1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = GD.getDecl();
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // The kind of external linkage this function will have, if it is not
251   // inline or static.
252   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253   if (Context.getLangOptions().CPlusPlus &&
254       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
255     External = CodeGenModule::GVA_TemplateInstantiation;
256 
257   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
258     // C++ member functions defined inside the class are always inline.
259     if (MD->isInline() || !MD->isOutOfLine())
260       return CodeGenModule::GVA_CXXInline;
261 
262     return External;
263   }
264 
265   // "static" functions get internal linkage.
266   if (FD->getStorageClass() == FunctionDecl::Static)
267     return CodeGenModule::GVA_Internal;
268 
269   if (!FD->isInline())
270     return External;
271 
272   // If the inline function explicitly has the GNU inline attribute on it, or if
273   // this is C89 mode, we use to GNU semantics.
274   if (!Features.C99 && !Features.CPlusPlus) {
275     // extern inline in GNU mode is like C99 inline.
276     if (FD->getStorageClass() == FunctionDecl::Extern)
277       return CodeGenModule::GVA_C99Inline;
278     // Normal inline is a strong symbol.
279     return CodeGenModule::GVA_StrongExternal;
280   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
281     // GCC in C99 mode seems to use a different decision-making
282     // process for extern inline, which factors in previous
283     // declarations.
284     if (FD->isExternGNUInline(Context))
285       return CodeGenModule::GVA_C99Inline;
286     // Normal inline is a strong symbol.
287     return External;
288   }
289 
290   // The definition of inline changes based on the language.  Note that we
291   // have already handled "static inline" above, with the GVA_Internal case.
292   if (Features.CPlusPlus)  // inline and extern inline.
293     return CodeGenModule::GVA_CXXInline;
294 
295   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
296   if (FD->isC99InlineDefinition())
297     return CodeGenModule::GVA_C99Inline;
298 
299   return CodeGenModule::GVA_StrongExternal;
300 }
301 
302 /// SetFunctionDefinitionAttributes - Set attributes for a global.
303 ///
304 /// FIXME: This is currently only done for aliases and functions, but not for
305 /// variables (these details are set in EmitGlobalVarDefinition for variables).
306 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
307                                                     llvm::GlobalValue *GV) {
308   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
309 
310   if (Linkage == GVA_Internal) {
311     GV->setLinkage(llvm::Function::InternalLinkage);
312   } else if (D->hasAttr<DLLExportAttr>()) {
313     GV->setLinkage(llvm::Function::DLLExportLinkage);
314   } else if (D->hasAttr<WeakAttr>()) {
315     GV->setLinkage(llvm::Function::WeakAnyLinkage);
316   } else if (Linkage == GVA_C99Inline) {
317     // In C99 mode, 'inline' functions are guaranteed to have a strong
318     // definition somewhere else, so we can use available_externally linkage.
319     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
320   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
321     // In C++, the compiler has to emit a definition in every translation unit
322     // that references the function.  We should use linkonce_odr because
323     // a) if all references in this translation unit are optimized away, we
324     // don't need to codegen it.  b) if the function persists, it needs to be
325     // merged with other definitions. c) C++ has the ODR, so we know the
326     // definition is dependable.
327     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
328   } else {
329     assert(Linkage == GVA_StrongExternal);
330     // Otherwise, we have strong external linkage.
331     GV->setLinkage(llvm::Function::ExternalLinkage);
332   }
333 
334   SetCommonAttributes(D, GV);
335 }
336 
337 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
338                                               const CGFunctionInfo &Info,
339                                               llvm::Function *F) {
340   AttributeListType AttributeList;
341   ConstructAttributeList(Info, D, AttributeList);
342 
343   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
344                                         AttributeList.size()));
345 
346   // Set the appropriate calling convention for the Function.
347   if (D->hasAttr<FastCallAttr>())
348     F->setCallingConv(llvm::CallingConv::X86_FastCall);
349 
350   if (D->hasAttr<StdCallAttr>())
351     F->setCallingConv(llvm::CallingConv::X86_StdCall);
352 }
353 
354 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
355                                                            llvm::Function *F) {
356   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
357     F->addFnAttr(llvm::Attribute::NoUnwind);
358 
359   if (D->hasAttr<AlwaysInlineAttr>())
360     F->addFnAttr(llvm::Attribute::AlwaysInline);
361 
362   if (D->hasAttr<NoInlineAttr>())
363     F->addFnAttr(llvm::Attribute::NoInline);
364 }
365 
366 void CodeGenModule::SetCommonAttributes(const Decl *D,
367                                         llvm::GlobalValue *GV) {
368   setGlobalVisibility(GV, D);
369 
370   if (D->hasAttr<UsedAttr>())
371     AddUsedGlobal(GV);
372 
373   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
374     GV->setSection(SA->getName());
375 }
376 
377 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
378                                                   llvm::Function *F,
379                                                   const CGFunctionInfo &FI) {
380   SetLLVMFunctionAttributes(D, FI, F);
381   SetLLVMFunctionAttributesForDefinition(D, F);
382 
383   F->setLinkage(llvm::Function::InternalLinkage);
384 
385   SetCommonAttributes(D, F);
386 }
387 
388 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
389                                           llvm::Function *F,
390                                           bool IsIncompleteFunction) {
391   if (!IsIncompleteFunction)
392     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
393 
394   // Only a few attributes are set on declarations; these may later be
395   // overridden by a definition.
396 
397   if (FD->hasAttr<DLLImportAttr>()) {
398     F->setLinkage(llvm::Function::DLLImportLinkage);
399   } else if (FD->hasAttr<WeakAttr>() ||
400              FD->hasAttr<WeakImportAttr>()) {
401     // "extern_weak" is overloaded in LLVM; we probably should have
402     // separate linkage types for this.
403     F->setLinkage(llvm::Function::ExternalWeakLinkage);
404   } else {
405     F->setLinkage(llvm::Function::ExternalLinkage);
406   }
407 
408   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
409     F->setSection(SA->getName());
410 }
411 
412 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
413   assert(!GV->isDeclaration() &&
414          "Only globals with definition can force usage.");
415   LLVMUsed.push_back(GV);
416 }
417 
418 void CodeGenModule::EmitLLVMUsed() {
419   // Don't create llvm.used if there is no need.
420   if (LLVMUsed.empty())
421     return;
422 
423   llvm::Type *i8PTy =
424       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
425 
426   // Convert LLVMUsed to what ConstantArray needs.
427   std::vector<llvm::Constant*> UsedArray;
428   UsedArray.resize(LLVMUsed.size());
429   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
430     UsedArray[i] =
431      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
432                                       i8PTy);
433   }
434 
435   if (UsedArray.empty())
436     return;
437   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
438 
439   llvm::GlobalVariable *GV =
440     new llvm::GlobalVariable(getModule(), ATy, false,
441                              llvm::GlobalValue::AppendingLinkage,
442                              llvm::ConstantArray::get(ATy, UsedArray),
443                              "llvm.used");
444 
445   GV->setSection("llvm.metadata");
446 }
447 
448 void CodeGenModule::EmitDeferred() {
449   // Emit code for any potentially referenced deferred decls.  Since a
450   // previously unused static decl may become used during the generation of code
451   // for a static function, iterate until no  changes are made.
452   while (!DeferredDeclsToEmit.empty()) {
453     GlobalDecl D = DeferredDeclsToEmit.back();
454     DeferredDeclsToEmit.pop_back();
455 
456     // The mangled name for the decl must have been emitted in GlobalDeclMap.
457     // Look it up to see if it was defined with a stronger definition (e.g. an
458     // extern inline function with a strong function redefinition).  If so,
459     // just ignore the deferred decl.
460     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
461     assert(CGRef && "Deferred decl wasn't referenced?");
462 
463     if (!CGRef->isDeclaration())
464       continue;
465 
466     // Otherwise, emit the definition and move on to the next one.
467     EmitGlobalDefinition(D);
468   }
469 }
470 
471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
472 /// annotation information for a given GlobalValue.  The annotation struct is
473 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
474 /// GlobalValue being annotated.  The second field is the constant string
475 /// created from the AnnotateAttr's annotation.  The third field is a constant
476 /// string containing the name of the translation unit.  The fourth field is
477 /// the line number in the file of the annotated value declaration.
478 ///
479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
480 ///        appears to.
481 ///
482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
483                                                 const AnnotateAttr *AA,
484                                                 unsigned LineNo) {
485   llvm::Module *M = &getModule();
486 
487   // get [N x i8] constants for the annotation string, and the filename string
488   // which are the 2nd and 3rd elements of the global annotation structure.
489   const llvm::Type *SBP =
490       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
491   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
492                                                   AA->getAnnotation(), true);
493   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
494                                                   M->getModuleIdentifier(),
495                                                   true);
496 
497   // Get the two global values corresponding to the ConstantArrays we just
498   // created to hold the bytes of the strings.
499   llvm::GlobalValue *annoGV =
500     new llvm::GlobalVariable(*M, anno->getType(), false,
501                              llvm::GlobalValue::PrivateLinkage, anno,
502                              GV->getName());
503   // translation unit name string, emitted into the llvm.metadata section.
504   llvm::GlobalValue *unitGV =
505     new llvm::GlobalVariable(*M, unit->getType(), false,
506                              llvm::GlobalValue::PrivateLinkage, unit,
507                              ".str");
508 
509   // Create the ConstantStruct for the global annotation.
510   llvm::Constant *Fields[4] = {
511     llvm::ConstantExpr::getBitCast(GV, SBP),
512     llvm::ConstantExpr::getBitCast(annoGV, SBP),
513     llvm::ConstantExpr::getBitCast(unitGV, SBP),
514     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
515   };
516   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
517 }
518 
519 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
520   // Never defer when EmitAllDecls is specified or the decl has
521   // attribute used.
522   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
523     return false;
524 
525   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
526     // Constructors and destructors should never be deferred.
527     if (FD->hasAttr<ConstructorAttr>() ||
528         FD->hasAttr<DestructorAttr>())
529       return false;
530 
531     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
532 
533     // static, static inline, always_inline, and extern inline functions can
534     // always be deferred.  Normal inline functions can be deferred in C99/C++.
535     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
536         Linkage == GVA_CXXInline)
537       return true;
538     return false;
539   }
540 
541   const VarDecl *VD = cast<VarDecl>(Global);
542   assert(VD->isFileVarDecl() && "Invalid decl");
543 
544   return VD->getStorageClass() == VarDecl::Static;
545 }
546 
547 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
548   const ValueDecl *Global = GD.getDecl();
549 
550   // If this is an alias definition (which otherwise looks like a declaration)
551   // emit it now.
552   if (Global->hasAttr<AliasAttr>())
553     return EmitAliasDefinition(Global);
554 
555   // Ignore declarations, they will be emitted on their first use.
556   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
557     // Forward declarations are emitted lazily on first use.
558     if (!FD->isThisDeclarationADefinition())
559       return;
560   } else {
561     const VarDecl *VD = cast<VarDecl>(Global);
562     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
563 
564     // In C++, if this is marked "extern", defer code generation.
565     if (getLangOptions().CPlusPlus && !VD->getInit() &&
566         (VD->getStorageClass() == VarDecl::Extern ||
567          VD->isExternC(getContext())))
568       return;
569 
570     // In C, if this isn't a definition, defer code generation.
571     if (!getLangOptions().CPlusPlus && !VD->getInit())
572       return;
573   }
574 
575   // Defer code generation when possible if this is a static definition, inline
576   // function etc.  These we only want to emit if they are used.
577   if (MayDeferGeneration(Global)) {
578     // If the value has already been used, add it directly to the
579     // DeferredDeclsToEmit list.
580     const char *MangledName = getMangledName(GD);
581     if (GlobalDeclMap.count(MangledName))
582       DeferredDeclsToEmit.push_back(GD);
583     else {
584       // Otherwise, remember that we saw a deferred decl with this name.  The
585       // first use of the mangled name will cause it to move into
586       // DeferredDeclsToEmit.
587       DeferredDecls[MangledName] = GD;
588     }
589     return;
590   }
591 
592   // Otherwise emit the definition.
593   EmitGlobalDefinition(GD);
594 }
595 
596 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
597   const ValueDecl *D = GD.getDecl();
598 
599   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
600     EmitCXXConstructor(CD, GD.getCtorType());
601   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
602     EmitCXXDestructor(DD, GD.getDtorType());
603   else if (isa<FunctionDecl>(D))
604     EmitGlobalFunctionDefinition(GD);
605   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
606     EmitGlobalVarDefinition(VD);
607   else {
608     assert(0 && "Invalid argument to EmitGlobalDefinition()");
609   }
610 }
611 
612 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
613 /// module, create and return an llvm Function with the specified type. If there
614 /// is something in the module with the specified name, return it potentially
615 /// bitcasted to the right type.
616 ///
617 /// If D is non-null, it specifies a decl that correspond to this.  This is used
618 /// to set the attributes on the function when it is first created.
619 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
620                                                        const llvm::Type *Ty,
621                                                        GlobalDecl D) {
622   // Lookup the entry, lazily creating it if necessary.
623   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
624   if (Entry) {
625     if (Entry->getType()->getElementType() == Ty)
626       return Entry;
627 
628     // Make sure the result is of the correct type.
629     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
630     return llvm::ConstantExpr::getBitCast(Entry, PTy);
631   }
632 
633   // This is the first use or definition of a mangled name.  If there is a
634   // deferred decl with this name, remember that we need to emit it at the end
635   // of the file.
636   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
637     DeferredDecls.find(MangledName);
638   if (DDI != DeferredDecls.end()) {
639     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
640     // list, and remove it from DeferredDecls (since we don't need it anymore).
641     DeferredDeclsToEmit.push_back(DDI->second);
642     DeferredDecls.erase(DDI);
643   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
644     // If this the first reference to a C++ inline function in a class, queue up
645     // the deferred function body for emission.  These are not seen as
646     // top-level declarations.
647     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
648       DeferredDeclsToEmit.push_back(D);
649     // A called constructor which has no definition or declaration need be
650     // synthesized.
651     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
652       const CXXRecordDecl *ClassDecl =
653         cast<CXXRecordDecl>(CD->getDeclContext());
654       if (CD->isCopyConstructor(getContext()))
655         DeferredCopyConstructorToEmit(D);
656       else if (!ClassDecl->hasUserDeclaredConstructor())
657         DeferredDeclsToEmit.push_back(D);
658     }
659     else if (isa<CXXDestructorDecl>(FD))
660        DeferredDestructorToEmit(D);
661     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
662            if (MD->isCopyAssignment())
663              DeferredCopyAssignmentToEmit(D);
664   }
665 
666   // This function doesn't have a complete type (for example, the return
667   // type is an incomplete struct). Use a fake type instead, and make
668   // sure not to try to set attributes.
669   bool IsIncompleteFunction = false;
670   if (!isa<llvm::FunctionType>(Ty)) {
671     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
672                                  std::vector<const llvm::Type*>(), false);
673     IsIncompleteFunction = true;
674   }
675   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
676                                              llvm::Function::ExternalLinkage,
677                                              "", &getModule());
678   F->setName(MangledName);
679   if (D.getDecl())
680     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
681                           IsIncompleteFunction);
682   Entry = F;
683   return F;
684 }
685 
686 /// Defer definition of copy constructor(s) which need be implicitly defined.
687 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
688   const CXXConstructorDecl *CD =
689     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
690   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
691   if (ClassDecl->hasTrivialCopyConstructor() ||
692       ClassDecl->hasUserDeclaredCopyConstructor())
693     return;
694 
695   // First make sure all direct base classes and virtual bases and non-static
696   // data mebers which need to have their copy constructors implicitly defined
697   // are defined. 12.8.p7
698   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
699        Base != ClassDecl->bases_end(); ++Base) {
700     CXXRecordDecl *BaseClassDecl
701       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
702     if (CXXConstructorDecl *BaseCopyCtor =
703         BaseClassDecl->getCopyConstructor(Context, 0))
704       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
705   }
706 
707   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
708        FieldEnd = ClassDecl->field_end();
709        Field != FieldEnd; ++Field) {
710     QualType FieldType = Context.getCanonicalType((*Field)->getType());
711     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
712       FieldType = Array->getElementType();
713     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
714       if ((*Field)->isAnonymousStructOrUnion())
715         continue;
716       CXXRecordDecl *FieldClassDecl
717         = cast<CXXRecordDecl>(FieldClassType->getDecl());
718       if (CXXConstructorDecl *FieldCopyCtor =
719           FieldClassDecl->getCopyConstructor(Context, 0))
720         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
721     }
722   }
723   DeferredDeclsToEmit.push_back(CopyCtorDecl);
724 }
725 
726 /// Defer definition of copy assignments which need be implicitly defined.
727 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
728   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
729   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
730 
731   if (ClassDecl->hasTrivialCopyAssignment() ||
732       ClassDecl->hasUserDeclaredCopyAssignment())
733     return;
734 
735   // First make sure all direct base classes and virtual bases and non-static
736   // data mebers which need to have their copy assignments implicitly defined
737   // are defined. 12.8.p12
738   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
739        Base != ClassDecl->bases_end(); ++Base) {
740     CXXRecordDecl *BaseClassDecl
741       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
742     const CXXMethodDecl *MD = 0;
743     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
744         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
745         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
746       GetAddrOfFunction(GlobalDecl(MD), 0);
747   }
748 
749   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
750        FieldEnd = ClassDecl->field_end();
751        Field != FieldEnd; ++Field) {
752     QualType FieldType = Context.getCanonicalType((*Field)->getType());
753     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
754       FieldType = Array->getElementType();
755     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
756       if ((*Field)->isAnonymousStructOrUnion())
757         continue;
758       CXXRecordDecl *FieldClassDecl
759         = cast<CXXRecordDecl>(FieldClassType->getDecl());
760       const CXXMethodDecl *MD = 0;
761       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
762           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
763           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
764           GetAddrOfFunction(GlobalDecl(MD), 0);
765     }
766   }
767   DeferredDeclsToEmit.push_back(CopyAssignDecl);
768 }
769 
770 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
771   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
772   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
773   if (ClassDecl->hasTrivialDestructor() ||
774       ClassDecl->hasUserDeclaredDestructor())
775     return;
776 
777   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
778        Base != ClassDecl->bases_end(); ++Base) {
779     CXXRecordDecl *BaseClassDecl
780       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
781     if (const CXXDestructorDecl *BaseDtor =
782           BaseClassDecl->getDestructor(Context))
783       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
784   }
785 
786   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
787        FieldEnd = ClassDecl->field_end();
788        Field != FieldEnd; ++Field) {
789     QualType FieldType = Context.getCanonicalType((*Field)->getType());
790     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
791       FieldType = Array->getElementType();
792     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
793       if ((*Field)->isAnonymousStructOrUnion())
794         continue;
795       CXXRecordDecl *FieldClassDecl
796         = cast<CXXRecordDecl>(FieldClassType->getDecl());
797       if (const CXXDestructorDecl *FieldDtor =
798             FieldClassDecl->getDestructor(Context))
799         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
800     }
801   }
802   DeferredDeclsToEmit.push_back(DtorDecl);
803 }
804 
805 
806 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
807 /// non-null, then this function will use the specified type if it has to
808 /// create it (this occurs when we see a definition of the function).
809 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
810                                                  const llvm::Type *Ty) {
811   // If there was no specific requested type, just convert it now.
812   if (!Ty)
813     Ty = getTypes().ConvertType(GD.getDecl()->getType());
814   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
815 }
816 
817 /// CreateRuntimeFunction - Create a new runtime function with the specified
818 /// type and name.
819 llvm::Constant *
820 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
821                                      const char *Name) {
822   // Convert Name to be a uniqued string from the IdentifierInfo table.
823   Name = getContext().Idents.get(Name).getName();
824   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
825 }
826 
827 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
828 /// create and return an llvm GlobalVariable with the specified type.  If there
829 /// is something in the module with the specified name, return it potentially
830 /// bitcasted to the right type.
831 ///
832 /// If D is non-null, it specifies a decl that correspond to this.  This is used
833 /// to set the attributes on the global when it is first created.
834 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
835                                                      const llvm::PointerType*Ty,
836                                                      const VarDecl *D) {
837   // Lookup the entry, lazily creating it if necessary.
838   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
839   if (Entry) {
840     if (Entry->getType() == Ty)
841       return Entry;
842 
843     // Make sure the result is of the correct type.
844     return llvm::ConstantExpr::getBitCast(Entry, Ty);
845   }
846 
847   // This is the first use or definition of a mangled name.  If there is a
848   // deferred decl with this name, remember that we need to emit it at the end
849   // of the file.
850   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
851     DeferredDecls.find(MangledName);
852   if (DDI != DeferredDecls.end()) {
853     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
854     // list, and remove it from DeferredDecls (since we don't need it anymore).
855     DeferredDeclsToEmit.push_back(DDI->second);
856     DeferredDecls.erase(DDI);
857   }
858 
859   llvm::GlobalVariable *GV =
860     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
861                              llvm::GlobalValue::ExternalLinkage,
862                              0, "", 0,
863                              false, Ty->getAddressSpace());
864   GV->setName(MangledName);
865 
866   // Handle things which are present even on external declarations.
867   if (D) {
868     // FIXME: This code is overly simple and should be merged with other global
869     // handling.
870     GV->setConstant(D->getType().isConstant(Context));
871 
872     // FIXME: Merge with other attribute handling code.
873     if (D->getStorageClass() == VarDecl::PrivateExtern)
874       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
875 
876     if (D->hasAttr<WeakAttr>() ||
877         D->hasAttr<WeakImportAttr>())
878       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
879 
880     GV->setThreadLocal(D->isThreadSpecified());
881   }
882 
883   return Entry = GV;
884 }
885 
886 
887 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
888 /// given global variable.  If Ty is non-null and if the global doesn't exist,
889 /// then it will be greated with the specified type instead of whatever the
890 /// normal requested type would be.
891 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
892                                                   const llvm::Type *Ty) {
893   assert(D->hasGlobalStorage() && "Not a global variable");
894   QualType ASTTy = D->getType();
895   if (Ty == 0)
896     Ty = getTypes().ConvertTypeForMem(ASTTy);
897 
898   const llvm::PointerType *PTy =
899     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
900   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
901 }
902 
903 /// CreateRuntimeVariable - Create a new runtime global variable with the
904 /// specified type and name.
905 llvm::Constant *
906 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
907                                      const char *Name) {
908   // Convert Name to be a uniqued string from the IdentifierInfo table.
909   Name = getContext().Idents.get(Name).getName();
910   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
911 }
912 
913 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
914   assert(!D->getInit() && "Cannot emit definite definitions here!");
915 
916   if (MayDeferGeneration(D)) {
917     // If we have not seen a reference to this variable yet, place it
918     // into the deferred declarations table to be emitted if needed
919     // later.
920     const char *MangledName = getMangledName(D);
921     if (GlobalDeclMap.count(MangledName) == 0) {
922       DeferredDecls[MangledName] = GlobalDecl(D);
923       return;
924     }
925   }
926 
927   // The tentative definition is the only definition.
928   EmitGlobalVarDefinition(D);
929 }
930 
931 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
932   llvm::Constant *Init = 0;
933   QualType ASTTy = D->getType();
934 
935   if (D->getInit() == 0) {
936     // This is a tentative definition; tentative definitions are
937     // implicitly initialized with { 0 }.
938     //
939     // Note that tentative definitions are only emitted at the end of
940     // a translation unit, so they should never have incomplete
941     // type. In addition, EmitTentativeDefinition makes sure that we
942     // never attempt to emit a tentative definition if a real one
943     // exists. A use may still exists, however, so we still may need
944     // to do a RAUW.
945     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
946     Init = EmitNullConstant(D->getType());
947   } else {
948     Init = EmitConstantExpr(D->getInit(), D->getType());
949 
950     if (!Init) {
951       QualType T = D->getInit()->getType();
952       if (getLangOptions().CPlusPlus) {
953         CXXGlobalInits.push_back(D);
954         Init = EmitNullConstant(T);
955       } else {
956         ErrorUnsupported(D, "static initializer");
957         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
958       }
959     }
960   }
961 
962   const llvm::Type* InitType = Init->getType();
963   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
964 
965   // Strip off a bitcast if we got one back.
966   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
967     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
968            // all zero index gep.
969            CE->getOpcode() == llvm::Instruction::GetElementPtr);
970     Entry = CE->getOperand(0);
971   }
972 
973   // Entry is now either a Function or GlobalVariable.
974   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
975 
976   // We have a definition after a declaration with the wrong type.
977   // We must make a new GlobalVariable* and update everything that used OldGV
978   // (a declaration or tentative definition) with the new GlobalVariable*
979   // (which will be a definition).
980   //
981   // This happens if there is a prototype for a global (e.g.
982   // "extern int x[];") and then a definition of a different type (e.g.
983   // "int x[10];"). This also happens when an initializer has a different type
984   // from the type of the global (this happens with unions).
985   if (GV == 0 ||
986       GV->getType()->getElementType() != InitType ||
987       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
988 
989     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
990     GlobalDeclMap.erase(getMangledName(D));
991 
992     // Make a new global with the correct type, this is now guaranteed to work.
993     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
994     GV->takeName(cast<llvm::GlobalValue>(Entry));
995 
996     // Replace all uses of the old global with the new global
997     llvm::Constant *NewPtrForOldDecl =
998         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
999     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1000 
1001     // Erase the old global, since it is no longer used.
1002     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1003   }
1004 
1005   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1006     SourceManager &SM = Context.getSourceManager();
1007     AddAnnotation(EmitAnnotateAttr(GV, AA,
1008                               SM.getInstantiationLineNumber(D->getLocation())));
1009   }
1010 
1011   GV->setInitializer(Init);
1012 
1013   // If it is safe to mark the global 'constant', do so now.
1014   GV->setConstant(false);
1015   if (D->getType().isConstant(Context)) {
1016     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1017     // members, it cannot be declared "LLVM const".
1018     GV->setConstant(true);
1019   }
1020 
1021   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1022 
1023   // Set the llvm linkage type as appropriate.
1024   if (D->getStorageClass() == VarDecl::Static)
1025     GV->setLinkage(llvm::Function::InternalLinkage);
1026   else if (D->hasAttr<DLLImportAttr>())
1027     GV->setLinkage(llvm::Function::DLLImportLinkage);
1028   else if (D->hasAttr<DLLExportAttr>())
1029     GV->setLinkage(llvm::Function::DLLExportLinkage);
1030   else if (D->hasAttr<WeakAttr>()) {
1031     if (GV->isConstant())
1032       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1033     else
1034       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1035   } else if (!CompileOpts.NoCommon &&
1036            !D->hasExternalStorage() && !D->getInit() &&
1037            !D->getAttr<SectionAttr>()) {
1038     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1039     // common vars aren't constant even if declared const.
1040     GV->setConstant(false);
1041   } else
1042     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1043 
1044   SetCommonAttributes(D, GV);
1045 
1046   // Emit global variable debug information.
1047   if (CGDebugInfo *DI = getDebugInfo()) {
1048     DI->setLocation(D->getLocation());
1049     DI->EmitGlobalVariable(GV, D);
1050   }
1051 }
1052 
1053 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1054 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1055 /// existing call uses of the old function in the module, this adjusts them to
1056 /// call the new function directly.
1057 ///
1058 /// This is not just a cleanup: the always_inline pass requires direct calls to
1059 /// functions to be able to inline them.  If there is a bitcast in the way, it
1060 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1061 /// run at -O0.
1062 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1063                                                       llvm::Function *NewFn) {
1064   // If we're redefining a global as a function, don't transform it.
1065   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1066   if (OldFn == 0) return;
1067 
1068   const llvm::Type *NewRetTy = NewFn->getReturnType();
1069   llvm::SmallVector<llvm::Value*, 4> ArgList;
1070 
1071   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1072        UI != E; ) {
1073     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1074     unsigned OpNo = UI.getOperandNo();
1075     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1076     if (!CI || OpNo != 0) continue;
1077 
1078     // If the return types don't match exactly, and if the call isn't dead, then
1079     // we can't transform this call.
1080     if (CI->getType() != NewRetTy && !CI->use_empty())
1081       continue;
1082 
1083     // If the function was passed too few arguments, don't transform.  If extra
1084     // arguments were passed, we silently drop them.  If any of the types
1085     // mismatch, we don't transform.
1086     unsigned ArgNo = 0;
1087     bool DontTransform = false;
1088     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1089          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1090       if (CI->getNumOperands()-1 == ArgNo ||
1091           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1092         DontTransform = true;
1093         break;
1094       }
1095     }
1096     if (DontTransform)
1097       continue;
1098 
1099     // Okay, we can transform this.  Create the new call instruction and copy
1100     // over the required information.
1101     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1102     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1103                                                      ArgList.end(), "", CI);
1104     ArgList.clear();
1105     if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext()))
1106       NewCall->takeName(CI);
1107     NewCall->setCallingConv(CI->getCallingConv());
1108     NewCall->setAttributes(CI->getAttributes());
1109 
1110     // Finally, remove the old call, replacing any uses with the new one.
1111     if (!CI->use_empty())
1112       CI->replaceAllUsesWith(NewCall);
1113     CI->eraseFromParent();
1114   }
1115 }
1116 
1117 
1118 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1119   const llvm::FunctionType *Ty;
1120   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1121 
1122   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1123     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1124 
1125     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1126   } else {
1127     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1128 
1129     // As a special case, make sure that definitions of K&R function
1130     // "type foo()" aren't declared as varargs (which forces the backend
1131     // to do unnecessary work).
1132     if (D->getType()->isFunctionNoProtoType()) {
1133       assert(Ty->isVarArg() && "Didn't lower type as expected");
1134       // Due to stret, the lowered function could have arguments.
1135       // Just create the same type as was lowered by ConvertType
1136       // but strip off the varargs bit.
1137       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1138       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1139     }
1140   }
1141 
1142   // Get or create the prototype for the function.
1143   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1144 
1145   // Strip off a bitcast if we got one back.
1146   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1147     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1148     Entry = CE->getOperand(0);
1149   }
1150 
1151 
1152   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1153     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1154 
1155     // If the types mismatch then we have to rewrite the definition.
1156     assert(OldFn->isDeclaration() &&
1157            "Shouldn't replace non-declaration");
1158 
1159     // F is the Function* for the one with the wrong type, we must make a new
1160     // Function* and update everything that used F (a declaration) with the new
1161     // Function* (which will be a definition).
1162     //
1163     // This happens if there is a prototype for a function
1164     // (e.g. "int f()") and then a definition of a different type
1165     // (e.g. "int f(int x)").  Start by making a new function of the
1166     // correct type, RAUW, then steal the name.
1167     GlobalDeclMap.erase(getMangledName(D));
1168     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1169     NewFn->takeName(OldFn);
1170 
1171     // If this is an implementation of a function without a prototype, try to
1172     // replace any existing uses of the function (which may be calls) with uses
1173     // of the new function
1174     if (D->getType()->isFunctionNoProtoType()) {
1175       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1176       OldFn->removeDeadConstantUsers();
1177     }
1178 
1179     // Replace uses of F with the Function we will endow with a body.
1180     if (!Entry->use_empty()) {
1181       llvm::Constant *NewPtrForOldDecl =
1182         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1183       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1184     }
1185 
1186     // Ok, delete the old function now, which is dead.
1187     OldFn->eraseFromParent();
1188 
1189     Entry = NewFn;
1190   }
1191 
1192   llvm::Function *Fn = cast<llvm::Function>(Entry);
1193 
1194   CodeGenFunction(*this).GenerateCode(D, Fn);
1195 
1196   SetFunctionDefinitionAttributes(D, Fn);
1197   SetLLVMFunctionAttributesForDefinition(D, Fn);
1198 
1199   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1200     AddGlobalCtor(Fn, CA->getPriority());
1201   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1202     AddGlobalDtor(Fn, DA->getPriority());
1203 }
1204 
1205 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1206   const AliasAttr *AA = D->getAttr<AliasAttr>();
1207   assert(AA && "Not an alias?");
1208 
1209   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1210 
1211   // Unique the name through the identifier table.
1212   const char *AliaseeName = AA->getAliasee().c_str();
1213   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1214 
1215   // Create a reference to the named value.  This ensures that it is emitted
1216   // if a deferred decl.
1217   llvm::Constant *Aliasee;
1218   if (isa<llvm::FunctionType>(DeclTy))
1219     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1220   else
1221     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1222                                     llvm::PointerType::getUnqual(DeclTy), 0);
1223 
1224   // Create the new alias itself, but don't set a name yet.
1225   llvm::GlobalValue *GA =
1226     new llvm::GlobalAlias(Aliasee->getType(),
1227                           llvm::Function::ExternalLinkage,
1228                           "", Aliasee, &getModule());
1229 
1230   // See if there is already something with the alias' name in the module.
1231   const char *MangledName = getMangledName(D);
1232   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1233 
1234   if (Entry && !Entry->isDeclaration()) {
1235     // If there is a definition in the module, then it wins over the alias.
1236     // This is dubious, but allow it to be safe.  Just ignore the alias.
1237     GA->eraseFromParent();
1238     return;
1239   }
1240 
1241   if (Entry) {
1242     // If there is a declaration in the module, then we had an extern followed
1243     // by the alias, as in:
1244     //   extern int test6();
1245     //   ...
1246     //   int test6() __attribute__((alias("test7")));
1247     //
1248     // Remove it and replace uses of it with the alias.
1249 
1250     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1251                                                           Entry->getType()));
1252     Entry->eraseFromParent();
1253   }
1254 
1255   // Now we know that there is no conflict, set the name.
1256   Entry = GA;
1257   GA->setName(MangledName);
1258 
1259   // Set attributes which are particular to an alias; this is a
1260   // specialization of the attributes which may be set on a global
1261   // variable/function.
1262   if (D->hasAttr<DLLExportAttr>()) {
1263     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1264       // The dllexport attribute is ignored for undefined symbols.
1265       if (FD->getBody())
1266         GA->setLinkage(llvm::Function::DLLExportLinkage);
1267     } else {
1268       GA->setLinkage(llvm::Function::DLLExportLinkage);
1269     }
1270   } else if (D->hasAttr<WeakAttr>() ||
1271              D->hasAttr<WeakImportAttr>()) {
1272     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1273   }
1274 
1275   SetCommonAttributes(D, GA);
1276 }
1277 
1278 /// getBuiltinLibFunction - Given a builtin id for a function like
1279 /// "__builtin_fabsf", return a Function* for "fabsf".
1280 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1281   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1282           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1283          "isn't a lib fn");
1284 
1285   // Get the name, skip over the __builtin_ prefix (if necessary).
1286   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1287   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1288     Name += 10;
1289 
1290   // Get the type for the builtin.
1291   ASTContext::GetBuiltinTypeError Error;
1292   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1293   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1294 
1295   const llvm::FunctionType *Ty =
1296     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1297 
1298   // Unique the name through the identifier table.
1299   Name = getContext().Idents.get(Name).getName();
1300   // FIXME: param attributes for sext/zext etc.
1301   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1302 }
1303 
1304 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1305                                             unsigned NumTys) {
1306   return llvm::Intrinsic::getDeclaration(&getModule(),
1307                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1308 }
1309 
1310 llvm::Function *CodeGenModule::getMemCpyFn() {
1311   if (MemCpyFn) return MemCpyFn;
1312   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1313   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1314 }
1315 
1316 llvm::Function *CodeGenModule::getMemMoveFn() {
1317   if (MemMoveFn) return MemMoveFn;
1318   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1319   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1320 }
1321 
1322 llvm::Function *CodeGenModule::getMemSetFn() {
1323   if (MemSetFn) return MemSetFn;
1324   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1325   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1326 }
1327 
1328 static llvm::StringMapEntry<llvm::Constant*> &
1329 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1330                          const StringLiteral *Literal,
1331                          bool TargetIsLSB,
1332                          bool &IsUTF16,
1333                          unsigned &StringLength) {
1334   unsigned NumBytes = Literal->getByteLength();
1335 
1336   // Check for simple case.
1337   if (!Literal->containsNonAsciiOrNull()) {
1338     StringLength = NumBytes;
1339     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1340                                                 StringLength));
1341   }
1342 
1343   // Otherwise, convert the UTF8 literals into a byte string.
1344   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1345   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1346   UTF16 *ToPtr = &ToBuf[0];
1347 
1348   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1349                                                &ToPtr, ToPtr + NumBytes,
1350                                                strictConversion);
1351 
1352   // Check for conversion failure.
1353   if (Result != conversionOK) {
1354     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1355     // this duplicate code.
1356     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1357     StringLength = NumBytes;
1358     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1359                                                 StringLength));
1360   }
1361 
1362   // ConvertUTF8toUTF16 returns the length in ToPtr.
1363   StringLength = ToPtr - &ToBuf[0];
1364 
1365   // Render the UTF-16 string into a byte array and convert to the target byte
1366   // order.
1367   //
1368   // FIXME: This isn't something we should need to do here.
1369   llvm::SmallString<128> AsBytes;
1370   AsBytes.reserve(StringLength * 2);
1371   for (unsigned i = 0; i != StringLength; ++i) {
1372     unsigned short Val = ToBuf[i];
1373     if (TargetIsLSB) {
1374       AsBytes.push_back(Val & 0xFF);
1375       AsBytes.push_back(Val >> 8);
1376     } else {
1377       AsBytes.push_back(Val >> 8);
1378       AsBytes.push_back(Val & 0xFF);
1379     }
1380   }
1381   // Append one extra null character, the second is automatically added by our
1382   // caller.
1383   AsBytes.push_back(0);
1384 
1385   IsUTF16 = true;
1386   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1387 }
1388 
1389 llvm::Constant *
1390 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1391   unsigned StringLength = 0;
1392   bool isUTF16 = false;
1393   llvm::StringMapEntry<llvm::Constant*> &Entry =
1394     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1395                              getTargetData().isLittleEndian(),
1396                              isUTF16, StringLength);
1397 
1398   if (llvm::Constant *C = Entry.getValue())
1399     return C;
1400 
1401   llvm::Constant *Zero =
1402       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1403   llvm::Constant *Zeros[] = { Zero, Zero };
1404 
1405   // If we don't already have it, get __CFConstantStringClassReference.
1406   if (!CFConstantStringClassRef) {
1407     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1408     Ty = llvm::ArrayType::get(Ty, 0);
1409     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1410                                            "__CFConstantStringClassReference");
1411     // Decay array -> ptr
1412     CFConstantStringClassRef =
1413       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1414   }
1415 
1416   QualType CFTy = getContext().getCFConstantStringType();
1417 
1418   const llvm::StructType *STy =
1419     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1420 
1421   std::vector<llvm::Constant*> Fields(4);
1422 
1423   // Class pointer.
1424   Fields[0] = CFConstantStringClassRef;
1425 
1426   // Flags.
1427   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1428   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1429     llvm::ConstantInt::get(Ty, 0x07C8);
1430 
1431   // String pointer.
1432   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1433 
1434   const char *Sect, *Prefix;
1435   bool isConstant;
1436   llvm::GlobalValue::LinkageTypes Linkage;
1437   if (isUTF16) {
1438     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1439     Sect = getContext().Target.getUnicodeStringSection();
1440     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1441     Linkage = llvm::GlobalValue::InternalLinkage;
1442     // FIXME: Why does GCC not set constant here?
1443     isConstant = false;
1444   } else {
1445     Prefix = ".str";
1446     Sect = getContext().Target.getCFStringDataSection();
1447     Linkage = llvm::GlobalValue::PrivateLinkage;
1448     // FIXME: -fwritable-strings should probably affect this, but we
1449     // are following gcc here.
1450     isConstant = true;
1451   }
1452   llvm::GlobalVariable *GV =
1453     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1454                              Linkage, C, Prefix);
1455   if (Sect)
1456     GV->setSection(Sect);
1457   if (isUTF16) {
1458     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1459     GV->setAlignment(Align);
1460   }
1461   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1462 
1463   // String length.
1464   Ty = getTypes().ConvertType(getContext().LongTy);
1465   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1466 
1467   // The struct.
1468   C = llvm::ConstantStruct::get(STy, Fields);
1469   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1470                                 llvm::GlobalVariable::PrivateLinkage, C,
1471                                 "_unnamed_cfstring_");
1472   if (const char *Sect = getContext().Target.getCFStringSection())
1473     GV->setSection(Sect);
1474   Entry.setValue(GV);
1475 
1476   return GV;
1477 }
1478 
1479 /// GetStringForStringLiteral - Return the appropriate bytes for a
1480 /// string literal, properly padded to match the literal type.
1481 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1482   const char *StrData = E->getStrData();
1483   unsigned Len = E->getByteLength();
1484 
1485   const ConstantArrayType *CAT =
1486     getContext().getAsConstantArrayType(E->getType());
1487   assert(CAT && "String isn't pointer or array!");
1488 
1489   // Resize the string to the right size.
1490   std::string Str(StrData, StrData+Len);
1491   uint64_t RealLen = CAT->getSize().getZExtValue();
1492 
1493   if (E->isWide())
1494     RealLen *= getContext().Target.getWCharWidth()/8;
1495 
1496   Str.resize(RealLen, '\0');
1497 
1498   return Str;
1499 }
1500 
1501 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1502 /// constant array for the given string literal.
1503 llvm::Constant *
1504 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1505   // FIXME: This can be more efficient.
1506   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1507 }
1508 
1509 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1510 /// array for the given ObjCEncodeExpr node.
1511 llvm::Constant *
1512 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1513   std::string Str;
1514   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1515 
1516   return GetAddrOfConstantCString(Str);
1517 }
1518 
1519 
1520 /// GenerateWritableString -- Creates storage for a string literal.
1521 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1522                                              bool constant,
1523                                              CodeGenModule &CGM,
1524                                              const char *GlobalName) {
1525   // Create Constant for this string literal. Don't add a '\0'.
1526   llvm::Constant *C =
1527       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1528 
1529   // Create a global variable for this string
1530   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1531                                   llvm::GlobalValue::PrivateLinkage,
1532                                   C, GlobalName);
1533 }
1534 
1535 /// GetAddrOfConstantString - Returns a pointer to a character array
1536 /// containing the literal. This contents are exactly that of the
1537 /// given string, i.e. it will not be null terminated automatically;
1538 /// see GetAddrOfConstantCString. Note that whether the result is
1539 /// actually a pointer to an LLVM constant depends on
1540 /// Feature.WriteableStrings.
1541 ///
1542 /// The result has pointer to array type.
1543 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1544                                                        const char *GlobalName) {
1545   bool IsConstant = !Features.WritableStrings;
1546 
1547   // Get the default prefix if a name wasn't specified.
1548   if (!GlobalName)
1549     GlobalName = ".str";
1550 
1551   // Don't share any string literals if strings aren't constant.
1552   if (!IsConstant)
1553     return GenerateStringLiteral(str, false, *this, GlobalName);
1554 
1555   llvm::StringMapEntry<llvm::Constant *> &Entry =
1556     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1557 
1558   if (Entry.getValue())
1559     return Entry.getValue();
1560 
1561   // Create a global variable for this.
1562   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1563   Entry.setValue(C);
1564   return C;
1565 }
1566 
1567 /// GetAddrOfConstantCString - Returns a pointer to a character
1568 /// array containing the literal and a terminating '\-'
1569 /// character. The result has pointer to array type.
1570 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1571                                                         const char *GlobalName){
1572   return GetAddrOfConstantString(str + '\0', GlobalName);
1573 }
1574 
1575 /// EmitObjCPropertyImplementations - Emit information for synthesized
1576 /// properties for an implementation.
1577 void CodeGenModule::EmitObjCPropertyImplementations(const
1578                                                     ObjCImplementationDecl *D) {
1579   for (ObjCImplementationDecl::propimpl_iterator
1580          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1581     ObjCPropertyImplDecl *PID = *i;
1582 
1583     // Dynamic is just for type-checking.
1584     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1585       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1586 
1587       // Determine which methods need to be implemented, some may have
1588       // been overridden. Note that ::isSynthesized is not the method
1589       // we want, that just indicates if the decl came from a
1590       // property. What we want to know is if the method is defined in
1591       // this implementation.
1592       if (!D->getInstanceMethod(PD->getGetterName()))
1593         CodeGenFunction(*this).GenerateObjCGetter(
1594                                  const_cast<ObjCImplementationDecl *>(D), PID);
1595       if (!PD->isReadOnly() &&
1596           !D->getInstanceMethod(PD->getSetterName()))
1597         CodeGenFunction(*this).GenerateObjCSetter(
1598                                  const_cast<ObjCImplementationDecl *>(D), PID);
1599     }
1600   }
1601 }
1602 
1603 /// EmitNamespace - Emit all declarations in a namespace.
1604 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1605   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1606        I != E; ++I)
1607     EmitTopLevelDecl(*I);
1608 }
1609 
1610 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1611 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1612   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1613       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1614     ErrorUnsupported(LSD, "linkage spec");
1615     return;
1616   }
1617 
1618   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1619        I != E; ++I)
1620     EmitTopLevelDecl(*I);
1621 }
1622 
1623 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1624 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1625   // If an error has occurred, stop code generation, but continue
1626   // parsing and semantic analysis (to ensure all warnings and errors
1627   // are emitted).
1628   if (Diags.hasErrorOccurred())
1629     return;
1630 
1631   // Ignore dependent declarations.
1632   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1633     return;
1634 
1635   switch (D->getKind()) {
1636   case Decl::CXXConversion:
1637   case Decl::CXXMethod:
1638   case Decl::Function:
1639     // Skip function templates
1640     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1641       return;
1642 
1643     // Fall through
1644 
1645   case Decl::Var:
1646     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1647     break;
1648 
1649   // C++ Decls
1650   case Decl::Namespace:
1651     EmitNamespace(cast<NamespaceDecl>(D));
1652     break;
1653     // No code generation needed.
1654   case Decl::Using:
1655   case Decl::UsingDirective:
1656   case Decl::ClassTemplate:
1657   case Decl::FunctionTemplate:
1658     break;
1659   case Decl::CXXConstructor:
1660     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1661     break;
1662   case Decl::CXXDestructor:
1663     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1664     break;
1665 
1666   case Decl::StaticAssert:
1667     // Nothing to do.
1668     break;
1669 
1670   // Objective-C Decls
1671 
1672   // Forward declarations, no (immediate) code generation.
1673   case Decl::ObjCClass:
1674   case Decl::ObjCForwardProtocol:
1675   case Decl::ObjCCategory:
1676   case Decl::ObjCInterface:
1677     break;
1678 
1679   case Decl::ObjCProtocol:
1680     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1681     break;
1682 
1683   case Decl::ObjCCategoryImpl:
1684     // Categories have properties but don't support synthesize so we
1685     // can ignore them here.
1686     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1687     break;
1688 
1689   case Decl::ObjCImplementation: {
1690     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1691     EmitObjCPropertyImplementations(OMD);
1692     Runtime->GenerateClass(OMD);
1693     break;
1694   }
1695   case Decl::ObjCMethod: {
1696     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1697     // If this is not a prototype, emit the body.
1698     if (OMD->getBody())
1699       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1700     break;
1701   }
1702   case Decl::ObjCCompatibleAlias:
1703     // compatibility-alias is a directive and has no code gen.
1704     break;
1705 
1706   case Decl::LinkageSpec:
1707     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1708     break;
1709 
1710   case Decl::FileScopeAsm: {
1711     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1712     std::string AsmString(AD->getAsmString()->getStrData(),
1713                           AD->getAsmString()->getByteLength());
1714 
1715     const std::string &S = getModule().getModuleInlineAsm();
1716     if (S.empty())
1717       getModule().setModuleInlineAsm(AsmString);
1718     else
1719       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1720     break;
1721   }
1722 
1723   default:
1724     // Make sure we handled everything we should, every other kind is a
1725     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1726     // function. Need to recode Decl::Kind to do that easily.
1727     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1728   }
1729 }
1730