } else { 2528 // We need to emit host-side 'shadows' for all global 2529 // device-side variables because the CUDA runtime needs their 2530 // size and host-side address in order to provide access to 2531 // their device-side incarnations. 2532 2533 // So device-only functions are the only things we skip. 2534 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2535 Global->hasAttr<CUDADeviceAttr>()) 2536 return; 2537 2538 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2539 "Expected Variable or Function"); 2540 } 2541 } 2542 2543 if (LangOpts.OpenMP) { 2544 // If this is OpenMP, check if it is legal to emit this global normally. 2545 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2546 return; 2547 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2548 if (MustBeEmitted(Global)) 2549 EmitOMPDeclareReduction(DRD); 2550 return; 2551 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2552 if (MustBeEmitted(Global)) 2553 EmitOMPDeclareMapper(DMD); 2554 return; 2555 } 2556 } 2557 2558 // Ignore declarations, they will be emitted on their first use. 2559 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2560 // Forward declarations are emitted lazily on first use. 2561 if (!FD->doesThisDeclarationHaveABody()) { 2562 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2563 return; 2564 2565 StringRef MangledName = getMangledName(GD); 2566 2567 // Compute the function info and LLVM type. 2568 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2569 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2570 2571 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2572 /*DontDefer=*/false); 2573 return; 2574 } 2575 } else { 2576 const auto *VD = cast<VarDecl>(Global); 2577 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2578 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2579 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2580 if (LangOpts.OpenMP) { 2581 // Emit declaration of the must-be-emitted declare target variable. 2582 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2583 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2584 bool UnifiedMemoryEnabled = 2585 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2586 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2587 !UnifiedMemoryEnabled) { 2588 (void)GetAddrOfGlobalVar(VD); 2589 } else { 2590 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2591 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2592 UnifiedMemoryEnabled)) && 2593 "Link clause or to clause with unified memory expected."); 2594 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2595 } 2596 2597 return; 2598 } 2599 } 2600 // If this declaration may have caused an inline variable definition to 2601 // change linkage, make sure that it's emitted. 2602 if (Context.getInlineVariableDefinitionKind(VD) == 2603 ASTContext::InlineVariableDefinitionKind::Strong) 2604 GetAddrOfGlobalVar(VD); 2605 return; 2606 } 2607 } 2608 2609 // Defer code generation to first use when possible, e.g. if this is an inline 2610 // function. If the global must always be emitted, do it eagerly if possible 2611 // to benefit from cache locality. 2612 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2613 // Emit the definition if it can't be deferred. 2614 EmitGlobalDefinition(GD); 2615 return; 2616 } 2617 2618 // If we're deferring emission of a C++ variable with an 2619 // initializer, remember the order in which it appeared in the file. 2620 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2621 cast<VarDecl>(Global)->hasInit()) { 2622 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2623 CXXGlobalInits.push_back(nullptr); 2624 } 2625 2626 StringRef MangledName = getMangledName(GD); 2627 if (GetGlobalValue(MangledName) != nullptr) { 2628 // The value has already been used and should therefore be emitted. 2629 addDeferredDeclToEmit(GD); 2630 } else if (MustBeEmitted(Global)) { 2631 // The value must be emitted, but cannot be emitted eagerly. 2632 assert(!MayBeEmittedEagerly(Global)); 2633 addDeferredDeclToEmit(GD); 2634 } else { 2635 // Otherwise, remember that we saw a deferred decl with this name. The 2636 // first use of the mangled name will cause it to move into 2637 // DeferredDeclsToEmit. 2638 DeferredDecls[MangledName] = GD; 2639 } 2640 } 2641 2642 // Check if T is a class type with a destructor that's not dllimport. 2643 static bool HasNonDllImportDtor(QualType T) { 2644 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2645 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2646 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2647 return true; 2648 2649 return false; 2650 } 2651 2652 namespace { 2653 struct FunctionIsDirectlyRecursive 2654 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2655 const StringRef Name; 2656 const Builtin::Context &BI; 2657 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2658 : Name(N), BI(C) {} 2659 2660 bool VisitCallExpr(const CallExpr *E) { 2661 const FunctionDecl *FD = E->getDirectCallee(); 2662 if (!FD) 2663 return false; 2664 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2665 if (Attr && Name == Attr->getLabel()) 2666 return true; 2667 unsigned BuiltinID = FD->getBuiltinID(); 2668 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2669 return false; 2670 StringRef BuiltinName = BI.getName(BuiltinID); 2671 if (BuiltinName.startswith("__builtin_") && 2672 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2673 return true; 2674 } 2675 return false; 2676 } 2677 2678 bool VisitStmt(const Stmt *S) { 2679 for (const Stmt *Child : S->children()) 2680 if (Child && this->Visit(Child)) 2681 return true; 2682 return false; 2683 } 2684 }; 2685 2686 // Make sure we're not referencing non-imported vars or functions. 2687 struct DLLImportFunctionVisitor 2688 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2689 bool SafeToInline = true; 2690 2691 bool shouldVisitImplicitCode() const { return true; } 2692 2693 bool VisitVarDecl(VarDecl *VD) { 2694 if (VD->getTLSKind()) { 2695 // A thread-local variable cannot be imported. 2696 SafeToInline = false; 2697 return SafeToInline; 2698 } 2699 2700 // A variable definition might imply a destructor call. 2701 if (VD->isThisDeclarationADefinition()) 2702 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2703 2704 return SafeToInline; 2705 } 2706 2707 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2708 if (const auto *D = E->getTemporary()->getDestructor()) 2709 SafeToInline = D->hasAttr<DLLImportAttr>(); 2710 return SafeToInline; 2711 } 2712 2713 bool VisitDeclRefExpr(DeclRefExpr *E) { 2714 ValueDecl *VD = E->getDecl(); 2715 if (isa<FunctionDecl>(VD)) 2716 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2717 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2718 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2719 return SafeToInline; 2720 } 2721 2722 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2723 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2724 return SafeToInline; 2725 } 2726 2727 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2728 CXXMethodDecl *M = E->getMethodDecl(); 2729 if (!M) { 2730 // Call through a pointer to member function. This is safe to inline. 2731 SafeToInline = true; 2732 } else { 2733 SafeToInline = M->hasAttr<DLLImportAttr>(); 2734 } 2735 return SafeToInline; 2736 } 2737 2738 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2739 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2740 return SafeToInline; 2741 } 2742 2743 bool VisitCXXNewExpr(CXXNewExpr *E) { 2744 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2745 return SafeToInline; 2746 } 2747 }; 2748 } 2749 2750 // isTriviallyRecursive - Check if this function calls another 2751 // decl that, because of the asm attribute or the other decl being a builtin, 2752 // ends up pointing to itself. 2753 bool 2754 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2755 StringRef Name; 2756 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2757 // asm labels are a special kind of mangling we have to support. 2758 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2759 if (!Attr) 2760 return false; 2761 Name = Attr->getLabel(); 2762 } else { 2763 Name = FD->getName(); 2764 } 2765 2766 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2767 const Stmt *Body = FD->getBody(); 2768 return Body ? Walker.Visit(Body) : false; 2769 } 2770 2771 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2772 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2773 return true; 2774 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2775 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2776 return false; 2777 2778 if (F->hasAttr<DLLImportAttr>()) { 2779 // Check whether it would be safe to inline this dllimport function. 2780 DLLImportFunctionVisitor Visitor; 2781 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2782 if (!Visitor.SafeToInline) 2783 return false; 2784 2785 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2786 // Implicit destructor invocations aren't captured in the AST, so the 2787 // check above can't see them. Check for them manually here. 2788 for (const Decl *Member : Dtor->getParent()->decls()) 2789 if (isa<FieldDecl>(Member)) 2790 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2791 return false; 2792 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2793 if (HasNonDllImportDtor(B.getType())) 2794 return false; 2795 } 2796 } 2797 2798 // PR9614. Avoid cases where the source code is lying to us. An available 2799 // externally function should have an equivalent function somewhere else, 2800 // but a function that calls itself is clearly not equivalent to the real 2801 // implementation. 2802 // This happens in glibc's btowc and in some configure checks. 2803 return !isTriviallyRecursive(F); 2804 } 2805 2806 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2807 return CodeGenOpts.OptimizationLevel > 0; 2808 } 2809 2810 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2811 llvm::GlobalValue *GV) { 2812 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2813 2814 if (FD->isCPUSpecificMultiVersion()) { 2815 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2816 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2817 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2818 // Requires multiple emits. 2819 } else 2820 EmitGlobalFunctionDefinition(GD, GV); 2821 } 2822 2823 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2824 const auto *D = cast<ValueDecl>(GD.getDecl()); 2825 2826 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2827 Context.getSourceManager(), 2828 "Generating code for declaration"); 2829 2830 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2831 // At -O0, don't generate IR for functions with available_externally 2832 // linkage. 2833 if (!shouldEmitFunction(GD)) 2834 return; 2835 2836 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2837 std::string Name; 2838 llvm::raw_string_ostream OS(Name); 2839 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2840 /*Qualified=*/true); 2841 return Name; 2842 }); 2843 2844 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2845 // Make sure to emit the definition(s) before we emit the thunks. 2846 // This is necessary for the generation of certain thunks. 2847 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2848 ABI->emitCXXStructor(GD); 2849 else if (FD->isMultiVersion()) 2850 EmitMultiVersionFunctionDefinition(GD, GV); 2851 else 2852 EmitGlobalFunctionDefinition(GD, GV); 2853 2854 if (Method->isVirtual()) 2855 getVTables().EmitThunks(GD); 2856 2857 return; 2858 } 2859 2860 if (FD->isMultiVersion()) 2861 return EmitMultiVersionFunctionDefinition(GD, GV); 2862 return EmitGlobalFunctionDefinition(GD, GV); 2863 } 2864 2865 if (const auto *VD = dyn_cast<VarDecl>(D)) 2866 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2867 2868 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2869 } 2870 2871 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2872 llvm::Function *NewFn); 2873 2874 static unsigned 2875 TargetMVPriority(const TargetInfo &TI, 2876 const CodeGenFunction::MultiVersionResolverOption &RO) { 2877 unsigned Priority = 0; 2878 for (StringRef Feat : RO.Conditions.Features) 2879 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2880 2881 if (!RO.Conditions.Architecture.empty()) 2882 Priority = std::max( 2883 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2884 return Priority; 2885 } 2886 2887 void CodeGenModule::emitMultiVersionFunctions() { 2888 for (GlobalDecl GD : MultiVersionFuncs) { 2889 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2890 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2891 getContext().forEachMultiversionedFunctionVersion( 2892 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2893 GlobalDecl CurGD{ 2894 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2895 StringRef MangledName = getMangledName(CurGD); 2896 llvm::Constant *Func = GetGlobalValue(MangledName); 2897 if (!Func) { 2898 if (CurFD->isDefined()) { 2899 EmitGlobalFunctionDefinition(CurGD, nullptr); 2900 Func = GetGlobalValue(MangledName); 2901 } else { 2902 const CGFunctionInfo &FI = 2903 getTypes().arrangeGlobalDeclaration(GD); 2904 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2905 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2906 /*DontDefer=*/false, ForDefinition); 2907 } 2908 assert(Func && "This should have just been created"); 2909 } 2910 2911 const auto *TA = CurFD->getAttr<TargetAttr>(); 2912 llvm::SmallVector<StringRef, 8> Feats; 2913 TA->getAddedFeatures(Feats); 2914 2915 Options.emplace_back(cast<llvm::Function>(Func), 2916 TA->getArchitecture(), Feats); 2917 }); 2918 2919 llvm::Function *ResolverFunc; 2920 const TargetInfo &TI = getTarget(); 2921 2922 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2923 ResolverFunc = cast<llvm::Function>( 2924 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2925 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2926 } else { 2927 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2928 } 2929 2930 if (supportsCOMDAT()) 2931 ResolverFunc->setComdat( 2932 getModule().getOrInsertComdat(ResolverFunc->getName())); 2933 2934 llvm::stable_sort( 2935 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2936 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2937 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2938 }); 2939 CodeGenFunction CGF(*this); 2940 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2941 } 2942 } 2943 2944 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2945 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2946 assert(FD && "Not a FunctionDecl?"); 2947 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2948 assert(DD && "Not a cpu_dispatch Function?"); 2949 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2950 2951 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2952 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2953 DeclTy = getTypes().GetFunctionType(FInfo); 2954 } 2955 2956 StringRef ResolverName = getMangledName(GD); 2957 2958 llvm::Type *ResolverType; 2959 GlobalDecl ResolverGD; 2960 if (getTarget().supportsIFunc()) 2961 ResolverType = llvm::FunctionType::get( 2962 llvm::PointerType::get(DeclTy, 2963 Context.getTargetAddressSpace(FD->getType())), 2964 false); 2965 else { 2966 ResolverType = DeclTy; 2967 ResolverGD = GD; 2968 } 2969 2970 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2971 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2972 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2973 if (supportsCOMDAT()) 2974 ResolverFunc->setComdat( 2975 getModule().getOrInsertComdat(ResolverFunc->getName())); 2976 2977 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2978 const TargetInfo &Target = getTarget(); 2979 unsigned Index = 0; 2980 for (const IdentifierInfo *II : DD->cpus()) { 2981 // Get the name of the target function so we can look it up/create it. 2982 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2983 getCPUSpecificMangling(*this, II->getName()); 2984 2985 llvm::Constant *Func = GetGlobalValue(MangledName); 2986 2987 if (!Func) { 2988 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2989 if (ExistingDecl.getDecl() && 2990 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2991 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2992 Func = GetGlobalValue(MangledName); 2993 } else { 2994 if (!ExistingDecl.getDecl()) 2995 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2996 2997 Func = GetOrCreateLLVMFunction( 2998 MangledName, DeclTy, ExistingDecl, 2999 /*ForVTable=*/false, /*DontDefer=*/true, 3000 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3001 } 3002 } 3003 3004 llvm::SmallVector<StringRef, 32> Features; 3005 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3006 llvm::transform(Features, Features.begin(), 3007 [](StringRef Str) { return Str.substr(1); }); 3008 Features.erase(std::remove_if( 3009 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3010 return !Target.validateCpuSupports(Feat); 3011 }), Features.end()); 3012 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3013 ++Index; 3014 } 3015 3016 llvm::sort( 3017 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3018 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3019 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3020 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3021 }); 3022 3023 // If the list contains multiple 'default' versions, such as when it contains 3024 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3025 // always run on at least a 'pentium'). We do this by deleting the 'least 3026 // advanced' (read, lowest mangling letter). 3027 while (Options.size() > 1 && 3028 CodeGenFunction::GetX86CpuSupportsMask( 3029 (Options.end() - 2)->Conditions.Features) == 0) { 3030 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3031 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3032 if (LHSName.compare(RHSName) < 0) 3033 Options.erase(Options.end() - 2); 3034 else 3035 Options.erase(Options.end() - 1); 3036 } 3037 3038 CodeGenFunction CGF(*this); 3039 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3040 3041 if (getTarget().supportsIFunc()) { 3042 std::string AliasName = getMangledNameImpl( 3043 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3044 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3045 if (!AliasFunc) { 3046 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3047 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3048 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3049 auto *GA = llvm::GlobalAlias::create( 3050 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3051 GA->setLinkage(llvm::Function::WeakODRLinkage); 3052 SetCommonAttributes(GD, GA); 3053 } 3054 } 3055 } 3056 3057 /// If a dispatcher for the specified mangled name is not in the module, create 3058 /// and return an llvm Function with the specified type. 3059 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3060 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3061 std::string MangledName = 3062 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3063 3064 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3065 // a separate resolver). 3066 std::string ResolverName = MangledName; 3067 if (getTarget().supportsIFunc()) 3068 ResolverName += ".ifunc"; 3069 else if (FD->isTargetMultiVersion()) 3070 ResolverName += ".resolver"; 3071 3072 // If this already exists, just return that one. 3073 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3074 return ResolverGV; 3075 3076 // Since this is the first time we've created this IFunc, make sure 3077 // that we put this multiversioned function into the list to be 3078 // replaced later if necessary (target multiversioning only). 3079 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3080 MultiVersionFuncs.push_back(GD); 3081 3082 if (getTarget().supportsIFunc()) { 3083 llvm::Type *ResolverType = llvm::FunctionType::get( 3084 llvm::PointerType::get( 3085 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3086 false); 3087 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3088 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3089 /*ForVTable=*/false); 3090 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3091 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3092 GIF->setName(ResolverName); 3093 SetCommonAttributes(FD, GIF); 3094 3095 return GIF; 3096 } 3097 3098 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3099 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3100 assert(isa<llvm::GlobalValue>(Resolver) && 3101 "Resolver should be created for the first time"); 3102 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3103 return Resolver; 3104 } 3105 3106 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3107 /// module, create and return an llvm Function with the specified type. If there 3108 /// is something in the module with the specified name, return it potentially 3109 /// bitcasted to the right type. 3110 /// 3111 /// If D is non-null, it specifies a decl that correspond to this. This is used 3112 /// to set the attributes on the function when it is first created. 3113 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3114 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3115 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3116 ForDefinition_t IsForDefinition) { 3117 const Decl *D = GD.getDecl(); 3118 3119 // Any attempts to use a MultiVersion function should result in retrieving 3120 // the iFunc instead. Name Mangling will handle the rest of the changes. 3121 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3122 // For the device mark the function as one that should be emitted. 3123 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3124 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3125 !DontDefer && !IsForDefinition) { 3126 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3127 GlobalDecl GDDef; 3128 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3129 GDDef = GlobalDecl(CD, GD.getCtorType()); 3130 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3131 GDDef = GlobalDecl(DD, GD.getDtorType()); 3132 else 3133 GDDef = GlobalDecl(FDDef); 3134 EmitGlobal(GDDef); 3135 } 3136 } 3137 3138 if (FD->isMultiVersion()) { 3139 if (FD->hasAttr<TargetAttr>()) 3140 UpdateMultiVersionNames(GD, FD); 3141 if (!IsForDefinition) 3142 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3143 } 3144 } 3145 3146 // Lookup the entry, lazily creating it if necessary. 3147 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3148 if (Entry) { 3149 if (WeakRefReferences.erase(Entry)) { 3150 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3151 if (FD && !FD->hasAttr<WeakAttr>()) 3152 Entry->setLinkage(llvm::Function::ExternalLinkage); 3153 } 3154 3155 // Handle dropped DLL attributes. 3156 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3157 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3158 setDSOLocal(Entry); 3159 } 3160 3161 // If there are two attempts to define the same mangled name, issue an 3162 // error. 3163 if (IsForDefinition && !Entry->isDeclaration()) { 3164 GlobalDecl OtherGD; 3165 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3166 // to make sure that we issue an error only once. 3167 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3168 (GD.getCanonicalDecl().getDecl() != 3169 OtherGD.getCanonicalDecl().getDecl()) && 3170 DiagnosedConflictingDefinitions.insert(GD).second) { 3171 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3172 << MangledName; 3173 getDiags().Report(OtherGD.getDecl()->getLocation(), 3174 diag::note_previous_definition); 3175 } 3176 } 3177 3178 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3179 (Entry->getType()->getElementType() == Ty)) { 3180 return Entry; 3181 } 3182 3183 // Make sure the result is of the correct type. 3184 // (If function is requested for a definition, we always need to create a new 3185 // function, not just return a bitcast.) 3186 if (!IsForDefinition) 3187 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3188 } 3189 3190 // This function doesn't have a complete type (for example, the return 3191 // type is an incomplete struct). Use a fake type instead, and make 3192 // sure not to try to set attributes. 3193 bool IsIncompleteFunction = false; 3194 3195 llvm::FunctionType *FTy; 3196 if (isa<llvm::FunctionType>(Ty)) { 3197 FTy = cast<llvm::FunctionType>(Ty); 3198 } else { 3199 FTy = llvm::FunctionType::get(VoidTy, false); 3200 IsIncompleteFunction = true; 3201 } 3202 3203 llvm::Function *F = 3204 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3205 Entry ? StringRef() : MangledName, &getModule()); 3206 3207 // If we already created a function with the same mangled name (but different 3208 // type) before, take its name and add it to the list of functions to be 3209 // replaced with F at the end of CodeGen. 3210 // 3211 // This happens if there is a prototype for a function (e.g. "int f()") and 3212 // then a definition of a different type (e.g. "int f(int x)"). 3213 if (Entry) { 3214 F->takeName(Entry); 3215 3216 // This might be an implementation of a function without a prototype, in 3217 // which case, try to do special replacement of calls which match the new 3218 // prototype. The really key thing here is that we also potentially drop 3219 // arguments from the call site so as to make a direct call, which makes the 3220 // inliner happier and suppresses a number of optimizer warnings (!) about 3221 // dropping arguments. 3222 if (!Entry->use_empty()) { 3223 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3224 Entry->removeDeadConstantUsers(); 3225 } 3226 3227 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3228 F, Entry->getType()->getElementType()->getPointerTo()); 3229 addGlobalValReplacement(Entry, BC); 3230 } 3231 3232 assert(F->getName() == MangledName && "name was uniqued!"); 3233 if (D) 3234 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3235 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3236 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3237 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3238 } 3239 3240 if (!DontDefer) { 3241 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3242 // each other bottoming out with the base dtor. Therefore we emit non-base 3243 // dtors on usage, even if there is no dtor definition in the TU. 3244 if (D && isa<CXXDestructorDecl>(D) && 3245 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3246 GD.getDtorType())) 3247 addDeferredDeclToEmit(GD); 3248 3249 // This is the first use or definition of a mangled name. If there is a 3250 // deferred decl with this name, remember that we need to emit it at the end 3251 // of the file. 3252 auto DDI = DeferredDecls.find(MangledName); 3253 if (DDI != DeferredDecls.end()) { 3254 // Move the potentially referenced deferred decl to the 3255 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3256 // don't need it anymore). 3257 addDeferredDeclToEmit(DDI->second); 3258 DeferredDecls.erase(DDI); 3259 3260 // Otherwise, there are cases we have to worry about where we're 3261 // using a declaration for which we must emit a definition but where 3262 // we might not find a top-level definition: 3263 // - member functions defined inline in their classes 3264 // - friend functions defined inline in some class 3265 // - special member functions with implicit definitions 3266 // If we ever change our AST traversal to walk into class methods, 3267 // this will be unnecessary. 3268 // 3269 // We also don't emit a definition for a function if it's going to be an 3270 // entry in a vtable, unless it's already marked as used. 3271 } else if (getLangOpts().CPlusPlus && D) { 3272 // Look for a declaration that's lexically in a record. 3273 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3274 FD = FD->getPreviousDecl()) { 3275 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3276 if (FD->doesThisDeclarationHaveABody()) { 3277 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3278 break; 3279 } 3280 } 3281 } 3282 } 3283 } 3284 3285 // Make sure the result is of the requested type. 3286 if (!IsIncompleteFunction) { 3287 assert(F->getType()->getElementType() == Ty); 3288 return F; 3289 } 3290 3291 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3292 return llvm::ConstantExpr::getBitCast(F, PTy); 3293 } 3294 3295 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3296 /// non-null, then this function will use the specified type if it has to 3297 /// create it (this occurs when we see a definition of the function). 3298 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3299 llvm::Type *Ty, 3300 bool ForVTable, 3301 bool DontDefer, 3302 ForDefinition_t IsForDefinition) { 3303 // If there was no specific requested type, just convert it now. 3304 if (!Ty) { 3305 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3306 Ty = getTypes().ConvertType(FD->getType()); 3307 } 3308 3309 // Devirtualized destructor calls may come through here instead of via 3310 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3311 // of the complete destructor when necessary. 3312 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3313 if (getTarget().getCXXABI().isMicrosoft() && 3314 GD.getDtorType() == Dtor_Complete && 3315 DD->getParent()->getNumVBases() == 0) 3316 GD = GlobalDecl(DD, Dtor_Base); 3317 } 3318 3319 StringRef MangledName = getMangledName(GD); 3320 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3321 /*IsThunk=*/false, llvm::AttributeList(), 3322 IsForDefinition); 3323 } 3324 3325 static const FunctionDecl * 3326 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3327 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3328 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3329 3330 IdentifierInfo &CII = C.Idents.get(Name); 3331 for (const auto &Result : DC->lookup(&CII)) 3332 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3333 return FD; 3334 3335 if (!C.getLangOpts().CPlusPlus) 3336 return nullptr; 3337 3338 // Demangle the premangled name from getTerminateFn() 3339 IdentifierInfo &CXXII = 3340 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3341 ? C.Idents.get("terminate") 3342 : C.Idents.get(Name); 3343 3344 for (const auto &N : {"__cxxabiv1", "std"}) { 3345 IdentifierInfo &NS = C.Idents.get(N); 3346 for (const auto &Result : DC->lookup(&NS)) { 3347 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3348 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3349 for (const auto &Result : LSD->lookup(&NS)) 3350 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3351 break; 3352 3353 if (ND) 3354 for (const auto &Result : ND->lookup(&CXXII)) 3355 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3356 return FD; 3357 } 3358 } 3359 3360 return nullptr; 3361 } 3362 3363 /// CreateRuntimeFunction - Create a new runtime function with the specified 3364 /// type and name. 3365 llvm::FunctionCallee 3366 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3367 llvm::AttributeList ExtraAttrs, bool Local, 3368 bool AssumeConvergent) { 3369 if (AssumeConvergent) { 3370 ExtraAttrs = 3371 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3372 llvm::Attribute::Convergent); 3373 } 3374 3375 llvm::Constant *C = 3376 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3377 /*DontDefer=*/false, /*IsThunk=*/false, 3378 ExtraAttrs); 3379 3380 if (auto *F = dyn_cast<llvm::Function>(C)) { 3381 if (F->empty()) { 3382 F->setCallingConv(getRuntimeCC()); 3383 3384 // In Windows Itanium environments, try to mark runtime functions 3385 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3386 // will link their standard library statically or dynamically. Marking 3387 // functions imported when they are not imported can cause linker errors 3388 // and warnings. 3389 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3390 !getCodeGenOpts().LTOVisibilityPublicStd) { 3391 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3392 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3393 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3394 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3395 } 3396 } 3397 setDSOLocal(F); 3398 } 3399 } 3400 3401 return {FTy, C}; 3402 } 3403 3404 /// isTypeConstant - Determine whether an object of this type can be emitted 3405 /// as a constant. 3406 /// 3407 /// If ExcludeCtor is true, the duration when the object's constructor runs 3408 /// will not be considered. The caller will need to verify that the object is 3409 /// not written to during its construction. 3410 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3411 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3412 return false; 3413 3414 if (Context.getLangOpts().CPlusPlus) { 3415 if (const CXXRecordDecl *Record 3416 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3417 return ExcludeCtor && !Record->hasMutableFields() && 3418 Record->hasTrivialDestructor(); 3419 } 3420 3421 return true; 3422 } 3423 3424 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3425 /// create and return an llvm GlobalVariable with the specified type. If there 3426 /// is something in the module with the specified name, return it potentially 3427 /// bitcasted to the right type. 3428 /// 3429 /// If D is non-null, it specifies a decl that correspond to this. This is used 3430 /// to set the attributes on the global when it is first created. 3431 /// 3432 /// If IsForDefinition is true, it is guaranteed that an actual global with 3433 /// type Ty will be returned, not conversion of a variable with the same 3434 /// mangled name but some other type. 3435 llvm::Constant * 3436 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3437 llvm::PointerType *Ty, 3438 const VarDecl *D, 3439 ForDefinition_t IsForDefinition) { 3440 // Lookup the entry, lazily creating it if necessary. 3441 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3442 if (Entry) { 3443 if (WeakRefReferences.erase(Entry)) { 3444 if (D && !D->hasAttr<WeakAttr>()) 3445 Entry->setLinkage(llvm::Function::ExternalLinkage); 3446 } 3447 3448 // Handle dropped DLL attributes. 3449 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3450 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3451 3452 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3453 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3454 3455 if (Entry->getType() == Ty) 3456 return Entry; 3457 3458 // If there are two attempts to define the same mangled name, issue an 3459 // error. 3460 if (IsForDefinition && !Entry->isDeclaration()) { 3461 GlobalDecl OtherGD; 3462 const VarDecl *OtherD; 3463 3464 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3465 // to make sure that we issue an error only once. 3466 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3467 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3468 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3469 OtherD->hasInit() && 3470 DiagnosedConflictingDefinitions.insert(D).second) { 3471 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3472 << MangledName; 3473 getDiags().Report(OtherGD.getDecl()->getLocation(), 3474 diag::note_previous_definition); 3475 } 3476 } 3477 3478 // Make sure the result is of the correct type. 3479 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3480 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3481 3482 // (If global is requested for a definition, we always need to create a new 3483 // global, not just return a bitcast.) 3484 if (!IsForDefinition) 3485 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3486 } 3487 3488 auto AddrSpace = GetGlobalVarAddressSpace(D); 3489 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3490 3491 auto *GV = new llvm::GlobalVariable( 3492 getModule(), Ty->getElementType(), false, 3493 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3494 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3495 3496 // If we already created a global with the same mangled name (but different 3497 // type) before, take its name and remove it from its parent. 3498 if (Entry) { 3499 GV->takeName(Entry); 3500 3501 if (!Entry->use_empty()) { 3502 llvm::Constant *NewPtrForOldDecl = 3503 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3504 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3505 } 3506 3507 Entry->eraseFromParent(); 3508 } 3509 3510 // This is the first use or definition of a mangled name. If there is a 3511 // deferred decl with this name, remember that we need to emit it at the end 3512 // of the file. 3513 auto DDI = DeferredDecls.find(MangledName); 3514 if (DDI != DeferredDecls.end()) { 3515 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3516 // list, and remove it from DeferredDecls (since we don't need it anymore). 3517 addDeferredDeclToEmit(DDI->second); 3518 DeferredDecls.erase(DDI); 3519 } 3520 3521 // Handle things which are present even on external declarations. 3522 if (D) { 3523 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3524 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3525 3526 // FIXME: This code is overly simple and should be merged with other global 3527 // handling. 3528 GV->setConstant(isTypeConstant(D->getType(), false)); 3529 3530 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3531 3532 setLinkageForGV(GV, D); 3533 3534 if (D->getTLSKind()) { 3535 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3536 CXXThreadLocals.push_back(D); 3537 setTLSMode(GV, *D); 3538 } 3539 3540 setGVProperties(GV, D); 3541 3542 // If required by the ABI, treat declarations of static data members with 3543 // inline initializers as definitions. 3544 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3545 EmitGlobalVarDefinition(D); 3546 } 3547 3548 // Emit section information for extern variables. 3549 if (D->hasExternalStorage()) { 3550 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3551 GV->setSection(SA->getName()); 3552 } 3553 3554 // Handle XCore specific ABI requirements. 3555 if (getTriple().getArch() == llvm::Triple::xcore && 3556 D->getLanguageLinkage() == CLanguageLinkage && 3557 D->getType().isConstant(Context) && 3558 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3559 GV->setSection(".cp.rodata"); 3560 3561 // Check if we a have a const declaration with an initializer, we may be 3562 // able to emit it as available_externally to expose it's value to the 3563 // optimizer. 3564 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3565 D->getType().isConstQualified() && !GV->hasInitializer() && 3566 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3567 const auto *Record = 3568 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3569 bool HasMutableFields = Record && Record->hasMutableFields(); 3570 if (!HasMutableFields) { 3571 const VarDecl *InitDecl; 3572 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3573 if (InitExpr) { 3574 ConstantEmitter emitter(*this); 3575 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3576 if (Init) { 3577 auto *InitType = Init->getType(); 3578 if (GV->getType()->getElementType() != InitType) { 3579 // The type of the initializer does not match the definition. 3580 // This happens when an initializer has a different type from 3581 // the type of the global (because of padding at the end of a 3582 // structure for instance). 3583 GV->setName(StringRef()); 3584 // Make a new global with the correct type, this is now guaranteed 3585 // to work. 3586 auto *NewGV = cast<llvm::GlobalVariable>( 3587 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3588 ->stripPointerCasts()); 3589 3590 // Erase the old global, since it is no longer used. 3591 GV->eraseFromParent(); 3592 GV = NewGV; 3593 } else { 3594 GV->setInitializer(Init); 3595 GV->setConstant(true); 3596 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3597 } 3598 emitter.finalize(GV); 3599 } 3600 } 3601 } 3602 } 3603 } 3604 3605 if (GV->isDeclaration()) 3606 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3607 3608 LangAS ExpectedAS = 3609 D ? D->getType().getAddressSpace() 3610 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3611 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3612 Ty->getPointerAddressSpace()); 3613 if (AddrSpace != ExpectedAS) 3614 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3615 ExpectedAS, Ty); 3616 3617 return GV; 3618 } 3619 3620 llvm::Constant * 3621 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3622 ForDefinition_t IsForDefinition) { 3623 const Decl *D = GD.getDecl(); 3624 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3625 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3626 /*DontDefer=*/false, IsForDefinition); 3627 else if (isa<CXXMethodDecl>(D)) { 3628 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3629 cast<CXXMethodDecl>(D)); 3630 auto Ty = getTypes().GetFunctionType(*FInfo); 3631 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3632 IsForDefinition); 3633 } else if (isa<FunctionDecl>(D)) { 3634 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3635 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3636 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3637 IsForDefinition); 3638 } else 3639 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3640 IsForDefinition); 3641 } 3642 3643 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3644 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3645 unsigned Alignment) { 3646 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3647 llvm::GlobalVariable *OldGV = nullptr; 3648 3649 if (GV) { 3650 // Check if the variable has the right type. 3651 if (GV->getType()->getElementType() == Ty) 3652 return GV; 3653 3654 // Because C++ name mangling, the only way we can end up with an already 3655 // existing global with the same name is if it has been declared extern "C". 3656 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3657 OldGV = GV; 3658 } 3659 3660 // Create a new variable. 3661 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3662 Linkage, nullptr, Name); 3663 3664 if (OldGV) { 3665 // Replace occurrences of the old variable if needed. 3666 GV->takeName(OldGV); 3667 3668 if (!OldGV->use_empty()) { 3669 llvm::Constant *NewPtrForOldDecl = 3670 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3671 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3672 } 3673 3674 OldGV->eraseFromParent(); 3675 } 3676 3677 if (supportsCOMDAT() && GV->isWeakForLinker() && 3678 !GV->hasAvailableExternallyLinkage()) 3679 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3680 3681 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3682 3683 return GV; 3684 } 3685 3686 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3687 /// given global variable. If Ty is non-null and if the global doesn't exist, 3688 /// then it will be created with the specified type instead of whatever the 3689 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3690 /// that an actual global with type Ty will be returned, not conversion of a 3691 /// variable with the same mangled name but some other type. 3692 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3693 llvm::Type *Ty, 3694 ForDefinition_t IsForDefinition) { 3695 assert(D->hasGlobalStorage() && "Not a global variable"); 3696 QualType ASTTy = D->getType(); 3697 if (!Ty) 3698 Ty = getTypes().ConvertTypeForMem(ASTTy); 3699 3700 llvm::PointerType *PTy = 3701 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3702 3703 StringRef MangledName = getMangledName(D); 3704 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3705 } 3706 3707 /// CreateRuntimeVariable - Create a new runtime global variable with the 3708 /// specified type and name. 3709 llvm::Constant * 3710 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3711 StringRef Name) { 3712 auto PtrTy = 3713 getContext().getLangOpts().OpenCL 3714 ? llvm::PointerType::get( 3715 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3716 : llvm::PointerType::getUnqual(Ty); 3717 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3718 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3719 return Ret; 3720 } 3721 3722 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3723 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3724 3725 StringRef MangledName = getMangledName(D); 3726 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3727 3728 // We already have a definition, not declaration, with the same mangled name. 3729 // Emitting of declaration is not required (and actually overwrites emitted 3730 // definition). 3731 if (GV && !GV->isDeclaration()) 3732 return; 3733 3734 // If we have not seen a reference to this variable yet, place it into the 3735 // deferred declarations table to be emitted if needed later. 3736 if (!MustBeEmitted(D) && !GV) { 3737 DeferredDecls[MangledName] = D; 3738 return; 3739 } 3740 3741 // The tentative definition is the only definition. 3742 EmitGlobalVarDefinition(D); 3743 } 3744 3745 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3746 EmitExternalVarDeclaration(D); 3747 } 3748 3749 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3750 return Context.toCharUnitsFromBits( 3751 getDataLayout().getTypeStoreSizeInBits(Ty)); 3752 } 3753 3754 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3755 LangAS AddrSpace = LangAS::Default; 3756 if (LangOpts.OpenCL) { 3757 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3758 assert(AddrSpace == LangAS::opencl_global || 3759 AddrSpace == LangAS::opencl_constant || 3760 AddrSpace == LangAS::opencl_local || 3761 AddrSpace >= LangAS::FirstTargetAddressSpace); 3762 return AddrSpace; 3763 } 3764 3765 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3766 if (D && D->hasAttr<CUDAConstantAttr>()) 3767 return LangAS::cuda_constant; 3768 else if (D && D->hasAttr<CUDASharedAttr>()) 3769 return LangAS::cuda_shared; 3770 else if (D && D->hasAttr<CUDADeviceAttr>()) 3771 return LangAS::cuda_device; 3772 else if (D && D->getType().isConstQualified()) 3773 return LangAS::cuda_constant; 3774 else 3775 return LangAS::cuda_device; 3776 } 3777 3778 if (LangOpts.OpenMP) { 3779 LangAS AS; 3780 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3781 return AS; 3782 } 3783 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3784 } 3785 3786 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3787 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3788 if (LangOpts.OpenCL) 3789 return LangAS::opencl_constant; 3790 if (auto AS = getTarget().getConstantAddressSpace()) 3791 return AS.getValue(); 3792 return LangAS::Default; 3793 } 3794 3795 // In address space agnostic languages, string literals are in default address 3796 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3797 // emitted in constant address space in LLVM IR. To be consistent with other 3798 // parts of AST, string literal global variables in constant address space 3799 // need to be casted to default address space before being put into address 3800 // map and referenced by other part of CodeGen. 3801 // In OpenCL, string literals are in constant address space in AST, therefore 3802 // they should not be casted to default address space. 3803 static llvm::Constant * 3804 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3805 llvm::GlobalVariable *GV) { 3806 llvm::Constant *Cast = GV; 3807 if (!CGM.getLangOpts().OpenCL) { 3808 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3809 if (AS != LangAS::Default) 3810 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3811 CGM, GV, AS.getValue(), LangAS::Default, 3812 GV->getValueType()->getPointerTo( 3813 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3814 } 3815 } 3816 return Cast; 3817 } 3818 3819 template<typename SomeDecl> 3820 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3821 llvm::GlobalValue *GV) { 3822 if (!getLangOpts().CPlusPlus) 3823 return; 3824 3825 // Must have 'used' attribute, or else inline assembly can't rely on 3826 // the name existing. 3827 if (!D->template hasAttr<UsedAttr>()) 3828 return; 3829 3830 // Must have internal linkage and an ordinary name. 3831 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3832 return; 3833 3834 // Must be in an extern "C" context. Entities declared directly within 3835 // a record are not extern "C" even if the record is in such a context. 3836 const SomeDecl *First = D->getFirstDecl(); 3837 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3838 return; 3839 3840 // OK, this is an internal linkage entity inside an extern "C" linkage 3841 // specification. Make a note of that so we can give it the "expected" 3842 // mangled name if nothing else is using that name. 3843 std::pair<StaticExternCMap::iterator, bool> R = 3844 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3845 3846 // If we have multiple internal linkage entities with the same name 3847 // in extern "C" regions, none of them gets that name. 3848 if (!R.second) 3849 R.first->second = nullptr; 3850 } 3851 3852 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3853 if (!CGM.supportsCOMDAT()) 3854 return false; 3855 3856 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3857 // them being "merged" by the COMDAT Folding linker optimization. 3858 if (D.hasAttr<CUDAGlobalAttr>()) 3859 return false; 3860 3861 if (D.hasAttr<SelectAnyAttr>()) 3862 return true; 3863 3864 GVALinkage Linkage; 3865 if (auto *VD = dyn_cast<VarDecl>(&D)) 3866 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3867 else 3868 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3869 3870 switch (Linkage) { 3871 case GVA_Internal: 3872 case GVA_AvailableExternally: 3873 case GVA_StrongExternal: 3874 return false; 3875 case GVA_DiscardableODR: 3876 case GVA_StrongODR: 3877 return true; 3878 } 3879 llvm_unreachable("No such linkage"); 3880 } 3881 3882 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3883 llvm::GlobalObject &GO) { 3884 if (!shouldBeInCOMDAT(*this, D)) 3885 return; 3886 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3887 } 3888 3889 /// Pass IsTentative as true if you want to create a tentative definition. 3890 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3891 bool IsTentative) { 3892 // OpenCL global variables of sampler type are translated to function calls, 3893 // therefore no need to be translated. 3894 QualType ASTTy = D->getType(); 3895 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3896 return; 3897 3898 // If this is OpenMP device, check if it is legal to emit this global 3899 // normally. 3900 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3901 OpenMPRuntime->emitTargetGlobalVariable(D)) 3902 return; 3903 3904 llvm::Constant *Init = nullptr; 3905 bool NeedsGlobalCtor = false; 3906 bool NeedsGlobalDtor = 3907 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3908 3909 const VarDecl *InitDecl; 3910 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3911 3912 Optional<ConstantEmitter> emitter; 3913 3914 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3915 // as part of their declaration." Sema has already checked for 3916 // error cases, so we just need to set Init to UndefValue. 3917 bool IsCUDASharedVar = 3918 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3919 // Shadows of initialized device-side global variables are also left 3920 // undefined. 3921 bool IsCUDAShadowVar = 3922 !getLangOpts().CUDAIsDevice && 3923 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3924 D->hasAttr<CUDASharedAttr>()); 3925 bool IsCUDADeviceShadowVar = 3926 getLangOpts().CUDAIsDevice && 3927 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 3928 D->getType()->isCUDADeviceBuiltinTextureType()); 3929 // HIP pinned shadow of initialized host-side global variables are also 3930 // left undefined. 3931 bool IsHIPPinnedShadowVar = 3932 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3933 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar || 3934 IsCUDADeviceShadowVar || IsHIPPinnedShadowVar)) 3935 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3936 else if (D->hasAttr<LoaderUninitializedAttr>()) 3937 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3938 else if (!InitExpr) { 3939 // This is a tentative definition; tentative definitions are 3940 // implicitly initialized with { 0 }. 3941 // 3942 // Note that tentative definitions are only emitted at the end of 3943 // a translation unit, so they should never have incomplete 3944 // type. In addition, EmitTentativeDefinition makes sure that we 3945 // never attempt to emit a tentative definition if a real one 3946 // exists. A use may still exists, however, so we still may need 3947 // to do a RAUW. 3948 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3949 Init = EmitNullConstant(D->getType()); 3950 } else { 3951 initializedGlobalDecl = GlobalDecl(D); 3952 emitter.emplace(*this); 3953 Init = emitter->tryEmitForInitializer(*InitDecl); 3954 3955 if (!Init) { 3956 QualType T = InitExpr->getType(); 3957 if (D->getType()->isReferenceType()) 3958 T = D->getType(); 3959 3960 if (getLangOpts().CPlusPlus) { 3961 Init = EmitNullConstant(T); 3962 NeedsGlobalCtor = true; 3963 } else { 3964 ErrorUnsupported(D, "static initializer"); 3965 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3966 } 3967 } else { 3968 // We don't need an initializer, so remove the entry for the delayed 3969 // initializer position (just in case this entry was delayed) if we 3970 // also don't need to register a destructor. 3971 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3972 DelayedCXXInitPosition.erase(D); 3973 } 3974 } 3975 3976 llvm::Type* InitType = Init->getType(); 3977 llvm::Constant *Entry = 3978 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3979 3980 // Strip off pointer casts if we got them. 3981 Entry = Entry->stripPointerCasts(); 3982 3983 // Entry is now either a Function or GlobalVariable. 3984 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3985 3986 // We have a definition after a declaration with the wrong type. 3987 // We must make a new GlobalVariable* and update everything that used OldGV 3988 // (a declaration or tentative definition) with the new GlobalVariable* 3989 // (which will be a definition). 3990 // 3991 // This happens if there is a prototype for a global (e.g. 3992 // "extern int x[];") and then a definition of a different type (e.g. 3993 // "int x[10];"). This also happens when an initializer has a different type 3994 // from the type of the global (this happens with unions). 3995 if (!GV || GV->getType()->getElementType() != InitType || 3996 GV->getType()->getAddressSpace() != 3997 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3998 3999 // Move the old entry aside so that we'll create a new one. 4000 Entry->setName(StringRef()); 4001 4002 // Make a new global with the correct type, this is now guaranteed to work. 4003 GV = cast<llvm::GlobalVariable>( 4004 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4005 ->stripPointerCasts()); 4006 4007 // Replace all uses of the old global with the new global 4008 llvm::Constant *NewPtrForOldDecl = 4009 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4010 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4011 4012 // Erase the old global, since it is no longer used. 4013 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4014 } 4015 4016 MaybeHandleStaticInExternC(D, GV); 4017 4018 if (D->hasAttr<AnnotateAttr>()) 4019 AddGlobalAnnotations(D, GV); 4020 4021 // Set the llvm linkage type as appropriate. 4022 llvm::GlobalValue::LinkageTypes Linkage = 4023 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4024 4025 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4026 // the device. [...]" 4027 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4028 // __device__, declares a variable that: [...] 4029 // Is accessible from all the threads within the grid and from the host 4030 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4031 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4032 if (GV && LangOpts.CUDA) { 4033 if (LangOpts.CUDAIsDevice) { 4034 if (Linkage != llvm::GlobalValue::InternalLinkage && 4035 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4036 GV->setExternallyInitialized(true); 4037 } else { 4038 // Host-side shadows of external declarations of device-side 4039 // global variables become internal definitions. These have to 4040 // be internal in order to prevent name conflicts with global 4041 // host variables with the same name in a different TUs. 4042 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4043 D->hasAttr<HIPPinnedShadowAttr>()) { 4044 Linkage = llvm::GlobalValue::InternalLinkage; 4045 // Shadow variables and their properties must be registered with CUDA 4046 // runtime. Skip Extern global variables, which will be registered in 4047 // the TU where they are defined. 4048 if (!D->hasExternalStorage()) 4049 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4050 D->hasAttr<CUDAConstantAttr>()); 4051 } else if (D->hasAttr<CUDASharedAttr>()) { 4052 // __shared__ variables are odd. Shadows do get created, but 4053 // they are not registered with the CUDA runtime, so they 4054 // can't really be used to access their device-side 4055 // counterparts. It's not clear yet whether it's nvcc's bug or 4056 // a feature, but we've got to do the same for compatibility. 4057 Linkage = llvm::GlobalValue::InternalLinkage; 4058 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4059 D->getType()->isCUDADeviceBuiltinTextureType()) { 4060 // Builtin surfaces and textures and their template arguments are 4061 // also registered with CUDA runtime. 4062 Linkage = llvm::GlobalValue::InternalLinkage; 4063 const ClassTemplateSpecializationDecl *TD = 4064 cast<ClassTemplateSpecializationDecl>( 4065 D->getType()->getAs<RecordType>()->getDecl()); 4066 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4067 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4068 assert(Args.size() == 2 && 4069 "Unexpected number of template arguments of CUDA device " 4070 "builtin surface type."); 4071 auto SurfType = Args[1].getAsIntegral(); 4072 if (!D->hasExternalStorage()) 4073 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4074 SurfType.getSExtValue()); 4075 } else { 4076 assert(Args.size() == 3 && 4077 "Unexpected number of template arguments of CUDA device " 4078 "builtin texture type."); 4079 auto TexType = Args[1].getAsIntegral(); 4080 auto Normalized = Args[2].getAsIntegral(); 4081 if (!D->hasExternalStorage()) 4082 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4083 TexType.getSExtValue(), 4084 Normalized.getZExtValue()); 4085 } 4086 } 4087 } 4088 } 4089 4090 // HIPPinnedShadowVar should remain in the final code object irrespective of 4091 // whether it is used or not within the code. Add it to used list, so that 4092 // it will not get eliminated when it is unused. Also, it is an extern var 4093 // within device code, and it should *not* get initialized within device code. 4094 if (IsHIPPinnedShadowVar) 4095 addUsedGlobal(GV, /*SkipCheck=*/true); 4096 else 4097 GV->setInitializer(Init); 4098 4099 if (emitter) 4100 emitter->finalize(GV); 4101 4102 // If it is safe to mark the global 'constant', do so now. 4103 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4104 isTypeConstant(D->getType(), true)); 4105 4106 // If it is in a read-only section, mark it 'constant'. 4107 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4108 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4109 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4110 GV->setConstant(true); 4111 } 4112 4113 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4114 4115 // On Darwin, if the normal linkage of a C++ thread_local variable is 4116 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4117 // copies within a linkage unit; otherwise, the backing variable has 4118 // internal linkage and all accesses should just be calls to the 4119 // Itanium-specified entry point, which has the normal linkage of the 4120 // variable. This is to preserve the ability to change the implementation 4121 // behind the scenes. 4122 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4123 Context.getTargetInfo().getTriple().isOSDarwin() && 4124 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4125 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4126 Linkage = llvm::GlobalValue::InternalLinkage; 4127 4128 GV->setLinkage(Linkage); 4129 if (D->hasAttr<DLLImportAttr>()) 4130 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4131 else if (D->hasAttr<DLLExportAttr>()) 4132 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4133 else 4134 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4135 4136 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4137 // common vars aren't constant even if declared const. 4138 GV->setConstant(false); 4139 // Tentative definition of global variables may be initialized with 4140 // non-zero null pointers. In this case they should have weak linkage 4141 // since common linkage must have zero initializer and must not have 4142 // explicit section therefore cannot have non-zero initial value. 4143 if (!GV->getInitializer()->isNullValue()) 4144 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4145 } 4146 4147 setNonAliasAttributes(D, GV); 4148 4149 if (D->getTLSKind() && !GV->isThreadLocal()) { 4150 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4151 CXXThreadLocals.push_back(D); 4152 setTLSMode(GV, *D); 4153 } 4154 4155 maybeSetTrivialComdat(*D, *GV); 4156 4157 // Emit the initializer function if necessary. 4158 if (NeedsGlobalCtor || NeedsGlobalDtor) 4159 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4160 4161 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4162 4163 // Emit global variable debug information. 4164 if (CGDebugInfo *DI = getModuleDebugInfo()) 4165 if (getCodeGenOpts().hasReducedDebugInfo()) 4166 DI->EmitGlobalVariable(GV, D); 4167 } 4168 4169 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4170 if (CGDebugInfo *DI = getModuleDebugInfo()) 4171 if (getCodeGenOpts().hasReducedDebugInfo()) { 4172 QualType ASTTy = D->getType(); 4173 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4174 llvm::PointerType *PTy = 4175 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4176 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4177 DI->EmitExternalVariable( 4178 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4179 } 4180 } 4181 4182 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4183 CodeGenModule &CGM, const VarDecl *D, 4184 bool NoCommon) { 4185 // Don't give variables common linkage if -fno-common was specified unless it 4186 // was overridden by a NoCommon attribute. 4187 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4188 return true; 4189 4190 // C11 6.9.2/2: 4191 // A declaration of an identifier for an object that has file scope without 4192 // an initializer, and without a storage-class specifier or with the 4193 // storage-class specifier static, constitutes a tentative definition. 4194 if (D->getInit() || D->hasExternalStorage()) 4195 return true; 4196 4197 // A variable cannot be both common and exist in a section. 4198 if (D->hasAttr<SectionAttr>()) 4199 return true; 4200 4201 // A variable cannot be both common and exist in a section. 4202 // We don't try to determine which is the right section in the front-end. 4203 // If no specialized section name is applicable, it will resort to default. 4204 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4205 D->hasAttr<PragmaClangDataSectionAttr>() || 4206 D->hasAttr<PragmaClangRelroSectionAttr>() || 4207 D->hasAttr<PragmaClangRodataSectionAttr>()) 4208 return true; 4209 4210 // Thread local vars aren't considered common linkage. 4211 if (D->getTLSKind()) 4212 return true; 4213 4214 // Tentative definitions marked with WeakImportAttr are true definitions. 4215 if (D->hasAttr<WeakImportAttr>()) 4216 return true; 4217 4218 // A variable cannot be both common and exist in a comdat. 4219 if (shouldBeInCOMDAT(CGM, *D)) 4220 return true; 4221 4222 // Declarations with a required alignment do not have common linkage in MSVC 4223 // mode. 4224 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4225 if (D->hasAttr<AlignedAttr>()) 4226 return true; 4227 QualType VarType = D->getType(); 4228 if (Context.isAlignmentRequired(VarType)) 4229 return true; 4230 4231 if (const auto *RT = VarType->getAs<RecordType>()) { 4232 const RecordDecl *RD = RT->getDecl(); 4233 for (const FieldDecl *FD : RD->fields()) { 4234 if (FD->isBitField()) 4235 continue; 4236 if (FD->hasAttr<AlignedAttr>()) 4237 return true; 4238 if (Context.isAlignmentRequired(FD->getType())) 4239 return true; 4240 } 4241 } 4242 } 4243 4244 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4245 // common symbols, so symbols with greater alignment requirements cannot be 4246 // common. 4247 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4248 // alignments for common symbols via the aligncomm directive, so this 4249 // restriction only applies to MSVC environments. 4250 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4251 Context.getTypeAlignIfKnown(D->getType()) > 4252 Context.toBits(CharUnits::fromQuantity(32))) 4253 return true; 4254 4255 return false; 4256 } 4257 4258 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4259 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4260 if (Linkage == GVA_Internal) 4261 return llvm::Function::InternalLinkage; 4262 4263 if (D->hasAttr<WeakAttr>()) { 4264 if (IsConstantVariable) 4265 return llvm::GlobalVariable::WeakODRLinkage; 4266 else 4267 return llvm::GlobalVariable::WeakAnyLinkage; 4268 } 4269 4270 if (const auto *FD = D->getAsFunction()) 4271 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4272 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4273 4274 // We are guaranteed to have a strong definition somewhere else, 4275 // so we can use available_externally linkage. 4276 if (Linkage == GVA_AvailableExternally) 4277 return llvm::GlobalValue::AvailableExternallyLinkage; 4278 4279 // Note that Apple's kernel linker doesn't support symbol 4280 // coalescing, so we need to avoid linkonce and weak linkages there. 4281 // Normally, this means we just map to internal, but for explicit 4282 // instantiations we'll map to external. 4283 4284 // In C++, the compiler has to emit a definition in every translation unit 4285 // that references the function. We should use linkonce_odr because 4286 // a) if all references in this translation unit are optimized away, we 4287 // don't need to codegen it. b) if the function persists, it needs to be 4288 // merged with other definitions. c) C++ has the ODR, so we know the 4289 // definition is dependable. 4290 if (Linkage == GVA_DiscardableODR) 4291 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4292 : llvm::Function::InternalLinkage; 4293 4294 // An explicit instantiation of a template has weak linkage, since 4295 // explicit instantiations can occur in multiple translation units 4296 // and must all be equivalent. However, we are not allowed to 4297 // throw away these explicit instantiations. 4298 // 4299 // We don't currently support CUDA device code spread out across multiple TUs, 4300 // so say that CUDA templates are either external (for kernels) or internal. 4301 // This lets llvm perform aggressive inter-procedural optimizations. 4302 if (Linkage == GVA_StrongODR) { 4303 if (Context.getLangOpts().AppleKext) 4304 return llvm::Function::ExternalLinkage; 4305 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4306 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4307 : llvm::Function::InternalLinkage; 4308 return llvm::Function::WeakODRLinkage; 4309 } 4310 4311 // C++ doesn't have tentative definitions and thus cannot have common 4312 // linkage. 4313 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4314 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4315 CodeGenOpts.NoCommon)) 4316 return llvm::GlobalVariable::CommonLinkage; 4317 4318 // selectany symbols are externally visible, so use weak instead of 4319 // linkonce. MSVC optimizes away references to const selectany globals, so 4320 // all definitions should be the same and ODR linkage should be used. 4321 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4322 if (D->hasAttr<SelectAnyAttr>()) 4323 return llvm::GlobalVariable::WeakODRLinkage; 4324 4325 // Otherwise, we have strong external linkage. 4326 assert(Linkage == GVA_StrongExternal); 4327 return llvm::GlobalVariable::ExternalLinkage; 4328 } 4329 4330 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4331 const VarDecl *VD, bool IsConstant) { 4332 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4333 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4334 } 4335 4336 /// Replace the uses of a function that was declared with a non-proto type. 4337 /// We want to silently drop extra arguments from call sites 4338 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4339 llvm::Function *newFn) { 4340 // Fast path. 4341 if (old->use_empty()) return; 4342 4343 llvm::Type *newRetTy = newFn->getReturnType(); 4344 SmallVector<llvm::Value*, 4> newArgs; 4345 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4346 4347 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4348 ui != ue; ) { 4349 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4350 llvm::User *user = use->getUser(); 4351 4352 // Recognize and replace uses of bitcasts. Most calls to 4353 // unprototyped functions will use bitcasts. 4354 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4355 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4356 replaceUsesOfNonProtoConstant(bitcast, newFn); 4357 continue; 4358 } 4359 4360 // Recognize calls to the function. 4361 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4362 if (!callSite) continue; 4363 if (!callSite->isCallee(&*use)) 4364 continue; 4365 4366 // If the return types don't match exactly, then we can't 4367 // transform this call unless it's dead. 4368 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4369 continue; 4370 4371 // Get the call site's attribute list. 4372 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4373 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4374 4375 // If the function was passed too few arguments, don't transform. 4376 unsigned newNumArgs = newFn->arg_size(); 4377 if (callSite->arg_size() < newNumArgs) 4378 continue; 4379 4380 // If extra arguments were passed, we silently drop them. 4381 // If any of the types mismatch, we don't transform. 4382 unsigned argNo = 0; 4383 bool dontTransform = false; 4384 for (llvm::Argument &A : newFn->args()) { 4385 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4386 dontTransform = true; 4387 break; 4388 } 4389 4390 // Add any parameter attributes. 4391 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4392 argNo++; 4393 } 4394 if (dontTransform) 4395 continue; 4396 4397 // Okay, we can transform this. Create the new call instruction and copy 4398 // over the required information. 4399 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4400 4401 // Copy over any operand bundles. 4402 callSite->getOperandBundlesAsDefs(newBundles); 4403 4404 llvm::CallBase *newCall; 4405 if (dyn_cast<llvm::CallInst>(callSite)) { 4406 newCall = 4407 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4408 } else { 4409 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4410 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4411 oldInvoke->getUnwindDest(), newArgs, 4412 newBundles, "", callSite); 4413 } 4414 newArgs.clear(); // for the next iteration 4415 4416 if (!newCall->getType()->isVoidTy()) 4417 newCall->takeName(callSite); 4418 newCall->setAttributes(llvm::AttributeList::get( 4419 newFn->getContext(), oldAttrs.getFnAttributes(), 4420 oldAttrs.getRetAttributes(), newArgAttrs)); 4421 newCall->setCallingConv(callSite->getCallingConv()); 4422 4423 // Finally, remove the old call, replacing any uses with the new one. 4424 if (!callSite->use_empty()) 4425 callSite->replaceAllUsesWith(newCall); 4426 4427 // Copy debug location attached to CI. 4428 if (callSite->getDebugLoc()) 4429 newCall->setDebugLoc(callSite->getDebugLoc()); 4430 4431 callSite->eraseFromParent(); 4432 } 4433 } 4434 4435 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4436 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4437 /// existing call uses of the old function in the module, this adjusts them to 4438 /// call the new function directly. 4439 /// 4440 /// This is not just a cleanup: the always_inline pass requires direct calls to 4441 /// functions to be able to inline them. If there is a bitcast in the way, it 4442 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4443 /// run at -O0. 4444 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4445 llvm::Function *NewFn) { 4446 // If we're redefining a global as a function, don't transform it. 4447 if (!isa<llvm::Function>(Old)) return; 4448 4449 replaceUsesOfNonProtoConstant(Old, NewFn); 4450 } 4451 4452 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4453 auto DK = VD->isThisDeclarationADefinition(); 4454 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4455 return; 4456 4457 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4458 // If we have a definition, this might be a deferred decl. If the 4459 // instantiation is explicit, make sure we emit it at the end. 4460 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4461 GetAddrOfGlobalVar(VD); 4462 4463 EmitTopLevelDecl(VD); 4464 } 4465 4466 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4467 llvm::GlobalValue *GV) { 4468 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4469 4470 // Compute the function info and LLVM type. 4471 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4472 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4473 4474 // Get or create the prototype for the function. 4475 if (!GV || (GV->getType()->getElementType() != Ty)) 4476 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4477 /*DontDefer=*/true, 4478 ForDefinition)); 4479 4480 // Already emitted. 4481 if (!GV->isDeclaration()) 4482 return; 4483 4484 // We need to set linkage and visibility on the function before 4485 // generating code for it because various parts of IR generation 4486 // want to propagate this information down (e.g. to local static 4487 // declarations). 4488 auto *Fn = cast<llvm::Function>(GV); 4489 setFunctionLinkage(GD, Fn); 4490 4491 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4492 setGVProperties(Fn, GD); 4493 4494 MaybeHandleStaticInExternC(D, Fn); 4495 4496 4497 maybeSetTrivialComdat(*D, *Fn); 4498 4499 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4500 4501 setNonAliasAttributes(GD, Fn); 4502 SetLLVMFunctionAttributesForDefinition(D, Fn); 4503 4504 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4505 AddGlobalCtor(Fn, CA->getPriority()); 4506 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4507 AddGlobalDtor(Fn, DA->getPriority()); 4508 if (D->hasAttr<AnnotateAttr>()) 4509 AddGlobalAnnotations(D, Fn); 4510 } 4511 4512 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4513 const auto *D = cast<ValueDecl>(GD.getDecl()); 4514 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4515 assert(AA && "Not an alias?"); 4516 4517 StringRef MangledName = getMangledName(GD); 4518 4519 if (AA->getAliasee() == MangledName) { 4520 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4521 return; 4522 } 4523 4524 // If there is a definition in the module, then it wins over the alias. 4525 // This is dubious, but allow it to be safe. Just ignore the alias. 4526 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4527 if (Entry && !Entry->isDeclaration()) 4528 return; 4529 4530 Aliases.push_back(GD); 4531 4532 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4533 4534 // Create a reference to the named value. This ensures that it is emitted 4535 // if a deferred decl. 4536 llvm::Constant *Aliasee; 4537 llvm::GlobalValue::LinkageTypes LT; 4538 if (isa<llvm::FunctionType>(DeclTy)) { 4539 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4540 /*ForVTable=*/false); 4541 LT = getFunctionLinkage(GD); 4542 } else { 4543 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4544 llvm::PointerType::getUnqual(DeclTy), 4545 /*D=*/nullptr); 4546 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4547 D->getType().isConstQualified()); 4548 } 4549 4550 // Create the new alias itself, but don't set a name yet. 4551 auto *GA = 4552 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4553 4554 if (Entry) { 4555 if (GA->getAliasee() == Entry) { 4556 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4557 return; 4558 } 4559 4560 assert(Entry->isDeclaration()); 4561 4562 // If there is a declaration in the module, then we had an extern followed 4563 // by the alias, as in: 4564 // extern int test6(); 4565 // ... 4566 // int test6() __attribute__((alias("test7"))); 4567 // 4568 // Remove it and replace uses of it with the alias. 4569 GA->takeName(Entry); 4570 4571 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4572 Entry->getType())); 4573 Entry->eraseFromParent(); 4574 } else { 4575 GA->setName(MangledName); 4576 } 4577 4578 // Set attributes which are particular to an alias; this is a 4579 // specialization of the attributes which may be set on a global 4580 // variable/function. 4581 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4582 D->isWeakImported()) { 4583 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4584 } 4585 4586 if (const auto *VD = dyn_cast<VarDecl>(D)) 4587 if (VD->getTLSKind()) 4588 setTLSMode(GA, *VD); 4589 4590 SetCommonAttributes(GD, GA); 4591 } 4592 4593 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4594 const auto *D = cast<ValueDecl>(GD.getDecl()); 4595 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4596 assert(IFA && "Not an ifunc?"); 4597 4598 StringRef MangledName = getMangledName(GD); 4599 4600 if (IFA->getResolver() == MangledName) { 4601 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4602 return; 4603 } 4604 4605 // Report an error if some definition overrides ifunc. 4606 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4607 if (Entry && !Entry->isDeclaration()) { 4608 GlobalDecl OtherGD; 4609 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4610 DiagnosedConflictingDefinitions.insert(GD).second) { 4611 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4612 << MangledName; 4613 Diags.Report(OtherGD.getDecl()->getLocation(), 4614 diag::note_previous_definition); 4615 } 4616 return; 4617 } 4618 4619 Aliases.push_back(GD); 4620 4621 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4622 llvm::Constant *Resolver = 4623 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4624 /*ForVTable=*/false); 4625 llvm::GlobalIFunc *GIF = 4626 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4627 "", Resolver, &getModule()); 4628 if (Entry) { 4629 if (GIF->getResolver() == Entry) { 4630 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4631 return; 4632 } 4633 assert(Entry->isDeclaration()); 4634 4635 // If there is a declaration in the module, then we had an extern followed 4636 // by the ifunc, as in: 4637 // extern int test(); 4638 // ... 4639 // int test() __attribute__((ifunc("resolver"))); 4640 // 4641 // Remove it and replace uses of it with the ifunc. 4642 GIF->takeName(Entry); 4643 4644 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4645 Entry->getType())); 4646 Entry->eraseFromParent(); 4647 } else 4648 GIF->setName(MangledName); 4649 4650 SetCommonAttributes(GD, GIF); 4651 } 4652 4653 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4654 ArrayRef<llvm::Type*> Tys) { 4655 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4656 Tys); 4657 } 4658 4659 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4660 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4661 const StringLiteral *Literal, bool TargetIsLSB, 4662 bool &IsUTF16, unsigned &StringLength) { 4663 StringRef String = Literal->getString(); 4664 unsigned NumBytes = String.size(); 4665 4666 // Check for simple case. 4667 if (!Literal->containsNonAsciiOrNull()) { 4668 StringLength = NumBytes; 4669 return *Map.insert(std::make_pair(String, nullptr)).first; 4670 } 4671 4672 // Otherwise, convert the UTF8 literals into a string of shorts. 4673 IsUTF16 = true; 4674 4675 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4676 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4677 llvm::UTF16 *ToPtr = &ToBuf[0]; 4678 4679 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4680 ToPtr + NumBytes, llvm::strictConversion); 4681 4682 // ConvertUTF8toUTF16 returns the length in ToPtr. 4683 StringLength = ToPtr - &ToBuf[0]; 4684 4685 // Add an explicit null. 4686 *ToPtr = 0; 4687 return *Map.insert(std::make_pair( 4688 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4689 (StringLength + 1) * 2), 4690 nullptr)).first; 4691 } 4692 4693 ConstantAddress 4694 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4695 unsigned StringLength = 0; 4696 bool isUTF16 = false; 4697 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4698 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4699 getDataLayout().isLittleEndian(), isUTF16, 4700 StringLength); 4701 4702 if (auto *C = Entry.second) 4703 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4704 4705 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4706 llvm::Constant *Zeros[] = { Zero, Zero }; 4707 4708 const ASTContext &Context = getContext(); 4709 const llvm::Triple &Triple = getTriple(); 4710 4711 const auto CFRuntime = getLangOpts().CFRuntime; 4712 const bool IsSwiftABI = 4713 static_cast<unsigned>(CFRuntime) >= 4714 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4715 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4716 4717 // If we don't already have it, get __CFConstantStringClassReference. 4718 if (!CFConstantStringClassRef) { 4719 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4720 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4721 Ty = llvm::ArrayType::get(Ty, 0); 4722 4723 switch (CFRuntime) { 4724 default: break; 4725 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4726 case LangOptions::CoreFoundationABI::Swift5_0: 4727 CFConstantStringClassName = 4728 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4729 : "$s10Foundation19_NSCFConstantStringCN"; 4730 Ty = IntPtrTy; 4731 break; 4732 case LangOptions::CoreFoundationABI::Swift4_2: 4733 CFConstantStringClassName = 4734 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4735 : "$S10Foundation19_NSCFConstantStringCN"; 4736 Ty = IntPtrTy; 4737 break; 4738 case LangOptions::CoreFoundationABI::Swift4_1: 4739 CFConstantStringClassName = 4740 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4741 : "__T010Foundation19_NSCFConstantStringCN"; 4742 Ty = IntPtrTy; 4743 break; 4744 } 4745 4746 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4747 4748 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4749 llvm::GlobalValue *GV = nullptr; 4750 4751 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4752 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4753 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4754 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4755 4756 const VarDecl *VD = nullptr; 4757 for (const auto &Result : DC->lookup(&II)) 4758 if ((VD = dyn_cast<VarDecl>(Result))) 4759 break; 4760 4761 if (Triple.isOSBinFormatELF()) { 4762 if (!VD) 4763 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4764 } else { 4765 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4766 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4767 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4768 else 4769 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4770 } 4771 4772 setDSOLocal(GV); 4773 } 4774 } 4775 4776 // Decay array -> ptr 4777 CFConstantStringClassRef = 4778 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4779 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4780 } 4781 4782 QualType CFTy = Context.getCFConstantStringType(); 4783 4784 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4785 4786 ConstantInitBuilder Builder(*this); 4787 auto Fields = Builder.beginStruct(STy); 4788 4789 // Class pointer. 4790 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4791 4792 // Flags. 4793 if (IsSwiftABI) { 4794 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4795 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4796 } else { 4797 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4798 } 4799 4800 // String pointer. 4801 llvm::Constant *C = nullptr; 4802 if (isUTF16) { 4803 auto Arr = llvm::makeArrayRef( 4804 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4805 Entry.first().size() / 2); 4806 C = llvm::ConstantDataArray::get(VMContext, Arr); 4807 } else { 4808 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4809 } 4810 4811 // Note: -fwritable-strings doesn't make the backing store strings of 4812 // CFStrings writable. (See <rdar://problem/10657500>) 4813 auto *GV = 4814 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4815 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4816 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4817 // Don't enforce the target's minimum global alignment, since the only use 4818 // of the string is via this class initializer. 4819 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4820 : Context.getTypeAlignInChars(Context.CharTy); 4821 GV->setAlignment(Align.getAsAlign()); 4822 4823 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4824 // Without it LLVM can merge the string with a non unnamed_addr one during 4825 // LTO. Doing that changes the section it ends in, which surprises ld64. 4826 if (Triple.isOSBinFormatMachO()) 4827 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4828 : "__TEXT,__cstring,cstring_literals"); 4829 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4830 // the static linker to adjust permissions to read-only later on. 4831 else if (Triple.isOSBinFormatELF()) 4832 GV->setSection(".rodata"); 4833 4834 // String. 4835 llvm::Constant *Str = 4836 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4837 4838 if (isUTF16) 4839 // Cast the UTF16 string to the correct type. 4840 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4841 Fields.add(Str); 4842 4843 // String length. 4844 llvm::IntegerType *LengthTy = 4845 llvm::IntegerType::get(getModule().getContext(), 4846 Context.getTargetInfo().getLongWidth()); 4847 if (IsSwiftABI) { 4848 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4849 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4850 LengthTy = Int32Ty; 4851 else 4852 LengthTy = IntPtrTy; 4853 } 4854 Fields.addInt(LengthTy, StringLength); 4855 4856 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4857 // properly aligned on 32-bit platforms. 4858 CharUnits Alignment = 4859 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4860 4861 // The struct. 4862 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4863 /*isConstant=*/false, 4864 llvm::GlobalVariable::PrivateLinkage); 4865 GV->addAttribute("objc_arc_inert"); 4866 switch (Triple.getObjectFormat()) { 4867 case llvm::Triple::UnknownObjectFormat: 4868 llvm_unreachable("unknown file format"); 4869 case llvm::Triple::XCOFF: 4870 llvm_unreachable("XCOFF is not yet implemented"); 4871 case llvm::Triple::COFF: 4872 case llvm::Triple::ELF: 4873 case llvm::Triple::Wasm: 4874 GV->setSection("cfstring"); 4875 break; 4876 case llvm::Triple::MachO: 4877 GV->setSection("__DATA,__cfstring"); 4878 break; 4879 } 4880 Entry.second = GV; 4881 4882 return ConstantAddress(GV, Alignment); 4883 } 4884 4885 bool CodeGenModule::getExpressionLocationsEnabled() const { 4886 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4887 } 4888 4889 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4890 if (ObjCFastEnumerationStateType.isNull()) { 4891 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4892 D->startDefinition(); 4893 4894 QualType FieldTypes[] = { 4895 Context.UnsignedLongTy, 4896 Context.getPointerType(Context.getObjCIdType()), 4897 Context.getPointerType(Context.UnsignedLongTy), 4898 Context.getConstantArrayType(Context.UnsignedLongTy, 4899 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4900 }; 4901 4902 for (size_t i = 0; i < 4; ++i) { 4903 FieldDecl *Field = FieldDecl::Create(Context, 4904 D, 4905 SourceLocation(), 4906 SourceLocation(), nullptr, 4907 FieldTypes[i], /*TInfo=*/nullptr, 4908 /*BitWidth=*/nullptr, 4909 /*Mutable=*/false, 4910 ICIS_NoInit); 4911 Field->setAccess(AS_public); 4912 D->addDecl(Field); 4913 } 4914 4915 D->completeDefinition(); 4916 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4917 } 4918 4919 return ObjCFastEnumerationStateType; 4920 } 4921 4922 llvm::Constant * 4923 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4924 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4925 4926 // Don't emit it as the address of the string, emit the string data itself 4927 // as an inline array. 4928 if (E->getCharByteWidth() == 1) { 4929 SmallString<64> Str(E->getString()); 4930 4931 // Resize the string to the right size, which is indicated by its type. 4932 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4933 Str.resize(CAT->getSize().getZExtValue()); 4934 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4935 } 4936 4937 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4938 llvm::Type *ElemTy = AType->getElementType(); 4939 unsigned NumElements = AType->getNumElements(); 4940 4941 // Wide strings have either 2-byte or 4-byte elements. 4942 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4943 SmallVector<uint16_t, 32> Elements; 4944 Elements.reserve(NumElements); 4945 4946 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4947 Elements.push_back(E->getCodeUnit(i)); 4948 Elements.resize(NumElements); 4949 return llvm::ConstantDataArray::get(VMContext, Elements); 4950 } 4951 4952 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4953 SmallVector<uint32_t, 32> Elements; 4954 Elements.reserve(NumElements); 4955 4956 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4957 Elements.push_back(E->getCodeUnit(i)); 4958 Elements.resize(NumElements); 4959 return llvm::ConstantDataArray::get(VMContext, Elements); 4960 } 4961 4962 static llvm::GlobalVariable * 4963 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4964 CodeGenModule &CGM, StringRef GlobalName, 4965 CharUnits Alignment) { 4966 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4967 CGM.getStringLiteralAddressSpace()); 4968 4969 llvm::Module &M = CGM.getModule(); 4970 // Create a global variable for this string 4971 auto *GV = new llvm::GlobalVariable( 4972 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4973 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4974 GV->setAlignment(Alignment.getAsAlign()); 4975 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4976 if (GV->isWeakForLinker()) { 4977 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4978 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4979 } 4980 CGM.setDSOLocal(GV); 4981 4982 return GV; 4983 } 4984 4985 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4986 /// constant array for the given string literal. 4987 ConstantAddress 4988 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4989 StringRef Name) { 4990 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4991 4992 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4993 llvm::GlobalVariable **Entry = nullptr; 4994 if (!LangOpts.WritableStrings) { 4995 Entry = &ConstantStringMap[C]; 4996 if (auto GV = *Entry) { 4997 if (Alignment.getQuantity() > GV->getAlignment()) 4998 GV->setAlignment(Alignment.getAsAlign()); 4999 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5000 Alignment); 5001 } 5002 } 5003 5004 SmallString<256> MangledNameBuffer; 5005 StringRef GlobalVariableName; 5006 llvm::GlobalValue::LinkageTypes LT; 5007 5008 // Mangle the string literal if that's how the ABI merges duplicate strings. 5009 // Don't do it if they are writable, since we don't want writes in one TU to 5010 // affect strings in another. 5011 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5012 !LangOpts.WritableStrings) { 5013 llvm::raw_svector_ostream Out(MangledNameBuffer); 5014 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5015 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5016 GlobalVariableName = MangledNameBuffer; 5017 } else { 5018 LT = llvm::GlobalValue::PrivateLinkage; 5019 GlobalVariableName = Name; 5020 } 5021 5022 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5023 if (Entry) 5024 *Entry = GV; 5025 5026 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5027 QualType()); 5028 5029 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5030 Alignment); 5031 } 5032 5033 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5034 /// array for the given ObjCEncodeExpr node. 5035 ConstantAddress 5036 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5037 std::string Str; 5038 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5039 5040 return GetAddrOfConstantCString(Str); 5041 } 5042 5043 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5044 /// the literal and a terminating '\0' character. 5045 /// The result has pointer to array type. 5046 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5047 const std::string &Str, const char *GlobalName) { 5048 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5049 CharUnits Alignment = 5050 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5051 5052 llvm::Constant *C = 5053 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5054 5055 // Don't share any string literals if strings aren't constant. 5056 llvm::GlobalVariable **Entry = nullptr; 5057 if (!LangOpts.WritableStrings) { 5058 Entry = &ConstantStringMap[C]; 5059 if (auto GV = *Entry) { 5060 if (Alignment.getQuantity() > GV->getAlignment()) 5061 GV->setAlignment(Alignment.getAsAlign()); 5062 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5063 Alignment); 5064 } 5065 } 5066 5067 // Get the default prefix if a name wasn't specified. 5068 if (!GlobalName) 5069 GlobalName = ".str"; 5070 // Create a global variable for this. 5071 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5072 GlobalName, Alignment); 5073 if (Entry) 5074 *Entry = GV; 5075 5076 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5077 Alignment); 5078 } 5079 5080 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5081 const MaterializeTemporaryExpr *E, const Expr *Init) { 5082 assert((E->getStorageDuration() == SD_Static || 5083 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5084 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5085 5086 // If we're not materializing a subobject of the temporary, keep the 5087 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5088 QualType MaterializedType = Init->getType(); 5089 if (Init == E->getSubExpr()) 5090 MaterializedType = E->getType(); 5091 5092 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5093 5094 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5095 return ConstantAddress(Slot, Align); 5096 5097 // FIXME: If an externally-visible declaration extends multiple temporaries, 5098 // we need to give each temporary the same name in every translation unit (and 5099 // we also need to make the temporaries externally-visible). 5100 SmallString<256> Name; 5101 llvm::raw_svector_ostream Out(Name); 5102 getCXXABI().getMangleContext().mangleReferenceTemporary( 5103 VD, E->getManglingNumber(), Out); 5104 5105 APValue *Value = nullptr; 5106 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5107 // If the initializer of the extending declaration is a constant 5108 // initializer, we should have a cached constant initializer for this 5109 // temporary. Note that this might have a different value from the value 5110 // computed by evaluating the initializer if the surrounding constant 5111 // expression modifies the temporary. 5112 Value = E->getOrCreateValue(false); 5113 } 5114 5115 // Try evaluating it now, it might have a constant initializer. 5116 Expr::EvalResult EvalResult; 5117 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5118 !EvalResult.hasSideEffects()) 5119 Value = &EvalResult.Val; 5120 5121 LangAS AddrSpace = 5122 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5123 5124 Optional<ConstantEmitter> emitter; 5125 llvm::Constant *InitialValue = nullptr; 5126 bool Constant = false; 5127 llvm::Type *Type; 5128 if (Value) { 5129 // The temporary has a constant initializer, use it. 5130 emitter.emplace(*this); 5131 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5132 MaterializedType); 5133 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5134 Type = InitialValue->getType(); 5135 } else { 5136 // No initializer, the initialization will be provided when we 5137 // initialize the declaration which performed lifetime extension. 5138 Type = getTypes().ConvertTypeForMem(MaterializedType); 5139 } 5140 5141 // Create a global variable for this lifetime-extended temporary. 5142 llvm::GlobalValue::LinkageTypes Linkage = 5143 getLLVMLinkageVarDefinition(VD, Constant); 5144 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5145 const VarDecl *InitVD; 5146 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5147 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5148 // Temporaries defined inside a class get linkonce_odr linkage because the 5149 // class can be defined in multiple translation units. 5150 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5151 } else { 5152 // There is no need for this temporary to have external linkage if the 5153 // VarDecl has external linkage. 5154 Linkage = llvm::GlobalVariable::InternalLinkage; 5155 } 5156 } 5157 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5158 auto *GV = new llvm::GlobalVariable( 5159 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5160 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5161 if (emitter) emitter->finalize(GV); 5162 setGVProperties(GV, VD); 5163 GV->setAlignment(Align.getAsAlign()); 5164 if (supportsCOMDAT() && GV->isWeakForLinker()) 5165 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5166 if (VD->getTLSKind()) 5167 setTLSMode(GV, *VD); 5168 llvm::Constant *CV = GV; 5169 if (AddrSpace != LangAS::Default) 5170 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5171 *this, GV, AddrSpace, LangAS::Default, 5172 Type->getPointerTo( 5173 getContext().getTargetAddressSpace(LangAS::Default))); 5174 MaterializedGlobalTemporaryMap[E] = CV; 5175 return ConstantAddress(CV, Align); 5176 } 5177 5178 /// EmitObjCPropertyImplementations - Emit information for synthesized 5179 /// properties for an implementation. 5180 void CodeGenModule::EmitObjCPropertyImplementations(const 5181 ObjCImplementationDecl *D) { 5182 for (const auto *PID : D->property_impls()) { 5183 // Dynamic is just for type-checking. 5184 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5185 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5186 5187 // Determine which methods need to be implemented, some may have 5188 // been overridden. Note that ::isPropertyAccessor is not the method 5189 // we want, that just indicates if the decl came from a 5190 // property. What we want to know is if the method is defined in 5191 // this implementation. 5192 auto *Getter = PID->getGetterMethodDecl(); 5193 if (!Getter || Getter->isSynthesizedAccessorStub()) 5194 CodeGenFunction(*this).GenerateObjCGetter( 5195 const_cast<ObjCImplementationDecl *>(D), PID); 5196 auto *Setter = PID->getSetterMethodDecl(); 5197 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5198 CodeGenFunction(*this).GenerateObjCSetter( 5199 const_cast<ObjCImplementationDecl *>(D), PID); 5200 } 5201 } 5202 } 5203 5204 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5205 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5206 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5207 ivar; ivar = ivar->getNextIvar()) 5208 if (ivar->getType().isDestructedType()) 5209 return true; 5210 5211 return false; 5212 } 5213 5214 static bool AllTrivialInitializers(CodeGenModule &CGM, 5215 ObjCImplementationDecl *D) { 5216 CodeGenFunction CGF(CGM); 5217 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5218 E = D->init_end(); B != E; ++B) { 5219 CXXCtorInitializer *CtorInitExp = *B; 5220 Expr *Init = CtorInitExp->getInit(); 5221 if (!CGF.isTrivialInitializer(Init)) 5222 return false; 5223 } 5224 return true; 5225 } 5226 5227 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5228 /// for an implementation. 5229 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5230 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5231 if (needsDestructMethod(D)) { 5232 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5233 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5234 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5235 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5236 getContext().VoidTy, nullptr, D, 5237 /*isInstance=*/true, /*isVariadic=*/false, 5238 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5239 /*isImplicitlyDeclared=*/true, 5240 /*isDefined=*/false, ObjCMethodDecl::Required); 5241 D->addInstanceMethod(DTORMethod); 5242 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5243 D->setHasDestructors(true); 5244 } 5245 5246 // If the implementation doesn't have any ivar initializers, we don't need 5247 // a .cxx_construct. 5248 if (D->getNumIvarInitializers() == 0 || 5249 AllTrivialInitializers(*this, D)) 5250 return; 5251 5252 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5253 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5254 // The constructor returns 'self'. 5255 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5256 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5257 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5258 /*isVariadic=*/false, 5259 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5260 /*isImplicitlyDeclared=*/true, 5261 /*isDefined=*/false, ObjCMethodDecl::Required); 5262 D->addInstanceMethod(CTORMethod); 5263 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5264 D->setHasNonZeroConstructors(true); 5265 } 5266 5267 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5268 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5269 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5270 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5271 ErrorUnsupported(LSD, "linkage spec"); 5272 return; 5273 } 5274 5275 EmitDeclContext(LSD); 5276 } 5277 5278 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5279 for (auto *I : DC->decls()) { 5280 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5281 // are themselves considered "top-level", so EmitTopLevelDecl on an 5282 // ObjCImplDecl does not recursively visit them. We need to do that in 5283 // case they're nested inside another construct (LinkageSpecDecl / 5284 // ExportDecl) that does stop them from being considered "top-level". 5285 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5286 for (auto *M : OID->methods()) 5287 EmitTopLevelDecl(M); 5288 } 5289 5290 EmitTopLevelDecl(I); 5291 } 5292 } 5293 5294 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5295 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5296 // Ignore dependent declarations. 5297 if (D->isTemplated()) 5298 return; 5299 5300 switch (D->getKind()) { 5301 case Decl::CXXConversion: 5302 case Decl::CXXMethod: 5303 case Decl::Function: 5304 EmitGlobal(cast<FunctionDecl>(D)); 5305 // Always provide some coverage mapping 5306 // even for the functions that aren't emitted. 5307 AddDeferredUnusedCoverageMapping(D); 5308 break; 5309 5310 case Decl::CXXDeductionGuide: 5311 // Function-like, but does not result in code emission. 5312 break; 5313 5314 case Decl::Var: 5315 case Decl::Decomposition: 5316 case Decl::VarTemplateSpecialization: 5317 EmitGlobal(cast<VarDecl>(D)); 5318 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5319 for (auto *B : DD->bindings()) 5320 if (auto *HD = B->getHoldingVar()) 5321 EmitGlobal(HD); 5322 break; 5323 5324 // Indirect fields from global anonymous structs and unions can be 5325 // ignored; only the actual variable requires IR gen support. 5326 case Decl::IndirectField: 5327 break; 5328 5329 // C++ Decls 5330 case Decl::Namespace: 5331 EmitDeclContext(cast<NamespaceDecl>(D)); 5332 break; 5333 case Decl::ClassTemplateSpecialization: { 5334 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5335 if (DebugInfo && 5336 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5337 Spec->hasDefinition()) 5338 DebugInfo->completeTemplateDefinition(*Spec); 5339 } LLVM_FALLTHROUGH; 5340 case Decl::CXXRecord: 5341 if (DebugInfo) { 5342 if (auto *ES = D->getASTContext().getExternalSource()) 5343 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5344 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5345 } 5346 // Emit any static data members, they may be definitions. 5347 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5348 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5349 EmitTopLevelDecl(I); 5350 break; 5351 // No code generation needed. 5352 case Decl::UsingShadow: 5353 case Decl::ClassTemplate: 5354 case Decl::VarTemplate: 5355 case Decl::Concept: 5356 case Decl::VarTemplatePartialSpecialization: 5357 case Decl::FunctionTemplate: 5358 case Decl::TypeAliasTemplate: 5359 case Decl::Block: 5360 case Decl::Empty: 5361 case Decl::Binding: 5362 break; 5363 case Decl::Using: // using X; [C++] 5364 if (CGDebugInfo *DI = getModuleDebugInfo()) 5365 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5366 return; 5367 case Decl::NamespaceAlias: 5368 if (CGDebugInfo *DI = getModuleDebugInfo()) 5369 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5370 return; 5371 case Decl::UsingDirective: // using namespace X; [C++] 5372 if (CGDebugInfo *DI = getModuleDebugInfo()) 5373 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5374 return; 5375 case Decl::CXXConstructor: 5376 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5377 break; 5378 case Decl::CXXDestructor: 5379 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5380 break; 5381 5382 case Decl::StaticAssert: 5383 // Nothing to do. 5384 break; 5385 5386 // Objective-C Decls 5387 5388 // Forward declarations, no (immediate) code generation. 5389 case Decl::ObjCInterface: 5390 case Decl::ObjCCategory: 5391 break; 5392 5393 case Decl::ObjCProtocol: { 5394 auto *Proto = cast<ObjCProtocolDecl>(D); 5395 if (Proto->isThisDeclarationADefinition()) 5396 ObjCRuntime->GenerateProtocol(Proto); 5397 break; 5398 } 5399 5400 case Decl::ObjCCategoryImpl: 5401 // Categories have properties but don't support synthesize so we 5402 // can ignore them here. 5403 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5404 break; 5405 5406 case Decl::ObjCImplementation: { 5407 auto *OMD = cast<ObjCImplementationDecl>(D); 5408 EmitObjCPropertyImplementations(OMD); 5409 EmitObjCIvarInitializations(OMD); 5410 ObjCRuntime->GenerateClass(OMD); 5411 // Emit global variable debug information. 5412 if (CGDebugInfo *DI = getModuleDebugInfo()) 5413 if (getCodeGenOpts().hasReducedDebugInfo()) 5414 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5415 OMD->getClassInterface()), OMD->getLocation()); 5416 break; 5417 } 5418 case Decl::ObjCMethod: { 5419 auto *OMD = cast<ObjCMethodDecl>(D); 5420 // If this is not a prototype, emit the body. 5421 if (OMD->getBody()) 5422 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5423 break; 5424 } 5425 case Decl::ObjCCompatibleAlias: 5426 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5427 break; 5428 5429 case Decl::PragmaComment: { 5430 const auto *PCD = cast<PragmaCommentDecl>(D); 5431 switch (PCD->getCommentKind()) { 5432 case PCK_Unknown: 5433 llvm_unreachable("unexpected pragma comment kind"); 5434 case PCK_Linker: 5435 AppendLinkerOptions(PCD->getArg()); 5436 break; 5437 case PCK_Lib: 5438 AddDependentLib(PCD->getArg()); 5439 break; 5440 case PCK_Compiler: 5441 case PCK_ExeStr: 5442 case PCK_User: 5443 break; // We ignore all of these. 5444 } 5445 break; 5446 } 5447 5448 case Decl::PragmaDetectMismatch: { 5449 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5450 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5451 break; 5452 } 5453 5454 case Decl::LinkageSpec: 5455 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5456 break; 5457 5458 case Decl::FileScopeAsm: { 5459 // File-scope asm is ignored during device-side CUDA compilation. 5460 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5461 break; 5462 // File-scope asm is ignored during device-side OpenMP compilation. 5463 if (LangOpts.OpenMPIsDevice) 5464 break; 5465 auto *AD = cast<FileScopeAsmDecl>(D); 5466 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5467 break; 5468 } 5469 5470 case Decl::Import: { 5471 auto *Import = cast<ImportDecl>(D); 5472 5473 // If we've already imported this module, we're done. 5474 if (!ImportedModules.insert(Import->getImportedModule())) 5475 break; 5476 5477 // Emit debug information for direct imports. 5478 if (!Import->getImportedOwningModule()) { 5479 if (CGDebugInfo *DI = getModuleDebugInfo()) 5480 DI->EmitImportDecl(*Import); 5481 } 5482 5483 // Find all of the submodules and emit the module initializers. 5484 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5485 SmallVector<clang::Module *, 16> Stack; 5486 Visited.insert(Import->getImportedModule()); 5487 Stack.push_back(Import->getImportedModule()); 5488 5489 while (!Stack.empty()) { 5490 clang::Module *Mod = Stack.pop_back_val(); 5491 if (!EmittedModuleInitializers.insert(Mod).second) 5492 continue; 5493 5494 for (auto *D : Context.getModuleInitializers(Mod)) 5495 EmitTopLevelDecl(D); 5496 5497 // Visit the submodules of this module. 5498 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5499 SubEnd = Mod->submodule_end(); 5500 Sub != SubEnd; ++Sub) { 5501 // Skip explicit children; they need to be explicitly imported to emit 5502 // the initializers. 5503 if ((*Sub)->IsExplicit) 5504 continue; 5505 5506 if (Visited.insert(*Sub).second) 5507 Stack.push_back(*Sub); 5508 } 5509 } 5510 break; 5511 } 5512 5513 case Decl::Export: 5514 EmitDeclContext(cast<ExportDecl>(D)); 5515 break; 5516 5517 case Decl::OMPThreadPrivate: 5518 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5519 break; 5520 5521 case Decl::OMPAllocate: 5522 break; 5523 5524 case Decl::OMPDeclareReduction: 5525 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5526 break; 5527 5528 case Decl::OMPDeclareMapper: 5529 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5530 break; 5531 5532 case Decl::OMPRequires: 5533 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5534 break; 5535 5536 default: 5537 // Make sure we handled everything we should, every other kind is a 5538 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5539 // function. Need to recode Decl::Kind to do that easily. 5540 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5541 break; 5542 } 5543 } 5544 5545 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5546 // Do we need to generate coverage mapping? 5547 if (!CodeGenOpts.CoverageMapping) 5548 return; 5549 switch (D->getKind()) { 5550 case Decl::CXXConversion: 5551 case Decl::CXXMethod: 5552 case Decl::Function: 5553 case Decl::ObjCMethod: 5554 case Decl::CXXConstructor: 5555 case Decl::CXXDestructor: { 5556 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5557 return; 5558 SourceManager &SM = getContext().getSourceManager(); 5559 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5560 return; 5561 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5562 if (I == DeferredEmptyCoverageMappingDecls.end()) 5563 DeferredEmptyCoverageMappingDecls[D] = true; 5564 break; 5565 } 5566 default: 5567 break; 5568 }; 5569 } 5570 5571 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5572 // Do we need to generate coverage mapping? 5573 if (!CodeGenOpts.CoverageMapping) 5574 return; 5575 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5576 if (Fn->isTemplateInstantiation()) 5577 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5578 } 5579 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5580 if (I == DeferredEmptyCoverageMappingDecls.end()) 5581 DeferredEmptyCoverageMappingDecls[D] = false; 5582 else 5583 I->second = false; 5584 } 5585 5586 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5587 // We call takeVector() here to avoid use-after-free. 5588 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5589 // we deserialize function bodies to emit coverage info for them, and that 5590 // deserializes more declarations. How should we handle that case? 5591 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5592 if (!Entry.second) 5593 continue; 5594 const Decl *D = Entry.first; 5595 switch (D->getKind()) { 5596 case Decl::CXXConversion: 5597 case Decl::CXXMethod: 5598 case Decl::Function: 5599 case Decl::ObjCMethod: { 5600 CodeGenPGO PGO(*this); 5601 GlobalDecl GD(cast<FunctionDecl>(D)); 5602 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5603 getFunctionLinkage(GD)); 5604 break; 5605 } 5606 case Decl::CXXConstructor: { 5607 CodeGenPGO PGO(*this); 5608 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5609 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5610 getFunctionLinkage(GD)); 5611 break; 5612 } 5613 case Decl::CXXDestructor: { 5614 CodeGenPGO PGO(*this); 5615 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5616 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5617 getFunctionLinkage(GD)); 5618 break; 5619 } 5620 default: 5621 break; 5622 }; 5623 } 5624 } 5625 5626 void CodeGenModule::EmitMainVoidAlias() { 5627 // In order to transition away from "__original_main" gracefully, emit an 5628 // alias for "main" in the no-argument case so that libc can detect when 5629 // new-style no-argument main is in used. 5630 if (llvm::Function *F = getModule().getFunction("main")) { 5631 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5632 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5633 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5634 } 5635 } 5636 5637 /// Turns the given pointer into a constant. 5638 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5639 const void *Ptr) { 5640 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5641 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5642 return llvm::ConstantInt::get(i64, PtrInt); 5643 } 5644 5645 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5646 llvm::NamedMDNode *&GlobalMetadata, 5647 GlobalDecl D, 5648 llvm::GlobalValue *Addr) { 5649 if (!GlobalMetadata) 5650 GlobalMetadata = 5651 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5652 5653 // TODO: should we report variant information for ctors/dtors? 5654 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5655 llvm::ConstantAsMetadata::get(GetPointerConstant( 5656 CGM.getLLVMContext(), D.getDecl()))}; 5657 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5658 } 5659 5660 /// For each function which is declared within an extern "C" region and marked 5661 /// as 'used', but has internal linkage, create an alias from the unmangled 5662 /// name to the mangled name if possible. People expect to be able to refer 5663 /// to such functions with an unmangled name from inline assembly within the 5664 /// same translation unit. 5665 void CodeGenModule::EmitStaticExternCAliases() { 5666 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5667 return; 5668 for (auto &I : StaticExternCValues) { 5669 IdentifierInfo *Name = I.first; 5670 llvm::GlobalValue *Val = I.second; 5671 if (Val && !getModule().getNamedValue(Name->getName())) 5672 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5673 } 5674 } 5675 5676 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5677 GlobalDecl &Result) const { 5678 auto Res = Manglings.find(MangledName); 5679 if (Res == Manglings.end()) 5680 return false; 5681 Result = Res->getValue(); 5682 return true; 5683 } 5684 5685 /// Emits metadata nodes associating all the global values in the 5686 /// current module with the Decls they came from. This is useful for 5687 /// projects using IR gen as a subroutine. 5688 /// 5689 /// Since there's currently no way to associate an MDNode directly 5690 /// with an llvm::GlobalValue, we create a global named metadata 5691 /// with the name 'clang.global.decl.ptrs'. 5692 void CodeGenModule::EmitDeclMetadata() { 5693 llvm::NamedMDNode *GlobalMetadata = nullptr; 5694 5695 for (auto &I : MangledDeclNames) { 5696 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5697 // Some mangled names don't necessarily have an associated GlobalValue 5698 // in this module, e.g. if we mangled it for DebugInfo. 5699 if (Addr) 5700 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5701 } 5702 } 5703 5704 /// Emits metadata nodes for all the local variables in the current 5705 /// function. 5706 void CodeGenFunction::EmitDeclMetadata() { 5707 if (LocalDeclMap.empty()) return; 5708 5709 llvm::LLVMContext &Context = getLLVMContext(); 5710 5711 // Find the unique metadata ID for this name. 5712 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5713 5714 llvm::NamedMDNode *GlobalMetadata = nullptr; 5715 5716 for (auto &I : LocalDeclMap) { 5717 const Decl *D = I.first; 5718 llvm::Value *Addr = I.second.getPointer(); 5719 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5720 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5721 Alloca->setMetadata( 5722 DeclPtrKind, llvm::MDNode::get( 5723 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5724 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5725 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5726 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5727 } 5728 } 5729 } 5730 5731 void CodeGenModule::EmitVersionIdentMetadata() { 5732 llvm::NamedMDNode *IdentMetadata = 5733 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5734 std::string Version = getClangFullVersion(); 5735 llvm::LLVMContext &Ctx = TheModule.getContext(); 5736 5737 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5738 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5739 } 5740 5741 void CodeGenModule::EmitCommandLineMetadata() { 5742 llvm::NamedMDNode *CommandLineMetadata = 5743 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5744 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5745 llvm::LLVMContext &Ctx = TheModule.getContext(); 5746 5747 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5748 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5749 } 5750 5751 void CodeGenModule::EmitTargetMetadata() { 5752 // Warning, new MangledDeclNames may be appended within this loop. 5753 // We rely on MapVector insertions adding new elements to the end 5754 // of the container. 5755 // FIXME: Move this loop into the one target that needs it, and only 5756 // loop over those declarations for which we couldn't emit the target 5757 // metadata when we emitted the declaration. 5758 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5759 auto Val = *(MangledDeclNames.begin() + I); 5760 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5761 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5762 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5763 } 5764 } 5765 5766 void CodeGenModule::EmitCoverageFile() { 5767 if (getCodeGenOpts().CoverageDataFile.empty() && 5768 getCodeGenOpts().CoverageNotesFile.empty()) 5769 return; 5770 5771 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5772 if (!CUNode) 5773 return; 5774 5775 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5776 llvm::LLVMContext &Ctx = TheModule.getContext(); 5777 auto *CoverageDataFile = 5778 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5779 auto *CoverageNotesFile = 5780 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5781 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5782 llvm::MDNode *CU = CUNode->getOperand(i); 5783 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5784 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5785 } 5786 } 5787 5788 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5789 // Sema has checked that all uuid strings are of the form 5790 // "12345678-1234-1234-1234-1234567890ab". 5791 assert(Uuid.size() == 36); 5792 for (unsigned i = 0; i < 36; ++i) { 5793 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5794 else assert(isHexDigit(Uuid[i])); 5795 } 5796 5797 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5798 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5799 5800 llvm::Constant *Field3[8]; 5801 for (unsigned Idx = 0; Idx < 8; ++Idx) 5802 Field3[Idx] = llvm::ConstantInt::get( 5803 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5804 5805 llvm::Constant *Fields[4] = { 5806 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5807 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5808 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5809 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5810 }; 5811 5812 return llvm::ConstantStruct::getAnon(Fields); 5813 } 5814 5815 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5816 bool ForEH) { 5817 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5818 // FIXME: should we even be calling this method if RTTI is disabled 5819 // and it's not for EH? 5820 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5821 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5822 getTriple().isNVPTX())) 5823 return llvm::Constant::getNullValue(Int8PtrTy); 5824 5825 if (ForEH && Ty->isObjCObjectPointerType() && 5826 LangOpts.ObjCRuntime.isGNUFamily()) 5827 return ObjCRuntime->GetEHType(Ty); 5828 5829 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5830 } 5831 5832 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5833 // Do not emit threadprivates in simd-only mode. 5834 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5835 return; 5836 for (auto RefExpr : D->varlists()) { 5837 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5838 bool PerformInit = 5839 VD->getAnyInitializer() && 5840 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5841 /*ForRef=*/false); 5842 5843 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5844 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5845 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5846 CXXGlobalInits.push_back(InitFunction); 5847 } 5848 } 5849 5850 llvm::Metadata * 5851 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5852 StringRef Suffix) { 5853 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5854 if (InternalId) 5855 return InternalId; 5856 5857 if (isExternallyVisible(T->getLinkage())) { 5858 std::string OutName; 5859 llvm::raw_string_ostream Out(OutName); 5860 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5861 Out << Suffix; 5862 5863 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5864 } else { 5865 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5866 llvm::ArrayRef<llvm::Metadata *>()); 5867 } 5868 5869 return InternalId; 5870 } 5871 5872 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5873 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5874 } 5875 5876 llvm::Metadata * 5877 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5878 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5879 } 5880 5881 // Generalize pointer types to a void pointer with the qualifiers of the 5882 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5883 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5884 // 'void *'. 5885 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5886 if (!Ty->isPointerType()) 5887 return Ty; 5888 5889 return Ctx.getPointerType( 5890 QualType(Ctx.VoidTy).withCVRQualifiers( 5891 Ty->getPointeeType().getCVRQualifiers())); 5892 } 5893 5894 // Apply type generalization to a FunctionType's return and argument types 5895 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5896 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5897 SmallVector<QualType, 8> GeneralizedParams; 5898 for (auto &Param : FnType->param_types()) 5899 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5900 5901 return Ctx.getFunctionType( 5902 GeneralizeType(Ctx, FnType->getReturnType()), 5903 GeneralizedParams, FnType->getExtProtoInfo()); 5904 } 5905 5906 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5907 return Ctx.getFunctionNoProtoType( 5908 GeneralizeType(Ctx, FnType->getReturnType())); 5909 5910 llvm_unreachable("Encountered unknown FunctionType"); 5911 } 5912 5913 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5914 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5915 GeneralizedMetadataIdMap, ".generalized"); 5916 } 5917 5918 /// Returns whether this module needs the "all-vtables" type identifier. 5919 bool CodeGenModule::NeedAllVtablesTypeId() const { 5920 // Returns true if at least one of vtable-based CFI checkers is enabled and 5921 // is not in the trapping mode. 5922 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5923 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5924 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5925 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5926 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5927 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5928 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5929 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5930 } 5931 5932 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5933 CharUnits Offset, 5934 const CXXRecordDecl *RD) { 5935 llvm::Metadata *MD = 5936 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5937 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5938 5939 if (CodeGenOpts.SanitizeCfiCrossDso) 5940 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5941 VTable->addTypeMetadata(Offset.getQuantity(), 5942 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5943 5944 if (NeedAllVtablesTypeId()) { 5945 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5946 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5947 } 5948 } 5949 5950 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5951 if (!SanStats) 5952 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5953 5954 return *SanStats; 5955 } 5956 llvm::Value * 5957 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5958 CodeGenFunction &CGF) { 5959 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5960 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5961 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5962 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5963 "__translate_sampler_initializer"), 5964 {C}); 5965 } 5966