1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 
43 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                              llvm::Module &M, const llvm::TargetData &TD,
45                              Diagnostic &diags)
46   : BlockModule(C, M, TD, Types, *this), Context(C),
47     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50     MangleCtx(C), VtableInfo(*this), Runtime(0),
51     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
52     VMContext(M.getContext()) {
53 
54   if (!Features.ObjC1)
55     Runtime = 0;
56   else if (!Features.NeXTRuntime)
57     Runtime = CreateGNUObjCRuntime(*this);
58   else if (Features.ObjCNonFragileABI)
59     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
60   else
61     Runtime = CreateMacObjCRuntime(*this);
62 
63   // If debug info generation is enabled, create the CGDebugInfo object.
64   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
65 }
66 
67 CodeGenModule::~CodeGenModule() {
68   delete Runtime;
69   delete DebugInfo;
70 }
71 
72 void CodeGenModule::createObjCRuntime() {
73   if (!Features.NeXTRuntime)
74     Runtime = CreateGNUObjCRuntime(*this);
75   else if (Features.ObjCNonFragileABI)
76     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
77   else
78     Runtime = CreateMacObjCRuntime(*this);
79 }
80 
81 void CodeGenModule::Release() {
82   EmitDeferred();
83   EmitCXXGlobalInitFunc();
84   if (Runtime)
85     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
86       AddGlobalCtor(ObjCInitFunction);
87   EmitCtorList(GlobalCtors, "llvm.global_ctors");
88   EmitCtorList(GlobalDtors, "llvm.global_dtors");
89   EmitAnnotations();
90   EmitLLVMUsed();
91 }
92 
93 bool CodeGenModule::isTargetDarwin() const {
94   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
95 }
96 
97 /// ErrorUnsupported - Print out an error that codegen doesn't support the
98 /// specified stmt yet.
99 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
100                                      bool OmitOnError) {
101   if (OmitOnError && getDiags().hasErrorOccurred())
102     return;
103   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
104                                                "cannot compile this %0 yet");
105   std::string Msg = Type;
106   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
107     << Msg << S->getSourceRange();
108 }
109 
110 /// ErrorUnsupported - Print out an error that codegen doesn't support the
111 /// specified decl yet.
112 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
113                                      bool OmitOnError) {
114   if (OmitOnError && getDiags().hasErrorOccurred())
115     return;
116   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
117                                                "cannot compile this %0 yet");
118   std::string Msg = Type;
119   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
120 }
121 
122 LangOptions::VisibilityMode
123 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
124   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
125     if (VD->getStorageClass() == VarDecl::PrivateExtern)
126       return LangOptions::Hidden;
127 
128   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
129     switch (attr->getVisibility()) {
130     default: assert(0 && "Unknown visibility!");
131     case VisibilityAttr::DefaultVisibility:
132       return LangOptions::Default;
133     case VisibilityAttr::HiddenVisibility:
134       return LangOptions::Hidden;
135     case VisibilityAttr::ProtectedVisibility:
136       return LangOptions::Protected;
137     }
138   }
139 
140   // This decl should have the same visibility as its parent.
141   if (const DeclContext *DC = D->getDeclContext())
142     return getDeclVisibilityMode(cast<Decl>(DC));
143 
144   return getLangOptions().getVisibilityMode();
145 }
146 
147 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
148                                         const Decl *D) const {
149   // Internal definitions always have default visibility.
150   if (GV->hasLocalLinkage()) {
151     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
152     return;
153   }
154 
155   switch (getDeclVisibilityMode(D)) {
156   default: assert(0 && "Unknown visibility!");
157   case LangOptions::Default:
158     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
159   case LangOptions::Hidden:
160     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
161   case LangOptions::Protected:
162     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
163   }
164 }
165 
166 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
167   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
168 
169   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
170     return getMangledCXXCtorName(D, GD.getCtorType());
171   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
172     return getMangledCXXDtorName(D, GD.getDtorType());
173 
174   return getMangledName(ND);
175 }
176 
177 /// \brief Retrieves the mangled name for the given declaration.
178 ///
179 /// If the given declaration requires a mangled name, returns an
180 /// const char* containing the mangled name.  Otherwise, returns
181 /// the unmangled name.
182 ///
183 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
184   if (!getMangleContext().shouldMangleDeclName(ND)) {
185     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
186     return ND->getNameAsCString();
187   }
188 
189   llvm::SmallString<256> Name;
190   getMangleContext().mangleName(ND, Name);
191   Name += '\0';
192   return UniqueMangledName(Name.begin(), Name.end());
193 }
194 
195 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
196                                              const char *NameEnd) {
197   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
198 
199   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
200 }
201 
202 /// AddGlobalCtor - Add a function to the list that will be called before
203 /// main() runs.
204 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
205   // FIXME: Type coercion of void()* types.
206   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
207 }
208 
209 /// AddGlobalDtor - Add a function to the list that will be called
210 /// when the module is unloaded.
211 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
212   // FIXME: Type coercion of void()* types.
213   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
214 }
215 
216 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
217   // Ctor function type is void()*.
218   llvm::FunctionType* CtorFTy =
219     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
220                             std::vector<const llvm::Type*>(),
221                             false);
222   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
223 
224   // Get the type of a ctor entry, { i32, void ()* }.
225   llvm::StructType* CtorStructTy =
226     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
227                           llvm::PointerType::getUnqual(CtorFTy), NULL);
228 
229   // Construct the constructor and destructor arrays.
230   std::vector<llvm::Constant*> Ctors;
231   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
232     std::vector<llvm::Constant*> S;
233     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
234                 I->second, false));
235     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
236     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
237   }
238 
239   if (!Ctors.empty()) {
240     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
241     new llvm::GlobalVariable(TheModule, AT, false,
242                              llvm::GlobalValue::AppendingLinkage,
243                              llvm::ConstantArray::get(AT, Ctors),
244                              GlobalName);
245   }
246 }
247 
248 void CodeGenModule::EmitAnnotations() {
249   if (Annotations.empty())
250     return;
251 
252   // Create a new global variable for the ConstantStruct in the Module.
253   llvm::Constant *Array =
254   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
255                                                 Annotations.size()),
256                            Annotations);
257   llvm::GlobalValue *gv =
258   new llvm::GlobalVariable(TheModule, Array->getType(), false,
259                            llvm::GlobalValue::AppendingLinkage, Array,
260                            "llvm.global.annotations");
261   gv->setSection("llvm.metadata");
262 }
263 
264 static CodeGenModule::GVALinkage
265 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
266                       const LangOptions &Features) {
267   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
268 
269   Linkage L = FD->getLinkage();
270   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
271       FD->getType()->getLinkage() == UniqueExternalLinkage)
272     L = UniqueExternalLinkage;
273 
274   switch (L) {
275   case NoLinkage:
276   case InternalLinkage:
277   case UniqueExternalLinkage:
278     return CodeGenModule::GVA_Internal;
279 
280   case ExternalLinkage:
281     switch (FD->getTemplateSpecializationKind()) {
282     case TSK_Undeclared:
283     case TSK_ExplicitSpecialization:
284       External = CodeGenModule::GVA_StrongExternal;
285       break;
286 
287     case TSK_ExplicitInstantiationDefinition:
288       // FIXME: explicit instantiation definitions should use weak linkage
289       return CodeGenModule::GVA_StrongExternal;
290 
291     case TSK_ExplicitInstantiationDeclaration:
292     case TSK_ImplicitInstantiation:
293       External = CodeGenModule::GVA_TemplateInstantiation;
294       break;
295     }
296   }
297 
298   if (!FD->isInlined())
299     return External;
300 
301   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
302     // GNU or C99 inline semantics. Determine whether this symbol should be
303     // externally visible.
304     if (FD->isInlineDefinitionExternallyVisible())
305       return External;
306 
307     // C99 inline semantics, where the symbol is not externally visible.
308     return CodeGenModule::GVA_C99Inline;
309   }
310 
311   // C++0x [temp.explicit]p9:
312   //   [ Note: The intent is that an inline function that is the subject of
313   //   an explicit instantiation declaration will still be implicitly
314   //   instantiated when used so that the body can be considered for
315   //   inlining, but that no out-of-line copy of the inline function would be
316   //   generated in the translation unit. -- end note ]
317   if (FD->getTemplateSpecializationKind()
318                                        == TSK_ExplicitInstantiationDeclaration)
319     return CodeGenModule::GVA_C99Inline;
320 
321   return CodeGenModule::GVA_CXXInline;
322 }
323 
324 llvm::GlobalValue::LinkageTypes
325 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
326   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
327 
328   if (Linkage == GVA_Internal) {
329     return llvm::Function::InternalLinkage;
330   } else if (D->hasAttr<DLLExportAttr>()) {
331     return llvm::Function::DLLExportLinkage;
332   } else if (D->hasAttr<WeakAttr>()) {
333     return llvm::Function::WeakAnyLinkage;
334   } else if (Linkage == GVA_C99Inline) {
335     // In C99 mode, 'inline' functions are guaranteed to have a strong
336     // definition somewhere else, so we can use available_externally linkage.
337     return llvm::Function::AvailableExternallyLinkage;
338   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
339     // In C++, the compiler has to emit a definition in every translation unit
340     // that references the function.  We should use linkonce_odr because
341     // a) if all references in this translation unit are optimized away, we
342     // don't need to codegen it.  b) if the function persists, it needs to be
343     // merged with other definitions. c) C++ has the ODR, so we know the
344     // definition is dependable.
345     return llvm::Function::LinkOnceODRLinkage;
346   } else {
347     assert(Linkage == GVA_StrongExternal);
348     // Otherwise, we have strong external linkage.
349     return llvm::Function::ExternalLinkage;
350   }
351 }
352 
353 
354 /// SetFunctionDefinitionAttributes - Set attributes for a global.
355 ///
356 /// FIXME: This is currently only done for aliases and functions, but not for
357 /// variables (these details are set in EmitGlobalVarDefinition for variables).
358 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
359                                                     llvm::GlobalValue *GV) {
360   GV->setLinkage(getFunctionLinkage(D));
361   SetCommonAttributes(D, GV);
362 }
363 
364 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
365                                               const CGFunctionInfo &Info,
366                                               llvm::Function *F) {
367   unsigned CallingConv;
368   AttributeListType AttributeList;
369   ConstructAttributeList(Info, D, AttributeList, CallingConv);
370   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
371                                           AttributeList.size()));
372   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
373 }
374 
375 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
376                                                            llvm::Function *F) {
377   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
378     F->addFnAttr(llvm::Attribute::NoUnwind);
379 
380   if (D->hasAttr<AlwaysInlineAttr>())
381     F->addFnAttr(llvm::Attribute::AlwaysInline);
382 
383   if (D->hasAttr<NoInlineAttr>())
384     F->addFnAttr(llvm::Attribute::NoInline);
385 
386   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
387     F->addFnAttr(llvm::Attribute::StackProtect);
388   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
389     F->addFnAttr(llvm::Attribute::StackProtectReq);
390 
391   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
392     unsigned width = Context.Target.getCharWidth();
393     F->setAlignment(AA->getAlignment() / width);
394     while ((AA = AA->getNext<AlignedAttr>()))
395       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
396   }
397   // C++ ABI requires 2-byte alignment for member functions.
398   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
399     F->setAlignment(2);
400 }
401 
402 void CodeGenModule::SetCommonAttributes(const Decl *D,
403                                         llvm::GlobalValue *GV) {
404   setGlobalVisibility(GV, D);
405 
406   if (D->hasAttr<UsedAttr>())
407     AddUsedGlobal(GV);
408 
409   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
410     GV->setSection(SA->getName());
411 
412   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
413 }
414 
415 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
416                                                   llvm::Function *F,
417                                                   const CGFunctionInfo &FI) {
418   SetLLVMFunctionAttributes(D, FI, F);
419   SetLLVMFunctionAttributesForDefinition(D, F);
420 
421   F->setLinkage(llvm::Function::InternalLinkage);
422 
423   SetCommonAttributes(D, F);
424 }
425 
426 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
427                                           llvm::Function *F,
428                                           bool IsIncompleteFunction) {
429   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
430 
431   if (!IsIncompleteFunction)
432     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
433 
434   // Only a few attributes are set on declarations; these may later be
435   // overridden by a definition.
436 
437   if (FD->hasAttr<DLLImportAttr>()) {
438     F->setLinkage(llvm::Function::DLLImportLinkage);
439   } else if (FD->hasAttr<WeakAttr>() ||
440              FD->hasAttr<WeakImportAttr>()) {
441     // "extern_weak" is overloaded in LLVM; we probably should have
442     // separate linkage types for this.
443     F->setLinkage(llvm::Function::ExternalWeakLinkage);
444   } else {
445     F->setLinkage(llvm::Function::ExternalLinkage);
446   }
447 
448   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
449     F->setSection(SA->getName());
450 }
451 
452 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
453   assert(!GV->isDeclaration() &&
454          "Only globals with definition can force usage.");
455   LLVMUsed.push_back(GV);
456 }
457 
458 void CodeGenModule::EmitLLVMUsed() {
459   // Don't create llvm.used if there is no need.
460   if (LLVMUsed.empty())
461     return;
462 
463   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
464 
465   // Convert LLVMUsed to what ConstantArray needs.
466   std::vector<llvm::Constant*> UsedArray;
467   UsedArray.resize(LLVMUsed.size());
468   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
469     UsedArray[i] =
470      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
471                                       i8PTy);
472   }
473 
474   if (UsedArray.empty())
475     return;
476   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
477 
478   llvm::GlobalVariable *GV =
479     new llvm::GlobalVariable(getModule(), ATy, false,
480                              llvm::GlobalValue::AppendingLinkage,
481                              llvm::ConstantArray::get(ATy, UsedArray),
482                              "llvm.used");
483 
484   GV->setSection("llvm.metadata");
485 }
486 
487 void CodeGenModule::EmitDeferred() {
488   // Emit code for any potentially referenced deferred decls.  Since a
489   // previously unused static decl may become used during the generation of code
490   // for a static function, iterate until no  changes are made.
491 
492   while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) {
493     if (!DeferredVtables.empty()) {
494       const CXXRecordDecl *RD = DeferredVtables.back();
495       DeferredVtables.pop_back();
496       getVtableInfo().GenerateClassData(getVtableLinkage(RD), RD);
497       continue;
498     }
499 
500     GlobalDecl D = DeferredDeclsToEmit.back();
501     DeferredDeclsToEmit.pop_back();
502 
503     // The mangled name for the decl must have been emitted in GlobalDeclMap.
504     // Look it up to see if it was defined with a stronger definition (e.g. an
505     // extern inline function with a strong function redefinition).  If so,
506     // just ignore the deferred decl.
507     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
508     assert(CGRef && "Deferred decl wasn't referenced?");
509 
510     if (!CGRef->isDeclaration())
511       continue;
512 
513     // Otherwise, emit the definition and move on to the next one.
514     EmitGlobalDefinition(D);
515   }
516 }
517 
518 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
519 /// annotation information for a given GlobalValue.  The annotation struct is
520 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
521 /// GlobalValue being annotated.  The second field is the constant string
522 /// created from the AnnotateAttr's annotation.  The third field is a constant
523 /// string containing the name of the translation unit.  The fourth field is
524 /// the line number in the file of the annotated value declaration.
525 ///
526 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
527 ///        appears to.
528 ///
529 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
530                                                 const AnnotateAttr *AA,
531                                                 unsigned LineNo) {
532   llvm::Module *M = &getModule();
533 
534   // get [N x i8] constants for the annotation string, and the filename string
535   // which are the 2nd and 3rd elements of the global annotation structure.
536   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
537   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
538                                                   AA->getAnnotation(), true);
539   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
540                                                   M->getModuleIdentifier(),
541                                                   true);
542 
543   // Get the two global values corresponding to the ConstantArrays we just
544   // created to hold the bytes of the strings.
545   llvm::GlobalValue *annoGV =
546     new llvm::GlobalVariable(*M, anno->getType(), false,
547                              llvm::GlobalValue::PrivateLinkage, anno,
548                              GV->getName());
549   // translation unit name string, emitted into the llvm.metadata section.
550   llvm::GlobalValue *unitGV =
551     new llvm::GlobalVariable(*M, unit->getType(), false,
552                              llvm::GlobalValue::PrivateLinkage, unit,
553                              ".str");
554 
555   // Create the ConstantStruct for the global annotation.
556   llvm::Constant *Fields[4] = {
557     llvm::ConstantExpr::getBitCast(GV, SBP),
558     llvm::ConstantExpr::getBitCast(annoGV, SBP),
559     llvm::ConstantExpr::getBitCast(unitGV, SBP),
560     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
561   };
562   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
563 }
564 
565 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
566   // Never defer when EmitAllDecls is specified or the decl has
567   // attribute used.
568   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
569     return false;
570 
571   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
572     // Constructors and destructors should never be deferred.
573     if (FD->hasAttr<ConstructorAttr>() ||
574         FD->hasAttr<DestructorAttr>())
575       return false;
576 
577     // The key function for a class must never be deferred.
578     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
579       const CXXRecordDecl *RD = MD->getParent();
580       if (MD->isOutOfLine() && RD->isDynamicClass()) {
581         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
582         if (KeyFunction &&
583             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
584           return false;
585       }
586     }
587 
588     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
589 
590     // static, static inline, always_inline, and extern inline functions can
591     // always be deferred.  Normal inline functions can be deferred in C99/C++.
592     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
593         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
594       return true;
595     return false;
596   }
597 
598   const VarDecl *VD = cast<VarDecl>(Global);
599   assert(VD->isFileVarDecl() && "Invalid decl");
600 
601   // We never want to defer structs that have non-trivial constructors or
602   // destructors.
603 
604   // FIXME: Handle references.
605   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
606     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
607       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
608         return false;
609     }
610   }
611 
612   // Static data may be deferred, but out-of-line static data members
613   // cannot be.
614   Linkage L = VD->getLinkage();
615   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
616       VD->getType()->getLinkage() == UniqueExternalLinkage)
617     L = UniqueExternalLinkage;
618 
619   switch (L) {
620   case NoLinkage:
621   case InternalLinkage:
622   case UniqueExternalLinkage:
623     // Initializer has side effects?
624     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
625       return false;
626     return !(VD->isStaticDataMember() && VD->isOutOfLine());
627 
628   case ExternalLinkage:
629     break;
630   }
631 
632   return false;
633 }
634 
635 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
636   const AliasAttr *AA = VD->getAttr<AliasAttr>();
637   assert(AA && "No alias?");
638 
639   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
640 
641   // Unique the name through the identifier table.
642   const char *AliaseeName =
643     getContext().Idents.get(AA->getAliasee()).getNameStart();
644 
645   // See if there is already something with the target's name in the module.
646   llvm::GlobalValue *Entry = GlobalDeclMap[AliaseeName];
647 
648   llvm::Constant *Aliasee;
649   if (isa<llvm::FunctionType>(DeclTy))
650     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
651   else
652     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
653                                     llvm::PointerType::getUnqual(DeclTy), 0);
654   if (!Entry) {
655     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
656     F->setLinkage(llvm::Function::ExternalWeakLinkage);
657     WeakRefReferences.insert(F);
658   }
659 
660   return Aliasee;
661 }
662 
663 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
664   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
665 
666   // Weak references don't produce any output by themselves.
667   if (Global->hasAttr<WeakRefAttr>())
668     return;
669 
670   // If this is an alias definition (which otherwise looks like a declaration)
671   // emit it now.
672   if (Global->hasAttr<AliasAttr>())
673     return EmitAliasDefinition(Global);
674 
675   // Ignore declarations, they will be emitted on their first use.
676   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
677     // Forward declarations are emitted lazily on first use.
678     if (!FD->isThisDeclarationADefinition())
679       return;
680   } else {
681     const VarDecl *VD = cast<VarDecl>(Global);
682     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
683 
684     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
685       return;
686   }
687 
688   // Defer code generation when possible if this is a static definition, inline
689   // function etc.  These we only want to emit if they are used.
690   if (MayDeferGeneration(Global)) {
691     // If the value has already been used, add it directly to the
692     // DeferredDeclsToEmit list.
693     const char *MangledName = getMangledName(GD);
694     if (GlobalDeclMap.count(MangledName))
695       DeferredDeclsToEmit.push_back(GD);
696     else {
697       // Otherwise, remember that we saw a deferred decl with this name.  The
698       // first use of the mangled name will cause it to move into
699       // DeferredDeclsToEmit.
700       DeferredDecls[MangledName] = GD;
701     }
702     return;
703   }
704 
705   // Otherwise emit the definition.
706   EmitGlobalDefinition(GD);
707 }
708 
709 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
710   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
711 
712   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
713                                  Context.getSourceManager(),
714                                  "Generating code for declaration");
715 
716   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
717     getVtableInfo().MaybeEmitVtable(GD);
718     if (MD->isVirtual() && MD->isOutOfLine() &&
719         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
720       if (isa<CXXDestructorDecl>(D)) {
721         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
722                            GD.getDtorType());
723         BuildThunksForVirtual(CanonGD);
724       } else {
725         BuildThunksForVirtual(MD->getCanonicalDecl());
726       }
727     }
728   }
729 
730   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
731     EmitCXXConstructor(CD, GD.getCtorType());
732   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
733     EmitCXXDestructor(DD, GD.getDtorType());
734   else if (isa<FunctionDecl>(D))
735     EmitGlobalFunctionDefinition(GD);
736   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
737     EmitGlobalVarDefinition(VD);
738   else {
739     assert(0 && "Invalid argument to EmitGlobalDefinition()");
740   }
741 }
742 
743 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
744 /// module, create and return an llvm Function with the specified type. If there
745 /// is something in the module with the specified name, return it potentially
746 /// bitcasted to the right type.
747 ///
748 /// If D is non-null, it specifies a decl that correspond to this.  This is used
749 /// to set the attributes on the function when it is first created.
750 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
751                                                        const llvm::Type *Ty,
752                                                        GlobalDecl D) {
753   // Lookup the entry, lazily creating it if necessary.
754   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
755   if (Entry) {
756     if (WeakRefReferences.count(Entry)) {
757       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
758       if (FD && !FD->hasAttr<WeakAttr>())
759 	Entry->setLinkage(llvm::Function::ExternalLinkage);
760 
761       WeakRefReferences.erase(Entry);
762     }
763 
764     if (Entry->getType()->getElementType() == Ty)
765       return Entry;
766 
767     // Make sure the result is of the correct type.
768     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
769     return llvm::ConstantExpr::getBitCast(Entry, PTy);
770   }
771 
772   // This function doesn't have a complete type (for example, the return
773   // type is an incomplete struct). Use a fake type instead, and make
774   // sure not to try to set attributes.
775   bool IsIncompleteFunction = false;
776   if (!isa<llvm::FunctionType>(Ty)) {
777     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
778                                  std::vector<const llvm::Type*>(), false);
779     IsIncompleteFunction = true;
780   }
781   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
782                                              llvm::Function::ExternalLinkage,
783                                              "", &getModule());
784   F->setName(MangledName);
785   if (D.getDecl())
786     SetFunctionAttributes(D, F, IsIncompleteFunction);
787   Entry = F;
788 
789   // This is the first use or definition of a mangled name.  If there is a
790   // deferred decl with this name, remember that we need to emit it at the end
791   // of the file.
792   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
793     DeferredDecls.find(MangledName);
794   if (DDI != DeferredDecls.end()) {
795     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
796     // list, and remove it from DeferredDecls (since we don't need it anymore).
797     DeferredDeclsToEmit.push_back(DDI->second);
798     DeferredDecls.erase(DDI);
799   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
800     // If this the first reference to a C++ inline function in a class, queue up
801     // the deferred function body for emission.  These are not seen as
802     // top-level declarations.
803     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
804       DeferredDeclsToEmit.push_back(D);
805     // A called constructor which has no definition or declaration need be
806     // synthesized.
807     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
808       if (CD->isImplicit()) {
809         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
810         DeferredDeclsToEmit.push_back(D);
811       }
812     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
813       if (DD->isImplicit()) {
814         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
815         DeferredDeclsToEmit.push_back(D);
816       }
817     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
818       if (MD->isCopyAssignment() && MD->isImplicit()) {
819         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
820         DeferredDeclsToEmit.push_back(D);
821       }
822     }
823   }
824 
825   return F;
826 }
827 
828 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
829 /// non-null, then this function will use the specified type if it has to
830 /// create it (this occurs when we see a definition of the function).
831 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
832                                                  const llvm::Type *Ty) {
833   // If there was no specific requested type, just convert it now.
834   if (!Ty)
835     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
836   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
837 }
838 
839 /// CreateRuntimeFunction - Create a new runtime function with the specified
840 /// type and name.
841 llvm::Constant *
842 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
843                                      const char *Name) {
844   // Convert Name to be a uniqued string from the IdentifierInfo table.
845   Name = getContext().Idents.get(Name).getNameStart();
846   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
847 }
848 
849 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
850   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
851     return false;
852   if (Context.getLangOptions().CPlusPlus &&
853       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
854     // FIXME: We should do something fancier here!
855     return false;
856   }
857   return true;
858 }
859 
860 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
861 /// create and return an llvm GlobalVariable with the specified type.  If there
862 /// is something in the module with the specified name, return it potentially
863 /// bitcasted to the right type.
864 ///
865 /// If D is non-null, it specifies a decl that correspond to this.  This is used
866 /// to set the attributes on the global when it is first created.
867 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
868                                                      const llvm::PointerType*Ty,
869                                                      const VarDecl *D) {
870   // Lookup the entry, lazily creating it if necessary.
871   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
872   if (Entry) {
873     if (WeakRefReferences.count(Entry)) {
874       if (D && !D->hasAttr<WeakAttr>())
875 	Entry->setLinkage(llvm::Function::ExternalLinkage);
876 
877       WeakRefReferences.erase(Entry);
878     }
879 
880     if (Entry->getType() == Ty)
881       return Entry;
882 
883     // Make sure the result is of the correct type.
884     return llvm::ConstantExpr::getBitCast(Entry, Ty);
885   }
886 
887   // This is the first use or definition of a mangled name.  If there is a
888   // deferred decl with this name, remember that we need to emit it at the end
889   // of the file.
890   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
891     DeferredDecls.find(MangledName);
892   if (DDI != DeferredDecls.end()) {
893     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
894     // list, and remove it from DeferredDecls (since we don't need it anymore).
895     DeferredDeclsToEmit.push_back(DDI->second);
896     DeferredDecls.erase(DDI);
897   }
898 
899   llvm::GlobalVariable *GV =
900     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
901                              llvm::GlobalValue::ExternalLinkage,
902                              0, "", 0,
903                              false, Ty->getAddressSpace());
904   GV->setName(MangledName);
905 
906   // Handle things which are present even on external declarations.
907   if (D) {
908     // FIXME: This code is overly simple and should be merged with other global
909     // handling.
910     GV->setConstant(DeclIsConstantGlobal(Context, D));
911 
912     // FIXME: Merge with other attribute handling code.
913     if (D->getStorageClass() == VarDecl::PrivateExtern)
914       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
915 
916     if (D->hasAttr<WeakAttr>() ||
917         D->hasAttr<WeakImportAttr>())
918       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
919 
920     GV->setThreadLocal(D->isThreadSpecified());
921   }
922 
923   return Entry = GV;
924 }
925 
926 
927 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
928 /// given global variable.  If Ty is non-null and if the global doesn't exist,
929 /// then it will be greated with the specified type instead of whatever the
930 /// normal requested type would be.
931 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
932                                                   const llvm::Type *Ty) {
933   assert(D->hasGlobalStorage() && "Not a global variable");
934   QualType ASTTy = D->getType();
935   if (Ty == 0)
936     Ty = getTypes().ConvertTypeForMem(ASTTy);
937 
938   const llvm::PointerType *PTy =
939     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
940   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
941 }
942 
943 /// CreateRuntimeVariable - Create a new runtime global variable with the
944 /// specified type and name.
945 llvm::Constant *
946 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
947                                      const char *Name) {
948   // Convert Name to be a uniqued string from the IdentifierInfo table.
949   Name = getContext().Idents.get(Name).getNameStart();
950   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
951 }
952 
953 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
954   assert(!D->getInit() && "Cannot emit definite definitions here!");
955 
956   if (MayDeferGeneration(D)) {
957     // If we have not seen a reference to this variable yet, place it
958     // into the deferred declarations table to be emitted if needed
959     // later.
960     const char *MangledName = getMangledName(D);
961     if (GlobalDeclMap.count(MangledName) == 0) {
962       DeferredDecls[MangledName] = D;
963       return;
964     }
965   }
966 
967   // The tentative definition is the only definition.
968   EmitGlobalVarDefinition(D);
969 }
970 
971 llvm::GlobalVariable::LinkageTypes
972 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
973   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
974     return llvm::GlobalVariable::InternalLinkage;
975 
976   if (const CXXMethodDecl *KeyFunction
977                                     = RD->getASTContext().getKeyFunction(RD)) {
978     // If this class has a key function, use that to determine the linkage of
979     // the vtable.
980     const FunctionDecl *Def = 0;
981     if (KeyFunction->getBody(Def))
982       KeyFunction = cast<CXXMethodDecl>(Def);
983 
984     switch (KeyFunction->getTemplateSpecializationKind()) {
985       case TSK_Undeclared:
986       case TSK_ExplicitSpecialization:
987         if (KeyFunction->isInlined())
988           return llvm::GlobalVariable::WeakODRLinkage;
989 
990         return llvm::GlobalVariable::ExternalLinkage;
991 
992       case TSK_ImplicitInstantiation:
993       case TSK_ExplicitInstantiationDefinition:
994         return llvm::GlobalVariable::WeakODRLinkage;
995 
996       case TSK_ExplicitInstantiationDeclaration:
997         // FIXME: Use available_externally linkage. However, this currently
998         // breaks LLVM's build due to undefined symbols.
999         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1000         return llvm::GlobalVariable::WeakODRLinkage;
1001     }
1002   }
1003 
1004   switch (RD->getTemplateSpecializationKind()) {
1005   case TSK_Undeclared:
1006   case TSK_ExplicitSpecialization:
1007   case TSK_ImplicitInstantiation:
1008   case TSK_ExplicitInstantiationDefinition:
1009     return llvm::GlobalVariable::WeakODRLinkage;
1010 
1011   case TSK_ExplicitInstantiationDeclaration:
1012     // FIXME: Use available_externally linkage. However, this currently
1013     // breaks LLVM's build due to undefined symbols.
1014     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1015     return llvm::GlobalVariable::WeakODRLinkage;
1016   }
1017 
1018   // Silence GCC warning.
1019   return llvm::GlobalVariable::WeakODRLinkage;
1020 }
1021 
1022 static CodeGenModule::GVALinkage
1023 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1024   // If this is a static data member, compute the kind of template
1025   // specialization. Otherwise, this variable is not part of a
1026   // template.
1027   TemplateSpecializationKind TSK = TSK_Undeclared;
1028   if (VD->isStaticDataMember())
1029     TSK = VD->getTemplateSpecializationKind();
1030 
1031   Linkage L = VD->getLinkage();
1032   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1033       VD->getType()->getLinkage() == UniqueExternalLinkage)
1034     L = UniqueExternalLinkage;
1035 
1036   switch (L) {
1037   case NoLinkage:
1038   case InternalLinkage:
1039   case UniqueExternalLinkage:
1040     return CodeGenModule::GVA_Internal;
1041 
1042   case ExternalLinkage:
1043     switch (TSK) {
1044     case TSK_Undeclared:
1045     case TSK_ExplicitSpecialization:
1046 
1047       // FIXME: ExplicitInstantiationDefinition should be weak!
1048     case TSK_ExplicitInstantiationDefinition:
1049       return CodeGenModule::GVA_StrongExternal;
1050 
1051     case TSK_ExplicitInstantiationDeclaration:
1052       llvm_unreachable("Variable should not be instantiated");
1053       // Fall through to treat this like any other instantiation.
1054 
1055     case TSK_ImplicitInstantiation:
1056       return CodeGenModule::GVA_TemplateInstantiation;
1057     }
1058   }
1059 
1060   return CodeGenModule::GVA_StrongExternal;
1061 }
1062 
1063 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1064     return CharUnits::fromQuantity(
1065       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1066 }
1067 
1068 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1069   llvm::Constant *Init = 0;
1070   QualType ASTTy = D->getType();
1071   bool NonConstInit = false;
1072 
1073   const Expr *InitExpr = D->getAnyInitializer();
1074 
1075   if (!InitExpr) {
1076     // This is a tentative definition; tentative definitions are
1077     // implicitly initialized with { 0 }.
1078     //
1079     // Note that tentative definitions are only emitted at the end of
1080     // a translation unit, so they should never have incomplete
1081     // type. In addition, EmitTentativeDefinition makes sure that we
1082     // never attempt to emit a tentative definition if a real one
1083     // exists. A use may still exists, however, so we still may need
1084     // to do a RAUW.
1085     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1086     Init = EmitNullConstant(D->getType());
1087   } else {
1088     Init = EmitConstantExpr(InitExpr, D->getType());
1089 
1090     if (!Init) {
1091       QualType T = InitExpr->getType();
1092       if (getLangOptions().CPlusPlus) {
1093         EmitCXXGlobalVarDeclInitFunc(D);
1094         Init = EmitNullConstant(T);
1095         NonConstInit = true;
1096       } else {
1097         ErrorUnsupported(D, "static initializer");
1098         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1099       }
1100     }
1101   }
1102 
1103   const llvm::Type* InitType = Init->getType();
1104   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1105 
1106   // Strip off a bitcast if we got one back.
1107   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1108     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1109            // all zero index gep.
1110            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1111     Entry = CE->getOperand(0);
1112   }
1113 
1114   // Entry is now either a Function or GlobalVariable.
1115   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1116 
1117   // We have a definition after a declaration with the wrong type.
1118   // We must make a new GlobalVariable* and update everything that used OldGV
1119   // (a declaration or tentative definition) with the new GlobalVariable*
1120   // (which will be a definition).
1121   //
1122   // This happens if there is a prototype for a global (e.g.
1123   // "extern int x[];") and then a definition of a different type (e.g.
1124   // "int x[10];"). This also happens when an initializer has a different type
1125   // from the type of the global (this happens with unions).
1126   if (GV == 0 ||
1127       GV->getType()->getElementType() != InitType ||
1128       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1129 
1130     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1131     GlobalDeclMap.erase(getMangledName(D));
1132 
1133     // Make a new global with the correct type, this is now guaranteed to work.
1134     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1135     GV->takeName(cast<llvm::GlobalValue>(Entry));
1136 
1137     // Replace all uses of the old global with the new global
1138     llvm::Constant *NewPtrForOldDecl =
1139         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1140     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1141 
1142     // Erase the old global, since it is no longer used.
1143     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1144   }
1145 
1146   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1147     SourceManager &SM = Context.getSourceManager();
1148     AddAnnotation(EmitAnnotateAttr(GV, AA,
1149                               SM.getInstantiationLineNumber(D->getLocation())));
1150   }
1151 
1152   GV->setInitializer(Init);
1153 
1154   // If it is safe to mark the global 'constant', do so now.
1155   GV->setConstant(false);
1156   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1157     GV->setConstant(true);
1158 
1159   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1160 
1161   // Set the llvm linkage type as appropriate.
1162   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1163   if (Linkage == GVA_Internal)
1164     GV->setLinkage(llvm::Function::InternalLinkage);
1165   else if (D->hasAttr<DLLImportAttr>())
1166     GV->setLinkage(llvm::Function::DLLImportLinkage);
1167   else if (D->hasAttr<DLLExportAttr>())
1168     GV->setLinkage(llvm::Function::DLLExportLinkage);
1169   else if (D->hasAttr<WeakAttr>()) {
1170     if (GV->isConstant())
1171       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1172     else
1173       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1174   } else if (Linkage == GVA_TemplateInstantiation)
1175     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1176   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1177            !D->hasExternalStorage() && !D->getInit() &&
1178            !D->getAttr<SectionAttr>()) {
1179     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1180     // common vars aren't constant even if declared const.
1181     GV->setConstant(false);
1182   } else
1183     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1184 
1185   SetCommonAttributes(D, GV);
1186 
1187   // Emit global variable debug information.
1188   if (CGDebugInfo *DI = getDebugInfo()) {
1189     DI->setLocation(D->getLocation());
1190     DI->EmitGlobalVariable(GV, D);
1191   }
1192 }
1193 
1194 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1195 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1196 /// existing call uses of the old function in the module, this adjusts them to
1197 /// call the new function directly.
1198 ///
1199 /// This is not just a cleanup: the always_inline pass requires direct calls to
1200 /// functions to be able to inline them.  If there is a bitcast in the way, it
1201 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1202 /// run at -O0.
1203 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1204                                                       llvm::Function *NewFn) {
1205   // If we're redefining a global as a function, don't transform it.
1206   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1207   if (OldFn == 0) return;
1208 
1209   const llvm::Type *NewRetTy = NewFn->getReturnType();
1210   llvm::SmallVector<llvm::Value*, 4> ArgList;
1211 
1212   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1213        UI != E; ) {
1214     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1215     unsigned OpNo = UI.getOperandNo();
1216     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1217     if (!CI || OpNo != 0) continue;
1218 
1219     // If the return types don't match exactly, and if the call isn't dead, then
1220     // we can't transform this call.
1221     if (CI->getType() != NewRetTy && !CI->use_empty())
1222       continue;
1223 
1224     // If the function was passed too few arguments, don't transform.  If extra
1225     // arguments were passed, we silently drop them.  If any of the types
1226     // mismatch, we don't transform.
1227     unsigned ArgNo = 0;
1228     bool DontTransform = false;
1229     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1230          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1231       if (CI->getNumOperands()-1 == ArgNo ||
1232           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1233         DontTransform = true;
1234         break;
1235       }
1236     }
1237     if (DontTransform)
1238       continue;
1239 
1240     // Okay, we can transform this.  Create the new call instruction and copy
1241     // over the required information.
1242     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1243     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1244                                                      ArgList.end(), "", CI);
1245     ArgList.clear();
1246     if (!NewCall->getType()->isVoidTy())
1247       NewCall->takeName(CI);
1248     NewCall->setAttributes(CI->getAttributes());
1249     NewCall->setCallingConv(CI->getCallingConv());
1250 
1251     // Finally, remove the old call, replacing any uses with the new one.
1252     if (!CI->use_empty())
1253       CI->replaceAllUsesWith(NewCall);
1254 
1255     // Copy any custom metadata attached with CI.
1256     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1257       NewCall->setMetadata("dbg", DbgNode);
1258     CI->eraseFromParent();
1259   }
1260 }
1261 
1262 
1263 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1264   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1265   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1266   getMangleContext().mangleInitDiscriminator();
1267   // Get or create the prototype for the function.
1268   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1269 
1270   // Strip off a bitcast if we got one back.
1271   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1272     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1273     Entry = CE->getOperand(0);
1274   }
1275 
1276 
1277   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1278     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1279 
1280     // If the types mismatch then we have to rewrite the definition.
1281     assert(OldFn->isDeclaration() &&
1282            "Shouldn't replace non-declaration");
1283 
1284     // F is the Function* for the one with the wrong type, we must make a new
1285     // Function* and update everything that used F (a declaration) with the new
1286     // Function* (which will be a definition).
1287     //
1288     // This happens if there is a prototype for a function
1289     // (e.g. "int f()") and then a definition of a different type
1290     // (e.g. "int f(int x)").  Start by making a new function of the
1291     // correct type, RAUW, then steal the name.
1292     GlobalDeclMap.erase(getMangledName(D));
1293     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1294     NewFn->takeName(OldFn);
1295 
1296     // If this is an implementation of a function without a prototype, try to
1297     // replace any existing uses of the function (which may be calls) with uses
1298     // of the new function
1299     if (D->getType()->isFunctionNoProtoType()) {
1300       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1301       OldFn->removeDeadConstantUsers();
1302     }
1303 
1304     // Replace uses of F with the Function we will endow with a body.
1305     if (!Entry->use_empty()) {
1306       llvm::Constant *NewPtrForOldDecl =
1307         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1308       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1309     }
1310 
1311     // Ok, delete the old function now, which is dead.
1312     OldFn->eraseFromParent();
1313 
1314     Entry = NewFn;
1315   }
1316 
1317   llvm::Function *Fn = cast<llvm::Function>(Entry);
1318 
1319   CodeGenFunction(*this).GenerateCode(D, Fn);
1320 
1321   SetFunctionDefinitionAttributes(D, Fn);
1322   SetLLVMFunctionAttributesForDefinition(D, Fn);
1323 
1324   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1325     AddGlobalCtor(Fn, CA->getPriority());
1326   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1327     AddGlobalDtor(Fn, DA->getPriority());
1328 }
1329 
1330 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1331   const AliasAttr *AA = D->getAttr<AliasAttr>();
1332   assert(AA && "Not an alias?");
1333 
1334   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1335 
1336   // Unique the name through the identifier table.
1337   const char *AliaseeName =
1338     getContext().Idents.get(AA->getAliasee()).getNameStart();
1339 
1340   // Create a reference to the named value.  This ensures that it is emitted
1341   // if a deferred decl.
1342   llvm::Constant *Aliasee;
1343   if (isa<llvm::FunctionType>(DeclTy))
1344     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1345   else
1346     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1347                                     llvm::PointerType::getUnqual(DeclTy), 0);
1348 
1349   // Create the new alias itself, but don't set a name yet.
1350   llvm::GlobalValue *GA =
1351     new llvm::GlobalAlias(Aliasee->getType(),
1352                           llvm::Function::ExternalLinkage,
1353                           "", Aliasee, &getModule());
1354 
1355   // See if there is already something with the alias' name in the module.
1356   const char *MangledName = getMangledName(D);
1357   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1358 
1359   if (Entry && !Entry->isDeclaration()) {
1360     // If there is a definition in the module, then it wins over the alias.
1361     // This is dubious, but allow it to be safe.  Just ignore the alias.
1362     GA->eraseFromParent();
1363     return;
1364   }
1365 
1366   if (Entry) {
1367     // If there is a declaration in the module, then we had an extern followed
1368     // by the alias, as in:
1369     //   extern int test6();
1370     //   ...
1371     //   int test6() __attribute__((alias("test7")));
1372     //
1373     // Remove it and replace uses of it with the alias.
1374 
1375     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1376                                                           Entry->getType()));
1377     Entry->eraseFromParent();
1378   }
1379 
1380   // Now we know that there is no conflict, set the name.
1381   Entry = GA;
1382   GA->setName(MangledName);
1383 
1384   // Set attributes which are particular to an alias; this is a
1385   // specialization of the attributes which may be set on a global
1386   // variable/function.
1387   if (D->hasAttr<DLLExportAttr>()) {
1388     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1389       // The dllexport attribute is ignored for undefined symbols.
1390       if (FD->getBody())
1391         GA->setLinkage(llvm::Function::DLLExportLinkage);
1392     } else {
1393       GA->setLinkage(llvm::Function::DLLExportLinkage);
1394     }
1395   } else if (D->hasAttr<WeakAttr>() ||
1396              D->hasAttr<WeakRefAttr>() ||
1397              D->hasAttr<WeakImportAttr>()) {
1398     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1399   }
1400 
1401   SetCommonAttributes(D, GA);
1402 }
1403 
1404 /// getBuiltinLibFunction - Given a builtin id for a function like
1405 /// "__builtin_fabsf", return a Function* for "fabsf".
1406 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1407                                                   unsigned BuiltinID) {
1408   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1409           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1410          "isn't a lib fn");
1411 
1412   // Get the name, skip over the __builtin_ prefix (if necessary).
1413   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1414   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1415     Name += 10;
1416 
1417   const llvm::FunctionType *Ty =
1418     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1419 
1420   // Unique the name through the identifier table.
1421   Name = getContext().Idents.get(Name).getNameStart();
1422   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1423 }
1424 
1425 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1426                                             unsigned NumTys) {
1427   return llvm::Intrinsic::getDeclaration(&getModule(),
1428                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1429 }
1430 
1431 llvm::Function *CodeGenModule::getMemCpyFn() {
1432   if (MemCpyFn) return MemCpyFn;
1433   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1434   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1435 }
1436 
1437 llvm::Function *CodeGenModule::getMemMoveFn() {
1438   if (MemMoveFn) return MemMoveFn;
1439   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1440   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1441 }
1442 
1443 llvm::Function *CodeGenModule::getMemSetFn() {
1444   if (MemSetFn) return MemSetFn;
1445   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1446   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1447 }
1448 
1449 static llvm::StringMapEntry<llvm::Constant*> &
1450 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1451                          const StringLiteral *Literal,
1452                          bool TargetIsLSB,
1453                          bool &IsUTF16,
1454                          unsigned &StringLength) {
1455   unsigned NumBytes = Literal->getByteLength();
1456 
1457   // Check for simple case.
1458   if (!Literal->containsNonAsciiOrNull()) {
1459     StringLength = NumBytes;
1460     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1461                                                 StringLength));
1462   }
1463 
1464   // Otherwise, convert the UTF8 literals into a byte string.
1465   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1466   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1467   UTF16 *ToPtr = &ToBuf[0];
1468 
1469   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1470                                                &ToPtr, ToPtr + NumBytes,
1471                                                strictConversion);
1472 
1473   // Check for conversion failure.
1474   if (Result != conversionOK) {
1475     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1476     // this duplicate code.
1477     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1478     StringLength = NumBytes;
1479     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1480                                                 StringLength));
1481   }
1482 
1483   // ConvertUTF8toUTF16 returns the length in ToPtr.
1484   StringLength = ToPtr - &ToBuf[0];
1485 
1486   // Render the UTF-16 string into a byte array and convert to the target byte
1487   // order.
1488   //
1489   // FIXME: This isn't something we should need to do here.
1490   llvm::SmallString<128> AsBytes;
1491   AsBytes.reserve(StringLength * 2);
1492   for (unsigned i = 0; i != StringLength; ++i) {
1493     unsigned short Val = ToBuf[i];
1494     if (TargetIsLSB) {
1495       AsBytes.push_back(Val & 0xFF);
1496       AsBytes.push_back(Val >> 8);
1497     } else {
1498       AsBytes.push_back(Val >> 8);
1499       AsBytes.push_back(Val & 0xFF);
1500     }
1501   }
1502   // Append one extra null character, the second is automatically added by our
1503   // caller.
1504   AsBytes.push_back(0);
1505 
1506   IsUTF16 = true;
1507   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1508 }
1509 
1510 llvm::Constant *
1511 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1512   unsigned StringLength = 0;
1513   bool isUTF16 = false;
1514   llvm::StringMapEntry<llvm::Constant*> &Entry =
1515     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1516                              getTargetData().isLittleEndian(),
1517                              isUTF16, StringLength);
1518 
1519   if (llvm::Constant *C = Entry.getValue())
1520     return C;
1521 
1522   llvm::Constant *Zero =
1523       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1524   llvm::Constant *Zeros[] = { Zero, Zero };
1525 
1526   // If we don't already have it, get __CFConstantStringClassReference.
1527   if (!CFConstantStringClassRef) {
1528     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1529     Ty = llvm::ArrayType::get(Ty, 0);
1530     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1531                                            "__CFConstantStringClassReference");
1532     // Decay array -> ptr
1533     CFConstantStringClassRef =
1534       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1535   }
1536 
1537   QualType CFTy = getContext().getCFConstantStringType();
1538 
1539   const llvm::StructType *STy =
1540     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1541 
1542   std::vector<llvm::Constant*> Fields(4);
1543 
1544   // Class pointer.
1545   Fields[0] = CFConstantStringClassRef;
1546 
1547   // Flags.
1548   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1549   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1550     llvm::ConstantInt::get(Ty, 0x07C8);
1551 
1552   // String pointer.
1553   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1554 
1555   llvm::GlobalValue::LinkageTypes Linkage;
1556   bool isConstant;
1557   if (isUTF16) {
1558     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1559     Linkage = llvm::GlobalValue::InternalLinkage;
1560     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1561     // does make plain ascii ones writable.
1562     isConstant = true;
1563   } else {
1564     Linkage = llvm::GlobalValue::PrivateLinkage;
1565     isConstant = !Features.WritableStrings;
1566   }
1567 
1568   llvm::GlobalVariable *GV =
1569     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1570                              ".str");
1571   if (isUTF16) {
1572     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1573     GV->setAlignment(Align.getQuantity());
1574   }
1575   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1576 
1577   // String length.
1578   Ty = getTypes().ConvertType(getContext().LongTy);
1579   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1580 
1581   // The struct.
1582   C = llvm::ConstantStruct::get(STy, Fields);
1583   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1584                                 llvm::GlobalVariable::PrivateLinkage, C,
1585                                 "_unnamed_cfstring_");
1586   if (const char *Sect = getContext().Target.getCFStringSection())
1587     GV->setSection(Sect);
1588   Entry.setValue(GV);
1589 
1590   return GV;
1591 }
1592 
1593 /// GetStringForStringLiteral - Return the appropriate bytes for a
1594 /// string literal, properly padded to match the literal type.
1595 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1596   const char *StrData = E->getStrData();
1597   unsigned Len = E->getByteLength();
1598 
1599   const ConstantArrayType *CAT =
1600     getContext().getAsConstantArrayType(E->getType());
1601   assert(CAT && "String isn't pointer or array!");
1602 
1603   // Resize the string to the right size.
1604   std::string Str(StrData, StrData+Len);
1605   uint64_t RealLen = CAT->getSize().getZExtValue();
1606 
1607   if (E->isWide())
1608     RealLen *= getContext().Target.getWCharWidth()/8;
1609 
1610   Str.resize(RealLen, '\0');
1611 
1612   return Str;
1613 }
1614 
1615 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1616 /// constant array for the given string literal.
1617 llvm::Constant *
1618 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1619   // FIXME: This can be more efficient.
1620   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1621   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1622   if (S->isWide()) {
1623     llvm::Type *DestTy =
1624         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1625     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1626   }
1627   return C;
1628 }
1629 
1630 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1631 /// array for the given ObjCEncodeExpr node.
1632 llvm::Constant *
1633 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1634   std::string Str;
1635   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1636 
1637   return GetAddrOfConstantCString(Str);
1638 }
1639 
1640 
1641 /// GenerateWritableString -- Creates storage for a string literal.
1642 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1643                                              bool constant,
1644                                              CodeGenModule &CGM,
1645                                              const char *GlobalName) {
1646   // Create Constant for this string literal. Don't add a '\0'.
1647   llvm::Constant *C =
1648       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1649 
1650   // Create a global variable for this string
1651   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1652                                   llvm::GlobalValue::PrivateLinkage,
1653                                   C, GlobalName);
1654 }
1655 
1656 /// GetAddrOfConstantString - Returns a pointer to a character array
1657 /// containing the literal. This contents are exactly that of the
1658 /// given string, i.e. it will not be null terminated automatically;
1659 /// see GetAddrOfConstantCString. Note that whether the result is
1660 /// actually a pointer to an LLVM constant depends on
1661 /// Feature.WriteableStrings.
1662 ///
1663 /// The result has pointer to array type.
1664 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1665                                                        const char *GlobalName) {
1666   bool IsConstant = !Features.WritableStrings;
1667 
1668   // Get the default prefix if a name wasn't specified.
1669   if (!GlobalName)
1670     GlobalName = ".str";
1671 
1672   // Don't share any string literals if strings aren't constant.
1673   if (!IsConstant)
1674     return GenerateStringLiteral(str, false, *this, GlobalName);
1675 
1676   llvm::StringMapEntry<llvm::Constant *> &Entry =
1677     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1678 
1679   if (Entry.getValue())
1680     return Entry.getValue();
1681 
1682   // Create a global variable for this.
1683   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1684   Entry.setValue(C);
1685   return C;
1686 }
1687 
1688 /// GetAddrOfConstantCString - Returns a pointer to a character
1689 /// array containing the literal and a terminating '\-'
1690 /// character. The result has pointer to array type.
1691 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1692                                                         const char *GlobalName){
1693   return GetAddrOfConstantString(str + '\0', GlobalName);
1694 }
1695 
1696 /// EmitObjCPropertyImplementations - Emit information for synthesized
1697 /// properties for an implementation.
1698 void CodeGenModule::EmitObjCPropertyImplementations(const
1699                                                     ObjCImplementationDecl *D) {
1700   for (ObjCImplementationDecl::propimpl_iterator
1701          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1702     ObjCPropertyImplDecl *PID = *i;
1703 
1704     // Dynamic is just for type-checking.
1705     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1706       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1707 
1708       // Determine which methods need to be implemented, some may have
1709       // been overridden. Note that ::isSynthesized is not the method
1710       // we want, that just indicates if the decl came from a
1711       // property. What we want to know is if the method is defined in
1712       // this implementation.
1713       if (!D->getInstanceMethod(PD->getGetterName()))
1714         CodeGenFunction(*this).GenerateObjCGetter(
1715                                  const_cast<ObjCImplementationDecl *>(D), PID);
1716       if (!PD->isReadOnly() &&
1717           !D->getInstanceMethod(PD->getSetterName()))
1718         CodeGenFunction(*this).GenerateObjCSetter(
1719                                  const_cast<ObjCImplementationDecl *>(D), PID);
1720     }
1721   }
1722 }
1723 
1724 /// EmitNamespace - Emit all declarations in a namespace.
1725 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1726   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1727        I != E; ++I)
1728     EmitTopLevelDecl(*I);
1729 }
1730 
1731 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1732 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1733   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1734       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1735     ErrorUnsupported(LSD, "linkage spec");
1736     return;
1737   }
1738 
1739   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1740        I != E; ++I)
1741     EmitTopLevelDecl(*I);
1742 }
1743 
1744 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1745 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1746   // If an error has occurred, stop code generation, but continue
1747   // parsing and semantic analysis (to ensure all warnings and errors
1748   // are emitted).
1749   if (Diags.hasErrorOccurred())
1750     return;
1751 
1752   // Ignore dependent declarations.
1753   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1754     return;
1755 
1756   switch (D->getKind()) {
1757   case Decl::CXXConversion:
1758   case Decl::CXXMethod:
1759   case Decl::Function:
1760     // Skip function templates
1761     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1762       return;
1763 
1764     EmitGlobal(cast<FunctionDecl>(D));
1765     break;
1766 
1767   case Decl::Var:
1768     EmitGlobal(cast<VarDecl>(D));
1769     break;
1770 
1771   // C++ Decls
1772   case Decl::Namespace:
1773     EmitNamespace(cast<NamespaceDecl>(D));
1774     break;
1775     // No code generation needed.
1776   case Decl::UsingShadow:
1777   case Decl::Using:
1778   case Decl::UsingDirective:
1779   case Decl::ClassTemplate:
1780   case Decl::FunctionTemplate:
1781   case Decl::NamespaceAlias:
1782     break;
1783   case Decl::CXXConstructor:
1784     // Skip function templates
1785     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1786       return;
1787 
1788     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1789     break;
1790   case Decl::CXXDestructor:
1791     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1792     break;
1793 
1794   case Decl::StaticAssert:
1795     // Nothing to do.
1796     break;
1797 
1798   // Objective-C Decls
1799 
1800   // Forward declarations, no (immediate) code generation.
1801   case Decl::ObjCClass:
1802   case Decl::ObjCForwardProtocol:
1803   case Decl::ObjCCategory:
1804   case Decl::ObjCInterface:
1805     break;
1806 
1807   case Decl::ObjCProtocol:
1808     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1809     break;
1810 
1811   case Decl::ObjCCategoryImpl:
1812     // Categories have properties but don't support synthesize so we
1813     // can ignore them here.
1814     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1815     break;
1816 
1817   case Decl::ObjCImplementation: {
1818     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1819     EmitObjCPropertyImplementations(OMD);
1820     Runtime->GenerateClass(OMD);
1821     break;
1822   }
1823   case Decl::ObjCMethod: {
1824     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1825     // If this is not a prototype, emit the body.
1826     if (OMD->getBody())
1827       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1828     break;
1829   }
1830   case Decl::ObjCCompatibleAlias:
1831     // compatibility-alias is a directive and has no code gen.
1832     break;
1833 
1834   case Decl::LinkageSpec:
1835     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1836     break;
1837 
1838   case Decl::FileScopeAsm: {
1839     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1840     llvm::StringRef AsmString = AD->getAsmString()->getString();
1841 
1842     const std::string &S = getModule().getModuleInlineAsm();
1843     if (S.empty())
1844       getModule().setModuleInlineAsm(AsmString);
1845     else
1846       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1847     break;
1848   }
1849 
1850   default:
1851     // Make sure we handled everything we should, every other kind is a
1852     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1853     // function. Need to recode Decl::Kind to do that easily.
1854     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1855   }
1856 }
1857