1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 EmitDeferred(); 66 if (Runtime) 67 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 68 AddGlobalCtor(ObjCInitFunction); 69 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 70 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 71 EmitAnnotations(); 72 EmitLLVMUsed(); 73 } 74 75 /// ErrorUnsupported - Print out an error that codegen doesn't support the 76 /// specified stmt yet. 77 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 78 bool OmitOnError) { 79 if (OmitOnError && getDiags().hasErrorOccurred()) 80 return; 81 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 82 "cannot compile this %0 yet"); 83 std::string Msg = Type; 84 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 85 << Msg << S->getSourceRange(); 86 } 87 88 /// ErrorUnsupported - Print out an error that codegen doesn't support the 89 /// specified decl yet. 90 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 91 bool OmitOnError) { 92 if (OmitOnError && getDiags().hasErrorOccurred()) 93 return; 94 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 95 "cannot compile this %0 yet"); 96 std::string Msg = Type; 97 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 98 } 99 100 LangOptions::VisibilityMode 101 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 102 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 103 if (VD->getStorageClass() == VarDecl::PrivateExtern) 104 return LangOptions::Hidden; 105 106 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 107 switch (attr->getVisibility()) { 108 default: assert(0 && "Unknown visibility!"); 109 case VisibilityAttr::DefaultVisibility: 110 return LangOptions::Default; 111 case VisibilityAttr::HiddenVisibility: 112 return LangOptions::Hidden; 113 case VisibilityAttr::ProtectedVisibility: 114 return LangOptions::Protected; 115 } 116 } 117 118 return getLangOptions().getVisibilityMode(); 119 } 120 121 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 122 const Decl *D) const { 123 // Internal definitions always have default visibility. 124 if (GV->hasLocalLinkage()) { 125 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 126 return; 127 } 128 129 switch (getDeclVisibilityMode(D)) { 130 default: assert(0 && "Unknown visibility!"); 131 case LangOptions::Default: 132 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 133 case LangOptions::Hidden: 134 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 135 case LangOptions::Protected: 136 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 137 } 138 } 139 140 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 141 const NamedDecl *ND = GD.getDecl(); 142 143 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 144 return getMangledCXXCtorName(D, GD.getCtorType()); 145 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 146 return getMangledCXXDtorName(D, GD.getDtorType()); 147 148 return getMangledName(ND); 149 } 150 151 /// \brief Retrieves the mangled name for the given declaration. 152 /// 153 /// If the given declaration requires a mangled name, returns an 154 /// const char* containing the mangled name. Otherwise, returns 155 /// the unmangled name. 156 /// 157 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 158 // In C, functions with no attributes never need to be mangled. Fastpath them. 159 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 160 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 161 return ND->getNameAsCString(); 162 } 163 164 llvm::SmallString<256> Name; 165 llvm::raw_svector_ostream Out(Name); 166 if (!mangleName(ND, Context, Out)) { 167 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 168 return ND->getNameAsCString(); 169 } 170 171 Name += '\0'; 172 return UniqueMangledName(Name.begin(), Name.end()); 173 } 174 175 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 176 const char *NameEnd) { 177 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 178 179 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 180 } 181 182 /// AddGlobalCtor - Add a function to the list that will be called before 183 /// main() runs. 184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 185 // FIXME: Type coercion of void()* types. 186 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 187 } 188 189 /// AddGlobalDtor - Add a function to the list that will be called 190 /// when the module is unloaded. 191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 192 // FIXME: Type coercion of void()* types. 193 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 194 } 195 196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 197 // Ctor function type is void()*. 198 llvm::FunctionType* CtorFTy = 199 VMContext.getFunctionType(llvm::Type::VoidTy, 200 std::vector<const llvm::Type*>(), 201 false); 202 llvm::Type *CtorPFTy = VMContext.getPointerTypeUnqual(CtorFTy); 203 204 // Get the type of a ctor entry, { i32, void ()* }. 205 llvm::StructType* CtorStructTy = 206 VMContext.getStructType(llvm::Type::Int32Ty, 207 VMContext.getPointerTypeUnqual(CtorFTy), NULL); 208 209 // Construct the constructor and destructor arrays. 210 std::vector<llvm::Constant*> Ctors; 211 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 212 std::vector<llvm::Constant*> S; 213 S.push_back( 214 VMContext.getConstantInt(llvm::Type::Int32Ty, I->second, false)); 215 S.push_back(VMContext.getConstantExprBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(VMContext.getConstantStruct(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = VMContext.getArrayType(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 VMContext.getConstantArray(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 VMContext.getConstantArray(VMContext.getArrayType(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // The kind of external linkage this function will have, if it is not 248 // inline or static. 249 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 250 if (Context.getLangOptions().CPlusPlus && 251 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 252 !FD->isExplicitSpecialization()) 253 External = CodeGenModule::GVA_TemplateInstantiation; 254 255 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 256 // C++ member functions defined inside the class are always inline. 257 if (MD->isInline() || !MD->isOutOfLine()) 258 return CodeGenModule::GVA_CXXInline; 259 260 return External; 261 } 262 263 // "static" functions get internal linkage. 264 if (FD->getStorageClass() == FunctionDecl::Static) 265 return CodeGenModule::GVA_Internal; 266 267 if (!FD->isInline()) 268 return External; 269 270 // If the inline function explicitly has the GNU inline attribute on it, or if 271 // this is C89 mode, we use to GNU semantics. 272 if (!Features.C99 && !Features.CPlusPlus) { 273 // extern inline in GNU mode is like C99 inline. 274 if (FD->getStorageClass() == FunctionDecl::Extern) 275 return CodeGenModule::GVA_C99Inline; 276 // Normal inline is a strong symbol. 277 return CodeGenModule::GVA_StrongExternal; 278 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 279 // GCC in C99 mode seems to use a different decision-making 280 // process for extern inline, which factors in previous 281 // declarations. 282 if (FD->isExternGNUInline(Context)) 283 return CodeGenModule::GVA_C99Inline; 284 // Normal inline is a strong symbol. 285 return External; 286 } 287 288 // The definition of inline changes based on the language. Note that we 289 // have already handled "static inline" above, with the GVA_Internal case. 290 if (Features.CPlusPlus) // inline and extern inline. 291 return CodeGenModule::GVA_CXXInline; 292 293 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 294 if (FD->isC99InlineDefinition()) 295 return CodeGenModule::GVA_C99Inline; 296 297 return CodeGenModule::GVA_StrongExternal; 298 } 299 300 /// SetFunctionDefinitionAttributes - Set attributes for a global. 301 /// 302 /// FIXME: This is currently only done for aliases and functions, but not for 303 /// variables (these details are set in EmitGlobalVarDefinition for variables). 304 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 305 llvm::GlobalValue *GV) { 306 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 307 308 if (Linkage == GVA_Internal) { 309 GV->setLinkage(llvm::Function::InternalLinkage); 310 } else if (D->hasAttr<DLLExportAttr>()) { 311 GV->setLinkage(llvm::Function::DLLExportLinkage); 312 } else if (D->hasAttr<WeakAttr>()) { 313 GV->setLinkage(llvm::Function::WeakAnyLinkage); 314 } else if (Linkage == GVA_C99Inline) { 315 // In C99 mode, 'inline' functions are guaranteed to have a strong 316 // definition somewhere else, so we can use available_externally linkage. 317 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 318 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 319 // In C++, the compiler has to emit a definition in every translation unit 320 // that references the function. We should use linkonce_odr because 321 // a) if all references in this translation unit are optimized away, we 322 // don't need to codegen it. b) if the function persists, it needs to be 323 // merged with other definitions. c) C++ has the ODR, so we know the 324 // definition is dependable. 325 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 326 } else { 327 assert(Linkage == GVA_StrongExternal); 328 // Otherwise, we have strong external linkage. 329 GV->setLinkage(llvm::Function::ExternalLinkage); 330 } 331 332 SetCommonAttributes(D, GV); 333 } 334 335 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 336 const CGFunctionInfo &Info, 337 llvm::Function *F) { 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList); 340 341 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 342 AttributeList.size())); 343 344 // Set the appropriate calling convention for the Function. 345 if (D->hasAttr<FastCallAttr>()) 346 F->setCallingConv(llvm::CallingConv::X86_FastCall); 347 348 if (D->hasAttr<StdCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_StdCall); 350 } 351 352 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 353 llvm::Function *F) { 354 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 355 F->addFnAttr(llvm::Attribute::NoUnwind); 356 357 if (D->hasAttr<AlwaysInlineAttr>()) 358 F->addFnAttr(llvm::Attribute::AlwaysInline); 359 360 if (D->hasAttr<NoinlineAttr>()) 361 F->addFnAttr(llvm::Attribute::NoInline); 362 } 363 364 void CodeGenModule::SetCommonAttributes(const Decl *D, 365 llvm::GlobalValue *GV) { 366 setGlobalVisibility(GV, D); 367 368 if (D->hasAttr<UsedAttr>()) 369 AddUsedGlobal(GV); 370 371 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 372 GV->setSection(SA->getName()); 373 } 374 375 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 376 llvm::Function *F, 377 const CGFunctionInfo &FI) { 378 SetLLVMFunctionAttributes(D, FI, F); 379 SetLLVMFunctionAttributesForDefinition(D, F); 380 381 F->setLinkage(llvm::Function::InternalLinkage); 382 383 SetCommonAttributes(D, F); 384 } 385 386 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 387 llvm::Function *F, 388 bool IsIncompleteFunction) { 389 if (!IsIncompleteFunction) 390 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 391 392 // Only a few attributes are set on declarations; these may later be 393 // overridden by a definition. 394 395 if (FD->hasAttr<DLLImportAttr>()) { 396 F->setLinkage(llvm::Function::DLLImportLinkage); 397 } else if (FD->hasAttr<WeakAttr>() || 398 FD->hasAttr<WeakImportAttr>()) { 399 // "extern_weak" is overloaded in LLVM; we probably should have 400 // separate linkage types for this. 401 F->setLinkage(llvm::Function::ExternalWeakLinkage); 402 } else { 403 F->setLinkage(llvm::Function::ExternalLinkage); 404 } 405 406 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 407 F->setSection(SA->getName()); 408 } 409 410 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 411 assert(!GV->isDeclaration() && 412 "Only globals with definition can force usage."); 413 LLVMUsed.push_back(GV); 414 } 415 416 void CodeGenModule::EmitLLVMUsed() { 417 // Don't create llvm.used if there is no need. 418 // FIXME. Runtime indicates that there might be more 'used' symbols; but not 419 // necessariy. So, this test is not accurate for emptiness. 420 if (LLVMUsed.empty() && !Runtime) 421 return; 422 423 llvm::Type *i8PTy = VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty); 424 425 // Convert LLVMUsed to what ConstantArray needs. 426 std::vector<llvm::Constant*> UsedArray; 427 UsedArray.resize(LLVMUsed.size()); 428 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 429 UsedArray[i] = 430 VMContext.getConstantExprBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 431 i8PTy); 432 } 433 434 if (Runtime) 435 Runtime->MergeMetadataGlobals(UsedArray); 436 if (UsedArray.empty()) 437 return; 438 llvm::ArrayType *ATy = VMContext.getArrayType(i8PTy, UsedArray.size()); 439 440 llvm::GlobalVariable *GV = 441 new llvm::GlobalVariable(getModule(), ATy, false, 442 llvm::GlobalValue::AppendingLinkage, 443 VMContext.getConstantArray(ATy, UsedArray), 444 "llvm.used"); 445 446 GV->setSection("llvm.metadata"); 447 } 448 449 void CodeGenModule::EmitDeferred() { 450 // Emit code for any potentially referenced deferred decls. Since a 451 // previously unused static decl may become used during the generation of code 452 // for a static function, iterate until no changes are made. 453 while (!DeferredDeclsToEmit.empty()) { 454 GlobalDecl D = DeferredDeclsToEmit.back(); 455 DeferredDeclsToEmit.pop_back(); 456 457 // The mangled name for the decl must have been emitted in GlobalDeclMap. 458 // Look it up to see if it was defined with a stronger definition (e.g. an 459 // extern inline function with a strong function redefinition). If so, 460 // just ignore the deferred decl. 461 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 462 assert(CGRef && "Deferred decl wasn't referenced?"); 463 464 if (!CGRef->isDeclaration()) 465 continue; 466 467 // Otherwise, emit the definition and move on to the next one. 468 EmitGlobalDefinition(D); 469 } 470 } 471 472 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 473 /// annotation information for a given GlobalValue. The annotation struct is 474 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 475 /// GlobalValue being annotated. The second field is the constant string 476 /// created from the AnnotateAttr's annotation. The third field is a constant 477 /// string containing the name of the translation unit. The fourth field is 478 /// the line number in the file of the annotated value declaration. 479 /// 480 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 481 /// appears to. 482 /// 483 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 484 const AnnotateAttr *AA, 485 unsigned LineNo) { 486 llvm::Module *M = &getModule(); 487 488 // get [N x i8] constants for the annotation string, and the filename string 489 // which are the 2nd and 3rd elements of the global annotation structure. 490 const llvm::Type *SBP = VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty); 491 llvm::Constant *anno = VMContext.getConstantArray(AA->getAnnotation(), true); 492 llvm::Constant *unit = VMContext.getConstantArray(M->getModuleIdentifier(), 493 true); 494 495 // Get the two global values corresponding to the ConstantArrays we just 496 // created to hold the bytes of the strings. 497 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 498 llvm::GlobalValue *annoGV = 499 new llvm::GlobalVariable(*M, anno->getType(), false, 500 llvm::GlobalValue::InternalLinkage, anno, 501 GV->getName() + StringPrefix); 502 // translation unit name string, emitted into the llvm.metadata section. 503 llvm::GlobalValue *unitGV = 504 new llvm::GlobalVariable(*M, unit->getType(), false, 505 llvm::GlobalValue::InternalLinkage, unit, 506 StringPrefix); 507 508 // Create the ConstantStruct for the global annotation. 509 llvm::Constant *Fields[4] = { 510 VMContext.getConstantExprBitCast(GV, SBP), 511 VMContext.getConstantExprBitCast(annoGV, SBP), 512 VMContext.getConstantExprBitCast(unitGV, SBP), 513 VMContext.getConstantInt(llvm::Type::Int32Ty, LineNo) 514 }; 515 return VMContext.getConstantStruct(Fields, 4, false); 516 } 517 518 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 519 // Never defer when EmitAllDecls is specified or the decl has 520 // attribute used. 521 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 522 return false; 523 524 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 525 // Constructors and destructors should never be deferred. 526 if (FD->hasAttr<ConstructorAttr>() || 527 FD->hasAttr<DestructorAttr>()) 528 return false; 529 530 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 531 532 // static, static inline, always_inline, and extern inline functions can 533 // always be deferred. Normal inline functions can be deferred in C99/C++. 534 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 535 Linkage == GVA_CXXInline) 536 return true; 537 return false; 538 } 539 540 const VarDecl *VD = cast<VarDecl>(Global); 541 assert(VD->isFileVarDecl() && "Invalid decl"); 542 543 return VD->getStorageClass() == VarDecl::Static; 544 } 545 546 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 547 const ValueDecl *Global = GD.getDecl(); 548 549 // If this is an alias definition (which otherwise looks like a declaration) 550 // emit it now. 551 if (Global->hasAttr<AliasAttr>()) 552 return EmitAliasDefinition(Global); 553 554 // Ignore declarations, they will be emitted on their first use. 555 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 556 // Forward declarations are emitted lazily on first use. 557 if (!FD->isThisDeclarationADefinition()) 558 return; 559 } else { 560 const VarDecl *VD = cast<VarDecl>(Global); 561 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 562 563 // In C++, if this is marked "extern", defer code generation. 564 if (getLangOptions().CPlusPlus && !VD->getInit() && 565 (VD->getStorageClass() == VarDecl::Extern || 566 VD->isExternC(getContext()))) 567 return; 568 569 // In C, if this isn't a definition, defer code generation. 570 if (!getLangOptions().CPlusPlus && !VD->getInit()) 571 return; 572 } 573 574 // Defer code generation when possible if this is a static definition, inline 575 // function etc. These we only want to emit if they are used. 576 if (MayDeferGeneration(Global)) { 577 // If the value has already been used, add it directly to the 578 // DeferredDeclsToEmit list. 579 const char *MangledName = getMangledName(GD); 580 if (GlobalDeclMap.count(MangledName)) 581 DeferredDeclsToEmit.push_back(GD); 582 else { 583 // Otherwise, remember that we saw a deferred decl with this name. The 584 // first use of the mangled name will cause it to move into 585 // DeferredDeclsToEmit. 586 DeferredDecls[MangledName] = GD; 587 } 588 return; 589 } 590 591 // Otherwise emit the definition. 592 EmitGlobalDefinition(GD); 593 } 594 595 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 596 const ValueDecl *D = GD.getDecl(); 597 598 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 599 EmitCXXConstructor(CD, GD.getCtorType()); 600 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 601 EmitCXXDestructor(DD, GD.getDtorType()); 602 else if (isa<FunctionDecl>(D)) 603 EmitGlobalFunctionDefinition(GD); 604 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 605 EmitGlobalVarDefinition(VD); 606 else { 607 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 608 } 609 } 610 611 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 612 /// module, create and return an llvm Function with the specified type. If there 613 /// is something in the module with the specified name, return it potentially 614 /// bitcasted to the right type. 615 /// 616 /// If D is non-null, it specifies a decl that correspond to this. This is used 617 /// to set the attributes on the function when it is first created. 618 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 619 const llvm::Type *Ty, 620 GlobalDecl D) { 621 // Lookup the entry, lazily creating it if necessary. 622 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 623 if (Entry) { 624 if (Entry->getType()->getElementType() == Ty) 625 return Entry; 626 627 // Make sure the result is of the correct type. 628 const llvm::Type *PTy = VMContext.getPointerTypeUnqual(Ty); 629 return VMContext.getConstantExprBitCast(Entry, PTy); 630 } 631 632 // This is the first use or definition of a mangled name. If there is a 633 // deferred decl with this name, remember that we need to emit it at the end 634 // of the file. 635 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 636 DeferredDecls.find(MangledName); 637 if (DDI != DeferredDecls.end()) { 638 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 639 // list, and remove it from DeferredDecls (since we don't need it anymore). 640 DeferredDeclsToEmit.push_back(DDI->second); 641 DeferredDecls.erase(DDI); 642 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 643 // If this the first reference to a C++ inline function in a class, queue up 644 // the deferred function body for emission. These are not seen as 645 // top-level declarations. 646 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 647 DeferredDeclsToEmit.push_back(D); 648 } 649 650 // This function doesn't have a complete type (for example, the return 651 // type is an incomplete struct). Use a fake type instead, and make 652 // sure not to try to set attributes. 653 bool IsIncompleteFunction = false; 654 if (!isa<llvm::FunctionType>(Ty)) { 655 Ty = VMContext.getFunctionType(llvm::Type::VoidTy, 656 std::vector<const llvm::Type*>(), false); 657 IsIncompleteFunction = true; 658 } 659 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 660 llvm::Function::ExternalLinkage, 661 "", &getModule()); 662 F->setName(MangledName); 663 if (D.getDecl()) 664 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 665 IsIncompleteFunction); 666 Entry = F; 667 return F; 668 } 669 670 /// GetAddrOfFunction - Return the address of the given function. If Ty is 671 /// non-null, then this function will use the specified type if it has to 672 /// create it (this occurs when we see a definition of the function). 673 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 674 const llvm::Type *Ty) { 675 // If there was no specific requested type, just convert it now. 676 if (!Ty) 677 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 678 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 679 } 680 681 /// CreateRuntimeFunction - Create a new runtime function with the specified 682 /// type and name. 683 llvm::Constant * 684 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 685 const char *Name) { 686 // Convert Name to be a uniqued string from the IdentifierInfo table. 687 Name = getContext().Idents.get(Name).getName(); 688 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 689 } 690 691 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 692 /// create and return an llvm GlobalVariable with the specified type. If there 693 /// is something in the module with the specified name, return it potentially 694 /// bitcasted to the right type. 695 /// 696 /// If D is non-null, it specifies a decl that correspond to this. This is used 697 /// to set the attributes on the global when it is first created. 698 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 699 const llvm::PointerType*Ty, 700 const VarDecl *D) { 701 // Lookup the entry, lazily creating it if necessary. 702 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 703 if (Entry) { 704 if (Entry->getType() == Ty) 705 return Entry; 706 707 // Make sure the result is of the correct type. 708 return VMContext.getConstantExprBitCast(Entry, Ty); 709 } 710 711 // This is the first use or definition of a mangled name. If there is a 712 // deferred decl with this name, remember that we need to emit it at the end 713 // of the file. 714 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 715 DeferredDecls.find(MangledName); 716 if (DDI != DeferredDecls.end()) { 717 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 718 // list, and remove it from DeferredDecls (since we don't need it anymore). 719 DeferredDeclsToEmit.push_back(DDI->second); 720 DeferredDecls.erase(DDI); 721 } 722 723 llvm::GlobalVariable *GV = 724 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 725 llvm::GlobalValue::ExternalLinkage, 726 0, "", 0, 727 false, Ty->getAddressSpace()); 728 GV->setName(MangledName); 729 730 // Handle things which are present even on external declarations. 731 if (D) { 732 // FIXME: This code is overly simple and should be merged with other global 733 // handling. 734 GV->setConstant(D->getType().isConstant(Context)); 735 736 // FIXME: Merge with other attribute handling code. 737 if (D->getStorageClass() == VarDecl::PrivateExtern) 738 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 739 740 if (D->hasAttr<WeakAttr>() || 741 D->hasAttr<WeakImportAttr>()) 742 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 743 744 GV->setThreadLocal(D->isThreadSpecified()); 745 } 746 747 return Entry = GV; 748 } 749 750 751 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 752 /// given global variable. If Ty is non-null and if the global doesn't exist, 753 /// then it will be greated with the specified type instead of whatever the 754 /// normal requested type would be. 755 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 756 const llvm::Type *Ty) { 757 assert(D->hasGlobalStorage() && "Not a global variable"); 758 QualType ASTTy = D->getType(); 759 if (Ty == 0) 760 Ty = getTypes().ConvertTypeForMem(ASTTy); 761 762 const llvm::PointerType *PTy = 763 VMContext.getPointerType(Ty, ASTTy.getAddressSpace()); 764 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 765 } 766 767 /// CreateRuntimeVariable - Create a new runtime global variable with the 768 /// specified type and name. 769 llvm::Constant * 770 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 771 const char *Name) { 772 // Convert Name to be a uniqued string from the IdentifierInfo table. 773 Name = getContext().Idents.get(Name).getName(); 774 return GetOrCreateLLVMGlobal(Name, VMContext.getPointerTypeUnqual(Ty), 0); 775 } 776 777 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 778 assert(!D->getInit() && "Cannot emit definite definitions here!"); 779 780 if (MayDeferGeneration(D)) { 781 // If we have not seen a reference to this variable yet, place it 782 // into the deferred declarations table to be emitted if needed 783 // later. 784 const char *MangledName = getMangledName(D); 785 if (GlobalDeclMap.count(MangledName) == 0) { 786 DeferredDecls[MangledName] = GlobalDecl(D); 787 return; 788 } 789 } 790 791 // The tentative definition is the only definition. 792 EmitGlobalVarDefinition(D); 793 } 794 795 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 796 llvm::Constant *Init = 0; 797 QualType ASTTy = D->getType(); 798 799 if (D->getInit() == 0) { 800 // This is a tentative definition; tentative definitions are 801 // implicitly initialized with { 0 }. 802 // 803 // Note that tentative definitions are only emitted at the end of 804 // a translation unit, so they should never have incomplete 805 // type. In addition, EmitTentativeDefinition makes sure that we 806 // never attempt to emit a tentative definition if a real one 807 // exists. A use may still exists, however, so we still may need 808 // to do a RAUW. 809 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 810 Init = getLLVMContext().getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 811 } else { 812 Init = EmitConstantExpr(D->getInit(), D->getType()); 813 if (!Init) { 814 ErrorUnsupported(D, "static initializer"); 815 QualType T = D->getInit()->getType(); 816 Init = VMContext.getUndef(getTypes().ConvertType(T)); 817 } 818 } 819 820 const llvm::Type* InitType = Init->getType(); 821 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 822 823 // Strip off a bitcast if we got one back. 824 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 825 assert(CE->getOpcode() == llvm::Instruction::BitCast); 826 Entry = CE->getOperand(0); 827 } 828 829 // Entry is now either a Function or GlobalVariable. 830 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 831 832 // We have a definition after a declaration with the wrong type. 833 // We must make a new GlobalVariable* and update everything that used OldGV 834 // (a declaration or tentative definition) with the new GlobalVariable* 835 // (which will be a definition). 836 // 837 // This happens if there is a prototype for a global (e.g. 838 // "extern int x[];") and then a definition of a different type (e.g. 839 // "int x[10];"). This also happens when an initializer has a different type 840 // from the type of the global (this happens with unions). 841 if (GV == 0 || 842 GV->getType()->getElementType() != InitType || 843 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 844 845 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 846 GlobalDeclMap.erase(getMangledName(D)); 847 848 // Make a new global with the correct type, this is now guaranteed to work. 849 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 850 GV->takeName(cast<llvm::GlobalValue>(Entry)); 851 852 // Replace all uses of the old global with the new global 853 llvm::Constant *NewPtrForOldDecl = 854 VMContext.getConstantExprBitCast(GV, Entry->getType()); 855 Entry->replaceAllUsesWith(NewPtrForOldDecl); 856 857 // Erase the old global, since it is no longer used. 858 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 859 } 860 861 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 862 SourceManager &SM = Context.getSourceManager(); 863 AddAnnotation(EmitAnnotateAttr(GV, AA, 864 SM.getInstantiationLineNumber(D->getLocation()))); 865 } 866 867 GV->setInitializer(Init); 868 GV->setConstant(D->getType().isConstant(Context)); 869 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 870 871 // Set the llvm linkage type as appropriate. 872 if (D->getStorageClass() == VarDecl::Static) 873 GV->setLinkage(llvm::Function::InternalLinkage); 874 else if (D->hasAttr<DLLImportAttr>()) 875 GV->setLinkage(llvm::Function::DLLImportLinkage); 876 else if (D->hasAttr<DLLExportAttr>()) 877 GV->setLinkage(llvm::Function::DLLExportLinkage); 878 else if (D->hasAttr<WeakAttr>()) 879 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 880 else if (!CompileOpts.NoCommon && 881 (!D->hasExternalStorage() && !D->getInit())) 882 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 883 else 884 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 885 886 SetCommonAttributes(D, GV); 887 888 // Emit global variable debug information. 889 if (CGDebugInfo *DI = getDebugInfo()) { 890 DI->setLocation(D->getLocation()); 891 DI->EmitGlobalVariable(GV, D); 892 } 893 } 894 895 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 896 /// implement a function with no prototype, e.g. "int foo() {}". If there are 897 /// existing call uses of the old function in the module, this adjusts them to 898 /// call the new function directly. 899 /// 900 /// This is not just a cleanup: the always_inline pass requires direct calls to 901 /// functions to be able to inline them. If there is a bitcast in the way, it 902 /// won't inline them. Instcombine normally deletes these calls, but it isn't 903 /// run at -O0. 904 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 905 llvm::Function *NewFn) { 906 // If we're redefining a global as a function, don't transform it. 907 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 908 if (OldFn == 0) return; 909 910 const llvm::Type *NewRetTy = NewFn->getReturnType(); 911 llvm::SmallVector<llvm::Value*, 4> ArgList; 912 913 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 914 UI != E; ) { 915 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 916 unsigned OpNo = UI.getOperandNo(); 917 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 918 if (!CI || OpNo != 0) continue; 919 920 // If the return types don't match exactly, and if the call isn't dead, then 921 // we can't transform this call. 922 if (CI->getType() != NewRetTy && !CI->use_empty()) 923 continue; 924 925 // If the function was passed too few arguments, don't transform. If extra 926 // arguments were passed, we silently drop them. If any of the types 927 // mismatch, we don't transform. 928 unsigned ArgNo = 0; 929 bool DontTransform = false; 930 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 931 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 932 if (CI->getNumOperands()-1 == ArgNo || 933 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 934 DontTransform = true; 935 break; 936 } 937 } 938 if (DontTransform) 939 continue; 940 941 // Okay, we can transform this. Create the new call instruction and copy 942 // over the required information. 943 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 944 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 945 ArgList.end(), "", CI); 946 ArgList.clear(); 947 if (NewCall->getType() != llvm::Type::VoidTy) 948 NewCall->takeName(CI); 949 NewCall->setCallingConv(CI->getCallingConv()); 950 NewCall->setAttributes(CI->getAttributes()); 951 952 // Finally, remove the old call, replacing any uses with the new one. 953 if (!CI->use_empty()) 954 CI->replaceAllUsesWith(NewCall); 955 CI->eraseFromParent(); 956 } 957 } 958 959 960 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 961 const llvm::FunctionType *Ty; 962 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 963 964 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 965 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 966 967 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 968 } else { 969 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 970 971 // As a special case, make sure that definitions of K&R function 972 // "type foo()" aren't declared as varargs (which forces the backend 973 // to do unnecessary work). 974 if (D->getType()->isFunctionNoProtoType()) { 975 assert(Ty->isVarArg() && "Didn't lower type as expected"); 976 // Due to stret, the lowered function could have arguments. 977 // Just create the same type as was lowered by ConvertType 978 // but strip off the varargs bit. 979 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 980 Ty = VMContext.getFunctionType(Ty->getReturnType(), Args, false); 981 } 982 } 983 984 // Get or create the prototype for the function. 985 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 986 987 // Strip off a bitcast if we got one back. 988 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 989 assert(CE->getOpcode() == llvm::Instruction::BitCast); 990 Entry = CE->getOperand(0); 991 } 992 993 994 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 995 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 996 997 // If the types mismatch then we have to rewrite the definition. 998 assert(OldFn->isDeclaration() && 999 "Shouldn't replace non-declaration"); 1000 1001 // F is the Function* for the one with the wrong type, we must make a new 1002 // Function* and update everything that used F (a declaration) with the new 1003 // Function* (which will be a definition). 1004 // 1005 // This happens if there is a prototype for a function 1006 // (e.g. "int f()") and then a definition of a different type 1007 // (e.g. "int f(int x)"). Start by making a new function of the 1008 // correct type, RAUW, then steal the name. 1009 GlobalDeclMap.erase(getMangledName(D)); 1010 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1011 NewFn->takeName(OldFn); 1012 1013 // If this is an implementation of a function without a prototype, try to 1014 // replace any existing uses of the function (which may be calls) with uses 1015 // of the new function 1016 if (D->getType()->isFunctionNoProtoType()) { 1017 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1018 OldFn->removeDeadConstantUsers(); 1019 } 1020 1021 // Replace uses of F with the Function we will endow with a body. 1022 if (!Entry->use_empty()) { 1023 llvm::Constant *NewPtrForOldDecl = 1024 VMContext.getConstantExprBitCast(NewFn, Entry->getType()); 1025 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1026 } 1027 1028 // Ok, delete the old function now, which is dead. 1029 OldFn->eraseFromParent(); 1030 1031 Entry = NewFn; 1032 } 1033 1034 llvm::Function *Fn = cast<llvm::Function>(Entry); 1035 1036 CodeGenFunction(*this).GenerateCode(D, Fn); 1037 1038 SetFunctionDefinitionAttributes(D, Fn); 1039 SetLLVMFunctionAttributesForDefinition(D, Fn); 1040 1041 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1042 AddGlobalCtor(Fn, CA->getPriority()); 1043 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1044 AddGlobalDtor(Fn, DA->getPriority()); 1045 } 1046 1047 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1048 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1049 assert(AA && "Not an alias?"); 1050 1051 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1052 1053 // Unique the name through the identifier table. 1054 const char *AliaseeName = AA->getAliasee().c_str(); 1055 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1056 1057 // Create a reference to the named value. This ensures that it is emitted 1058 // if a deferred decl. 1059 llvm::Constant *Aliasee; 1060 if (isa<llvm::FunctionType>(DeclTy)) 1061 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1062 else 1063 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1064 VMContext.getPointerTypeUnqual(DeclTy), 0); 1065 1066 // Create the new alias itself, but don't set a name yet. 1067 llvm::GlobalValue *GA = 1068 new llvm::GlobalAlias(Aliasee->getType(), 1069 llvm::Function::ExternalLinkage, 1070 "", Aliasee, &getModule()); 1071 1072 // See if there is already something with the alias' name in the module. 1073 const char *MangledName = getMangledName(D); 1074 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1075 1076 if (Entry && !Entry->isDeclaration()) { 1077 // If there is a definition in the module, then it wins over the alias. 1078 // This is dubious, but allow it to be safe. Just ignore the alias. 1079 GA->eraseFromParent(); 1080 return; 1081 } 1082 1083 if (Entry) { 1084 // If there is a declaration in the module, then we had an extern followed 1085 // by the alias, as in: 1086 // extern int test6(); 1087 // ... 1088 // int test6() __attribute__((alias("test7"))); 1089 // 1090 // Remove it and replace uses of it with the alias. 1091 1092 Entry->replaceAllUsesWith(VMContext.getConstantExprBitCast(GA, 1093 Entry->getType())); 1094 Entry->eraseFromParent(); 1095 } 1096 1097 // Now we know that there is no conflict, set the name. 1098 Entry = GA; 1099 GA->setName(MangledName); 1100 1101 // Set attributes which are particular to an alias; this is a 1102 // specialization of the attributes which may be set on a global 1103 // variable/function. 1104 if (D->hasAttr<DLLExportAttr>()) { 1105 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1106 // The dllexport attribute is ignored for undefined symbols. 1107 if (FD->getBody()) 1108 GA->setLinkage(llvm::Function::DLLExportLinkage); 1109 } else { 1110 GA->setLinkage(llvm::Function::DLLExportLinkage); 1111 } 1112 } else if (D->hasAttr<WeakAttr>() || 1113 D->hasAttr<WeakImportAttr>()) { 1114 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1115 } 1116 1117 SetCommonAttributes(D, GA); 1118 } 1119 1120 /// getBuiltinLibFunction - Given a builtin id for a function like 1121 /// "__builtin_fabsf", return a Function* for "fabsf". 1122 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1123 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1124 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1125 "isn't a lib fn"); 1126 1127 // Get the name, skip over the __builtin_ prefix (if necessary). 1128 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1129 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1130 Name += 10; 1131 1132 // Get the type for the builtin. 1133 ASTContext::GetBuiltinTypeError Error; 1134 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1135 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1136 1137 const llvm::FunctionType *Ty = 1138 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1139 1140 // Unique the name through the identifier table. 1141 Name = getContext().Idents.get(Name).getName(); 1142 // FIXME: param attributes for sext/zext etc. 1143 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1144 } 1145 1146 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1147 unsigned NumTys) { 1148 return llvm::Intrinsic::getDeclaration(&getModule(), 1149 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1150 } 1151 1152 llvm::Function *CodeGenModule::getMemCpyFn() { 1153 if (MemCpyFn) return MemCpyFn; 1154 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1155 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1156 } 1157 1158 llvm::Function *CodeGenModule::getMemMoveFn() { 1159 if (MemMoveFn) return MemMoveFn; 1160 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1161 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1162 } 1163 1164 llvm::Function *CodeGenModule::getMemSetFn() { 1165 if (MemSetFn) return MemSetFn; 1166 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1167 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1168 } 1169 1170 static void appendFieldAndPadding(CodeGenModule &CGM, 1171 std::vector<llvm::Constant*>& Fields, 1172 FieldDecl *FieldD, FieldDecl *NextFieldD, 1173 llvm::Constant* Field, 1174 RecordDecl* RD, const llvm::StructType *STy) { 1175 // Append the field. 1176 Fields.push_back(Field); 1177 1178 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1179 1180 int NextStructFieldNo; 1181 if (!NextFieldD) { 1182 NextStructFieldNo = STy->getNumElements(); 1183 } else { 1184 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1185 } 1186 1187 // Append padding 1188 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1189 llvm::Constant *C = 1190 CGM.getLLVMContext().getNullValue(STy->getElementType(StructFieldNo + 1)); 1191 1192 Fields.push_back(C); 1193 } 1194 } 1195 1196 llvm::Constant *CodeGenModule:: 1197 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1198 std::string str; 1199 unsigned StringLength = 0; 1200 1201 bool isUTF16 = false; 1202 if (Literal->containsNonAsciiOrNull()) { 1203 // Convert from UTF-8 to UTF-16. 1204 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1205 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1206 UTF16 *ToPtr = &ToBuf[0]; 1207 1208 ConversionResult Result; 1209 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1210 &ToPtr, ToPtr+Literal->getByteLength(), 1211 strictConversion); 1212 if (Result == conversionOK) { 1213 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1214 // without doing more surgery to this routine. Since we aren't explicitly 1215 // checking for endianness here, it's also a bug (when generating code for 1216 // a target that doesn't match the host endianness). Modeling this as an 1217 // i16 array is likely the cleanest solution. 1218 StringLength = ToPtr-&ToBuf[0]; 1219 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1220 isUTF16 = true; 1221 } else if (Result == sourceIllegal) { 1222 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1223 str.assign(Literal->getStrData(), Literal->getByteLength()); 1224 StringLength = str.length(); 1225 } else 1226 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1227 1228 } else { 1229 str.assign(Literal->getStrData(), Literal->getByteLength()); 1230 StringLength = str.length(); 1231 } 1232 llvm::StringMapEntry<llvm::Constant *> &Entry = 1233 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1234 1235 if (llvm::Constant *C = Entry.getValue()) 1236 return C; 1237 1238 llvm::Constant *Zero = getLLVMContext().getNullValue(llvm::Type::Int32Ty); 1239 llvm::Constant *Zeros[] = { Zero, Zero }; 1240 1241 if (!CFConstantStringClassRef) { 1242 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1243 Ty = VMContext.getArrayType(Ty, 0); 1244 1245 // FIXME: This is fairly broken if __CFConstantStringClassReference is 1246 // already defined, in that it will get renamed and the user will most 1247 // likely see an opaque error message. This is a general issue with relying 1248 // on particular names. 1249 llvm::GlobalVariable *GV = 1250 new llvm::GlobalVariable(getModule(), Ty, false, 1251 llvm::GlobalVariable::ExternalLinkage, 0, 1252 "__CFConstantStringClassReference"); 1253 1254 // Decay array -> ptr 1255 CFConstantStringClassRef = 1256 VMContext.getConstantExprGetElementPtr(GV, Zeros, 2); 1257 } 1258 1259 QualType CFTy = getContext().getCFConstantStringType(); 1260 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1261 1262 const llvm::StructType *STy = 1263 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1264 1265 std::vector<llvm::Constant*> Fields; 1266 RecordDecl::field_iterator Field = CFRD->field_begin(); 1267 1268 // Class pointer. 1269 FieldDecl *CurField = *Field++; 1270 FieldDecl *NextField = *Field++; 1271 appendFieldAndPadding(*this, Fields, CurField, NextField, 1272 CFConstantStringClassRef, CFRD, STy); 1273 1274 // Flags. 1275 CurField = NextField; 1276 NextField = *Field++; 1277 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1278 appendFieldAndPadding(*this, Fields, CurField, NextField, 1279 isUTF16 ? VMContext.getConstantInt(Ty, 0x07d0) 1280 : VMContext.getConstantInt(Ty, 0x07C8), 1281 CFRD, STy); 1282 1283 // String pointer. 1284 CurField = NextField; 1285 NextField = *Field++; 1286 llvm::Constant *C = VMContext.getConstantArray(str); 1287 1288 const char *Sect, *Prefix; 1289 bool isConstant; 1290 if (isUTF16) { 1291 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1292 Sect = getContext().Target.getUnicodeStringSection(); 1293 // FIXME: Why does GCC not set constant here? 1294 isConstant = false; 1295 } else { 1296 Prefix = getContext().Target.getStringSymbolPrefix(true); 1297 Sect = getContext().Target.getCFStringDataSection(); 1298 // FIXME: -fwritable-strings should probably affect this, but we 1299 // are following gcc here. 1300 isConstant = true; 1301 } 1302 llvm::GlobalVariable *GV = 1303 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1304 llvm::GlobalValue::InternalLinkage, 1305 C, Prefix); 1306 if (Sect) 1307 GV->setSection(Sect); 1308 if (isUTF16) { 1309 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1310 GV->setAlignment(Align); 1311 } 1312 appendFieldAndPadding(*this, Fields, CurField, NextField, 1313 VMContext.getConstantExprGetElementPtr(GV, Zeros, 2), 1314 CFRD, STy); 1315 1316 // String length. 1317 CurField = NextField; 1318 NextField = 0; 1319 Ty = getTypes().ConvertType(getContext().LongTy); 1320 appendFieldAndPadding(*this, Fields, CurField, NextField, 1321 VMContext.getConstantInt(Ty, StringLength), CFRD, STy); 1322 1323 // The struct. 1324 C = VMContext.getConstantStruct(STy, Fields); 1325 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1326 llvm::GlobalVariable::InternalLinkage, C, 1327 getContext().Target.getCFStringSymbolPrefix()); 1328 if (const char *Sect = getContext().Target.getCFStringSection()) 1329 GV->setSection(Sect); 1330 Entry.setValue(GV); 1331 1332 return GV; 1333 } 1334 1335 /// GetStringForStringLiteral - Return the appropriate bytes for a 1336 /// string literal, properly padded to match the literal type. 1337 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1338 const char *StrData = E->getStrData(); 1339 unsigned Len = E->getByteLength(); 1340 1341 const ConstantArrayType *CAT = 1342 getContext().getAsConstantArrayType(E->getType()); 1343 assert(CAT && "String isn't pointer or array!"); 1344 1345 // Resize the string to the right size. 1346 std::string Str(StrData, StrData+Len); 1347 uint64_t RealLen = CAT->getSize().getZExtValue(); 1348 1349 if (E->isWide()) 1350 RealLen *= getContext().Target.getWCharWidth()/8; 1351 1352 Str.resize(RealLen, '\0'); 1353 1354 return Str; 1355 } 1356 1357 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1358 /// constant array for the given string literal. 1359 llvm::Constant * 1360 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1361 // FIXME: This can be more efficient. 1362 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1363 } 1364 1365 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1366 /// array for the given ObjCEncodeExpr node. 1367 llvm::Constant * 1368 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1369 std::string Str; 1370 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1371 1372 return GetAddrOfConstantCString(Str); 1373 } 1374 1375 1376 /// GenerateWritableString -- Creates storage for a string literal. 1377 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1378 bool constant, 1379 CodeGenModule &CGM, 1380 const char *GlobalName) { 1381 // Create Constant for this string literal. Don't add a '\0'. 1382 llvm::Constant *C = CGM.getLLVMContext().getConstantArray(str, false); 1383 1384 // Create a global variable for this string 1385 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1386 llvm::GlobalValue::InternalLinkage, 1387 C, GlobalName); 1388 } 1389 1390 /// GetAddrOfConstantString - Returns a pointer to a character array 1391 /// containing the literal. This contents are exactly that of the 1392 /// given string, i.e. it will not be null terminated automatically; 1393 /// see GetAddrOfConstantCString. Note that whether the result is 1394 /// actually a pointer to an LLVM constant depends on 1395 /// Feature.WriteableStrings. 1396 /// 1397 /// The result has pointer to array type. 1398 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1399 const char *GlobalName) { 1400 bool IsConstant = !Features.WritableStrings; 1401 1402 // Get the default prefix if a name wasn't specified. 1403 if (!GlobalName) 1404 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1405 1406 // Don't share any string literals if strings aren't constant. 1407 if (!IsConstant) 1408 return GenerateStringLiteral(str, false, *this, GlobalName); 1409 1410 llvm::StringMapEntry<llvm::Constant *> &Entry = 1411 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1412 1413 if (Entry.getValue()) 1414 return Entry.getValue(); 1415 1416 // Create a global variable for this. 1417 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1418 Entry.setValue(C); 1419 return C; 1420 } 1421 1422 /// GetAddrOfConstantCString - Returns a pointer to a character 1423 /// array containing the literal and a terminating '\-' 1424 /// character. The result has pointer to array type. 1425 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1426 const char *GlobalName){ 1427 return GetAddrOfConstantString(str + '\0', GlobalName); 1428 } 1429 1430 /// EmitObjCPropertyImplementations - Emit information for synthesized 1431 /// properties for an implementation. 1432 void CodeGenModule::EmitObjCPropertyImplementations(const 1433 ObjCImplementationDecl *D) { 1434 for (ObjCImplementationDecl::propimpl_iterator 1435 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1436 ObjCPropertyImplDecl *PID = *i; 1437 1438 // Dynamic is just for type-checking. 1439 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1440 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1441 1442 // Determine which methods need to be implemented, some may have 1443 // been overridden. Note that ::isSynthesized is not the method 1444 // we want, that just indicates if the decl came from a 1445 // property. What we want to know is if the method is defined in 1446 // this implementation. 1447 if (!D->getInstanceMethod(PD->getGetterName())) 1448 CodeGenFunction(*this).GenerateObjCGetter( 1449 const_cast<ObjCImplementationDecl *>(D), PID); 1450 if (!PD->isReadOnly() && 1451 !D->getInstanceMethod(PD->getSetterName())) 1452 CodeGenFunction(*this).GenerateObjCSetter( 1453 const_cast<ObjCImplementationDecl *>(D), PID); 1454 } 1455 } 1456 } 1457 1458 /// EmitNamespace - Emit all declarations in a namespace. 1459 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1460 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1461 I != E; ++I) 1462 EmitTopLevelDecl(*I); 1463 } 1464 1465 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1466 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1467 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1468 ErrorUnsupported(LSD, "linkage spec"); 1469 return; 1470 } 1471 1472 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1473 I != E; ++I) 1474 EmitTopLevelDecl(*I); 1475 } 1476 1477 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1478 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1479 // If an error has occurred, stop code generation, but continue 1480 // parsing and semantic analysis (to ensure all warnings and errors 1481 // are emitted). 1482 if (Diags.hasErrorOccurred()) 1483 return; 1484 1485 // Ignore dependent declarations. 1486 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1487 return; 1488 1489 switch (D->getKind()) { 1490 case Decl::CXXMethod: 1491 case Decl::Function: 1492 // Skip function templates 1493 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1494 return; 1495 1496 // Fall through 1497 1498 case Decl::Var: 1499 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1500 break; 1501 1502 // C++ Decls 1503 case Decl::Namespace: 1504 EmitNamespace(cast<NamespaceDecl>(D)); 1505 break; 1506 // No code generation needed. 1507 case Decl::Using: 1508 case Decl::ClassTemplate: 1509 case Decl::FunctionTemplate: 1510 break; 1511 case Decl::CXXConstructor: 1512 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1513 break; 1514 case Decl::CXXDestructor: 1515 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1516 break; 1517 1518 case Decl::StaticAssert: 1519 // Nothing to do. 1520 break; 1521 1522 // Objective-C Decls 1523 1524 // Forward declarations, no (immediate) code generation. 1525 case Decl::ObjCClass: 1526 case Decl::ObjCForwardProtocol: 1527 case Decl::ObjCCategory: 1528 case Decl::ObjCInterface: 1529 break; 1530 1531 case Decl::ObjCProtocol: 1532 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1533 break; 1534 1535 case Decl::ObjCCategoryImpl: 1536 // Categories have properties but don't support synthesize so we 1537 // can ignore them here. 1538 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1539 break; 1540 1541 case Decl::ObjCImplementation: { 1542 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1543 EmitObjCPropertyImplementations(OMD); 1544 Runtime->GenerateClass(OMD); 1545 break; 1546 } 1547 case Decl::ObjCMethod: { 1548 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1549 // If this is not a prototype, emit the body. 1550 if (OMD->getBody()) 1551 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1552 break; 1553 } 1554 case Decl::ObjCCompatibleAlias: 1555 // compatibility-alias is a directive and has no code gen. 1556 break; 1557 1558 case Decl::LinkageSpec: 1559 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1560 break; 1561 1562 case Decl::FileScopeAsm: { 1563 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1564 std::string AsmString(AD->getAsmString()->getStrData(), 1565 AD->getAsmString()->getByteLength()); 1566 1567 const std::string &S = getModule().getModuleInlineAsm(); 1568 if (S.empty()) 1569 getModule().setModuleInlineAsm(AsmString); 1570 else 1571 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1572 break; 1573 } 1574 1575 default: 1576 // Make sure we handled everything we should, every other kind is a 1577 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1578 // function. Need to recode Decl::Kind to do that easily. 1579 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1580 } 1581 } 1582