1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = GD.getDecl(); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 217 I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // The kind of external linkage this function will have, if it is not 251 // inline or static. 252 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 253 if (Context.getLangOptions().CPlusPlus && 254 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 255 !FD->isExplicitSpecialization()) 256 External = CodeGenModule::GVA_TemplateInstantiation; 257 258 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 259 // C++ member functions defined inside the class are always inline. 260 if (MD->isInline() || !MD->isOutOfLine()) 261 return CodeGenModule::GVA_CXXInline; 262 263 return External; 264 } 265 266 // "static" functions get internal linkage. 267 if (FD->getStorageClass() == FunctionDecl::Static) 268 return CodeGenModule::GVA_Internal; 269 270 if (!FD->isInline()) 271 return External; 272 273 // If the inline function explicitly has the GNU inline attribute on it, or if 274 // this is C89 mode, we use to GNU semantics. 275 if (!Features.C99 && !Features.CPlusPlus) { 276 // extern inline in GNU mode is like C99 inline. 277 if (FD->getStorageClass() == FunctionDecl::Extern) 278 return CodeGenModule::GVA_C99Inline; 279 // Normal inline is a strong symbol. 280 return CodeGenModule::GVA_StrongExternal; 281 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 282 // GCC in C99 mode seems to use a different decision-making 283 // process for extern inline, which factors in previous 284 // declarations. 285 if (FD->isExternGNUInline(Context)) 286 return CodeGenModule::GVA_C99Inline; 287 // Normal inline is a strong symbol. 288 return External; 289 } 290 291 // The definition of inline changes based on the language. Note that we 292 // have already handled "static inline" above, with the GVA_Internal case. 293 if (Features.CPlusPlus) // inline and extern inline. 294 return CodeGenModule::GVA_CXXInline; 295 296 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 297 if (FD->isC99InlineDefinition()) 298 return CodeGenModule::GVA_C99Inline; 299 300 return CodeGenModule::GVA_StrongExternal; 301 } 302 303 /// SetFunctionDefinitionAttributes - Set attributes for a global. 304 /// 305 /// FIXME: This is currently only done for aliases and functions, but not for 306 /// variables (these details are set in EmitGlobalVarDefinition for variables). 307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 308 llvm::GlobalValue *GV) { 309 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 310 311 if (Linkage == GVA_Internal) { 312 GV->setLinkage(llvm::Function::InternalLinkage); 313 } else if (D->hasAttr<DLLExportAttr>()) { 314 GV->setLinkage(llvm::Function::DLLExportLinkage); 315 } else if (D->hasAttr<WeakAttr>()) { 316 GV->setLinkage(llvm::Function::WeakAnyLinkage); 317 } else if (Linkage == GVA_C99Inline) { 318 // In C99 mode, 'inline' functions are guaranteed to have a strong 319 // definition somewhere else, so we can use available_externally linkage. 320 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 321 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 322 // In C++, the compiler has to emit a definition in every translation unit 323 // that references the function. We should use linkonce_odr because 324 // a) if all references in this translation unit are optimized away, we 325 // don't need to codegen it. b) if the function persists, it needs to be 326 // merged with other definitions. c) C++ has the ODR, so we know the 327 // definition is dependable. 328 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 329 } else { 330 assert(Linkage == GVA_StrongExternal); 331 // Otherwise, we have strong external linkage. 332 GV->setLinkage(llvm::Function::ExternalLinkage); 333 } 334 335 SetCommonAttributes(D, GV); 336 } 337 338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 339 const CGFunctionInfo &Info, 340 llvm::Function *F) { 341 AttributeListType AttributeList; 342 ConstructAttributeList(Info, D, AttributeList); 343 344 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 345 AttributeList.size())); 346 347 // Set the appropriate calling convention for the Function. 348 if (D->hasAttr<FastCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_FastCall); 350 351 if (D->hasAttr<StdCallAttr>()) 352 F->setCallingConv(llvm::CallingConv::X86_StdCall); 353 } 354 355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 356 llvm::Function *F) { 357 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 358 F->addFnAttr(llvm::Attribute::NoUnwind); 359 360 if (D->hasAttr<AlwaysInlineAttr>()) 361 F->addFnAttr(llvm::Attribute::AlwaysInline); 362 363 if (D->hasAttr<NoinlineAttr>()) 364 F->addFnAttr(llvm::Attribute::NoInline); 365 } 366 367 void CodeGenModule::SetCommonAttributes(const Decl *D, 368 llvm::GlobalValue *GV) { 369 setGlobalVisibility(GV, D); 370 371 if (D->hasAttr<UsedAttr>()) 372 AddUsedGlobal(GV); 373 374 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 375 GV->setSection(SA->getName()); 376 } 377 378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 379 llvm::Function *F, 380 const CGFunctionInfo &FI) { 381 SetLLVMFunctionAttributes(D, FI, F); 382 SetLLVMFunctionAttributesForDefinition(D, F); 383 384 F->setLinkage(llvm::Function::InternalLinkage); 385 386 SetCommonAttributes(D, F); 387 } 388 389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 390 llvm::Function *F, 391 bool IsIncompleteFunction) { 392 if (!IsIncompleteFunction) 393 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 394 395 // Only a few attributes are set on declarations; these may later be 396 // overridden by a definition. 397 398 if (FD->hasAttr<DLLImportAttr>()) { 399 F->setLinkage(llvm::Function::DLLImportLinkage); 400 } else if (FD->hasAttr<WeakAttr>() || 401 FD->hasAttr<WeakImportAttr>()) { 402 // "extern_weak" is overloaded in LLVM; we probably should have 403 // separate linkage types for this. 404 F->setLinkage(llvm::Function::ExternalWeakLinkage); 405 } else { 406 F->setLinkage(llvm::Function::ExternalLinkage); 407 } 408 409 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 410 F->setSection(SA->getName()); 411 } 412 413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 414 assert(!GV->isDeclaration() && 415 "Only globals with definition can force usage."); 416 LLVMUsed.push_back(GV); 417 } 418 419 void CodeGenModule::EmitLLVMUsed() { 420 // Don't create llvm.used if there is no need. 421 if (LLVMUsed.empty()) 422 return; 423 424 llvm::Type *i8PTy = 425 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 426 427 // Convert LLVMUsed to what ConstantArray needs. 428 std::vector<llvm::Constant*> UsedArray; 429 UsedArray.resize(LLVMUsed.size()); 430 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 431 UsedArray[i] = 432 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 433 i8PTy); 434 } 435 436 if (UsedArray.empty()) 437 return; 438 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 439 440 llvm::GlobalVariable *GV = 441 new llvm::GlobalVariable(getModule(), ATy, false, 442 llvm::GlobalValue::AppendingLinkage, 443 llvm::ConstantArray::get(ATy, UsedArray), 444 "llvm.used"); 445 446 GV->setSection("llvm.metadata"); 447 } 448 449 void CodeGenModule::EmitDeferred() { 450 // Emit code for any potentially referenced deferred decls. Since a 451 // previously unused static decl may become used during the generation of code 452 // for a static function, iterate until no changes are made. 453 while (!DeferredDeclsToEmit.empty()) { 454 GlobalDecl D = DeferredDeclsToEmit.back(); 455 DeferredDeclsToEmit.pop_back(); 456 457 // The mangled name for the decl must have been emitted in GlobalDeclMap. 458 // Look it up to see if it was defined with a stronger definition (e.g. an 459 // extern inline function with a strong function redefinition). If so, 460 // just ignore the deferred decl. 461 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 462 assert(CGRef && "Deferred decl wasn't referenced?"); 463 464 if (!CGRef->isDeclaration()) 465 continue; 466 467 // Otherwise, emit the definition and move on to the next one. 468 EmitGlobalDefinition(D); 469 } 470 } 471 472 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 473 /// annotation information for a given GlobalValue. The annotation struct is 474 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 475 /// GlobalValue being annotated. The second field is the constant string 476 /// created from the AnnotateAttr's annotation. The third field is a constant 477 /// string containing the name of the translation unit. The fourth field is 478 /// the line number in the file of the annotated value declaration. 479 /// 480 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 481 /// appears to. 482 /// 483 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 484 const AnnotateAttr *AA, 485 unsigned LineNo) { 486 llvm::Module *M = &getModule(); 487 488 // get [N x i8] constants for the annotation string, and the filename string 489 // which are the 2nd and 3rd elements of the global annotation structure. 490 const llvm::Type *SBP = 491 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 492 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 493 AA->getAnnotation(), true); 494 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 495 M->getModuleIdentifier(), 496 true); 497 498 // Get the two global values corresponding to the ConstantArrays we just 499 // created to hold the bytes of the strings. 500 llvm::GlobalValue *annoGV = 501 new llvm::GlobalVariable(*M, anno->getType(), false, 502 llvm::GlobalValue::PrivateLinkage, anno, 503 GV->getName()); 504 // translation unit name string, emitted into the llvm.metadata section. 505 llvm::GlobalValue *unitGV = 506 new llvm::GlobalVariable(*M, unit->getType(), false, 507 llvm::GlobalValue::PrivateLinkage, unit, 508 ".str"); 509 510 // Create the ConstantStruct for the global annotation. 511 llvm::Constant *Fields[4] = { 512 llvm::ConstantExpr::getBitCast(GV, SBP), 513 llvm::ConstantExpr::getBitCast(annoGV, SBP), 514 llvm::ConstantExpr::getBitCast(unitGV, SBP), 515 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 516 }; 517 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 518 } 519 520 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 521 // Never defer when EmitAllDecls is specified or the decl has 522 // attribute used. 523 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 524 return false; 525 526 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 527 // Constructors and destructors should never be deferred. 528 if (FD->hasAttr<ConstructorAttr>() || 529 FD->hasAttr<DestructorAttr>()) 530 return false; 531 532 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 533 534 // static, static inline, always_inline, and extern inline functions can 535 // always be deferred. Normal inline functions can be deferred in C99/C++. 536 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 537 Linkage == GVA_CXXInline) 538 return true; 539 return false; 540 } 541 542 const VarDecl *VD = cast<VarDecl>(Global); 543 assert(VD->isFileVarDecl() && "Invalid decl"); 544 545 return VD->getStorageClass() == VarDecl::Static; 546 } 547 548 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 549 const ValueDecl *Global = GD.getDecl(); 550 551 // If this is an alias definition (which otherwise looks like a declaration) 552 // emit it now. 553 if (Global->hasAttr<AliasAttr>()) 554 return EmitAliasDefinition(Global); 555 556 // Ignore declarations, they will be emitted on their first use. 557 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 558 // Forward declarations are emitted lazily on first use. 559 if (!FD->isThisDeclarationADefinition()) 560 return; 561 } else { 562 const VarDecl *VD = cast<VarDecl>(Global); 563 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 564 565 // In C++, if this is marked "extern", defer code generation. 566 if (getLangOptions().CPlusPlus && !VD->getInit() && 567 (VD->getStorageClass() == VarDecl::Extern || 568 VD->isExternC(getContext()))) 569 return; 570 571 // In C, if this isn't a definition, defer code generation. 572 if (!getLangOptions().CPlusPlus && !VD->getInit()) 573 return; 574 } 575 576 // Defer code generation when possible if this is a static definition, inline 577 // function etc. These we only want to emit if they are used. 578 if (MayDeferGeneration(Global)) { 579 // If the value has already been used, add it directly to the 580 // DeferredDeclsToEmit list. 581 const char *MangledName = getMangledName(GD); 582 if (GlobalDeclMap.count(MangledName)) 583 DeferredDeclsToEmit.push_back(GD); 584 else { 585 // Otherwise, remember that we saw a deferred decl with this name. The 586 // first use of the mangled name will cause it to move into 587 // DeferredDeclsToEmit. 588 DeferredDecls[MangledName] = GD; 589 } 590 return; 591 } 592 593 // Otherwise emit the definition. 594 EmitGlobalDefinition(GD); 595 } 596 597 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 598 const ValueDecl *D = GD.getDecl(); 599 600 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 601 EmitCXXConstructor(CD, GD.getCtorType()); 602 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 603 EmitCXXDestructor(DD, GD.getDtorType()); 604 else if (isa<FunctionDecl>(D)) 605 EmitGlobalFunctionDefinition(GD); 606 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 607 EmitGlobalVarDefinition(VD); 608 else { 609 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 610 } 611 } 612 613 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 614 /// module, create and return an llvm Function with the specified type. If there 615 /// is something in the module with the specified name, return it potentially 616 /// bitcasted to the right type. 617 /// 618 /// If D is non-null, it specifies a decl that correspond to this. This is used 619 /// to set the attributes on the function when it is first created. 620 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 621 const llvm::Type *Ty, 622 GlobalDecl D) { 623 // Lookup the entry, lazily creating it if necessary. 624 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 625 if (Entry) { 626 if (Entry->getType()->getElementType() == Ty) 627 return Entry; 628 629 // Make sure the result is of the correct type. 630 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 631 return llvm::ConstantExpr::getBitCast(Entry, PTy); 632 } 633 634 // This is the first use or definition of a mangled name. If there is a 635 // deferred decl with this name, remember that we need to emit it at the end 636 // of the file. 637 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 638 DeferredDecls.find(MangledName); 639 if (DDI != DeferredDecls.end()) { 640 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 641 // list, and remove it from DeferredDecls (since we don't need it anymore). 642 DeferredDeclsToEmit.push_back(DDI->second); 643 DeferredDecls.erase(DDI); 644 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 645 // If this the first reference to a C++ inline function in a class, queue up 646 // the deferred function body for emission. These are not seen as 647 // top-level declarations. 648 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 649 DeferredDeclsToEmit.push_back(D); 650 // A called constructor which has no definition or declaration need be 651 // synthesized. 652 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 653 const CXXRecordDecl *ClassDecl = 654 cast<CXXRecordDecl>(CD->getDeclContext()); 655 if (CD->isCopyConstructor(getContext())) 656 DeferredCopyConstructorToEmit(D); 657 else if (!ClassDecl->hasUserDeclaredConstructor()) 658 DeferredDeclsToEmit.push_back(D); 659 } 660 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 661 if (MD->isCopyAssignment()) 662 DeferredCopyAssignmentToEmit(D); 663 } 664 665 // This function doesn't have a complete type (for example, the return 666 // type is an incomplete struct). Use a fake type instead, and make 667 // sure not to try to set attributes. 668 bool IsIncompleteFunction = false; 669 if (!isa<llvm::FunctionType>(Ty)) { 670 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 671 std::vector<const llvm::Type*>(), false); 672 IsIncompleteFunction = true; 673 } 674 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 675 llvm::Function::ExternalLinkage, 676 "", &getModule()); 677 F->setName(MangledName); 678 if (D.getDecl()) 679 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 680 IsIncompleteFunction); 681 Entry = F; 682 return F; 683 } 684 685 /// Defer definition of copy constructor(s) which need be implicitly defined. 686 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 687 const CXXConstructorDecl *CD = 688 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 689 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 690 if (ClassDecl->hasTrivialCopyConstructor() || 691 ClassDecl->hasUserDeclaredCopyConstructor()) 692 return; 693 694 // First make sure all direct base classes and virtual bases and non-static 695 // data mebers which need to have their copy constructors implicitly defined 696 // are defined. 12.8.p7 697 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 698 Base != ClassDecl->bases_end(); ++Base) { 699 CXXRecordDecl *BaseClassDecl 700 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 701 if (CXXConstructorDecl *BaseCopyCtor = 702 BaseClassDecl->getCopyConstructor(Context, 0)) 703 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 704 } 705 706 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 707 FieldEnd = ClassDecl->field_end(); 708 Field != FieldEnd; ++Field) { 709 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 710 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 711 FieldType = Array->getElementType(); 712 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 713 if ((*Field)->isAnonymousStructOrUnion()) 714 continue; 715 CXXRecordDecl *FieldClassDecl 716 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 717 if (CXXConstructorDecl *FieldCopyCtor = 718 FieldClassDecl->getCopyConstructor(Context, 0)) 719 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 720 } 721 } 722 DeferredDeclsToEmit.push_back(CopyCtorDecl); 723 } 724 725 /// Defer definition of copy assignments which need be implicitly defined. 726 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 727 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 728 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 729 730 if (ClassDecl->hasTrivialCopyAssignment() || 731 ClassDecl->hasUserDeclaredCopyAssignment()) 732 return; 733 734 // First make sure all direct base classes and virtual bases and non-static 735 // data mebers which need to have their copy assignments implicitly defined 736 // are defined. 12.8.p12 737 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 738 Base != ClassDecl->bases_end(); ++Base) { 739 CXXRecordDecl *BaseClassDecl 740 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 741 const CXXMethodDecl *MD = 0; 742 if (!BaseClassDecl->hasTrivialCopyAssignment() && 743 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 744 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 745 GetAddrOfFunction(GlobalDecl(MD), 0); 746 } 747 748 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 749 FieldEnd = ClassDecl->field_end(); 750 Field != FieldEnd; ++Field) { 751 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 752 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 753 FieldType = Array->getElementType(); 754 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 755 if ((*Field)->isAnonymousStructOrUnion()) 756 continue; 757 CXXRecordDecl *FieldClassDecl 758 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 759 const CXXMethodDecl *MD = 0; 760 if (!FieldClassDecl->hasTrivialCopyAssignment() && 761 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 762 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 763 GetAddrOfFunction(GlobalDecl(MD), 0); 764 } 765 } 766 DeferredDeclsToEmit.push_back(CopyAssignDecl); 767 } 768 769 /// GetAddrOfFunction - Return the address of the given function. If Ty is 770 /// non-null, then this function will use the specified type if it has to 771 /// create it (this occurs when we see a definition of the function). 772 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 773 const llvm::Type *Ty) { 774 // If there was no specific requested type, just convert it now. 775 if (!Ty) 776 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 777 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 778 } 779 780 /// CreateRuntimeFunction - Create a new runtime function with the specified 781 /// type and name. 782 llvm::Constant * 783 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 784 const char *Name) { 785 // Convert Name to be a uniqued string from the IdentifierInfo table. 786 Name = getContext().Idents.get(Name).getName(); 787 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 788 } 789 790 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 791 /// create and return an llvm GlobalVariable with the specified type. If there 792 /// is something in the module with the specified name, return it potentially 793 /// bitcasted to the right type. 794 /// 795 /// If D is non-null, it specifies a decl that correspond to this. This is used 796 /// to set the attributes on the global when it is first created. 797 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 798 const llvm::PointerType*Ty, 799 const VarDecl *D) { 800 // Lookup the entry, lazily creating it if necessary. 801 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 802 if (Entry) { 803 if (Entry->getType() == Ty) 804 return Entry; 805 806 // Make sure the result is of the correct type. 807 return llvm::ConstantExpr::getBitCast(Entry, Ty); 808 } 809 810 // This is the first use or definition of a mangled name. If there is a 811 // deferred decl with this name, remember that we need to emit it at the end 812 // of the file. 813 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 814 DeferredDecls.find(MangledName); 815 if (DDI != DeferredDecls.end()) { 816 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 817 // list, and remove it from DeferredDecls (since we don't need it anymore). 818 DeferredDeclsToEmit.push_back(DDI->second); 819 DeferredDecls.erase(DDI); 820 } 821 822 llvm::GlobalVariable *GV = 823 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 824 llvm::GlobalValue::ExternalLinkage, 825 0, "", 0, 826 false, Ty->getAddressSpace()); 827 GV->setName(MangledName); 828 829 // Handle things which are present even on external declarations. 830 if (D) { 831 // FIXME: This code is overly simple and should be merged with other global 832 // handling. 833 GV->setConstant(D->getType().isConstant(Context)); 834 835 // FIXME: Merge with other attribute handling code. 836 if (D->getStorageClass() == VarDecl::PrivateExtern) 837 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 838 839 if (D->hasAttr<WeakAttr>() || 840 D->hasAttr<WeakImportAttr>()) 841 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 842 843 GV->setThreadLocal(D->isThreadSpecified()); 844 } 845 846 return Entry = GV; 847 } 848 849 850 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 851 /// given global variable. If Ty is non-null and if the global doesn't exist, 852 /// then it will be greated with the specified type instead of whatever the 853 /// normal requested type would be. 854 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 855 const llvm::Type *Ty) { 856 assert(D->hasGlobalStorage() && "Not a global variable"); 857 QualType ASTTy = D->getType(); 858 if (Ty == 0) 859 Ty = getTypes().ConvertTypeForMem(ASTTy); 860 861 const llvm::PointerType *PTy = 862 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 863 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 864 } 865 866 /// CreateRuntimeVariable - Create a new runtime global variable with the 867 /// specified type and name. 868 llvm::Constant * 869 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 870 const char *Name) { 871 // Convert Name to be a uniqued string from the IdentifierInfo table. 872 Name = getContext().Idents.get(Name).getName(); 873 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 874 } 875 876 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 877 assert(!D->getInit() && "Cannot emit definite definitions here!"); 878 879 if (MayDeferGeneration(D)) { 880 // If we have not seen a reference to this variable yet, place it 881 // into the deferred declarations table to be emitted if needed 882 // later. 883 const char *MangledName = getMangledName(D); 884 if (GlobalDeclMap.count(MangledName) == 0) { 885 DeferredDecls[MangledName] = GlobalDecl(D); 886 return; 887 } 888 } 889 890 // The tentative definition is the only definition. 891 EmitGlobalVarDefinition(D); 892 } 893 894 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 895 llvm::Constant *Init = 0; 896 QualType ASTTy = D->getType(); 897 898 if (D->getInit() == 0) { 899 // This is a tentative definition; tentative definitions are 900 // implicitly initialized with { 0 }. 901 // 902 // Note that tentative definitions are only emitted at the end of 903 // a translation unit, so they should never have incomplete 904 // type. In addition, EmitTentativeDefinition makes sure that we 905 // never attempt to emit a tentative definition if a real one 906 // exists. A use may still exists, however, so we still may need 907 // to do a RAUW. 908 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 909 Init = EmitNullConstant(D->getType()); 910 } else { 911 Init = EmitConstantExpr(D->getInit(), D->getType()); 912 913 if (!Init) { 914 QualType T = D->getInit()->getType(); 915 if (getLangOptions().CPlusPlus) { 916 CXXGlobalInits.push_back(D); 917 Init = EmitNullConstant(T); 918 } else { 919 ErrorUnsupported(D, "static initializer"); 920 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 921 } 922 } 923 } 924 925 const llvm::Type* InitType = Init->getType(); 926 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 927 928 // Strip off a bitcast if we got one back. 929 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 930 assert(CE->getOpcode() == llvm::Instruction::BitCast || 931 // all zero index gep. 932 CE->getOpcode() == llvm::Instruction::GetElementPtr); 933 Entry = CE->getOperand(0); 934 } 935 936 // Entry is now either a Function or GlobalVariable. 937 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 938 939 // We have a definition after a declaration with the wrong type. 940 // We must make a new GlobalVariable* and update everything that used OldGV 941 // (a declaration or tentative definition) with the new GlobalVariable* 942 // (which will be a definition). 943 // 944 // This happens if there is a prototype for a global (e.g. 945 // "extern int x[];") and then a definition of a different type (e.g. 946 // "int x[10];"). This also happens when an initializer has a different type 947 // from the type of the global (this happens with unions). 948 if (GV == 0 || 949 GV->getType()->getElementType() != InitType || 950 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 951 952 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 953 GlobalDeclMap.erase(getMangledName(D)); 954 955 // Make a new global with the correct type, this is now guaranteed to work. 956 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 957 GV->takeName(cast<llvm::GlobalValue>(Entry)); 958 959 // Replace all uses of the old global with the new global 960 llvm::Constant *NewPtrForOldDecl = 961 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 962 Entry->replaceAllUsesWith(NewPtrForOldDecl); 963 964 // Erase the old global, since it is no longer used. 965 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 966 } 967 968 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 969 SourceManager &SM = Context.getSourceManager(); 970 AddAnnotation(EmitAnnotateAttr(GV, AA, 971 SM.getInstantiationLineNumber(D->getLocation()))); 972 } 973 974 GV->setInitializer(Init); 975 976 // If it is safe to mark the global 'constant', do so now. 977 GV->setConstant(false); 978 if (D->getType().isConstant(Context)) { 979 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 980 // members, it cannot be declared "LLVM const". 981 GV->setConstant(true); 982 } 983 984 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 985 986 // Set the llvm linkage type as appropriate. 987 if (D->getStorageClass() == VarDecl::Static) 988 GV->setLinkage(llvm::Function::InternalLinkage); 989 else if (D->hasAttr<DLLImportAttr>()) 990 GV->setLinkage(llvm::Function::DLLImportLinkage); 991 else if (D->hasAttr<DLLExportAttr>()) 992 GV->setLinkage(llvm::Function::DLLExportLinkage); 993 else if (D->hasAttr<WeakAttr>()) { 994 if (GV->isConstant()) 995 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 996 else 997 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 998 } else if (!CompileOpts.NoCommon && 999 !D->hasExternalStorage() && !D->getInit() && 1000 !D->getAttr<SectionAttr>()) { 1001 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1002 // common vars aren't constant even if declared const. 1003 GV->setConstant(false); 1004 } else 1005 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1006 1007 SetCommonAttributes(D, GV); 1008 1009 // Emit global variable debug information. 1010 if (CGDebugInfo *DI = getDebugInfo()) { 1011 DI->setLocation(D->getLocation()); 1012 DI->EmitGlobalVariable(GV, D); 1013 } 1014 } 1015 1016 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1017 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1018 /// existing call uses of the old function in the module, this adjusts them to 1019 /// call the new function directly. 1020 /// 1021 /// This is not just a cleanup: the always_inline pass requires direct calls to 1022 /// functions to be able to inline them. If there is a bitcast in the way, it 1023 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1024 /// run at -O0. 1025 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1026 llvm::Function *NewFn) { 1027 // If we're redefining a global as a function, don't transform it. 1028 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1029 if (OldFn == 0) return; 1030 1031 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1032 llvm::SmallVector<llvm::Value*, 4> ArgList; 1033 1034 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1035 UI != E; ) { 1036 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1037 unsigned OpNo = UI.getOperandNo(); 1038 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1039 if (!CI || OpNo != 0) continue; 1040 1041 // If the return types don't match exactly, and if the call isn't dead, then 1042 // we can't transform this call. 1043 if (CI->getType() != NewRetTy && !CI->use_empty()) 1044 continue; 1045 1046 // If the function was passed too few arguments, don't transform. If extra 1047 // arguments were passed, we silently drop them. If any of the types 1048 // mismatch, we don't transform. 1049 unsigned ArgNo = 0; 1050 bool DontTransform = false; 1051 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1052 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1053 if (CI->getNumOperands()-1 == ArgNo || 1054 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1055 DontTransform = true; 1056 break; 1057 } 1058 } 1059 if (DontTransform) 1060 continue; 1061 1062 // Okay, we can transform this. Create the new call instruction and copy 1063 // over the required information. 1064 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1065 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1066 ArgList.end(), "", CI); 1067 ArgList.clear(); 1068 if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext())) 1069 NewCall->takeName(CI); 1070 NewCall->setCallingConv(CI->getCallingConv()); 1071 NewCall->setAttributes(CI->getAttributes()); 1072 1073 // Finally, remove the old call, replacing any uses with the new one. 1074 if (!CI->use_empty()) 1075 CI->replaceAllUsesWith(NewCall); 1076 CI->eraseFromParent(); 1077 } 1078 } 1079 1080 1081 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1082 const llvm::FunctionType *Ty; 1083 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1084 1085 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1086 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1087 1088 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1089 } else { 1090 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1091 1092 // As a special case, make sure that definitions of K&R function 1093 // "type foo()" aren't declared as varargs (which forces the backend 1094 // to do unnecessary work). 1095 if (D->getType()->isFunctionNoProtoType()) { 1096 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1097 // Due to stret, the lowered function could have arguments. 1098 // Just create the same type as was lowered by ConvertType 1099 // but strip off the varargs bit. 1100 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1101 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1102 } 1103 } 1104 1105 // Get or create the prototype for the function. 1106 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1107 1108 // Strip off a bitcast if we got one back. 1109 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1110 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1111 Entry = CE->getOperand(0); 1112 } 1113 1114 1115 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1116 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1117 1118 // If the types mismatch then we have to rewrite the definition. 1119 assert(OldFn->isDeclaration() && 1120 "Shouldn't replace non-declaration"); 1121 1122 // F is the Function* for the one with the wrong type, we must make a new 1123 // Function* and update everything that used F (a declaration) with the new 1124 // Function* (which will be a definition). 1125 // 1126 // This happens if there is a prototype for a function 1127 // (e.g. "int f()") and then a definition of a different type 1128 // (e.g. "int f(int x)"). Start by making a new function of the 1129 // correct type, RAUW, then steal the name. 1130 GlobalDeclMap.erase(getMangledName(D)); 1131 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1132 NewFn->takeName(OldFn); 1133 1134 // If this is an implementation of a function without a prototype, try to 1135 // replace any existing uses of the function (which may be calls) with uses 1136 // of the new function 1137 if (D->getType()->isFunctionNoProtoType()) { 1138 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1139 OldFn->removeDeadConstantUsers(); 1140 } 1141 1142 // Replace uses of F with the Function we will endow with a body. 1143 if (!Entry->use_empty()) { 1144 llvm::Constant *NewPtrForOldDecl = 1145 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1146 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1147 } 1148 1149 // Ok, delete the old function now, which is dead. 1150 OldFn->eraseFromParent(); 1151 1152 Entry = NewFn; 1153 } 1154 1155 llvm::Function *Fn = cast<llvm::Function>(Entry); 1156 1157 CodeGenFunction(*this).GenerateCode(D, Fn); 1158 1159 SetFunctionDefinitionAttributes(D, Fn); 1160 SetLLVMFunctionAttributesForDefinition(D, Fn); 1161 1162 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1163 AddGlobalCtor(Fn, CA->getPriority()); 1164 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1165 AddGlobalDtor(Fn, DA->getPriority()); 1166 } 1167 1168 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1169 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1170 assert(AA && "Not an alias?"); 1171 1172 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1173 1174 // Unique the name through the identifier table. 1175 const char *AliaseeName = AA->getAliasee().c_str(); 1176 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1177 1178 // Create a reference to the named value. This ensures that it is emitted 1179 // if a deferred decl. 1180 llvm::Constant *Aliasee; 1181 if (isa<llvm::FunctionType>(DeclTy)) 1182 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1183 else 1184 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1185 llvm::PointerType::getUnqual(DeclTy), 0); 1186 1187 // Create the new alias itself, but don't set a name yet. 1188 llvm::GlobalValue *GA = 1189 new llvm::GlobalAlias(Aliasee->getType(), 1190 llvm::Function::ExternalLinkage, 1191 "", Aliasee, &getModule()); 1192 1193 // See if there is already something with the alias' name in the module. 1194 const char *MangledName = getMangledName(D); 1195 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1196 1197 if (Entry && !Entry->isDeclaration()) { 1198 // If there is a definition in the module, then it wins over the alias. 1199 // This is dubious, but allow it to be safe. Just ignore the alias. 1200 GA->eraseFromParent(); 1201 return; 1202 } 1203 1204 if (Entry) { 1205 // If there is a declaration in the module, then we had an extern followed 1206 // by the alias, as in: 1207 // extern int test6(); 1208 // ... 1209 // int test6() __attribute__((alias("test7"))); 1210 // 1211 // Remove it and replace uses of it with the alias. 1212 1213 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1214 Entry->getType())); 1215 Entry->eraseFromParent(); 1216 } 1217 1218 // Now we know that there is no conflict, set the name. 1219 Entry = GA; 1220 GA->setName(MangledName); 1221 1222 // Set attributes which are particular to an alias; this is a 1223 // specialization of the attributes which may be set on a global 1224 // variable/function. 1225 if (D->hasAttr<DLLExportAttr>()) { 1226 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1227 // The dllexport attribute is ignored for undefined symbols. 1228 if (FD->getBody()) 1229 GA->setLinkage(llvm::Function::DLLExportLinkage); 1230 } else { 1231 GA->setLinkage(llvm::Function::DLLExportLinkage); 1232 } 1233 } else if (D->hasAttr<WeakAttr>() || 1234 D->hasAttr<WeakImportAttr>()) { 1235 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1236 } 1237 1238 SetCommonAttributes(D, GA); 1239 } 1240 1241 /// getBuiltinLibFunction - Given a builtin id for a function like 1242 /// "__builtin_fabsf", return a Function* for "fabsf". 1243 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1244 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1245 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1246 "isn't a lib fn"); 1247 1248 // Get the name, skip over the __builtin_ prefix (if necessary). 1249 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1250 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1251 Name += 10; 1252 1253 // Get the type for the builtin. 1254 ASTContext::GetBuiltinTypeError Error; 1255 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1256 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1257 1258 const llvm::FunctionType *Ty = 1259 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1260 1261 // Unique the name through the identifier table. 1262 Name = getContext().Idents.get(Name).getName(); 1263 // FIXME: param attributes for sext/zext etc. 1264 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1265 } 1266 1267 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1268 unsigned NumTys) { 1269 return llvm::Intrinsic::getDeclaration(&getModule(), 1270 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1271 } 1272 1273 llvm::Function *CodeGenModule::getMemCpyFn() { 1274 if (MemCpyFn) return MemCpyFn; 1275 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1276 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1277 } 1278 1279 llvm::Function *CodeGenModule::getMemMoveFn() { 1280 if (MemMoveFn) return MemMoveFn; 1281 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1282 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1283 } 1284 1285 llvm::Function *CodeGenModule::getMemSetFn() { 1286 if (MemSetFn) return MemSetFn; 1287 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1288 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1289 } 1290 1291 static llvm::StringMapEntry<llvm::Constant*> & 1292 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1293 const StringLiteral *Literal, 1294 bool TargetIsLSB, 1295 bool &IsUTF16, 1296 unsigned &StringLength) { 1297 unsigned NumBytes = Literal->getByteLength(); 1298 1299 // Check for simple case. 1300 if (!Literal->containsNonAsciiOrNull()) { 1301 StringLength = NumBytes; 1302 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1303 StringLength)); 1304 } 1305 1306 // Otherwise, convert the UTF8 literals into a byte string. 1307 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1308 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1309 UTF16 *ToPtr = &ToBuf[0]; 1310 1311 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1312 &ToPtr, ToPtr + NumBytes, 1313 strictConversion); 1314 1315 // Check for conversion failure. 1316 if (Result != conversionOK) { 1317 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1318 // this duplicate code. 1319 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1320 StringLength = NumBytes; 1321 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1322 StringLength)); 1323 } 1324 1325 // ConvertUTF8toUTF16 returns the length in ToPtr. 1326 StringLength = ToPtr - &ToBuf[0]; 1327 1328 // Render the UTF-16 string into a byte array and convert to the target byte 1329 // order. 1330 // 1331 // FIXME: This isn't something we should need to do here. 1332 llvm::SmallString<128> AsBytes; 1333 AsBytes.reserve(StringLength * 2); 1334 for (unsigned i = 0; i != StringLength; ++i) { 1335 unsigned short Val = ToBuf[i]; 1336 if (TargetIsLSB) { 1337 AsBytes.push_back(Val & 0xFF); 1338 AsBytes.push_back(Val >> 8); 1339 } else { 1340 AsBytes.push_back(Val >> 8); 1341 AsBytes.push_back(Val & 0xFF); 1342 } 1343 } 1344 // Append one extra null character, the second is automatically added by our 1345 // caller. 1346 AsBytes.push_back(0); 1347 1348 IsUTF16 = true; 1349 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1350 } 1351 1352 llvm::Constant * 1353 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1354 unsigned StringLength = 0; 1355 bool isUTF16 = false; 1356 llvm::StringMapEntry<llvm::Constant*> &Entry = 1357 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1358 getTargetData().isLittleEndian(), 1359 isUTF16, StringLength); 1360 1361 if (llvm::Constant *C = Entry.getValue()) 1362 return C; 1363 1364 llvm::Constant *Zero = 1365 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1366 llvm::Constant *Zeros[] = { Zero, Zero }; 1367 1368 // If we don't already have it, get __CFConstantStringClassReference. 1369 if (!CFConstantStringClassRef) { 1370 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1371 Ty = llvm::ArrayType::get(Ty, 0); 1372 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1373 "__CFConstantStringClassReference"); 1374 // Decay array -> ptr 1375 CFConstantStringClassRef = 1376 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1377 } 1378 1379 QualType CFTy = getContext().getCFConstantStringType(); 1380 1381 const llvm::StructType *STy = 1382 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1383 1384 std::vector<llvm::Constant*> Fields(4); 1385 1386 // Class pointer. 1387 Fields[0] = CFConstantStringClassRef; 1388 1389 // Flags. 1390 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1391 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1392 llvm::ConstantInt::get(Ty, 0x07C8); 1393 1394 // String pointer. 1395 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1396 1397 const char *Sect, *Prefix; 1398 bool isConstant; 1399 llvm::GlobalValue::LinkageTypes Linkage; 1400 if (isUTF16) { 1401 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1402 Sect = getContext().Target.getUnicodeStringSection(); 1403 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1404 Linkage = llvm::GlobalValue::InternalLinkage; 1405 // FIXME: Why does GCC not set constant here? 1406 isConstant = false; 1407 } else { 1408 Prefix = ".str"; 1409 Sect = getContext().Target.getCFStringDataSection(); 1410 Linkage = llvm::GlobalValue::PrivateLinkage; 1411 // FIXME: -fwritable-strings should probably affect this, but we 1412 // are following gcc here. 1413 isConstant = true; 1414 } 1415 llvm::GlobalVariable *GV = 1416 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1417 Linkage, C, Prefix); 1418 if (Sect) 1419 GV->setSection(Sect); 1420 if (isUTF16) { 1421 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1422 GV->setAlignment(Align); 1423 } 1424 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1425 1426 // String length. 1427 Ty = getTypes().ConvertType(getContext().LongTy); 1428 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1429 1430 // The struct. 1431 C = llvm::ConstantStruct::get(STy, Fields); 1432 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1433 llvm::GlobalVariable::PrivateLinkage, C, 1434 "_unnamed_cfstring_"); 1435 if (const char *Sect = getContext().Target.getCFStringSection()) 1436 GV->setSection(Sect); 1437 Entry.setValue(GV); 1438 1439 return GV; 1440 } 1441 1442 /// GetStringForStringLiteral - Return the appropriate bytes for a 1443 /// string literal, properly padded to match the literal type. 1444 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1445 const char *StrData = E->getStrData(); 1446 unsigned Len = E->getByteLength(); 1447 1448 const ConstantArrayType *CAT = 1449 getContext().getAsConstantArrayType(E->getType()); 1450 assert(CAT && "String isn't pointer or array!"); 1451 1452 // Resize the string to the right size. 1453 std::string Str(StrData, StrData+Len); 1454 uint64_t RealLen = CAT->getSize().getZExtValue(); 1455 1456 if (E->isWide()) 1457 RealLen *= getContext().Target.getWCharWidth()/8; 1458 1459 Str.resize(RealLen, '\0'); 1460 1461 return Str; 1462 } 1463 1464 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1465 /// constant array for the given string literal. 1466 llvm::Constant * 1467 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1468 // FIXME: This can be more efficient. 1469 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1470 } 1471 1472 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1473 /// array for the given ObjCEncodeExpr node. 1474 llvm::Constant * 1475 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1476 std::string Str; 1477 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1478 1479 return GetAddrOfConstantCString(Str); 1480 } 1481 1482 1483 /// GenerateWritableString -- Creates storage for a string literal. 1484 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1485 bool constant, 1486 CodeGenModule &CGM, 1487 const char *GlobalName) { 1488 // Create Constant for this string literal. Don't add a '\0'. 1489 llvm::Constant *C = 1490 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1491 1492 // Create a global variable for this string 1493 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1494 llvm::GlobalValue::PrivateLinkage, 1495 C, GlobalName); 1496 } 1497 1498 /// GetAddrOfConstantString - Returns a pointer to a character array 1499 /// containing the literal. This contents are exactly that of the 1500 /// given string, i.e. it will not be null terminated automatically; 1501 /// see GetAddrOfConstantCString. Note that whether the result is 1502 /// actually a pointer to an LLVM constant depends on 1503 /// Feature.WriteableStrings. 1504 /// 1505 /// The result has pointer to array type. 1506 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1507 const char *GlobalName) { 1508 bool IsConstant = !Features.WritableStrings; 1509 1510 // Get the default prefix if a name wasn't specified. 1511 if (!GlobalName) 1512 GlobalName = ".str"; 1513 1514 // Don't share any string literals if strings aren't constant. 1515 if (!IsConstant) 1516 return GenerateStringLiteral(str, false, *this, GlobalName); 1517 1518 llvm::StringMapEntry<llvm::Constant *> &Entry = 1519 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1520 1521 if (Entry.getValue()) 1522 return Entry.getValue(); 1523 1524 // Create a global variable for this. 1525 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1526 Entry.setValue(C); 1527 return C; 1528 } 1529 1530 /// GetAddrOfConstantCString - Returns a pointer to a character 1531 /// array containing the literal and a terminating '\-' 1532 /// character. The result has pointer to array type. 1533 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1534 const char *GlobalName){ 1535 return GetAddrOfConstantString(str + '\0', GlobalName); 1536 } 1537 1538 /// EmitObjCPropertyImplementations - Emit information for synthesized 1539 /// properties for an implementation. 1540 void CodeGenModule::EmitObjCPropertyImplementations(const 1541 ObjCImplementationDecl *D) { 1542 for (ObjCImplementationDecl::propimpl_iterator 1543 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1544 ObjCPropertyImplDecl *PID = *i; 1545 1546 // Dynamic is just for type-checking. 1547 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1548 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1549 1550 // Determine which methods need to be implemented, some may have 1551 // been overridden. Note that ::isSynthesized is not the method 1552 // we want, that just indicates if the decl came from a 1553 // property. What we want to know is if the method is defined in 1554 // this implementation. 1555 if (!D->getInstanceMethod(PD->getGetterName())) 1556 CodeGenFunction(*this).GenerateObjCGetter( 1557 const_cast<ObjCImplementationDecl *>(D), PID); 1558 if (!PD->isReadOnly() && 1559 !D->getInstanceMethod(PD->getSetterName())) 1560 CodeGenFunction(*this).GenerateObjCSetter( 1561 const_cast<ObjCImplementationDecl *>(D), PID); 1562 } 1563 } 1564 } 1565 1566 /// EmitNamespace - Emit all declarations in a namespace. 1567 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1568 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1569 I != E; ++I) 1570 EmitTopLevelDecl(*I); 1571 } 1572 1573 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1574 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1575 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1576 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1577 ErrorUnsupported(LSD, "linkage spec"); 1578 return; 1579 } 1580 1581 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1582 I != E; ++I) 1583 EmitTopLevelDecl(*I); 1584 } 1585 1586 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1587 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1588 // If an error has occurred, stop code generation, but continue 1589 // parsing and semantic analysis (to ensure all warnings and errors 1590 // are emitted). 1591 if (Diags.hasErrorOccurred()) 1592 return; 1593 1594 // Ignore dependent declarations. 1595 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1596 return; 1597 1598 switch (D->getKind()) { 1599 case Decl::CXXMethod: 1600 case Decl::Function: 1601 // Skip function templates 1602 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1603 return; 1604 1605 // Fall through 1606 1607 case Decl::Var: 1608 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1609 break; 1610 1611 // C++ Decls 1612 case Decl::Namespace: 1613 EmitNamespace(cast<NamespaceDecl>(D)); 1614 break; 1615 // No code generation needed. 1616 case Decl::Using: 1617 case Decl::ClassTemplate: 1618 case Decl::FunctionTemplate: 1619 break; 1620 case Decl::CXXConstructor: 1621 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1622 break; 1623 case Decl::CXXDestructor: 1624 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1625 break; 1626 1627 case Decl::StaticAssert: 1628 // Nothing to do. 1629 break; 1630 1631 // Objective-C Decls 1632 1633 // Forward declarations, no (immediate) code generation. 1634 case Decl::ObjCClass: 1635 case Decl::ObjCForwardProtocol: 1636 case Decl::ObjCCategory: 1637 case Decl::ObjCInterface: 1638 break; 1639 1640 case Decl::ObjCProtocol: 1641 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1642 break; 1643 1644 case Decl::ObjCCategoryImpl: 1645 // Categories have properties but don't support synthesize so we 1646 // can ignore them here. 1647 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1648 break; 1649 1650 case Decl::ObjCImplementation: { 1651 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1652 EmitObjCPropertyImplementations(OMD); 1653 Runtime->GenerateClass(OMD); 1654 break; 1655 } 1656 case Decl::ObjCMethod: { 1657 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1658 // If this is not a prototype, emit the body. 1659 if (OMD->getBody()) 1660 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1661 break; 1662 } 1663 case Decl::ObjCCompatibleAlias: 1664 // compatibility-alias is a directive and has no code gen. 1665 break; 1666 1667 case Decl::LinkageSpec: 1668 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1669 break; 1670 1671 case Decl::FileScopeAsm: { 1672 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1673 std::string AsmString(AD->getAsmString()->getStrData(), 1674 AD->getAsmString()->getByteLength()); 1675 1676 const std::string &S = getModule().getModuleInlineAsm(); 1677 if (S.empty()) 1678 getModule().setModuleInlineAsm(AsmString); 1679 else 1680 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1681 break; 1682 } 1683 1684 default: 1685 // Make sure we handled everything we should, every other kind is a 1686 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1687 // function. Need to recode Decl::Kind to do that easily. 1688 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1689 } 1690 } 1691