1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 #include "llvm/Support/ErrorHandling.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 
38 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
39                              llvm::Module &M, const llvm::TargetData &TD,
40                              Diagnostic &diags)
41   : BlockModule(C, M, TD, Types, *this), Context(C),
42     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
43     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
44     VtableInfo(*this), Runtime(0),
45     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
46     VMContext(M.getContext()) {
47 
48   if (!Features.ObjC1)
49     Runtime = 0;
50   else if (!Features.NeXTRuntime)
51     Runtime = CreateGNUObjCRuntime(*this);
52   else if (Features.ObjCNonFragileABI)
53     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
54   else
55     Runtime = CreateMacObjCRuntime(*this);
56 
57   // If debug info generation is enabled, create the CGDebugInfo object.
58   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
59 }
60 
61 CodeGenModule::~CodeGenModule() {
62   delete Runtime;
63   delete DebugInfo;
64 }
65 
66 void CodeGenModule::Release() {
67   // We need to call this first because it can add deferred declarations.
68   EmitCXXGlobalInitFunc();
69 
70   EmitDeferred();
71   if (Runtime)
72     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
73       AddGlobalCtor(ObjCInitFunction);
74   EmitCtorList(GlobalCtors, "llvm.global_ctors");
75   EmitCtorList(GlobalDtors, "llvm.global_dtors");
76   EmitAnnotations();
77   EmitLLVMUsed();
78 }
79 
80 /// ErrorUnsupported - Print out an error that codegen doesn't support the
81 /// specified stmt yet.
82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
83                                      bool OmitOnError) {
84   if (OmitOnError && getDiags().hasErrorOccurred())
85     return;
86   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
87                                                "cannot compile this %0 yet");
88   std::string Msg = Type;
89   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
90     << Msg << S->getSourceRange();
91 }
92 
93 /// ErrorUnsupported - Print out an error that codegen doesn't support the
94 /// specified decl yet.
95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
96                                      bool OmitOnError) {
97   if (OmitOnError && getDiags().hasErrorOccurred())
98     return;
99   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
100                                                "cannot compile this %0 yet");
101   std::string Msg = Type;
102   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
103 }
104 
105 LangOptions::VisibilityMode
106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
107   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
108     if (VD->getStorageClass() == VarDecl::PrivateExtern)
109       return LangOptions::Hidden;
110 
111   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
112     switch (attr->getVisibility()) {
113     default: assert(0 && "Unknown visibility!");
114     case VisibilityAttr::DefaultVisibility:
115       return LangOptions::Default;
116     case VisibilityAttr::HiddenVisibility:
117       return LangOptions::Hidden;
118     case VisibilityAttr::ProtectedVisibility:
119       return LangOptions::Protected;
120     }
121   }
122 
123   return getLangOptions().getVisibilityMode();
124 }
125 
126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
127                                         const Decl *D) const {
128   // Internal definitions always have default visibility.
129   if (GV->hasLocalLinkage()) {
130     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131     return;
132   }
133 
134   switch (getDeclVisibilityMode(D)) {
135   default: assert(0 && "Unknown visibility!");
136   case LangOptions::Default:
137     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
138   case LangOptions::Hidden:
139     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
140   case LangOptions::Protected:
141     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
142   }
143 }
144 
145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
146   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
147 
148   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
149     return getMangledCXXCtorName(D, GD.getCtorType());
150   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
151     return getMangledCXXDtorName(D, GD.getDtorType());
152 
153   return getMangledName(ND);
154 }
155 
156 /// \brief Retrieves the mangled name for the given declaration.
157 ///
158 /// If the given declaration requires a mangled name, returns an
159 /// const char* containing the mangled name.  Otherwise, returns
160 /// the unmangled name.
161 ///
162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
163   // In C, functions with no attributes never need to be mangled. Fastpath them.
164   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   llvm::raw_svector_ostream Out(Name);
171   if (!mangleName(getMangleContext(), ND, Out)) {
172     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
173     return ND->getNameAsCString();
174   }
175 
176   Name += '\0';
177   return UniqueMangledName(Name.begin(), Name.end());
178 }
179 
180 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
181                                              const char *NameEnd) {
182   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
183 
184   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
185 }
186 
187 /// AddGlobalCtor - Add a function to the list that will be called before
188 /// main() runs.
189 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
190   // FIXME: Type coercion of void()* types.
191   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
192 }
193 
194 /// AddGlobalDtor - Add a function to the list that will be called
195 /// when the module is unloaded.
196 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
197   // FIXME: Type coercion of void()* types.
198   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
199 }
200 
201 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
202   // Ctor function type is void()*.
203   llvm::FunctionType* CtorFTy =
204     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
205                             std::vector<const llvm::Type*>(),
206                             false);
207   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
208 
209   // Get the type of a ctor entry, { i32, void ()* }.
210   llvm::StructType* CtorStructTy =
211     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
212                           llvm::PointerType::getUnqual(CtorFTy), NULL);
213 
214   // Construct the constructor and destructor arrays.
215   std::vector<llvm::Constant*> Ctors;
216   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
217     std::vector<llvm::Constant*> S;
218     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
219                 I->second, false));
220     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
221     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
222   }
223 
224   if (!Ctors.empty()) {
225     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
226     new llvm::GlobalVariable(TheModule, AT, false,
227                              llvm::GlobalValue::AppendingLinkage,
228                              llvm::ConstantArray::get(AT, Ctors),
229                              GlobalName);
230   }
231 }
232 
233 void CodeGenModule::EmitAnnotations() {
234   if (Annotations.empty())
235     return;
236 
237   // Create a new global variable for the ConstantStruct in the Module.
238   llvm::Constant *Array =
239   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
240                                                 Annotations.size()),
241                            Annotations);
242   llvm::GlobalValue *gv =
243   new llvm::GlobalVariable(TheModule, Array->getType(), false,
244                            llvm::GlobalValue::AppendingLinkage, Array,
245                            "llvm.global.annotations");
246   gv->setSection("llvm.metadata");
247 }
248 
249 static CodeGenModule::GVALinkage
250 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
251                       const LangOptions &Features) {
252   // Everything located semantically within an anonymous namespace is
253   // always internal.
254   if (FD->isInAnonymousNamespace())
255     return CodeGenModule::GVA_Internal;
256 
257   // "static" functions get internal linkage.
258   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
259     return CodeGenModule::GVA_Internal;
260 
261   // The kind of external linkage this function will have, if it is not
262   // inline or static.
263   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
264   if (Context.getLangOptions().CPlusPlus &&
265       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
266     External = CodeGenModule::GVA_TemplateInstantiation;
267 
268   if (!FD->isInlined())
269     return External;
270 
271   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
272     // GNU or C99 inline semantics. Determine whether this symbol should be
273     // externally visible.
274     if (FD->isInlineDefinitionExternallyVisible())
275       return External;
276 
277     // C99 inline semantics, where the symbol is not externally visible.
278     return CodeGenModule::GVA_C99Inline;
279   }
280 
281   // C++0x [temp.explicit]p9:
282   //   [ Note: The intent is that an inline function that is the subject of
283   //   an explicit instantiation declaration will still be implicitly
284   //   instantiated when used so that the body can be considered for
285   //   inlining, but that no out-of-line copy of the inline function would be
286   //   generated in the translation unit. -- end note ]
287   if (FD->getTemplateSpecializationKind()
288                                        == TSK_ExplicitInstantiationDeclaration)
289     return CodeGenModule::GVA_C99Inline;
290 
291   return CodeGenModule::GVA_CXXInline;
292 }
293 
294 /// SetFunctionDefinitionAttributes - Set attributes for a global.
295 ///
296 /// FIXME: This is currently only done for aliases and functions, but not for
297 /// variables (these details are set in EmitGlobalVarDefinition for variables).
298 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
299                                                     llvm::GlobalValue *GV) {
300   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
301 
302   if (Linkage == GVA_Internal) {
303     GV->setLinkage(llvm::Function::InternalLinkage);
304   } else if (D->hasAttr<DLLExportAttr>()) {
305     GV->setLinkage(llvm::Function::DLLExportLinkage);
306   } else if (D->hasAttr<WeakAttr>()) {
307     GV->setLinkage(llvm::Function::WeakAnyLinkage);
308   } else if (Linkage == GVA_C99Inline) {
309     // In C99 mode, 'inline' functions are guaranteed to have a strong
310     // definition somewhere else, so we can use available_externally linkage.
311     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
312   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
313     // In C++, the compiler has to emit a definition in every translation unit
314     // that references the function.  We should use linkonce_odr because
315     // a) if all references in this translation unit are optimized away, we
316     // don't need to codegen it.  b) if the function persists, it needs to be
317     // merged with other definitions. c) C++ has the ODR, so we know the
318     // definition is dependable.
319     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
320   } else {
321     assert(Linkage == GVA_StrongExternal);
322     // Otherwise, we have strong external linkage.
323     GV->setLinkage(llvm::Function::ExternalLinkage);
324   }
325 
326   SetCommonAttributes(D, GV);
327 }
328 
329 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
330                                               const CGFunctionInfo &Info,
331                                               llvm::Function *F) {
332   unsigned CallingConv;
333   AttributeListType AttributeList;
334   ConstructAttributeList(Info, D, AttributeList, CallingConv);
335   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
336                                           AttributeList.size()));
337   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
338 }
339 
340 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
341                                                            llvm::Function *F) {
342   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
343     F->addFnAttr(llvm::Attribute::NoUnwind);
344 
345   if (D->hasAttr<AlwaysInlineAttr>())
346     F->addFnAttr(llvm::Attribute::AlwaysInline);
347 
348   if (D->hasAttr<NoInlineAttr>())
349     F->addFnAttr(llvm::Attribute::NoInline);
350 
351   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
352     F->setAlignment(AA->getAlignment()/8);
353   // C++ ABI requires 2-byte alignment for member functions.
354   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
355     F->setAlignment(2);
356 }
357 
358 void CodeGenModule::SetCommonAttributes(const Decl *D,
359                                         llvm::GlobalValue *GV) {
360   setGlobalVisibility(GV, D);
361 
362   if (D->hasAttr<UsedAttr>())
363     AddUsedGlobal(GV);
364 
365   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
366     GV->setSection(SA->getName());
367 }
368 
369 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
370                                                   llvm::Function *F,
371                                                   const CGFunctionInfo &FI) {
372   SetLLVMFunctionAttributes(D, FI, F);
373   SetLLVMFunctionAttributesForDefinition(D, F);
374 
375   F->setLinkage(llvm::Function::InternalLinkage);
376 
377   SetCommonAttributes(D, F);
378 }
379 
380 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
381                                           llvm::Function *F,
382                                           bool IsIncompleteFunction) {
383   if (!IsIncompleteFunction)
384     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
385 
386   // Only a few attributes are set on declarations; these may later be
387   // overridden by a definition.
388 
389   if (FD->hasAttr<DLLImportAttr>()) {
390     F->setLinkage(llvm::Function::DLLImportLinkage);
391   } else if (FD->hasAttr<WeakAttr>() ||
392              FD->hasAttr<WeakImportAttr>()) {
393     // "extern_weak" is overloaded in LLVM; we probably should have
394     // separate linkage types for this.
395     F->setLinkage(llvm::Function::ExternalWeakLinkage);
396   } else {
397     F->setLinkage(llvm::Function::ExternalLinkage);
398   }
399 
400   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
401     F->setSection(SA->getName());
402 }
403 
404 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
405   assert(!GV->isDeclaration() &&
406          "Only globals with definition can force usage.");
407   LLVMUsed.push_back(GV);
408 }
409 
410 void CodeGenModule::EmitLLVMUsed() {
411   // Don't create llvm.used if there is no need.
412   if (LLVMUsed.empty())
413     return;
414 
415   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
416 
417   // Convert LLVMUsed to what ConstantArray needs.
418   std::vector<llvm::Constant*> UsedArray;
419   UsedArray.resize(LLVMUsed.size());
420   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
421     UsedArray[i] =
422      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
423                                       i8PTy);
424   }
425 
426   if (UsedArray.empty())
427     return;
428   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
429 
430   llvm::GlobalVariable *GV =
431     new llvm::GlobalVariable(getModule(), ATy, false,
432                              llvm::GlobalValue::AppendingLinkage,
433                              llvm::ConstantArray::get(ATy, UsedArray),
434                              "llvm.used");
435 
436   GV->setSection("llvm.metadata");
437 }
438 
439 void CodeGenModule::EmitDeferred() {
440   // Emit code for any potentially referenced deferred decls.  Since a
441   // previously unused static decl may become used during the generation of code
442   // for a static function, iterate until no  changes are made.
443   while (!DeferredDeclsToEmit.empty()) {
444     GlobalDecl D = DeferredDeclsToEmit.back();
445     DeferredDeclsToEmit.pop_back();
446 
447     // The mangled name for the decl must have been emitted in GlobalDeclMap.
448     // Look it up to see if it was defined with a stronger definition (e.g. an
449     // extern inline function with a strong function redefinition).  If so,
450     // just ignore the deferred decl.
451     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
452     assert(CGRef && "Deferred decl wasn't referenced?");
453 
454     if (!CGRef->isDeclaration())
455       continue;
456 
457     // Otherwise, emit the definition and move on to the next one.
458     EmitGlobalDefinition(D);
459   }
460 }
461 
462 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
463 /// annotation information for a given GlobalValue.  The annotation struct is
464 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
465 /// GlobalValue being annotated.  The second field is the constant string
466 /// created from the AnnotateAttr's annotation.  The third field is a constant
467 /// string containing the name of the translation unit.  The fourth field is
468 /// the line number in the file of the annotated value declaration.
469 ///
470 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
471 ///        appears to.
472 ///
473 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
474                                                 const AnnotateAttr *AA,
475                                                 unsigned LineNo) {
476   llvm::Module *M = &getModule();
477 
478   // get [N x i8] constants for the annotation string, and the filename string
479   // which are the 2nd and 3rd elements of the global annotation structure.
480   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
481   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
482                                                   AA->getAnnotation(), true);
483   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
484                                                   M->getModuleIdentifier(),
485                                                   true);
486 
487   // Get the two global values corresponding to the ConstantArrays we just
488   // created to hold the bytes of the strings.
489   llvm::GlobalValue *annoGV =
490     new llvm::GlobalVariable(*M, anno->getType(), false,
491                              llvm::GlobalValue::PrivateLinkage, anno,
492                              GV->getName());
493   // translation unit name string, emitted into the llvm.metadata section.
494   llvm::GlobalValue *unitGV =
495     new llvm::GlobalVariable(*M, unit->getType(), false,
496                              llvm::GlobalValue::PrivateLinkage, unit,
497                              ".str");
498 
499   // Create the ConstantStruct for the global annotation.
500   llvm::Constant *Fields[4] = {
501     llvm::ConstantExpr::getBitCast(GV, SBP),
502     llvm::ConstantExpr::getBitCast(annoGV, SBP),
503     llvm::ConstantExpr::getBitCast(unitGV, SBP),
504     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
505   };
506   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
507 }
508 
509 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
510   // Never defer when EmitAllDecls is specified or the decl has
511   // attribute used.
512   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
513     return false;
514 
515   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
516     // Constructors and destructors should never be deferred.
517     if (FD->hasAttr<ConstructorAttr>() ||
518         FD->hasAttr<DestructorAttr>())
519       return false;
520 
521     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
522 
523     // static, static inline, always_inline, and extern inline functions can
524     // always be deferred.  Normal inline functions can be deferred in C99/C++.
525     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
526         Linkage == GVA_CXXInline)
527       return true;
528     return false;
529   }
530 
531   const VarDecl *VD = cast<VarDecl>(Global);
532   assert(VD->isFileVarDecl() && "Invalid decl");
533 
534   // We never want to defer structs that have non-trivial constructors or
535   // destructors.
536 
537   // FIXME: Handle references.
538   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
539     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
540       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
541         return false;
542     }
543   }
544 
545   // Static data may be deferred, but out-of-line static data members
546   // cannot be.
547   if (VD->isInAnonymousNamespace())
548     return true;
549   if (VD->getStorageClass() == VarDecl::Static) {
550     // Initializer has side effects?
551     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
552       return false;
553     return !(VD->isStaticDataMember() && VD->isOutOfLine());
554   }
555   return false;
556 }
557 
558 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
559   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
560 
561   // If this is an alias definition (which otherwise looks like a declaration)
562   // emit it now.
563   if (Global->hasAttr<AliasAttr>())
564     return EmitAliasDefinition(Global);
565 
566   // Ignore declarations, they will be emitted on their first use.
567   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
568     // Forward declarations are emitted lazily on first use.
569     if (!FD->isThisDeclarationADefinition())
570       return;
571   } else {
572     const VarDecl *VD = cast<VarDecl>(Global);
573     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
574 
575     // In C++, if this is marked "extern", defer code generation.
576     if (getLangOptions().CPlusPlus && !VD->getInit() &&
577         (VD->getStorageClass() == VarDecl::Extern ||
578          VD->isExternC()))
579       return;
580 
581     // In C, if this isn't a definition, defer code generation.
582     if (!getLangOptions().CPlusPlus && !VD->getInit())
583       return;
584   }
585 
586   // Defer code generation when possible if this is a static definition, inline
587   // function etc.  These we only want to emit if they are used.
588   if (MayDeferGeneration(Global)) {
589     // If the value has already been used, add it directly to the
590     // DeferredDeclsToEmit list.
591     const char *MangledName = getMangledName(GD);
592     if (GlobalDeclMap.count(MangledName))
593       DeferredDeclsToEmit.push_back(GD);
594     else {
595       // Otherwise, remember that we saw a deferred decl with this name.  The
596       // first use of the mangled name will cause it to move into
597       // DeferredDeclsToEmit.
598       DeferredDecls[MangledName] = GD;
599     }
600     return;
601   }
602 
603   // Otherwise emit the definition.
604   EmitGlobalDefinition(GD);
605 }
606 
607 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
608   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
609 
610   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
611                                  Context.getSourceManager(),
612                                  "Generating code for declaration");
613 
614   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
615     EmitCXXConstructor(CD, GD.getCtorType());
616   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
617     EmitCXXDestructor(DD, GD.getDtorType());
618   else if (isa<FunctionDecl>(D))
619     EmitGlobalFunctionDefinition(GD);
620   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
621     EmitGlobalVarDefinition(VD);
622   else {
623     assert(0 && "Invalid argument to EmitGlobalDefinition()");
624   }
625 }
626 
627 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
628 /// module, create and return an llvm Function with the specified type. If there
629 /// is something in the module with the specified name, return it potentially
630 /// bitcasted to the right type.
631 ///
632 /// If D is non-null, it specifies a decl that correspond to this.  This is used
633 /// to set the attributes on the function when it is first created.
634 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
635                                                        const llvm::Type *Ty,
636                                                        GlobalDecl D) {
637   // Lookup the entry, lazily creating it if necessary.
638   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
639   if (Entry) {
640     if (Entry->getType()->getElementType() == Ty)
641       return Entry;
642 
643     // Make sure the result is of the correct type.
644     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
645     return llvm::ConstantExpr::getBitCast(Entry, PTy);
646   }
647 
648   // This is the first use or definition of a mangled name.  If there is a
649   // deferred decl with this name, remember that we need to emit it at the end
650   // of the file.
651   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
652     DeferredDecls.find(MangledName);
653   if (DDI != DeferredDecls.end()) {
654     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
655     // list, and remove it from DeferredDecls (since we don't need it anymore).
656     DeferredDeclsToEmit.push_back(DDI->second);
657     DeferredDecls.erase(DDI);
658   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
659     // If this the first reference to a C++ inline function in a class, queue up
660     // the deferred function body for emission.  These are not seen as
661     // top-level declarations.
662     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
663       DeferredDeclsToEmit.push_back(D);
664     // A called constructor which has no definition or declaration need be
665     // synthesized.
666     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
667       const CXXRecordDecl *ClassDecl =
668         cast<CXXRecordDecl>(CD->getDeclContext());
669       if (CD->isCopyConstructor(getContext()))
670         DeferredCopyConstructorToEmit(D);
671       else if (!ClassDecl->hasUserDeclaredConstructor())
672         DeferredDeclsToEmit.push_back(D);
673     }
674     else if (isa<CXXDestructorDecl>(FD))
675        DeferredDestructorToEmit(D);
676     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
677            if (MD->isCopyAssignment())
678              DeferredCopyAssignmentToEmit(D);
679   }
680 
681   // This function doesn't have a complete type (for example, the return
682   // type is an incomplete struct). Use a fake type instead, and make
683   // sure not to try to set attributes.
684   bool IsIncompleteFunction = false;
685   if (!isa<llvm::FunctionType>(Ty)) {
686     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
687                                  std::vector<const llvm::Type*>(), false);
688     IsIncompleteFunction = true;
689   }
690   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
691                                              llvm::Function::ExternalLinkage,
692                                              "", &getModule());
693   F->setName(MangledName);
694   if (D.getDecl())
695     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
696                           IsIncompleteFunction);
697   Entry = F;
698   return F;
699 }
700 
701 /// Defer definition of copy constructor(s) which need be implicitly defined.
702 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
703   const CXXConstructorDecl *CD =
704     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
705   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
706   if (ClassDecl->hasTrivialCopyConstructor() ||
707       ClassDecl->hasUserDeclaredCopyConstructor())
708     return;
709 
710   // First make sure all direct base classes and virtual bases and non-static
711   // data mebers which need to have their copy constructors implicitly defined
712   // are defined. 12.8.p7
713   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
714        Base != ClassDecl->bases_end(); ++Base) {
715     CXXRecordDecl *BaseClassDecl
716       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
717     if (CXXConstructorDecl *BaseCopyCtor =
718         BaseClassDecl->getCopyConstructor(Context, 0))
719       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
720   }
721 
722   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
723        FieldEnd = ClassDecl->field_end();
724        Field != FieldEnd; ++Field) {
725     QualType FieldType = Context.getCanonicalType((*Field)->getType());
726     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
727       FieldType = Array->getElementType();
728     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
729       if ((*Field)->isAnonymousStructOrUnion())
730         continue;
731       CXXRecordDecl *FieldClassDecl
732         = cast<CXXRecordDecl>(FieldClassType->getDecl());
733       if (CXXConstructorDecl *FieldCopyCtor =
734           FieldClassDecl->getCopyConstructor(Context, 0))
735         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
736     }
737   }
738   DeferredDeclsToEmit.push_back(CopyCtorDecl);
739 }
740 
741 /// Defer definition of copy assignments which need be implicitly defined.
742 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
743   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
744   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
745 
746   if (ClassDecl->hasTrivialCopyAssignment() ||
747       ClassDecl->hasUserDeclaredCopyAssignment())
748     return;
749 
750   // First make sure all direct base classes and virtual bases and non-static
751   // data mebers which need to have their copy assignments implicitly defined
752   // are defined. 12.8.p12
753   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
754        Base != ClassDecl->bases_end(); ++Base) {
755     CXXRecordDecl *BaseClassDecl
756       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
757     const CXXMethodDecl *MD = 0;
758     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
759         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
760         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
761       GetAddrOfFunction(MD, 0);
762   }
763 
764   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
765        FieldEnd = ClassDecl->field_end();
766        Field != FieldEnd; ++Field) {
767     QualType FieldType = Context.getCanonicalType((*Field)->getType());
768     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
769       FieldType = Array->getElementType();
770     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
771       if ((*Field)->isAnonymousStructOrUnion())
772         continue;
773       CXXRecordDecl *FieldClassDecl
774         = cast<CXXRecordDecl>(FieldClassType->getDecl());
775       const CXXMethodDecl *MD = 0;
776       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
777           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
778           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
779           GetAddrOfFunction(MD, 0);
780     }
781   }
782   DeferredDeclsToEmit.push_back(CopyAssignDecl);
783 }
784 
785 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
786   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
787   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
788   if (ClassDecl->hasTrivialDestructor() ||
789       ClassDecl->hasUserDeclaredDestructor())
790     return;
791 
792   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
793        Base != ClassDecl->bases_end(); ++Base) {
794     CXXRecordDecl *BaseClassDecl
795       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
796     if (const CXXDestructorDecl *BaseDtor =
797           BaseClassDecl->getDestructor(Context))
798       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
799   }
800 
801   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
802        FieldEnd = ClassDecl->field_end();
803        Field != FieldEnd; ++Field) {
804     QualType FieldType = Context.getCanonicalType((*Field)->getType());
805     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
806       FieldType = Array->getElementType();
807     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
808       if ((*Field)->isAnonymousStructOrUnion())
809         continue;
810       CXXRecordDecl *FieldClassDecl
811         = cast<CXXRecordDecl>(FieldClassType->getDecl());
812       if (const CXXDestructorDecl *FieldDtor =
813             FieldClassDecl->getDestructor(Context))
814         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
815     }
816   }
817   DeferredDeclsToEmit.push_back(DtorDecl);
818 }
819 
820 
821 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
822 /// non-null, then this function will use the specified type if it has to
823 /// create it (this occurs when we see a definition of the function).
824 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
825                                                  const llvm::Type *Ty) {
826   // If there was no specific requested type, just convert it now.
827   if (!Ty)
828     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
829   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
830 }
831 
832 /// CreateRuntimeFunction - Create a new runtime function with the specified
833 /// type and name.
834 llvm::Constant *
835 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
836                                      const char *Name) {
837   // Convert Name to be a uniqued string from the IdentifierInfo table.
838   Name = getContext().Idents.get(Name).getNameStart();
839   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
840 }
841 
842 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
843 /// create and return an llvm GlobalVariable with the specified type.  If there
844 /// is something in the module with the specified name, return it potentially
845 /// bitcasted to the right type.
846 ///
847 /// If D is non-null, it specifies a decl that correspond to this.  This is used
848 /// to set the attributes on the global when it is first created.
849 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
850                                                      const llvm::PointerType*Ty,
851                                                      const VarDecl *D) {
852   // Lookup the entry, lazily creating it if necessary.
853   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
854   if (Entry) {
855     if (Entry->getType() == Ty)
856       return Entry;
857 
858     // Make sure the result is of the correct type.
859     return llvm::ConstantExpr::getBitCast(Entry, Ty);
860   }
861 
862   // This is the first use or definition of a mangled name.  If there is a
863   // deferred decl with this name, remember that we need to emit it at the end
864   // of the file.
865   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
866     DeferredDecls.find(MangledName);
867   if (DDI != DeferredDecls.end()) {
868     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
869     // list, and remove it from DeferredDecls (since we don't need it anymore).
870     DeferredDeclsToEmit.push_back(DDI->second);
871     DeferredDecls.erase(DDI);
872   }
873 
874   llvm::GlobalVariable *GV =
875     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
876                              llvm::GlobalValue::ExternalLinkage,
877                              0, "", 0,
878                              false, Ty->getAddressSpace());
879   GV->setName(MangledName);
880 
881   // Handle things which are present even on external declarations.
882   if (D) {
883     // FIXME: This code is overly simple and should be merged with other global
884     // handling.
885     GV->setConstant(D->getType().isConstant(Context));
886 
887     // FIXME: Merge with other attribute handling code.
888     if (D->getStorageClass() == VarDecl::PrivateExtern)
889       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
890 
891     if (D->hasAttr<WeakAttr>() ||
892         D->hasAttr<WeakImportAttr>())
893       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
894 
895     GV->setThreadLocal(D->isThreadSpecified());
896   }
897 
898   return Entry = GV;
899 }
900 
901 
902 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
903 /// given global variable.  If Ty is non-null and if the global doesn't exist,
904 /// then it will be greated with the specified type instead of whatever the
905 /// normal requested type would be.
906 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
907                                                   const llvm::Type *Ty) {
908   assert(D->hasGlobalStorage() && "Not a global variable");
909   QualType ASTTy = D->getType();
910   if (Ty == 0)
911     Ty = getTypes().ConvertTypeForMem(ASTTy);
912 
913   const llvm::PointerType *PTy =
914     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
915   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
916 }
917 
918 /// CreateRuntimeVariable - Create a new runtime global variable with the
919 /// specified type and name.
920 llvm::Constant *
921 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
922                                      const char *Name) {
923   // Convert Name to be a uniqued string from the IdentifierInfo table.
924   Name = getContext().Idents.get(Name).getNameStart();
925   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
926 }
927 
928 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
929   assert(!D->getInit() && "Cannot emit definite definitions here!");
930 
931   if (MayDeferGeneration(D)) {
932     // If we have not seen a reference to this variable yet, place it
933     // into the deferred declarations table to be emitted if needed
934     // later.
935     const char *MangledName = getMangledName(D);
936     if (GlobalDeclMap.count(MangledName) == 0) {
937       DeferredDecls[MangledName] = D;
938       return;
939     }
940   }
941 
942   // The tentative definition is the only definition.
943   EmitGlobalVarDefinition(D);
944 }
945 
946 static CodeGenModule::GVALinkage
947 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
948   // Everything located semantically within an anonymous namespace is
949   // always internal.
950   if (VD->isInAnonymousNamespace())
951     return CodeGenModule::GVA_Internal;
952 
953   // Handle linkage for static data members.
954   if (VD->isStaticDataMember()) {
955     switch (VD->getTemplateSpecializationKind()) {
956     case TSK_Undeclared:
957     case TSK_ExplicitSpecialization:
958     case TSK_ExplicitInstantiationDefinition:
959       return CodeGenModule::GVA_StrongExternal;
960 
961     case TSK_ExplicitInstantiationDeclaration:
962       llvm::llvm_unreachable("Variable should not be instantiated");
963       // Fall through to treat this like any other instantiation.
964 
965     case TSK_ImplicitInstantiation:
966       return CodeGenModule::GVA_TemplateInstantiation;
967     }
968   }
969 
970   // Static variables get internal linkage.
971   if (VD->getStorageClass() == VarDecl::Static)
972     return CodeGenModule::GVA_Internal;
973 
974   return CodeGenModule::GVA_StrongExternal;
975 }
976 
977 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
978   llvm::Constant *Init = 0;
979   QualType ASTTy = D->getType();
980 
981   if (D->getInit() == 0) {
982     // This is a tentative definition; tentative definitions are
983     // implicitly initialized with { 0 }.
984     //
985     // Note that tentative definitions are only emitted at the end of
986     // a translation unit, so they should never have incomplete
987     // type. In addition, EmitTentativeDefinition makes sure that we
988     // never attempt to emit a tentative definition if a real one
989     // exists. A use may still exists, however, so we still may need
990     // to do a RAUW.
991     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
992     Init = EmitNullConstant(D->getType());
993   } else {
994     Init = EmitConstantExpr(D->getInit(), D->getType());
995 
996     if (!Init) {
997       QualType T = D->getInit()->getType();
998       if (getLangOptions().CPlusPlus) {
999         CXXGlobalInits.push_back(D);
1000         Init = EmitNullConstant(T);
1001       } else {
1002         ErrorUnsupported(D, "static initializer");
1003         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1004       }
1005     }
1006   }
1007 
1008   const llvm::Type* InitType = Init->getType();
1009   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1010 
1011   // Strip off a bitcast if we got one back.
1012   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1013     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1014            // all zero index gep.
1015            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1016     Entry = CE->getOperand(0);
1017   }
1018 
1019   // Entry is now either a Function or GlobalVariable.
1020   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1021 
1022   // We have a definition after a declaration with the wrong type.
1023   // We must make a new GlobalVariable* and update everything that used OldGV
1024   // (a declaration or tentative definition) with the new GlobalVariable*
1025   // (which will be a definition).
1026   //
1027   // This happens if there is a prototype for a global (e.g.
1028   // "extern int x[];") and then a definition of a different type (e.g.
1029   // "int x[10];"). This also happens when an initializer has a different type
1030   // from the type of the global (this happens with unions).
1031   if (GV == 0 ||
1032       GV->getType()->getElementType() != InitType ||
1033       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1034 
1035     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1036     GlobalDeclMap.erase(getMangledName(D));
1037 
1038     // Make a new global with the correct type, this is now guaranteed to work.
1039     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1040     GV->takeName(cast<llvm::GlobalValue>(Entry));
1041 
1042     // Replace all uses of the old global with the new global
1043     llvm::Constant *NewPtrForOldDecl =
1044         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1045     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1046 
1047     // Erase the old global, since it is no longer used.
1048     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1049   }
1050 
1051   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1052     SourceManager &SM = Context.getSourceManager();
1053     AddAnnotation(EmitAnnotateAttr(GV, AA,
1054                               SM.getInstantiationLineNumber(D->getLocation())));
1055   }
1056 
1057   GV->setInitializer(Init);
1058 
1059   // If it is safe to mark the global 'constant', do so now.
1060   GV->setConstant(false);
1061   if (D->getType().isConstant(Context)) {
1062     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1063     // members, it cannot be declared "LLVM const".
1064     GV->setConstant(true);
1065   }
1066 
1067   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1068 
1069   // Set the llvm linkage type as appropriate.
1070   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1071   if (Linkage == GVA_Internal)
1072     GV->setLinkage(llvm::Function::InternalLinkage);
1073   else if (D->hasAttr<DLLImportAttr>())
1074     GV->setLinkage(llvm::Function::DLLImportLinkage);
1075   else if (D->hasAttr<DLLExportAttr>())
1076     GV->setLinkage(llvm::Function::DLLExportLinkage);
1077   else if (D->hasAttr<WeakAttr>()) {
1078     if (GV->isConstant())
1079       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1080     else
1081       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1082   } else if (Linkage == GVA_TemplateInstantiation)
1083     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1084   else if (!CompileOpts.NoCommon &&
1085            !D->hasExternalStorage() && !D->getInit() &&
1086            !D->getAttr<SectionAttr>()) {
1087     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1088     // common vars aren't constant even if declared const.
1089     GV->setConstant(false);
1090   } else
1091     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1092 
1093   SetCommonAttributes(D, GV);
1094 
1095   // Emit global variable debug information.
1096   if (CGDebugInfo *DI = getDebugInfo()) {
1097     DI->setLocation(D->getLocation());
1098     DI->EmitGlobalVariable(GV, D);
1099   }
1100 }
1101 
1102 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1103 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1104 /// existing call uses of the old function in the module, this adjusts them to
1105 /// call the new function directly.
1106 ///
1107 /// This is not just a cleanup: the always_inline pass requires direct calls to
1108 /// functions to be able to inline them.  If there is a bitcast in the way, it
1109 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1110 /// run at -O0.
1111 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1112                                                       llvm::Function *NewFn) {
1113   // If we're redefining a global as a function, don't transform it.
1114   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1115   if (OldFn == 0) return;
1116 
1117   const llvm::Type *NewRetTy = NewFn->getReturnType();
1118   llvm::SmallVector<llvm::Value*, 4> ArgList;
1119 
1120   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1121        UI != E; ) {
1122     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1123     unsigned OpNo = UI.getOperandNo();
1124     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1125     if (!CI || OpNo != 0) continue;
1126 
1127     // If the return types don't match exactly, and if the call isn't dead, then
1128     // we can't transform this call.
1129     if (CI->getType() != NewRetTy && !CI->use_empty())
1130       continue;
1131 
1132     // If the function was passed too few arguments, don't transform.  If extra
1133     // arguments were passed, we silently drop them.  If any of the types
1134     // mismatch, we don't transform.
1135     unsigned ArgNo = 0;
1136     bool DontTransform = false;
1137     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1138          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1139       if (CI->getNumOperands()-1 == ArgNo ||
1140           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1141         DontTransform = true;
1142         break;
1143       }
1144     }
1145     if (DontTransform)
1146       continue;
1147 
1148     // Okay, we can transform this.  Create the new call instruction and copy
1149     // over the required information.
1150     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1151     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1152                                                      ArgList.end(), "", CI);
1153     ArgList.clear();
1154     if (!NewCall->getType()->isVoidTy())
1155       NewCall->takeName(CI);
1156     NewCall->setAttributes(CI->getAttributes());
1157     NewCall->setCallingConv(CI->getCallingConv());
1158 
1159     // Finally, remove the old call, replacing any uses with the new one.
1160     if (!CI->use_empty())
1161       CI->replaceAllUsesWith(NewCall);
1162 
1163     // Copy any custom metadata attached with CI.
1164     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1165     TheMetadata.copyMD(CI, NewCall);
1166 
1167     CI->eraseFromParent();
1168   }
1169 }
1170 
1171 
1172 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1173   const llvm::FunctionType *Ty;
1174   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1175 
1176   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1177     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1178 
1179     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1180   } else {
1181     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1182 
1183     // As a special case, make sure that definitions of K&R function
1184     // "type foo()" aren't declared as varargs (which forces the backend
1185     // to do unnecessary work).
1186     if (D->getType()->isFunctionNoProtoType()) {
1187       assert(Ty->isVarArg() && "Didn't lower type as expected");
1188       // Due to stret, the lowered function could have arguments.
1189       // Just create the same type as was lowered by ConvertType
1190       // but strip off the varargs bit.
1191       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1192       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1193     }
1194   }
1195 
1196   // Get or create the prototype for the function.
1197   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1198 
1199   // Strip off a bitcast if we got one back.
1200   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1201     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1202     Entry = CE->getOperand(0);
1203   }
1204 
1205 
1206   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1207     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1208 
1209     // If the types mismatch then we have to rewrite the definition.
1210     assert(OldFn->isDeclaration() &&
1211            "Shouldn't replace non-declaration");
1212 
1213     // F is the Function* for the one with the wrong type, we must make a new
1214     // Function* and update everything that used F (a declaration) with the new
1215     // Function* (which will be a definition).
1216     //
1217     // This happens if there is a prototype for a function
1218     // (e.g. "int f()") and then a definition of a different type
1219     // (e.g. "int f(int x)").  Start by making a new function of the
1220     // correct type, RAUW, then steal the name.
1221     GlobalDeclMap.erase(getMangledName(D));
1222     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1223     NewFn->takeName(OldFn);
1224 
1225     // If this is an implementation of a function without a prototype, try to
1226     // replace any existing uses of the function (which may be calls) with uses
1227     // of the new function
1228     if (D->getType()->isFunctionNoProtoType()) {
1229       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1230       OldFn->removeDeadConstantUsers();
1231     }
1232 
1233     // Replace uses of F with the Function we will endow with a body.
1234     if (!Entry->use_empty()) {
1235       llvm::Constant *NewPtrForOldDecl =
1236         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1237       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1238     }
1239 
1240     // Ok, delete the old function now, which is dead.
1241     OldFn->eraseFromParent();
1242 
1243     Entry = NewFn;
1244   }
1245 
1246   llvm::Function *Fn = cast<llvm::Function>(Entry);
1247 
1248   CodeGenFunction(*this).GenerateCode(D, Fn);
1249 
1250   SetFunctionDefinitionAttributes(D, Fn);
1251   SetLLVMFunctionAttributesForDefinition(D, Fn);
1252 
1253   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1254     AddGlobalCtor(Fn, CA->getPriority());
1255   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1256     AddGlobalDtor(Fn, DA->getPriority());
1257 }
1258 
1259 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1260   const AliasAttr *AA = D->getAttr<AliasAttr>();
1261   assert(AA && "Not an alias?");
1262 
1263   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1264 
1265   // Unique the name through the identifier table.
1266   const char *AliaseeName = AA->getAliasee().c_str();
1267   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1268 
1269   // Create a reference to the named value.  This ensures that it is emitted
1270   // if a deferred decl.
1271   llvm::Constant *Aliasee;
1272   if (isa<llvm::FunctionType>(DeclTy))
1273     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1274   else
1275     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1276                                     llvm::PointerType::getUnqual(DeclTy), 0);
1277 
1278   // Create the new alias itself, but don't set a name yet.
1279   llvm::GlobalValue *GA =
1280     new llvm::GlobalAlias(Aliasee->getType(),
1281                           llvm::Function::ExternalLinkage,
1282                           "", Aliasee, &getModule());
1283 
1284   // See if there is already something with the alias' name in the module.
1285   const char *MangledName = getMangledName(D);
1286   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1287 
1288   if (Entry && !Entry->isDeclaration()) {
1289     // If there is a definition in the module, then it wins over the alias.
1290     // This is dubious, but allow it to be safe.  Just ignore the alias.
1291     GA->eraseFromParent();
1292     return;
1293   }
1294 
1295   if (Entry) {
1296     // If there is a declaration in the module, then we had an extern followed
1297     // by the alias, as in:
1298     //   extern int test6();
1299     //   ...
1300     //   int test6() __attribute__((alias("test7")));
1301     //
1302     // Remove it and replace uses of it with the alias.
1303 
1304     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1305                                                           Entry->getType()));
1306     Entry->eraseFromParent();
1307   }
1308 
1309   // Now we know that there is no conflict, set the name.
1310   Entry = GA;
1311   GA->setName(MangledName);
1312 
1313   // Set attributes which are particular to an alias; this is a
1314   // specialization of the attributes which may be set on a global
1315   // variable/function.
1316   if (D->hasAttr<DLLExportAttr>()) {
1317     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1318       // The dllexport attribute is ignored for undefined symbols.
1319       if (FD->getBody())
1320         GA->setLinkage(llvm::Function::DLLExportLinkage);
1321     } else {
1322       GA->setLinkage(llvm::Function::DLLExportLinkage);
1323     }
1324   } else if (D->hasAttr<WeakAttr>() ||
1325              D->hasAttr<WeakImportAttr>()) {
1326     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1327   }
1328 
1329   SetCommonAttributes(D, GA);
1330 }
1331 
1332 /// getBuiltinLibFunction - Given a builtin id for a function like
1333 /// "__builtin_fabsf", return a Function* for "fabsf".
1334 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1335                                                   unsigned BuiltinID) {
1336   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1337           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1338          "isn't a lib fn");
1339 
1340   // Get the name, skip over the __builtin_ prefix (if necessary).
1341   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1342   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1343     Name += 10;
1344 
1345   // Get the type for the builtin.
1346   ASTContext::GetBuiltinTypeError Error;
1347   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1348   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1349 
1350   const llvm::FunctionType *Ty =
1351     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1352 
1353   // Unique the name through the identifier table.
1354   Name = getContext().Idents.get(Name).getNameStart();
1355   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1356 }
1357 
1358 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1359                                             unsigned NumTys) {
1360   return llvm::Intrinsic::getDeclaration(&getModule(),
1361                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1362 }
1363 
1364 llvm::Function *CodeGenModule::getMemCpyFn() {
1365   if (MemCpyFn) return MemCpyFn;
1366   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1367   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1368 }
1369 
1370 llvm::Function *CodeGenModule::getMemMoveFn() {
1371   if (MemMoveFn) return MemMoveFn;
1372   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1373   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1374 }
1375 
1376 llvm::Function *CodeGenModule::getMemSetFn() {
1377   if (MemSetFn) return MemSetFn;
1378   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1379   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1380 }
1381 
1382 static llvm::StringMapEntry<llvm::Constant*> &
1383 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1384                          const StringLiteral *Literal,
1385                          bool TargetIsLSB,
1386                          bool &IsUTF16,
1387                          unsigned &StringLength) {
1388   unsigned NumBytes = Literal->getByteLength();
1389 
1390   // Check for simple case.
1391   if (!Literal->containsNonAsciiOrNull()) {
1392     StringLength = NumBytes;
1393     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1394                                                 StringLength));
1395   }
1396 
1397   // Otherwise, convert the UTF8 literals into a byte string.
1398   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1399   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1400   UTF16 *ToPtr = &ToBuf[0];
1401 
1402   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1403                                                &ToPtr, ToPtr + NumBytes,
1404                                                strictConversion);
1405 
1406   // Check for conversion failure.
1407   if (Result != conversionOK) {
1408     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1409     // this duplicate code.
1410     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1411     StringLength = NumBytes;
1412     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1413                                                 StringLength));
1414   }
1415 
1416   // ConvertUTF8toUTF16 returns the length in ToPtr.
1417   StringLength = ToPtr - &ToBuf[0];
1418 
1419   // Render the UTF-16 string into a byte array and convert to the target byte
1420   // order.
1421   //
1422   // FIXME: This isn't something we should need to do here.
1423   llvm::SmallString<128> AsBytes;
1424   AsBytes.reserve(StringLength * 2);
1425   for (unsigned i = 0; i != StringLength; ++i) {
1426     unsigned short Val = ToBuf[i];
1427     if (TargetIsLSB) {
1428       AsBytes.push_back(Val & 0xFF);
1429       AsBytes.push_back(Val >> 8);
1430     } else {
1431       AsBytes.push_back(Val >> 8);
1432       AsBytes.push_back(Val & 0xFF);
1433     }
1434   }
1435   // Append one extra null character, the second is automatically added by our
1436   // caller.
1437   AsBytes.push_back(0);
1438 
1439   IsUTF16 = true;
1440   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1441 }
1442 
1443 llvm::Constant *
1444 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1445   unsigned StringLength = 0;
1446   bool isUTF16 = false;
1447   llvm::StringMapEntry<llvm::Constant*> &Entry =
1448     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1449                              getTargetData().isLittleEndian(),
1450                              isUTF16, StringLength);
1451 
1452   if (llvm::Constant *C = Entry.getValue())
1453     return C;
1454 
1455   llvm::Constant *Zero =
1456       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1457   llvm::Constant *Zeros[] = { Zero, Zero };
1458 
1459   // If we don't already have it, get __CFConstantStringClassReference.
1460   if (!CFConstantStringClassRef) {
1461     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1462     Ty = llvm::ArrayType::get(Ty, 0);
1463     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1464                                            "__CFConstantStringClassReference");
1465     // Decay array -> ptr
1466     CFConstantStringClassRef =
1467       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1468   }
1469 
1470   QualType CFTy = getContext().getCFConstantStringType();
1471 
1472   const llvm::StructType *STy =
1473     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1474 
1475   std::vector<llvm::Constant*> Fields(4);
1476 
1477   // Class pointer.
1478   Fields[0] = CFConstantStringClassRef;
1479 
1480   // Flags.
1481   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1482   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1483     llvm::ConstantInt::get(Ty, 0x07C8);
1484 
1485   // String pointer.
1486   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1487 
1488   const char *Sect = 0;
1489   llvm::GlobalValue::LinkageTypes Linkage;
1490   bool isConstant;
1491   if (isUTF16) {
1492     Sect = getContext().Target.getUnicodeStringSection();
1493     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1494     Linkage = llvm::GlobalValue::InternalLinkage;
1495     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1496     // does make plain ascii ones writable.
1497     isConstant = true;
1498   } else {
1499     Linkage = llvm::GlobalValue::PrivateLinkage;
1500     isConstant = !Features.WritableStrings;
1501   }
1502 
1503   llvm::GlobalVariable *GV =
1504     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1505                              ".str");
1506   if (Sect)
1507     GV->setSection(Sect);
1508   if (isUTF16) {
1509     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1510     GV->setAlignment(Align);
1511   }
1512   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1513 
1514   // String length.
1515   Ty = getTypes().ConvertType(getContext().LongTy);
1516   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1517 
1518   // The struct.
1519   C = llvm::ConstantStruct::get(STy, Fields);
1520   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1521                                 llvm::GlobalVariable::PrivateLinkage, C,
1522                                 "_unnamed_cfstring_");
1523   if (const char *Sect = getContext().Target.getCFStringSection())
1524     GV->setSection(Sect);
1525   Entry.setValue(GV);
1526 
1527   return GV;
1528 }
1529 
1530 /// GetStringForStringLiteral - Return the appropriate bytes for a
1531 /// string literal, properly padded to match the literal type.
1532 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1533   const char *StrData = E->getStrData();
1534   unsigned Len = E->getByteLength();
1535 
1536   const ConstantArrayType *CAT =
1537     getContext().getAsConstantArrayType(E->getType());
1538   assert(CAT && "String isn't pointer or array!");
1539 
1540   // Resize the string to the right size.
1541   std::string Str(StrData, StrData+Len);
1542   uint64_t RealLen = CAT->getSize().getZExtValue();
1543 
1544   if (E->isWide())
1545     RealLen *= getContext().Target.getWCharWidth()/8;
1546 
1547   Str.resize(RealLen, '\0');
1548 
1549   return Str;
1550 }
1551 
1552 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1553 /// constant array for the given string literal.
1554 llvm::Constant *
1555 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1556   // FIXME: This can be more efficient.
1557   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1558 }
1559 
1560 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1561 /// array for the given ObjCEncodeExpr node.
1562 llvm::Constant *
1563 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1564   std::string Str;
1565   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1566 
1567   return GetAddrOfConstantCString(Str);
1568 }
1569 
1570 
1571 /// GenerateWritableString -- Creates storage for a string literal.
1572 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1573                                              bool constant,
1574                                              CodeGenModule &CGM,
1575                                              const char *GlobalName) {
1576   // Create Constant for this string literal. Don't add a '\0'.
1577   llvm::Constant *C =
1578       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1579 
1580   // Create a global variable for this string
1581   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1582                                   llvm::GlobalValue::PrivateLinkage,
1583                                   C, GlobalName);
1584 }
1585 
1586 /// GetAddrOfConstantString - Returns a pointer to a character array
1587 /// containing the literal. This contents are exactly that of the
1588 /// given string, i.e. it will not be null terminated automatically;
1589 /// see GetAddrOfConstantCString. Note that whether the result is
1590 /// actually a pointer to an LLVM constant depends on
1591 /// Feature.WriteableStrings.
1592 ///
1593 /// The result has pointer to array type.
1594 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1595                                                        const char *GlobalName) {
1596   bool IsConstant = !Features.WritableStrings;
1597 
1598   // Get the default prefix if a name wasn't specified.
1599   if (!GlobalName)
1600     GlobalName = ".str";
1601 
1602   // Don't share any string literals if strings aren't constant.
1603   if (!IsConstant)
1604     return GenerateStringLiteral(str, false, *this, GlobalName);
1605 
1606   llvm::StringMapEntry<llvm::Constant *> &Entry =
1607     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1608 
1609   if (Entry.getValue())
1610     return Entry.getValue();
1611 
1612   // Create a global variable for this.
1613   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1614   Entry.setValue(C);
1615   return C;
1616 }
1617 
1618 /// GetAddrOfConstantCString - Returns a pointer to a character
1619 /// array containing the literal and a terminating '\-'
1620 /// character. The result has pointer to array type.
1621 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1622                                                         const char *GlobalName){
1623   return GetAddrOfConstantString(str + '\0', GlobalName);
1624 }
1625 
1626 /// EmitObjCPropertyImplementations - Emit information for synthesized
1627 /// properties for an implementation.
1628 void CodeGenModule::EmitObjCPropertyImplementations(const
1629                                                     ObjCImplementationDecl *D) {
1630   for (ObjCImplementationDecl::propimpl_iterator
1631          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1632     ObjCPropertyImplDecl *PID = *i;
1633 
1634     // Dynamic is just for type-checking.
1635     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1636       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1637 
1638       // Determine which methods need to be implemented, some may have
1639       // been overridden. Note that ::isSynthesized is not the method
1640       // we want, that just indicates if the decl came from a
1641       // property. What we want to know is if the method is defined in
1642       // this implementation.
1643       if (!D->getInstanceMethod(PD->getGetterName()))
1644         CodeGenFunction(*this).GenerateObjCGetter(
1645                                  const_cast<ObjCImplementationDecl *>(D), PID);
1646       if (!PD->isReadOnly() &&
1647           !D->getInstanceMethod(PD->getSetterName()))
1648         CodeGenFunction(*this).GenerateObjCSetter(
1649                                  const_cast<ObjCImplementationDecl *>(D), PID);
1650     }
1651   }
1652 }
1653 
1654 /// EmitNamespace - Emit all declarations in a namespace.
1655 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1656   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1657        I != E; ++I)
1658     EmitTopLevelDecl(*I);
1659 }
1660 
1661 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1662 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1663   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1664       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1665     ErrorUnsupported(LSD, "linkage spec");
1666     return;
1667   }
1668 
1669   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1670        I != E; ++I)
1671     EmitTopLevelDecl(*I);
1672 }
1673 
1674 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1675 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1676   // If an error has occurred, stop code generation, but continue
1677   // parsing and semantic analysis (to ensure all warnings and errors
1678   // are emitted).
1679   if (Diags.hasErrorOccurred())
1680     return;
1681 
1682   // Ignore dependent declarations.
1683   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1684     return;
1685 
1686   switch (D->getKind()) {
1687   case Decl::CXXConversion:
1688   case Decl::CXXMethod:
1689   case Decl::Function:
1690     // Skip function templates
1691     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1692       return;
1693 
1694     EmitGlobal(cast<FunctionDecl>(D));
1695     break;
1696 
1697   case Decl::Var:
1698     EmitGlobal(cast<VarDecl>(D));
1699     break;
1700 
1701   // C++ Decls
1702   case Decl::Namespace:
1703     EmitNamespace(cast<NamespaceDecl>(D));
1704     break;
1705     // No code generation needed.
1706   case Decl::Using:
1707   case Decl::UsingDirective:
1708   case Decl::ClassTemplate:
1709   case Decl::FunctionTemplate:
1710   case Decl::NamespaceAlias:
1711     break;
1712   case Decl::CXXConstructor:
1713     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1714     break;
1715   case Decl::CXXDestructor:
1716     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1717     break;
1718 
1719   case Decl::StaticAssert:
1720     // Nothing to do.
1721     break;
1722 
1723   // Objective-C Decls
1724 
1725   // Forward declarations, no (immediate) code generation.
1726   case Decl::ObjCClass:
1727   case Decl::ObjCForwardProtocol:
1728   case Decl::ObjCCategory:
1729   case Decl::ObjCInterface:
1730     break;
1731 
1732   case Decl::ObjCProtocol:
1733     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1734     break;
1735 
1736   case Decl::ObjCCategoryImpl:
1737     // Categories have properties but don't support synthesize so we
1738     // can ignore them here.
1739     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1740     break;
1741 
1742   case Decl::ObjCImplementation: {
1743     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1744     EmitObjCPropertyImplementations(OMD);
1745     Runtime->GenerateClass(OMD);
1746     break;
1747   }
1748   case Decl::ObjCMethod: {
1749     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1750     // If this is not a prototype, emit the body.
1751     if (OMD->getBody())
1752       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1753     break;
1754   }
1755   case Decl::ObjCCompatibleAlias:
1756     // compatibility-alias is a directive and has no code gen.
1757     break;
1758 
1759   case Decl::LinkageSpec:
1760     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1761     break;
1762 
1763   case Decl::FileScopeAsm: {
1764     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1765     std::string AsmString(AD->getAsmString()->getStrData(),
1766                           AD->getAsmString()->getByteLength());
1767 
1768     const std::string &S = getModule().getModuleInlineAsm();
1769     if (S.empty())
1770       getModule().setModuleInlineAsm(AsmString);
1771     else
1772       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1773     break;
1774   }
1775 
1776   default:
1777     // Make sure we handled everything we should, every other kind is a
1778     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1779     // function. Need to recode Decl::Kind to do that easily.
1780     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1781   }
1782 }
1783