1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 /// setGlobalVisibility - Set the visibility for the given LLVM 99 /// GlobalValue according to the given clang AST visibility value. 100 static void setGlobalVisibility(llvm::GlobalValue *GV, 101 VisibilityAttr::VisibilityTypes Vis) { 102 // Do not change the visibility of internal definitions. 103 if (GV->hasInternalLinkage()) 104 return; 105 106 switch (Vis) { 107 default: assert(0 && "Unknown visibility!"); 108 case VisibilityAttr::DefaultVisibility: 109 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 110 break; 111 case VisibilityAttr::HiddenVisibility: 112 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 113 break; 114 case VisibilityAttr::ProtectedVisibility: 115 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 116 break; 117 } 118 } 119 120 static void setGlobalOptionVisibility(llvm::GlobalValue *GV, 121 LangOptions::VisibilityMode Vis) { 122 // Do not change the visibility of internal definitions. 123 if (GV->hasInternalLinkage()) 124 return; 125 126 switch (Vis) { 127 default: assert(0 && "Unknown visibility!"); 128 case LangOptions::NonVisibility: 129 break; 130 case LangOptions::DefaultVisibility: 131 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 break; 133 case LangOptions::HiddenVisibility: 134 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 135 break; 136 case LangOptions::ProtectedVisibility: 137 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 138 break; 139 } 140 } 141 142 143 /// \brief Retrieves the mangled name for the given declaration. 144 /// 145 /// If the given declaration requires a mangled name, returns an 146 /// const char* containing the mangled name. Otherwise, returns 147 /// the unmangled name. 148 /// 149 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 150 // In C, functions with no attributes never need to be mangled. Fastpath them. 151 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 152 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 153 return ND->getNameAsCString(); 154 } 155 156 llvm::SmallString<256> Name; 157 llvm::raw_svector_ostream Out(Name); 158 if (!mangleName(ND, Context, Out)) { 159 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 160 return ND->getNameAsCString(); 161 } 162 163 Name += '\0'; 164 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 165 } 166 167 /// AddGlobalCtor - Add a function to the list that will be called before 168 /// main() runs. 169 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 170 // FIXME: Type coercion of void()* types. 171 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 172 } 173 174 /// AddGlobalDtor - Add a function to the list that will be called 175 /// when the module is unloaded. 176 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 177 // FIXME: Type coercion of void()* types. 178 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 179 } 180 181 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 182 // Ctor function type is void()*. 183 llvm::FunctionType* CtorFTy = 184 llvm::FunctionType::get(llvm::Type::VoidTy, 185 std::vector<const llvm::Type*>(), 186 false); 187 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 188 189 // Get the type of a ctor entry, { i32, void ()* }. 190 llvm::StructType* CtorStructTy = 191 llvm::StructType::get(llvm::Type::Int32Ty, 192 llvm::PointerType::getUnqual(CtorFTy), NULL); 193 194 // Construct the constructor and destructor arrays. 195 std::vector<llvm::Constant*> Ctors; 196 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 197 std::vector<llvm::Constant*> S; 198 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 199 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 200 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 201 } 202 203 if (!Ctors.empty()) { 204 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 205 new llvm::GlobalVariable(AT, false, 206 llvm::GlobalValue::AppendingLinkage, 207 llvm::ConstantArray::get(AT, Ctors), 208 GlobalName, 209 &TheModule); 210 } 211 } 212 213 void CodeGenModule::EmitAnnotations() { 214 if (Annotations.empty()) 215 return; 216 217 // Create a new global variable for the ConstantStruct in the Module. 218 llvm::Constant *Array = 219 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 220 Annotations.size()), 221 Annotations); 222 llvm::GlobalValue *gv = 223 new llvm::GlobalVariable(Array->getType(), false, 224 llvm::GlobalValue::AppendingLinkage, Array, 225 "llvm.global.annotations", &TheModule); 226 gv->setSection("llvm.metadata"); 227 } 228 229 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 230 bool IsInternal, 231 bool IsInline, 232 llvm::GlobalValue *GV, 233 bool ForDefinition) { 234 // FIXME: Set up linkage and many other things. Note, this is a simple 235 // approximation of what we really want. 236 if (!ForDefinition) { 237 // Only a few attributes are set on declarations. 238 if (D->getAttr<DLLImportAttr>()) { 239 // The dllimport attribute is overridden by a subsequent declaration as 240 // dllexport. 241 if (!D->getAttr<DLLExportAttr>()) { 242 // dllimport attribute can be applied only to function decls, not to 243 // definitions. 244 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 245 if (!FD->getBody()) 246 GV->setLinkage(llvm::Function::DLLImportLinkage); 247 } else 248 GV->setLinkage(llvm::Function::DLLImportLinkage); 249 } 250 } else if (D->getAttr<WeakAttr>() || 251 D->getAttr<WeakImportAttr>()) { 252 // "extern_weak" is overloaded in LLVM; we probably should have 253 // separate linkage types for this. 254 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 255 } 256 } else { 257 if (IsInternal) { 258 GV->setLinkage(llvm::Function::InternalLinkage); 259 } else { 260 if (D->getAttr<DLLExportAttr>()) { 261 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 262 // The dllexport attribute is ignored for undefined symbols. 263 if (FD->getBody()) 264 GV->setLinkage(llvm::Function::DLLExportLinkage); 265 } else 266 GV->setLinkage(llvm::Function::DLLExportLinkage); 267 } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() || 268 IsInline) 269 GV->setLinkage(llvm::Function::WeakAnyLinkage); 270 } 271 } 272 273 // FIXME: Figure out the relative priority of the attribute, 274 // -fvisibility, and private_extern. 275 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 276 setGlobalVisibility(GV, attr->getVisibility()); 277 else 278 setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode()); 279 280 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 281 GV->setSection(SA->getName()); 282 283 // Only add to llvm.used when we see a definition, otherwise we 284 // might add multiple times or risk the value being replaced by a 285 // subsequent RAUW. 286 if (ForDefinition) { 287 if (D->getAttr<UsedAttr>()) 288 AddUsedGlobal(GV); 289 } 290 } 291 292 void CodeGenModule::SetFunctionAttributes(const Decl *D, 293 const CGFunctionInfo &Info, 294 llvm::Function *F) { 295 AttributeListType AttributeList; 296 ConstructAttributeList(Info, D, AttributeList); 297 298 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 299 AttributeList.size())); 300 301 // Set the appropriate calling convention for the Function. 302 if (D->getAttr<FastCallAttr>()) 303 F->setCallingConv(llvm::CallingConv::X86_FastCall); 304 305 if (D->getAttr<StdCallAttr>()) 306 F->setCallingConv(llvm::CallingConv::X86_StdCall); 307 } 308 309 /// SetFunctionAttributesForDefinition - Set function attributes 310 /// specific to a function definition. 311 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 312 llvm::Function *F) { 313 if (isa<ObjCMethodDecl>(D)) { 314 SetGlobalValueAttributes(D, true, false, F, true); 315 } else { 316 const FunctionDecl *FD = cast<FunctionDecl>(D); 317 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 318 FD->isInline(), F, true); 319 } 320 321 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 322 F->addFnAttr(llvm::Attribute::NoUnwind); 323 324 if (D->getAttr<AlwaysInlineAttr>()) 325 F->addFnAttr(llvm::Attribute::AlwaysInline); 326 327 if (D->getAttr<NoinlineAttr>()) 328 F->addFnAttr(llvm::Attribute::NoInline); 329 } 330 331 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 332 llvm::Function *F) { 333 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 334 335 SetFunctionAttributesForDefinition(MD, F); 336 } 337 338 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 339 llvm::Function *F) { 340 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 341 342 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 343 FD->isInline(), F, false); 344 } 345 346 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 347 assert(!GV->isDeclaration() && 348 "Only globals with definition can force usage."); 349 LLVMUsed.push_back(GV); 350 } 351 352 void CodeGenModule::EmitLLVMUsed() { 353 // Don't create llvm.used if there is no need. 354 if (LLVMUsed.empty()) 355 return; 356 357 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 358 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 359 360 // Convert LLVMUsed to what ConstantArray needs. 361 std::vector<llvm::Constant*> UsedArray; 362 UsedArray.resize(LLVMUsed.size()); 363 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 364 UsedArray[i] = 365 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 366 } 367 368 llvm::GlobalVariable *GV = 369 new llvm::GlobalVariable(ATy, false, 370 llvm::GlobalValue::AppendingLinkage, 371 llvm::ConstantArray::get(ATy, UsedArray), 372 "llvm.used", &getModule()); 373 374 GV->setSection("llvm.metadata"); 375 } 376 377 void CodeGenModule::EmitDeferred() { 378 // Emit code for any potentially referenced deferred decls. Since a 379 // previously unused static decl may become used during the generation of code 380 // for a static function, iterate until no changes are made. 381 while (!DeferredDeclsToEmit.empty()) { 382 const ValueDecl *D = DeferredDeclsToEmit.back(); 383 DeferredDeclsToEmit.pop_back(); 384 385 // The mangled name for the decl must have been emitted in GlobalDeclMap. 386 // Look it up to see if it was defined with a stronger definition (e.g. an 387 // extern inline function with a strong function redefinition). If so, 388 // just ignore the deferred decl. 389 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 390 assert(CGRef && "Deferred decl wasn't referenced?"); 391 392 if (!CGRef->isDeclaration()) 393 continue; 394 395 // Otherwise, emit the definition and move on to the next one. 396 EmitGlobalDefinition(D); 397 } 398 } 399 400 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 401 /// annotation information for a given GlobalValue. The annotation struct is 402 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 403 /// GlobalValue being annotated. The second field is the constant string 404 /// created from the AnnotateAttr's annotation. The third field is a constant 405 /// string containing the name of the translation unit. The fourth field is 406 /// the line number in the file of the annotated value declaration. 407 /// 408 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 409 /// appears to. 410 /// 411 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 412 const AnnotateAttr *AA, 413 unsigned LineNo) { 414 llvm::Module *M = &getModule(); 415 416 // get [N x i8] constants for the annotation string, and the filename string 417 // which are the 2nd and 3rd elements of the global annotation structure. 418 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 419 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 420 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 421 true); 422 423 // Get the two global values corresponding to the ConstantArrays we just 424 // created to hold the bytes of the strings. 425 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 426 llvm::GlobalValue *annoGV = 427 new llvm::GlobalVariable(anno->getType(), false, 428 llvm::GlobalValue::InternalLinkage, anno, 429 GV->getName() + StringPrefix, M); 430 // translation unit name string, emitted into the llvm.metadata section. 431 llvm::GlobalValue *unitGV = 432 new llvm::GlobalVariable(unit->getType(), false, 433 llvm::GlobalValue::InternalLinkage, unit, 434 StringPrefix, M); 435 436 // Create the ConstantStruct that is the global annotion. 437 llvm::Constant *Fields[4] = { 438 llvm::ConstantExpr::getBitCast(GV, SBP), 439 llvm::ConstantExpr::getBitCast(annoGV, SBP), 440 llvm::ConstantExpr::getBitCast(unitGV, SBP), 441 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 442 }; 443 return llvm::ConstantStruct::get(Fields, 4, false); 444 } 445 446 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 447 // Never defer when EmitAllDecls is specified or the decl has 448 // attribute used. 449 if (Features.EmitAllDecls || Global->getAttr<UsedAttr>()) 450 return false; 451 452 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 453 // Constructors and destructors should never be deferred. 454 if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>()) 455 return false; 456 457 // FIXME: What about inline, and/or extern inline? 458 if (FD->getStorageClass() != FunctionDecl::Static) 459 return false; 460 } else { 461 const VarDecl *VD = cast<VarDecl>(Global); 462 assert(VD->isFileVarDecl() && "Invalid decl"); 463 464 if (VD->getStorageClass() != VarDecl::Static) 465 return false; 466 } 467 468 return true; 469 } 470 471 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 472 // If this is an alias definition (which otherwise looks like a declaration) 473 // emit it now. 474 if (Global->getAttr<AliasAttr>()) 475 return EmitAliasDefinition(Global); 476 477 // Ignore declarations, they will be emitted on their first use. 478 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 479 // Forward declarations are emitted lazily on first use. 480 if (!FD->isThisDeclarationADefinition()) 481 return; 482 } else { 483 const VarDecl *VD = cast<VarDecl>(Global); 484 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 485 486 // Forward declarations are emitted lazily on first use. 487 if (!VD->getInit() && VD->hasExternalStorage()) 488 return; 489 } 490 491 // Defer code generation when possible if this is a static definition, inline 492 // function etc. These we only want to emit if they are used. 493 if (MayDeferGeneration(Global)) { 494 // If the value has already been used, add it directly to the 495 // DeferredDeclsToEmit list. 496 const char *MangledName = getMangledName(Global); 497 if (GlobalDeclMap.count(MangledName)) 498 DeferredDeclsToEmit.push_back(Global); 499 else { 500 // Otherwise, remember that we saw a deferred decl with this name. The 501 // first use of the mangled name will cause it to move into 502 // DeferredDeclsToEmit. 503 DeferredDecls[MangledName] = Global; 504 } 505 return; 506 } 507 508 // Otherwise emit the definition. 509 EmitGlobalDefinition(Global); 510 } 511 512 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 513 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 514 EmitGlobalFunctionDefinition(FD); 515 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 516 EmitGlobalVarDefinition(VD); 517 } else { 518 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 519 } 520 } 521 522 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 523 /// module, create and return an llvm Function with the specified type. If there 524 /// is something in the module with the specified name, return it potentially 525 /// bitcasted to the right type. 526 /// 527 /// If D is non-null, it specifies a decl that correspond to this. This is used 528 /// to set the attributes on the function when it is first created. 529 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 530 const llvm::Type *Ty, 531 const FunctionDecl *D) { 532 // Lookup the entry, lazily creating it if necessary. 533 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 534 if (Entry) { 535 if (Entry->getType()->getElementType() == Ty) 536 return Entry; 537 538 // Make sure the result is of the correct type. 539 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 540 return llvm::ConstantExpr::getBitCast(Entry, PTy); 541 } 542 543 // This is the first use or definition of a mangled name. If there is a 544 // deferred decl with this name, remember that we need to emit it at the end 545 // of the file. 546 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 547 DeferredDecls.find(MangledName); 548 if (DDI != DeferredDecls.end()) { 549 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 550 // list, and remove it from DeferredDecls (since we don't need it anymore). 551 DeferredDeclsToEmit.push_back(DDI->second); 552 DeferredDecls.erase(DDI); 553 } 554 555 // This function doesn't have a complete type (for example, the return 556 // type is an incomplete struct). Use a fake type instead, and make 557 // sure not to try to set attributes. 558 bool ShouldSetAttributes = true; 559 if (!isa<llvm::FunctionType>(Ty)) { 560 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 561 std::vector<const llvm::Type*>(), false); 562 ShouldSetAttributes = false; 563 } 564 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 565 llvm::Function::ExternalLinkage, 566 "", &getModule()); 567 F->setName(MangledName); 568 if (D && ShouldSetAttributes) 569 SetFunctionAttributes(D, F); 570 Entry = F; 571 return F; 572 } 573 574 /// GetAddrOfFunction - Return the address of the given function. If Ty is 575 /// non-null, then this function will use the specified type if it has to 576 /// create it (this occurs when we see a definition of the function). 577 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 578 const llvm::Type *Ty) { 579 // If there was no specific requested type, just convert it now. 580 if (!Ty) 581 Ty = getTypes().ConvertType(D->getType()); 582 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 583 } 584 585 /// CreateRuntimeFunction - Create a new runtime function with the specified 586 /// type and name. 587 llvm::Constant * 588 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 589 const char *Name) { 590 // Convert Name to be a uniqued string from the IdentifierInfo table. 591 Name = getContext().Idents.get(Name).getName(); 592 return GetOrCreateLLVMFunction(Name, FTy, 0); 593 } 594 595 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 596 /// create and return an llvm GlobalVariable with the specified type. If there 597 /// is something in the module with the specified name, return it potentially 598 /// bitcasted to the right type. 599 /// 600 /// If D is non-null, it specifies a decl that correspond to this. This is used 601 /// to set the attributes on the global when it is first created. 602 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 603 const llvm::PointerType*Ty, 604 const VarDecl *D) { 605 // Lookup the entry, lazily creating it if necessary. 606 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 607 if (Entry) { 608 if (Entry->getType() == Ty) 609 return Entry; 610 611 // Make sure the result is of the correct type. 612 return llvm::ConstantExpr::getBitCast(Entry, Ty); 613 } 614 615 // This is the first use or definition of a mangled name. If there is a 616 // deferred decl with this name, remember that we need to emit it at the end 617 // of the file. 618 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 619 DeferredDecls.find(MangledName); 620 if (DDI != DeferredDecls.end()) { 621 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 622 // list, and remove it from DeferredDecls (since we don't need it anymore). 623 DeferredDeclsToEmit.push_back(DDI->second); 624 DeferredDecls.erase(DDI); 625 } 626 627 llvm::GlobalVariable *GV = 628 new llvm::GlobalVariable(Ty->getElementType(), false, 629 llvm::GlobalValue::ExternalLinkage, 630 0, "", &getModule(), 631 0, Ty->getAddressSpace()); 632 GV->setName(MangledName); 633 634 // Handle things which are present even on external declarations. 635 if (D) { 636 // FIXME: This code is overly simple and should be merged with 637 // other global handling. 638 GV->setConstant(D->getType().isConstant(Context)); 639 640 // FIXME: Merge with other attribute handling code. 641 if (D->getStorageClass() == VarDecl::PrivateExtern) 642 setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); 643 644 if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 645 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 646 } 647 648 return Entry = GV; 649 } 650 651 652 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 653 /// given global variable. If Ty is non-null and if the global doesn't exist, 654 /// then it will be greated with the specified type instead of whatever the 655 /// normal requested type would be. 656 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 657 const llvm::Type *Ty) { 658 assert(D->hasGlobalStorage() && "Not a global variable"); 659 QualType ASTTy = D->getType(); 660 if (Ty == 0) 661 Ty = getTypes().ConvertTypeForMem(ASTTy); 662 663 const llvm::PointerType *PTy = 664 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 665 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 666 } 667 668 /// CreateRuntimeVariable - Create a new runtime global variable with the 669 /// specified type and name. 670 llvm::Constant * 671 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 672 const char *Name) { 673 // Convert Name to be a uniqued string from the IdentifierInfo table. 674 Name = getContext().Idents.get(Name).getName(); 675 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 676 } 677 678 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 679 llvm::Constant *Init = 0; 680 QualType ASTTy = D->getType(); 681 682 if (D->getInit() == 0) { 683 // This is a tentative definition; tentative definitions are 684 // implicitly initialized with { 0 } 685 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 686 if (ASTTy->isIncompleteArrayType()) { 687 // An incomplete array is normally [ TYPE x 0 ], but we need 688 // to fix it to [ TYPE x 1 ]. 689 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 690 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 691 } 692 Init = llvm::Constant::getNullValue(InitTy); 693 } else { 694 Init = EmitConstantExpr(D->getInit()); 695 if (!Init) { 696 ErrorUnsupported(D, "static initializer"); 697 QualType T = D->getInit()->getType(); 698 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 699 } 700 } 701 702 const llvm::Type* InitType = Init->getType(); 703 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 704 705 // Strip off a bitcast if we got one back. 706 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 707 assert(CE->getOpcode() == llvm::Instruction::BitCast); 708 Entry = CE->getOperand(0); 709 } 710 711 // Entry is now either a Function or GlobalVariable. 712 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 713 714 // If we already have this global and it has an initializer, then 715 // we are in the rare situation where we emitted the defining 716 // declaration of the global and are now being asked to emit a 717 // definition which would be common. This occurs, for example, in 718 // the following situation because statics can be emitted out of 719 // order: 720 // 721 // static int x; 722 // static int *y = &x; 723 // static int x = 10; 724 // int **z = &y; 725 // 726 // Bail here so we don't blow away the definition. Note that if we 727 // can't distinguish here if we emitted a definition with a null 728 // initializer, but this case is safe. 729 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 730 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 731 return; 732 } 733 734 // We have a definition after a declaration with the wrong type. 735 // We must make a new GlobalVariable* and update everything that used OldGV 736 // (a declaration or tentative definition) with the new GlobalVariable* 737 // (which will be a definition). 738 // 739 // This happens if there is a prototype for a global (e.g. 740 // "extern int x[];") and then a definition of a different type (e.g. 741 // "int x[10];"). This also happens when an initializer has a different type 742 // from the type of the global (this happens with unions). 743 // 744 // FIXME: This also ends up happening if there's a definition followed by 745 // a tentative definition! (Although Sema rejects that construct 746 // at the moment.) 747 if (GV == 0 || 748 GV->getType()->getElementType() != InitType || 749 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 750 751 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 752 GlobalDeclMap.erase(getMangledName(D)); 753 754 // Make a new global with the correct type, this is now guaranteed to work. 755 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 756 GV->takeName(cast<llvm::GlobalValue>(Entry)); 757 758 // Replace all uses of the old global with the new global 759 llvm::Constant *NewPtrForOldDecl = 760 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 761 Entry->replaceAllUsesWith(NewPtrForOldDecl); 762 763 // Erase the old global, since it is no longer used. 764 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 765 } 766 767 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 768 SourceManager &SM = Context.getSourceManager(); 769 AddAnnotation(EmitAnnotateAttr(GV, AA, 770 SM.getInstantiationLineNumber(D->getLocation()))); 771 } 772 773 GV->setInitializer(Init); 774 GV->setConstant(D->getType().isConstant(Context)); 775 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 776 777 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 778 setGlobalVisibility(GV, attr->getVisibility()); 779 else 780 setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode()); 781 782 // Set the llvm linkage type as appropriate. 783 if (D->getStorageClass() == VarDecl::Static) 784 GV->setLinkage(llvm::Function::InternalLinkage); 785 else if (D->getAttr<DLLImportAttr>()) 786 GV->setLinkage(llvm::Function::DLLImportLinkage); 787 else if (D->getAttr<DLLExportAttr>()) 788 GV->setLinkage(llvm::Function::DLLExportLinkage); 789 else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 790 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 791 else { 792 // FIXME: This isn't right. This should handle common linkage and other 793 // stuff. 794 switch (D->getStorageClass()) { 795 case VarDecl::Static: assert(0 && "This case handled above"); 796 case VarDecl::Auto: 797 case VarDecl::Register: 798 assert(0 && "Can't have auto or register globals"); 799 case VarDecl::None: 800 if (!D->getInit() && !CompileOpts.NoCommon) 801 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 802 else 803 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 804 break; 805 case VarDecl::Extern: 806 // FIXME: common 807 break; 808 809 case VarDecl::PrivateExtern: 810 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 811 // FIXME: common 812 break; 813 } 814 } 815 816 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 817 GV->setSection(SA->getName()); 818 819 if (D->getAttr<UsedAttr>()) 820 AddUsedGlobal(GV); 821 822 // Emit global variable debug information. 823 if (CGDebugInfo *DI = getDebugInfo()) { 824 DI->setLocation(D->getLocation()); 825 DI->EmitGlobalVariable(GV, D); 826 } 827 } 828 829 830 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 831 const llvm::FunctionType *Ty; 832 833 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 834 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 835 836 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 837 } else { 838 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 839 840 // As a special case, make sure that definitions of K&R function 841 // "type foo()" aren't declared as varargs (which forces the backend 842 // to do unnecessary work). 843 if (D->getType()->isFunctionNoProtoType()) { 844 assert(Ty->isVarArg() && "Didn't lower type as expected"); 845 // Due to stret, the lowered function could have arguments. 846 // Just create the same type as was lowered by ConvertType 847 // but strip off the varargs bit. 848 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 849 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 850 } 851 } 852 853 // Get or create the prototype for teh function. 854 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 855 856 // Strip off a bitcast if we got one back. 857 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 858 assert(CE->getOpcode() == llvm::Instruction::BitCast); 859 Entry = CE->getOperand(0); 860 } 861 862 863 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 864 // If the types mismatch then we have to rewrite the definition. 865 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 866 "Shouldn't replace non-declaration"); 867 868 // F is the Function* for the one with the wrong type, we must make a new 869 // Function* and update everything that used F (a declaration) with the new 870 // Function* (which will be a definition). 871 // 872 // This happens if there is a prototype for a function 873 // (e.g. "int f()") and then a definition of a different type 874 // (e.g. "int f(int x)"). Start by making a new function of the 875 // correct type, RAUW, then steal the name. 876 GlobalDeclMap.erase(getMangledName(D)); 877 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 878 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 879 880 // Replace uses of F with the Function we will endow with a body. 881 llvm::Constant *NewPtrForOldDecl = 882 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 883 Entry->replaceAllUsesWith(NewPtrForOldDecl); 884 885 // Ok, delete the old function now, which is dead. 886 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 887 888 Entry = NewFn; 889 } 890 891 llvm::Function *Fn = cast<llvm::Function>(Entry); 892 893 CodeGenFunction(*this).GenerateCode(D, Fn); 894 895 SetFunctionAttributesForDefinition(D, Fn); 896 897 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 898 AddGlobalCtor(Fn, CA->getPriority()); 899 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 900 AddGlobalDtor(Fn, DA->getPriority()); 901 } 902 903 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 904 const AliasAttr *AA = D->getAttr<AliasAttr>(); 905 assert(AA && "Not an alias?"); 906 907 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 908 909 // Unique the name through the identifier table. 910 const char *AliaseeName = AA->getAliasee().c_str(); 911 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 912 913 // Create a reference to the named value. This ensures that it is emitted 914 // if a deferred decl. 915 llvm::Constant *Aliasee; 916 if (isa<llvm::FunctionType>(DeclTy)) 917 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 918 else 919 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 920 llvm::PointerType::getUnqual(DeclTy), 0); 921 922 // Create the new alias itself, but don't set a name yet. 923 llvm::GlobalValue *GA = 924 new llvm::GlobalAlias(Aliasee->getType(), 925 llvm::Function::ExternalLinkage, 926 "", Aliasee, &getModule()); 927 928 // See if there is already something with the alias' name in the module. 929 const char *MangledName = getMangledName(D); 930 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 931 932 if (Entry && !Entry->isDeclaration()) { 933 // If there is a definition in the module, then it wins over the alias. 934 // This is dubious, but allow it to be safe. Just ignore the alias. 935 GA->eraseFromParent(); 936 return; 937 } 938 939 if (Entry) { 940 // If there is a declaration in the module, then we had an extern followed 941 // by the alias, as in: 942 // extern int test6(); 943 // ... 944 // int test6() __attribute__((alias("test7"))); 945 // 946 // Remove it and replace uses of it with the alias. 947 948 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 949 Entry->getType())); 950 Entry->eraseFromParent(); 951 } 952 953 // Now we know that there is no conflict, set the name. 954 Entry = GA; 955 GA->setName(MangledName); 956 957 // Alias should never be internal or inline. 958 SetGlobalValueAttributes(D, false, false, GA, true); 959 } 960 961 /// getBuiltinLibFunction - Given a builtin id for a function like 962 /// "__builtin_fabsf", return a Function* for "fabsf". 963 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 964 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 965 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 966 "isn't a lib fn"); 967 968 // Get the name, skip over the __builtin_ prefix (if necessary). 969 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 970 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 971 Name += 10; 972 973 // Get the type for the builtin. 974 Builtin::Context::GetBuiltinTypeError Error; 975 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 976 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 977 978 const llvm::FunctionType *Ty = 979 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 980 981 // Unique the name through the identifier table. 982 Name = getContext().Idents.get(Name).getName(); 983 // FIXME: param attributes for sext/zext etc. 984 return GetOrCreateLLVMFunction(Name, Ty, 0); 985 } 986 987 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 988 unsigned NumTys) { 989 return llvm::Intrinsic::getDeclaration(&getModule(), 990 (llvm::Intrinsic::ID)IID, Tys, NumTys); 991 } 992 993 llvm::Function *CodeGenModule::getMemCpyFn() { 994 if (MemCpyFn) return MemCpyFn; 995 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 996 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 997 } 998 999 llvm::Function *CodeGenModule::getMemMoveFn() { 1000 if (MemMoveFn) return MemMoveFn; 1001 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1002 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1003 } 1004 1005 llvm::Function *CodeGenModule::getMemSetFn() { 1006 if (MemSetFn) return MemSetFn; 1007 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1008 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1009 } 1010 1011 static void appendFieldAndPadding(CodeGenModule &CGM, 1012 std::vector<llvm::Constant*>& Fields, 1013 FieldDecl *FieldD, FieldDecl *NextFieldD, 1014 llvm::Constant* Field, 1015 RecordDecl* RD, const llvm::StructType *STy) { 1016 // Append the field. 1017 Fields.push_back(Field); 1018 1019 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1020 1021 int NextStructFieldNo; 1022 if (!NextFieldD) { 1023 NextStructFieldNo = STy->getNumElements(); 1024 } else { 1025 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1026 } 1027 1028 // Append padding 1029 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1030 llvm::Constant *C = 1031 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1032 1033 Fields.push_back(C); 1034 } 1035 } 1036 1037 llvm::Constant *CodeGenModule:: 1038 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1039 std::string str; 1040 unsigned StringLength; 1041 1042 bool isUTF16 = false; 1043 if (Literal->containsNonAsciiOrNull()) { 1044 // Convert from UTF-8 to UTF-16. 1045 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1046 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1047 UTF16 *ToPtr = &ToBuf[0]; 1048 1049 ConversionResult Result; 1050 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1051 &ToPtr, ToPtr+Literal->getByteLength(), 1052 strictConversion); 1053 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1054 1055 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1056 // without doing more surgery to this routine. Since we aren't explicitly 1057 // checking for endianness here, it's also a bug (when generating code for 1058 // a target that doesn't match the host endianness). Modeling this as an i16 1059 // array is likely the cleanest solution. 1060 StringLength = ToPtr-&ToBuf[0]; 1061 str.assign((char *)&ToBuf[0], StringLength*2); // Twice as many UTF8 chars. 1062 isUTF16 = true; 1063 } else { 1064 str.assign(Literal->getStrData(), Literal->getByteLength()); 1065 StringLength = str.length(); 1066 } 1067 llvm::StringMapEntry<llvm::Constant *> &Entry = 1068 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1069 1070 if (llvm::Constant *C = Entry.getValue()) 1071 return C; 1072 1073 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1074 llvm::Constant *Zeros[] = { Zero, Zero }; 1075 1076 if (!CFConstantStringClassRef) { 1077 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1078 Ty = llvm::ArrayType::get(Ty, 0); 1079 1080 // FIXME: This is fairly broken if 1081 // __CFConstantStringClassReference is already defined, in that it 1082 // will get renamed and the user will most likely see an opaque 1083 // error message. This is a general issue with relying on 1084 // particular names. 1085 llvm::GlobalVariable *GV = 1086 new llvm::GlobalVariable(Ty, false, 1087 llvm::GlobalVariable::ExternalLinkage, 0, 1088 "__CFConstantStringClassReference", 1089 &getModule()); 1090 1091 // Decay array -> ptr 1092 CFConstantStringClassRef = 1093 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1094 } 1095 1096 QualType CFTy = getContext().getCFConstantStringType(); 1097 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1098 1099 const llvm::StructType *STy = 1100 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1101 1102 std::vector<llvm::Constant*> Fields; 1103 RecordDecl::field_iterator Field = CFRD->field_begin(); 1104 1105 // Class pointer. 1106 FieldDecl *CurField = *Field++; 1107 FieldDecl *NextField = *Field++; 1108 appendFieldAndPadding(*this, Fields, CurField, NextField, 1109 CFConstantStringClassRef, CFRD, STy); 1110 1111 // Flags. 1112 CurField = NextField; 1113 NextField = *Field++; 1114 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1115 appendFieldAndPadding(*this, Fields, CurField, NextField, 1116 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1117 : llvm::ConstantInt::get(Ty, 0x07C8), 1118 CFRD, STy); 1119 1120 // String pointer. 1121 CurField = NextField; 1122 NextField = *Field++; 1123 llvm::Constant *C = llvm::ConstantArray::get(str); 1124 1125 const char *Sect, *Prefix; 1126 bool isConstant; 1127 if (isUTF16) { 1128 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1129 Sect = getContext().Target.getUnicodeStringSection(); 1130 // FIXME: Why does GCC not set constant here? 1131 isConstant = false; 1132 } else { 1133 Prefix = getContext().Target.getStringSymbolPrefix(true); 1134 Sect = getContext().Target.getCFStringDataSection(); 1135 // FIXME: -fwritable-strings should probably affect this, but we 1136 // are following gcc here. 1137 isConstant = true; 1138 } 1139 llvm::GlobalVariable *GV = 1140 new llvm::GlobalVariable(C->getType(), isConstant, 1141 llvm::GlobalValue::InternalLinkage, 1142 C, Prefix, &getModule()); 1143 if (Sect) 1144 GV->setSection(Sect); 1145 if (isUTF16) { 1146 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1147 GV->setAlignment(Align); 1148 } 1149 appendFieldAndPadding(*this, Fields, CurField, NextField, 1150 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1151 CFRD, STy); 1152 1153 // String length. 1154 CurField = NextField; 1155 NextField = 0; 1156 Ty = getTypes().ConvertType(getContext().LongTy); 1157 appendFieldAndPadding(*this, Fields, CurField, NextField, 1158 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1159 1160 // The struct. 1161 C = llvm::ConstantStruct::get(STy, Fields); 1162 GV = new llvm::GlobalVariable(C->getType(), true, 1163 llvm::GlobalVariable::InternalLinkage, C, 1164 getContext().Target.getCFStringSymbolPrefix(), 1165 &getModule()); 1166 if (const char *Sect = getContext().Target.getCFStringSection()) 1167 GV->setSection(Sect); 1168 Entry.setValue(GV); 1169 1170 return GV; 1171 } 1172 1173 /// GetStringForStringLiteral - Return the appropriate bytes for a 1174 /// string literal, properly padded to match the literal type. 1175 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1176 const char *StrData = E->getStrData(); 1177 unsigned Len = E->getByteLength(); 1178 1179 const ConstantArrayType *CAT = 1180 getContext().getAsConstantArrayType(E->getType()); 1181 assert(CAT && "String isn't pointer or array!"); 1182 1183 // Resize the string to the right size. 1184 std::string Str(StrData, StrData+Len); 1185 uint64_t RealLen = CAT->getSize().getZExtValue(); 1186 1187 if (E->isWide()) 1188 RealLen *= getContext().Target.getWCharWidth()/8; 1189 1190 Str.resize(RealLen, '\0'); 1191 1192 return Str; 1193 } 1194 1195 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1196 /// constant array for the given string literal. 1197 llvm::Constant * 1198 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1199 // FIXME: This can be more efficient. 1200 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1201 } 1202 1203 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1204 /// array for the given ObjCEncodeExpr node. 1205 llvm::Constant * 1206 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1207 std::string Str; 1208 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1209 1210 return GetAddrOfConstantCString(Str); 1211 } 1212 1213 1214 /// GenerateWritableString -- Creates storage for a string literal. 1215 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1216 bool constant, 1217 CodeGenModule &CGM, 1218 const char *GlobalName) { 1219 // Create Constant for this string literal. Don't add a '\0'. 1220 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1221 1222 // Create a global variable for this string 1223 return new llvm::GlobalVariable(C->getType(), constant, 1224 llvm::GlobalValue::InternalLinkage, 1225 C, GlobalName, &CGM.getModule()); 1226 } 1227 1228 /// GetAddrOfConstantString - Returns a pointer to a character array 1229 /// containing the literal. This contents are exactly that of the 1230 /// given string, i.e. it will not be null terminated automatically; 1231 /// see GetAddrOfConstantCString. Note that whether the result is 1232 /// actually a pointer to an LLVM constant depends on 1233 /// Feature.WriteableStrings. 1234 /// 1235 /// The result has pointer to array type. 1236 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1237 const char *GlobalName) { 1238 bool IsConstant = !Features.WritableStrings; 1239 1240 // Get the default prefix if a name wasn't specified. 1241 if (!GlobalName) 1242 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1243 1244 // Don't share any string literals if strings aren't constant. 1245 if (!IsConstant) 1246 return GenerateStringLiteral(str, false, *this, GlobalName); 1247 1248 llvm::StringMapEntry<llvm::Constant *> &Entry = 1249 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1250 1251 if (Entry.getValue()) 1252 return Entry.getValue(); 1253 1254 // Create a global variable for this. 1255 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1256 Entry.setValue(C); 1257 return C; 1258 } 1259 1260 /// GetAddrOfConstantCString - Returns a pointer to a character 1261 /// array containing the literal and a terminating '\-' 1262 /// character. The result has pointer to array type. 1263 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1264 const char *GlobalName){ 1265 return GetAddrOfConstantString(str + '\0', GlobalName); 1266 } 1267 1268 /// EmitObjCPropertyImplementations - Emit information for synthesized 1269 /// properties for an implementation. 1270 void CodeGenModule::EmitObjCPropertyImplementations(const 1271 ObjCImplementationDecl *D) { 1272 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1273 e = D->propimpl_end(); i != e; ++i) { 1274 ObjCPropertyImplDecl *PID = *i; 1275 1276 // Dynamic is just for type-checking. 1277 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1278 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1279 1280 // Determine which methods need to be implemented, some may have 1281 // been overridden. Note that ::isSynthesized is not the method 1282 // we want, that just indicates if the decl came from a 1283 // property. What we want to know is if the method is defined in 1284 // this implementation. 1285 if (!D->getInstanceMethod(PD->getGetterName())) 1286 CodeGenFunction(*this).GenerateObjCGetter( 1287 const_cast<ObjCImplementationDecl *>(D), PID); 1288 if (!PD->isReadOnly() && 1289 !D->getInstanceMethod(PD->getSetterName())) 1290 CodeGenFunction(*this).GenerateObjCSetter( 1291 const_cast<ObjCImplementationDecl *>(D), PID); 1292 } 1293 } 1294 } 1295 1296 /// EmitNamespace - Emit all declarations in a namespace. 1297 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1298 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1299 I != E; ++I) 1300 EmitTopLevelDecl(*I); 1301 } 1302 1303 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1304 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1305 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1306 ErrorUnsupported(LSD, "linkage spec"); 1307 return; 1308 } 1309 1310 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1311 I != E; ++I) 1312 EmitTopLevelDecl(*I); 1313 } 1314 1315 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1316 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1317 // If an error has occurred, stop code generation, but continue 1318 // parsing and semantic analysis (to ensure all warnings and errors 1319 // are emitted). 1320 if (Diags.hasErrorOccurred()) 1321 return; 1322 1323 switch (D->getKind()) { 1324 case Decl::CXXMethod: 1325 case Decl::Function: 1326 case Decl::Var: 1327 EmitGlobal(cast<ValueDecl>(D)); 1328 break; 1329 1330 case Decl::Namespace: 1331 EmitNamespace(cast<NamespaceDecl>(D)); 1332 break; 1333 1334 // Objective-C Decls 1335 1336 // Forward declarations, no (immediate) code generation. 1337 case Decl::ObjCClass: 1338 case Decl::ObjCForwardProtocol: 1339 case Decl::ObjCCategory: 1340 break; 1341 case Decl::ObjCInterface: 1342 // If we already laid out this interface due to an @class, and if we 1343 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1344 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1345 break; 1346 1347 case Decl::ObjCProtocol: 1348 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1349 break; 1350 1351 case Decl::ObjCCategoryImpl: 1352 // Categories have properties but don't support synthesize so we 1353 // can ignore them here. 1354 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1355 break; 1356 1357 case Decl::ObjCImplementation: { 1358 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1359 EmitObjCPropertyImplementations(OMD); 1360 Runtime->GenerateClass(OMD); 1361 break; 1362 } 1363 case Decl::ObjCMethod: { 1364 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1365 // If this is not a prototype, emit the body. 1366 if (OMD->getBody()) 1367 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1368 break; 1369 } 1370 case Decl::ObjCCompatibleAlias: 1371 // compatibility-alias is a directive and has no code gen. 1372 break; 1373 1374 case Decl::LinkageSpec: 1375 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1376 break; 1377 1378 case Decl::FileScopeAsm: { 1379 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1380 std::string AsmString(AD->getAsmString()->getStrData(), 1381 AD->getAsmString()->getByteLength()); 1382 1383 const std::string &S = getModule().getModuleInlineAsm(); 1384 if (S.empty()) 1385 getModule().setModuleInlineAsm(AsmString); 1386 else 1387 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1388 break; 1389 } 1390 1391 default: 1392 // Make sure we handled everything we should, every other kind is 1393 // a non-top-level decl. FIXME: Would be nice to have an 1394 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1395 // that easily. 1396 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1397 } 1398 } 1399