1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // The kind of external linkage this function will have, if it is not
251   // inline or static.
252   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253   if (Context.getLangOptions().CPlusPlus &&
254       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
255     External = CodeGenModule::GVA_TemplateInstantiation;
256 
257   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
258     // C++ member functions defined inside the class are always inline.
259     if (MD->isInline() || !MD->isOutOfLine())
260       return CodeGenModule::GVA_CXXInline;
261 
262     return External;
263   }
264 
265   // "static" functions get internal linkage.
266   if (FD->getStorageClass() == FunctionDecl::Static)
267     return CodeGenModule::GVA_Internal;
268 
269   if (!FD->isInline())
270     return External;
271 
272   // If the inline function explicitly has the GNU inline attribute on it, or if
273   // this is C89 mode, we use to GNU semantics.
274   if (!Features.C99 && !Features.CPlusPlus) {
275     // extern inline in GNU mode is like C99 inline.
276     if (FD->getStorageClass() == FunctionDecl::Extern)
277       return CodeGenModule::GVA_C99Inline;
278     // Normal inline is a strong symbol.
279     return CodeGenModule::GVA_StrongExternal;
280   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
281     // GCC in C99 mode seems to use a different decision-making
282     // process for extern inline, which factors in previous
283     // declarations.
284     if (FD->isExternGNUInline(Context))
285       return CodeGenModule::GVA_C99Inline;
286     // Normal inline is a strong symbol.
287     return External;
288   }
289 
290   // The definition of inline changes based on the language.  Note that we
291   // have already handled "static inline" above, with the GVA_Internal case.
292   if (Features.CPlusPlus)  // inline and extern inline.
293     return CodeGenModule::GVA_CXXInline;
294 
295   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
296   if (FD->isC99InlineDefinition())
297     return CodeGenModule::GVA_C99Inline;
298 
299   return CodeGenModule::GVA_StrongExternal;
300 }
301 
302 /// SetFunctionDefinitionAttributes - Set attributes for a global.
303 ///
304 /// FIXME: This is currently only done for aliases and functions, but not for
305 /// variables (these details are set in EmitGlobalVarDefinition for variables).
306 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
307                                                     llvm::GlobalValue *GV) {
308   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
309 
310   if (Linkage == GVA_Internal) {
311     GV->setLinkage(llvm::Function::InternalLinkage);
312   } else if (D->hasAttr<DLLExportAttr>()) {
313     GV->setLinkage(llvm::Function::DLLExportLinkage);
314   } else if (D->hasAttr<WeakAttr>()) {
315     GV->setLinkage(llvm::Function::WeakAnyLinkage);
316   } else if (Linkage == GVA_C99Inline) {
317     // In C99 mode, 'inline' functions are guaranteed to have a strong
318     // definition somewhere else, so we can use available_externally linkage.
319     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
320   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
321     // In C++, the compiler has to emit a definition in every translation unit
322     // that references the function.  We should use linkonce_odr because
323     // a) if all references in this translation unit are optimized away, we
324     // don't need to codegen it.  b) if the function persists, it needs to be
325     // merged with other definitions. c) C++ has the ODR, so we know the
326     // definition is dependable.
327     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
328   } else {
329     assert(Linkage == GVA_StrongExternal);
330     // Otherwise, we have strong external linkage.
331     GV->setLinkage(llvm::Function::ExternalLinkage);
332   }
333 
334   SetCommonAttributes(D, GV);
335 }
336 
337 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
338                                               const CGFunctionInfo &Info,
339                                               llvm::Function *F) {
340   AttributeListType AttributeList;
341   ConstructAttributeList(Info, D, AttributeList);
342 
343   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
344                                         AttributeList.size()));
345 
346   llvm::CallingConv::ID CC =
347     static_cast<llvm::CallingConv::ID>(Info.getCallingConvention());
348   F->setCallingConv(CC);
349 }
350 
351 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
352                                                            llvm::Function *F) {
353   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
354     F->addFnAttr(llvm::Attribute::NoUnwind);
355 
356   if (D->hasAttr<AlwaysInlineAttr>())
357     F->addFnAttr(llvm::Attribute::AlwaysInline);
358 
359   if (D->hasAttr<NoInlineAttr>())
360     F->addFnAttr(llvm::Attribute::NoInline);
361 }
362 
363 void CodeGenModule::SetCommonAttributes(const Decl *D,
364                                         llvm::GlobalValue *GV) {
365   setGlobalVisibility(GV, D);
366 
367   if (D->hasAttr<UsedAttr>())
368     AddUsedGlobal(GV);
369 
370   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
371     GV->setSection(SA->getName());
372 }
373 
374 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
375                                                   llvm::Function *F,
376                                                   const CGFunctionInfo &FI) {
377   SetLLVMFunctionAttributes(D, FI, F);
378   SetLLVMFunctionAttributesForDefinition(D, F);
379 
380   F->setLinkage(llvm::Function::InternalLinkage);
381 
382   SetCommonAttributes(D, F);
383 }
384 
385 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
386                                           llvm::Function *F,
387                                           bool IsIncompleteFunction) {
388   if (!IsIncompleteFunction)
389     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
390 
391   // Only a few attributes are set on declarations; these may later be
392   // overridden by a definition.
393 
394   if (FD->hasAttr<DLLImportAttr>()) {
395     F->setLinkage(llvm::Function::DLLImportLinkage);
396   } else if (FD->hasAttr<WeakAttr>() ||
397              FD->hasAttr<WeakImportAttr>()) {
398     // "extern_weak" is overloaded in LLVM; we probably should have
399     // separate linkage types for this.
400     F->setLinkage(llvm::Function::ExternalWeakLinkage);
401   } else {
402     F->setLinkage(llvm::Function::ExternalLinkage);
403   }
404 
405   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
406     F->setSection(SA->getName());
407 }
408 
409 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
410   assert(!GV->isDeclaration() &&
411          "Only globals with definition can force usage.");
412   LLVMUsed.push_back(GV);
413 }
414 
415 void CodeGenModule::EmitLLVMUsed() {
416   // Don't create llvm.used if there is no need.
417   if (LLVMUsed.empty())
418     return;
419 
420   llvm::Type *i8PTy =
421       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
422 
423   // Convert LLVMUsed to what ConstantArray needs.
424   std::vector<llvm::Constant*> UsedArray;
425   UsedArray.resize(LLVMUsed.size());
426   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
427     UsedArray[i] =
428      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
429                                       i8PTy);
430   }
431 
432   if (UsedArray.empty())
433     return;
434   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
435 
436   llvm::GlobalVariable *GV =
437     new llvm::GlobalVariable(getModule(), ATy, false,
438                              llvm::GlobalValue::AppendingLinkage,
439                              llvm::ConstantArray::get(ATy, UsedArray),
440                              "llvm.used");
441 
442   GV->setSection("llvm.metadata");
443 }
444 
445 void CodeGenModule::EmitDeferred() {
446   // Emit code for any potentially referenced deferred decls.  Since a
447   // previously unused static decl may become used during the generation of code
448   // for a static function, iterate until no  changes are made.
449   while (!DeferredDeclsToEmit.empty()) {
450     GlobalDecl D = DeferredDeclsToEmit.back();
451     DeferredDeclsToEmit.pop_back();
452 
453     // The mangled name for the decl must have been emitted in GlobalDeclMap.
454     // Look it up to see if it was defined with a stronger definition (e.g. an
455     // extern inline function with a strong function redefinition).  If so,
456     // just ignore the deferred decl.
457     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
458     assert(CGRef && "Deferred decl wasn't referenced?");
459 
460     if (!CGRef->isDeclaration())
461       continue;
462 
463     // Otherwise, emit the definition and move on to the next one.
464     EmitGlobalDefinition(D);
465   }
466 }
467 
468 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
469 /// annotation information for a given GlobalValue.  The annotation struct is
470 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
471 /// GlobalValue being annotated.  The second field is the constant string
472 /// created from the AnnotateAttr's annotation.  The third field is a constant
473 /// string containing the name of the translation unit.  The fourth field is
474 /// the line number in the file of the annotated value declaration.
475 ///
476 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
477 ///        appears to.
478 ///
479 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
480                                                 const AnnotateAttr *AA,
481                                                 unsigned LineNo) {
482   llvm::Module *M = &getModule();
483 
484   // get [N x i8] constants for the annotation string, and the filename string
485   // which are the 2nd and 3rd elements of the global annotation structure.
486   const llvm::Type *SBP =
487       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
488   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
489                                                   AA->getAnnotation(), true);
490   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
491                                                   M->getModuleIdentifier(),
492                                                   true);
493 
494   // Get the two global values corresponding to the ConstantArrays we just
495   // created to hold the bytes of the strings.
496   llvm::GlobalValue *annoGV =
497     new llvm::GlobalVariable(*M, anno->getType(), false,
498                              llvm::GlobalValue::PrivateLinkage, anno,
499                              GV->getName());
500   // translation unit name string, emitted into the llvm.metadata section.
501   llvm::GlobalValue *unitGV =
502     new llvm::GlobalVariable(*M, unit->getType(), false,
503                              llvm::GlobalValue::PrivateLinkage, unit,
504                              ".str");
505 
506   // Create the ConstantStruct for the global annotation.
507   llvm::Constant *Fields[4] = {
508     llvm::ConstantExpr::getBitCast(GV, SBP),
509     llvm::ConstantExpr::getBitCast(annoGV, SBP),
510     llvm::ConstantExpr::getBitCast(unitGV, SBP),
511     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
512   };
513   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
514 }
515 
516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
517   // Never defer when EmitAllDecls is specified or the decl has
518   // attribute used.
519   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
520     return false;
521 
522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
523     // Constructors and destructors should never be deferred.
524     if (FD->hasAttr<ConstructorAttr>() ||
525         FD->hasAttr<DestructorAttr>())
526       return false;
527 
528     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
529 
530     // static, static inline, always_inline, and extern inline functions can
531     // always be deferred.  Normal inline functions can be deferred in C99/C++.
532     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
533         Linkage == GVA_CXXInline)
534       return true;
535     return false;
536   }
537 
538   const VarDecl *VD = cast<VarDecl>(Global);
539   assert(VD->isFileVarDecl() && "Invalid decl");
540 
541   return VD->getStorageClass() == VarDecl::Static;
542 }
543 
544 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
545   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
546 
547   // If this is an alias definition (which otherwise looks like a declaration)
548   // emit it now.
549   if (Global->hasAttr<AliasAttr>())
550     return EmitAliasDefinition(Global);
551 
552   // Ignore declarations, they will be emitted on their first use.
553   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554     // Forward declarations are emitted lazily on first use.
555     if (!FD->isThisDeclarationADefinition())
556       return;
557   } else {
558     const VarDecl *VD = cast<VarDecl>(Global);
559     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
560 
561     // In C++, if this is marked "extern", defer code generation.
562     if (getLangOptions().CPlusPlus && !VD->getInit() &&
563         (VD->getStorageClass() == VarDecl::Extern ||
564          VD->isExternC()))
565       return;
566 
567     // In C, if this isn't a definition, defer code generation.
568     if (!getLangOptions().CPlusPlus && !VD->getInit())
569       return;
570   }
571 
572   // Defer code generation when possible if this is a static definition, inline
573   // function etc.  These we only want to emit if they are used.
574   if (MayDeferGeneration(Global)) {
575     // If the value has already been used, add it directly to the
576     // DeferredDeclsToEmit list.
577     const char *MangledName = getMangledName(GD);
578     if (GlobalDeclMap.count(MangledName))
579       DeferredDeclsToEmit.push_back(GD);
580     else {
581       // Otherwise, remember that we saw a deferred decl with this name.  The
582       // first use of the mangled name will cause it to move into
583       // DeferredDeclsToEmit.
584       DeferredDecls[MangledName] = GD;
585     }
586     return;
587   }
588 
589   // Otherwise emit the definition.
590   EmitGlobalDefinition(GD);
591 }
592 
593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
594   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
595 
596   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
597     EmitCXXConstructor(CD, GD.getCtorType());
598   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
599     EmitCXXDestructor(DD, GD.getDtorType());
600   else if (isa<FunctionDecl>(D))
601     EmitGlobalFunctionDefinition(GD);
602   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
603     EmitGlobalVarDefinition(VD);
604   else {
605     assert(0 && "Invalid argument to EmitGlobalDefinition()");
606   }
607 }
608 
609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
610 /// module, create and return an llvm Function with the specified type. If there
611 /// is something in the module with the specified name, return it potentially
612 /// bitcasted to the right type.
613 ///
614 /// If D is non-null, it specifies a decl that correspond to this.  This is used
615 /// to set the attributes on the function when it is first created.
616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
617                                                        const llvm::Type *Ty,
618                                                        GlobalDecl D) {
619   // Lookup the entry, lazily creating it if necessary.
620   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
621   if (Entry) {
622     if (Entry->getType()->getElementType() == Ty)
623       return Entry;
624 
625     // Make sure the result is of the correct type.
626     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
627     return llvm::ConstantExpr::getBitCast(Entry, PTy);
628   }
629 
630   // This is the first use or definition of a mangled name.  If there is a
631   // deferred decl with this name, remember that we need to emit it at the end
632   // of the file.
633   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
634     DeferredDecls.find(MangledName);
635   if (DDI != DeferredDecls.end()) {
636     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
637     // list, and remove it from DeferredDecls (since we don't need it anymore).
638     DeferredDeclsToEmit.push_back(DDI->second);
639     DeferredDecls.erase(DDI);
640   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
641     // If this the first reference to a C++ inline function in a class, queue up
642     // the deferred function body for emission.  These are not seen as
643     // top-level declarations.
644     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
645       DeferredDeclsToEmit.push_back(D);
646     // A called constructor which has no definition or declaration need be
647     // synthesized.
648     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
649       const CXXRecordDecl *ClassDecl =
650         cast<CXXRecordDecl>(CD->getDeclContext());
651       if (CD->isCopyConstructor(getContext()))
652         DeferredCopyConstructorToEmit(D);
653       else if (!ClassDecl->hasUserDeclaredConstructor())
654         DeferredDeclsToEmit.push_back(D);
655     }
656     else if (isa<CXXDestructorDecl>(FD))
657        DeferredDestructorToEmit(D);
658     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
659            if (MD->isCopyAssignment())
660              DeferredCopyAssignmentToEmit(D);
661   }
662 
663   // This function doesn't have a complete type (for example, the return
664   // type is an incomplete struct). Use a fake type instead, and make
665   // sure not to try to set attributes.
666   bool IsIncompleteFunction = false;
667   if (!isa<llvm::FunctionType>(Ty)) {
668     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
669                                  std::vector<const llvm::Type*>(), false);
670     IsIncompleteFunction = true;
671   }
672   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
673                                              llvm::Function::ExternalLinkage,
674                                              "", &getModule());
675   F->setName(MangledName);
676   if (D.getDecl())
677     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
678                           IsIncompleteFunction);
679   Entry = F;
680   return F;
681 }
682 
683 /// Defer definition of copy constructor(s) which need be implicitly defined.
684 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
685   const CXXConstructorDecl *CD =
686     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
687   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
688   if (ClassDecl->hasTrivialCopyConstructor() ||
689       ClassDecl->hasUserDeclaredCopyConstructor())
690     return;
691 
692   // First make sure all direct base classes and virtual bases and non-static
693   // data mebers which need to have their copy constructors implicitly defined
694   // are defined. 12.8.p7
695   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
696        Base != ClassDecl->bases_end(); ++Base) {
697     CXXRecordDecl *BaseClassDecl
698       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
699     if (CXXConstructorDecl *BaseCopyCtor =
700         BaseClassDecl->getCopyConstructor(Context, 0))
701       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
702   }
703 
704   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
705        FieldEnd = ClassDecl->field_end();
706        Field != FieldEnd; ++Field) {
707     QualType FieldType = Context.getCanonicalType((*Field)->getType());
708     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
709       FieldType = Array->getElementType();
710     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
711       if ((*Field)->isAnonymousStructOrUnion())
712         continue;
713       CXXRecordDecl *FieldClassDecl
714         = cast<CXXRecordDecl>(FieldClassType->getDecl());
715       if (CXXConstructorDecl *FieldCopyCtor =
716           FieldClassDecl->getCopyConstructor(Context, 0))
717         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
718     }
719   }
720   DeferredDeclsToEmit.push_back(CopyCtorDecl);
721 }
722 
723 /// Defer definition of copy assignments which need be implicitly defined.
724 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
725   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
726   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
727 
728   if (ClassDecl->hasTrivialCopyAssignment() ||
729       ClassDecl->hasUserDeclaredCopyAssignment())
730     return;
731 
732   // First make sure all direct base classes and virtual bases and non-static
733   // data mebers which need to have their copy assignments implicitly defined
734   // are defined. 12.8.p12
735   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
736        Base != ClassDecl->bases_end(); ++Base) {
737     CXXRecordDecl *BaseClassDecl
738       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
739     const CXXMethodDecl *MD = 0;
740     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
741         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
742         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
743       GetAddrOfFunction(MD, 0);
744   }
745 
746   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
747        FieldEnd = ClassDecl->field_end();
748        Field != FieldEnd; ++Field) {
749     QualType FieldType = Context.getCanonicalType((*Field)->getType());
750     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
751       FieldType = Array->getElementType();
752     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
753       if ((*Field)->isAnonymousStructOrUnion())
754         continue;
755       CXXRecordDecl *FieldClassDecl
756         = cast<CXXRecordDecl>(FieldClassType->getDecl());
757       const CXXMethodDecl *MD = 0;
758       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
759           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
760           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
761           GetAddrOfFunction(MD, 0);
762     }
763   }
764   DeferredDeclsToEmit.push_back(CopyAssignDecl);
765 }
766 
767 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
768   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
769   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
770   if (ClassDecl->hasTrivialDestructor() ||
771       ClassDecl->hasUserDeclaredDestructor())
772     return;
773 
774   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
775        Base != ClassDecl->bases_end(); ++Base) {
776     CXXRecordDecl *BaseClassDecl
777       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
778     if (const CXXDestructorDecl *BaseDtor =
779           BaseClassDecl->getDestructor(Context))
780       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
781   }
782 
783   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
784        FieldEnd = ClassDecl->field_end();
785        Field != FieldEnd; ++Field) {
786     QualType FieldType = Context.getCanonicalType((*Field)->getType());
787     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
788       FieldType = Array->getElementType();
789     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
790       if ((*Field)->isAnonymousStructOrUnion())
791         continue;
792       CXXRecordDecl *FieldClassDecl
793         = cast<CXXRecordDecl>(FieldClassType->getDecl());
794       if (const CXXDestructorDecl *FieldDtor =
795             FieldClassDecl->getDestructor(Context))
796         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
797     }
798   }
799   DeferredDeclsToEmit.push_back(DtorDecl);
800 }
801 
802 
803 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
804 /// non-null, then this function will use the specified type if it has to
805 /// create it (this occurs when we see a definition of the function).
806 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
807                                                  const llvm::Type *Ty) {
808   // If there was no specific requested type, just convert it now.
809   if (!Ty)
810     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
811   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
812 }
813 
814 /// CreateRuntimeFunction - Create a new runtime function with the specified
815 /// type and name.
816 llvm::Constant *
817 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
818                                      const char *Name) {
819   // Convert Name to be a uniqued string from the IdentifierInfo table.
820   Name = getContext().Idents.get(Name).getName();
821   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
822 }
823 
824 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
825 /// create and return an llvm GlobalVariable with the specified type.  If there
826 /// is something in the module with the specified name, return it potentially
827 /// bitcasted to the right type.
828 ///
829 /// If D is non-null, it specifies a decl that correspond to this.  This is used
830 /// to set the attributes on the global when it is first created.
831 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
832                                                      const llvm::PointerType*Ty,
833                                                      const VarDecl *D) {
834   // Lookup the entry, lazily creating it if necessary.
835   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
836   if (Entry) {
837     if (Entry->getType() == Ty)
838       return Entry;
839 
840     // Make sure the result is of the correct type.
841     return llvm::ConstantExpr::getBitCast(Entry, Ty);
842   }
843 
844   // This is the first use or definition of a mangled name.  If there is a
845   // deferred decl with this name, remember that we need to emit it at the end
846   // of the file.
847   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
848     DeferredDecls.find(MangledName);
849   if (DDI != DeferredDecls.end()) {
850     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
851     // list, and remove it from DeferredDecls (since we don't need it anymore).
852     DeferredDeclsToEmit.push_back(DDI->second);
853     DeferredDecls.erase(DDI);
854   }
855 
856   llvm::GlobalVariable *GV =
857     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
858                              llvm::GlobalValue::ExternalLinkage,
859                              0, "", 0,
860                              false, Ty->getAddressSpace());
861   GV->setName(MangledName);
862 
863   // Handle things which are present even on external declarations.
864   if (D) {
865     // FIXME: This code is overly simple and should be merged with other global
866     // handling.
867     GV->setConstant(D->getType().isConstant(Context));
868 
869     // FIXME: Merge with other attribute handling code.
870     if (D->getStorageClass() == VarDecl::PrivateExtern)
871       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
872 
873     if (D->hasAttr<WeakAttr>() ||
874         D->hasAttr<WeakImportAttr>())
875       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
876 
877     GV->setThreadLocal(D->isThreadSpecified());
878   }
879 
880   return Entry = GV;
881 }
882 
883 
884 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
885 /// given global variable.  If Ty is non-null and if the global doesn't exist,
886 /// then it will be greated with the specified type instead of whatever the
887 /// normal requested type would be.
888 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
889                                                   const llvm::Type *Ty) {
890   assert(D->hasGlobalStorage() && "Not a global variable");
891   QualType ASTTy = D->getType();
892   if (Ty == 0)
893     Ty = getTypes().ConvertTypeForMem(ASTTy);
894 
895   const llvm::PointerType *PTy =
896     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
897   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
898 }
899 
900 /// CreateRuntimeVariable - Create a new runtime global variable with the
901 /// specified type and name.
902 llvm::Constant *
903 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
904                                      const char *Name) {
905   // Convert Name to be a uniqued string from the IdentifierInfo table.
906   Name = getContext().Idents.get(Name).getName();
907   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
908 }
909 
910 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
911   assert(!D->getInit() && "Cannot emit definite definitions here!");
912 
913   if (MayDeferGeneration(D)) {
914     // If we have not seen a reference to this variable yet, place it
915     // into the deferred declarations table to be emitted if needed
916     // later.
917     const char *MangledName = getMangledName(D);
918     if (GlobalDeclMap.count(MangledName) == 0) {
919       DeferredDecls[MangledName] = D;
920       return;
921     }
922   }
923 
924   // The tentative definition is the only definition.
925   EmitGlobalVarDefinition(D);
926 }
927 
928 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
929   llvm::Constant *Init = 0;
930   QualType ASTTy = D->getType();
931 
932   if (D->getInit() == 0) {
933     // This is a tentative definition; tentative definitions are
934     // implicitly initialized with { 0 }.
935     //
936     // Note that tentative definitions are only emitted at the end of
937     // a translation unit, so they should never have incomplete
938     // type. In addition, EmitTentativeDefinition makes sure that we
939     // never attempt to emit a tentative definition if a real one
940     // exists. A use may still exists, however, so we still may need
941     // to do a RAUW.
942     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
943     Init = EmitNullConstant(D->getType());
944   } else {
945     Init = EmitConstantExpr(D->getInit(), D->getType());
946 
947     if (!Init) {
948       QualType T = D->getInit()->getType();
949       if (getLangOptions().CPlusPlus) {
950         CXXGlobalInits.push_back(D);
951         Init = EmitNullConstant(T);
952       } else {
953         ErrorUnsupported(D, "static initializer");
954         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
955       }
956     }
957   }
958 
959   const llvm::Type* InitType = Init->getType();
960   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
961 
962   // Strip off a bitcast if we got one back.
963   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
964     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
965            // all zero index gep.
966            CE->getOpcode() == llvm::Instruction::GetElementPtr);
967     Entry = CE->getOperand(0);
968   }
969 
970   // Entry is now either a Function or GlobalVariable.
971   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
972 
973   // We have a definition after a declaration with the wrong type.
974   // We must make a new GlobalVariable* and update everything that used OldGV
975   // (a declaration or tentative definition) with the new GlobalVariable*
976   // (which will be a definition).
977   //
978   // This happens if there is a prototype for a global (e.g.
979   // "extern int x[];") and then a definition of a different type (e.g.
980   // "int x[10];"). This also happens when an initializer has a different type
981   // from the type of the global (this happens with unions).
982   if (GV == 0 ||
983       GV->getType()->getElementType() != InitType ||
984       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
985 
986     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
987     GlobalDeclMap.erase(getMangledName(D));
988 
989     // Make a new global with the correct type, this is now guaranteed to work.
990     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
991     GV->takeName(cast<llvm::GlobalValue>(Entry));
992 
993     // Replace all uses of the old global with the new global
994     llvm::Constant *NewPtrForOldDecl =
995         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
996     Entry->replaceAllUsesWith(NewPtrForOldDecl);
997 
998     // Erase the old global, since it is no longer used.
999     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1000   }
1001 
1002   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1003     SourceManager &SM = Context.getSourceManager();
1004     AddAnnotation(EmitAnnotateAttr(GV, AA,
1005                               SM.getInstantiationLineNumber(D->getLocation())));
1006   }
1007 
1008   GV->setInitializer(Init);
1009 
1010   // If it is safe to mark the global 'constant', do so now.
1011   GV->setConstant(false);
1012   if (D->getType().isConstant(Context)) {
1013     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1014     // members, it cannot be declared "LLVM const".
1015     GV->setConstant(true);
1016   }
1017 
1018   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1019 
1020   // Set the llvm linkage type as appropriate.
1021   if (D->getStorageClass() == VarDecl::Static)
1022     GV->setLinkage(llvm::Function::InternalLinkage);
1023   else if (D->hasAttr<DLLImportAttr>())
1024     GV->setLinkage(llvm::Function::DLLImportLinkage);
1025   else if (D->hasAttr<DLLExportAttr>())
1026     GV->setLinkage(llvm::Function::DLLExportLinkage);
1027   else if (D->hasAttr<WeakAttr>()) {
1028     if (GV->isConstant())
1029       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1030     else
1031       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1032   } else if (!CompileOpts.NoCommon &&
1033            !D->hasExternalStorage() && !D->getInit() &&
1034            !D->getAttr<SectionAttr>()) {
1035     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1036     // common vars aren't constant even if declared const.
1037     GV->setConstant(false);
1038   } else
1039     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1040 
1041   SetCommonAttributes(D, GV);
1042 
1043   // Emit global variable debug information.
1044   if (CGDebugInfo *DI = getDebugInfo()) {
1045     DI->setLocation(D->getLocation());
1046     DI->EmitGlobalVariable(GV, D);
1047   }
1048 }
1049 
1050 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1051 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1052 /// existing call uses of the old function in the module, this adjusts them to
1053 /// call the new function directly.
1054 ///
1055 /// This is not just a cleanup: the always_inline pass requires direct calls to
1056 /// functions to be able to inline them.  If there is a bitcast in the way, it
1057 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1058 /// run at -O0.
1059 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1060                                                       llvm::Function *NewFn) {
1061   // If we're redefining a global as a function, don't transform it.
1062   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1063   if (OldFn == 0) return;
1064 
1065   const llvm::Type *NewRetTy = NewFn->getReturnType();
1066   llvm::SmallVector<llvm::Value*, 4> ArgList;
1067 
1068   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1069        UI != E; ) {
1070     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1071     unsigned OpNo = UI.getOperandNo();
1072     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1073     if (!CI || OpNo != 0) continue;
1074 
1075     // If the return types don't match exactly, and if the call isn't dead, then
1076     // we can't transform this call.
1077     if (CI->getType() != NewRetTy && !CI->use_empty())
1078       continue;
1079 
1080     // If the function was passed too few arguments, don't transform.  If extra
1081     // arguments were passed, we silently drop them.  If any of the types
1082     // mismatch, we don't transform.
1083     unsigned ArgNo = 0;
1084     bool DontTransform = false;
1085     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1086          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1087       if (CI->getNumOperands()-1 == ArgNo ||
1088           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1089         DontTransform = true;
1090         break;
1091       }
1092     }
1093     if (DontTransform)
1094       continue;
1095 
1096     // Okay, we can transform this.  Create the new call instruction and copy
1097     // over the required information.
1098     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1099     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1100                                                      ArgList.end(), "", CI);
1101     ArgList.clear();
1102     if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext()))
1103       NewCall->takeName(CI);
1104     NewCall->setCallingConv(CI->getCallingConv());
1105     NewCall->setAttributes(CI->getAttributes());
1106 
1107     // Finally, remove the old call, replacing any uses with the new one.
1108     if (!CI->use_empty())
1109       CI->replaceAllUsesWith(NewCall);
1110     CI->eraseFromParent();
1111   }
1112 }
1113 
1114 
1115 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1116   const llvm::FunctionType *Ty;
1117   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1118 
1119   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1120     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1121 
1122     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1123   } else {
1124     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1125 
1126     // As a special case, make sure that definitions of K&R function
1127     // "type foo()" aren't declared as varargs (which forces the backend
1128     // to do unnecessary work).
1129     if (D->getType()->isFunctionNoProtoType()) {
1130       assert(Ty->isVarArg() && "Didn't lower type as expected");
1131       // Due to stret, the lowered function could have arguments.
1132       // Just create the same type as was lowered by ConvertType
1133       // but strip off the varargs bit.
1134       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1135       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1136     }
1137   }
1138 
1139   // Get or create the prototype for the function.
1140   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1141 
1142   // Strip off a bitcast if we got one back.
1143   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1144     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1145     Entry = CE->getOperand(0);
1146   }
1147 
1148 
1149   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1150     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1151 
1152     // If the types mismatch then we have to rewrite the definition.
1153     assert(OldFn->isDeclaration() &&
1154            "Shouldn't replace non-declaration");
1155 
1156     // F is the Function* for the one with the wrong type, we must make a new
1157     // Function* and update everything that used F (a declaration) with the new
1158     // Function* (which will be a definition).
1159     //
1160     // This happens if there is a prototype for a function
1161     // (e.g. "int f()") and then a definition of a different type
1162     // (e.g. "int f(int x)").  Start by making a new function of the
1163     // correct type, RAUW, then steal the name.
1164     GlobalDeclMap.erase(getMangledName(D));
1165     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1166     NewFn->takeName(OldFn);
1167 
1168     // If this is an implementation of a function without a prototype, try to
1169     // replace any existing uses of the function (which may be calls) with uses
1170     // of the new function
1171     if (D->getType()->isFunctionNoProtoType()) {
1172       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1173       OldFn->removeDeadConstantUsers();
1174     }
1175 
1176     // Replace uses of F with the Function we will endow with a body.
1177     if (!Entry->use_empty()) {
1178       llvm::Constant *NewPtrForOldDecl =
1179         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1180       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1181     }
1182 
1183     // Ok, delete the old function now, which is dead.
1184     OldFn->eraseFromParent();
1185 
1186     Entry = NewFn;
1187   }
1188 
1189   llvm::Function *Fn = cast<llvm::Function>(Entry);
1190 
1191   CodeGenFunction(*this).GenerateCode(D, Fn);
1192 
1193   SetFunctionDefinitionAttributes(D, Fn);
1194   SetLLVMFunctionAttributesForDefinition(D, Fn);
1195 
1196   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1197     AddGlobalCtor(Fn, CA->getPriority());
1198   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1199     AddGlobalDtor(Fn, DA->getPriority());
1200 }
1201 
1202 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1203   const AliasAttr *AA = D->getAttr<AliasAttr>();
1204   assert(AA && "Not an alias?");
1205 
1206   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1207 
1208   // Unique the name through the identifier table.
1209   const char *AliaseeName = AA->getAliasee().c_str();
1210   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1211 
1212   // Create a reference to the named value.  This ensures that it is emitted
1213   // if a deferred decl.
1214   llvm::Constant *Aliasee;
1215   if (isa<llvm::FunctionType>(DeclTy))
1216     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1217   else
1218     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1219                                     llvm::PointerType::getUnqual(DeclTy), 0);
1220 
1221   // Create the new alias itself, but don't set a name yet.
1222   llvm::GlobalValue *GA =
1223     new llvm::GlobalAlias(Aliasee->getType(),
1224                           llvm::Function::ExternalLinkage,
1225                           "", Aliasee, &getModule());
1226 
1227   // See if there is already something with the alias' name in the module.
1228   const char *MangledName = getMangledName(D);
1229   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1230 
1231   if (Entry && !Entry->isDeclaration()) {
1232     // If there is a definition in the module, then it wins over the alias.
1233     // This is dubious, but allow it to be safe.  Just ignore the alias.
1234     GA->eraseFromParent();
1235     return;
1236   }
1237 
1238   if (Entry) {
1239     // If there is a declaration in the module, then we had an extern followed
1240     // by the alias, as in:
1241     //   extern int test6();
1242     //   ...
1243     //   int test6() __attribute__((alias("test7")));
1244     //
1245     // Remove it and replace uses of it with the alias.
1246 
1247     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1248                                                           Entry->getType()));
1249     Entry->eraseFromParent();
1250   }
1251 
1252   // Now we know that there is no conflict, set the name.
1253   Entry = GA;
1254   GA->setName(MangledName);
1255 
1256   // Set attributes which are particular to an alias; this is a
1257   // specialization of the attributes which may be set on a global
1258   // variable/function.
1259   if (D->hasAttr<DLLExportAttr>()) {
1260     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1261       // The dllexport attribute is ignored for undefined symbols.
1262       if (FD->getBody())
1263         GA->setLinkage(llvm::Function::DLLExportLinkage);
1264     } else {
1265       GA->setLinkage(llvm::Function::DLLExportLinkage);
1266     }
1267   } else if (D->hasAttr<WeakAttr>() ||
1268              D->hasAttr<WeakImportAttr>()) {
1269     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1270   }
1271 
1272   SetCommonAttributes(D, GA);
1273 }
1274 
1275 /// getBuiltinLibFunction - Given a builtin id for a function like
1276 /// "__builtin_fabsf", return a Function* for "fabsf".
1277 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1278   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1279           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1280          "isn't a lib fn");
1281 
1282   // Get the name, skip over the __builtin_ prefix (if necessary).
1283   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1284   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1285     Name += 10;
1286 
1287   // Get the type for the builtin.
1288   ASTContext::GetBuiltinTypeError Error;
1289   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1290   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1291 
1292   const llvm::FunctionType *Ty =
1293     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1294 
1295   // Unique the name through the identifier table.
1296   Name = getContext().Idents.get(Name).getName();
1297   // FIXME: param attributes for sext/zext etc.
1298   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1299 }
1300 
1301 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1302                                             unsigned NumTys) {
1303   return llvm::Intrinsic::getDeclaration(&getModule(),
1304                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1305 }
1306 
1307 llvm::Function *CodeGenModule::getMemCpyFn() {
1308   if (MemCpyFn) return MemCpyFn;
1309   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1310   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1311 }
1312 
1313 llvm::Function *CodeGenModule::getMemMoveFn() {
1314   if (MemMoveFn) return MemMoveFn;
1315   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1316   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1317 }
1318 
1319 llvm::Function *CodeGenModule::getMemSetFn() {
1320   if (MemSetFn) return MemSetFn;
1321   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1322   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1323 }
1324 
1325 static llvm::StringMapEntry<llvm::Constant*> &
1326 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1327                          const StringLiteral *Literal,
1328                          bool TargetIsLSB,
1329                          bool &IsUTF16,
1330                          unsigned &StringLength) {
1331   unsigned NumBytes = Literal->getByteLength();
1332 
1333   // Check for simple case.
1334   if (!Literal->containsNonAsciiOrNull()) {
1335     StringLength = NumBytes;
1336     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1337                                                 StringLength));
1338   }
1339 
1340   // Otherwise, convert the UTF8 literals into a byte string.
1341   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1342   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1343   UTF16 *ToPtr = &ToBuf[0];
1344 
1345   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1346                                                &ToPtr, ToPtr + NumBytes,
1347                                                strictConversion);
1348 
1349   // Check for conversion failure.
1350   if (Result != conversionOK) {
1351     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1352     // this duplicate code.
1353     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1354     StringLength = NumBytes;
1355     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1356                                                 StringLength));
1357   }
1358 
1359   // ConvertUTF8toUTF16 returns the length in ToPtr.
1360   StringLength = ToPtr - &ToBuf[0];
1361 
1362   // Render the UTF-16 string into a byte array and convert to the target byte
1363   // order.
1364   //
1365   // FIXME: This isn't something we should need to do here.
1366   llvm::SmallString<128> AsBytes;
1367   AsBytes.reserve(StringLength * 2);
1368   for (unsigned i = 0; i != StringLength; ++i) {
1369     unsigned short Val = ToBuf[i];
1370     if (TargetIsLSB) {
1371       AsBytes.push_back(Val & 0xFF);
1372       AsBytes.push_back(Val >> 8);
1373     } else {
1374       AsBytes.push_back(Val >> 8);
1375       AsBytes.push_back(Val & 0xFF);
1376     }
1377   }
1378   // Append one extra null character, the second is automatically added by our
1379   // caller.
1380   AsBytes.push_back(0);
1381 
1382   IsUTF16 = true;
1383   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1384 }
1385 
1386 llvm::Constant *
1387 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1388   unsigned StringLength = 0;
1389   bool isUTF16 = false;
1390   llvm::StringMapEntry<llvm::Constant*> &Entry =
1391     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1392                              getTargetData().isLittleEndian(),
1393                              isUTF16, StringLength);
1394 
1395   if (llvm::Constant *C = Entry.getValue())
1396     return C;
1397 
1398   llvm::Constant *Zero =
1399       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1400   llvm::Constant *Zeros[] = { Zero, Zero };
1401 
1402   // If we don't already have it, get __CFConstantStringClassReference.
1403   if (!CFConstantStringClassRef) {
1404     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1405     Ty = llvm::ArrayType::get(Ty, 0);
1406     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1407                                            "__CFConstantStringClassReference");
1408     // Decay array -> ptr
1409     CFConstantStringClassRef =
1410       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1411   }
1412 
1413   QualType CFTy = getContext().getCFConstantStringType();
1414 
1415   const llvm::StructType *STy =
1416     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1417 
1418   std::vector<llvm::Constant*> Fields(4);
1419 
1420   // Class pointer.
1421   Fields[0] = CFConstantStringClassRef;
1422 
1423   // Flags.
1424   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1425   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1426     llvm::ConstantInt::get(Ty, 0x07C8);
1427 
1428   // String pointer.
1429   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1430 
1431   const char *Sect, *Prefix;
1432   bool isConstant;
1433   llvm::GlobalValue::LinkageTypes Linkage;
1434   if (isUTF16) {
1435     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1436     Sect = getContext().Target.getUnicodeStringSection();
1437     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1438     Linkage = llvm::GlobalValue::InternalLinkage;
1439     // FIXME: Why does GCC not set constant here?
1440     isConstant = false;
1441   } else {
1442     Prefix = ".str";
1443     Sect = getContext().Target.getCFStringDataSection();
1444     Linkage = llvm::GlobalValue::PrivateLinkage;
1445     // FIXME: -fwritable-strings should probably affect this, but we
1446     // are following gcc here.
1447     isConstant = true;
1448   }
1449   llvm::GlobalVariable *GV =
1450     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1451                              Linkage, C, Prefix);
1452   if (Sect)
1453     GV->setSection(Sect);
1454   if (isUTF16) {
1455     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1456     GV->setAlignment(Align);
1457   }
1458   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1459 
1460   // String length.
1461   Ty = getTypes().ConvertType(getContext().LongTy);
1462   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1463 
1464   // The struct.
1465   C = llvm::ConstantStruct::get(STy, Fields);
1466   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1467                                 llvm::GlobalVariable::PrivateLinkage, C,
1468                                 "_unnamed_cfstring_");
1469   if (const char *Sect = getContext().Target.getCFStringSection())
1470     GV->setSection(Sect);
1471   Entry.setValue(GV);
1472 
1473   return GV;
1474 }
1475 
1476 /// GetStringForStringLiteral - Return the appropriate bytes for a
1477 /// string literal, properly padded to match the literal type.
1478 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1479   const char *StrData = E->getStrData();
1480   unsigned Len = E->getByteLength();
1481 
1482   const ConstantArrayType *CAT =
1483     getContext().getAsConstantArrayType(E->getType());
1484   assert(CAT && "String isn't pointer or array!");
1485 
1486   // Resize the string to the right size.
1487   std::string Str(StrData, StrData+Len);
1488   uint64_t RealLen = CAT->getSize().getZExtValue();
1489 
1490   if (E->isWide())
1491     RealLen *= getContext().Target.getWCharWidth()/8;
1492 
1493   Str.resize(RealLen, '\0');
1494 
1495   return Str;
1496 }
1497 
1498 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1499 /// constant array for the given string literal.
1500 llvm::Constant *
1501 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1502   // FIXME: This can be more efficient.
1503   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1504 }
1505 
1506 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1507 /// array for the given ObjCEncodeExpr node.
1508 llvm::Constant *
1509 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1510   std::string Str;
1511   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1512 
1513   return GetAddrOfConstantCString(Str);
1514 }
1515 
1516 
1517 /// GenerateWritableString -- Creates storage for a string literal.
1518 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1519                                              bool constant,
1520                                              CodeGenModule &CGM,
1521                                              const char *GlobalName) {
1522   // Create Constant for this string literal. Don't add a '\0'.
1523   llvm::Constant *C =
1524       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1525 
1526   // Create a global variable for this string
1527   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1528                                   llvm::GlobalValue::PrivateLinkage,
1529                                   C, GlobalName);
1530 }
1531 
1532 /// GetAddrOfConstantString - Returns a pointer to a character array
1533 /// containing the literal. This contents are exactly that of the
1534 /// given string, i.e. it will not be null terminated automatically;
1535 /// see GetAddrOfConstantCString. Note that whether the result is
1536 /// actually a pointer to an LLVM constant depends on
1537 /// Feature.WriteableStrings.
1538 ///
1539 /// The result has pointer to array type.
1540 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1541                                                        const char *GlobalName) {
1542   bool IsConstant = !Features.WritableStrings;
1543 
1544   // Get the default prefix if a name wasn't specified.
1545   if (!GlobalName)
1546     GlobalName = ".str";
1547 
1548   // Don't share any string literals if strings aren't constant.
1549   if (!IsConstant)
1550     return GenerateStringLiteral(str, false, *this, GlobalName);
1551 
1552   llvm::StringMapEntry<llvm::Constant *> &Entry =
1553     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1554 
1555   if (Entry.getValue())
1556     return Entry.getValue();
1557 
1558   // Create a global variable for this.
1559   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1560   Entry.setValue(C);
1561   return C;
1562 }
1563 
1564 /// GetAddrOfConstantCString - Returns a pointer to a character
1565 /// array containing the literal and a terminating '\-'
1566 /// character. The result has pointer to array type.
1567 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1568                                                         const char *GlobalName){
1569   return GetAddrOfConstantString(str + '\0', GlobalName);
1570 }
1571 
1572 /// EmitObjCPropertyImplementations - Emit information for synthesized
1573 /// properties for an implementation.
1574 void CodeGenModule::EmitObjCPropertyImplementations(const
1575                                                     ObjCImplementationDecl *D) {
1576   for (ObjCImplementationDecl::propimpl_iterator
1577          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1578     ObjCPropertyImplDecl *PID = *i;
1579 
1580     // Dynamic is just for type-checking.
1581     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1582       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1583 
1584       // Determine which methods need to be implemented, some may have
1585       // been overridden. Note that ::isSynthesized is not the method
1586       // we want, that just indicates if the decl came from a
1587       // property. What we want to know is if the method is defined in
1588       // this implementation.
1589       if (!D->getInstanceMethod(PD->getGetterName()))
1590         CodeGenFunction(*this).GenerateObjCGetter(
1591                                  const_cast<ObjCImplementationDecl *>(D), PID);
1592       if (!PD->isReadOnly() &&
1593           !D->getInstanceMethod(PD->getSetterName()))
1594         CodeGenFunction(*this).GenerateObjCSetter(
1595                                  const_cast<ObjCImplementationDecl *>(D), PID);
1596     }
1597   }
1598 }
1599 
1600 /// EmitNamespace - Emit all declarations in a namespace.
1601 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1602   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1603        I != E; ++I)
1604     EmitTopLevelDecl(*I);
1605 }
1606 
1607 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1608 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1609   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1610       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1611     ErrorUnsupported(LSD, "linkage spec");
1612     return;
1613   }
1614 
1615   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1616        I != E; ++I)
1617     EmitTopLevelDecl(*I);
1618 }
1619 
1620 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1621 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1622   // If an error has occurred, stop code generation, but continue
1623   // parsing and semantic analysis (to ensure all warnings and errors
1624   // are emitted).
1625   if (Diags.hasErrorOccurred())
1626     return;
1627 
1628   // Ignore dependent declarations.
1629   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1630     return;
1631 
1632   switch (D->getKind()) {
1633   case Decl::CXXConversion:
1634   case Decl::CXXMethod:
1635   case Decl::Function:
1636     // Skip function templates
1637     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1638       return;
1639 
1640     EmitGlobal(cast<FunctionDecl>(D));
1641     break;
1642 
1643   case Decl::Var:
1644     EmitGlobal(cast<VarDecl>(D));
1645     break;
1646 
1647   // C++ Decls
1648   case Decl::Namespace:
1649     EmitNamespace(cast<NamespaceDecl>(D));
1650     break;
1651     // No code generation needed.
1652   case Decl::Using:
1653   case Decl::UsingDirective:
1654   case Decl::ClassTemplate:
1655   case Decl::FunctionTemplate:
1656     break;
1657   case Decl::CXXConstructor:
1658     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1659     break;
1660   case Decl::CXXDestructor:
1661     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1662     break;
1663 
1664   case Decl::StaticAssert:
1665     // Nothing to do.
1666     break;
1667 
1668   // Objective-C Decls
1669 
1670   // Forward declarations, no (immediate) code generation.
1671   case Decl::ObjCClass:
1672   case Decl::ObjCForwardProtocol:
1673   case Decl::ObjCCategory:
1674   case Decl::ObjCInterface:
1675     break;
1676 
1677   case Decl::ObjCProtocol:
1678     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1679     break;
1680 
1681   case Decl::ObjCCategoryImpl:
1682     // Categories have properties but don't support synthesize so we
1683     // can ignore them here.
1684     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1685     break;
1686 
1687   case Decl::ObjCImplementation: {
1688     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1689     EmitObjCPropertyImplementations(OMD);
1690     Runtime->GenerateClass(OMD);
1691     break;
1692   }
1693   case Decl::ObjCMethod: {
1694     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1695     // If this is not a prototype, emit the body.
1696     if (OMD->getBody())
1697       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1698     break;
1699   }
1700   case Decl::ObjCCompatibleAlias:
1701     // compatibility-alias is a directive and has no code gen.
1702     break;
1703 
1704   case Decl::LinkageSpec:
1705     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1706     break;
1707 
1708   case Decl::FileScopeAsm: {
1709     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1710     std::string AsmString(AD->getAsmString()->getStrData(),
1711                           AD->getAsmString()->getByteLength());
1712 
1713     const std::string &S = getModule().getModuleInlineAsm();
1714     if (S.empty())
1715       getModule().setModuleInlineAsm(AsmString);
1716     else
1717       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1718     break;
1719   }
1720 
1721   default:
1722     // Make sure we handled everything we should, every other kind is a
1723     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1724     // function. Need to recode Decl::Kind to do that easily.
1725     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1726   }
1727 }
1728