1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
160 }
161 
162 /// AddGlobalCtor - Add a function to the list that will be called before
163 /// main() runs.
164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
165   // FIXME: Type coercion of void()* types.
166   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
167 }
168 
169 /// AddGlobalDtor - Add a function to the list that will be called
170 /// when the module is unloaded.
171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
174 }
175 
176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
177   // Ctor function type is void()*.
178   llvm::FunctionType* CtorFTy =
179     llvm::FunctionType::get(llvm::Type::VoidTy,
180                             std::vector<const llvm::Type*>(),
181                             false);
182   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
183 
184   // Get the type of a ctor entry, { i32, void ()* }.
185   llvm::StructType* CtorStructTy =
186     llvm::StructType::get(llvm::Type::Int32Ty,
187                           llvm::PointerType::getUnqual(CtorFTy), NULL);
188 
189   // Construct the constructor and destructor arrays.
190   std::vector<llvm::Constant*> Ctors;
191   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
192     std::vector<llvm::Constant*> S;
193     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
194     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
195     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
196   }
197 
198   if (!Ctors.empty()) {
199     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
200     new llvm::GlobalVariable(AT, false,
201                              llvm::GlobalValue::AppendingLinkage,
202                              llvm::ConstantArray::get(AT, Ctors),
203                              GlobalName,
204                              &TheModule);
205   }
206 }
207 
208 void CodeGenModule::EmitAnnotations() {
209   if (Annotations.empty())
210     return;
211 
212   // Create a new global variable for the ConstantStruct in the Module.
213   llvm::Constant *Array =
214   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
215                                                 Annotations.size()),
216                            Annotations);
217   llvm::GlobalValue *gv =
218   new llvm::GlobalVariable(Array->getType(), false,
219                            llvm::GlobalValue::AppendingLinkage, Array,
220                            "llvm.global.annotations", &TheModule);
221   gv->setSection("llvm.metadata");
222 }
223 
224 /// SetGlobalValueAttributes - Set attributes for a global.
225 ///
226 /// FIXME: This is currently only done for aliases and functions, but
227 /// not for variables (these details are set in
228 /// EmitGlobalVarDefinition for variables).
229 void CodeGenModule::SetGlobalValueAttributes(const Decl *D,
230                                              GVALinkage Linkage,
231                                              llvm::GlobalValue *GV,
232                                              bool ForDefinition) {
233   // FIXME: Set up linkage and many other things.  Note, this is a simple
234   // approximation of what we really want.
235   if (!ForDefinition) {
236     // Only a few attributes are set on declarations.
237 
238     // The dllimport attribute is overridden by a subsequent declaration as
239     // dllexport.
240     if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
241       // dllimport attribute can be applied only to function decls, not to
242       // definitions.
243       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
244         if (!FD->getBody())
245           GV->setLinkage(llvm::Function::DLLImportLinkage);
246       } else
247         GV->setLinkage(llvm::Function::DLLImportLinkage);
248     } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
249       // "extern_weak" is overloaded in LLVM; we probably should have
250       // separate linkage types for this.
251       GV->setLinkage(llvm::Function::ExternalWeakLinkage);
252     }
253   } else if (Linkage == GVA_Internal) {
254     GV->setLinkage(llvm::Function::InternalLinkage);
255   } else if (D->hasAttr<DLLExportAttr>()) {
256     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
257       // The dllexport attribute is ignored for undefined symbols.
258       if (FD->getBody())
259         GV->setLinkage(llvm::Function::DLLExportLinkage);
260     } else {
261       GV->setLinkage(llvm::Function::DLLExportLinkage);
262     }
263   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
264     GV->setLinkage(llvm::Function::WeakAnyLinkage);
265   } else if (Linkage == GVA_ExternInline) {
266     // "extern inline" always gets available_externally linkage, which is the
267     // strongest linkage type we can give an inline function: we don't have to
268     // codegen the definition at all, yet we know that it is "ODR".
269     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
270   } else if (Linkage == GVA_Inline) {
271     // The definition of inline changes based on the language.  Note that we
272     // have already handled "static inline" above, with the GVA_Internal case.
273     if (Features.CPlusPlus) {
274       // In C++, the compiler has to emit a definition in every translation unit
275       // that references the function.  We should use linkonce_odr because
276       // a) if all references in this translation unit are optimized away, we
277       // don't need to codegen it.  b) if the function persists, it needs to be
278       // merged with other definitions. c) C++ has the ODR, so we know the
279       // definition is dependable.
280       GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
281     } else if (Features.C99) {
282       // In C99 mode, 'inline' functions are guaranteed to have a strong
283       // definition somewhere else, so we can use available_externally linkage.
284       GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
285     } else {
286       // In C89 mode, an 'inline' function may only occur in one translation
287       // unit in the program, but may be extern'd in others.  Give it strong
288       // external linkage.
289       GV->setLinkage(llvm::Function::ExternalLinkage);
290     }
291   }
292 
293   if (ForDefinition) {
294     setGlobalVisibility(GV, D);
295 
296     // Only add to llvm.used when we see a definition, otherwise we
297     // might add it multiple times or risk the value being replaced by
298     // a subsequent RAUW.
299     if (D->hasAttr<UsedAttr>())
300       AddUsedGlobal(GV);
301   }
302 
303   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
304     GV->setSection(SA->getName());
305 }
306 
307 void CodeGenModule::SetFunctionAttributes(const Decl *D,
308                                           const CGFunctionInfo &Info,
309                                           llvm::Function *F) {
310   AttributeListType AttributeList;
311   ConstructAttributeList(Info, D, AttributeList);
312 
313   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
314                                         AttributeList.size()));
315 
316   // Set the appropriate calling convention for the Function.
317   if (D->hasAttr<FastCallAttr>())
318     F->setCallingConv(llvm::CallingConv::X86_FastCall);
319 
320   if (D->hasAttr<StdCallAttr>())
321     F->setCallingConv(llvm::CallingConv::X86_StdCall);
322 }
323 
324 
325 static CodeGenModule::GVALinkage
326 GetLinkageForFunctionOrMethodDecl(const Decl *D) {
327   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
328     // "static" and attr(always_inline) functions get internal linkage.
329     if (FD->getStorageClass() == FunctionDecl::Static ||
330         FD->hasAttr<AlwaysInlineAttr>())
331       return CodeGenModule::GVA_Internal;
332     if (FD->isInline()) {
333       if (FD->getStorageClass() == FunctionDecl::Extern)
334         return CodeGenModule::GVA_ExternInline;
335       return CodeGenModule::GVA_Inline;
336     }
337   } else {
338     assert(isa<ObjCMethodDecl>(D));
339     return CodeGenModule::GVA_Internal;
340   }
341   return CodeGenModule::GVA_Normal;
342 }
343 
344 /// SetFunctionAttributesForDefinition - Set function attributes
345 /// specific to a function definition.
346 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
347                                                        llvm::Function *F) {
348   SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true);
349 
350   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
351     F->addFnAttr(llvm::Attribute::NoUnwind);
352 
353   if (D->hasAttr<AlwaysInlineAttr>())
354     F->addFnAttr(llvm::Attribute::AlwaysInline);
355 
356   if (D->hasAttr<NoinlineAttr>())
357     F->addFnAttr(llvm::Attribute::NoInline);
358 }
359 
360 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
361                                         llvm::Function *F) {
362   SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
363 
364   SetFunctionAttributesForDefinition(MD, F);
365 }
366 
367 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
368                                           llvm::Function *F) {
369   SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
370 
371   SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false);
372 }
373 
374 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
375   assert(!GV->isDeclaration() &&
376          "Only globals with definition can force usage.");
377   LLVMUsed.push_back(GV);
378 }
379 
380 void CodeGenModule::EmitLLVMUsed() {
381   // Don't create llvm.used if there is no need.
382   if (LLVMUsed.empty())
383     return;
384 
385   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
386   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
387 
388   // Convert LLVMUsed to what ConstantArray needs.
389   std::vector<llvm::Constant*> UsedArray;
390   UsedArray.resize(LLVMUsed.size());
391   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
392     UsedArray[i] =
393      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
394   }
395 
396   llvm::GlobalVariable *GV =
397     new llvm::GlobalVariable(ATy, false,
398                              llvm::GlobalValue::AppendingLinkage,
399                              llvm::ConstantArray::get(ATy, UsedArray),
400                              "llvm.used", &getModule());
401 
402   GV->setSection("llvm.metadata");
403 }
404 
405 void CodeGenModule::EmitDeferred() {
406   // Emit code for any potentially referenced deferred decls.  Since a
407   // previously unused static decl may become used during the generation of code
408   // for a static function, iterate until no  changes are made.
409   while (!DeferredDeclsToEmit.empty()) {
410     const ValueDecl *D = DeferredDeclsToEmit.back();
411     DeferredDeclsToEmit.pop_back();
412 
413     // The mangled name for the decl must have been emitted in GlobalDeclMap.
414     // Look it up to see if it was defined with a stronger definition (e.g. an
415     // extern inline function with a strong function redefinition).  If so,
416     // just ignore the deferred decl.
417     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
418     assert(CGRef && "Deferred decl wasn't referenced?");
419 
420     if (!CGRef->isDeclaration())
421       continue;
422 
423     // Otherwise, emit the definition and move on to the next one.
424     EmitGlobalDefinition(D);
425   }
426 }
427 
428 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
429 /// annotation information for a given GlobalValue.  The annotation struct is
430 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
431 /// GlobalValue being annotated.  The second field is the constant string
432 /// created from the AnnotateAttr's annotation.  The third field is a constant
433 /// string containing the name of the translation unit.  The fourth field is
434 /// the line number in the file of the annotated value declaration.
435 ///
436 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
437 ///        appears to.
438 ///
439 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
440                                                 const AnnotateAttr *AA,
441                                                 unsigned LineNo) {
442   llvm::Module *M = &getModule();
443 
444   // get [N x i8] constants for the annotation string, and the filename string
445   // which are the 2nd and 3rd elements of the global annotation structure.
446   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
447   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
448   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
449                                                   true);
450 
451   // Get the two global values corresponding to the ConstantArrays we just
452   // created to hold the bytes of the strings.
453   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
454   llvm::GlobalValue *annoGV =
455   new llvm::GlobalVariable(anno->getType(), false,
456                            llvm::GlobalValue::InternalLinkage, anno,
457                            GV->getName() + StringPrefix, M);
458   // translation unit name string, emitted into the llvm.metadata section.
459   llvm::GlobalValue *unitGV =
460   new llvm::GlobalVariable(unit->getType(), false,
461                            llvm::GlobalValue::InternalLinkage, unit,
462                            StringPrefix, M);
463 
464   // Create the ConstantStruct that is the global annotion.
465   llvm::Constant *Fields[4] = {
466     llvm::ConstantExpr::getBitCast(GV, SBP),
467     llvm::ConstantExpr::getBitCast(annoGV, SBP),
468     llvm::ConstantExpr::getBitCast(unitGV, SBP),
469     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
470   };
471   return llvm::ConstantStruct::get(Fields, 4, false);
472 }
473 
474 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
475   // Never defer when EmitAllDecls is specified or the decl has
476   // attribute used.
477   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
478     return false;
479 
480   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
481     // Constructors and destructors should never be deferred.
482     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
483       return false;
484 
485     // FIXME: What about inline, and/or extern inline?
486     if (FD->getStorageClass() != FunctionDecl::Static)
487       return false;
488   } else {
489     const VarDecl *VD = cast<VarDecl>(Global);
490     assert(VD->isFileVarDecl() && "Invalid decl");
491 
492     if (VD->getStorageClass() != VarDecl::Static)
493       return false;
494   }
495 
496   return true;
497 }
498 
499 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
500   // If this is an alias definition (which otherwise looks like a declaration)
501   // emit it now.
502   if (Global->hasAttr<AliasAttr>())
503     return EmitAliasDefinition(Global);
504 
505   // Ignore declarations, they will be emitted on their first use.
506   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
507     // Forward declarations are emitted lazily on first use.
508     if (!FD->isThisDeclarationADefinition())
509       return;
510   } else {
511     const VarDecl *VD = cast<VarDecl>(Global);
512     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
513 
514     // Forward declarations are emitted lazily on first use.
515     if (!VD->getInit() && VD->hasExternalStorage())
516       return;
517   }
518 
519   // Defer code generation when possible if this is a static definition, inline
520   // function etc.  These we only want to emit if they are used.
521   if (MayDeferGeneration(Global)) {
522     // If the value has already been used, add it directly to the
523     // DeferredDeclsToEmit list.
524     const char *MangledName = getMangledName(Global);
525     if (GlobalDeclMap.count(MangledName))
526       DeferredDeclsToEmit.push_back(Global);
527     else {
528       // Otherwise, remember that we saw a deferred decl with this name.  The
529       // first use of the mangled name will cause it to move into
530       // DeferredDeclsToEmit.
531       DeferredDecls[MangledName] = Global;
532     }
533     return;
534   }
535 
536   // Otherwise emit the definition.
537   EmitGlobalDefinition(Global);
538 }
539 
540 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
541   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
542     EmitGlobalFunctionDefinition(FD);
543   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
544     EmitGlobalVarDefinition(VD);
545   } else {
546     assert(0 && "Invalid argument to EmitGlobalDefinition()");
547   }
548 }
549 
550 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
551 /// module, create and return an llvm Function with the specified type. If there
552 /// is something in the module with the specified name, return it potentially
553 /// bitcasted to the right type.
554 ///
555 /// If D is non-null, it specifies a decl that correspond to this.  This is used
556 /// to set the attributes on the function when it is first created.
557 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
558                                                        const llvm::Type *Ty,
559                                                        const FunctionDecl *D) {
560   // Lookup the entry, lazily creating it if necessary.
561   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
562   if (Entry) {
563     if (Entry->getType()->getElementType() == Ty)
564       return Entry;
565 
566     // Make sure the result is of the correct type.
567     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
568     return llvm::ConstantExpr::getBitCast(Entry, PTy);
569   }
570 
571   // This is the first use or definition of a mangled name.  If there is a
572   // deferred decl with this name, remember that we need to emit it at the end
573   // of the file.
574   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
575   DeferredDecls.find(MangledName);
576   if (DDI != DeferredDecls.end()) {
577     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
578     // list, and remove it from DeferredDecls (since we don't need it anymore).
579     DeferredDeclsToEmit.push_back(DDI->second);
580     DeferredDecls.erase(DDI);
581   }
582 
583   // This function doesn't have a complete type (for example, the return
584   // type is an incomplete struct). Use a fake type instead, and make
585   // sure not to try to set attributes.
586   bool ShouldSetAttributes = true;
587   if (!isa<llvm::FunctionType>(Ty)) {
588     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
589                                  std::vector<const llvm::Type*>(), false);
590     ShouldSetAttributes = false;
591   }
592   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
593                                              llvm::Function::ExternalLinkage,
594                                              "", &getModule());
595   F->setName(MangledName);
596   if (D && ShouldSetAttributes)
597     SetFunctionAttributes(D, F);
598   Entry = F;
599   return F;
600 }
601 
602 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
603 /// non-null, then this function will use the specified type if it has to
604 /// create it (this occurs when we see a definition of the function).
605 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
606                                                  const llvm::Type *Ty) {
607   // If there was no specific requested type, just convert it now.
608   if (!Ty)
609     Ty = getTypes().ConvertType(D->getType());
610   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
611 }
612 
613 /// CreateRuntimeFunction - Create a new runtime function with the specified
614 /// type and name.
615 llvm::Constant *
616 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
617                                      const char *Name) {
618   // Convert Name to be a uniqued string from the IdentifierInfo table.
619   Name = getContext().Idents.get(Name).getName();
620   return GetOrCreateLLVMFunction(Name, FTy, 0);
621 }
622 
623 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
624 /// create and return an llvm GlobalVariable with the specified type.  If there
625 /// is something in the module with the specified name, return it potentially
626 /// bitcasted to the right type.
627 ///
628 /// If D is non-null, it specifies a decl that correspond to this.  This is used
629 /// to set the attributes on the global when it is first created.
630 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
631                                                      const llvm::PointerType*Ty,
632                                                      const VarDecl *D) {
633   // Lookup the entry, lazily creating it if necessary.
634   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
635   if (Entry) {
636     if (Entry->getType() == Ty)
637       return Entry;
638 
639     // Make sure the result is of the correct type.
640     return llvm::ConstantExpr::getBitCast(Entry, Ty);
641   }
642 
643   // We don't support __thread yet.
644   if (D && D->isThreadSpecified())
645     ErrorUnsupported(D, "thread local ('__thread') variable", true);
646 
647   // This is the first use or definition of a mangled name.  If there is a
648   // deferred decl with this name, remember that we need to emit it at the end
649   // of the file.
650   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
651     DeferredDecls.find(MangledName);
652   if (DDI != DeferredDecls.end()) {
653     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
654     // list, and remove it from DeferredDecls (since we don't need it anymore).
655     DeferredDeclsToEmit.push_back(DDI->second);
656     DeferredDecls.erase(DDI);
657   }
658 
659   llvm::GlobalVariable *GV =
660     new llvm::GlobalVariable(Ty->getElementType(), false,
661                              llvm::GlobalValue::ExternalLinkage,
662                              0, "", &getModule(),
663                              0, Ty->getAddressSpace());
664   GV->setName(MangledName);
665 
666   // Handle things which are present even on external declarations.
667   if (D) {
668     // FIXME: This code is overly simple and should be merged with
669     // other global handling.
670     GV->setConstant(D->getType().isConstant(Context));
671 
672     // FIXME: Merge with other attribute handling code.
673     if (D->getStorageClass() == VarDecl::PrivateExtern)
674       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
675 
676     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
677       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
678   }
679 
680   return Entry = GV;
681 }
682 
683 
684 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
685 /// given global variable.  If Ty is non-null and if the global doesn't exist,
686 /// then it will be greated with the specified type instead of whatever the
687 /// normal requested type would be.
688 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
689                                                   const llvm::Type *Ty) {
690   assert(D->hasGlobalStorage() && "Not a global variable");
691   QualType ASTTy = D->getType();
692   if (Ty == 0)
693     Ty = getTypes().ConvertTypeForMem(ASTTy);
694 
695   const llvm::PointerType *PTy =
696     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
697   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
698 }
699 
700 /// CreateRuntimeVariable - Create a new runtime global variable with the
701 /// specified type and name.
702 llvm::Constant *
703 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
704                                      const char *Name) {
705   // Convert Name to be a uniqued string from the IdentifierInfo table.
706   Name = getContext().Idents.get(Name).getName();
707   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
708 }
709 
710 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
711   llvm::Constant *Init = 0;
712   QualType ASTTy = D->getType();
713 
714   if (D->getInit() == 0) {
715     // This is a tentative definition; tentative definitions are
716     // implicitly initialized with { 0 }
717     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
718     if (ASTTy->isIncompleteArrayType()) {
719       // An incomplete array is normally [ TYPE x 0 ], but we need
720       // to fix it to [ TYPE x 1 ].
721       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
722       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
723     }
724     Init = llvm::Constant::getNullValue(InitTy);
725   } else {
726     Init = EmitConstantExpr(D->getInit(), D->getType());
727     if (!Init) {
728       ErrorUnsupported(D, "static initializer");
729       QualType T = D->getInit()->getType();
730       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
731     }
732   }
733 
734   const llvm::Type* InitType = Init->getType();
735   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
736 
737   // Strip off a bitcast if we got one back.
738   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
739     assert(CE->getOpcode() == llvm::Instruction::BitCast);
740     Entry = CE->getOperand(0);
741   }
742 
743   // Entry is now either a Function or GlobalVariable.
744   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
745 
746   // If we already have this global and it has an initializer, then
747   // we are in the rare situation where we emitted the defining
748   // declaration of the global and are now being asked to emit a
749   // definition which would be common. This occurs, for example, in
750   // the following situation because statics can be emitted out of
751   // order:
752   //
753   //  static int x;
754   //  static int *y = &x;
755   //  static int x = 10;
756   //  int **z = &y;
757   //
758   // Bail here so we don't blow away the definition. Note that if we
759   // can't distinguish here if we emitted a definition with a null
760   // initializer, but this case is safe.
761   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
762     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
763     return;
764   }
765 
766   // We have a definition after a declaration with the wrong type.
767   // We must make a new GlobalVariable* and update everything that used OldGV
768   // (a declaration or tentative definition) with the new GlobalVariable*
769   // (which will be a definition).
770   //
771   // This happens if there is a prototype for a global (e.g.
772   // "extern int x[];") and then a definition of a different type (e.g.
773   // "int x[10];"). This also happens when an initializer has a different type
774   // from the type of the global (this happens with unions).
775   if (GV == 0 ||
776       GV->getType()->getElementType() != InitType ||
777       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
778 
779     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
780     GlobalDeclMap.erase(getMangledName(D));
781 
782     // Make a new global with the correct type, this is now guaranteed to work.
783     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
784     GV->takeName(cast<llvm::GlobalValue>(Entry));
785 
786     // Replace all uses of the old global with the new global
787     llvm::Constant *NewPtrForOldDecl =
788         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
789     Entry->replaceAllUsesWith(NewPtrForOldDecl);
790 
791     // Erase the old global, since it is no longer used.
792     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
793   }
794 
795   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
796     SourceManager &SM = Context.getSourceManager();
797     AddAnnotation(EmitAnnotateAttr(GV, AA,
798                               SM.getInstantiationLineNumber(D->getLocation())));
799   }
800 
801   GV->setInitializer(Init);
802   GV->setConstant(D->getType().isConstant(Context));
803   GV->setAlignment(getContext().getDeclAlignInBytes(D));
804 
805   // Set the llvm linkage type as appropriate.
806   if (D->getStorageClass() == VarDecl::Static)
807     GV->setLinkage(llvm::Function::InternalLinkage);
808   else if (D->hasAttr<DLLImportAttr>())
809     GV->setLinkage(llvm::Function::DLLImportLinkage);
810   else if (D->hasAttr<DLLExportAttr>())
811     GV->setLinkage(llvm::Function::DLLExportLinkage);
812   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
813     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
814   else if (!CompileOpts.NoCommon &&
815            (!D->hasExternalStorage() && !D->getInit()))
816     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
817   else
818     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
819 
820   setGlobalVisibility(GV, D);
821 
822   if (D->hasAttr<UsedAttr>())
823     AddUsedGlobal(GV);
824 
825   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
826     GV->setSection(SA->getName());
827 
828   // Emit global variable debug information.
829   if (CGDebugInfo *DI = getDebugInfo()) {
830     DI->setLocation(D->getLocation());
831     DI->EmitGlobalVariable(GV, D);
832   }
833 }
834 
835 
836 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
837   const llvm::FunctionType *Ty;
838 
839   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
840     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
841 
842     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
843   } else {
844     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
845 
846     // As a special case, make sure that definitions of K&R function
847     // "type foo()" aren't declared as varargs (which forces the backend
848     // to do unnecessary work).
849     if (D->getType()->isFunctionNoProtoType()) {
850       assert(Ty->isVarArg() && "Didn't lower type as expected");
851       // Due to stret, the lowered function could have arguments.
852       // Just create the same type as was lowered by ConvertType
853       // but strip off the varargs bit.
854       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
855       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
856     }
857   }
858 
859   // Get or create the prototype for teh function.
860   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
861 
862   // Strip off a bitcast if we got one back.
863   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
864     assert(CE->getOpcode() == llvm::Instruction::BitCast);
865     Entry = CE->getOperand(0);
866   }
867 
868 
869   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
870     // If the types mismatch then we have to rewrite the definition.
871     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
872            "Shouldn't replace non-declaration");
873 
874     // F is the Function* for the one with the wrong type, we must make a new
875     // Function* and update everything that used F (a declaration) with the new
876     // Function* (which will be a definition).
877     //
878     // This happens if there is a prototype for a function
879     // (e.g. "int f()") and then a definition of a different type
880     // (e.g. "int f(int x)").  Start by making a new function of the
881     // correct type, RAUW, then steal the name.
882     GlobalDeclMap.erase(getMangledName(D));
883     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
884     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
885 
886     // Replace uses of F with the Function we will endow with a body.
887     llvm::Constant *NewPtrForOldDecl =
888       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
889     Entry->replaceAllUsesWith(NewPtrForOldDecl);
890 
891     // Ok, delete the old function now, which is dead.
892     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
893 
894     Entry = NewFn;
895   }
896 
897   llvm::Function *Fn = cast<llvm::Function>(Entry);
898 
899   CodeGenFunction(*this).GenerateCode(D, Fn);
900 
901   SetFunctionAttributesForDefinition(D, Fn);
902 
903   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
904     AddGlobalCtor(Fn, CA->getPriority());
905   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
906     AddGlobalDtor(Fn, DA->getPriority());
907 }
908 
909 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
910   const AliasAttr *AA = D->getAttr<AliasAttr>();
911   assert(AA && "Not an alias?");
912 
913   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
914 
915   // Unique the name through the identifier table.
916   const char *AliaseeName = AA->getAliasee().c_str();
917   AliaseeName = getContext().Idents.get(AliaseeName).getName();
918 
919   // Create a reference to the named value.  This ensures that it is emitted
920   // if a deferred decl.
921   llvm::Constant *Aliasee;
922   if (isa<llvm::FunctionType>(DeclTy))
923     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
924   else
925     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
926                                     llvm::PointerType::getUnqual(DeclTy), 0);
927 
928   // Create the new alias itself, but don't set a name yet.
929   llvm::GlobalValue *GA =
930     new llvm::GlobalAlias(Aliasee->getType(),
931                           llvm::Function::ExternalLinkage,
932                           "", Aliasee, &getModule());
933 
934   // See if there is already something with the alias' name in the module.
935   const char *MangledName = getMangledName(D);
936   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
937 
938   if (Entry && !Entry->isDeclaration()) {
939     // If there is a definition in the module, then it wins over the alias.
940     // This is dubious, but allow it to be safe.  Just ignore the alias.
941     GA->eraseFromParent();
942     return;
943   }
944 
945   if (Entry) {
946     // If there is a declaration in the module, then we had an extern followed
947     // by the alias, as in:
948     //   extern int test6();
949     //   ...
950     //   int test6() __attribute__((alias("test7")));
951     //
952     // Remove it and replace uses of it with the alias.
953 
954     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
955                                                           Entry->getType()));
956     Entry->eraseFromParent();
957   }
958 
959   // Now we know that there is no conflict, set the name.
960   Entry = GA;
961   GA->setName(MangledName);
962 
963   // Alias should never be internal or inline.
964   SetGlobalValueAttributes(D, GVA_Normal, GA, true);
965 }
966 
967 /// getBuiltinLibFunction - Given a builtin id for a function like
968 /// "__builtin_fabsf", return a Function* for "fabsf".
969 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
970   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
971           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
972          "isn't a lib fn");
973 
974   // Get the name, skip over the __builtin_ prefix (if necessary).
975   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
976   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
977     Name += 10;
978 
979   // Get the type for the builtin.
980   Builtin::Context::GetBuiltinTypeError Error;
981   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
982   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
983 
984   const llvm::FunctionType *Ty =
985     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
986 
987   // Unique the name through the identifier table.
988   Name = getContext().Idents.get(Name).getName();
989   // FIXME: param attributes for sext/zext etc.
990   return GetOrCreateLLVMFunction(Name, Ty, 0);
991 }
992 
993 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
994                                             unsigned NumTys) {
995   return llvm::Intrinsic::getDeclaration(&getModule(),
996                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
997 }
998 
999 llvm::Function *CodeGenModule::getMemCpyFn() {
1000   if (MemCpyFn) return MemCpyFn;
1001   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1002   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1003 }
1004 
1005 llvm::Function *CodeGenModule::getMemMoveFn() {
1006   if (MemMoveFn) return MemMoveFn;
1007   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1008   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1009 }
1010 
1011 llvm::Function *CodeGenModule::getMemSetFn() {
1012   if (MemSetFn) return MemSetFn;
1013   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1014   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1015 }
1016 
1017 static void appendFieldAndPadding(CodeGenModule &CGM,
1018                                   std::vector<llvm::Constant*>& Fields,
1019                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1020                                   llvm::Constant* Field,
1021                                   RecordDecl* RD, const llvm::StructType *STy) {
1022   // Append the field.
1023   Fields.push_back(Field);
1024 
1025   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1026 
1027   int NextStructFieldNo;
1028   if (!NextFieldD) {
1029     NextStructFieldNo = STy->getNumElements();
1030   } else {
1031     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1032   }
1033 
1034   // Append padding
1035   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1036     llvm::Constant *C =
1037       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1038 
1039     Fields.push_back(C);
1040   }
1041 }
1042 
1043 llvm::Constant *CodeGenModule::
1044 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1045   std::string str;
1046   unsigned StringLength;
1047 
1048   bool isUTF16 = false;
1049   if (Literal->containsNonAsciiOrNull()) {
1050     // Convert from UTF-8 to UTF-16.
1051     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1052     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1053     UTF16 *ToPtr = &ToBuf[0];
1054 
1055     ConversionResult Result;
1056     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1057                                 &ToPtr, ToPtr+Literal->getByteLength(),
1058                                 strictConversion);
1059     if (Result == conversionOK) {
1060       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1061       // without doing more surgery to this routine. Since we aren't explicitly
1062       // checking for endianness here, it's also a bug (when generating code for
1063       // a target that doesn't match the host endianness). Modeling this as an
1064       // i16 array is likely the cleanest solution.
1065       StringLength = ToPtr-&ToBuf[0];
1066       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1067       isUTF16 = true;
1068     } else if (Result == sourceIllegal) {
1069       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1070       str.assign(Literal->getStrData(), Literal->getByteLength());
1071       StringLength = str.length();
1072     } else
1073       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1074 
1075   } else {
1076     str.assign(Literal->getStrData(), Literal->getByteLength());
1077     StringLength = str.length();
1078   }
1079   llvm::StringMapEntry<llvm::Constant *> &Entry =
1080     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1081 
1082   if (llvm::Constant *C = Entry.getValue())
1083     return C;
1084 
1085   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1086   llvm::Constant *Zeros[] = { Zero, Zero };
1087 
1088   if (!CFConstantStringClassRef) {
1089     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1090     Ty = llvm::ArrayType::get(Ty, 0);
1091 
1092     // FIXME: This is fairly broken if
1093     // __CFConstantStringClassReference is already defined, in that it
1094     // will get renamed and the user will most likely see an opaque
1095     // error message. This is a general issue with relying on
1096     // particular names.
1097     llvm::GlobalVariable *GV =
1098       new llvm::GlobalVariable(Ty, false,
1099                                llvm::GlobalVariable::ExternalLinkage, 0,
1100                                "__CFConstantStringClassReference",
1101                                &getModule());
1102 
1103     // Decay array -> ptr
1104     CFConstantStringClassRef =
1105       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1106   }
1107 
1108   QualType CFTy = getContext().getCFConstantStringType();
1109   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1110 
1111   const llvm::StructType *STy =
1112     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1113 
1114   std::vector<llvm::Constant*> Fields;
1115   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1116 
1117   // Class pointer.
1118   FieldDecl *CurField = *Field++;
1119   FieldDecl *NextField = *Field++;
1120   appendFieldAndPadding(*this, Fields, CurField, NextField,
1121                         CFConstantStringClassRef, CFRD, STy);
1122 
1123   // Flags.
1124   CurField = NextField;
1125   NextField = *Field++;
1126   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1127   appendFieldAndPadding(*this, Fields, CurField, NextField,
1128                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1129                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1130                         CFRD, STy);
1131 
1132   // String pointer.
1133   CurField = NextField;
1134   NextField = *Field++;
1135   llvm::Constant *C = llvm::ConstantArray::get(str);
1136 
1137   const char *Sect, *Prefix;
1138   bool isConstant;
1139   if (isUTF16) {
1140     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1141     Sect = getContext().Target.getUnicodeStringSection();
1142     // FIXME: Why does GCC not set constant here?
1143     isConstant = false;
1144   } else {
1145     Prefix = getContext().Target.getStringSymbolPrefix(true);
1146     Sect = getContext().Target.getCFStringDataSection();
1147     // FIXME: -fwritable-strings should probably affect this, but we
1148     // are following gcc here.
1149     isConstant = true;
1150   }
1151   llvm::GlobalVariable *GV =
1152     new llvm::GlobalVariable(C->getType(), isConstant,
1153                              llvm::GlobalValue::InternalLinkage,
1154                              C, Prefix, &getModule());
1155   if (Sect)
1156     GV->setSection(Sect);
1157   if (isUTF16) {
1158     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1159     GV->setAlignment(Align);
1160   }
1161   appendFieldAndPadding(*this, Fields, CurField, NextField,
1162                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1163                         CFRD, STy);
1164 
1165   // String length.
1166   CurField = NextField;
1167   NextField = 0;
1168   Ty = getTypes().ConvertType(getContext().LongTy);
1169   appendFieldAndPadding(*this, Fields, CurField, NextField,
1170                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1171 
1172   // The struct.
1173   C = llvm::ConstantStruct::get(STy, Fields);
1174   GV = new llvm::GlobalVariable(C->getType(), true,
1175                                 llvm::GlobalVariable::InternalLinkage, C,
1176                                 getContext().Target.getCFStringSymbolPrefix(),
1177                                 &getModule());
1178   if (const char *Sect = getContext().Target.getCFStringSection())
1179     GV->setSection(Sect);
1180   Entry.setValue(GV);
1181 
1182   return GV;
1183 }
1184 
1185 /// GetStringForStringLiteral - Return the appropriate bytes for a
1186 /// string literal, properly padded to match the literal type.
1187 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1188   const char *StrData = E->getStrData();
1189   unsigned Len = E->getByteLength();
1190 
1191   const ConstantArrayType *CAT =
1192     getContext().getAsConstantArrayType(E->getType());
1193   assert(CAT && "String isn't pointer or array!");
1194 
1195   // Resize the string to the right size.
1196   std::string Str(StrData, StrData+Len);
1197   uint64_t RealLen = CAT->getSize().getZExtValue();
1198 
1199   if (E->isWide())
1200     RealLen *= getContext().Target.getWCharWidth()/8;
1201 
1202   Str.resize(RealLen, '\0');
1203 
1204   return Str;
1205 }
1206 
1207 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1208 /// constant array for the given string literal.
1209 llvm::Constant *
1210 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1211   // FIXME: This can be more efficient.
1212   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1213 }
1214 
1215 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1216 /// array for the given ObjCEncodeExpr node.
1217 llvm::Constant *
1218 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1219   std::string Str;
1220   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1221 
1222   return GetAddrOfConstantCString(Str);
1223 }
1224 
1225 
1226 /// GenerateWritableString -- Creates storage for a string literal.
1227 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1228                                              bool constant,
1229                                              CodeGenModule &CGM,
1230                                              const char *GlobalName) {
1231   // Create Constant for this string literal. Don't add a '\0'.
1232   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1233 
1234   // Create a global variable for this string
1235   return new llvm::GlobalVariable(C->getType(), constant,
1236                                   llvm::GlobalValue::InternalLinkage,
1237                                   C, GlobalName, &CGM.getModule());
1238 }
1239 
1240 /// GetAddrOfConstantString - Returns a pointer to a character array
1241 /// containing the literal. This contents are exactly that of the
1242 /// given string, i.e. it will not be null terminated automatically;
1243 /// see GetAddrOfConstantCString. Note that whether the result is
1244 /// actually a pointer to an LLVM constant depends on
1245 /// Feature.WriteableStrings.
1246 ///
1247 /// The result has pointer to array type.
1248 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1249                                                        const char *GlobalName) {
1250   bool IsConstant = !Features.WritableStrings;
1251 
1252   // Get the default prefix if a name wasn't specified.
1253   if (!GlobalName)
1254     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1255 
1256   // Don't share any string literals if strings aren't constant.
1257   if (!IsConstant)
1258     return GenerateStringLiteral(str, false, *this, GlobalName);
1259 
1260   llvm::StringMapEntry<llvm::Constant *> &Entry =
1261   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1262 
1263   if (Entry.getValue())
1264     return Entry.getValue();
1265 
1266   // Create a global variable for this.
1267   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1268   Entry.setValue(C);
1269   return C;
1270 }
1271 
1272 /// GetAddrOfConstantCString - Returns a pointer to a character
1273 /// array containing the literal and a terminating '\-'
1274 /// character. The result has pointer to array type.
1275 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1276                                                         const char *GlobalName){
1277   return GetAddrOfConstantString(str + '\0', GlobalName);
1278 }
1279 
1280 /// EmitObjCPropertyImplementations - Emit information for synthesized
1281 /// properties for an implementation.
1282 void CodeGenModule::EmitObjCPropertyImplementations(const
1283                                                     ObjCImplementationDecl *D) {
1284   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1285          e = D->propimpl_end(); i != e; ++i) {
1286     ObjCPropertyImplDecl *PID = *i;
1287 
1288     // Dynamic is just for type-checking.
1289     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1290       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1291 
1292       // Determine which methods need to be implemented, some may have
1293       // been overridden. Note that ::isSynthesized is not the method
1294       // we want, that just indicates if the decl came from a
1295       // property. What we want to know is if the method is defined in
1296       // this implementation.
1297       if (!D->getInstanceMethod(PD->getGetterName()))
1298         CodeGenFunction(*this).GenerateObjCGetter(
1299                                  const_cast<ObjCImplementationDecl *>(D), PID);
1300       if (!PD->isReadOnly() &&
1301           !D->getInstanceMethod(PD->getSetterName()))
1302         CodeGenFunction(*this).GenerateObjCSetter(
1303                                  const_cast<ObjCImplementationDecl *>(D), PID);
1304     }
1305   }
1306 }
1307 
1308 /// EmitNamespace - Emit all declarations in a namespace.
1309 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1310   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1311          E = ND->decls_end(getContext());
1312        I != E; ++I)
1313     EmitTopLevelDecl(*I);
1314 }
1315 
1316 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1317 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1318   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1319     ErrorUnsupported(LSD, "linkage spec");
1320     return;
1321   }
1322 
1323   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1324          E = LSD->decls_end(getContext());
1325        I != E; ++I)
1326     EmitTopLevelDecl(*I);
1327 }
1328 
1329 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1330 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1331   // If an error has occurred, stop code generation, but continue
1332   // parsing and semantic analysis (to ensure all warnings and errors
1333   // are emitted).
1334   if (Diags.hasErrorOccurred())
1335     return;
1336 
1337   switch (D->getKind()) {
1338   case Decl::CXXMethod:
1339   case Decl::Function:
1340   case Decl::Var:
1341     EmitGlobal(cast<ValueDecl>(D));
1342     break;
1343 
1344   case Decl::Namespace:
1345     EmitNamespace(cast<NamespaceDecl>(D));
1346     break;
1347 
1348     // Objective-C Decls
1349 
1350   // Forward declarations, no (immediate) code generation.
1351   case Decl::ObjCClass:
1352   case Decl::ObjCForwardProtocol:
1353   case Decl::ObjCCategory:
1354     break;
1355   case Decl::ObjCInterface:
1356     // If we already laid out this interface due to an @class, and if we
1357     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1358     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1359     break;
1360 
1361   case Decl::ObjCProtocol:
1362     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1363     break;
1364 
1365   case Decl::ObjCCategoryImpl:
1366     // Categories have properties but don't support synthesize so we
1367     // can ignore them here.
1368     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1369     break;
1370 
1371   case Decl::ObjCImplementation: {
1372     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1373     EmitObjCPropertyImplementations(OMD);
1374     Runtime->GenerateClass(OMD);
1375     break;
1376   }
1377   case Decl::ObjCMethod: {
1378     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1379     // If this is not a prototype, emit the body.
1380     if (OMD->getBody())
1381       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1382     break;
1383   }
1384   case Decl::ObjCCompatibleAlias:
1385     // compatibility-alias is a directive and has no code gen.
1386     break;
1387 
1388   case Decl::LinkageSpec:
1389     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1390     break;
1391 
1392   case Decl::FileScopeAsm: {
1393     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1394     std::string AsmString(AD->getAsmString()->getStrData(),
1395                           AD->getAsmString()->getByteLength());
1396 
1397     const std::string &S = getModule().getModuleInlineAsm();
1398     if (S.empty())
1399       getModule().setModuleInlineAsm(AsmString);
1400     else
1401       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1402     break;
1403   }
1404 
1405   default:
1406     // Make sure we handled everything we should, every other kind is
1407     // a non-top-level decl.  FIXME: Would be nice to have an
1408     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1409     // that easily.
1410     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1411   }
1412 }
1413