1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 217 I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // The kind of external linkage this function will have, if it is not 251 // inline or static. 252 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 253 if (Context.getLangOptions().CPlusPlus && 254 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 255 External = CodeGenModule::GVA_TemplateInstantiation; 256 257 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 258 // C++ member functions defined inside the class are always inline. 259 if (MD->isInline() || !MD->isOutOfLine()) 260 return CodeGenModule::GVA_CXXInline; 261 262 return External; 263 } 264 265 // "static" functions get internal linkage. 266 if (FD->getStorageClass() == FunctionDecl::Static) 267 return CodeGenModule::GVA_Internal; 268 269 if (!FD->isInline()) 270 return External; 271 272 // If the inline function explicitly has the GNU inline attribute on it, or if 273 // this is C89 mode, we use to GNU semantics. 274 if (!Features.C99 && !Features.CPlusPlus) { 275 // extern inline in GNU mode is like C99 inline. 276 if (FD->getStorageClass() == FunctionDecl::Extern) 277 return CodeGenModule::GVA_C99Inline; 278 // Normal inline is a strong symbol. 279 return CodeGenModule::GVA_StrongExternal; 280 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 281 // GCC in C99 mode seems to use a different decision-making 282 // process for extern inline, which factors in previous 283 // declarations. 284 if (FD->isExternGNUInline(Context)) 285 return CodeGenModule::GVA_C99Inline; 286 // Normal inline is a strong symbol. 287 return External; 288 } 289 290 // The definition of inline changes based on the language. Note that we 291 // have already handled "static inline" above, with the GVA_Internal case. 292 if (Features.CPlusPlus) // inline and extern inline. 293 return CodeGenModule::GVA_CXXInline; 294 295 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 296 if (FD->isC99InlineDefinition()) 297 return CodeGenModule::GVA_C99Inline; 298 299 return CodeGenModule::GVA_StrongExternal; 300 } 301 302 /// SetFunctionDefinitionAttributes - Set attributes for a global. 303 /// 304 /// FIXME: This is currently only done for aliases and functions, but not for 305 /// variables (these details are set in EmitGlobalVarDefinition for variables). 306 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 307 llvm::GlobalValue *GV) { 308 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 309 310 if (Linkage == GVA_Internal) { 311 GV->setLinkage(llvm::Function::InternalLinkage); 312 } else if (D->hasAttr<DLLExportAttr>()) { 313 GV->setLinkage(llvm::Function::DLLExportLinkage); 314 } else if (D->hasAttr<WeakAttr>()) { 315 GV->setLinkage(llvm::Function::WeakAnyLinkage); 316 } else if (Linkage == GVA_C99Inline) { 317 // In C99 mode, 'inline' functions are guaranteed to have a strong 318 // definition somewhere else, so we can use available_externally linkage. 319 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 320 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 321 // In C++, the compiler has to emit a definition in every translation unit 322 // that references the function. We should use linkonce_odr because 323 // a) if all references in this translation unit are optimized away, we 324 // don't need to codegen it. b) if the function persists, it needs to be 325 // merged with other definitions. c) C++ has the ODR, so we know the 326 // definition is dependable. 327 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 328 } else { 329 assert(Linkage == GVA_StrongExternal); 330 // Otherwise, we have strong external linkage. 331 GV->setLinkage(llvm::Function::ExternalLinkage); 332 } 333 334 SetCommonAttributes(D, GV); 335 } 336 337 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 338 const CGFunctionInfo &Info, 339 llvm::Function *F) { 340 unsigned CallingConv; 341 AttributeListType AttributeList; 342 ConstructAttributeList(Info, D, AttributeList, CallingConv); 343 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 344 AttributeList.size())); 345 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 346 } 347 348 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 349 llvm::Function *F) { 350 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 351 F->addFnAttr(llvm::Attribute::NoUnwind); 352 353 if (D->hasAttr<AlwaysInlineAttr>()) 354 F->addFnAttr(llvm::Attribute::AlwaysInline); 355 356 if (D->hasAttr<NoInlineAttr>()) 357 F->addFnAttr(llvm::Attribute::NoInline); 358 } 359 360 void CodeGenModule::SetCommonAttributes(const Decl *D, 361 llvm::GlobalValue *GV) { 362 setGlobalVisibility(GV, D); 363 364 if (D->hasAttr<UsedAttr>()) 365 AddUsedGlobal(GV); 366 367 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 368 GV->setSection(SA->getName()); 369 } 370 371 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 372 llvm::Function *F, 373 const CGFunctionInfo &FI) { 374 SetLLVMFunctionAttributes(D, FI, F); 375 SetLLVMFunctionAttributesForDefinition(D, F); 376 377 F->setLinkage(llvm::Function::InternalLinkage); 378 379 SetCommonAttributes(D, F); 380 } 381 382 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 383 llvm::Function *F, 384 bool IsIncompleteFunction) { 385 if (!IsIncompleteFunction) 386 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 387 388 // Only a few attributes are set on declarations; these may later be 389 // overridden by a definition. 390 391 if (FD->hasAttr<DLLImportAttr>()) { 392 F->setLinkage(llvm::Function::DLLImportLinkage); 393 } else if (FD->hasAttr<WeakAttr>() || 394 FD->hasAttr<WeakImportAttr>()) { 395 // "extern_weak" is overloaded in LLVM; we probably should have 396 // separate linkage types for this. 397 F->setLinkage(llvm::Function::ExternalWeakLinkage); 398 } else { 399 F->setLinkage(llvm::Function::ExternalLinkage); 400 } 401 402 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 403 F->setSection(SA->getName()); 404 } 405 406 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 407 assert(!GV->isDeclaration() && 408 "Only globals with definition can force usage."); 409 LLVMUsed.push_back(GV); 410 } 411 412 void CodeGenModule::EmitLLVMUsed() { 413 // Don't create llvm.used if there is no need. 414 if (LLVMUsed.empty()) 415 return; 416 417 llvm::Type *i8PTy = 418 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 419 420 // Convert LLVMUsed to what ConstantArray needs. 421 std::vector<llvm::Constant*> UsedArray; 422 UsedArray.resize(LLVMUsed.size()); 423 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 424 UsedArray[i] = 425 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 426 i8PTy); 427 } 428 429 if (UsedArray.empty()) 430 return; 431 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 432 433 llvm::GlobalVariable *GV = 434 new llvm::GlobalVariable(getModule(), ATy, false, 435 llvm::GlobalValue::AppendingLinkage, 436 llvm::ConstantArray::get(ATy, UsedArray), 437 "llvm.used"); 438 439 GV->setSection("llvm.metadata"); 440 } 441 442 void CodeGenModule::EmitDeferred() { 443 // Emit code for any potentially referenced deferred decls. Since a 444 // previously unused static decl may become used during the generation of code 445 // for a static function, iterate until no changes are made. 446 while (!DeferredDeclsToEmit.empty()) { 447 GlobalDecl D = DeferredDeclsToEmit.back(); 448 DeferredDeclsToEmit.pop_back(); 449 450 // The mangled name for the decl must have been emitted in GlobalDeclMap. 451 // Look it up to see if it was defined with a stronger definition (e.g. an 452 // extern inline function with a strong function redefinition). If so, 453 // just ignore the deferred decl. 454 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 455 assert(CGRef && "Deferred decl wasn't referenced?"); 456 457 if (!CGRef->isDeclaration()) 458 continue; 459 460 // Otherwise, emit the definition and move on to the next one. 461 EmitGlobalDefinition(D); 462 } 463 } 464 465 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 466 /// annotation information for a given GlobalValue. The annotation struct is 467 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 468 /// GlobalValue being annotated. The second field is the constant string 469 /// created from the AnnotateAttr's annotation. The third field is a constant 470 /// string containing the name of the translation unit. The fourth field is 471 /// the line number in the file of the annotated value declaration. 472 /// 473 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 474 /// appears to. 475 /// 476 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 477 const AnnotateAttr *AA, 478 unsigned LineNo) { 479 llvm::Module *M = &getModule(); 480 481 // get [N x i8] constants for the annotation string, and the filename string 482 // which are the 2nd and 3rd elements of the global annotation structure. 483 const llvm::Type *SBP = 484 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 485 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 486 AA->getAnnotation(), true); 487 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 488 M->getModuleIdentifier(), 489 true); 490 491 // Get the two global values corresponding to the ConstantArrays we just 492 // created to hold the bytes of the strings. 493 llvm::GlobalValue *annoGV = 494 new llvm::GlobalVariable(*M, anno->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, anno, 496 GV->getName()); 497 // translation unit name string, emitted into the llvm.metadata section. 498 llvm::GlobalValue *unitGV = 499 new llvm::GlobalVariable(*M, unit->getType(), false, 500 llvm::GlobalValue::PrivateLinkage, unit, 501 ".str"); 502 503 // Create the ConstantStruct for the global annotation. 504 llvm::Constant *Fields[4] = { 505 llvm::ConstantExpr::getBitCast(GV, SBP), 506 llvm::ConstantExpr::getBitCast(annoGV, SBP), 507 llvm::ConstantExpr::getBitCast(unitGV, SBP), 508 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 509 }; 510 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 511 } 512 513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 514 // Never defer when EmitAllDecls is specified or the decl has 515 // attribute used. 516 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 517 return false; 518 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 520 // Constructors and destructors should never be deferred. 521 if (FD->hasAttr<ConstructorAttr>() || 522 FD->hasAttr<DestructorAttr>()) 523 return false; 524 525 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 526 527 // static, static inline, always_inline, and extern inline functions can 528 // always be deferred. Normal inline functions can be deferred in C99/C++. 529 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 530 Linkage == GVA_CXXInline) 531 return true; 532 return false; 533 } 534 535 const VarDecl *VD = cast<VarDecl>(Global); 536 assert(VD->isFileVarDecl() && "Invalid decl"); 537 538 return VD->getStorageClass() == VarDecl::Static; 539 } 540 541 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 542 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 543 544 // If this is an alias definition (which otherwise looks like a declaration) 545 // emit it now. 546 if (Global->hasAttr<AliasAttr>()) 547 return EmitAliasDefinition(Global); 548 549 // Ignore declarations, they will be emitted on their first use. 550 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 551 // Forward declarations are emitted lazily on first use. 552 if (!FD->isThisDeclarationADefinition()) 553 return; 554 } else { 555 const VarDecl *VD = cast<VarDecl>(Global); 556 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 557 558 // In C++, if this is marked "extern", defer code generation. 559 if (getLangOptions().CPlusPlus && !VD->getInit() && 560 (VD->getStorageClass() == VarDecl::Extern || 561 VD->isExternC())) 562 return; 563 564 // In C, if this isn't a definition, defer code generation. 565 if (!getLangOptions().CPlusPlus && !VD->getInit()) 566 return; 567 } 568 569 // Defer code generation when possible if this is a static definition, inline 570 // function etc. These we only want to emit if they are used. 571 if (MayDeferGeneration(Global)) { 572 // If the value has already been used, add it directly to the 573 // DeferredDeclsToEmit list. 574 const char *MangledName = getMangledName(GD); 575 if (GlobalDeclMap.count(MangledName)) 576 DeferredDeclsToEmit.push_back(GD); 577 else { 578 // Otherwise, remember that we saw a deferred decl with this name. The 579 // first use of the mangled name will cause it to move into 580 // DeferredDeclsToEmit. 581 DeferredDecls[MangledName] = GD; 582 } 583 return; 584 } 585 586 // Otherwise emit the definition. 587 EmitGlobalDefinition(GD); 588 } 589 590 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 591 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 592 593 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 594 EmitCXXConstructor(CD, GD.getCtorType()); 595 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 596 EmitCXXDestructor(DD, GD.getDtorType()); 597 else if (isa<FunctionDecl>(D)) 598 EmitGlobalFunctionDefinition(GD); 599 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 600 EmitGlobalVarDefinition(VD); 601 else { 602 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 603 } 604 } 605 606 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 607 /// module, create and return an llvm Function with the specified type. If there 608 /// is something in the module with the specified name, return it potentially 609 /// bitcasted to the right type. 610 /// 611 /// If D is non-null, it specifies a decl that correspond to this. This is used 612 /// to set the attributes on the function when it is first created. 613 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 614 const llvm::Type *Ty, 615 GlobalDecl D) { 616 // Lookup the entry, lazily creating it if necessary. 617 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 618 if (Entry) { 619 if (Entry->getType()->getElementType() == Ty) 620 return Entry; 621 622 // Make sure the result is of the correct type. 623 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 624 return llvm::ConstantExpr::getBitCast(Entry, PTy); 625 } 626 627 // This is the first use or definition of a mangled name. If there is a 628 // deferred decl with this name, remember that we need to emit it at the end 629 // of the file. 630 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 631 DeferredDecls.find(MangledName); 632 if (DDI != DeferredDecls.end()) { 633 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 634 // list, and remove it from DeferredDecls (since we don't need it anymore). 635 DeferredDeclsToEmit.push_back(DDI->second); 636 DeferredDecls.erase(DDI); 637 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 638 // If this the first reference to a C++ inline function in a class, queue up 639 // the deferred function body for emission. These are not seen as 640 // top-level declarations. 641 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 642 DeferredDeclsToEmit.push_back(D); 643 // A called constructor which has no definition or declaration need be 644 // synthesized. 645 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 646 const CXXRecordDecl *ClassDecl = 647 cast<CXXRecordDecl>(CD->getDeclContext()); 648 if (CD->isCopyConstructor(getContext())) 649 DeferredCopyConstructorToEmit(D); 650 else if (!ClassDecl->hasUserDeclaredConstructor()) 651 DeferredDeclsToEmit.push_back(D); 652 } 653 else if (isa<CXXDestructorDecl>(FD)) 654 DeferredDestructorToEmit(D); 655 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 656 if (MD->isCopyAssignment()) 657 DeferredCopyAssignmentToEmit(D); 658 } 659 660 // This function doesn't have a complete type (for example, the return 661 // type is an incomplete struct). Use a fake type instead, and make 662 // sure not to try to set attributes. 663 bool IsIncompleteFunction = false; 664 if (!isa<llvm::FunctionType>(Ty)) { 665 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 666 std::vector<const llvm::Type*>(), false); 667 IsIncompleteFunction = true; 668 } 669 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 670 llvm::Function::ExternalLinkage, 671 "", &getModule()); 672 F->setName(MangledName); 673 if (D.getDecl()) 674 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 675 IsIncompleteFunction); 676 Entry = F; 677 return F; 678 } 679 680 /// Defer definition of copy constructor(s) which need be implicitly defined. 681 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 682 const CXXConstructorDecl *CD = 683 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 684 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 685 if (ClassDecl->hasTrivialCopyConstructor() || 686 ClassDecl->hasUserDeclaredCopyConstructor()) 687 return; 688 689 // First make sure all direct base classes and virtual bases and non-static 690 // data mebers which need to have their copy constructors implicitly defined 691 // are defined. 12.8.p7 692 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 693 Base != ClassDecl->bases_end(); ++Base) { 694 CXXRecordDecl *BaseClassDecl 695 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 696 if (CXXConstructorDecl *BaseCopyCtor = 697 BaseClassDecl->getCopyConstructor(Context, 0)) 698 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 699 } 700 701 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 702 FieldEnd = ClassDecl->field_end(); 703 Field != FieldEnd; ++Field) { 704 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 705 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 706 FieldType = Array->getElementType(); 707 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 708 if ((*Field)->isAnonymousStructOrUnion()) 709 continue; 710 CXXRecordDecl *FieldClassDecl 711 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 712 if (CXXConstructorDecl *FieldCopyCtor = 713 FieldClassDecl->getCopyConstructor(Context, 0)) 714 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 715 } 716 } 717 DeferredDeclsToEmit.push_back(CopyCtorDecl); 718 } 719 720 /// Defer definition of copy assignments which need be implicitly defined. 721 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 722 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 723 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 724 725 if (ClassDecl->hasTrivialCopyAssignment() || 726 ClassDecl->hasUserDeclaredCopyAssignment()) 727 return; 728 729 // First make sure all direct base classes and virtual bases and non-static 730 // data mebers which need to have their copy assignments implicitly defined 731 // are defined. 12.8.p12 732 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 733 Base != ClassDecl->bases_end(); ++Base) { 734 CXXRecordDecl *BaseClassDecl 735 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 736 const CXXMethodDecl *MD = 0; 737 if (!BaseClassDecl->hasTrivialCopyAssignment() && 738 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 739 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 740 GetAddrOfFunction(MD, 0); 741 } 742 743 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 744 FieldEnd = ClassDecl->field_end(); 745 Field != FieldEnd; ++Field) { 746 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 747 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 748 FieldType = Array->getElementType(); 749 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 750 if ((*Field)->isAnonymousStructOrUnion()) 751 continue; 752 CXXRecordDecl *FieldClassDecl 753 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 754 const CXXMethodDecl *MD = 0; 755 if (!FieldClassDecl->hasTrivialCopyAssignment() && 756 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 757 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 758 GetAddrOfFunction(MD, 0); 759 } 760 } 761 DeferredDeclsToEmit.push_back(CopyAssignDecl); 762 } 763 764 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 765 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 766 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 767 if (ClassDecl->hasTrivialDestructor() || 768 ClassDecl->hasUserDeclaredDestructor()) 769 return; 770 771 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 772 Base != ClassDecl->bases_end(); ++Base) { 773 CXXRecordDecl *BaseClassDecl 774 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 775 if (const CXXDestructorDecl *BaseDtor = 776 BaseClassDecl->getDestructor(Context)) 777 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 778 } 779 780 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 781 FieldEnd = ClassDecl->field_end(); 782 Field != FieldEnd; ++Field) { 783 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 784 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 785 FieldType = Array->getElementType(); 786 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 787 if ((*Field)->isAnonymousStructOrUnion()) 788 continue; 789 CXXRecordDecl *FieldClassDecl 790 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 791 if (const CXXDestructorDecl *FieldDtor = 792 FieldClassDecl->getDestructor(Context)) 793 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 794 } 795 } 796 DeferredDeclsToEmit.push_back(DtorDecl); 797 } 798 799 800 /// GetAddrOfFunction - Return the address of the given function. If Ty is 801 /// non-null, then this function will use the specified type if it has to 802 /// create it (this occurs when we see a definition of the function). 803 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 804 const llvm::Type *Ty) { 805 // If there was no specific requested type, just convert it now. 806 if (!Ty) 807 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 808 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 809 } 810 811 /// CreateRuntimeFunction - Create a new runtime function with the specified 812 /// type and name. 813 llvm::Constant * 814 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 815 const char *Name) { 816 // Convert Name to be a uniqued string from the IdentifierInfo table. 817 Name = getContext().Idents.get(Name).getName(); 818 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 819 } 820 821 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 822 /// create and return an llvm GlobalVariable with the specified type. If there 823 /// is something in the module with the specified name, return it potentially 824 /// bitcasted to the right type. 825 /// 826 /// If D is non-null, it specifies a decl that correspond to this. This is used 827 /// to set the attributes on the global when it is first created. 828 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 829 const llvm::PointerType*Ty, 830 const VarDecl *D) { 831 // Lookup the entry, lazily creating it if necessary. 832 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 833 if (Entry) { 834 if (Entry->getType() == Ty) 835 return Entry; 836 837 // Make sure the result is of the correct type. 838 return llvm::ConstantExpr::getBitCast(Entry, Ty); 839 } 840 841 // This is the first use or definition of a mangled name. If there is a 842 // deferred decl with this name, remember that we need to emit it at the end 843 // of the file. 844 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 845 DeferredDecls.find(MangledName); 846 if (DDI != DeferredDecls.end()) { 847 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 848 // list, and remove it from DeferredDecls (since we don't need it anymore). 849 DeferredDeclsToEmit.push_back(DDI->second); 850 DeferredDecls.erase(DDI); 851 } 852 853 llvm::GlobalVariable *GV = 854 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 855 llvm::GlobalValue::ExternalLinkage, 856 0, "", 0, 857 false, Ty->getAddressSpace()); 858 GV->setName(MangledName); 859 860 // Handle things which are present even on external declarations. 861 if (D) { 862 // FIXME: This code is overly simple and should be merged with other global 863 // handling. 864 GV->setConstant(D->getType().isConstant(Context)); 865 866 // FIXME: Merge with other attribute handling code. 867 if (D->getStorageClass() == VarDecl::PrivateExtern) 868 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 869 870 if (D->hasAttr<WeakAttr>() || 871 D->hasAttr<WeakImportAttr>()) 872 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 873 874 GV->setThreadLocal(D->isThreadSpecified()); 875 } 876 877 return Entry = GV; 878 } 879 880 881 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 882 /// given global variable. If Ty is non-null and if the global doesn't exist, 883 /// then it will be greated with the specified type instead of whatever the 884 /// normal requested type would be. 885 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 886 const llvm::Type *Ty) { 887 assert(D->hasGlobalStorage() && "Not a global variable"); 888 QualType ASTTy = D->getType(); 889 if (Ty == 0) 890 Ty = getTypes().ConvertTypeForMem(ASTTy); 891 892 const llvm::PointerType *PTy = 893 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 894 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 895 } 896 897 /// CreateRuntimeVariable - Create a new runtime global variable with the 898 /// specified type and name. 899 llvm::Constant * 900 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 901 const char *Name) { 902 // Convert Name to be a uniqued string from the IdentifierInfo table. 903 Name = getContext().Idents.get(Name).getName(); 904 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 905 } 906 907 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 908 assert(!D->getInit() && "Cannot emit definite definitions here!"); 909 910 if (MayDeferGeneration(D)) { 911 // If we have not seen a reference to this variable yet, place it 912 // into the deferred declarations table to be emitted if needed 913 // later. 914 const char *MangledName = getMangledName(D); 915 if (GlobalDeclMap.count(MangledName) == 0) { 916 DeferredDecls[MangledName] = D; 917 return; 918 } 919 } 920 921 // The tentative definition is the only definition. 922 EmitGlobalVarDefinition(D); 923 } 924 925 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 926 llvm::Constant *Init = 0; 927 QualType ASTTy = D->getType(); 928 929 if (D->getInit() == 0) { 930 // This is a tentative definition; tentative definitions are 931 // implicitly initialized with { 0 }. 932 // 933 // Note that tentative definitions are only emitted at the end of 934 // a translation unit, so they should never have incomplete 935 // type. In addition, EmitTentativeDefinition makes sure that we 936 // never attempt to emit a tentative definition if a real one 937 // exists. A use may still exists, however, so we still may need 938 // to do a RAUW. 939 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 940 Init = EmitNullConstant(D->getType()); 941 } else { 942 Init = EmitConstantExpr(D->getInit(), D->getType()); 943 944 if (!Init) { 945 QualType T = D->getInit()->getType(); 946 if (getLangOptions().CPlusPlus) { 947 CXXGlobalInits.push_back(D); 948 Init = EmitNullConstant(T); 949 } else { 950 ErrorUnsupported(D, "static initializer"); 951 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 952 } 953 } 954 } 955 956 const llvm::Type* InitType = Init->getType(); 957 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 958 959 // Strip off a bitcast if we got one back. 960 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 961 assert(CE->getOpcode() == llvm::Instruction::BitCast || 962 // all zero index gep. 963 CE->getOpcode() == llvm::Instruction::GetElementPtr); 964 Entry = CE->getOperand(0); 965 } 966 967 // Entry is now either a Function or GlobalVariable. 968 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 969 970 // We have a definition after a declaration with the wrong type. 971 // We must make a new GlobalVariable* and update everything that used OldGV 972 // (a declaration or tentative definition) with the new GlobalVariable* 973 // (which will be a definition). 974 // 975 // This happens if there is a prototype for a global (e.g. 976 // "extern int x[];") and then a definition of a different type (e.g. 977 // "int x[10];"). This also happens when an initializer has a different type 978 // from the type of the global (this happens with unions). 979 if (GV == 0 || 980 GV->getType()->getElementType() != InitType || 981 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 982 983 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 984 GlobalDeclMap.erase(getMangledName(D)); 985 986 // Make a new global with the correct type, this is now guaranteed to work. 987 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 988 GV->takeName(cast<llvm::GlobalValue>(Entry)); 989 990 // Replace all uses of the old global with the new global 991 llvm::Constant *NewPtrForOldDecl = 992 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 993 Entry->replaceAllUsesWith(NewPtrForOldDecl); 994 995 // Erase the old global, since it is no longer used. 996 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 997 } 998 999 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1000 SourceManager &SM = Context.getSourceManager(); 1001 AddAnnotation(EmitAnnotateAttr(GV, AA, 1002 SM.getInstantiationLineNumber(D->getLocation()))); 1003 } 1004 1005 GV->setInitializer(Init); 1006 1007 // If it is safe to mark the global 'constant', do so now. 1008 GV->setConstant(false); 1009 if (D->getType().isConstant(Context)) { 1010 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1011 // members, it cannot be declared "LLVM const". 1012 GV->setConstant(true); 1013 } 1014 1015 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1016 1017 // Set the llvm linkage type as appropriate. 1018 if (D->getStorageClass() == VarDecl::Static) 1019 GV->setLinkage(llvm::Function::InternalLinkage); 1020 else if (D->hasAttr<DLLImportAttr>()) 1021 GV->setLinkage(llvm::Function::DLLImportLinkage); 1022 else if (D->hasAttr<DLLExportAttr>()) 1023 GV->setLinkage(llvm::Function::DLLExportLinkage); 1024 else if (D->hasAttr<WeakAttr>()) { 1025 if (GV->isConstant()) 1026 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1027 else 1028 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1029 } else if (!CompileOpts.NoCommon && 1030 !D->hasExternalStorage() && !D->getInit() && 1031 !D->getAttr<SectionAttr>()) { 1032 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1033 // common vars aren't constant even if declared const. 1034 GV->setConstant(false); 1035 } else 1036 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1037 1038 SetCommonAttributes(D, GV); 1039 1040 // Emit global variable debug information. 1041 if (CGDebugInfo *DI = getDebugInfo()) { 1042 DI->setLocation(D->getLocation()); 1043 DI->EmitGlobalVariable(GV, D); 1044 } 1045 } 1046 1047 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1048 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1049 /// existing call uses of the old function in the module, this adjusts them to 1050 /// call the new function directly. 1051 /// 1052 /// This is not just a cleanup: the always_inline pass requires direct calls to 1053 /// functions to be able to inline them. If there is a bitcast in the way, it 1054 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1055 /// run at -O0. 1056 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1057 llvm::Function *NewFn) { 1058 // If we're redefining a global as a function, don't transform it. 1059 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1060 if (OldFn == 0) return; 1061 1062 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1063 llvm::SmallVector<llvm::Value*, 4> ArgList; 1064 1065 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1066 UI != E; ) { 1067 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1068 unsigned OpNo = UI.getOperandNo(); 1069 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1070 if (!CI || OpNo != 0) continue; 1071 1072 // If the return types don't match exactly, and if the call isn't dead, then 1073 // we can't transform this call. 1074 if (CI->getType() != NewRetTy && !CI->use_empty()) 1075 continue; 1076 1077 // If the function was passed too few arguments, don't transform. If extra 1078 // arguments were passed, we silently drop them. If any of the types 1079 // mismatch, we don't transform. 1080 unsigned ArgNo = 0; 1081 bool DontTransform = false; 1082 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1083 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1084 if (CI->getNumOperands()-1 == ArgNo || 1085 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1086 DontTransform = true; 1087 break; 1088 } 1089 } 1090 if (DontTransform) 1091 continue; 1092 1093 // Okay, we can transform this. Create the new call instruction and copy 1094 // over the required information. 1095 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1096 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1097 ArgList.end(), "", CI); 1098 ArgList.clear(); 1099 if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext())) 1100 NewCall->takeName(CI); 1101 NewCall->setAttributes(CI->getAttributes()); 1102 NewCall->setCallingConv(CI->getCallingConv()); 1103 1104 // Finally, remove the old call, replacing any uses with the new one. 1105 if (!CI->use_empty()) 1106 CI->replaceAllUsesWith(NewCall); 1107 CI->eraseFromParent(); 1108 } 1109 } 1110 1111 1112 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1113 const llvm::FunctionType *Ty; 1114 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1115 1116 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1117 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1118 1119 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1120 } else { 1121 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1122 1123 // As a special case, make sure that definitions of K&R function 1124 // "type foo()" aren't declared as varargs (which forces the backend 1125 // to do unnecessary work). 1126 if (D->getType()->isFunctionNoProtoType()) { 1127 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1128 // Due to stret, the lowered function could have arguments. 1129 // Just create the same type as was lowered by ConvertType 1130 // but strip off the varargs bit. 1131 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1132 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1133 } 1134 } 1135 1136 // Get or create the prototype for the function. 1137 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1138 1139 // Strip off a bitcast if we got one back. 1140 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1141 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1142 Entry = CE->getOperand(0); 1143 } 1144 1145 1146 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1147 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1148 1149 // If the types mismatch then we have to rewrite the definition. 1150 assert(OldFn->isDeclaration() && 1151 "Shouldn't replace non-declaration"); 1152 1153 // F is the Function* for the one with the wrong type, we must make a new 1154 // Function* and update everything that used F (a declaration) with the new 1155 // Function* (which will be a definition). 1156 // 1157 // This happens if there is a prototype for a function 1158 // (e.g. "int f()") and then a definition of a different type 1159 // (e.g. "int f(int x)"). Start by making a new function of the 1160 // correct type, RAUW, then steal the name. 1161 GlobalDeclMap.erase(getMangledName(D)); 1162 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1163 NewFn->takeName(OldFn); 1164 1165 // If this is an implementation of a function without a prototype, try to 1166 // replace any existing uses of the function (which may be calls) with uses 1167 // of the new function 1168 if (D->getType()->isFunctionNoProtoType()) { 1169 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1170 OldFn->removeDeadConstantUsers(); 1171 } 1172 1173 // Replace uses of F with the Function we will endow with a body. 1174 if (!Entry->use_empty()) { 1175 llvm::Constant *NewPtrForOldDecl = 1176 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1177 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1178 } 1179 1180 // Ok, delete the old function now, which is dead. 1181 OldFn->eraseFromParent(); 1182 1183 Entry = NewFn; 1184 } 1185 1186 llvm::Function *Fn = cast<llvm::Function>(Entry); 1187 1188 CodeGenFunction(*this).GenerateCode(D, Fn); 1189 1190 SetFunctionDefinitionAttributes(D, Fn); 1191 SetLLVMFunctionAttributesForDefinition(D, Fn); 1192 1193 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1194 AddGlobalCtor(Fn, CA->getPriority()); 1195 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1196 AddGlobalDtor(Fn, DA->getPriority()); 1197 } 1198 1199 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1200 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1201 assert(AA && "Not an alias?"); 1202 1203 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1204 1205 // Unique the name through the identifier table. 1206 const char *AliaseeName = AA->getAliasee().c_str(); 1207 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1208 1209 // Create a reference to the named value. This ensures that it is emitted 1210 // if a deferred decl. 1211 llvm::Constant *Aliasee; 1212 if (isa<llvm::FunctionType>(DeclTy)) 1213 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1214 else 1215 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1216 llvm::PointerType::getUnqual(DeclTy), 0); 1217 1218 // Create the new alias itself, but don't set a name yet. 1219 llvm::GlobalValue *GA = 1220 new llvm::GlobalAlias(Aliasee->getType(), 1221 llvm::Function::ExternalLinkage, 1222 "", Aliasee, &getModule()); 1223 1224 // See if there is already something with the alias' name in the module. 1225 const char *MangledName = getMangledName(D); 1226 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1227 1228 if (Entry && !Entry->isDeclaration()) { 1229 // If there is a definition in the module, then it wins over the alias. 1230 // This is dubious, but allow it to be safe. Just ignore the alias. 1231 GA->eraseFromParent(); 1232 return; 1233 } 1234 1235 if (Entry) { 1236 // If there is a declaration in the module, then we had an extern followed 1237 // by the alias, as in: 1238 // extern int test6(); 1239 // ... 1240 // int test6() __attribute__((alias("test7"))); 1241 // 1242 // Remove it and replace uses of it with the alias. 1243 1244 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1245 Entry->getType())); 1246 Entry->eraseFromParent(); 1247 } 1248 1249 // Now we know that there is no conflict, set the name. 1250 Entry = GA; 1251 GA->setName(MangledName); 1252 1253 // Set attributes which are particular to an alias; this is a 1254 // specialization of the attributes which may be set on a global 1255 // variable/function. 1256 if (D->hasAttr<DLLExportAttr>()) { 1257 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1258 // The dllexport attribute is ignored for undefined symbols. 1259 if (FD->getBody()) 1260 GA->setLinkage(llvm::Function::DLLExportLinkage); 1261 } else { 1262 GA->setLinkage(llvm::Function::DLLExportLinkage); 1263 } 1264 } else if (D->hasAttr<WeakAttr>() || 1265 D->hasAttr<WeakImportAttr>()) { 1266 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1267 } 1268 1269 SetCommonAttributes(D, GA); 1270 } 1271 1272 /// getBuiltinLibFunction - Given a builtin id for a function like 1273 /// "__builtin_fabsf", return a Function* for "fabsf". 1274 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1275 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1276 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1277 "isn't a lib fn"); 1278 1279 // Get the name, skip over the __builtin_ prefix (if necessary). 1280 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1281 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1282 Name += 10; 1283 1284 // Get the type for the builtin. 1285 ASTContext::GetBuiltinTypeError Error; 1286 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1287 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1288 1289 const llvm::FunctionType *Ty = 1290 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1291 1292 // Unique the name through the identifier table. 1293 Name = getContext().Idents.get(Name).getName(); 1294 // FIXME: param attributes for sext/zext etc. 1295 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1296 } 1297 1298 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1299 unsigned NumTys) { 1300 return llvm::Intrinsic::getDeclaration(&getModule(), 1301 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1302 } 1303 1304 llvm::Function *CodeGenModule::getMemCpyFn() { 1305 if (MemCpyFn) return MemCpyFn; 1306 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1307 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1308 } 1309 1310 llvm::Function *CodeGenModule::getMemMoveFn() { 1311 if (MemMoveFn) return MemMoveFn; 1312 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1313 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1314 } 1315 1316 llvm::Function *CodeGenModule::getMemSetFn() { 1317 if (MemSetFn) return MemSetFn; 1318 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1319 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1320 } 1321 1322 static llvm::StringMapEntry<llvm::Constant*> & 1323 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1324 const StringLiteral *Literal, 1325 bool TargetIsLSB, 1326 bool &IsUTF16, 1327 unsigned &StringLength) { 1328 unsigned NumBytes = Literal->getByteLength(); 1329 1330 // Check for simple case. 1331 if (!Literal->containsNonAsciiOrNull()) { 1332 StringLength = NumBytes; 1333 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1334 StringLength)); 1335 } 1336 1337 // Otherwise, convert the UTF8 literals into a byte string. 1338 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1339 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1340 UTF16 *ToPtr = &ToBuf[0]; 1341 1342 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1343 &ToPtr, ToPtr + NumBytes, 1344 strictConversion); 1345 1346 // Check for conversion failure. 1347 if (Result != conversionOK) { 1348 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1349 // this duplicate code. 1350 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1351 StringLength = NumBytes; 1352 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1353 StringLength)); 1354 } 1355 1356 // ConvertUTF8toUTF16 returns the length in ToPtr. 1357 StringLength = ToPtr - &ToBuf[0]; 1358 1359 // Render the UTF-16 string into a byte array and convert to the target byte 1360 // order. 1361 // 1362 // FIXME: This isn't something we should need to do here. 1363 llvm::SmallString<128> AsBytes; 1364 AsBytes.reserve(StringLength * 2); 1365 for (unsigned i = 0; i != StringLength; ++i) { 1366 unsigned short Val = ToBuf[i]; 1367 if (TargetIsLSB) { 1368 AsBytes.push_back(Val & 0xFF); 1369 AsBytes.push_back(Val >> 8); 1370 } else { 1371 AsBytes.push_back(Val >> 8); 1372 AsBytes.push_back(Val & 0xFF); 1373 } 1374 } 1375 // Append one extra null character, the second is automatically added by our 1376 // caller. 1377 AsBytes.push_back(0); 1378 1379 IsUTF16 = true; 1380 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1381 } 1382 1383 llvm::Constant * 1384 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1385 unsigned StringLength = 0; 1386 bool isUTF16 = false; 1387 llvm::StringMapEntry<llvm::Constant*> &Entry = 1388 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1389 getTargetData().isLittleEndian(), 1390 isUTF16, StringLength); 1391 1392 if (llvm::Constant *C = Entry.getValue()) 1393 return C; 1394 1395 llvm::Constant *Zero = 1396 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1397 llvm::Constant *Zeros[] = { Zero, Zero }; 1398 1399 // If we don't already have it, get __CFConstantStringClassReference. 1400 if (!CFConstantStringClassRef) { 1401 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1402 Ty = llvm::ArrayType::get(Ty, 0); 1403 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1404 "__CFConstantStringClassReference"); 1405 // Decay array -> ptr 1406 CFConstantStringClassRef = 1407 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1408 } 1409 1410 QualType CFTy = getContext().getCFConstantStringType(); 1411 1412 const llvm::StructType *STy = 1413 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1414 1415 std::vector<llvm::Constant*> Fields(4); 1416 1417 // Class pointer. 1418 Fields[0] = CFConstantStringClassRef; 1419 1420 // Flags. 1421 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1422 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1423 llvm::ConstantInt::get(Ty, 0x07C8); 1424 1425 // String pointer. 1426 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1427 1428 const char *Sect, *Prefix; 1429 bool isConstant; 1430 llvm::GlobalValue::LinkageTypes Linkage; 1431 if (isUTF16) { 1432 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1433 Sect = getContext().Target.getUnicodeStringSection(); 1434 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1435 Linkage = llvm::GlobalValue::InternalLinkage; 1436 // FIXME: Why does GCC not set constant here? 1437 isConstant = false; 1438 } else { 1439 Prefix = ".str"; 1440 Sect = getContext().Target.getCFStringDataSection(); 1441 Linkage = llvm::GlobalValue::PrivateLinkage; 1442 // FIXME: -fwritable-strings should probably affect this, but we 1443 // are following gcc here. 1444 isConstant = true; 1445 } 1446 llvm::GlobalVariable *GV = 1447 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1448 Linkage, C, Prefix); 1449 if (Sect) 1450 GV->setSection(Sect); 1451 if (isUTF16) { 1452 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1453 GV->setAlignment(Align); 1454 } 1455 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1456 1457 // String length. 1458 Ty = getTypes().ConvertType(getContext().LongTy); 1459 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1460 1461 // The struct. 1462 C = llvm::ConstantStruct::get(STy, Fields); 1463 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1464 llvm::GlobalVariable::PrivateLinkage, C, 1465 "_unnamed_cfstring_"); 1466 if (const char *Sect = getContext().Target.getCFStringSection()) 1467 GV->setSection(Sect); 1468 Entry.setValue(GV); 1469 1470 return GV; 1471 } 1472 1473 /// GetStringForStringLiteral - Return the appropriate bytes for a 1474 /// string literal, properly padded to match the literal type. 1475 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1476 const char *StrData = E->getStrData(); 1477 unsigned Len = E->getByteLength(); 1478 1479 const ConstantArrayType *CAT = 1480 getContext().getAsConstantArrayType(E->getType()); 1481 assert(CAT && "String isn't pointer or array!"); 1482 1483 // Resize the string to the right size. 1484 std::string Str(StrData, StrData+Len); 1485 uint64_t RealLen = CAT->getSize().getZExtValue(); 1486 1487 if (E->isWide()) 1488 RealLen *= getContext().Target.getWCharWidth()/8; 1489 1490 Str.resize(RealLen, '\0'); 1491 1492 return Str; 1493 } 1494 1495 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1496 /// constant array for the given string literal. 1497 llvm::Constant * 1498 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1499 // FIXME: This can be more efficient. 1500 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1501 } 1502 1503 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1504 /// array for the given ObjCEncodeExpr node. 1505 llvm::Constant * 1506 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1507 std::string Str; 1508 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1509 1510 return GetAddrOfConstantCString(Str); 1511 } 1512 1513 1514 /// GenerateWritableString -- Creates storage for a string literal. 1515 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1516 bool constant, 1517 CodeGenModule &CGM, 1518 const char *GlobalName) { 1519 // Create Constant for this string literal. Don't add a '\0'. 1520 llvm::Constant *C = 1521 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1522 1523 // Create a global variable for this string 1524 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1525 llvm::GlobalValue::PrivateLinkage, 1526 C, GlobalName); 1527 } 1528 1529 /// GetAddrOfConstantString - Returns a pointer to a character array 1530 /// containing the literal. This contents are exactly that of the 1531 /// given string, i.e. it will not be null terminated automatically; 1532 /// see GetAddrOfConstantCString. Note that whether the result is 1533 /// actually a pointer to an LLVM constant depends on 1534 /// Feature.WriteableStrings. 1535 /// 1536 /// The result has pointer to array type. 1537 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1538 const char *GlobalName) { 1539 bool IsConstant = !Features.WritableStrings; 1540 1541 // Get the default prefix if a name wasn't specified. 1542 if (!GlobalName) 1543 GlobalName = ".str"; 1544 1545 // Don't share any string literals if strings aren't constant. 1546 if (!IsConstant) 1547 return GenerateStringLiteral(str, false, *this, GlobalName); 1548 1549 llvm::StringMapEntry<llvm::Constant *> &Entry = 1550 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1551 1552 if (Entry.getValue()) 1553 return Entry.getValue(); 1554 1555 // Create a global variable for this. 1556 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1557 Entry.setValue(C); 1558 return C; 1559 } 1560 1561 /// GetAddrOfConstantCString - Returns a pointer to a character 1562 /// array containing the literal and a terminating '\-' 1563 /// character. The result has pointer to array type. 1564 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1565 const char *GlobalName){ 1566 return GetAddrOfConstantString(str + '\0', GlobalName); 1567 } 1568 1569 /// EmitObjCPropertyImplementations - Emit information for synthesized 1570 /// properties for an implementation. 1571 void CodeGenModule::EmitObjCPropertyImplementations(const 1572 ObjCImplementationDecl *D) { 1573 for (ObjCImplementationDecl::propimpl_iterator 1574 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1575 ObjCPropertyImplDecl *PID = *i; 1576 1577 // Dynamic is just for type-checking. 1578 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1579 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1580 1581 // Determine which methods need to be implemented, some may have 1582 // been overridden. Note that ::isSynthesized is not the method 1583 // we want, that just indicates if the decl came from a 1584 // property. What we want to know is if the method is defined in 1585 // this implementation. 1586 if (!D->getInstanceMethod(PD->getGetterName())) 1587 CodeGenFunction(*this).GenerateObjCGetter( 1588 const_cast<ObjCImplementationDecl *>(D), PID); 1589 if (!PD->isReadOnly() && 1590 !D->getInstanceMethod(PD->getSetterName())) 1591 CodeGenFunction(*this).GenerateObjCSetter( 1592 const_cast<ObjCImplementationDecl *>(D), PID); 1593 } 1594 } 1595 } 1596 1597 /// EmitNamespace - Emit all declarations in a namespace. 1598 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1599 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1600 I != E; ++I) 1601 EmitTopLevelDecl(*I); 1602 } 1603 1604 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1605 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1606 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1607 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1608 ErrorUnsupported(LSD, "linkage spec"); 1609 return; 1610 } 1611 1612 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1613 I != E; ++I) 1614 EmitTopLevelDecl(*I); 1615 } 1616 1617 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1618 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1619 // If an error has occurred, stop code generation, but continue 1620 // parsing and semantic analysis (to ensure all warnings and errors 1621 // are emitted). 1622 if (Diags.hasErrorOccurred()) 1623 return; 1624 1625 // Ignore dependent declarations. 1626 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1627 return; 1628 1629 switch (D->getKind()) { 1630 case Decl::CXXConversion: 1631 case Decl::CXXMethod: 1632 case Decl::Function: 1633 // Skip function templates 1634 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1635 return; 1636 1637 EmitGlobal(cast<FunctionDecl>(D)); 1638 break; 1639 1640 case Decl::Var: 1641 EmitGlobal(cast<VarDecl>(D)); 1642 break; 1643 1644 // C++ Decls 1645 case Decl::Namespace: 1646 EmitNamespace(cast<NamespaceDecl>(D)); 1647 break; 1648 // No code generation needed. 1649 case Decl::Using: 1650 case Decl::UsingDirective: 1651 case Decl::ClassTemplate: 1652 case Decl::FunctionTemplate: 1653 break; 1654 case Decl::CXXConstructor: 1655 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1656 break; 1657 case Decl::CXXDestructor: 1658 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1659 break; 1660 1661 case Decl::StaticAssert: 1662 // Nothing to do. 1663 break; 1664 1665 // Objective-C Decls 1666 1667 // Forward declarations, no (immediate) code generation. 1668 case Decl::ObjCClass: 1669 case Decl::ObjCForwardProtocol: 1670 case Decl::ObjCCategory: 1671 case Decl::ObjCInterface: 1672 break; 1673 1674 case Decl::ObjCProtocol: 1675 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1676 break; 1677 1678 case Decl::ObjCCategoryImpl: 1679 // Categories have properties but don't support synthesize so we 1680 // can ignore them here. 1681 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1682 break; 1683 1684 case Decl::ObjCImplementation: { 1685 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1686 EmitObjCPropertyImplementations(OMD); 1687 Runtime->GenerateClass(OMD); 1688 break; 1689 } 1690 case Decl::ObjCMethod: { 1691 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1692 // If this is not a prototype, emit the body. 1693 if (OMD->getBody()) 1694 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1695 break; 1696 } 1697 case Decl::ObjCCompatibleAlias: 1698 // compatibility-alias is a directive and has no code gen. 1699 break; 1700 1701 case Decl::LinkageSpec: 1702 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1703 break; 1704 1705 case Decl::FileScopeAsm: { 1706 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1707 std::string AsmString(AD->getAsmString()->getStrData(), 1708 AD->getAsmString()->getByteLength()); 1709 1710 const std::string &S = getModule().getModuleInlineAsm(); 1711 if (S.empty()) 1712 getModule().setModuleInlineAsm(AsmString); 1713 else 1714 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1715 break; 1716 } 1717 1718 default: 1719 // Make sure we handled everything we should, every other kind is a 1720 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1721 // function. Need to recode Decl::Kind to do that easily. 1722 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1723 } 1724 } 1725