1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 217 I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // The kind of external linkage this function will have, if it is not 251 // inline or static. 252 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 253 if (Context.getLangOptions().CPlusPlus && 254 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 255 External = CodeGenModule::GVA_TemplateInstantiation; 256 257 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 258 // C++ member functions defined inside the class are always inline. 259 if (MD->isInline() || !MD->isOutOfLine()) 260 return CodeGenModule::GVA_CXXInline; 261 262 return External; 263 } 264 265 // "static" functions get internal linkage. 266 if (FD->getStorageClass() == FunctionDecl::Static) 267 return CodeGenModule::GVA_Internal; 268 269 if (!FD->isInline()) 270 return External; 271 272 // If the inline function explicitly has the GNU inline attribute on it, or if 273 // this is C89 mode, we use to GNU semantics. 274 if (!Features.C99 && !Features.CPlusPlus) { 275 // extern inline in GNU mode is like C99 inline. 276 if (FD->getStorageClass() == FunctionDecl::Extern) 277 return CodeGenModule::GVA_C99Inline; 278 // Normal inline is a strong symbol. 279 return CodeGenModule::GVA_StrongExternal; 280 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 281 // GCC in C99 mode seems to use a different decision-making 282 // process for extern inline, which factors in previous 283 // declarations. 284 if (FD->isExternGNUInline(Context)) 285 return CodeGenModule::GVA_C99Inline; 286 // Normal inline is a strong symbol. 287 return External; 288 } 289 290 // The definition of inline changes based on the language. Note that we 291 // have already handled "static inline" above, with the GVA_Internal case. 292 if (Features.CPlusPlus) // inline and extern inline. 293 return CodeGenModule::GVA_CXXInline; 294 295 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 296 if (FD->isC99InlineDefinition()) 297 return CodeGenModule::GVA_C99Inline; 298 299 return CodeGenModule::GVA_StrongExternal; 300 } 301 302 /// SetFunctionDefinitionAttributes - Set attributes for a global. 303 /// 304 /// FIXME: This is currently only done for aliases and functions, but not for 305 /// variables (these details are set in EmitGlobalVarDefinition for variables). 306 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 307 llvm::GlobalValue *GV) { 308 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 309 310 if (Linkage == GVA_Internal) { 311 GV->setLinkage(llvm::Function::InternalLinkage); 312 } else if (D->hasAttr<DLLExportAttr>()) { 313 GV->setLinkage(llvm::Function::DLLExportLinkage); 314 } else if (D->hasAttr<WeakAttr>()) { 315 GV->setLinkage(llvm::Function::WeakAnyLinkage); 316 } else if (Linkage == GVA_C99Inline) { 317 // In C99 mode, 'inline' functions are guaranteed to have a strong 318 // definition somewhere else, so we can use available_externally linkage. 319 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 320 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 321 // In C++, the compiler has to emit a definition in every translation unit 322 // that references the function. We should use linkonce_odr because 323 // a) if all references in this translation unit are optimized away, we 324 // don't need to codegen it. b) if the function persists, it needs to be 325 // merged with other definitions. c) C++ has the ODR, so we know the 326 // definition is dependable. 327 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 328 } else { 329 assert(Linkage == GVA_StrongExternal); 330 // Otherwise, we have strong external linkage. 331 GV->setLinkage(llvm::Function::ExternalLinkage); 332 } 333 334 SetCommonAttributes(D, GV); 335 } 336 337 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 338 const CGFunctionInfo &Info, 339 llvm::Function *F) { 340 AttributeListType AttributeList; 341 ConstructAttributeList(Info, D, AttributeList); 342 343 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 344 AttributeList.size())); 345 346 llvm::CallingConv::ID CC = 347 static_cast<llvm::CallingConv::ID>(Info.getCallingConvention()); 348 F->setCallingConv(CC); 349 } 350 351 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 352 llvm::Function *F) { 353 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 354 F->addFnAttr(llvm::Attribute::NoUnwind); 355 356 if (D->hasAttr<AlwaysInlineAttr>()) 357 F->addFnAttr(llvm::Attribute::AlwaysInline); 358 359 if (D->hasAttr<NoInlineAttr>()) 360 F->addFnAttr(llvm::Attribute::NoInline); 361 } 362 363 void CodeGenModule::SetCommonAttributes(const Decl *D, 364 llvm::GlobalValue *GV) { 365 setGlobalVisibility(GV, D); 366 367 if (D->hasAttr<UsedAttr>()) 368 AddUsedGlobal(GV); 369 370 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 371 GV->setSection(SA->getName()); 372 } 373 374 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 375 llvm::Function *F, 376 const CGFunctionInfo &FI) { 377 SetLLVMFunctionAttributes(D, FI, F); 378 SetLLVMFunctionAttributesForDefinition(D, F); 379 380 F->setLinkage(llvm::Function::InternalLinkage); 381 382 SetCommonAttributes(D, F); 383 } 384 385 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 386 llvm::Function *F, 387 bool IsIncompleteFunction) { 388 if (!IsIncompleteFunction) 389 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 390 391 // Only a few attributes are set on declarations; these may later be 392 // overridden by a definition. 393 394 if (FD->hasAttr<DLLImportAttr>()) { 395 F->setLinkage(llvm::Function::DLLImportLinkage); 396 } else if (FD->hasAttr<WeakAttr>() || 397 FD->hasAttr<WeakImportAttr>()) { 398 // "extern_weak" is overloaded in LLVM; we probably should have 399 // separate linkage types for this. 400 F->setLinkage(llvm::Function::ExternalWeakLinkage); 401 } else { 402 F->setLinkage(llvm::Function::ExternalLinkage); 403 } 404 405 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 406 F->setSection(SA->getName()); 407 } 408 409 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 410 assert(!GV->isDeclaration() && 411 "Only globals with definition can force usage."); 412 LLVMUsed.push_back(GV); 413 } 414 415 void CodeGenModule::EmitLLVMUsed() { 416 // Don't create llvm.used if there is no need. 417 if (LLVMUsed.empty()) 418 return; 419 420 llvm::Type *i8PTy = 421 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 422 423 // Convert LLVMUsed to what ConstantArray needs. 424 std::vector<llvm::Constant*> UsedArray; 425 UsedArray.resize(LLVMUsed.size()); 426 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 427 UsedArray[i] = 428 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 429 i8PTy); 430 } 431 432 if (UsedArray.empty()) 433 return; 434 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 435 436 llvm::GlobalVariable *GV = 437 new llvm::GlobalVariable(getModule(), ATy, false, 438 llvm::GlobalValue::AppendingLinkage, 439 llvm::ConstantArray::get(ATy, UsedArray), 440 "llvm.used"); 441 442 GV->setSection("llvm.metadata"); 443 } 444 445 void CodeGenModule::EmitDeferred() { 446 // Emit code for any potentially referenced deferred decls. Since a 447 // previously unused static decl may become used during the generation of code 448 // for a static function, iterate until no changes are made. 449 while (!DeferredDeclsToEmit.empty()) { 450 GlobalDecl D = DeferredDeclsToEmit.back(); 451 DeferredDeclsToEmit.pop_back(); 452 453 // The mangled name for the decl must have been emitted in GlobalDeclMap. 454 // Look it up to see if it was defined with a stronger definition (e.g. an 455 // extern inline function with a strong function redefinition). If so, 456 // just ignore the deferred decl. 457 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 458 assert(CGRef && "Deferred decl wasn't referenced?"); 459 460 if (!CGRef->isDeclaration()) 461 continue; 462 463 // Otherwise, emit the definition and move on to the next one. 464 EmitGlobalDefinition(D); 465 } 466 } 467 468 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 469 /// annotation information for a given GlobalValue. The annotation struct is 470 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 471 /// GlobalValue being annotated. The second field is the constant string 472 /// created from the AnnotateAttr's annotation. The third field is a constant 473 /// string containing the name of the translation unit. The fourth field is 474 /// the line number in the file of the annotated value declaration. 475 /// 476 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 477 /// appears to. 478 /// 479 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 480 const AnnotateAttr *AA, 481 unsigned LineNo) { 482 llvm::Module *M = &getModule(); 483 484 // get [N x i8] constants for the annotation string, and the filename string 485 // which are the 2nd and 3rd elements of the global annotation structure. 486 const llvm::Type *SBP = 487 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 488 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 489 AA->getAnnotation(), true); 490 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 491 M->getModuleIdentifier(), 492 true); 493 494 // Get the two global values corresponding to the ConstantArrays we just 495 // created to hold the bytes of the strings. 496 llvm::GlobalValue *annoGV = 497 new llvm::GlobalVariable(*M, anno->getType(), false, 498 llvm::GlobalValue::PrivateLinkage, anno, 499 GV->getName()); 500 // translation unit name string, emitted into the llvm.metadata section. 501 llvm::GlobalValue *unitGV = 502 new llvm::GlobalVariable(*M, unit->getType(), false, 503 llvm::GlobalValue::PrivateLinkage, unit, 504 ".str"); 505 506 // Create the ConstantStruct for the global annotation. 507 llvm::Constant *Fields[4] = { 508 llvm::ConstantExpr::getBitCast(GV, SBP), 509 llvm::ConstantExpr::getBitCast(annoGV, SBP), 510 llvm::ConstantExpr::getBitCast(unitGV, SBP), 511 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 512 }; 513 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 514 } 515 516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 517 // Never defer when EmitAllDecls is specified or the decl has 518 // attribute used. 519 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 520 return false; 521 522 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 523 // Constructors and destructors should never be deferred. 524 if (FD->hasAttr<ConstructorAttr>() || 525 FD->hasAttr<DestructorAttr>()) 526 return false; 527 528 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 529 530 // static, static inline, always_inline, and extern inline functions can 531 // always be deferred. Normal inline functions can be deferred in C99/C++. 532 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 533 Linkage == GVA_CXXInline) 534 return true; 535 return false; 536 } 537 538 const VarDecl *VD = cast<VarDecl>(Global); 539 assert(VD->isFileVarDecl() && "Invalid decl"); 540 541 return VD->getStorageClass() == VarDecl::Static; 542 } 543 544 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 545 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 546 547 // If this is an alias definition (which otherwise looks like a declaration) 548 // emit it now. 549 if (Global->hasAttr<AliasAttr>()) 550 return EmitAliasDefinition(Global); 551 552 // Ignore declarations, they will be emitted on their first use. 553 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 554 // Forward declarations are emitted lazily on first use. 555 if (!FD->isThisDeclarationADefinition()) 556 return; 557 } else { 558 const VarDecl *VD = cast<VarDecl>(Global); 559 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 560 561 // In C++, if this is marked "extern", defer code generation. 562 if (getLangOptions().CPlusPlus && !VD->getInit() && 563 (VD->getStorageClass() == VarDecl::Extern || 564 VD->isExternC())) 565 return; 566 567 // In C, if this isn't a definition, defer code generation. 568 if (!getLangOptions().CPlusPlus && !VD->getInit()) 569 return; 570 } 571 572 // Defer code generation when possible if this is a static definition, inline 573 // function etc. These we only want to emit if they are used. 574 if (MayDeferGeneration(Global)) { 575 // If the value has already been used, add it directly to the 576 // DeferredDeclsToEmit list. 577 const char *MangledName = getMangledName(GD); 578 if (GlobalDeclMap.count(MangledName)) 579 DeferredDeclsToEmit.push_back(GD); 580 else { 581 // Otherwise, remember that we saw a deferred decl with this name. The 582 // first use of the mangled name will cause it to move into 583 // DeferredDeclsToEmit. 584 DeferredDecls[MangledName] = GD; 585 } 586 return; 587 } 588 589 // Otherwise emit the definition. 590 EmitGlobalDefinition(GD); 591 } 592 593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 594 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 595 596 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 597 EmitCXXConstructor(CD, GD.getCtorType()); 598 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 599 EmitCXXDestructor(DD, GD.getDtorType()); 600 else if (isa<FunctionDecl>(D)) 601 EmitGlobalFunctionDefinition(GD); 602 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 603 EmitGlobalVarDefinition(VD); 604 else { 605 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 606 } 607 } 608 609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 610 /// module, create and return an llvm Function with the specified type. If there 611 /// is something in the module with the specified name, return it potentially 612 /// bitcasted to the right type. 613 /// 614 /// If D is non-null, it specifies a decl that correspond to this. This is used 615 /// to set the attributes on the function when it is first created. 616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 617 const llvm::Type *Ty, 618 GlobalDecl D) { 619 // Lookup the entry, lazily creating it if necessary. 620 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 621 if (Entry) { 622 if (Entry->getType()->getElementType() == Ty) 623 return Entry; 624 625 // Make sure the result is of the correct type. 626 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 627 return llvm::ConstantExpr::getBitCast(Entry, PTy); 628 } 629 630 // This is the first use or definition of a mangled name. If there is a 631 // deferred decl with this name, remember that we need to emit it at the end 632 // of the file. 633 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 634 DeferredDecls.find(MangledName); 635 if (DDI != DeferredDecls.end()) { 636 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 637 // list, and remove it from DeferredDecls (since we don't need it anymore). 638 DeferredDeclsToEmit.push_back(DDI->second); 639 DeferredDecls.erase(DDI); 640 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 641 // If this the first reference to a C++ inline function in a class, queue up 642 // the deferred function body for emission. These are not seen as 643 // top-level declarations. 644 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 645 DeferredDeclsToEmit.push_back(D); 646 // A called constructor which has no definition or declaration need be 647 // synthesized. 648 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 649 const CXXRecordDecl *ClassDecl = 650 cast<CXXRecordDecl>(CD->getDeclContext()); 651 if (CD->isCopyConstructor(getContext())) 652 DeferredCopyConstructorToEmit(D); 653 else if (!ClassDecl->hasUserDeclaredConstructor()) 654 DeferredDeclsToEmit.push_back(D); 655 } 656 else if (isa<CXXDestructorDecl>(FD)) 657 DeferredDestructorToEmit(D); 658 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 659 if (MD->isCopyAssignment()) 660 DeferredCopyAssignmentToEmit(D); 661 } 662 663 // This function doesn't have a complete type (for example, the return 664 // type is an incomplete struct). Use a fake type instead, and make 665 // sure not to try to set attributes. 666 bool IsIncompleteFunction = false; 667 if (!isa<llvm::FunctionType>(Ty)) { 668 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 669 std::vector<const llvm::Type*>(), false); 670 IsIncompleteFunction = true; 671 } 672 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 673 llvm::Function::ExternalLinkage, 674 "", &getModule()); 675 F->setName(MangledName); 676 if (D.getDecl()) 677 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 678 IsIncompleteFunction); 679 Entry = F; 680 return F; 681 } 682 683 /// Defer definition of copy constructor(s) which need be implicitly defined. 684 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 685 const CXXConstructorDecl *CD = 686 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 687 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 688 if (ClassDecl->hasTrivialCopyConstructor() || 689 ClassDecl->hasUserDeclaredCopyConstructor()) 690 return; 691 692 // First make sure all direct base classes and virtual bases and non-static 693 // data mebers which need to have their copy constructors implicitly defined 694 // are defined. 12.8.p7 695 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 696 Base != ClassDecl->bases_end(); ++Base) { 697 CXXRecordDecl *BaseClassDecl 698 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 699 if (CXXConstructorDecl *BaseCopyCtor = 700 BaseClassDecl->getCopyConstructor(Context, 0)) 701 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 702 } 703 704 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 705 FieldEnd = ClassDecl->field_end(); 706 Field != FieldEnd; ++Field) { 707 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 708 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 709 FieldType = Array->getElementType(); 710 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 711 if ((*Field)->isAnonymousStructOrUnion()) 712 continue; 713 CXXRecordDecl *FieldClassDecl 714 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 715 if (CXXConstructorDecl *FieldCopyCtor = 716 FieldClassDecl->getCopyConstructor(Context, 0)) 717 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 718 } 719 } 720 DeferredDeclsToEmit.push_back(CopyCtorDecl); 721 } 722 723 /// Defer definition of copy assignments which need be implicitly defined. 724 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 725 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 726 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 727 728 if (ClassDecl->hasTrivialCopyAssignment() || 729 ClassDecl->hasUserDeclaredCopyAssignment()) 730 return; 731 732 // First make sure all direct base classes and virtual bases and non-static 733 // data mebers which need to have their copy assignments implicitly defined 734 // are defined. 12.8.p12 735 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 736 Base != ClassDecl->bases_end(); ++Base) { 737 CXXRecordDecl *BaseClassDecl 738 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 739 const CXXMethodDecl *MD = 0; 740 if (!BaseClassDecl->hasTrivialCopyAssignment() && 741 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 742 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 743 GetAddrOfFunction(MD, 0); 744 } 745 746 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 747 FieldEnd = ClassDecl->field_end(); 748 Field != FieldEnd; ++Field) { 749 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 750 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 751 FieldType = Array->getElementType(); 752 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 753 if ((*Field)->isAnonymousStructOrUnion()) 754 continue; 755 CXXRecordDecl *FieldClassDecl 756 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 757 const CXXMethodDecl *MD = 0; 758 if (!FieldClassDecl->hasTrivialCopyAssignment() && 759 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 760 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 761 GetAddrOfFunction(MD, 0); 762 } 763 } 764 DeferredDeclsToEmit.push_back(CopyAssignDecl); 765 } 766 767 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 768 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 769 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 770 if (ClassDecl->hasTrivialDestructor() || 771 ClassDecl->hasUserDeclaredDestructor()) 772 return; 773 774 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 775 Base != ClassDecl->bases_end(); ++Base) { 776 CXXRecordDecl *BaseClassDecl 777 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 778 if (const CXXDestructorDecl *BaseDtor = 779 BaseClassDecl->getDestructor(Context)) 780 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 781 } 782 783 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 784 FieldEnd = ClassDecl->field_end(); 785 Field != FieldEnd; ++Field) { 786 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 787 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 788 FieldType = Array->getElementType(); 789 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 790 if ((*Field)->isAnonymousStructOrUnion()) 791 continue; 792 CXXRecordDecl *FieldClassDecl 793 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 794 if (const CXXDestructorDecl *FieldDtor = 795 FieldClassDecl->getDestructor(Context)) 796 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 797 } 798 } 799 DeferredDeclsToEmit.push_back(DtorDecl); 800 } 801 802 803 /// GetAddrOfFunction - Return the address of the given function. If Ty is 804 /// non-null, then this function will use the specified type if it has to 805 /// create it (this occurs when we see a definition of the function). 806 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 807 const llvm::Type *Ty) { 808 // If there was no specific requested type, just convert it now. 809 if (!Ty) 810 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 811 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 812 } 813 814 /// CreateRuntimeFunction - Create a new runtime function with the specified 815 /// type and name. 816 llvm::Constant * 817 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 818 const char *Name) { 819 // Convert Name to be a uniqued string from the IdentifierInfo table. 820 Name = getContext().Idents.get(Name).getName(); 821 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 822 } 823 824 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 825 /// create and return an llvm GlobalVariable with the specified type. If there 826 /// is something in the module with the specified name, return it potentially 827 /// bitcasted to the right type. 828 /// 829 /// If D is non-null, it specifies a decl that correspond to this. This is used 830 /// to set the attributes on the global when it is first created. 831 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 832 const llvm::PointerType*Ty, 833 const VarDecl *D) { 834 // Lookup the entry, lazily creating it if necessary. 835 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 836 if (Entry) { 837 if (Entry->getType() == Ty) 838 return Entry; 839 840 // Make sure the result is of the correct type. 841 return llvm::ConstantExpr::getBitCast(Entry, Ty); 842 } 843 844 // This is the first use or definition of a mangled name. If there is a 845 // deferred decl with this name, remember that we need to emit it at the end 846 // of the file. 847 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 848 DeferredDecls.find(MangledName); 849 if (DDI != DeferredDecls.end()) { 850 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 851 // list, and remove it from DeferredDecls (since we don't need it anymore). 852 DeferredDeclsToEmit.push_back(DDI->second); 853 DeferredDecls.erase(DDI); 854 } 855 856 llvm::GlobalVariable *GV = 857 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 858 llvm::GlobalValue::ExternalLinkage, 859 0, "", 0, 860 false, Ty->getAddressSpace()); 861 GV->setName(MangledName); 862 863 // Handle things which are present even on external declarations. 864 if (D) { 865 // FIXME: This code is overly simple and should be merged with other global 866 // handling. 867 GV->setConstant(D->getType().isConstant(Context)); 868 869 // FIXME: Merge with other attribute handling code. 870 if (D->getStorageClass() == VarDecl::PrivateExtern) 871 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 872 873 if (D->hasAttr<WeakAttr>() || 874 D->hasAttr<WeakImportAttr>()) 875 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 876 877 GV->setThreadLocal(D->isThreadSpecified()); 878 } 879 880 return Entry = GV; 881 } 882 883 884 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 885 /// given global variable. If Ty is non-null and if the global doesn't exist, 886 /// then it will be greated with the specified type instead of whatever the 887 /// normal requested type would be. 888 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 889 const llvm::Type *Ty) { 890 assert(D->hasGlobalStorage() && "Not a global variable"); 891 QualType ASTTy = D->getType(); 892 if (Ty == 0) 893 Ty = getTypes().ConvertTypeForMem(ASTTy); 894 895 const llvm::PointerType *PTy = 896 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 897 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 898 } 899 900 /// CreateRuntimeVariable - Create a new runtime global variable with the 901 /// specified type and name. 902 llvm::Constant * 903 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 904 const char *Name) { 905 // Convert Name to be a uniqued string from the IdentifierInfo table. 906 Name = getContext().Idents.get(Name).getName(); 907 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 908 } 909 910 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 911 assert(!D->getInit() && "Cannot emit definite definitions here!"); 912 913 if (MayDeferGeneration(D)) { 914 // If we have not seen a reference to this variable yet, place it 915 // into the deferred declarations table to be emitted if needed 916 // later. 917 const char *MangledName = getMangledName(D); 918 if (GlobalDeclMap.count(MangledName) == 0) { 919 DeferredDecls[MangledName] = D; 920 return; 921 } 922 } 923 924 // The tentative definition is the only definition. 925 EmitGlobalVarDefinition(D); 926 } 927 928 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 929 llvm::Constant *Init = 0; 930 QualType ASTTy = D->getType(); 931 932 if (D->getInit() == 0) { 933 // This is a tentative definition; tentative definitions are 934 // implicitly initialized with { 0 }. 935 // 936 // Note that tentative definitions are only emitted at the end of 937 // a translation unit, so they should never have incomplete 938 // type. In addition, EmitTentativeDefinition makes sure that we 939 // never attempt to emit a tentative definition if a real one 940 // exists. A use may still exists, however, so we still may need 941 // to do a RAUW. 942 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 943 Init = EmitNullConstant(D->getType()); 944 } else { 945 Init = EmitConstantExpr(D->getInit(), D->getType()); 946 947 if (!Init) { 948 QualType T = D->getInit()->getType(); 949 if (getLangOptions().CPlusPlus) { 950 CXXGlobalInits.push_back(D); 951 Init = EmitNullConstant(T); 952 } else { 953 ErrorUnsupported(D, "static initializer"); 954 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 955 } 956 } 957 } 958 959 const llvm::Type* InitType = Init->getType(); 960 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 961 962 // Strip off a bitcast if we got one back. 963 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 964 assert(CE->getOpcode() == llvm::Instruction::BitCast || 965 // all zero index gep. 966 CE->getOpcode() == llvm::Instruction::GetElementPtr); 967 Entry = CE->getOperand(0); 968 } 969 970 // Entry is now either a Function or GlobalVariable. 971 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 972 973 // We have a definition after a declaration with the wrong type. 974 // We must make a new GlobalVariable* and update everything that used OldGV 975 // (a declaration or tentative definition) with the new GlobalVariable* 976 // (which will be a definition). 977 // 978 // This happens if there is a prototype for a global (e.g. 979 // "extern int x[];") and then a definition of a different type (e.g. 980 // "int x[10];"). This also happens when an initializer has a different type 981 // from the type of the global (this happens with unions). 982 if (GV == 0 || 983 GV->getType()->getElementType() != InitType || 984 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 985 986 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 987 GlobalDeclMap.erase(getMangledName(D)); 988 989 // Make a new global with the correct type, this is now guaranteed to work. 990 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 991 GV->takeName(cast<llvm::GlobalValue>(Entry)); 992 993 // Replace all uses of the old global with the new global 994 llvm::Constant *NewPtrForOldDecl = 995 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 996 Entry->replaceAllUsesWith(NewPtrForOldDecl); 997 998 // Erase the old global, since it is no longer used. 999 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1000 } 1001 1002 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1003 SourceManager &SM = Context.getSourceManager(); 1004 AddAnnotation(EmitAnnotateAttr(GV, AA, 1005 SM.getInstantiationLineNumber(D->getLocation()))); 1006 } 1007 1008 GV->setInitializer(Init); 1009 1010 // If it is safe to mark the global 'constant', do so now. 1011 GV->setConstant(false); 1012 if (D->getType().isConstant(Context)) { 1013 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1014 // members, it cannot be declared "LLVM const". 1015 GV->setConstant(true); 1016 } 1017 1018 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1019 1020 // Set the llvm linkage type as appropriate. 1021 if (D->getStorageClass() == VarDecl::Static) 1022 GV->setLinkage(llvm::Function::InternalLinkage); 1023 else if (D->hasAttr<DLLImportAttr>()) 1024 GV->setLinkage(llvm::Function::DLLImportLinkage); 1025 else if (D->hasAttr<DLLExportAttr>()) 1026 GV->setLinkage(llvm::Function::DLLExportLinkage); 1027 else if (D->hasAttr<WeakAttr>()) { 1028 if (GV->isConstant()) 1029 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1030 else 1031 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1032 } else if (!CompileOpts.NoCommon && 1033 !D->hasExternalStorage() && !D->getInit() && 1034 !D->getAttr<SectionAttr>()) { 1035 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1036 // common vars aren't constant even if declared const. 1037 GV->setConstant(false); 1038 } else 1039 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1040 1041 SetCommonAttributes(D, GV); 1042 1043 // Emit global variable debug information. 1044 if (CGDebugInfo *DI = getDebugInfo()) { 1045 DI->setLocation(D->getLocation()); 1046 DI->EmitGlobalVariable(GV, D); 1047 } 1048 } 1049 1050 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1051 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1052 /// existing call uses of the old function in the module, this adjusts them to 1053 /// call the new function directly. 1054 /// 1055 /// This is not just a cleanup: the always_inline pass requires direct calls to 1056 /// functions to be able to inline them. If there is a bitcast in the way, it 1057 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1058 /// run at -O0. 1059 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1060 llvm::Function *NewFn) { 1061 // If we're redefining a global as a function, don't transform it. 1062 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1063 if (OldFn == 0) return; 1064 1065 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1066 llvm::SmallVector<llvm::Value*, 4> ArgList; 1067 1068 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1069 UI != E; ) { 1070 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1071 unsigned OpNo = UI.getOperandNo(); 1072 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1073 if (!CI || OpNo != 0) continue; 1074 1075 // If the return types don't match exactly, and if the call isn't dead, then 1076 // we can't transform this call. 1077 if (CI->getType() != NewRetTy && !CI->use_empty()) 1078 continue; 1079 1080 // If the function was passed too few arguments, don't transform. If extra 1081 // arguments were passed, we silently drop them. If any of the types 1082 // mismatch, we don't transform. 1083 unsigned ArgNo = 0; 1084 bool DontTransform = false; 1085 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1086 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1087 if (CI->getNumOperands()-1 == ArgNo || 1088 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1089 DontTransform = true; 1090 break; 1091 } 1092 } 1093 if (DontTransform) 1094 continue; 1095 1096 // Okay, we can transform this. Create the new call instruction and copy 1097 // over the required information. 1098 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1099 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1100 ArgList.end(), "", CI); 1101 ArgList.clear(); 1102 if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext())) 1103 NewCall->takeName(CI); 1104 NewCall->setCallingConv(CI->getCallingConv()); 1105 NewCall->setAttributes(CI->getAttributes()); 1106 1107 // Finally, remove the old call, replacing any uses with the new one. 1108 if (!CI->use_empty()) 1109 CI->replaceAllUsesWith(NewCall); 1110 CI->eraseFromParent(); 1111 } 1112 } 1113 1114 1115 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1116 const llvm::FunctionType *Ty; 1117 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1118 1119 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1120 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1121 1122 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1123 } else { 1124 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1125 1126 // As a special case, make sure that definitions of K&R function 1127 // "type foo()" aren't declared as varargs (which forces the backend 1128 // to do unnecessary work). 1129 if (D->getType()->isFunctionNoProtoType()) { 1130 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1131 // Due to stret, the lowered function could have arguments. 1132 // Just create the same type as was lowered by ConvertType 1133 // but strip off the varargs bit. 1134 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1135 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1136 } 1137 } 1138 1139 // Get or create the prototype for the function. 1140 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1141 1142 // Strip off a bitcast if we got one back. 1143 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1144 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1145 Entry = CE->getOperand(0); 1146 } 1147 1148 1149 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1150 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1151 1152 // If the types mismatch then we have to rewrite the definition. 1153 assert(OldFn->isDeclaration() && 1154 "Shouldn't replace non-declaration"); 1155 1156 // F is the Function* for the one with the wrong type, we must make a new 1157 // Function* and update everything that used F (a declaration) with the new 1158 // Function* (which will be a definition). 1159 // 1160 // This happens if there is a prototype for a function 1161 // (e.g. "int f()") and then a definition of a different type 1162 // (e.g. "int f(int x)"). Start by making a new function of the 1163 // correct type, RAUW, then steal the name. 1164 GlobalDeclMap.erase(getMangledName(D)); 1165 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1166 NewFn->takeName(OldFn); 1167 1168 // If this is an implementation of a function without a prototype, try to 1169 // replace any existing uses of the function (which may be calls) with uses 1170 // of the new function 1171 if (D->getType()->isFunctionNoProtoType()) { 1172 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1173 OldFn->removeDeadConstantUsers(); 1174 } 1175 1176 // Replace uses of F with the Function we will endow with a body. 1177 if (!Entry->use_empty()) { 1178 llvm::Constant *NewPtrForOldDecl = 1179 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1180 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1181 } 1182 1183 // Ok, delete the old function now, which is dead. 1184 OldFn->eraseFromParent(); 1185 1186 Entry = NewFn; 1187 } 1188 1189 llvm::Function *Fn = cast<llvm::Function>(Entry); 1190 1191 CodeGenFunction(*this).GenerateCode(D, Fn); 1192 1193 SetFunctionDefinitionAttributes(D, Fn); 1194 SetLLVMFunctionAttributesForDefinition(D, Fn); 1195 1196 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1197 AddGlobalCtor(Fn, CA->getPriority()); 1198 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1199 AddGlobalDtor(Fn, DA->getPriority()); 1200 } 1201 1202 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1203 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1204 assert(AA && "Not an alias?"); 1205 1206 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1207 1208 // Unique the name through the identifier table. 1209 const char *AliaseeName = AA->getAliasee().c_str(); 1210 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1211 1212 // Create a reference to the named value. This ensures that it is emitted 1213 // if a deferred decl. 1214 llvm::Constant *Aliasee; 1215 if (isa<llvm::FunctionType>(DeclTy)) 1216 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1217 else 1218 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1219 llvm::PointerType::getUnqual(DeclTy), 0); 1220 1221 // Create the new alias itself, but don't set a name yet. 1222 llvm::GlobalValue *GA = 1223 new llvm::GlobalAlias(Aliasee->getType(), 1224 llvm::Function::ExternalLinkage, 1225 "", Aliasee, &getModule()); 1226 1227 // See if there is already something with the alias' name in the module. 1228 const char *MangledName = getMangledName(D); 1229 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1230 1231 if (Entry && !Entry->isDeclaration()) { 1232 // If there is a definition in the module, then it wins over the alias. 1233 // This is dubious, but allow it to be safe. Just ignore the alias. 1234 GA->eraseFromParent(); 1235 return; 1236 } 1237 1238 if (Entry) { 1239 // If there is a declaration in the module, then we had an extern followed 1240 // by the alias, as in: 1241 // extern int test6(); 1242 // ... 1243 // int test6() __attribute__((alias("test7"))); 1244 // 1245 // Remove it and replace uses of it with the alias. 1246 1247 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1248 Entry->getType())); 1249 Entry->eraseFromParent(); 1250 } 1251 1252 // Now we know that there is no conflict, set the name. 1253 Entry = GA; 1254 GA->setName(MangledName); 1255 1256 // Set attributes which are particular to an alias; this is a 1257 // specialization of the attributes which may be set on a global 1258 // variable/function. 1259 if (D->hasAttr<DLLExportAttr>()) { 1260 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1261 // The dllexport attribute is ignored for undefined symbols. 1262 if (FD->getBody()) 1263 GA->setLinkage(llvm::Function::DLLExportLinkage); 1264 } else { 1265 GA->setLinkage(llvm::Function::DLLExportLinkage); 1266 } 1267 } else if (D->hasAttr<WeakAttr>() || 1268 D->hasAttr<WeakImportAttr>()) { 1269 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1270 } 1271 1272 SetCommonAttributes(D, GA); 1273 } 1274 1275 /// getBuiltinLibFunction - Given a builtin id for a function like 1276 /// "__builtin_fabsf", return a Function* for "fabsf". 1277 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1278 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1279 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1280 "isn't a lib fn"); 1281 1282 // Get the name, skip over the __builtin_ prefix (if necessary). 1283 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1284 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1285 Name += 10; 1286 1287 // Get the type for the builtin. 1288 ASTContext::GetBuiltinTypeError Error; 1289 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1290 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1291 1292 const llvm::FunctionType *Ty = 1293 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1294 1295 // Unique the name through the identifier table. 1296 Name = getContext().Idents.get(Name).getName(); 1297 // FIXME: param attributes for sext/zext etc. 1298 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1299 } 1300 1301 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1302 unsigned NumTys) { 1303 return llvm::Intrinsic::getDeclaration(&getModule(), 1304 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1305 } 1306 1307 llvm::Function *CodeGenModule::getMemCpyFn() { 1308 if (MemCpyFn) return MemCpyFn; 1309 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1310 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1311 } 1312 1313 llvm::Function *CodeGenModule::getMemMoveFn() { 1314 if (MemMoveFn) return MemMoveFn; 1315 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1316 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1317 } 1318 1319 llvm::Function *CodeGenModule::getMemSetFn() { 1320 if (MemSetFn) return MemSetFn; 1321 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1322 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1323 } 1324 1325 static llvm::StringMapEntry<llvm::Constant*> & 1326 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1327 const StringLiteral *Literal, 1328 bool TargetIsLSB, 1329 bool &IsUTF16, 1330 unsigned &StringLength) { 1331 unsigned NumBytes = Literal->getByteLength(); 1332 1333 // Check for simple case. 1334 if (!Literal->containsNonAsciiOrNull()) { 1335 StringLength = NumBytes; 1336 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1337 StringLength)); 1338 } 1339 1340 // Otherwise, convert the UTF8 literals into a byte string. 1341 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1342 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1343 UTF16 *ToPtr = &ToBuf[0]; 1344 1345 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1346 &ToPtr, ToPtr + NumBytes, 1347 strictConversion); 1348 1349 // Check for conversion failure. 1350 if (Result != conversionOK) { 1351 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1352 // this duplicate code. 1353 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1354 StringLength = NumBytes; 1355 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1356 StringLength)); 1357 } 1358 1359 // ConvertUTF8toUTF16 returns the length in ToPtr. 1360 StringLength = ToPtr - &ToBuf[0]; 1361 1362 // Render the UTF-16 string into a byte array and convert to the target byte 1363 // order. 1364 // 1365 // FIXME: This isn't something we should need to do here. 1366 llvm::SmallString<128> AsBytes; 1367 AsBytes.reserve(StringLength * 2); 1368 for (unsigned i = 0; i != StringLength; ++i) { 1369 unsigned short Val = ToBuf[i]; 1370 if (TargetIsLSB) { 1371 AsBytes.push_back(Val & 0xFF); 1372 AsBytes.push_back(Val >> 8); 1373 } else { 1374 AsBytes.push_back(Val >> 8); 1375 AsBytes.push_back(Val & 0xFF); 1376 } 1377 } 1378 // Append one extra null character, the second is automatically added by our 1379 // caller. 1380 AsBytes.push_back(0); 1381 1382 IsUTF16 = true; 1383 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1384 } 1385 1386 llvm::Constant * 1387 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1388 unsigned StringLength = 0; 1389 bool isUTF16 = false; 1390 llvm::StringMapEntry<llvm::Constant*> &Entry = 1391 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1392 getTargetData().isLittleEndian(), 1393 isUTF16, StringLength); 1394 1395 if (llvm::Constant *C = Entry.getValue()) 1396 return C; 1397 1398 llvm::Constant *Zero = 1399 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1400 llvm::Constant *Zeros[] = { Zero, Zero }; 1401 1402 // If we don't already have it, get __CFConstantStringClassReference. 1403 if (!CFConstantStringClassRef) { 1404 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1405 Ty = llvm::ArrayType::get(Ty, 0); 1406 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1407 "__CFConstantStringClassReference"); 1408 // Decay array -> ptr 1409 CFConstantStringClassRef = 1410 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1411 } 1412 1413 QualType CFTy = getContext().getCFConstantStringType(); 1414 1415 const llvm::StructType *STy = 1416 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1417 1418 std::vector<llvm::Constant*> Fields(4); 1419 1420 // Class pointer. 1421 Fields[0] = CFConstantStringClassRef; 1422 1423 // Flags. 1424 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1425 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1426 llvm::ConstantInt::get(Ty, 0x07C8); 1427 1428 // String pointer. 1429 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1430 1431 const char *Sect, *Prefix; 1432 bool isConstant; 1433 llvm::GlobalValue::LinkageTypes Linkage; 1434 if (isUTF16) { 1435 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1436 Sect = getContext().Target.getUnicodeStringSection(); 1437 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1438 Linkage = llvm::GlobalValue::InternalLinkage; 1439 // FIXME: Why does GCC not set constant here? 1440 isConstant = false; 1441 } else { 1442 Prefix = ".str"; 1443 Sect = getContext().Target.getCFStringDataSection(); 1444 Linkage = llvm::GlobalValue::PrivateLinkage; 1445 // FIXME: -fwritable-strings should probably affect this, but we 1446 // are following gcc here. 1447 isConstant = true; 1448 } 1449 llvm::GlobalVariable *GV = 1450 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1451 Linkage, C, Prefix); 1452 if (Sect) 1453 GV->setSection(Sect); 1454 if (isUTF16) { 1455 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1456 GV->setAlignment(Align); 1457 } 1458 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1459 1460 // String length. 1461 Ty = getTypes().ConvertType(getContext().LongTy); 1462 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1463 1464 // The struct. 1465 C = llvm::ConstantStruct::get(STy, Fields); 1466 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1467 llvm::GlobalVariable::PrivateLinkage, C, 1468 "_unnamed_cfstring_"); 1469 if (const char *Sect = getContext().Target.getCFStringSection()) 1470 GV->setSection(Sect); 1471 Entry.setValue(GV); 1472 1473 return GV; 1474 } 1475 1476 /// GetStringForStringLiteral - Return the appropriate bytes for a 1477 /// string literal, properly padded to match the literal type. 1478 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1479 const char *StrData = E->getStrData(); 1480 unsigned Len = E->getByteLength(); 1481 1482 const ConstantArrayType *CAT = 1483 getContext().getAsConstantArrayType(E->getType()); 1484 assert(CAT && "String isn't pointer or array!"); 1485 1486 // Resize the string to the right size. 1487 std::string Str(StrData, StrData+Len); 1488 uint64_t RealLen = CAT->getSize().getZExtValue(); 1489 1490 if (E->isWide()) 1491 RealLen *= getContext().Target.getWCharWidth()/8; 1492 1493 Str.resize(RealLen, '\0'); 1494 1495 return Str; 1496 } 1497 1498 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1499 /// constant array for the given string literal. 1500 llvm::Constant * 1501 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1502 // FIXME: This can be more efficient. 1503 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1504 } 1505 1506 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1507 /// array for the given ObjCEncodeExpr node. 1508 llvm::Constant * 1509 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1510 std::string Str; 1511 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1512 1513 return GetAddrOfConstantCString(Str); 1514 } 1515 1516 1517 /// GenerateWritableString -- Creates storage for a string literal. 1518 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1519 bool constant, 1520 CodeGenModule &CGM, 1521 const char *GlobalName) { 1522 // Create Constant for this string literal. Don't add a '\0'. 1523 llvm::Constant *C = 1524 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1525 1526 // Create a global variable for this string 1527 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1528 llvm::GlobalValue::PrivateLinkage, 1529 C, GlobalName); 1530 } 1531 1532 /// GetAddrOfConstantString - Returns a pointer to a character array 1533 /// containing the literal. This contents are exactly that of the 1534 /// given string, i.e. it will not be null terminated automatically; 1535 /// see GetAddrOfConstantCString. Note that whether the result is 1536 /// actually a pointer to an LLVM constant depends on 1537 /// Feature.WriteableStrings. 1538 /// 1539 /// The result has pointer to array type. 1540 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1541 const char *GlobalName) { 1542 bool IsConstant = !Features.WritableStrings; 1543 1544 // Get the default prefix if a name wasn't specified. 1545 if (!GlobalName) 1546 GlobalName = ".str"; 1547 1548 // Don't share any string literals if strings aren't constant. 1549 if (!IsConstant) 1550 return GenerateStringLiteral(str, false, *this, GlobalName); 1551 1552 llvm::StringMapEntry<llvm::Constant *> &Entry = 1553 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1554 1555 if (Entry.getValue()) 1556 return Entry.getValue(); 1557 1558 // Create a global variable for this. 1559 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1560 Entry.setValue(C); 1561 return C; 1562 } 1563 1564 /// GetAddrOfConstantCString - Returns a pointer to a character 1565 /// array containing the literal and a terminating '\-' 1566 /// character. The result has pointer to array type. 1567 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1568 const char *GlobalName){ 1569 return GetAddrOfConstantString(str + '\0', GlobalName); 1570 } 1571 1572 /// EmitObjCPropertyImplementations - Emit information for synthesized 1573 /// properties for an implementation. 1574 void CodeGenModule::EmitObjCPropertyImplementations(const 1575 ObjCImplementationDecl *D) { 1576 for (ObjCImplementationDecl::propimpl_iterator 1577 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1578 ObjCPropertyImplDecl *PID = *i; 1579 1580 // Dynamic is just for type-checking. 1581 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1582 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1583 1584 // Determine which methods need to be implemented, some may have 1585 // been overridden. Note that ::isSynthesized is not the method 1586 // we want, that just indicates if the decl came from a 1587 // property. What we want to know is if the method is defined in 1588 // this implementation. 1589 if (!D->getInstanceMethod(PD->getGetterName())) 1590 CodeGenFunction(*this).GenerateObjCGetter( 1591 const_cast<ObjCImplementationDecl *>(D), PID); 1592 if (!PD->isReadOnly() && 1593 !D->getInstanceMethod(PD->getSetterName())) 1594 CodeGenFunction(*this).GenerateObjCSetter( 1595 const_cast<ObjCImplementationDecl *>(D), PID); 1596 } 1597 } 1598 } 1599 1600 /// EmitNamespace - Emit all declarations in a namespace. 1601 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1602 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1603 I != E; ++I) 1604 EmitTopLevelDecl(*I); 1605 } 1606 1607 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1608 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1609 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1610 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1611 ErrorUnsupported(LSD, "linkage spec"); 1612 return; 1613 } 1614 1615 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1616 I != E; ++I) 1617 EmitTopLevelDecl(*I); 1618 } 1619 1620 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1621 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1622 // If an error has occurred, stop code generation, but continue 1623 // parsing and semantic analysis (to ensure all warnings and errors 1624 // are emitted). 1625 if (Diags.hasErrorOccurred()) 1626 return; 1627 1628 // Ignore dependent declarations. 1629 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1630 return; 1631 1632 switch (D->getKind()) { 1633 case Decl::CXXConversion: 1634 case Decl::CXXMethod: 1635 case Decl::Function: 1636 // Skip function templates 1637 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1638 return; 1639 1640 EmitGlobal(cast<FunctionDecl>(D)); 1641 break; 1642 1643 case Decl::Var: 1644 EmitGlobal(cast<VarDecl>(D)); 1645 break; 1646 1647 // C++ Decls 1648 case Decl::Namespace: 1649 EmitNamespace(cast<NamespaceDecl>(D)); 1650 break; 1651 // No code generation needed. 1652 case Decl::Using: 1653 case Decl::UsingDirective: 1654 case Decl::ClassTemplate: 1655 case Decl::FunctionTemplate: 1656 break; 1657 case Decl::CXXConstructor: 1658 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1659 break; 1660 case Decl::CXXDestructor: 1661 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1662 break; 1663 1664 case Decl::StaticAssert: 1665 // Nothing to do. 1666 break; 1667 1668 // Objective-C Decls 1669 1670 // Forward declarations, no (immediate) code generation. 1671 case Decl::ObjCClass: 1672 case Decl::ObjCForwardProtocol: 1673 case Decl::ObjCCategory: 1674 case Decl::ObjCInterface: 1675 break; 1676 1677 case Decl::ObjCProtocol: 1678 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1679 break; 1680 1681 case Decl::ObjCCategoryImpl: 1682 // Categories have properties but don't support synthesize so we 1683 // can ignore them here. 1684 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1685 break; 1686 1687 case Decl::ObjCImplementation: { 1688 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1689 EmitObjCPropertyImplementations(OMD); 1690 Runtime->GenerateClass(OMD); 1691 break; 1692 } 1693 case Decl::ObjCMethod: { 1694 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1695 // If this is not a prototype, emit the body. 1696 if (OMD->getBody()) 1697 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1698 break; 1699 } 1700 case Decl::ObjCCompatibleAlias: 1701 // compatibility-alias is a directive and has no code gen. 1702 break; 1703 1704 case Decl::LinkageSpec: 1705 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1706 break; 1707 1708 case Decl::FileScopeAsm: { 1709 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1710 std::string AsmString(AD->getAsmString()->getStrData(), 1711 AD->getAsmString()->getByteLength()); 1712 1713 const std::string &S = getModule().getModuleInlineAsm(); 1714 if (S.empty()) 1715 getModule().setModuleInlineAsm(AsmString); 1716 else 1717 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1718 break; 1719 } 1720 1721 default: 1722 // Make sure we handled everything we should, every other kind is a 1723 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1724 // function. Need to recode Decl::Kind to do that easily. 1725 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1726 } 1727 } 1728