1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 160 } 161 162 /// AddGlobalCtor - Add a function to the list that will be called before 163 /// main() runs. 164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 165 // FIXME: Type coercion of void()* types. 166 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 167 } 168 169 /// AddGlobalDtor - Add a function to the list that will be called 170 /// when the module is unloaded. 171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 174 } 175 176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 177 // Ctor function type is void()*. 178 llvm::FunctionType* CtorFTy = 179 llvm::FunctionType::get(llvm::Type::VoidTy, 180 std::vector<const llvm::Type*>(), 181 false); 182 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 183 184 // Get the type of a ctor entry, { i32, void ()* }. 185 llvm::StructType* CtorStructTy = 186 llvm::StructType::get(llvm::Type::Int32Ty, 187 llvm::PointerType::getUnqual(CtorFTy), NULL); 188 189 // Construct the constructor and destructor arrays. 190 std::vector<llvm::Constant*> Ctors; 191 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 192 std::vector<llvm::Constant*> S; 193 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 194 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 195 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 196 } 197 198 if (!Ctors.empty()) { 199 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 200 new llvm::GlobalVariable(AT, false, 201 llvm::GlobalValue::AppendingLinkage, 202 llvm::ConstantArray::get(AT, Ctors), 203 GlobalName, 204 &TheModule); 205 } 206 } 207 208 void CodeGenModule::EmitAnnotations() { 209 if (Annotations.empty()) 210 return; 211 212 // Create a new global variable for the ConstantStruct in the Module. 213 llvm::Constant *Array = 214 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 215 Annotations.size()), 216 Annotations); 217 llvm::GlobalValue *gv = 218 new llvm::GlobalVariable(Array->getType(), false, 219 llvm::GlobalValue::AppendingLinkage, Array, 220 "llvm.global.annotations", &TheModule); 221 gv->setSection("llvm.metadata"); 222 } 223 224 /// SetGlobalValueAttributes - Set attributes for a global. 225 /// 226 /// FIXME: This is currently only done for aliases and functions, but 227 /// not for variables (these details are set in 228 /// EmitGlobalVarDefinition for variables). 229 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 230 GVALinkage Linkage, 231 llvm::GlobalValue *GV, 232 bool ForDefinition) { 233 // FIXME: Set up linkage and many other things. Note, this is a simple 234 // approximation of what we really want. 235 if (!ForDefinition) { 236 // Only a few attributes are set on declarations. 237 238 // The dllimport attribute is overridden by a subsequent declaration as 239 // dllexport. 240 if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 241 // dllimport attribute can be applied only to function decls, not to 242 // definitions. 243 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 244 if (!FD->getBody()) 245 GV->setLinkage(llvm::Function::DLLImportLinkage); 246 } else 247 GV->setLinkage(llvm::Function::DLLImportLinkage); 248 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 249 // "extern_weak" is overloaded in LLVM; we probably should have 250 // separate linkage types for this. 251 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 252 } 253 } else if (Linkage == GVA_Internal) { 254 GV->setLinkage(llvm::Function::InternalLinkage); 255 } else if (D->hasAttr<DLLExportAttr>()) { 256 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 257 // The dllexport attribute is ignored for undefined symbols. 258 if (FD->getBody()) 259 GV->setLinkage(llvm::Function::DLLExportLinkage); 260 } else { 261 GV->setLinkage(llvm::Function::DLLExportLinkage); 262 } 263 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 264 GV->setLinkage(llvm::Function::WeakAnyLinkage); 265 } else if (Linkage == GVA_ExternInline) { 266 // "extern inline" always gets available_externally linkage, which is the 267 // strongest linkage type we can give an inline function: we don't have to 268 // codegen the definition at all, yet we know that it is "ODR". 269 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 270 } else if (Linkage == GVA_Inline) { 271 // The definition of inline changes based on the language. Note that we 272 // have already handled "static inline" above, with the GVA_Internal case. 273 if (Features.CPlusPlus) { 274 // In C++, the compiler has to emit a definition in every translation unit 275 // that references the function. We should use linkonce_odr because 276 // a) if all references in this translation unit are optimized away, we 277 // don't need to codegen it. b) if the function persists, it needs to be 278 // merged with other definitions. c) C++ has the ODR, so we know the 279 // definition is dependable. 280 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 281 } else if (Features.C99) { 282 // In C99 mode, 'inline' functions are guaranteed to have a strong 283 // definition somewhere else, so we can use available_externally linkage. 284 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 285 } else { 286 // In C89 mode, an 'inline' function may only occur in one translation 287 // unit in the program, but may be extern'd in others. Give it strong 288 // external linkage. 289 GV->setLinkage(llvm::Function::ExternalLinkage); 290 } 291 } 292 293 if (ForDefinition) { 294 setGlobalVisibility(GV, D); 295 296 // Only add to llvm.used when we see a definition, otherwise we 297 // might add it multiple times or risk the value being replaced by 298 // a subsequent RAUW. 299 if (D->hasAttr<UsedAttr>()) 300 AddUsedGlobal(GV); 301 } 302 303 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 304 GV->setSection(SA->getName()); 305 } 306 307 void CodeGenModule::SetFunctionAttributes(const Decl *D, 308 const CGFunctionInfo &Info, 309 llvm::Function *F) { 310 AttributeListType AttributeList; 311 ConstructAttributeList(Info, D, AttributeList); 312 313 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 314 AttributeList.size())); 315 316 // Set the appropriate calling convention for the Function. 317 if (D->hasAttr<FastCallAttr>()) 318 F->setCallingConv(llvm::CallingConv::X86_FastCall); 319 320 if (D->hasAttr<StdCallAttr>()) 321 F->setCallingConv(llvm::CallingConv::X86_StdCall); 322 } 323 324 325 static CodeGenModule::GVALinkage 326 GetLinkageForFunctionOrMethodDecl(const Decl *D) { 327 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 328 // "static" and attr(always_inline) functions get internal linkage. 329 if (FD->getStorageClass() == FunctionDecl::Static || 330 FD->hasAttr<AlwaysInlineAttr>()) 331 return CodeGenModule::GVA_Internal; 332 if (FD->isInline()) { 333 if (FD->getStorageClass() == FunctionDecl::Extern) 334 return CodeGenModule::GVA_ExternInline; 335 return CodeGenModule::GVA_Inline; 336 } 337 } else { 338 assert(isa<ObjCMethodDecl>(D)); 339 return CodeGenModule::GVA_Internal; 340 } 341 return CodeGenModule::GVA_Normal; 342 } 343 344 /// SetFunctionAttributesForDefinition - Set function attributes 345 /// specific to a function definition. 346 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 347 llvm::Function *F) { 348 SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true); 349 350 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 351 F->addFnAttr(llvm::Attribute::NoUnwind); 352 353 if (D->hasAttr<AlwaysInlineAttr>()) 354 F->addFnAttr(llvm::Attribute::AlwaysInline); 355 356 if (D->hasAttr<NoinlineAttr>()) 357 F->addFnAttr(llvm::Attribute::NoInline); 358 } 359 360 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 361 llvm::Function *F) { 362 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 363 364 SetFunctionAttributesForDefinition(MD, F); 365 } 366 367 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 368 llvm::Function *F) { 369 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 370 371 SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false); 372 } 373 374 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 375 assert(!GV->isDeclaration() && 376 "Only globals with definition can force usage."); 377 LLVMUsed.push_back(GV); 378 } 379 380 void CodeGenModule::EmitLLVMUsed() { 381 // Don't create llvm.used if there is no need. 382 if (LLVMUsed.empty()) 383 return; 384 385 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 386 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 387 388 // Convert LLVMUsed to what ConstantArray needs. 389 std::vector<llvm::Constant*> UsedArray; 390 UsedArray.resize(LLVMUsed.size()); 391 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 392 UsedArray[i] = 393 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 394 } 395 396 llvm::GlobalVariable *GV = 397 new llvm::GlobalVariable(ATy, false, 398 llvm::GlobalValue::AppendingLinkage, 399 llvm::ConstantArray::get(ATy, UsedArray), 400 "llvm.used", &getModule()); 401 402 GV->setSection("llvm.metadata"); 403 } 404 405 void CodeGenModule::EmitDeferred() { 406 // Emit code for any potentially referenced deferred decls. Since a 407 // previously unused static decl may become used during the generation of code 408 // for a static function, iterate until no changes are made. 409 while (!DeferredDeclsToEmit.empty()) { 410 const ValueDecl *D = DeferredDeclsToEmit.back(); 411 DeferredDeclsToEmit.pop_back(); 412 413 // The mangled name for the decl must have been emitted in GlobalDeclMap. 414 // Look it up to see if it was defined with a stronger definition (e.g. an 415 // extern inline function with a strong function redefinition). If so, 416 // just ignore the deferred decl. 417 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 418 assert(CGRef && "Deferred decl wasn't referenced?"); 419 420 if (!CGRef->isDeclaration()) 421 continue; 422 423 // Otherwise, emit the definition and move on to the next one. 424 EmitGlobalDefinition(D); 425 } 426 } 427 428 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 429 /// annotation information for a given GlobalValue. The annotation struct is 430 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 431 /// GlobalValue being annotated. The second field is the constant string 432 /// created from the AnnotateAttr's annotation. The third field is a constant 433 /// string containing the name of the translation unit. The fourth field is 434 /// the line number in the file of the annotated value declaration. 435 /// 436 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 437 /// appears to. 438 /// 439 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 440 const AnnotateAttr *AA, 441 unsigned LineNo) { 442 llvm::Module *M = &getModule(); 443 444 // get [N x i8] constants for the annotation string, and the filename string 445 // which are the 2nd and 3rd elements of the global annotation structure. 446 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 447 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 448 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 449 true); 450 451 // Get the two global values corresponding to the ConstantArrays we just 452 // created to hold the bytes of the strings. 453 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 454 llvm::GlobalValue *annoGV = 455 new llvm::GlobalVariable(anno->getType(), false, 456 llvm::GlobalValue::InternalLinkage, anno, 457 GV->getName() + StringPrefix, M); 458 // translation unit name string, emitted into the llvm.metadata section. 459 llvm::GlobalValue *unitGV = 460 new llvm::GlobalVariable(unit->getType(), false, 461 llvm::GlobalValue::InternalLinkage, unit, 462 StringPrefix, M); 463 464 // Create the ConstantStruct that is the global annotion. 465 llvm::Constant *Fields[4] = { 466 llvm::ConstantExpr::getBitCast(GV, SBP), 467 llvm::ConstantExpr::getBitCast(annoGV, SBP), 468 llvm::ConstantExpr::getBitCast(unitGV, SBP), 469 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 470 }; 471 return llvm::ConstantStruct::get(Fields, 4, false); 472 } 473 474 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 475 // Never defer when EmitAllDecls is specified or the decl has 476 // attribute used. 477 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 478 return false; 479 480 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 481 // Constructors and destructors should never be deferred. 482 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 483 return false; 484 485 // FIXME: What about inline, and/or extern inline? 486 if (FD->getStorageClass() != FunctionDecl::Static) 487 return false; 488 } else { 489 const VarDecl *VD = cast<VarDecl>(Global); 490 assert(VD->isFileVarDecl() && "Invalid decl"); 491 492 if (VD->getStorageClass() != VarDecl::Static) 493 return false; 494 } 495 496 return true; 497 } 498 499 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 500 // If this is an alias definition (which otherwise looks like a declaration) 501 // emit it now. 502 if (Global->hasAttr<AliasAttr>()) 503 return EmitAliasDefinition(Global); 504 505 // Ignore declarations, they will be emitted on their first use. 506 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 507 // Forward declarations are emitted lazily on first use. 508 if (!FD->isThisDeclarationADefinition()) 509 return; 510 } else { 511 const VarDecl *VD = cast<VarDecl>(Global); 512 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 513 514 // Forward declarations are emitted lazily on first use. 515 if (!VD->getInit() && VD->hasExternalStorage()) 516 return; 517 } 518 519 // Defer code generation when possible if this is a static definition, inline 520 // function etc. These we only want to emit if they are used. 521 if (MayDeferGeneration(Global)) { 522 // If the value has already been used, add it directly to the 523 // DeferredDeclsToEmit list. 524 const char *MangledName = getMangledName(Global); 525 if (GlobalDeclMap.count(MangledName)) 526 DeferredDeclsToEmit.push_back(Global); 527 else { 528 // Otherwise, remember that we saw a deferred decl with this name. The 529 // first use of the mangled name will cause it to move into 530 // DeferredDeclsToEmit. 531 DeferredDecls[MangledName] = Global; 532 } 533 return; 534 } 535 536 // Otherwise emit the definition. 537 EmitGlobalDefinition(Global); 538 } 539 540 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 541 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 542 EmitGlobalFunctionDefinition(FD); 543 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 544 EmitGlobalVarDefinition(VD); 545 } else { 546 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 547 } 548 } 549 550 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 551 /// module, create and return an llvm Function with the specified type. If there 552 /// is something in the module with the specified name, return it potentially 553 /// bitcasted to the right type. 554 /// 555 /// If D is non-null, it specifies a decl that correspond to this. This is used 556 /// to set the attributes on the function when it is first created. 557 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 558 const llvm::Type *Ty, 559 const FunctionDecl *D) { 560 // Lookup the entry, lazily creating it if necessary. 561 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 562 if (Entry) { 563 if (Entry->getType()->getElementType() == Ty) 564 return Entry; 565 566 // Make sure the result is of the correct type. 567 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 568 return llvm::ConstantExpr::getBitCast(Entry, PTy); 569 } 570 571 // This is the first use or definition of a mangled name. If there is a 572 // deferred decl with this name, remember that we need to emit it at the end 573 // of the file. 574 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 575 DeferredDecls.find(MangledName); 576 if (DDI != DeferredDecls.end()) { 577 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 578 // list, and remove it from DeferredDecls (since we don't need it anymore). 579 DeferredDeclsToEmit.push_back(DDI->second); 580 DeferredDecls.erase(DDI); 581 } 582 583 // This function doesn't have a complete type (for example, the return 584 // type is an incomplete struct). Use a fake type instead, and make 585 // sure not to try to set attributes. 586 bool ShouldSetAttributes = true; 587 if (!isa<llvm::FunctionType>(Ty)) { 588 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 589 std::vector<const llvm::Type*>(), false); 590 ShouldSetAttributes = false; 591 } 592 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 593 llvm::Function::ExternalLinkage, 594 "", &getModule()); 595 F->setName(MangledName); 596 if (D && ShouldSetAttributes) 597 SetFunctionAttributes(D, F); 598 Entry = F; 599 return F; 600 } 601 602 /// GetAddrOfFunction - Return the address of the given function. If Ty is 603 /// non-null, then this function will use the specified type if it has to 604 /// create it (this occurs when we see a definition of the function). 605 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 606 const llvm::Type *Ty) { 607 // If there was no specific requested type, just convert it now. 608 if (!Ty) 609 Ty = getTypes().ConvertType(D->getType()); 610 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 611 } 612 613 /// CreateRuntimeFunction - Create a new runtime function with the specified 614 /// type and name. 615 llvm::Constant * 616 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 617 const char *Name) { 618 // Convert Name to be a uniqued string from the IdentifierInfo table. 619 Name = getContext().Idents.get(Name).getName(); 620 return GetOrCreateLLVMFunction(Name, FTy, 0); 621 } 622 623 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 624 /// create and return an llvm GlobalVariable with the specified type. If there 625 /// is something in the module with the specified name, return it potentially 626 /// bitcasted to the right type. 627 /// 628 /// If D is non-null, it specifies a decl that correspond to this. This is used 629 /// to set the attributes on the global when it is first created. 630 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 631 const llvm::PointerType*Ty, 632 const VarDecl *D) { 633 // Lookup the entry, lazily creating it if necessary. 634 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 635 if (Entry) { 636 if (Entry->getType() == Ty) 637 return Entry; 638 639 // Make sure the result is of the correct type. 640 return llvm::ConstantExpr::getBitCast(Entry, Ty); 641 } 642 643 // We don't support __thread yet. 644 if (D && D->isThreadSpecified()) 645 ErrorUnsupported(D, "thread local ('__thread') variable", true); 646 647 // This is the first use or definition of a mangled name. If there is a 648 // deferred decl with this name, remember that we need to emit it at the end 649 // of the file. 650 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 651 DeferredDecls.find(MangledName); 652 if (DDI != DeferredDecls.end()) { 653 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 654 // list, and remove it from DeferredDecls (since we don't need it anymore). 655 DeferredDeclsToEmit.push_back(DDI->second); 656 DeferredDecls.erase(DDI); 657 } 658 659 llvm::GlobalVariable *GV = 660 new llvm::GlobalVariable(Ty->getElementType(), false, 661 llvm::GlobalValue::ExternalLinkage, 662 0, "", &getModule(), 663 0, Ty->getAddressSpace()); 664 GV->setName(MangledName); 665 666 // Handle things which are present even on external declarations. 667 if (D) { 668 // FIXME: This code is overly simple and should be merged with 669 // other global handling. 670 GV->setConstant(D->getType().isConstant(Context)); 671 672 // FIXME: Merge with other attribute handling code. 673 if (D->getStorageClass() == VarDecl::PrivateExtern) 674 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 675 676 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 677 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 678 } 679 680 return Entry = GV; 681 } 682 683 684 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 685 /// given global variable. If Ty is non-null and if the global doesn't exist, 686 /// then it will be greated with the specified type instead of whatever the 687 /// normal requested type would be. 688 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 689 const llvm::Type *Ty) { 690 assert(D->hasGlobalStorage() && "Not a global variable"); 691 QualType ASTTy = D->getType(); 692 if (Ty == 0) 693 Ty = getTypes().ConvertTypeForMem(ASTTy); 694 695 const llvm::PointerType *PTy = 696 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 697 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 698 } 699 700 /// CreateRuntimeVariable - Create a new runtime global variable with the 701 /// specified type and name. 702 llvm::Constant * 703 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 704 const char *Name) { 705 // Convert Name to be a uniqued string from the IdentifierInfo table. 706 Name = getContext().Idents.get(Name).getName(); 707 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 708 } 709 710 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 711 llvm::Constant *Init = 0; 712 QualType ASTTy = D->getType(); 713 714 if (D->getInit() == 0) { 715 // This is a tentative definition; tentative definitions are 716 // implicitly initialized with { 0 } 717 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 718 if (ASTTy->isIncompleteArrayType()) { 719 // An incomplete array is normally [ TYPE x 0 ], but we need 720 // to fix it to [ TYPE x 1 ]. 721 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 722 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 723 } 724 Init = llvm::Constant::getNullValue(InitTy); 725 } else { 726 Init = EmitConstantExpr(D->getInit(), D->getType()); 727 if (!Init) { 728 ErrorUnsupported(D, "static initializer"); 729 QualType T = D->getInit()->getType(); 730 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 731 } 732 } 733 734 const llvm::Type* InitType = Init->getType(); 735 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 736 737 // Strip off a bitcast if we got one back. 738 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 739 assert(CE->getOpcode() == llvm::Instruction::BitCast); 740 Entry = CE->getOperand(0); 741 } 742 743 // Entry is now either a Function or GlobalVariable. 744 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 745 746 // If we already have this global and it has an initializer, then 747 // we are in the rare situation where we emitted the defining 748 // declaration of the global and are now being asked to emit a 749 // definition which would be common. This occurs, for example, in 750 // the following situation because statics can be emitted out of 751 // order: 752 // 753 // static int x; 754 // static int *y = &x; 755 // static int x = 10; 756 // int **z = &y; 757 // 758 // Bail here so we don't blow away the definition. Note that if we 759 // can't distinguish here if we emitted a definition with a null 760 // initializer, but this case is safe. 761 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 762 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 763 return; 764 } 765 766 // We have a definition after a declaration with the wrong type. 767 // We must make a new GlobalVariable* and update everything that used OldGV 768 // (a declaration or tentative definition) with the new GlobalVariable* 769 // (which will be a definition). 770 // 771 // This happens if there is a prototype for a global (e.g. 772 // "extern int x[];") and then a definition of a different type (e.g. 773 // "int x[10];"). This also happens when an initializer has a different type 774 // from the type of the global (this happens with unions). 775 if (GV == 0 || 776 GV->getType()->getElementType() != InitType || 777 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 778 779 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 780 GlobalDeclMap.erase(getMangledName(D)); 781 782 // Make a new global with the correct type, this is now guaranteed to work. 783 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 784 GV->takeName(cast<llvm::GlobalValue>(Entry)); 785 786 // Replace all uses of the old global with the new global 787 llvm::Constant *NewPtrForOldDecl = 788 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 789 Entry->replaceAllUsesWith(NewPtrForOldDecl); 790 791 // Erase the old global, since it is no longer used. 792 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 793 } 794 795 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 796 SourceManager &SM = Context.getSourceManager(); 797 AddAnnotation(EmitAnnotateAttr(GV, AA, 798 SM.getInstantiationLineNumber(D->getLocation()))); 799 } 800 801 GV->setInitializer(Init); 802 GV->setConstant(D->getType().isConstant(Context)); 803 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 804 805 // Set the llvm linkage type as appropriate. 806 if (D->getStorageClass() == VarDecl::Static) 807 GV->setLinkage(llvm::Function::InternalLinkage); 808 else if (D->hasAttr<DLLImportAttr>()) 809 GV->setLinkage(llvm::Function::DLLImportLinkage); 810 else if (D->hasAttr<DLLExportAttr>()) 811 GV->setLinkage(llvm::Function::DLLExportLinkage); 812 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 813 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 814 else if (!CompileOpts.NoCommon && 815 (!D->hasExternalStorage() && !D->getInit())) 816 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 817 else 818 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 819 820 setGlobalVisibility(GV, D); 821 822 if (D->hasAttr<UsedAttr>()) 823 AddUsedGlobal(GV); 824 825 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 826 GV->setSection(SA->getName()); 827 828 // Emit global variable debug information. 829 if (CGDebugInfo *DI = getDebugInfo()) { 830 DI->setLocation(D->getLocation()); 831 DI->EmitGlobalVariable(GV, D); 832 } 833 } 834 835 836 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 837 const llvm::FunctionType *Ty; 838 839 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 840 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 841 842 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 843 } else { 844 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 845 846 // As a special case, make sure that definitions of K&R function 847 // "type foo()" aren't declared as varargs (which forces the backend 848 // to do unnecessary work). 849 if (D->getType()->isFunctionNoProtoType()) { 850 assert(Ty->isVarArg() && "Didn't lower type as expected"); 851 // Due to stret, the lowered function could have arguments. 852 // Just create the same type as was lowered by ConvertType 853 // but strip off the varargs bit. 854 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 855 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 856 } 857 } 858 859 // Get or create the prototype for teh function. 860 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 861 862 // Strip off a bitcast if we got one back. 863 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 864 assert(CE->getOpcode() == llvm::Instruction::BitCast); 865 Entry = CE->getOperand(0); 866 } 867 868 869 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 870 // If the types mismatch then we have to rewrite the definition. 871 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 872 "Shouldn't replace non-declaration"); 873 874 // F is the Function* for the one with the wrong type, we must make a new 875 // Function* and update everything that used F (a declaration) with the new 876 // Function* (which will be a definition). 877 // 878 // This happens if there is a prototype for a function 879 // (e.g. "int f()") and then a definition of a different type 880 // (e.g. "int f(int x)"). Start by making a new function of the 881 // correct type, RAUW, then steal the name. 882 GlobalDeclMap.erase(getMangledName(D)); 883 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 884 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 885 886 // Replace uses of F with the Function we will endow with a body. 887 llvm::Constant *NewPtrForOldDecl = 888 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 889 Entry->replaceAllUsesWith(NewPtrForOldDecl); 890 891 // Ok, delete the old function now, which is dead. 892 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 893 894 Entry = NewFn; 895 } 896 897 llvm::Function *Fn = cast<llvm::Function>(Entry); 898 899 CodeGenFunction(*this).GenerateCode(D, Fn); 900 901 SetFunctionAttributesForDefinition(D, Fn); 902 903 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 904 AddGlobalCtor(Fn, CA->getPriority()); 905 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 906 AddGlobalDtor(Fn, DA->getPriority()); 907 } 908 909 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 910 const AliasAttr *AA = D->getAttr<AliasAttr>(); 911 assert(AA && "Not an alias?"); 912 913 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 914 915 // Unique the name through the identifier table. 916 const char *AliaseeName = AA->getAliasee().c_str(); 917 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 918 919 // Create a reference to the named value. This ensures that it is emitted 920 // if a deferred decl. 921 llvm::Constant *Aliasee; 922 if (isa<llvm::FunctionType>(DeclTy)) 923 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 924 else 925 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 926 llvm::PointerType::getUnqual(DeclTy), 0); 927 928 // Create the new alias itself, but don't set a name yet. 929 llvm::GlobalValue *GA = 930 new llvm::GlobalAlias(Aliasee->getType(), 931 llvm::Function::ExternalLinkage, 932 "", Aliasee, &getModule()); 933 934 // See if there is already something with the alias' name in the module. 935 const char *MangledName = getMangledName(D); 936 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 937 938 if (Entry && !Entry->isDeclaration()) { 939 // If there is a definition in the module, then it wins over the alias. 940 // This is dubious, but allow it to be safe. Just ignore the alias. 941 GA->eraseFromParent(); 942 return; 943 } 944 945 if (Entry) { 946 // If there is a declaration in the module, then we had an extern followed 947 // by the alias, as in: 948 // extern int test6(); 949 // ... 950 // int test6() __attribute__((alias("test7"))); 951 // 952 // Remove it and replace uses of it with the alias. 953 954 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 955 Entry->getType())); 956 Entry->eraseFromParent(); 957 } 958 959 // Now we know that there is no conflict, set the name. 960 Entry = GA; 961 GA->setName(MangledName); 962 963 // Alias should never be internal or inline. 964 SetGlobalValueAttributes(D, GVA_Normal, GA, true); 965 } 966 967 /// getBuiltinLibFunction - Given a builtin id for a function like 968 /// "__builtin_fabsf", return a Function* for "fabsf". 969 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 970 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 971 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 972 "isn't a lib fn"); 973 974 // Get the name, skip over the __builtin_ prefix (if necessary). 975 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 976 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 977 Name += 10; 978 979 // Get the type for the builtin. 980 Builtin::Context::GetBuiltinTypeError Error; 981 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 982 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 983 984 const llvm::FunctionType *Ty = 985 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 986 987 // Unique the name through the identifier table. 988 Name = getContext().Idents.get(Name).getName(); 989 // FIXME: param attributes for sext/zext etc. 990 return GetOrCreateLLVMFunction(Name, Ty, 0); 991 } 992 993 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 994 unsigned NumTys) { 995 return llvm::Intrinsic::getDeclaration(&getModule(), 996 (llvm::Intrinsic::ID)IID, Tys, NumTys); 997 } 998 999 llvm::Function *CodeGenModule::getMemCpyFn() { 1000 if (MemCpyFn) return MemCpyFn; 1001 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1002 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1003 } 1004 1005 llvm::Function *CodeGenModule::getMemMoveFn() { 1006 if (MemMoveFn) return MemMoveFn; 1007 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1008 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1009 } 1010 1011 llvm::Function *CodeGenModule::getMemSetFn() { 1012 if (MemSetFn) return MemSetFn; 1013 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1014 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1015 } 1016 1017 static void appendFieldAndPadding(CodeGenModule &CGM, 1018 std::vector<llvm::Constant*>& Fields, 1019 FieldDecl *FieldD, FieldDecl *NextFieldD, 1020 llvm::Constant* Field, 1021 RecordDecl* RD, const llvm::StructType *STy) { 1022 // Append the field. 1023 Fields.push_back(Field); 1024 1025 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1026 1027 int NextStructFieldNo; 1028 if (!NextFieldD) { 1029 NextStructFieldNo = STy->getNumElements(); 1030 } else { 1031 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1032 } 1033 1034 // Append padding 1035 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1036 llvm::Constant *C = 1037 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1038 1039 Fields.push_back(C); 1040 } 1041 } 1042 1043 llvm::Constant *CodeGenModule:: 1044 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1045 std::string str; 1046 unsigned StringLength; 1047 1048 bool isUTF16 = false; 1049 if (Literal->containsNonAsciiOrNull()) { 1050 // Convert from UTF-8 to UTF-16. 1051 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1052 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1053 UTF16 *ToPtr = &ToBuf[0]; 1054 1055 ConversionResult Result; 1056 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1057 &ToPtr, ToPtr+Literal->getByteLength(), 1058 strictConversion); 1059 if (Result == conversionOK) { 1060 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1061 // without doing more surgery to this routine. Since we aren't explicitly 1062 // checking for endianness here, it's also a bug (when generating code for 1063 // a target that doesn't match the host endianness). Modeling this as an 1064 // i16 array is likely the cleanest solution. 1065 StringLength = ToPtr-&ToBuf[0]; 1066 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1067 isUTF16 = true; 1068 } else if (Result == sourceIllegal) { 1069 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1070 str.assign(Literal->getStrData(), Literal->getByteLength()); 1071 StringLength = str.length(); 1072 } else 1073 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1074 1075 } else { 1076 str.assign(Literal->getStrData(), Literal->getByteLength()); 1077 StringLength = str.length(); 1078 } 1079 llvm::StringMapEntry<llvm::Constant *> &Entry = 1080 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1081 1082 if (llvm::Constant *C = Entry.getValue()) 1083 return C; 1084 1085 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1086 llvm::Constant *Zeros[] = { Zero, Zero }; 1087 1088 if (!CFConstantStringClassRef) { 1089 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1090 Ty = llvm::ArrayType::get(Ty, 0); 1091 1092 // FIXME: This is fairly broken if 1093 // __CFConstantStringClassReference is already defined, in that it 1094 // will get renamed and the user will most likely see an opaque 1095 // error message. This is a general issue with relying on 1096 // particular names. 1097 llvm::GlobalVariable *GV = 1098 new llvm::GlobalVariable(Ty, false, 1099 llvm::GlobalVariable::ExternalLinkage, 0, 1100 "__CFConstantStringClassReference", 1101 &getModule()); 1102 1103 // Decay array -> ptr 1104 CFConstantStringClassRef = 1105 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1106 } 1107 1108 QualType CFTy = getContext().getCFConstantStringType(); 1109 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1110 1111 const llvm::StructType *STy = 1112 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1113 1114 std::vector<llvm::Constant*> Fields; 1115 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1116 1117 // Class pointer. 1118 FieldDecl *CurField = *Field++; 1119 FieldDecl *NextField = *Field++; 1120 appendFieldAndPadding(*this, Fields, CurField, NextField, 1121 CFConstantStringClassRef, CFRD, STy); 1122 1123 // Flags. 1124 CurField = NextField; 1125 NextField = *Field++; 1126 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1127 appendFieldAndPadding(*this, Fields, CurField, NextField, 1128 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1129 : llvm::ConstantInt::get(Ty, 0x07C8), 1130 CFRD, STy); 1131 1132 // String pointer. 1133 CurField = NextField; 1134 NextField = *Field++; 1135 llvm::Constant *C = llvm::ConstantArray::get(str); 1136 1137 const char *Sect, *Prefix; 1138 bool isConstant; 1139 if (isUTF16) { 1140 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1141 Sect = getContext().Target.getUnicodeStringSection(); 1142 // FIXME: Why does GCC not set constant here? 1143 isConstant = false; 1144 } else { 1145 Prefix = getContext().Target.getStringSymbolPrefix(true); 1146 Sect = getContext().Target.getCFStringDataSection(); 1147 // FIXME: -fwritable-strings should probably affect this, but we 1148 // are following gcc here. 1149 isConstant = true; 1150 } 1151 llvm::GlobalVariable *GV = 1152 new llvm::GlobalVariable(C->getType(), isConstant, 1153 llvm::GlobalValue::InternalLinkage, 1154 C, Prefix, &getModule()); 1155 if (Sect) 1156 GV->setSection(Sect); 1157 if (isUTF16) { 1158 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1159 GV->setAlignment(Align); 1160 } 1161 appendFieldAndPadding(*this, Fields, CurField, NextField, 1162 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1163 CFRD, STy); 1164 1165 // String length. 1166 CurField = NextField; 1167 NextField = 0; 1168 Ty = getTypes().ConvertType(getContext().LongTy); 1169 appendFieldAndPadding(*this, Fields, CurField, NextField, 1170 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1171 1172 // The struct. 1173 C = llvm::ConstantStruct::get(STy, Fields); 1174 GV = new llvm::GlobalVariable(C->getType(), true, 1175 llvm::GlobalVariable::InternalLinkage, C, 1176 getContext().Target.getCFStringSymbolPrefix(), 1177 &getModule()); 1178 if (const char *Sect = getContext().Target.getCFStringSection()) 1179 GV->setSection(Sect); 1180 Entry.setValue(GV); 1181 1182 return GV; 1183 } 1184 1185 /// GetStringForStringLiteral - Return the appropriate bytes for a 1186 /// string literal, properly padded to match the literal type. 1187 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1188 const char *StrData = E->getStrData(); 1189 unsigned Len = E->getByteLength(); 1190 1191 const ConstantArrayType *CAT = 1192 getContext().getAsConstantArrayType(E->getType()); 1193 assert(CAT && "String isn't pointer or array!"); 1194 1195 // Resize the string to the right size. 1196 std::string Str(StrData, StrData+Len); 1197 uint64_t RealLen = CAT->getSize().getZExtValue(); 1198 1199 if (E->isWide()) 1200 RealLen *= getContext().Target.getWCharWidth()/8; 1201 1202 Str.resize(RealLen, '\0'); 1203 1204 return Str; 1205 } 1206 1207 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1208 /// constant array for the given string literal. 1209 llvm::Constant * 1210 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1211 // FIXME: This can be more efficient. 1212 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1213 } 1214 1215 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1216 /// array for the given ObjCEncodeExpr node. 1217 llvm::Constant * 1218 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1219 std::string Str; 1220 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1221 1222 return GetAddrOfConstantCString(Str); 1223 } 1224 1225 1226 /// GenerateWritableString -- Creates storage for a string literal. 1227 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1228 bool constant, 1229 CodeGenModule &CGM, 1230 const char *GlobalName) { 1231 // Create Constant for this string literal. Don't add a '\0'. 1232 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1233 1234 // Create a global variable for this string 1235 return new llvm::GlobalVariable(C->getType(), constant, 1236 llvm::GlobalValue::InternalLinkage, 1237 C, GlobalName, &CGM.getModule()); 1238 } 1239 1240 /// GetAddrOfConstantString - Returns a pointer to a character array 1241 /// containing the literal. This contents are exactly that of the 1242 /// given string, i.e. it will not be null terminated automatically; 1243 /// see GetAddrOfConstantCString. Note that whether the result is 1244 /// actually a pointer to an LLVM constant depends on 1245 /// Feature.WriteableStrings. 1246 /// 1247 /// The result has pointer to array type. 1248 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1249 const char *GlobalName) { 1250 bool IsConstant = !Features.WritableStrings; 1251 1252 // Get the default prefix if a name wasn't specified. 1253 if (!GlobalName) 1254 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1255 1256 // Don't share any string literals if strings aren't constant. 1257 if (!IsConstant) 1258 return GenerateStringLiteral(str, false, *this, GlobalName); 1259 1260 llvm::StringMapEntry<llvm::Constant *> &Entry = 1261 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1262 1263 if (Entry.getValue()) 1264 return Entry.getValue(); 1265 1266 // Create a global variable for this. 1267 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1268 Entry.setValue(C); 1269 return C; 1270 } 1271 1272 /// GetAddrOfConstantCString - Returns a pointer to a character 1273 /// array containing the literal and a terminating '\-' 1274 /// character. The result has pointer to array type. 1275 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1276 const char *GlobalName){ 1277 return GetAddrOfConstantString(str + '\0', GlobalName); 1278 } 1279 1280 /// EmitObjCPropertyImplementations - Emit information for synthesized 1281 /// properties for an implementation. 1282 void CodeGenModule::EmitObjCPropertyImplementations(const 1283 ObjCImplementationDecl *D) { 1284 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1285 e = D->propimpl_end(); i != e; ++i) { 1286 ObjCPropertyImplDecl *PID = *i; 1287 1288 // Dynamic is just for type-checking. 1289 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1290 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1291 1292 // Determine which methods need to be implemented, some may have 1293 // been overridden. Note that ::isSynthesized is not the method 1294 // we want, that just indicates if the decl came from a 1295 // property. What we want to know is if the method is defined in 1296 // this implementation. 1297 if (!D->getInstanceMethod(PD->getGetterName())) 1298 CodeGenFunction(*this).GenerateObjCGetter( 1299 const_cast<ObjCImplementationDecl *>(D), PID); 1300 if (!PD->isReadOnly() && 1301 !D->getInstanceMethod(PD->getSetterName())) 1302 CodeGenFunction(*this).GenerateObjCSetter( 1303 const_cast<ObjCImplementationDecl *>(D), PID); 1304 } 1305 } 1306 } 1307 1308 /// EmitNamespace - Emit all declarations in a namespace. 1309 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1310 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1311 E = ND->decls_end(getContext()); 1312 I != E; ++I) 1313 EmitTopLevelDecl(*I); 1314 } 1315 1316 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1317 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1318 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1319 ErrorUnsupported(LSD, "linkage spec"); 1320 return; 1321 } 1322 1323 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1324 E = LSD->decls_end(getContext()); 1325 I != E; ++I) 1326 EmitTopLevelDecl(*I); 1327 } 1328 1329 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1330 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1331 // If an error has occurred, stop code generation, but continue 1332 // parsing and semantic analysis (to ensure all warnings and errors 1333 // are emitted). 1334 if (Diags.hasErrorOccurred()) 1335 return; 1336 1337 switch (D->getKind()) { 1338 case Decl::CXXMethod: 1339 case Decl::Function: 1340 case Decl::Var: 1341 EmitGlobal(cast<ValueDecl>(D)); 1342 break; 1343 1344 case Decl::Namespace: 1345 EmitNamespace(cast<NamespaceDecl>(D)); 1346 break; 1347 1348 // Objective-C Decls 1349 1350 // Forward declarations, no (immediate) code generation. 1351 case Decl::ObjCClass: 1352 case Decl::ObjCForwardProtocol: 1353 case Decl::ObjCCategory: 1354 break; 1355 case Decl::ObjCInterface: 1356 // If we already laid out this interface due to an @class, and if we 1357 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1358 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1359 break; 1360 1361 case Decl::ObjCProtocol: 1362 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1363 break; 1364 1365 case Decl::ObjCCategoryImpl: 1366 // Categories have properties but don't support synthesize so we 1367 // can ignore them here. 1368 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1369 break; 1370 1371 case Decl::ObjCImplementation: { 1372 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1373 EmitObjCPropertyImplementations(OMD); 1374 Runtime->GenerateClass(OMD); 1375 break; 1376 } 1377 case Decl::ObjCMethod: { 1378 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1379 // If this is not a prototype, emit the body. 1380 if (OMD->getBody()) 1381 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1382 break; 1383 } 1384 case Decl::ObjCCompatibleAlias: 1385 // compatibility-alias is a directive and has no code gen. 1386 break; 1387 1388 case Decl::LinkageSpec: 1389 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1390 break; 1391 1392 case Decl::FileScopeAsm: { 1393 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1394 std::string AsmString(AD->getAsmString()->getStrData(), 1395 AD->getAsmString()->getByteLength()); 1396 1397 const std::string &S = getModule().getModuleInlineAsm(); 1398 if (S.empty()) 1399 getModule().setModuleInlineAsm(AsmString); 1400 else 1401 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1402 break; 1403 } 1404 1405 default: 1406 // Make sure we handled everything we should, every other kind is 1407 // a non-top-level decl. FIXME: Would be nice to have an 1408 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1409 // that easily. 1410 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1411 } 1412 } 1413