1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // The kind of external linkage this function will have, if it is not
251   // inline or static.
252   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253   if (Context.getLangOptions().CPlusPlus &&
254       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
255     External = CodeGenModule::GVA_TemplateInstantiation;
256 
257   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
258     // C++ member functions defined inside the class are always inline.
259     if (MD->isInline() || !MD->isOutOfLine())
260       return CodeGenModule::GVA_CXXInline;
261 
262     return External;
263   }
264 
265   // "static" functions get internal linkage.
266   if (FD->getStorageClass() == FunctionDecl::Static)
267     return CodeGenModule::GVA_Internal;
268 
269   if (!FD->isInline())
270     return External;
271 
272   // If the inline function explicitly has the GNU inline attribute on it, or if
273   // this is C89 mode, we use to GNU semantics.
274   if (!Features.C99 && !Features.CPlusPlus) {
275     // extern inline in GNU mode is like C99 inline.
276     if (FD->getStorageClass() == FunctionDecl::Extern)
277       return CodeGenModule::GVA_C99Inline;
278     // Normal inline is a strong symbol.
279     return CodeGenModule::GVA_StrongExternal;
280   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
281     // GCC in C99 mode seems to use a different decision-making
282     // process for extern inline, which factors in previous
283     // declarations.
284     if (FD->isExternGNUInline(Context))
285       return CodeGenModule::GVA_C99Inline;
286     // Normal inline is a strong symbol.
287     return External;
288   }
289 
290   // The definition of inline changes based on the language.  Note that we
291   // have already handled "static inline" above, with the GVA_Internal case.
292   if (Features.CPlusPlus)  // inline and extern inline.
293     return CodeGenModule::GVA_CXXInline;
294 
295   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
296   if (FD->isC99InlineDefinition())
297     return CodeGenModule::GVA_C99Inline;
298 
299   return CodeGenModule::GVA_StrongExternal;
300 }
301 
302 /// SetFunctionDefinitionAttributes - Set attributes for a global.
303 ///
304 /// FIXME: This is currently only done for aliases and functions, but not for
305 /// variables (these details are set in EmitGlobalVarDefinition for variables).
306 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
307                                                     llvm::GlobalValue *GV) {
308   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
309 
310   if (Linkage == GVA_Internal) {
311     GV->setLinkage(llvm::Function::InternalLinkage);
312   } else if (D->hasAttr<DLLExportAttr>()) {
313     GV->setLinkage(llvm::Function::DLLExportLinkage);
314   } else if (D->hasAttr<WeakAttr>()) {
315     GV->setLinkage(llvm::Function::WeakAnyLinkage);
316   } else if (Linkage == GVA_C99Inline) {
317     // In C99 mode, 'inline' functions are guaranteed to have a strong
318     // definition somewhere else, so we can use available_externally linkage.
319     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
320   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
321     // In C++, the compiler has to emit a definition in every translation unit
322     // that references the function.  We should use linkonce_odr because
323     // a) if all references in this translation unit are optimized away, we
324     // don't need to codegen it.  b) if the function persists, it needs to be
325     // merged with other definitions. c) C++ has the ODR, so we know the
326     // definition is dependable.
327     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
328   } else {
329     assert(Linkage == GVA_StrongExternal);
330     // Otherwise, we have strong external linkage.
331     GV->setLinkage(llvm::Function::ExternalLinkage);
332   }
333 
334   SetCommonAttributes(D, GV);
335 }
336 
337 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
338                                               const CGFunctionInfo &Info,
339                                               llvm::Function *F) {
340   unsigned CallingConv;
341   AttributeListType AttributeList;
342   ConstructAttributeList(Info, D, AttributeList, CallingConv);
343   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
344                                           AttributeList.size()));
345   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
346 }
347 
348 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
349                                                            llvm::Function *F) {
350   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
351     F->addFnAttr(llvm::Attribute::NoUnwind);
352 
353   if (D->hasAttr<AlwaysInlineAttr>())
354     F->addFnAttr(llvm::Attribute::AlwaysInline);
355 
356   if (D->hasAttr<NoInlineAttr>())
357     F->addFnAttr(llvm::Attribute::NoInline);
358 }
359 
360 void CodeGenModule::SetCommonAttributes(const Decl *D,
361                                         llvm::GlobalValue *GV) {
362   setGlobalVisibility(GV, D);
363 
364   if (D->hasAttr<UsedAttr>())
365     AddUsedGlobal(GV);
366 
367   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
368     GV->setSection(SA->getName());
369 }
370 
371 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
372                                                   llvm::Function *F,
373                                                   const CGFunctionInfo &FI) {
374   SetLLVMFunctionAttributes(D, FI, F);
375   SetLLVMFunctionAttributesForDefinition(D, F);
376 
377   F->setLinkage(llvm::Function::InternalLinkage);
378 
379   SetCommonAttributes(D, F);
380 }
381 
382 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
383                                           llvm::Function *F,
384                                           bool IsIncompleteFunction) {
385   if (!IsIncompleteFunction)
386     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
387 
388   // Only a few attributes are set on declarations; these may later be
389   // overridden by a definition.
390 
391   if (FD->hasAttr<DLLImportAttr>()) {
392     F->setLinkage(llvm::Function::DLLImportLinkage);
393   } else if (FD->hasAttr<WeakAttr>() ||
394              FD->hasAttr<WeakImportAttr>()) {
395     // "extern_weak" is overloaded in LLVM; we probably should have
396     // separate linkage types for this.
397     F->setLinkage(llvm::Function::ExternalWeakLinkage);
398   } else {
399     F->setLinkage(llvm::Function::ExternalLinkage);
400   }
401 
402   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
403     F->setSection(SA->getName());
404 }
405 
406 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
407   assert(!GV->isDeclaration() &&
408          "Only globals with definition can force usage.");
409   LLVMUsed.push_back(GV);
410 }
411 
412 void CodeGenModule::EmitLLVMUsed() {
413   // Don't create llvm.used if there is no need.
414   if (LLVMUsed.empty())
415     return;
416 
417   llvm::Type *i8PTy =
418       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
419 
420   // Convert LLVMUsed to what ConstantArray needs.
421   std::vector<llvm::Constant*> UsedArray;
422   UsedArray.resize(LLVMUsed.size());
423   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
424     UsedArray[i] =
425      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
426                                       i8PTy);
427   }
428 
429   if (UsedArray.empty())
430     return;
431   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
432 
433   llvm::GlobalVariable *GV =
434     new llvm::GlobalVariable(getModule(), ATy, false,
435                              llvm::GlobalValue::AppendingLinkage,
436                              llvm::ConstantArray::get(ATy, UsedArray),
437                              "llvm.used");
438 
439   GV->setSection("llvm.metadata");
440 }
441 
442 void CodeGenModule::EmitDeferred() {
443   // Emit code for any potentially referenced deferred decls.  Since a
444   // previously unused static decl may become used during the generation of code
445   // for a static function, iterate until no  changes are made.
446   while (!DeferredDeclsToEmit.empty()) {
447     GlobalDecl D = DeferredDeclsToEmit.back();
448     DeferredDeclsToEmit.pop_back();
449 
450     // The mangled name for the decl must have been emitted in GlobalDeclMap.
451     // Look it up to see if it was defined with a stronger definition (e.g. an
452     // extern inline function with a strong function redefinition).  If so,
453     // just ignore the deferred decl.
454     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
455     assert(CGRef && "Deferred decl wasn't referenced?");
456 
457     if (!CGRef->isDeclaration())
458       continue;
459 
460     // Otherwise, emit the definition and move on to the next one.
461     EmitGlobalDefinition(D);
462   }
463 }
464 
465 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
466 /// annotation information for a given GlobalValue.  The annotation struct is
467 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
468 /// GlobalValue being annotated.  The second field is the constant string
469 /// created from the AnnotateAttr's annotation.  The third field is a constant
470 /// string containing the name of the translation unit.  The fourth field is
471 /// the line number in the file of the annotated value declaration.
472 ///
473 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
474 ///        appears to.
475 ///
476 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
477                                                 const AnnotateAttr *AA,
478                                                 unsigned LineNo) {
479   llvm::Module *M = &getModule();
480 
481   // get [N x i8] constants for the annotation string, and the filename string
482   // which are the 2nd and 3rd elements of the global annotation structure.
483   const llvm::Type *SBP =
484       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
485   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
486                                                   AA->getAnnotation(), true);
487   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
488                                                   M->getModuleIdentifier(),
489                                                   true);
490 
491   // Get the two global values corresponding to the ConstantArrays we just
492   // created to hold the bytes of the strings.
493   llvm::GlobalValue *annoGV =
494     new llvm::GlobalVariable(*M, anno->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, anno,
496                              GV->getName());
497   // translation unit name string, emitted into the llvm.metadata section.
498   llvm::GlobalValue *unitGV =
499     new llvm::GlobalVariable(*M, unit->getType(), false,
500                              llvm::GlobalValue::PrivateLinkage, unit,
501                              ".str");
502 
503   // Create the ConstantStruct for the global annotation.
504   llvm::Constant *Fields[4] = {
505     llvm::ConstantExpr::getBitCast(GV, SBP),
506     llvm::ConstantExpr::getBitCast(annoGV, SBP),
507     llvm::ConstantExpr::getBitCast(unitGV, SBP),
508     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
509   };
510   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
511 }
512 
513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
514   // Never defer when EmitAllDecls is specified or the decl has
515   // attribute used.
516   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
517     return false;
518 
519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
520     // Constructors and destructors should never be deferred.
521     if (FD->hasAttr<ConstructorAttr>() ||
522         FD->hasAttr<DestructorAttr>())
523       return false;
524 
525     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
526 
527     // static, static inline, always_inline, and extern inline functions can
528     // always be deferred.  Normal inline functions can be deferred in C99/C++.
529     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
530         Linkage == GVA_CXXInline)
531       return true;
532     return false;
533   }
534 
535   const VarDecl *VD = cast<VarDecl>(Global);
536   assert(VD->isFileVarDecl() && "Invalid decl");
537 
538   return VD->getStorageClass() == VarDecl::Static;
539 }
540 
541 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
542   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
543 
544   // If this is an alias definition (which otherwise looks like a declaration)
545   // emit it now.
546   if (Global->hasAttr<AliasAttr>())
547     return EmitAliasDefinition(Global);
548 
549   // Ignore declarations, they will be emitted on their first use.
550   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
551     // Forward declarations are emitted lazily on first use.
552     if (!FD->isThisDeclarationADefinition())
553       return;
554   } else {
555     const VarDecl *VD = cast<VarDecl>(Global);
556     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
557 
558     // In C++, if this is marked "extern", defer code generation.
559     if (getLangOptions().CPlusPlus && !VD->getInit() &&
560         (VD->getStorageClass() == VarDecl::Extern ||
561          VD->isExternC()))
562       return;
563 
564     // In C, if this isn't a definition, defer code generation.
565     if (!getLangOptions().CPlusPlus && !VD->getInit())
566       return;
567   }
568 
569   // Defer code generation when possible if this is a static definition, inline
570   // function etc.  These we only want to emit if they are used.
571   if (MayDeferGeneration(Global)) {
572     // If the value has already been used, add it directly to the
573     // DeferredDeclsToEmit list.
574     const char *MangledName = getMangledName(GD);
575     if (GlobalDeclMap.count(MangledName))
576       DeferredDeclsToEmit.push_back(GD);
577     else {
578       // Otherwise, remember that we saw a deferred decl with this name.  The
579       // first use of the mangled name will cause it to move into
580       // DeferredDeclsToEmit.
581       DeferredDecls[MangledName] = GD;
582     }
583     return;
584   }
585 
586   // Otherwise emit the definition.
587   EmitGlobalDefinition(GD);
588 }
589 
590 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
591   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
592 
593   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
594     EmitCXXConstructor(CD, GD.getCtorType());
595   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
596     EmitCXXDestructor(DD, GD.getDtorType());
597   else if (isa<FunctionDecl>(D))
598     EmitGlobalFunctionDefinition(GD);
599   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
600     EmitGlobalVarDefinition(VD);
601   else {
602     assert(0 && "Invalid argument to EmitGlobalDefinition()");
603   }
604 }
605 
606 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
607 /// module, create and return an llvm Function with the specified type. If there
608 /// is something in the module with the specified name, return it potentially
609 /// bitcasted to the right type.
610 ///
611 /// If D is non-null, it specifies a decl that correspond to this.  This is used
612 /// to set the attributes on the function when it is first created.
613 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
614                                                        const llvm::Type *Ty,
615                                                        GlobalDecl D) {
616   // Lookup the entry, lazily creating it if necessary.
617   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
618   if (Entry) {
619     if (Entry->getType()->getElementType() == Ty)
620       return Entry;
621 
622     // Make sure the result is of the correct type.
623     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
624     return llvm::ConstantExpr::getBitCast(Entry, PTy);
625   }
626 
627   // This is the first use or definition of a mangled name.  If there is a
628   // deferred decl with this name, remember that we need to emit it at the end
629   // of the file.
630   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
631     DeferredDecls.find(MangledName);
632   if (DDI != DeferredDecls.end()) {
633     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
634     // list, and remove it from DeferredDecls (since we don't need it anymore).
635     DeferredDeclsToEmit.push_back(DDI->second);
636     DeferredDecls.erase(DDI);
637   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
638     // If this the first reference to a C++ inline function in a class, queue up
639     // the deferred function body for emission.  These are not seen as
640     // top-level declarations.
641     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
642       DeferredDeclsToEmit.push_back(D);
643     // A called constructor which has no definition or declaration need be
644     // synthesized.
645     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
646       const CXXRecordDecl *ClassDecl =
647         cast<CXXRecordDecl>(CD->getDeclContext());
648       if (CD->isCopyConstructor(getContext()))
649         DeferredCopyConstructorToEmit(D);
650       else if (!ClassDecl->hasUserDeclaredConstructor())
651         DeferredDeclsToEmit.push_back(D);
652     }
653     else if (isa<CXXDestructorDecl>(FD))
654        DeferredDestructorToEmit(D);
655     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
656            if (MD->isCopyAssignment())
657              DeferredCopyAssignmentToEmit(D);
658   }
659 
660   // This function doesn't have a complete type (for example, the return
661   // type is an incomplete struct). Use a fake type instead, and make
662   // sure not to try to set attributes.
663   bool IsIncompleteFunction = false;
664   if (!isa<llvm::FunctionType>(Ty)) {
665     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
666                                  std::vector<const llvm::Type*>(), false);
667     IsIncompleteFunction = true;
668   }
669   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
670                                              llvm::Function::ExternalLinkage,
671                                              "", &getModule());
672   F->setName(MangledName);
673   if (D.getDecl())
674     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
675                           IsIncompleteFunction);
676   Entry = F;
677   return F;
678 }
679 
680 /// Defer definition of copy constructor(s) which need be implicitly defined.
681 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
682   const CXXConstructorDecl *CD =
683     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
684   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
685   if (ClassDecl->hasTrivialCopyConstructor() ||
686       ClassDecl->hasUserDeclaredCopyConstructor())
687     return;
688 
689   // First make sure all direct base classes and virtual bases and non-static
690   // data mebers which need to have their copy constructors implicitly defined
691   // are defined. 12.8.p7
692   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
693        Base != ClassDecl->bases_end(); ++Base) {
694     CXXRecordDecl *BaseClassDecl
695       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
696     if (CXXConstructorDecl *BaseCopyCtor =
697         BaseClassDecl->getCopyConstructor(Context, 0))
698       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
699   }
700 
701   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
702        FieldEnd = ClassDecl->field_end();
703        Field != FieldEnd; ++Field) {
704     QualType FieldType = Context.getCanonicalType((*Field)->getType());
705     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
706       FieldType = Array->getElementType();
707     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
708       if ((*Field)->isAnonymousStructOrUnion())
709         continue;
710       CXXRecordDecl *FieldClassDecl
711         = cast<CXXRecordDecl>(FieldClassType->getDecl());
712       if (CXXConstructorDecl *FieldCopyCtor =
713           FieldClassDecl->getCopyConstructor(Context, 0))
714         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
715     }
716   }
717   DeferredDeclsToEmit.push_back(CopyCtorDecl);
718 }
719 
720 /// Defer definition of copy assignments which need be implicitly defined.
721 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
722   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
723   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
724 
725   if (ClassDecl->hasTrivialCopyAssignment() ||
726       ClassDecl->hasUserDeclaredCopyAssignment())
727     return;
728 
729   // First make sure all direct base classes and virtual bases and non-static
730   // data mebers which need to have their copy assignments implicitly defined
731   // are defined. 12.8.p12
732   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
733        Base != ClassDecl->bases_end(); ++Base) {
734     CXXRecordDecl *BaseClassDecl
735       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
736     const CXXMethodDecl *MD = 0;
737     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
738         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
739         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
740       GetAddrOfFunction(MD, 0);
741   }
742 
743   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
744        FieldEnd = ClassDecl->field_end();
745        Field != FieldEnd; ++Field) {
746     QualType FieldType = Context.getCanonicalType((*Field)->getType());
747     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
748       FieldType = Array->getElementType();
749     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
750       if ((*Field)->isAnonymousStructOrUnion())
751         continue;
752       CXXRecordDecl *FieldClassDecl
753         = cast<CXXRecordDecl>(FieldClassType->getDecl());
754       const CXXMethodDecl *MD = 0;
755       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
756           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
757           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
758           GetAddrOfFunction(MD, 0);
759     }
760   }
761   DeferredDeclsToEmit.push_back(CopyAssignDecl);
762 }
763 
764 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
765   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
766   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
767   if (ClassDecl->hasTrivialDestructor() ||
768       ClassDecl->hasUserDeclaredDestructor())
769     return;
770 
771   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
772        Base != ClassDecl->bases_end(); ++Base) {
773     CXXRecordDecl *BaseClassDecl
774       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
775     if (const CXXDestructorDecl *BaseDtor =
776           BaseClassDecl->getDestructor(Context))
777       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
778   }
779 
780   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
781        FieldEnd = ClassDecl->field_end();
782        Field != FieldEnd; ++Field) {
783     QualType FieldType = Context.getCanonicalType((*Field)->getType());
784     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
785       FieldType = Array->getElementType();
786     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
787       if ((*Field)->isAnonymousStructOrUnion())
788         continue;
789       CXXRecordDecl *FieldClassDecl
790         = cast<CXXRecordDecl>(FieldClassType->getDecl());
791       if (const CXXDestructorDecl *FieldDtor =
792             FieldClassDecl->getDestructor(Context))
793         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
794     }
795   }
796   DeferredDeclsToEmit.push_back(DtorDecl);
797 }
798 
799 
800 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
801 /// non-null, then this function will use the specified type if it has to
802 /// create it (this occurs when we see a definition of the function).
803 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
804                                                  const llvm::Type *Ty) {
805   // If there was no specific requested type, just convert it now.
806   if (!Ty)
807     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
808   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
809 }
810 
811 /// CreateRuntimeFunction - Create a new runtime function with the specified
812 /// type and name.
813 llvm::Constant *
814 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
815                                      const char *Name) {
816   // Convert Name to be a uniqued string from the IdentifierInfo table.
817   Name = getContext().Idents.get(Name).getName();
818   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
819 }
820 
821 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
822 /// create and return an llvm GlobalVariable with the specified type.  If there
823 /// is something in the module with the specified name, return it potentially
824 /// bitcasted to the right type.
825 ///
826 /// If D is non-null, it specifies a decl that correspond to this.  This is used
827 /// to set the attributes on the global when it is first created.
828 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
829                                                      const llvm::PointerType*Ty,
830                                                      const VarDecl *D) {
831   // Lookup the entry, lazily creating it if necessary.
832   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
833   if (Entry) {
834     if (Entry->getType() == Ty)
835       return Entry;
836 
837     // Make sure the result is of the correct type.
838     return llvm::ConstantExpr::getBitCast(Entry, Ty);
839   }
840 
841   // This is the first use or definition of a mangled name.  If there is a
842   // deferred decl with this name, remember that we need to emit it at the end
843   // of the file.
844   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
845     DeferredDecls.find(MangledName);
846   if (DDI != DeferredDecls.end()) {
847     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
848     // list, and remove it from DeferredDecls (since we don't need it anymore).
849     DeferredDeclsToEmit.push_back(DDI->second);
850     DeferredDecls.erase(DDI);
851   }
852 
853   llvm::GlobalVariable *GV =
854     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
855                              llvm::GlobalValue::ExternalLinkage,
856                              0, "", 0,
857                              false, Ty->getAddressSpace());
858   GV->setName(MangledName);
859 
860   // Handle things which are present even on external declarations.
861   if (D) {
862     // FIXME: This code is overly simple and should be merged with other global
863     // handling.
864     GV->setConstant(D->getType().isConstant(Context));
865 
866     // FIXME: Merge with other attribute handling code.
867     if (D->getStorageClass() == VarDecl::PrivateExtern)
868       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
869 
870     if (D->hasAttr<WeakAttr>() ||
871         D->hasAttr<WeakImportAttr>())
872       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
873 
874     GV->setThreadLocal(D->isThreadSpecified());
875   }
876 
877   return Entry = GV;
878 }
879 
880 
881 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
882 /// given global variable.  If Ty is non-null and if the global doesn't exist,
883 /// then it will be greated with the specified type instead of whatever the
884 /// normal requested type would be.
885 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
886                                                   const llvm::Type *Ty) {
887   assert(D->hasGlobalStorage() && "Not a global variable");
888   QualType ASTTy = D->getType();
889   if (Ty == 0)
890     Ty = getTypes().ConvertTypeForMem(ASTTy);
891 
892   const llvm::PointerType *PTy =
893     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
894   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
895 }
896 
897 /// CreateRuntimeVariable - Create a new runtime global variable with the
898 /// specified type and name.
899 llvm::Constant *
900 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
901                                      const char *Name) {
902   // Convert Name to be a uniqued string from the IdentifierInfo table.
903   Name = getContext().Idents.get(Name).getName();
904   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
905 }
906 
907 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
908   assert(!D->getInit() && "Cannot emit definite definitions here!");
909 
910   if (MayDeferGeneration(D)) {
911     // If we have not seen a reference to this variable yet, place it
912     // into the deferred declarations table to be emitted if needed
913     // later.
914     const char *MangledName = getMangledName(D);
915     if (GlobalDeclMap.count(MangledName) == 0) {
916       DeferredDecls[MangledName] = D;
917       return;
918     }
919   }
920 
921   // The tentative definition is the only definition.
922   EmitGlobalVarDefinition(D);
923 }
924 
925 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
926   llvm::Constant *Init = 0;
927   QualType ASTTy = D->getType();
928 
929   if (D->getInit() == 0) {
930     // This is a tentative definition; tentative definitions are
931     // implicitly initialized with { 0 }.
932     //
933     // Note that tentative definitions are only emitted at the end of
934     // a translation unit, so they should never have incomplete
935     // type. In addition, EmitTentativeDefinition makes sure that we
936     // never attempt to emit a tentative definition if a real one
937     // exists. A use may still exists, however, so we still may need
938     // to do a RAUW.
939     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
940     Init = EmitNullConstant(D->getType());
941   } else {
942     Init = EmitConstantExpr(D->getInit(), D->getType());
943 
944     if (!Init) {
945       QualType T = D->getInit()->getType();
946       if (getLangOptions().CPlusPlus) {
947         CXXGlobalInits.push_back(D);
948         Init = EmitNullConstant(T);
949       } else {
950         ErrorUnsupported(D, "static initializer");
951         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
952       }
953     }
954   }
955 
956   const llvm::Type* InitType = Init->getType();
957   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
958 
959   // Strip off a bitcast if we got one back.
960   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
961     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
962            // all zero index gep.
963            CE->getOpcode() == llvm::Instruction::GetElementPtr);
964     Entry = CE->getOperand(0);
965   }
966 
967   // Entry is now either a Function or GlobalVariable.
968   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
969 
970   // We have a definition after a declaration with the wrong type.
971   // We must make a new GlobalVariable* and update everything that used OldGV
972   // (a declaration or tentative definition) with the new GlobalVariable*
973   // (which will be a definition).
974   //
975   // This happens if there is a prototype for a global (e.g.
976   // "extern int x[];") and then a definition of a different type (e.g.
977   // "int x[10];"). This also happens when an initializer has a different type
978   // from the type of the global (this happens with unions).
979   if (GV == 0 ||
980       GV->getType()->getElementType() != InitType ||
981       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
982 
983     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
984     GlobalDeclMap.erase(getMangledName(D));
985 
986     // Make a new global with the correct type, this is now guaranteed to work.
987     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
988     GV->takeName(cast<llvm::GlobalValue>(Entry));
989 
990     // Replace all uses of the old global with the new global
991     llvm::Constant *NewPtrForOldDecl =
992         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
993     Entry->replaceAllUsesWith(NewPtrForOldDecl);
994 
995     // Erase the old global, since it is no longer used.
996     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
997   }
998 
999   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1000     SourceManager &SM = Context.getSourceManager();
1001     AddAnnotation(EmitAnnotateAttr(GV, AA,
1002                               SM.getInstantiationLineNumber(D->getLocation())));
1003   }
1004 
1005   GV->setInitializer(Init);
1006 
1007   // If it is safe to mark the global 'constant', do so now.
1008   GV->setConstant(false);
1009   if (D->getType().isConstant(Context)) {
1010     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1011     // members, it cannot be declared "LLVM const".
1012     GV->setConstant(true);
1013   }
1014 
1015   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1016 
1017   // Set the llvm linkage type as appropriate.
1018   if (D->getStorageClass() == VarDecl::Static)
1019     GV->setLinkage(llvm::Function::InternalLinkage);
1020   else if (D->hasAttr<DLLImportAttr>())
1021     GV->setLinkage(llvm::Function::DLLImportLinkage);
1022   else if (D->hasAttr<DLLExportAttr>())
1023     GV->setLinkage(llvm::Function::DLLExportLinkage);
1024   else if (D->hasAttr<WeakAttr>()) {
1025     if (GV->isConstant())
1026       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1027     else
1028       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1029   } else if (!CompileOpts.NoCommon &&
1030            !D->hasExternalStorage() && !D->getInit() &&
1031            !D->getAttr<SectionAttr>()) {
1032     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1033     // common vars aren't constant even if declared const.
1034     GV->setConstant(false);
1035   } else
1036     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1037 
1038   SetCommonAttributes(D, GV);
1039 
1040   // Emit global variable debug information.
1041   if (CGDebugInfo *DI = getDebugInfo()) {
1042     DI->setLocation(D->getLocation());
1043     DI->EmitGlobalVariable(GV, D);
1044   }
1045 }
1046 
1047 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1048 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1049 /// existing call uses of the old function in the module, this adjusts them to
1050 /// call the new function directly.
1051 ///
1052 /// This is not just a cleanup: the always_inline pass requires direct calls to
1053 /// functions to be able to inline them.  If there is a bitcast in the way, it
1054 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1055 /// run at -O0.
1056 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1057                                                       llvm::Function *NewFn) {
1058   // If we're redefining a global as a function, don't transform it.
1059   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1060   if (OldFn == 0) return;
1061 
1062   const llvm::Type *NewRetTy = NewFn->getReturnType();
1063   llvm::SmallVector<llvm::Value*, 4> ArgList;
1064 
1065   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1066        UI != E; ) {
1067     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1068     unsigned OpNo = UI.getOperandNo();
1069     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1070     if (!CI || OpNo != 0) continue;
1071 
1072     // If the return types don't match exactly, and if the call isn't dead, then
1073     // we can't transform this call.
1074     if (CI->getType() != NewRetTy && !CI->use_empty())
1075       continue;
1076 
1077     // If the function was passed too few arguments, don't transform.  If extra
1078     // arguments were passed, we silently drop them.  If any of the types
1079     // mismatch, we don't transform.
1080     unsigned ArgNo = 0;
1081     bool DontTransform = false;
1082     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1083          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1084       if (CI->getNumOperands()-1 == ArgNo ||
1085           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1086         DontTransform = true;
1087         break;
1088       }
1089     }
1090     if (DontTransform)
1091       continue;
1092 
1093     // Okay, we can transform this.  Create the new call instruction and copy
1094     // over the required information.
1095     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1096     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1097                                                      ArgList.end(), "", CI);
1098     ArgList.clear();
1099     if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext()))
1100       NewCall->takeName(CI);
1101     NewCall->setAttributes(CI->getAttributes());
1102     NewCall->setCallingConv(CI->getCallingConv());
1103 
1104     // Finally, remove the old call, replacing any uses with the new one.
1105     if (!CI->use_empty())
1106       CI->replaceAllUsesWith(NewCall);
1107     CI->eraseFromParent();
1108   }
1109 }
1110 
1111 
1112 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1113   const llvm::FunctionType *Ty;
1114   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1115 
1116   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1117     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1118 
1119     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1120   } else {
1121     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1122 
1123     // As a special case, make sure that definitions of K&R function
1124     // "type foo()" aren't declared as varargs (which forces the backend
1125     // to do unnecessary work).
1126     if (D->getType()->isFunctionNoProtoType()) {
1127       assert(Ty->isVarArg() && "Didn't lower type as expected");
1128       // Due to stret, the lowered function could have arguments.
1129       // Just create the same type as was lowered by ConvertType
1130       // but strip off the varargs bit.
1131       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1132       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1133     }
1134   }
1135 
1136   // Get or create the prototype for the function.
1137   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1138 
1139   // Strip off a bitcast if we got one back.
1140   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1141     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1142     Entry = CE->getOperand(0);
1143   }
1144 
1145 
1146   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1147     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1148 
1149     // If the types mismatch then we have to rewrite the definition.
1150     assert(OldFn->isDeclaration() &&
1151            "Shouldn't replace non-declaration");
1152 
1153     // F is the Function* for the one with the wrong type, we must make a new
1154     // Function* and update everything that used F (a declaration) with the new
1155     // Function* (which will be a definition).
1156     //
1157     // This happens if there is a prototype for a function
1158     // (e.g. "int f()") and then a definition of a different type
1159     // (e.g. "int f(int x)").  Start by making a new function of the
1160     // correct type, RAUW, then steal the name.
1161     GlobalDeclMap.erase(getMangledName(D));
1162     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1163     NewFn->takeName(OldFn);
1164 
1165     // If this is an implementation of a function without a prototype, try to
1166     // replace any existing uses of the function (which may be calls) with uses
1167     // of the new function
1168     if (D->getType()->isFunctionNoProtoType()) {
1169       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1170       OldFn->removeDeadConstantUsers();
1171     }
1172 
1173     // Replace uses of F with the Function we will endow with a body.
1174     if (!Entry->use_empty()) {
1175       llvm::Constant *NewPtrForOldDecl =
1176         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1177       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1178     }
1179 
1180     // Ok, delete the old function now, which is dead.
1181     OldFn->eraseFromParent();
1182 
1183     Entry = NewFn;
1184   }
1185 
1186   llvm::Function *Fn = cast<llvm::Function>(Entry);
1187 
1188   CodeGenFunction(*this).GenerateCode(D, Fn);
1189 
1190   SetFunctionDefinitionAttributes(D, Fn);
1191   SetLLVMFunctionAttributesForDefinition(D, Fn);
1192 
1193   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1194     AddGlobalCtor(Fn, CA->getPriority());
1195   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1196     AddGlobalDtor(Fn, DA->getPriority());
1197 }
1198 
1199 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1200   const AliasAttr *AA = D->getAttr<AliasAttr>();
1201   assert(AA && "Not an alias?");
1202 
1203   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1204 
1205   // Unique the name through the identifier table.
1206   const char *AliaseeName = AA->getAliasee().c_str();
1207   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1208 
1209   // Create a reference to the named value.  This ensures that it is emitted
1210   // if a deferred decl.
1211   llvm::Constant *Aliasee;
1212   if (isa<llvm::FunctionType>(DeclTy))
1213     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1214   else
1215     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1216                                     llvm::PointerType::getUnqual(DeclTy), 0);
1217 
1218   // Create the new alias itself, but don't set a name yet.
1219   llvm::GlobalValue *GA =
1220     new llvm::GlobalAlias(Aliasee->getType(),
1221                           llvm::Function::ExternalLinkage,
1222                           "", Aliasee, &getModule());
1223 
1224   // See if there is already something with the alias' name in the module.
1225   const char *MangledName = getMangledName(D);
1226   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1227 
1228   if (Entry && !Entry->isDeclaration()) {
1229     // If there is a definition in the module, then it wins over the alias.
1230     // This is dubious, but allow it to be safe.  Just ignore the alias.
1231     GA->eraseFromParent();
1232     return;
1233   }
1234 
1235   if (Entry) {
1236     // If there is a declaration in the module, then we had an extern followed
1237     // by the alias, as in:
1238     //   extern int test6();
1239     //   ...
1240     //   int test6() __attribute__((alias("test7")));
1241     //
1242     // Remove it and replace uses of it with the alias.
1243 
1244     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1245                                                           Entry->getType()));
1246     Entry->eraseFromParent();
1247   }
1248 
1249   // Now we know that there is no conflict, set the name.
1250   Entry = GA;
1251   GA->setName(MangledName);
1252 
1253   // Set attributes which are particular to an alias; this is a
1254   // specialization of the attributes which may be set on a global
1255   // variable/function.
1256   if (D->hasAttr<DLLExportAttr>()) {
1257     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1258       // The dllexport attribute is ignored for undefined symbols.
1259       if (FD->getBody())
1260         GA->setLinkage(llvm::Function::DLLExportLinkage);
1261     } else {
1262       GA->setLinkage(llvm::Function::DLLExportLinkage);
1263     }
1264   } else if (D->hasAttr<WeakAttr>() ||
1265              D->hasAttr<WeakImportAttr>()) {
1266     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1267   }
1268 
1269   SetCommonAttributes(D, GA);
1270 }
1271 
1272 /// getBuiltinLibFunction - Given a builtin id for a function like
1273 /// "__builtin_fabsf", return a Function* for "fabsf".
1274 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1275   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1276           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1277          "isn't a lib fn");
1278 
1279   // Get the name, skip over the __builtin_ prefix (if necessary).
1280   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1281   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1282     Name += 10;
1283 
1284   // Get the type for the builtin.
1285   ASTContext::GetBuiltinTypeError Error;
1286   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1287   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1288 
1289   const llvm::FunctionType *Ty =
1290     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1291 
1292   // Unique the name through the identifier table.
1293   Name = getContext().Idents.get(Name).getName();
1294   // FIXME: param attributes for sext/zext etc.
1295   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1296 }
1297 
1298 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1299                                             unsigned NumTys) {
1300   return llvm::Intrinsic::getDeclaration(&getModule(),
1301                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1302 }
1303 
1304 llvm::Function *CodeGenModule::getMemCpyFn() {
1305   if (MemCpyFn) return MemCpyFn;
1306   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1307   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1308 }
1309 
1310 llvm::Function *CodeGenModule::getMemMoveFn() {
1311   if (MemMoveFn) return MemMoveFn;
1312   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1313   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1314 }
1315 
1316 llvm::Function *CodeGenModule::getMemSetFn() {
1317   if (MemSetFn) return MemSetFn;
1318   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1319   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1320 }
1321 
1322 static llvm::StringMapEntry<llvm::Constant*> &
1323 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1324                          const StringLiteral *Literal,
1325                          bool TargetIsLSB,
1326                          bool &IsUTF16,
1327                          unsigned &StringLength) {
1328   unsigned NumBytes = Literal->getByteLength();
1329 
1330   // Check for simple case.
1331   if (!Literal->containsNonAsciiOrNull()) {
1332     StringLength = NumBytes;
1333     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1334                                                 StringLength));
1335   }
1336 
1337   // Otherwise, convert the UTF8 literals into a byte string.
1338   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1339   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1340   UTF16 *ToPtr = &ToBuf[0];
1341 
1342   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1343                                                &ToPtr, ToPtr + NumBytes,
1344                                                strictConversion);
1345 
1346   // Check for conversion failure.
1347   if (Result != conversionOK) {
1348     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1349     // this duplicate code.
1350     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1351     StringLength = NumBytes;
1352     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1353                                                 StringLength));
1354   }
1355 
1356   // ConvertUTF8toUTF16 returns the length in ToPtr.
1357   StringLength = ToPtr - &ToBuf[0];
1358 
1359   // Render the UTF-16 string into a byte array and convert to the target byte
1360   // order.
1361   //
1362   // FIXME: This isn't something we should need to do here.
1363   llvm::SmallString<128> AsBytes;
1364   AsBytes.reserve(StringLength * 2);
1365   for (unsigned i = 0; i != StringLength; ++i) {
1366     unsigned short Val = ToBuf[i];
1367     if (TargetIsLSB) {
1368       AsBytes.push_back(Val & 0xFF);
1369       AsBytes.push_back(Val >> 8);
1370     } else {
1371       AsBytes.push_back(Val >> 8);
1372       AsBytes.push_back(Val & 0xFF);
1373     }
1374   }
1375   // Append one extra null character, the second is automatically added by our
1376   // caller.
1377   AsBytes.push_back(0);
1378 
1379   IsUTF16 = true;
1380   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1381 }
1382 
1383 llvm::Constant *
1384 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1385   unsigned StringLength = 0;
1386   bool isUTF16 = false;
1387   llvm::StringMapEntry<llvm::Constant*> &Entry =
1388     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1389                              getTargetData().isLittleEndian(),
1390                              isUTF16, StringLength);
1391 
1392   if (llvm::Constant *C = Entry.getValue())
1393     return C;
1394 
1395   llvm::Constant *Zero =
1396       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1397   llvm::Constant *Zeros[] = { Zero, Zero };
1398 
1399   // If we don't already have it, get __CFConstantStringClassReference.
1400   if (!CFConstantStringClassRef) {
1401     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1402     Ty = llvm::ArrayType::get(Ty, 0);
1403     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1404                                            "__CFConstantStringClassReference");
1405     // Decay array -> ptr
1406     CFConstantStringClassRef =
1407       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1408   }
1409 
1410   QualType CFTy = getContext().getCFConstantStringType();
1411 
1412   const llvm::StructType *STy =
1413     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1414 
1415   std::vector<llvm::Constant*> Fields(4);
1416 
1417   // Class pointer.
1418   Fields[0] = CFConstantStringClassRef;
1419 
1420   // Flags.
1421   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1422   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1423     llvm::ConstantInt::get(Ty, 0x07C8);
1424 
1425   // String pointer.
1426   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1427 
1428   const char *Sect, *Prefix;
1429   bool isConstant;
1430   llvm::GlobalValue::LinkageTypes Linkage;
1431   if (isUTF16) {
1432     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1433     Sect = getContext().Target.getUnicodeStringSection();
1434     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1435     Linkage = llvm::GlobalValue::InternalLinkage;
1436     // FIXME: Why does GCC not set constant here?
1437     isConstant = false;
1438   } else {
1439     Prefix = ".str";
1440     Sect = getContext().Target.getCFStringDataSection();
1441     Linkage = llvm::GlobalValue::PrivateLinkage;
1442     // FIXME: -fwritable-strings should probably affect this, but we
1443     // are following gcc here.
1444     isConstant = true;
1445   }
1446   llvm::GlobalVariable *GV =
1447     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1448                              Linkage, C, Prefix);
1449   if (Sect)
1450     GV->setSection(Sect);
1451   if (isUTF16) {
1452     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1453     GV->setAlignment(Align);
1454   }
1455   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1456 
1457   // String length.
1458   Ty = getTypes().ConvertType(getContext().LongTy);
1459   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1460 
1461   // The struct.
1462   C = llvm::ConstantStruct::get(STy, Fields);
1463   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1464                                 llvm::GlobalVariable::PrivateLinkage, C,
1465                                 "_unnamed_cfstring_");
1466   if (const char *Sect = getContext().Target.getCFStringSection())
1467     GV->setSection(Sect);
1468   Entry.setValue(GV);
1469 
1470   return GV;
1471 }
1472 
1473 /// GetStringForStringLiteral - Return the appropriate bytes for a
1474 /// string literal, properly padded to match the literal type.
1475 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1476   const char *StrData = E->getStrData();
1477   unsigned Len = E->getByteLength();
1478 
1479   const ConstantArrayType *CAT =
1480     getContext().getAsConstantArrayType(E->getType());
1481   assert(CAT && "String isn't pointer or array!");
1482 
1483   // Resize the string to the right size.
1484   std::string Str(StrData, StrData+Len);
1485   uint64_t RealLen = CAT->getSize().getZExtValue();
1486 
1487   if (E->isWide())
1488     RealLen *= getContext().Target.getWCharWidth()/8;
1489 
1490   Str.resize(RealLen, '\0');
1491 
1492   return Str;
1493 }
1494 
1495 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1496 /// constant array for the given string literal.
1497 llvm::Constant *
1498 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1499   // FIXME: This can be more efficient.
1500   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1501 }
1502 
1503 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1504 /// array for the given ObjCEncodeExpr node.
1505 llvm::Constant *
1506 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1507   std::string Str;
1508   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1509 
1510   return GetAddrOfConstantCString(Str);
1511 }
1512 
1513 
1514 /// GenerateWritableString -- Creates storage for a string literal.
1515 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1516                                              bool constant,
1517                                              CodeGenModule &CGM,
1518                                              const char *GlobalName) {
1519   // Create Constant for this string literal. Don't add a '\0'.
1520   llvm::Constant *C =
1521       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1522 
1523   // Create a global variable for this string
1524   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1525                                   llvm::GlobalValue::PrivateLinkage,
1526                                   C, GlobalName);
1527 }
1528 
1529 /// GetAddrOfConstantString - Returns a pointer to a character array
1530 /// containing the literal. This contents are exactly that of the
1531 /// given string, i.e. it will not be null terminated automatically;
1532 /// see GetAddrOfConstantCString. Note that whether the result is
1533 /// actually a pointer to an LLVM constant depends on
1534 /// Feature.WriteableStrings.
1535 ///
1536 /// The result has pointer to array type.
1537 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1538                                                        const char *GlobalName) {
1539   bool IsConstant = !Features.WritableStrings;
1540 
1541   // Get the default prefix if a name wasn't specified.
1542   if (!GlobalName)
1543     GlobalName = ".str";
1544 
1545   // Don't share any string literals if strings aren't constant.
1546   if (!IsConstant)
1547     return GenerateStringLiteral(str, false, *this, GlobalName);
1548 
1549   llvm::StringMapEntry<llvm::Constant *> &Entry =
1550     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1551 
1552   if (Entry.getValue())
1553     return Entry.getValue();
1554 
1555   // Create a global variable for this.
1556   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1557   Entry.setValue(C);
1558   return C;
1559 }
1560 
1561 /// GetAddrOfConstantCString - Returns a pointer to a character
1562 /// array containing the literal and a terminating '\-'
1563 /// character. The result has pointer to array type.
1564 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1565                                                         const char *GlobalName){
1566   return GetAddrOfConstantString(str + '\0', GlobalName);
1567 }
1568 
1569 /// EmitObjCPropertyImplementations - Emit information for synthesized
1570 /// properties for an implementation.
1571 void CodeGenModule::EmitObjCPropertyImplementations(const
1572                                                     ObjCImplementationDecl *D) {
1573   for (ObjCImplementationDecl::propimpl_iterator
1574          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1575     ObjCPropertyImplDecl *PID = *i;
1576 
1577     // Dynamic is just for type-checking.
1578     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1579       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1580 
1581       // Determine which methods need to be implemented, some may have
1582       // been overridden. Note that ::isSynthesized is not the method
1583       // we want, that just indicates if the decl came from a
1584       // property. What we want to know is if the method is defined in
1585       // this implementation.
1586       if (!D->getInstanceMethod(PD->getGetterName()))
1587         CodeGenFunction(*this).GenerateObjCGetter(
1588                                  const_cast<ObjCImplementationDecl *>(D), PID);
1589       if (!PD->isReadOnly() &&
1590           !D->getInstanceMethod(PD->getSetterName()))
1591         CodeGenFunction(*this).GenerateObjCSetter(
1592                                  const_cast<ObjCImplementationDecl *>(D), PID);
1593     }
1594   }
1595 }
1596 
1597 /// EmitNamespace - Emit all declarations in a namespace.
1598 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1599   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1600        I != E; ++I)
1601     EmitTopLevelDecl(*I);
1602 }
1603 
1604 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1605 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1606   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1607       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1608     ErrorUnsupported(LSD, "linkage spec");
1609     return;
1610   }
1611 
1612   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1613        I != E; ++I)
1614     EmitTopLevelDecl(*I);
1615 }
1616 
1617 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1618 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1619   // If an error has occurred, stop code generation, but continue
1620   // parsing and semantic analysis (to ensure all warnings and errors
1621   // are emitted).
1622   if (Diags.hasErrorOccurred())
1623     return;
1624 
1625   // Ignore dependent declarations.
1626   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1627     return;
1628 
1629   switch (D->getKind()) {
1630   case Decl::CXXConversion:
1631   case Decl::CXXMethod:
1632   case Decl::Function:
1633     // Skip function templates
1634     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1635       return;
1636 
1637     EmitGlobal(cast<FunctionDecl>(D));
1638     break;
1639 
1640   case Decl::Var:
1641     EmitGlobal(cast<VarDecl>(D));
1642     break;
1643 
1644   // C++ Decls
1645   case Decl::Namespace:
1646     EmitNamespace(cast<NamespaceDecl>(D));
1647     break;
1648     // No code generation needed.
1649   case Decl::Using:
1650   case Decl::UsingDirective:
1651   case Decl::ClassTemplate:
1652   case Decl::FunctionTemplate:
1653     break;
1654   case Decl::CXXConstructor:
1655     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1656     break;
1657   case Decl::CXXDestructor:
1658     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1659     break;
1660 
1661   case Decl::StaticAssert:
1662     // Nothing to do.
1663     break;
1664 
1665   // Objective-C Decls
1666 
1667   // Forward declarations, no (immediate) code generation.
1668   case Decl::ObjCClass:
1669   case Decl::ObjCForwardProtocol:
1670   case Decl::ObjCCategory:
1671   case Decl::ObjCInterface:
1672     break;
1673 
1674   case Decl::ObjCProtocol:
1675     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1676     break;
1677 
1678   case Decl::ObjCCategoryImpl:
1679     // Categories have properties but don't support synthesize so we
1680     // can ignore them here.
1681     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1682     break;
1683 
1684   case Decl::ObjCImplementation: {
1685     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1686     EmitObjCPropertyImplementations(OMD);
1687     Runtime->GenerateClass(OMD);
1688     break;
1689   }
1690   case Decl::ObjCMethod: {
1691     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1692     // If this is not a prototype, emit the body.
1693     if (OMD->getBody())
1694       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1695     break;
1696   }
1697   case Decl::ObjCCompatibleAlias:
1698     // compatibility-alias is a directive and has no code gen.
1699     break;
1700 
1701   case Decl::LinkageSpec:
1702     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1703     break;
1704 
1705   case Decl::FileScopeAsm: {
1706     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1707     std::string AsmString(AD->getAsmString()->getStrData(),
1708                           AD->getAsmString()->getByteLength());
1709 
1710     const std::string &S = getModule().getModuleInlineAsm();
1711     if (S.empty())
1712       getModule().setModuleInlineAsm(AsmString);
1713     else
1714       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1715     break;
1716   }
1717 
1718   default:
1719     // Make sure we handled everything we should, every other kind is a
1720     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1721     // function. Need to recode Decl::Kind to do that easily.
1722     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1723   }
1724 }
1725