1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MD5.h"
57 
58 using namespace clang;
59 using namespace CodeGen;
60 
61 static const char AnnotationSection[] = "llvm.metadata";
62 
63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
64   switch (CGM.getTarget().getCXXABI().getKind()) {
65   case TargetCXXABI::GenericAArch64:
66   case TargetCXXABI::GenericARM:
67   case TargetCXXABI::iOS:
68   case TargetCXXABI::iOS64:
69   case TargetCXXABI::WatchOS:
70   case TargetCXXABI::GenericMIPS:
71   case TargetCXXABI::GenericItanium:
72   case TargetCXXABI::WebAssembly:
73     return CreateItaniumCXXABI(CGM);
74   case TargetCXXABI::Microsoft:
75     return CreateMicrosoftCXXABI(CGM);
76   }
77 
78   llvm_unreachable("invalid C++ ABI kind");
79 }
80 
81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
82                              const PreprocessorOptions &PPO,
83                              const CodeGenOptions &CGO, llvm::Module &M,
84                              DiagnosticsEngine &diags,
85                              CoverageSourceInfo *CoverageInfo)
86     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
87       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
88       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
89       VMContext(M.getContext()), Types(*this), VTables(*this),
90       SanitizerMD(new SanitizerMetadata(*this)) {
91 
92   // Initialize the type cache.
93   llvm::LLVMContext &LLVMContext = M.getContext();
94   VoidTy = llvm::Type::getVoidTy(LLVMContext);
95   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99   FloatTy = llvm::Type::getFloatTy(LLVMContext);
100   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102   PointerAlignInBytes =
103     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104   IntAlignInBytes =
105     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
113 
114   if (LangOpts.ObjC1)
115     createObjCRuntime();
116   if (LangOpts.OpenCL)
117     createOpenCLRuntime();
118   if (LangOpts.OpenMP)
119     createOpenMPRuntime();
120   if (LangOpts.CUDA)
121     createCUDARuntime();
122 
123   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
124   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
125       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
126     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
127                                getCXXABI().getMangleContext()));
128 
129   // If debug info or coverage generation is enabled, create the CGDebugInfo
130   // object.
131   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
132       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
133     DebugInfo.reset(new CGDebugInfo(*this));
134 
135   Block.GlobalUniqueCount = 0;
136 
137   if (C.getLangOpts().ObjC1)
138     ObjCData.reset(new ObjCEntrypoints());
139 
140   if (CodeGenOpts.hasProfileClangUse()) {
141     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
142         CodeGenOpts.ProfileInstrumentUsePath);
143     if (auto E = ReaderOrErr.takeError()) {
144       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
145                                               "Could not read profile %0: %1");
146       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
147         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
148                                   << EI.message();
149       });
150     } else
151       PGOReader = std::move(ReaderOrErr.get());
152   }
153 
154   // If coverage mapping generation is enabled, create the
155   // CoverageMappingModuleGen object.
156   if (CodeGenOpts.CoverageMapping)
157     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
158 }
159 
160 CodeGenModule::~CodeGenModule() {}
161 
162 void CodeGenModule::createObjCRuntime() {
163   // This is just isGNUFamily(), but we want to force implementors of
164   // new ABIs to decide how best to do this.
165   switch (LangOpts.ObjCRuntime.getKind()) {
166   case ObjCRuntime::GNUstep:
167   case ObjCRuntime::GCC:
168   case ObjCRuntime::ObjFW:
169     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
170     return;
171 
172   case ObjCRuntime::FragileMacOSX:
173   case ObjCRuntime::MacOSX:
174   case ObjCRuntime::iOS:
175   case ObjCRuntime::WatchOS:
176     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
177     return;
178   }
179   llvm_unreachable("bad runtime kind");
180 }
181 
182 void CodeGenModule::createOpenCLRuntime() {
183   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
184 }
185 
186 void CodeGenModule::createOpenMPRuntime() {
187   // Select a specialized code generation class based on the target, if any.
188   // If it does not exist use the default implementation.
189   switch (getTarget().getTriple().getArch()) {
190 
191   case llvm::Triple::nvptx:
192   case llvm::Triple::nvptx64:
193     assert(getLangOpts().OpenMPIsDevice &&
194            "OpenMP NVPTX is only prepared to deal with device code.");
195     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
196     break;
197   default:
198     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
199     break;
200   }
201 }
202 
203 void CodeGenModule::createCUDARuntime() {
204   CUDARuntime.reset(CreateNVCUDARuntime(*this));
205 }
206 
207 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
208   Replacements[Name] = C;
209 }
210 
211 void CodeGenModule::applyReplacements() {
212   for (auto &I : Replacements) {
213     StringRef MangledName = I.first();
214     llvm::Constant *Replacement = I.second;
215     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
216     if (!Entry)
217       continue;
218     auto *OldF = cast<llvm::Function>(Entry);
219     auto *NewF = dyn_cast<llvm::Function>(Replacement);
220     if (!NewF) {
221       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
222         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
223       } else {
224         auto *CE = cast<llvm::ConstantExpr>(Replacement);
225         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
226                CE->getOpcode() == llvm::Instruction::GetElementPtr);
227         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
228       }
229     }
230 
231     // Replace old with new, but keep the old order.
232     OldF->replaceAllUsesWith(Replacement);
233     if (NewF) {
234       NewF->removeFromParent();
235       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
236                                                        NewF);
237     }
238     OldF->eraseFromParent();
239   }
240 }
241 
242 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
243   GlobalValReplacements.push_back(std::make_pair(GV, C));
244 }
245 
246 void CodeGenModule::applyGlobalValReplacements() {
247   for (auto &I : GlobalValReplacements) {
248     llvm::GlobalValue *GV = I.first;
249     llvm::Constant *C = I.second;
250 
251     GV->replaceAllUsesWith(C);
252     GV->eraseFromParent();
253   }
254 }
255 
256 // This is only used in aliases that we created and we know they have a
257 // linear structure.
258 static const llvm::GlobalObject *getAliasedGlobal(
259     const llvm::GlobalIndirectSymbol &GIS) {
260   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
261   const llvm::Constant *C = &GIS;
262   for (;;) {
263     C = C->stripPointerCasts();
264     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
265       return GO;
266     // stripPointerCasts will not walk over weak aliases.
267     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
268     if (!GIS2)
269       return nullptr;
270     if (!Visited.insert(GIS2).second)
271       return nullptr;
272     C = GIS2->getIndirectSymbol();
273   }
274 }
275 
276 void CodeGenModule::checkAliases() {
277   // Check if the constructed aliases are well formed. It is really unfortunate
278   // that we have to do this in CodeGen, but we only construct mangled names
279   // and aliases during codegen.
280   bool Error = false;
281   DiagnosticsEngine &Diags = getDiags();
282   for (const GlobalDecl &GD : Aliases) {
283     const auto *D = cast<ValueDecl>(GD.getDecl());
284     SourceLocation Location;
285     bool IsIFunc = D->hasAttr<IFuncAttr>();
286     if (const Attr *A = D->getDefiningAttr())
287       Location = A->getLocation();
288     else
289       llvm_unreachable("Not an alias or ifunc?");
290     StringRef MangledName = getMangledName(GD);
291     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
292     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
293     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
294     if (!GV) {
295       Error = true;
296       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
297     } else if (GV->isDeclaration()) {
298       Error = true;
299       Diags.Report(Location, diag::err_alias_to_undefined)
300           << IsIFunc << IsIFunc;
301     } else if (IsIFunc) {
302       // Check resolver function type.
303       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
304           GV->getType()->getPointerElementType());
305       assert(FTy);
306       if (!FTy->getReturnType()->isPointerTy())
307         Diags.Report(Location, diag::err_ifunc_resolver_return);
308       if (FTy->getNumParams())
309         Diags.Report(Location, diag::err_ifunc_resolver_params);
310     }
311 
312     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
313     llvm::GlobalValue *AliaseeGV;
314     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
315       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
316     else
317       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
318 
319     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
320       StringRef AliasSection = SA->getName();
321       if (AliasSection != AliaseeGV->getSection())
322         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
323             << AliasSection << IsIFunc << IsIFunc;
324     }
325 
326     // We have to handle alias to weak aliases in here. LLVM itself disallows
327     // this since the object semantics would not match the IL one. For
328     // compatibility with gcc we implement it by just pointing the alias
329     // to its aliasee's aliasee. We also warn, since the user is probably
330     // expecting the link to be weak.
331     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
332       if (GA->isInterposable()) {
333         Diags.Report(Location, diag::warn_alias_to_weak_alias)
334             << GV->getName() << GA->getName() << IsIFunc;
335         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
336             GA->getIndirectSymbol(), Alias->getType());
337         Alias->setIndirectSymbol(Aliasee);
338       }
339     }
340   }
341   if (!Error)
342     return;
343 
344   for (const GlobalDecl &GD : Aliases) {
345     StringRef MangledName = getMangledName(GD);
346     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
347     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
348     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
349     Alias->eraseFromParent();
350   }
351 }
352 
353 void CodeGenModule::clear() {
354   DeferredDeclsToEmit.clear();
355   if (OpenMPRuntime)
356     OpenMPRuntime->clear();
357 }
358 
359 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
360                                        StringRef MainFile) {
361   if (!hasDiagnostics())
362     return;
363   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
364     if (MainFile.empty())
365       MainFile = "<stdin>";
366     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
367   } else
368     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
369                                                       << Mismatched;
370 }
371 
372 void CodeGenModule::Release() {
373   EmitDeferred();
374   applyGlobalValReplacements();
375   applyReplacements();
376   checkAliases();
377   EmitCXXGlobalInitFunc();
378   EmitCXXGlobalDtorFunc();
379   EmitCXXThreadLocalInitFunc();
380   if (ObjCRuntime)
381     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
382       AddGlobalCtor(ObjCInitFunction);
383   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
384       CUDARuntime) {
385     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
386       AddGlobalCtor(CudaCtorFunction);
387     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
388       AddGlobalDtor(CudaDtorFunction);
389   }
390   if (OpenMPRuntime)
391     if (llvm::Function *OpenMPRegistrationFunction =
392             OpenMPRuntime->emitRegistrationFunction())
393       AddGlobalCtor(OpenMPRegistrationFunction, 0);
394   if (PGOReader) {
395     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
396     if (PGOStats.hasDiagnostics())
397       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
398   }
399   EmitCtorList(GlobalCtors, "llvm.global_ctors");
400   EmitCtorList(GlobalDtors, "llvm.global_dtors");
401   EmitGlobalAnnotations();
402   EmitStaticExternCAliases();
403   EmitDeferredUnusedCoverageMappings();
404   if (CoverageMapping)
405     CoverageMapping->emit();
406   if (CodeGenOpts.SanitizeCfiCrossDso)
407     CodeGenFunction(*this).EmitCfiCheckFail();
408   emitLLVMUsed();
409   if (SanStats)
410     SanStats->finish();
411 
412   if (CodeGenOpts.Autolink &&
413       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
414     EmitModuleLinkOptions();
415   }
416   if (CodeGenOpts.DwarfVersion) {
417     // We actually want the latest version when there are conflicts.
418     // We can change from Warning to Latest if such mode is supported.
419     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
420                               CodeGenOpts.DwarfVersion);
421   }
422   if (CodeGenOpts.EmitCodeView) {
423     // Indicate that we want CodeView in the metadata.
424     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
425   }
426   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
427     // We don't support LTO with 2 with different StrictVTablePointers
428     // FIXME: we could support it by stripping all the information introduced
429     // by StrictVTablePointers.
430 
431     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
432 
433     llvm::Metadata *Ops[2] = {
434               llvm::MDString::get(VMContext, "StrictVTablePointers"),
435               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
436                   llvm::Type::getInt32Ty(VMContext), 1))};
437 
438     getModule().addModuleFlag(llvm::Module::Require,
439                               "StrictVTablePointersRequirement",
440                               llvm::MDNode::get(VMContext, Ops));
441   }
442   if (DebugInfo)
443     // We support a single version in the linked module. The LLVM
444     // parser will drop debug info with a different version number
445     // (and warn about it, too).
446     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
447                               llvm::DEBUG_METADATA_VERSION);
448 
449   // We need to record the widths of enums and wchar_t, so that we can generate
450   // the correct build attributes in the ARM backend.
451   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
452   if (   Arch == llvm::Triple::arm
453       || Arch == llvm::Triple::armeb
454       || Arch == llvm::Triple::thumb
455       || Arch == llvm::Triple::thumbeb) {
456     // Width of wchar_t in bytes
457     uint64_t WCharWidth =
458         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
459     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
460 
461     // The minimum width of an enum in bytes
462     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
463     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
464   }
465 
466   if (CodeGenOpts.SanitizeCfiCrossDso) {
467     // Indicate that we want cross-DSO control flow integrity checks.
468     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
469   }
470 
471   if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
472     // Indicate whether __nvvm_reflect should be configured to flush denormal
473     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
474     // property.)
475     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
476                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
477   }
478 
479   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
480     assert(PLevel < 3 && "Invalid PIC Level");
481     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
482     if (Context.getLangOpts().PIE)
483       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
484   }
485 
486   SimplifyPersonality();
487 
488   if (getCodeGenOpts().EmitDeclMetadata)
489     EmitDeclMetadata();
490 
491   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
492     EmitCoverageFile();
493 
494   if (DebugInfo)
495     DebugInfo->finalize();
496 
497   EmitVersionIdentMetadata();
498 
499   EmitTargetMetadata();
500 }
501 
502 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
503   // Make sure that this type is translated.
504   Types.UpdateCompletedType(TD);
505 }
506 
507 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
508   // Make sure that this type is translated.
509   Types.RefreshTypeCacheForClass(RD);
510 }
511 
512 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
513   if (!TBAA)
514     return nullptr;
515   return TBAA->getTBAAInfo(QTy);
516 }
517 
518 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
519   if (!TBAA)
520     return nullptr;
521   return TBAA->getTBAAInfoForVTablePtr();
522 }
523 
524 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
525   if (!TBAA)
526     return nullptr;
527   return TBAA->getTBAAStructInfo(QTy);
528 }
529 
530 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
531                                                   llvm::MDNode *AccessN,
532                                                   uint64_t O) {
533   if (!TBAA)
534     return nullptr;
535   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
536 }
537 
538 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
539 /// and struct-path aware TBAA, the tag has the same format:
540 /// base type, access type and offset.
541 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
542 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
543                                                 llvm::MDNode *TBAAInfo,
544                                                 bool ConvertTypeToTag) {
545   if (ConvertTypeToTag && TBAA)
546     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
547                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
548   else
549     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
550 }
551 
552 void CodeGenModule::DecorateInstructionWithInvariantGroup(
553     llvm::Instruction *I, const CXXRecordDecl *RD) {
554   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
555   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
556   // Check if we have to wrap MDString in MDNode.
557   if (!MetaDataNode)
558     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
559   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
560 }
561 
562 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
563   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
564   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
565 }
566 
567 /// ErrorUnsupported - Print out an error that codegen doesn't support the
568 /// specified stmt yet.
569 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
570   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
571                                                "cannot compile this %0 yet");
572   std::string Msg = Type;
573   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
574     << Msg << S->getSourceRange();
575 }
576 
577 /// ErrorUnsupported - Print out an error that codegen doesn't support the
578 /// specified decl yet.
579 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
580   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
581                                                "cannot compile this %0 yet");
582   std::string Msg = Type;
583   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
584 }
585 
586 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
587   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
588 }
589 
590 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
591                                         const NamedDecl *D) const {
592   // Internal definitions always have default visibility.
593   if (GV->hasLocalLinkage()) {
594     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
595     return;
596   }
597 
598   // Set visibility for definitions.
599   LinkageInfo LV = D->getLinkageAndVisibility();
600   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
601     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
602 }
603 
604 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
605   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
606       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
607       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
608       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
609       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
610 }
611 
612 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
613     CodeGenOptions::TLSModel M) {
614   switch (M) {
615   case CodeGenOptions::GeneralDynamicTLSModel:
616     return llvm::GlobalVariable::GeneralDynamicTLSModel;
617   case CodeGenOptions::LocalDynamicTLSModel:
618     return llvm::GlobalVariable::LocalDynamicTLSModel;
619   case CodeGenOptions::InitialExecTLSModel:
620     return llvm::GlobalVariable::InitialExecTLSModel;
621   case CodeGenOptions::LocalExecTLSModel:
622     return llvm::GlobalVariable::LocalExecTLSModel;
623   }
624   llvm_unreachable("Invalid TLS model!");
625 }
626 
627 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
628   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
629 
630   llvm::GlobalValue::ThreadLocalMode TLM;
631   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
632 
633   // Override the TLS model if it is explicitly specified.
634   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
635     TLM = GetLLVMTLSModel(Attr->getModel());
636   }
637 
638   GV->setThreadLocalMode(TLM);
639 }
640 
641 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
642   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
643 
644   // Some ABIs don't have constructor variants.  Make sure that base and
645   // complete constructors get mangled the same.
646   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
647     if (!getTarget().getCXXABI().hasConstructorVariants()) {
648       CXXCtorType OrigCtorType = GD.getCtorType();
649       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
650       if (OrigCtorType == Ctor_Base)
651         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
652     }
653   }
654 
655   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
656   if (!FoundStr.empty())
657     return FoundStr;
658 
659   const auto *ND = cast<NamedDecl>(GD.getDecl());
660   SmallString<256> Buffer;
661   StringRef Str;
662   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
663     llvm::raw_svector_ostream Out(Buffer);
664     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
665       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
666     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
667       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
668     else
669       getCXXABI().getMangleContext().mangleName(ND, Out);
670     Str = Out.str();
671   } else {
672     IdentifierInfo *II = ND->getIdentifier();
673     assert(II && "Attempt to mangle unnamed decl.");
674     Str = II->getName();
675   }
676 
677   // Keep the first result in the case of a mangling collision.
678   auto Result = Manglings.insert(std::make_pair(Str, GD));
679   return FoundStr = Result.first->first();
680 }
681 
682 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
683                                              const BlockDecl *BD) {
684   MangleContext &MangleCtx = getCXXABI().getMangleContext();
685   const Decl *D = GD.getDecl();
686 
687   SmallString<256> Buffer;
688   llvm::raw_svector_ostream Out(Buffer);
689   if (!D)
690     MangleCtx.mangleGlobalBlock(BD,
691       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
692   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
693     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
694   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
695     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
696   else
697     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
698 
699   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
700   return Result.first->first();
701 }
702 
703 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
704   return getModule().getNamedValue(Name);
705 }
706 
707 /// AddGlobalCtor - Add a function to the list that will be called before
708 /// main() runs.
709 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
710                                   llvm::Constant *AssociatedData) {
711   // FIXME: Type coercion of void()* types.
712   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
713 }
714 
715 /// AddGlobalDtor - Add a function to the list that will be called
716 /// when the module is unloaded.
717 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
718   // FIXME: Type coercion of void()* types.
719   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
720 }
721 
722 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
723   // Ctor function type is void()*.
724   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
725   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
726 
727   // Get the type of a ctor entry, { i32, void ()*, i8* }.
728   llvm::StructType *CtorStructTy = llvm::StructType::get(
729       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
730 
731   // Construct the constructor and destructor arrays.
732   SmallVector<llvm::Constant *, 8> Ctors;
733   for (const auto &I : Fns) {
734     llvm::Constant *S[] = {
735         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
736         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
737         (I.AssociatedData
738              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
739              : llvm::Constant::getNullValue(VoidPtrTy))};
740     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
741   }
742 
743   if (!Ctors.empty()) {
744     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
745     new llvm::GlobalVariable(TheModule, AT, false,
746                              llvm::GlobalValue::AppendingLinkage,
747                              llvm::ConstantArray::get(AT, Ctors),
748                              GlobalName);
749   }
750 }
751 
752 llvm::GlobalValue::LinkageTypes
753 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
754   const auto *D = cast<FunctionDecl>(GD.getDecl());
755 
756   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
757 
758   if (isa<CXXDestructorDecl>(D) &&
759       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
760                                          GD.getDtorType())) {
761     // Destructor variants in the Microsoft C++ ABI are always internal or
762     // linkonce_odr thunks emitted on an as-needed basis.
763     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
764                                    : llvm::GlobalValue::LinkOnceODRLinkage;
765   }
766 
767   if (isa<CXXConstructorDecl>(D) &&
768       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
769       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
770     // Our approach to inheriting constructors is fundamentally different from
771     // that used by the MS ABI, so keep our inheriting constructor thunks
772     // internal rather than trying to pick an unambiguous mangling for them.
773     return llvm::GlobalValue::InternalLinkage;
774   }
775 
776   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
777 }
778 
779 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
780   const auto *FD = cast<FunctionDecl>(GD.getDecl());
781 
782   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
783     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
784       // Don't dllexport/import destructor thunks.
785       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
786       return;
787     }
788   }
789 
790   if (FD->hasAttr<DLLImportAttr>())
791     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
792   else if (FD->hasAttr<DLLExportAttr>())
793     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
794   else
795     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
796 }
797 
798 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
799   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
800   if (!MDS) return nullptr;
801 
802   llvm::MD5 md5;
803   llvm::MD5::MD5Result result;
804   md5.update(MDS->getString());
805   md5.final(result);
806   uint64_t id = 0;
807   for (int i = 0; i < 8; ++i)
808     id |= static_cast<uint64_t>(result[i]) << (i * 8);
809   return llvm::ConstantInt::get(Int64Ty, id);
810 }
811 
812 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
813                                                     llvm::Function *F) {
814   setNonAliasAttributes(D, F);
815 }
816 
817 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
818                                               const CGFunctionInfo &Info,
819                                               llvm::Function *F) {
820   unsigned CallingConv;
821   AttributeListType AttributeList;
822   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
823                          false);
824   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
825   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
826 }
827 
828 /// Determines whether the language options require us to model
829 /// unwind exceptions.  We treat -fexceptions as mandating this
830 /// except under the fragile ObjC ABI with only ObjC exceptions
831 /// enabled.  This means, for example, that C with -fexceptions
832 /// enables this.
833 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
834   // If exceptions are completely disabled, obviously this is false.
835   if (!LangOpts.Exceptions) return false;
836 
837   // If C++ exceptions are enabled, this is true.
838   if (LangOpts.CXXExceptions) return true;
839 
840   // If ObjC exceptions are enabled, this depends on the ABI.
841   if (LangOpts.ObjCExceptions) {
842     return LangOpts.ObjCRuntime.hasUnwindExceptions();
843   }
844 
845   return true;
846 }
847 
848 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
849                                                            llvm::Function *F) {
850   llvm::AttrBuilder B;
851 
852   if (CodeGenOpts.UnwindTables)
853     B.addAttribute(llvm::Attribute::UWTable);
854 
855   if (!hasUnwindExceptions(LangOpts))
856     B.addAttribute(llvm::Attribute::NoUnwind);
857 
858   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
859     B.addAttribute(llvm::Attribute::StackProtect);
860   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
861     B.addAttribute(llvm::Attribute::StackProtectStrong);
862   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
863     B.addAttribute(llvm::Attribute::StackProtectReq);
864 
865   if (!D) {
866     F->addAttributes(llvm::AttributeSet::FunctionIndex,
867                      llvm::AttributeSet::get(
868                          F->getContext(),
869                          llvm::AttributeSet::FunctionIndex, B));
870     return;
871   }
872 
873   if (D->hasAttr<NakedAttr>()) {
874     // Naked implies noinline: we should not be inlining such functions.
875     B.addAttribute(llvm::Attribute::Naked);
876     B.addAttribute(llvm::Attribute::NoInline);
877   } else if (D->hasAttr<NoDuplicateAttr>()) {
878     B.addAttribute(llvm::Attribute::NoDuplicate);
879   } else if (D->hasAttr<NoInlineAttr>()) {
880     B.addAttribute(llvm::Attribute::NoInline);
881   } else if (D->hasAttr<AlwaysInlineAttr>() &&
882              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
883                                               llvm::Attribute::NoInline)) {
884     // (noinline wins over always_inline, and we can't specify both in IR)
885     B.addAttribute(llvm::Attribute::AlwaysInline);
886   }
887 
888   if (D->hasAttr<ColdAttr>()) {
889     if (!D->hasAttr<OptimizeNoneAttr>())
890       B.addAttribute(llvm::Attribute::OptimizeForSize);
891     B.addAttribute(llvm::Attribute::Cold);
892   }
893 
894   if (D->hasAttr<MinSizeAttr>())
895     B.addAttribute(llvm::Attribute::MinSize);
896 
897   F->addAttributes(llvm::AttributeSet::FunctionIndex,
898                    llvm::AttributeSet::get(
899                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
900 
901   if (D->hasAttr<OptimizeNoneAttr>()) {
902     // OptimizeNone implies noinline; we should not be inlining such functions.
903     F->addFnAttr(llvm::Attribute::OptimizeNone);
904     F->addFnAttr(llvm::Attribute::NoInline);
905 
906     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
907     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
908     F->removeFnAttr(llvm::Attribute::MinSize);
909     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
910            "OptimizeNone and AlwaysInline on same function!");
911 
912     // Attribute 'inlinehint' has no effect on 'optnone' functions.
913     // Explicitly remove it from the set of function attributes.
914     F->removeFnAttr(llvm::Attribute::InlineHint);
915   }
916 
917   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
918   if (alignment)
919     F->setAlignment(alignment);
920 
921   // Some C++ ABIs require 2-byte alignment for member functions, in order to
922   // reserve a bit for differentiating between virtual and non-virtual member
923   // functions. If the current target's C++ ABI requires this and this is a
924   // member function, set its alignment accordingly.
925   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
926     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
927       F->setAlignment(2);
928   }
929 }
930 
931 void CodeGenModule::SetCommonAttributes(const Decl *D,
932                                         llvm::GlobalValue *GV) {
933   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
934     setGlobalVisibility(GV, ND);
935   else
936     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
937 
938   if (D && D->hasAttr<UsedAttr>())
939     addUsedGlobal(GV);
940 }
941 
942 void CodeGenModule::setAliasAttributes(const Decl *D,
943                                        llvm::GlobalValue *GV) {
944   SetCommonAttributes(D, GV);
945 
946   // Process the dllexport attribute based on whether the original definition
947   // (not necessarily the aliasee) was exported.
948   if (D->hasAttr<DLLExportAttr>())
949     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
950 }
951 
952 void CodeGenModule::setNonAliasAttributes(const Decl *D,
953                                           llvm::GlobalObject *GO) {
954   SetCommonAttributes(D, GO);
955 
956   if (D)
957     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
958       GO->setSection(SA->getName());
959 
960   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
961 }
962 
963 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
964                                                   llvm::Function *F,
965                                                   const CGFunctionInfo &FI) {
966   SetLLVMFunctionAttributes(D, FI, F);
967   SetLLVMFunctionAttributesForDefinition(D, F);
968 
969   F->setLinkage(llvm::Function::InternalLinkage);
970 
971   setNonAliasAttributes(D, F);
972 }
973 
974 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
975                                          const NamedDecl *ND) {
976   // Set linkage and visibility in case we never see a definition.
977   LinkageInfo LV = ND->getLinkageAndVisibility();
978   if (LV.getLinkage() != ExternalLinkage) {
979     // Don't set internal linkage on declarations.
980   } else {
981     if (ND->hasAttr<DLLImportAttr>()) {
982       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
983       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
984     } else if (ND->hasAttr<DLLExportAttr>()) {
985       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
986       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
987     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
988       // "extern_weak" is overloaded in LLVM; we probably should have
989       // separate linkage types for this.
990       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
991     }
992 
993     // Set visibility on a declaration only if it's explicit.
994     if (LV.isVisibilityExplicit())
995       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
996   }
997 }
998 
999 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1000                                                llvm::Function *F) {
1001   // Only if we are checking indirect calls.
1002   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1003     return;
1004 
1005   // Non-static class methods are handled via vtable pointer checks elsewhere.
1006   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1007     return;
1008 
1009   // Additionally, if building with cross-DSO support...
1010   if (CodeGenOpts.SanitizeCfiCrossDso) {
1011     // Don't emit entries for function declarations. In cross-DSO mode these are
1012     // handled with better precision at run time.
1013     if (!FD->hasBody())
1014       return;
1015     // Skip available_externally functions. They won't be codegen'ed in the
1016     // current module anyway.
1017     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1018       return;
1019   }
1020 
1021   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1022   F->addTypeMetadata(0, MD);
1023 
1024   // Emit a hash-based bit set entry for cross-DSO calls.
1025   if (CodeGenOpts.SanitizeCfiCrossDso)
1026     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1027       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1028 }
1029 
1030 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1031                                           bool IsIncompleteFunction,
1032                                           bool IsThunk) {
1033   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1034     // If this is an intrinsic function, set the function's attributes
1035     // to the intrinsic's attributes.
1036     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1037     return;
1038   }
1039 
1040   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1041 
1042   if (!IsIncompleteFunction)
1043     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1044 
1045   // Add the Returned attribute for "this", except for iOS 5 and earlier
1046   // where substantial code, including the libstdc++ dylib, was compiled with
1047   // GCC and does not actually return "this".
1048   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1049       !(getTarget().getTriple().isiOS() &&
1050         getTarget().getTriple().isOSVersionLT(6))) {
1051     assert(!F->arg_empty() &&
1052            F->arg_begin()->getType()
1053              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1054            "unexpected this return");
1055     F->addAttribute(1, llvm::Attribute::Returned);
1056   }
1057 
1058   // Only a few attributes are set on declarations; these may later be
1059   // overridden by a definition.
1060 
1061   setLinkageAndVisibilityForGV(F, FD);
1062 
1063   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1064     F->setSection(SA->getName());
1065 
1066   if (FD->isReplaceableGlobalAllocationFunction()) {
1067     // A replaceable global allocation function does not act like a builtin by
1068     // default, only if it is invoked by a new-expression or delete-expression.
1069     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1070                     llvm::Attribute::NoBuiltin);
1071 
1072     // A sane operator new returns a non-aliasing pointer.
1073     // FIXME: Also add NonNull attribute to the return value
1074     // for the non-nothrow forms?
1075     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1076     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1077         (Kind == OO_New || Kind == OO_Array_New))
1078       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1079                       llvm::Attribute::NoAlias);
1080   }
1081 
1082   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1083     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1084   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1085     if (MD->isVirtual())
1086       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1087 
1088   CreateFunctionTypeMetadata(FD, F);
1089 }
1090 
1091 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1092   assert(!GV->isDeclaration() &&
1093          "Only globals with definition can force usage.");
1094   LLVMUsed.emplace_back(GV);
1095 }
1096 
1097 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1098   assert(!GV->isDeclaration() &&
1099          "Only globals with definition can force usage.");
1100   LLVMCompilerUsed.emplace_back(GV);
1101 }
1102 
1103 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1104                      std::vector<llvm::WeakVH> &List) {
1105   // Don't create llvm.used if there is no need.
1106   if (List.empty())
1107     return;
1108 
1109   // Convert List to what ConstantArray needs.
1110   SmallVector<llvm::Constant*, 8> UsedArray;
1111   UsedArray.resize(List.size());
1112   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1113     UsedArray[i] =
1114         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1115             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1116   }
1117 
1118   if (UsedArray.empty())
1119     return;
1120   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1121 
1122   auto *GV = new llvm::GlobalVariable(
1123       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1124       llvm::ConstantArray::get(ATy, UsedArray), Name);
1125 
1126   GV->setSection("llvm.metadata");
1127 }
1128 
1129 void CodeGenModule::emitLLVMUsed() {
1130   emitUsed(*this, "llvm.used", LLVMUsed);
1131   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1132 }
1133 
1134 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1135   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1136   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1137 }
1138 
1139 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1140   llvm::SmallString<32> Opt;
1141   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1142   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1143   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1144 }
1145 
1146 void CodeGenModule::AddDependentLib(StringRef Lib) {
1147   llvm::SmallString<24> Opt;
1148   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1149   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1150   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1151 }
1152 
1153 /// \brief Add link options implied by the given module, including modules
1154 /// it depends on, using a postorder walk.
1155 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1156                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1157                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1158   // Import this module's parent.
1159   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1160     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1161   }
1162 
1163   // Import this module's dependencies.
1164   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1165     if (Visited.insert(Mod->Imports[I - 1]).second)
1166       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1167   }
1168 
1169   // Add linker options to link against the libraries/frameworks
1170   // described by this module.
1171   llvm::LLVMContext &Context = CGM.getLLVMContext();
1172   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1173     // Link against a framework.  Frameworks are currently Darwin only, so we
1174     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1175     if (Mod->LinkLibraries[I-1].IsFramework) {
1176       llvm::Metadata *Args[2] = {
1177           llvm::MDString::get(Context, "-framework"),
1178           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1179 
1180       Metadata.push_back(llvm::MDNode::get(Context, Args));
1181       continue;
1182     }
1183 
1184     // Link against a library.
1185     llvm::SmallString<24> Opt;
1186     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1187       Mod->LinkLibraries[I-1].Library, Opt);
1188     auto *OptString = llvm::MDString::get(Context, Opt);
1189     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1190   }
1191 }
1192 
1193 void CodeGenModule::EmitModuleLinkOptions() {
1194   // Collect the set of all of the modules we want to visit to emit link
1195   // options, which is essentially the imported modules and all of their
1196   // non-explicit child modules.
1197   llvm::SetVector<clang::Module *> LinkModules;
1198   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1199   SmallVector<clang::Module *, 16> Stack;
1200 
1201   // Seed the stack with imported modules.
1202   for (Module *M : ImportedModules)
1203     if (Visited.insert(M).second)
1204       Stack.push_back(M);
1205 
1206   // Find all of the modules to import, making a little effort to prune
1207   // non-leaf modules.
1208   while (!Stack.empty()) {
1209     clang::Module *Mod = Stack.pop_back_val();
1210 
1211     bool AnyChildren = false;
1212 
1213     // Visit the submodules of this module.
1214     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1215                                         SubEnd = Mod->submodule_end();
1216          Sub != SubEnd; ++Sub) {
1217       // Skip explicit children; they need to be explicitly imported to be
1218       // linked against.
1219       if ((*Sub)->IsExplicit)
1220         continue;
1221 
1222       if (Visited.insert(*Sub).second) {
1223         Stack.push_back(*Sub);
1224         AnyChildren = true;
1225       }
1226     }
1227 
1228     // We didn't find any children, so add this module to the list of
1229     // modules to link against.
1230     if (!AnyChildren) {
1231       LinkModules.insert(Mod);
1232     }
1233   }
1234 
1235   // Add link options for all of the imported modules in reverse topological
1236   // order.  We don't do anything to try to order import link flags with respect
1237   // to linker options inserted by things like #pragma comment().
1238   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1239   Visited.clear();
1240   for (Module *M : LinkModules)
1241     if (Visited.insert(M).second)
1242       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1243   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1244   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1245 
1246   // Add the linker options metadata flag.
1247   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1248                             llvm::MDNode::get(getLLVMContext(),
1249                                               LinkerOptionsMetadata));
1250 }
1251 
1252 void CodeGenModule::EmitDeferred() {
1253   // Emit code for any potentially referenced deferred decls.  Since a
1254   // previously unused static decl may become used during the generation of code
1255   // for a static function, iterate until no changes are made.
1256 
1257   if (!DeferredVTables.empty()) {
1258     EmitDeferredVTables();
1259 
1260     // Emitting a vtable doesn't directly cause more vtables to
1261     // become deferred, although it can cause functions to be
1262     // emitted that then need those vtables.
1263     assert(DeferredVTables.empty());
1264   }
1265 
1266   // Stop if we're out of both deferred vtables and deferred declarations.
1267   if (DeferredDeclsToEmit.empty())
1268     return;
1269 
1270   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1271   // work, it will not interfere with this.
1272   std::vector<DeferredGlobal> CurDeclsToEmit;
1273   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1274 
1275   for (DeferredGlobal &G : CurDeclsToEmit) {
1276     GlobalDecl D = G.GD;
1277     G.GV = nullptr;
1278 
1279     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1280     // to get GlobalValue with exactly the type we need, not something that
1281     // might had been created for another decl with the same mangled name but
1282     // different type.
1283     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1284         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1285 
1286     // In case of different address spaces, we may still get a cast, even with
1287     // IsForDefinition equal to true. Query mangled names table to get
1288     // GlobalValue.
1289     if (!GV)
1290       GV = GetGlobalValue(getMangledName(D));
1291 
1292     // Make sure GetGlobalValue returned non-null.
1293     assert(GV);
1294 
1295     // Check to see if we've already emitted this.  This is necessary
1296     // for a couple of reasons: first, decls can end up in the
1297     // deferred-decls queue multiple times, and second, decls can end
1298     // up with definitions in unusual ways (e.g. by an extern inline
1299     // function acquiring a strong function redefinition).  Just
1300     // ignore these cases.
1301     if (!GV->isDeclaration())
1302       continue;
1303 
1304     // Otherwise, emit the definition and move on to the next one.
1305     EmitGlobalDefinition(D, GV);
1306 
1307     // If we found out that we need to emit more decls, do that recursively.
1308     // This has the advantage that the decls are emitted in a DFS and related
1309     // ones are close together, which is convenient for testing.
1310     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1311       EmitDeferred();
1312       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1313     }
1314   }
1315 }
1316 
1317 void CodeGenModule::EmitGlobalAnnotations() {
1318   if (Annotations.empty())
1319     return;
1320 
1321   // Create a new global variable for the ConstantStruct in the Module.
1322   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1323     Annotations[0]->getType(), Annotations.size()), Annotations);
1324   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1325                                       llvm::GlobalValue::AppendingLinkage,
1326                                       Array, "llvm.global.annotations");
1327   gv->setSection(AnnotationSection);
1328 }
1329 
1330 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1331   llvm::Constant *&AStr = AnnotationStrings[Str];
1332   if (AStr)
1333     return AStr;
1334 
1335   // Not found yet, create a new global.
1336   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1337   auto *gv =
1338       new llvm::GlobalVariable(getModule(), s->getType(), true,
1339                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1340   gv->setSection(AnnotationSection);
1341   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1342   AStr = gv;
1343   return gv;
1344 }
1345 
1346 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1347   SourceManager &SM = getContext().getSourceManager();
1348   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1349   if (PLoc.isValid())
1350     return EmitAnnotationString(PLoc.getFilename());
1351   return EmitAnnotationString(SM.getBufferName(Loc));
1352 }
1353 
1354 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1355   SourceManager &SM = getContext().getSourceManager();
1356   PresumedLoc PLoc = SM.getPresumedLoc(L);
1357   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1358     SM.getExpansionLineNumber(L);
1359   return llvm::ConstantInt::get(Int32Ty, LineNo);
1360 }
1361 
1362 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1363                                                 const AnnotateAttr *AA,
1364                                                 SourceLocation L) {
1365   // Get the globals for file name, annotation, and the line number.
1366   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1367                  *UnitGV = EmitAnnotationUnit(L),
1368                  *LineNoCst = EmitAnnotationLineNo(L);
1369 
1370   // Create the ConstantStruct for the global annotation.
1371   llvm::Constant *Fields[4] = {
1372     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1373     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1374     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1375     LineNoCst
1376   };
1377   return llvm::ConstantStruct::getAnon(Fields);
1378 }
1379 
1380 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1381                                          llvm::GlobalValue *GV) {
1382   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1383   // Get the struct elements for these annotations.
1384   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1385     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1386 }
1387 
1388 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1389                                            SourceLocation Loc) const {
1390   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1391   // Blacklist by function name.
1392   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1393     return true;
1394   // Blacklist by location.
1395   if (Loc.isValid())
1396     return SanitizerBL.isBlacklistedLocation(Loc);
1397   // If location is unknown, this may be a compiler-generated function. Assume
1398   // it's located in the main file.
1399   auto &SM = Context.getSourceManager();
1400   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1401     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1402   }
1403   return false;
1404 }
1405 
1406 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1407                                            SourceLocation Loc, QualType Ty,
1408                                            StringRef Category) const {
1409   // For now globals can be blacklisted only in ASan and KASan.
1410   if (!LangOpts.Sanitize.hasOneOf(
1411           SanitizerKind::Address | SanitizerKind::KernelAddress))
1412     return false;
1413   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1414   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1415     return true;
1416   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1417     return true;
1418   // Check global type.
1419   if (!Ty.isNull()) {
1420     // Drill down the array types: if global variable of a fixed type is
1421     // blacklisted, we also don't instrument arrays of them.
1422     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1423       Ty = AT->getElementType();
1424     Ty = Ty.getCanonicalType().getUnqualifiedType();
1425     // We allow to blacklist only record types (classes, structs etc.)
1426     if (Ty->isRecordType()) {
1427       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1428       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1429         return true;
1430     }
1431   }
1432   return false;
1433 }
1434 
1435 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1436   // Never defer when EmitAllDecls is specified.
1437   if (LangOpts.EmitAllDecls)
1438     return true;
1439 
1440   return getContext().DeclMustBeEmitted(Global);
1441 }
1442 
1443 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1444   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1445     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1446       // Implicit template instantiations may change linkage if they are later
1447       // explicitly instantiated, so they should not be emitted eagerly.
1448       return false;
1449   if (const auto *VD = dyn_cast<VarDecl>(Global))
1450     if (Context.getInlineVariableDefinitionKind(VD) ==
1451         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1452       // A definition of an inline constexpr static data member may change
1453       // linkage later if it's redeclared outside the class.
1454       return false;
1455   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1456   // codegen for global variables, because they may be marked as threadprivate.
1457   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1458       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1459     return false;
1460 
1461   return true;
1462 }
1463 
1464 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1465     const CXXUuidofExpr* E) {
1466   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1467   // well-formed.
1468   StringRef Uuid = E->getUuidStr();
1469   std::string Name = "_GUID_" + Uuid.lower();
1470   std::replace(Name.begin(), Name.end(), '-', '_');
1471 
1472   // The UUID descriptor should be pointer aligned.
1473   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1474 
1475   // Look for an existing global.
1476   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1477     return ConstantAddress(GV, Alignment);
1478 
1479   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1480   assert(Init && "failed to initialize as constant");
1481 
1482   auto *GV = new llvm::GlobalVariable(
1483       getModule(), Init->getType(),
1484       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1485   if (supportsCOMDAT())
1486     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1487   return ConstantAddress(GV, Alignment);
1488 }
1489 
1490 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1491   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1492   assert(AA && "No alias?");
1493 
1494   CharUnits Alignment = getContext().getDeclAlign(VD);
1495   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1496 
1497   // See if there is already something with the target's name in the module.
1498   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1499   if (Entry) {
1500     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1501     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1502     return ConstantAddress(Ptr, Alignment);
1503   }
1504 
1505   llvm::Constant *Aliasee;
1506   if (isa<llvm::FunctionType>(DeclTy))
1507     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1508                                       GlobalDecl(cast<FunctionDecl>(VD)),
1509                                       /*ForVTable=*/false);
1510   else
1511     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1512                                     llvm::PointerType::getUnqual(DeclTy),
1513                                     nullptr);
1514 
1515   auto *F = cast<llvm::GlobalValue>(Aliasee);
1516   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1517   WeakRefReferences.insert(F);
1518 
1519   return ConstantAddress(Aliasee, Alignment);
1520 }
1521 
1522 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1523   const auto *Global = cast<ValueDecl>(GD.getDecl());
1524 
1525   // Weak references don't produce any output by themselves.
1526   if (Global->hasAttr<WeakRefAttr>())
1527     return;
1528 
1529   // If this is an alias definition (which otherwise looks like a declaration)
1530   // emit it now.
1531   if (Global->hasAttr<AliasAttr>())
1532     return EmitAliasDefinition(GD);
1533 
1534   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1535   if (Global->hasAttr<IFuncAttr>())
1536     return emitIFuncDefinition(GD);
1537 
1538   // If this is CUDA, be selective about which declarations we emit.
1539   if (LangOpts.CUDA) {
1540     if (LangOpts.CUDAIsDevice) {
1541       if (!Global->hasAttr<CUDADeviceAttr>() &&
1542           !Global->hasAttr<CUDAGlobalAttr>() &&
1543           !Global->hasAttr<CUDAConstantAttr>() &&
1544           !Global->hasAttr<CUDASharedAttr>())
1545         return;
1546     } else {
1547       // We need to emit host-side 'shadows' for all global
1548       // device-side variables because the CUDA runtime needs their
1549       // size and host-side address in order to provide access to
1550       // their device-side incarnations.
1551 
1552       // So device-only functions are the only things we skip.
1553       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1554           Global->hasAttr<CUDADeviceAttr>())
1555         return;
1556 
1557       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1558              "Expected Variable or Function");
1559     }
1560   }
1561 
1562   if (LangOpts.OpenMP) {
1563     // If this is OpenMP device, check if it is legal to emit this global
1564     // normally.
1565     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1566       return;
1567     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1568       if (MustBeEmitted(Global))
1569         EmitOMPDeclareReduction(DRD);
1570       return;
1571     }
1572   }
1573 
1574   // Ignore declarations, they will be emitted on their first use.
1575   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1576     // Forward declarations are emitted lazily on first use.
1577     if (!FD->doesThisDeclarationHaveABody()) {
1578       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1579         return;
1580 
1581       StringRef MangledName = getMangledName(GD);
1582 
1583       // Compute the function info and LLVM type.
1584       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1585       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1586 
1587       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1588                               /*DontDefer=*/false);
1589       return;
1590     }
1591   } else {
1592     const auto *VD = cast<VarDecl>(Global);
1593     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1594     // We need to emit device-side global CUDA variables even if a
1595     // variable does not have a definition -- we still need to define
1596     // host-side shadow for it.
1597     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1598                            !VD->hasDefinition() &&
1599                            (VD->hasAttr<CUDAConstantAttr>() ||
1600                             VD->hasAttr<CUDADeviceAttr>());
1601     if (!MustEmitForCuda &&
1602         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1603         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1604       // If this declaration may have caused an inline variable definition to
1605       // change linkage, make sure that it's emitted.
1606       if (Context.getInlineVariableDefinitionKind(VD) ==
1607           ASTContext::InlineVariableDefinitionKind::Strong)
1608         GetAddrOfGlobalVar(VD);
1609       return;
1610     }
1611   }
1612 
1613   // Defer code generation to first use when possible, e.g. if this is an inline
1614   // function. If the global must always be emitted, do it eagerly if possible
1615   // to benefit from cache locality.
1616   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1617     // Emit the definition if it can't be deferred.
1618     EmitGlobalDefinition(GD);
1619     return;
1620   }
1621 
1622   // If we're deferring emission of a C++ variable with an
1623   // initializer, remember the order in which it appeared in the file.
1624   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1625       cast<VarDecl>(Global)->hasInit()) {
1626     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1627     CXXGlobalInits.push_back(nullptr);
1628   }
1629 
1630   StringRef MangledName = getMangledName(GD);
1631   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1632     // The value has already been used and should therefore be emitted.
1633     addDeferredDeclToEmit(GV, GD);
1634   } else if (MustBeEmitted(Global)) {
1635     // The value must be emitted, but cannot be emitted eagerly.
1636     assert(!MayBeEmittedEagerly(Global));
1637     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1638   } else {
1639     // Otherwise, remember that we saw a deferred decl with this name.  The
1640     // first use of the mangled name will cause it to move into
1641     // DeferredDeclsToEmit.
1642     DeferredDecls[MangledName] = GD;
1643   }
1644 }
1645 
1646 namespace {
1647   struct FunctionIsDirectlyRecursive :
1648     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1649     const StringRef Name;
1650     const Builtin::Context &BI;
1651     bool Result;
1652     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1653       Name(N), BI(C), Result(false) {
1654     }
1655     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1656 
1657     bool TraverseCallExpr(CallExpr *E) {
1658       const FunctionDecl *FD = E->getDirectCallee();
1659       if (!FD)
1660         return true;
1661       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1662       if (Attr && Name == Attr->getLabel()) {
1663         Result = true;
1664         return false;
1665       }
1666       unsigned BuiltinID = FD->getBuiltinID();
1667       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1668         return true;
1669       StringRef BuiltinName = BI.getName(BuiltinID);
1670       if (BuiltinName.startswith("__builtin_") &&
1671           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1672         Result = true;
1673         return false;
1674       }
1675       return true;
1676     }
1677   };
1678 
1679   struct DLLImportFunctionVisitor
1680       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1681     bool SafeToInline = true;
1682 
1683     bool VisitVarDecl(VarDecl *VD) {
1684       // A thread-local variable cannot be imported.
1685       SafeToInline = !VD->getTLSKind();
1686       return SafeToInline;
1687     }
1688 
1689     // Make sure we're not referencing non-imported vars or functions.
1690     bool VisitDeclRefExpr(DeclRefExpr *E) {
1691       ValueDecl *VD = E->getDecl();
1692       if (isa<FunctionDecl>(VD))
1693         SafeToInline = VD->hasAttr<DLLImportAttr>();
1694       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1695         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1696       return SafeToInline;
1697     }
1698     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1699       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1700       return SafeToInline;
1701     }
1702     bool VisitCXXNewExpr(CXXNewExpr *E) {
1703       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1704       return SafeToInline;
1705     }
1706   };
1707 }
1708 
1709 // isTriviallyRecursive - Check if this function calls another
1710 // decl that, because of the asm attribute or the other decl being a builtin,
1711 // ends up pointing to itself.
1712 bool
1713 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1714   StringRef Name;
1715   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1716     // asm labels are a special kind of mangling we have to support.
1717     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1718     if (!Attr)
1719       return false;
1720     Name = Attr->getLabel();
1721   } else {
1722     Name = FD->getName();
1723   }
1724 
1725   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1726   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1727   return Walker.Result;
1728 }
1729 
1730 bool
1731 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1732   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1733     return true;
1734   const auto *F = cast<FunctionDecl>(GD.getDecl());
1735   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1736     return false;
1737 
1738   if (F->hasAttr<DLLImportAttr>()) {
1739     // Check whether it would be safe to inline this dllimport function.
1740     DLLImportFunctionVisitor Visitor;
1741     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1742     if (!Visitor.SafeToInline)
1743       return false;
1744   }
1745 
1746   // PR9614. Avoid cases where the source code is lying to us. An available
1747   // externally function should have an equivalent function somewhere else,
1748   // but a function that calls itself is clearly not equivalent to the real
1749   // implementation.
1750   // This happens in glibc's btowc and in some configure checks.
1751   return !isTriviallyRecursive(F);
1752 }
1753 
1754 /// If the type for the method's class was generated by
1755 /// CGDebugInfo::createContextChain(), the cache contains only a
1756 /// limited DIType without any declarations. Since EmitFunctionStart()
1757 /// needs to find the canonical declaration for each method, we need
1758 /// to construct the complete type prior to emitting the method.
1759 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1760   if (!D->isInstance())
1761     return;
1762 
1763   if (CGDebugInfo *DI = getModuleDebugInfo())
1764     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1765       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1766       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1767     }
1768 }
1769 
1770 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1771   const auto *D = cast<ValueDecl>(GD.getDecl());
1772 
1773   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1774                                  Context.getSourceManager(),
1775                                  "Generating code for declaration");
1776 
1777   if (isa<FunctionDecl>(D)) {
1778     // At -O0, don't generate IR for functions with available_externally
1779     // linkage.
1780     if (!shouldEmitFunction(GD))
1781       return;
1782 
1783     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1784       CompleteDIClassType(Method);
1785       // Make sure to emit the definition(s) before we emit the thunks.
1786       // This is necessary for the generation of certain thunks.
1787       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1788         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1789       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1790         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1791       else
1792         EmitGlobalFunctionDefinition(GD, GV);
1793 
1794       if (Method->isVirtual())
1795         getVTables().EmitThunks(GD);
1796 
1797       return;
1798     }
1799 
1800     return EmitGlobalFunctionDefinition(GD, GV);
1801   }
1802 
1803   if (const auto *VD = dyn_cast<VarDecl>(D))
1804     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1805 
1806   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1807 }
1808 
1809 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1810                                                       llvm::Function *NewFn);
1811 
1812 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1813 /// module, create and return an llvm Function with the specified type. If there
1814 /// is something in the module with the specified name, return it potentially
1815 /// bitcasted to the right type.
1816 ///
1817 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1818 /// to set the attributes on the function when it is first created.
1819 llvm::Constant *
1820 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1821                                        llvm::Type *Ty,
1822                                        GlobalDecl GD, bool ForVTable,
1823                                        bool DontDefer, bool IsThunk,
1824                                        llvm::AttributeSet ExtraAttrs,
1825                                        bool IsForDefinition) {
1826   const Decl *D = GD.getDecl();
1827 
1828   // Lookup the entry, lazily creating it if necessary.
1829   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1830   if (Entry) {
1831     if (WeakRefReferences.erase(Entry)) {
1832       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1833       if (FD && !FD->hasAttr<WeakAttr>())
1834         Entry->setLinkage(llvm::Function::ExternalLinkage);
1835     }
1836 
1837     // Handle dropped DLL attributes.
1838     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1839       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1840 
1841     // If there are two attempts to define the same mangled name, issue an
1842     // error.
1843     if (IsForDefinition && !Entry->isDeclaration()) {
1844       GlobalDecl OtherGD;
1845       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1846       // to make sure that we issue an error only once.
1847       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1848           (GD.getCanonicalDecl().getDecl() !=
1849            OtherGD.getCanonicalDecl().getDecl()) &&
1850           DiagnosedConflictingDefinitions.insert(GD).second) {
1851         getDiags().Report(D->getLocation(),
1852                           diag::err_duplicate_mangled_name);
1853         getDiags().Report(OtherGD.getDecl()->getLocation(),
1854                           diag::note_previous_definition);
1855       }
1856     }
1857 
1858     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1859         (Entry->getType()->getElementType() == Ty)) {
1860       return Entry;
1861     }
1862 
1863     // Make sure the result is of the correct type.
1864     // (If function is requested for a definition, we always need to create a new
1865     // function, not just return a bitcast.)
1866     if (!IsForDefinition)
1867       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1868   }
1869 
1870   // This function doesn't have a complete type (for example, the return
1871   // type is an incomplete struct). Use a fake type instead, and make
1872   // sure not to try to set attributes.
1873   bool IsIncompleteFunction = false;
1874 
1875   llvm::FunctionType *FTy;
1876   if (isa<llvm::FunctionType>(Ty)) {
1877     FTy = cast<llvm::FunctionType>(Ty);
1878   } else {
1879     FTy = llvm::FunctionType::get(VoidTy, false);
1880     IsIncompleteFunction = true;
1881   }
1882 
1883   llvm::Function *F =
1884       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1885                              Entry ? StringRef() : MangledName, &getModule());
1886 
1887   // If we already created a function with the same mangled name (but different
1888   // type) before, take its name and add it to the list of functions to be
1889   // replaced with F at the end of CodeGen.
1890   //
1891   // This happens if there is a prototype for a function (e.g. "int f()") and
1892   // then a definition of a different type (e.g. "int f(int x)").
1893   if (Entry) {
1894     F->takeName(Entry);
1895 
1896     // This might be an implementation of a function without a prototype, in
1897     // which case, try to do special replacement of calls which match the new
1898     // prototype.  The really key thing here is that we also potentially drop
1899     // arguments from the call site so as to make a direct call, which makes the
1900     // inliner happier and suppresses a number of optimizer warnings (!) about
1901     // dropping arguments.
1902     if (!Entry->use_empty()) {
1903       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1904       Entry->removeDeadConstantUsers();
1905     }
1906 
1907     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1908         F, Entry->getType()->getElementType()->getPointerTo());
1909     addGlobalValReplacement(Entry, BC);
1910   }
1911 
1912   assert(F->getName() == MangledName && "name was uniqued!");
1913   if (D)
1914     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1915   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1916     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1917     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1918                      llvm::AttributeSet::get(VMContext,
1919                                              llvm::AttributeSet::FunctionIndex,
1920                                              B));
1921   }
1922 
1923   if (!DontDefer) {
1924     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1925     // each other bottoming out with the base dtor.  Therefore we emit non-base
1926     // dtors on usage, even if there is no dtor definition in the TU.
1927     if (D && isa<CXXDestructorDecl>(D) &&
1928         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1929                                            GD.getDtorType()))
1930       addDeferredDeclToEmit(F, GD);
1931 
1932     // This is the first use or definition of a mangled name.  If there is a
1933     // deferred decl with this name, remember that we need to emit it at the end
1934     // of the file.
1935     auto DDI = DeferredDecls.find(MangledName);
1936     if (DDI != DeferredDecls.end()) {
1937       // Move the potentially referenced deferred decl to the
1938       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1939       // don't need it anymore).
1940       addDeferredDeclToEmit(F, DDI->second);
1941       DeferredDecls.erase(DDI);
1942 
1943       // Otherwise, there are cases we have to worry about where we're
1944       // using a declaration for which we must emit a definition but where
1945       // we might not find a top-level definition:
1946       //   - member functions defined inline in their classes
1947       //   - friend functions defined inline in some class
1948       //   - special member functions with implicit definitions
1949       // If we ever change our AST traversal to walk into class methods,
1950       // this will be unnecessary.
1951       //
1952       // We also don't emit a definition for a function if it's going to be an
1953       // entry in a vtable, unless it's already marked as used.
1954     } else if (getLangOpts().CPlusPlus && D) {
1955       // Look for a declaration that's lexically in a record.
1956       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1957            FD = FD->getPreviousDecl()) {
1958         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1959           if (FD->doesThisDeclarationHaveABody()) {
1960             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1961             break;
1962           }
1963         }
1964       }
1965     }
1966   }
1967 
1968   // Make sure the result is of the requested type.
1969   if (!IsIncompleteFunction) {
1970     assert(F->getType()->getElementType() == Ty);
1971     return F;
1972   }
1973 
1974   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1975   return llvm::ConstantExpr::getBitCast(F, PTy);
1976 }
1977 
1978 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1979 /// non-null, then this function will use the specified type if it has to
1980 /// create it (this occurs when we see a definition of the function).
1981 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1982                                                  llvm::Type *Ty,
1983                                                  bool ForVTable,
1984                                                  bool DontDefer,
1985                                                  bool IsForDefinition) {
1986   // If there was no specific requested type, just convert it now.
1987   if (!Ty) {
1988     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1989     auto CanonTy = Context.getCanonicalType(FD->getType());
1990     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1991   }
1992 
1993   StringRef MangledName = getMangledName(GD);
1994   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1995                                  /*IsThunk=*/false, llvm::AttributeSet(),
1996                                  IsForDefinition);
1997 }
1998 
1999 /// CreateRuntimeFunction - Create a new runtime function with the specified
2000 /// type and name.
2001 llvm::Constant *
2002 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
2003                                      StringRef Name,
2004                                      llvm::AttributeSet ExtraAttrs) {
2005   llvm::Constant *C =
2006       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2007                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2008   if (auto *F = dyn_cast<llvm::Function>(C))
2009     if (F->empty())
2010       F->setCallingConv(getRuntimeCC());
2011   return C;
2012 }
2013 
2014 /// CreateBuiltinFunction - Create a new builtin function with the specified
2015 /// type and name.
2016 llvm::Constant *
2017 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2018                                      StringRef Name,
2019                                      llvm::AttributeSet ExtraAttrs) {
2020   llvm::Constant *C =
2021       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2022                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2023   if (auto *F = dyn_cast<llvm::Function>(C))
2024     if (F->empty())
2025       F->setCallingConv(getBuiltinCC());
2026   return C;
2027 }
2028 
2029 /// isTypeConstant - Determine whether an object of this type can be emitted
2030 /// as a constant.
2031 ///
2032 /// If ExcludeCtor is true, the duration when the object's constructor runs
2033 /// will not be considered. The caller will need to verify that the object is
2034 /// not written to during its construction.
2035 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2036   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2037     return false;
2038 
2039   if (Context.getLangOpts().CPlusPlus) {
2040     if (const CXXRecordDecl *Record
2041           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2042       return ExcludeCtor && !Record->hasMutableFields() &&
2043              Record->hasTrivialDestructor();
2044   }
2045 
2046   return true;
2047 }
2048 
2049 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2050 /// create and return an llvm GlobalVariable with the specified type.  If there
2051 /// is something in the module with the specified name, return it potentially
2052 /// bitcasted to the right type.
2053 ///
2054 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2055 /// to set the attributes on the global when it is first created.
2056 ///
2057 /// If IsForDefinition is true, it is guranteed that an actual global with
2058 /// type Ty will be returned, not conversion of a variable with the same
2059 /// mangled name but some other type.
2060 llvm::Constant *
2061 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2062                                      llvm::PointerType *Ty,
2063                                      const VarDecl *D,
2064                                      bool IsForDefinition) {
2065   // Lookup the entry, lazily creating it if necessary.
2066   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2067   if (Entry) {
2068     if (WeakRefReferences.erase(Entry)) {
2069       if (D && !D->hasAttr<WeakAttr>())
2070         Entry->setLinkage(llvm::Function::ExternalLinkage);
2071     }
2072 
2073     // Handle dropped DLL attributes.
2074     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2075       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2076 
2077     if (Entry->getType() == Ty)
2078       return Entry;
2079 
2080     // If there are two attempts to define the same mangled name, issue an
2081     // error.
2082     if (IsForDefinition && !Entry->isDeclaration()) {
2083       GlobalDecl OtherGD;
2084       const VarDecl *OtherD;
2085 
2086       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2087       // to make sure that we issue an error only once.
2088       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2089           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2090           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2091           OtherD->hasInit() &&
2092           DiagnosedConflictingDefinitions.insert(D).second) {
2093         getDiags().Report(D->getLocation(),
2094                           diag::err_duplicate_mangled_name);
2095         getDiags().Report(OtherGD.getDecl()->getLocation(),
2096                           diag::note_previous_definition);
2097       }
2098     }
2099 
2100     // Make sure the result is of the correct type.
2101     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2102       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2103 
2104     // (If global is requested for a definition, we always need to create a new
2105     // global, not just return a bitcast.)
2106     if (!IsForDefinition)
2107       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2108   }
2109 
2110   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2111   auto *GV = new llvm::GlobalVariable(
2112       getModule(), Ty->getElementType(), false,
2113       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2114       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2115 
2116   // If we already created a global with the same mangled name (but different
2117   // type) before, take its name and remove it from its parent.
2118   if (Entry) {
2119     GV->takeName(Entry);
2120 
2121     if (!Entry->use_empty()) {
2122       llvm::Constant *NewPtrForOldDecl =
2123           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2124       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2125     }
2126 
2127     Entry->eraseFromParent();
2128   }
2129 
2130   // This is the first use or definition of a mangled name.  If there is a
2131   // deferred decl with this name, remember that we need to emit it at the end
2132   // of the file.
2133   auto DDI = DeferredDecls.find(MangledName);
2134   if (DDI != DeferredDecls.end()) {
2135     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2136     // list, and remove it from DeferredDecls (since we don't need it anymore).
2137     addDeferredDeclToEmit(GV, DDI->second);
2138     DeferredDecls.erase(DDI);
2139   }
2140 
2141   // Handle things which are present even on external declarations.
2142   if (D) {
2143     // FIXME: This code is overly simple and should be merged with other global
2144     // handling.
2145     GV->setConstant(isTypeConstant(D->getType(), false));
2146 
2147     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2148 
2149     setLinkageAndVisibilityForGV(GV, D);
2150 
2151     if (D->getTLSKind()) {
2152       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2153         CXXThreadLocals.push_back(D);
2154       setTLSMode(GV, *D);
2155     }
2156 
2157     // If required by the ABI, treat declarations of static data members with
2158     // inline initializers as definitions.
2159     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2160       EmitGlobalVarDefinition(D);
2161     }
2162 
2163     // Handle XCore specific ABI requirements.
2164     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2165         D->getLanguageLinkage() == CLanguageLinkage &&
2166         D->getType().isConstant(Context) &&
2167         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2168       GV->setSection(".cp.rodata");
2169   }
2170 
2171   if (AddrSpace != Ty->getAddressSpace())
2172     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2173 
2174   return GV;
2175 }
2176 
2177 llvm::Constant *
2178 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2179                                bool IsForDefinition) {
2180   if (isa<CXXConstructorDecl>(GD.getDecl()))
2181     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2182                                 getFromCtorType(GD.getCtorType()),
2183                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2184                                 /*DontDefer=*/false, IsForDefinition);
2185   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2186     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2187                                 getFromDtorType(GD.getDtorType()),
2188                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2189                                 /*DontDefer=*/false, IsForDefinition);
2190   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2191     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2192         cast<CXXMethodDecl>(GD.getDecl()));
2193     auto Ty = getTypes().GetFunctionType(*FInfo);
2194     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2195                              IsForDefinition);
2196   } else if (isa<FunctionDecl>(GD.getDecl())) {
2197     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2198     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2199     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2200                              IsForDefinition);
2201   } else
2202     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2203                               IsForDefinition);
2204 }
2205 
2206 llvm::GlobalVariable *
2207 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2208                                       llvm::Type *Ty,
2209                                       llvm::GlobalValue::LinkageTypes Linkage) {
2210   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2211   llvm::GlobalVariable *OldGV = nullptr;
2212 
2213   if (GV) {
2214     // Check if the variable has the right type.
2215     if (GV->getType()->getElementType() == Ty)
2216       return GV;
2217 
2218     // Because C++ name mangling, the only way we can end up with an already
2219     // existing global with the same name is if it has been declared extern "C".
2220     assert(GV->isDeclaration() && "Declaration has wrong type!");
2221     OldGV = GV;
2222   }
2223 
2224   // Create a new variable.
2225   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2226                                 Linkage, nullptr, Name);
2227 
2228   if (OldGV) {
2229     // Replace occurrences of the old variable if needed.
2230     GV->takeName(OldGV);
2231 
2232     if (!OldGV->use_empty()) {
2233       llvm::Constant *NewPtrForOldDecl =
2234       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2235       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2236     }
2237 
2238     OldGV->eraseFromParent();
2239   }
2240 
2241   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2242       !GV->hasAvailableExternallyLinkage())
2243     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2244 
2245   return GV;
2246 }
2247 
2248 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2249 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2250 /// then it will be created with the specified type instead of whatever the
2251 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2252 /// that an actual global with type Ty will be returned, not conversion of a
2253 /// variable with the same mangled name but some other type.
2254 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2255                                                   llvm::Type *Ty,
2256                                                   bool IsForDefinition) {
2257   assert(D->hasGlobalStorage() && "Not a global variable");
2258   QualType ASTTy = D->getType();
2259   if (!Ty)
2260     Ty = getTypes().ConvertTypeForMem(ASTTy);
2261 
2262   llvm::PointerType *PTy =
2263     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2264 
2265   StringRef MangledName = getMangledName(D);
2266   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2267 }
2268 
2269 /// CreateRuntimeVariable - Create a new runtime global variable with the
2270 /// specified type and name.
2271 llvm::Constant *
2272 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2273                                      StringRef Name) {
2274   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2275 }
2276 
2277 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2278   assert(!D->getInit() && "Cannot emit definite definitions here!");
2279 
2280   StringRef MangledName = getMangledName(D);
2281   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2282 
2283   // We already have a definition, not declaration, with the same mangled name.
2284   // Emitting of declaration is not required (and actually overwrites emitted
2285   // definition).
2286   if (GV && !GV->isDeclaration())
2287     return;
2288 
2289   // If we have not seen a reference to this variable yet, place it into the
2290   // deferred declarations table to be emitted if needed later.
2291   if (!MustBeEmitted(D) && !GV) {
2292       DeferredDecls[MangledName] = D;
2293       return;
2294   }
2295 
2296   // The tentative definition is the only definition.
2297   EmitGlobalVarDefinition(D);
2298 }
2299 
2300 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2301   return Context.toCharUnitsFromBits(
2302       getDataLayout().getTypeStoreSizeInBits(Ty));
2303 }
2304 
2305 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2306                                                  unsigned AddrSpace) {
2307   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2308     if (D->hasAttr<CUDAConstantAttr>())
2309       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2310     else if (D->hasAttr<CUDASharedAttr>())
2311       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2312     else
2313       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2314   }
2315 
2316   return AddrSpace;
2317 }
2318 
2319 template<typename SomeDecl>
2320 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2321                                                llvm::GlobalValue *GV) {
2322   if (!getLangOpts().CPlusPlus)
2323     return;
2324 
2325   // Must have 'used' attribute, or else inline assembly can't rely on
2326   // the name existing.
2327   if (!D->template hasAttr<UsedAttr>())
2328     return;
2329 
2330   // Must have internal linkage and an ordinary name.
2331   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2332     return;
2333 
2334   // Must be in an extern "C" context. Entities declared directly within
2335   // a record are not extern "C" even if the record is in such a context.
2336   const SomeDecl *First = D->getFirstDecl();
2337   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2338     return;
2339 
2340   // OK, this is an internal linkage entity inside an extern "C" linkage
2341   // specification. Make a note of that so we can give it the "expected"
2342   // mangled name if nothing else is using that name.
2343   std::pair<StaticExternCMap::iterator, bool> R =
2344       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2345 
2346   // If we have multiple internal linkage entities with the same name
2347   // in extern "C" regions, none of them gets that name.
2348   if (!R.second)
2349     R.first->second = nullptr;
2350 }
2351 
2352 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2353   if (!CGM.supportsCOMDAT())
2354     return false;
2355 
2356   if (D.hasAttr<SelectAnyAttr>())
2357     return true;
2358 
2359   GVALinkage Linkage;
2360   if (auto *VD = dyn_cast<VarDecl>(&D))
2361     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2362   else
2363     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2364 
2365   switch (Linkage) {
2366   case GVA_Internal:
2367   case GVA_AvailableExternally:
2368   case GVA_StrongExternal:
2369     return false;
2370   case GVA_DiscardableODR:
2371   case GVA_StrongODR:
2372     return true;
2373   }
2374   llvm_unreachable("No such linkage");
2375 }
2376 
2377 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2378                                           llvm::GlobalObject &GO) {
2379   if (!shouldBeInCOMDAT(*this, D))
2380     return;
2381   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2382 }
2383 
2384 /// Pass IsTentative as true if you want to create a tentative definition.
2385 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2386                                             bool IsTentative) {
2387   // OpenCL global variables of sampler type are translated to function calls,
2388   // therefore no need to be translated.
2389   QualType ASTTy = D->getType();
2390   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2391     return;
2392 
2393   llvm::Constant *Init = nullptr;
2394   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2395   bool NeedsGlobalCtor = false;
2396   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2397 
2398   const VarDecl *InitDecl;
2399   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2400 
2401   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2402   // as part of their declaration."  Sema has already checked for
2403   // error cases, so we just need to set Init to UndefValue.
2404   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2405       D->hasAttr<CUDASharedAttr>())
2406     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2407   else if (!InitExpr) {
2408     // This is a tentative definition; tentative definitions are
2409     // implicitly initialized with { 0 }.
2410     //
2411     // Note that tentative definitions are only emitted at the end of
2412     // a translation unit, so they should never have incomplete
2413     // type. In addition, EmitTentativeDefinition makes sure that we
2414     // never attempt to emit a tentative definition if a real one
2415     // exists. A use may still exists, however, so we still may need
2416     // to do a RAUW.
2417     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2418     Init = EmitNullConstant(D->getType());
2419   } else {
2420     initializedGlobalDecl = GlobalDecl(D);
2421     Init = EmitConstantInit(*InitDecl);
2422 
2423     if (!Init) {
2424       QualType T = InitExpr->getType();
2425       if (D->getType()->isReferenceType())
2426         T = D->getType();
2427 
2428       if (getLangOpts().CPlusPlus) {
2429         Init = EmitNullConstant(T);
2430         NeedsGlobalCtor = true;
2431       } else {
2432         ErrorUnsupported(D, "static initializer");
2433         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2434       }
2435     } else {
2436       // We don't need an initializer, so remove the entry for the delayed
2437       // initializer position (just in case this entry was delayed) if we
2438       // also don't need to register a destructor.
2439       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2440         DelayedCXXInitPosition.erase(D);
2441     }
2442   }
2443 
2444   llvm::Type* InitType = Init->getType();
2445   llvm::Constant *Entry =
2446       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2447 
2448   // Strip off a bitcast if we got one back.
2449   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2450     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2451            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2452            // All zero index gep.
2453            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2454     Entry = CE->getOperand(0);
2455   }
2456 
2457   // Entry is now either a Function or GlobalVariable.
2458   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2459 
2460   // We have a definition after a declaration with the wrong type.
2461   // We must make a new GlobalVariable* and update everything that used OldGV
2462   // (a declaration or tentative definition) with the new GlobalVariable*
2463   // (which will be a definition).
2464   //
2465   // This happens if there is a prototype for a global (e.g.
2466   // "extern int x[];") and then a definition of a different type (e.g.
2467   // "int x[10];"). This also happens when an initializer has a different type
2468   // from the type of the global (this happens with unions).
2469   if (!GV ||
2470       GV->getType()->getElementType() != InitType ||
2471       GV->getType()->getAddressSpace() !=
2472        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2473 
2474     // Move the old entry aside so that we'll create a new one.
2475     Entry->setName(StringRef());
2476 
2477     // Make a new global with the correct type, this is now guaranteed to work.
2478     GV = cast<llvm::GlobalVariable>(
2479         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2480 
2481     // Replace all uses of the old global with the new global
2482     llvm::Constant *NewPtrForOldDecl =
2483         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2484     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2485 
2486     // Erase the old global, since it is no longer used.
2487     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2488   }
2489 
2490   MaybeHandleStaticInExternC(D, GV);
2491 
2492   if (D->hasAttr<AnnotateAttr>())
2493     AddGlobalAnnotations(D, GV);
2494 
2495   // Set the llvm linkage type as appropriate.
2496   llvm::GlobalValue::LinkageTypes Linkage =
2497       getLLVMLinkageVarDefinition(D, GV->isConstant());
2498 
2499   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2500   // the device. [...]"
2501   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2502   // __device__, declares a variable that: [...]
2503   // Is accessible from all the threads within the grid and from the host
2504   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2505   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2506   if (GV && LangOpts.CUDA) {
2507     if (LangOpts.CUDAIsDevice) {
2508       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2509         GV->setExternallyInitialized(true);
2510     } else {
2511       // Host-side shadows of external declarations of device-side
2512       // global variables become internal definitions. These have to
2513       // be internal in order to prevent name conflicts with global
2514       // host variables with the same name in a different TUs.
2515       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2516         Linkage = llvm::GlobalValue::InternalLinkage;
2517 
2518         // Shadow variables and their properties must be registered
2519         // with CUDA runtime.
2520         unsigned Flags = 0;
2521         if (!D->hasDefinition())
2522           Flags |= CGCUDARuntime::ExternDeviceVar;
2523         if (D->hasAttr<CUDAConstantAttr>())
2524           Flags |= CGCUDARuntime::ConstantDeviceVar;
2525         getCUDARuntime().registerDeviceVar(*GV, Flags);
2526       } else if (D->hasAttr<CUDASharedAttr>())
2527         // __shared__ variables are odd. Shadows do get created, but
2528         // they are not registered with the CUDA runtime, so they
2529         // can't really be used to access their device-side
2530         // counterparts. It's not clear yet whether it's nvcc's bug or
2531         // a feature, but we've got to do the same for compatibility.
2532         Linkage = llvm::GlobalValue::InternalLinkage;
2533     }
2534   }
2535   GV->setInitializer(Init);
2536 
2537   // If it is safe to mark the global 'constant', do so now.
2538   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2539                   isTypeConstant(D->getType(), true));
2540 
2541   // If it is in a read-only section, mark it 'constant'.
2542   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2543     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2544     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2545       GV->setConstant(true);
2546   }
2547 
2548   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2549 
2550 
2551   // On Darwin, if the normal linkage of a C++ thread_local variable is
2552   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2553   // copies within a linkage unit; otherwise, the backing variable has
2554   // internal linkage and all accesses should just be calls to the
2555   // Itanium-specified entry point, which has the normal linkage of the
2556   // variable. This is to preserve the ability to change the implementation
2557   // behind the scenes.
2558   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2559       Context.getTargetInfo().getTriple().isOSDarwin() &&
2560       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2561       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2562     Linkage = llvm::GlobalValue::InternalLinkage;
2563 
2564   GV->setLinkage(Linkage);
2565   if (D->hasAttr<DLLImportAttr>())
2566     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2567   else if (D->hasAttr<DLLExportAttr>())
2568     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2569   else
2570     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2571 
2572   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2573     // common vars aren't constant even if declared const.
2574     GV->setConstant(false);
2575 
2576   setNonAliasAttributes(D, GV);
2577 
2578   if (D->getTLSKind() && !GV->isThreadLocal()) {
2579     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2580       CXXThreadLocals.push_back(D);
2581     setTLSMode(GV, *D);
2582   }
2583 
2584   maybeSetTrivialComdat(*D, *GV);
2585 
2586   // Emit the initializer function if necessary.
2587   if (NeedsGlobalCtor || NeedsGlobalDtor)
2588     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2589 
2590   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2591 
2592   // Emit global variable debug information.
2593   if (CGDebugInfo *DI = getModuleDebugInfo())
2594     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2595       DI->EmitGlobalVariable(GV, D);
2596 }
2597 
2598 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2599                                       CodeGenModule &CGM, const VarDecl *D,
2600                                       bool NoCommon) {
2601   // Don't give variables common linkage if -fno-common was specified unless it
2602   // was overridden by a NoCommon attribute.
2603   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2604     return true;
2605 
2606   // C11 6.9.2/2:
2607   //   A declaration of an identifier for an object that has file scope without
2608   //   an initializer, and without a storage-class specifier or with the
2609   //   storage-class specifier static, constitutes a tentative definition.
2610   if (D->getInit() || D->hasExternalStorage())
2611     return true;
2612 
2613   // A variable cannot be both common and exist in a section.
2614   if (D->hasAttr<SectionAttr>())
2615     return true;
2616 
2617   // Thread local vars aren't considered common linkage.
2618   if (D->getTLSKind())
2619     return true;
2620 
2621   // Tentative definitions marked with WeakImportAttr are true definitions.
2622   if (D->hasAttr<WeakImportAttr>())
2623     return true;
2624 
2625   // A variable cannot be both common and exist in a comdat.
2626   if (shouldBeInCOMDAT(CGM, *D))
2627     return true;
2628 
2629   // Declarations with a required alignment do not have common linkage in MSVC
2630   // mode.
2631   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2632     if (D->hasAttr<AlignedAttr>())
2633       return true;
2634     QualType VarType = D->getType();
2635     if (Context.isAlignmentRequired(VarType))
2636       return true;
2637 
2638     if (const auto *RT = VarType->getAs<RecordType>()) {
2639       const RecordDecl *RD = RT->getDecl();
2640       for (const FieldDecl *FD : RD->fields()) {
2641         if (FD->isBitField())
2642           continue;
2643         if (FD->hasAttr<AlignedAttr>())
2644           return true;
2645         if (Context.isAlignmentRequired(FD->getType()))
2646           return true;
2647       }
2648     }
2649   }
2650 
2651   return false;
2652 }
2653 
2654 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2655     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2656   if (Linkage == GVA_Internal)
2657     return llvm::Function::InternalLinkage;
2658 
2659   if (D->hasAttr<WeakAttr>()) {
2660     if (IsConstantVariable)
2661       return llvm::GlobalVariable::WeakODRLinkage;
2662     else
2663       return llvm::GlobalVariable::WeakAnyLinkage;
2664   }
2665 
2666   // We are guaranteed to have a strong definition somewhere else,
2667   // so we can use available_externally linkage.
2668   if (Linkage == GVA_AvailableExternally)
2669     return llvm::Function::AvailableExternallyLinkage;
2670 
2671   // Note that Apple's kernel linker doesn't support symbol
2672   // coalescing, so we need to avoid linkonce and weak linkages there.
2673   // Normally, this means we just map to internal, but for explicit
2674   // instantiations we'll map to external.
2675 
2676   // In C++, the compiler has to emit a definition in every translation unit
2677   // that references the function.  We should use linkonce_odr because
2678   // a) if all references in this translation unit are optimized away, we
2679   // don't need to codegen it.  b) if the function persists, it needs to be
2680   // merged with other definitions. c) C++ has the ODR, so we know the
2681   // definition is dependable.
2682   if (Linkage == GVA_DiscardableODR)
2683     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2684                                             : llvm::Function::InternalLinkage;
2685 
2686   // An explicit instantiation of a template has weak linkage, since
2687   // explicit instantiations can occur in multiple translation units
2688   // and must all be equivalent. However, we are not allowed to
2689   // throw away these explicit instantiations.
2690   //
2691   // We don't currently support CUDA device code spread out across multiple TUs,
2692   // so say that CUDA templates are either external (for kernels) or internal.
2693   // This lets llvm perform aggressive inter-procedural optimizations.
2694   if (Linkage == GVA_StrongODR) {
2695     if (Context.getLangOpts().AppleKext)
2696       return llvm::Function::ExternalLinkage;
2697     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2698       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2699                                           : llvm::Function::InternalLinkage;
2700     return llvm::Function::WeakODRLinkage;
2701   }
2702 
2703   // C++ doesn't have tentative definitions and thus cannot have common
2704   // linkage.
2705   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2706       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2707                                  CodeGenOpts.NoCommon))
2708     return llvm::GlobalVariable::CommonLinkage;
2709 
2710   // selectany symbols are externally visible, so use weak instead of
2711   // linkonce.  MSVC optimizes away references to const selectany globals, so
2712   // all definitions should be the same and ODR linkage should be used.
2713   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2714   if (D->hasAttr<SelectAnyAttr>())
2715     return llvm::GlobalVariable::WeakODRLinkage;
2716 
2717   // Otherwise, we have strong external linkage.
2718   assert(Linkage == GVA_StrongExternal);
2719   return llvm::GlobalVariable::ExternalLinkage;
2720 }
2721 
2722 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2723     const VarDecl *VD, bool IsConstant) {
2724   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2725   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2726 }
2727 
2728 /// Replace the uses of a function that was declared with a non-proto type.
2729 /// We want to silently drop extra arguments from call sites
2730 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2731                                           llvm::Function *newFn) {
2732   // Fast path.
2733   if (old->use_empty()) return;
2734 
2735   llvm::Type *newRetTy = newFn->getReturnType();
2736   SmallVector<llvm::Value*, 4> newArgs;
2737   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2738 
2739   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2740          ui != ue; ) {
2741     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2742     llvm::User *user = use->getUser();
2743 
2744     // Recognize and replace uses of bitcasts.  Most calls to
2745     // unprototyped functions will use bitcasts.
2746     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2747       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2748         replaceUsesOfNonProtoConstant(bitcast, newFn);
2749       continue;
2750     }
2751 
2752     // Recognize calls to the function.
2753     llvm::CallSite callSite(user);
2754     if (!callSite) continue;
2755     if (!callSite.isCallee(&*use)) continue;
2756 
2757     // If the return types don't match exactly, then we can't
2758     // transform this call unless it's dead.
2759     if (callSite->getType() != newRetTy && !callSite->use_empty())
2760       continue;
2761 
2762     // Get the call site's attribute list.
2763     SmallVector<llvm::AttributeSet, 8> newAttrs;
2764     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2765 
2766     // Collect any return attributes from the call.
2767     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2768       newAttrs.push_back(
2769         llvm::AttributeSet::get(newFn->getContext(),
2770                                 oldAttrs.getRetAttributes()));
2771 
2772     // If the function was passed too few arguments, don't transform.
2773     unsigned newNumArgs = newFn->arg_size();
2774     if (callSite.arg_size() < newNumArgs) continue;
2775 
2776     // If extra arguments were passed, we silently drop them.
2777     // If any of the types mismatch, we don't transform.
2778     unsigned argNo = 0;
2779     bool dontTransform = false;
2780     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2781            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2782       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2783         dontTransform = true;
2784         break;
2785       }
2786 
2787       // Add any parameter attributes.
2788       if (oldAttrs.hasAttributes(argNo + 1))
2789         newAttrs.
2790           push_back(llvm::
2791                     AttributeSet::get(newFn->getContext(),
2792                                       oldAttrs.getParamAttributes(argNo + 1)));
2793     }
2794     if (dontTransform)
2795       continue;
2796 
2797     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2798       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2799                                                  oldAttrs.getFnAttributes()));
2800 
2801     // Okay, we can transform this.  Create the new call instruction and copy
2802     // over the required information.
2803     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2804 
2805     // Copy over any operand bundles.
2806     callSite.getOperandBundlesAsDefs(newBundles);
2807 
2808     llvm::CallSite newCall;
2809     if (callSite.isCall()) {
2810       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2811                                        callSite.getInstruction());
2812     } else {
2813       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2814       newCall = llvm::InvokeInst::Create(newFn,
2815                                          oldInvoke->getNormalDest(),
2816                                          oldInvoke->getUnwindDest(),
2817                                          newArgs, newBundles, "",
2818                                          callSite.getInstruction());
2819     }
2820     newArgs.clear(); // for the next iteration
2821 
2822     if (!newCall->getType()->isVoidTy())
2823       newCall->takeName(callSite.getInstruction());
2824     newCall.setAttributes(
2825                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2826     newCall.setCallingConv(callSite.getCallingConv());
2827 
2828     // Finally, remove the old call, replacing any uses with the new one.
2829     if (!callSite->use_empty())
2830       callSite->replaceAllUsesWith(newCall.getInstruction());
2831 
2832     // Copy debug location attached to CI.
2833     if (callSite->getDebugLoc())
2834       newCall->setDebugLoc(callSite->getDebugLoc());
2835 
2836     callSite->eraseFromParent();
2837   }
2838 }
2839 
2840 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2841 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2842 /// existing call uses of the old function in the module, this adjusts them to
2843 /// call the new function directly.
2844 ///
2845 /// This is not just a cleanup: the always_inline pass requires direct calls to
2846 /// functions to be able to inline them.  If there is a bitcast in the way, it
2847 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2848 /// run at -O0.
2849 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2850                                                       llvm::Function *NewFn) {
2851   // If we're redefining a global as a function, don't transform it.
2852   if (!isa<llvm::Function>(Old)) return;
2853 
2854   replaceUsesOfNonProtoConstant(Old, NewFn);
2855 }
2856 
2857 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2858   auto DK = VD->isThisDeclarationADefinition();
2859   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
2860     return;
2861 
2862   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2863   // If we have a definition, this might be a deferred decl. If the
2864   // instantiation is explicit, make sure we emit it at the end.
2865   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2866     GetAddrOfGlobalVar(VD);
2867 
2868   EmitTopLevelDecl(VD);
2869 }
2870 
2871 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2872                                                  llvm::GlobalValue *GV) {
2873   const auto *D = cast<FunctionDecl>(GD.getDecl());
2874 
2875   // Compute the function info and LLVM type.
2876   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2877   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2878 
2879   // Get or create the prototype for the function.
2880   if (!GV || (GV->getType()->getElementType() != Ty))
2881     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2882                                                    /*DontDefer=*/true,
2883                                                    /*IsForDefinition=*/true));
2884 
2885   // Already emitted.
2886   if (!GV->isDeclaration())
2887     return;
2888 
2889   // We need to set linkage and visibility on the function before
2890   // generating code for it because various parts of IR generation
2891   // want to propagate this information down (e.g. to local static
2892   // declarations).
2893   auto *Fn = cast<llvm::Function>(GV);
2894   setFunctionLinkage(GD, Fn);
2895   setFunctionDLLStorageClass(GD, Fn);
2896 
2897   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2898   setGlobalVisibility(Fn, D);
2899 
2900   MaybeHandleStaticInExternC(D, Fn);
2901 
2902   maybeSetTrivialComdat(*D, *Fn);
2903 
2904   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2905 
2906   setFunctionDefinitionAttributes(D, Fn);
2907   SetLLVMFunctionAttributesForDefinition(D, Fn);
2908 
2909   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2910     AddGlobalCtor(Fn, CA->getPriority());
2911   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2912     AddGlobalDtor(Fn, DA->getPriority());
2913   if (D->hasAttr<AnnotateAttr>())
2914     AddGlobalAnnotations(D, Fn);
2915 }
2916 
2917 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2918   const auto *D = cast<ValueDecl>(GD.getDecl());
2919   const AliasAttr *AA = D->getAttr<AliasAttr>();
2920   assert(AA && "Not an alias?");
2921 
2922   StringRef MangledName = getMangledName(GD);
2923 
2924   if (AA->getAliasee() == MangledName) {
2925     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2926     return;
2927   }
2928 
2929   // If there is a definition in the module, then it wins over the alias.
2930   // This is dubious, but allow it to be safe.  Just ignore the alias.
2931   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2932   if (Entry && !Entry->isDeclaration())
2933     return;
2934 
2935   Aliases.push_back(GD);
2936 
2937   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2938 
2939   // Create a reference to the named value.  This ensures that it is emitted
2940   // if a deferred decl.
2941   llvm::Constant *Aliasee;
2942   if (isa<llvm::FunctionType>(DeclTy))
2943     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2944                                       /*ForVTable=*/false);
2945   else
2946     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2947                                     llvm::PointerType::getUnqual(DeclTy),
2948                                     /*D=*/nullptr);
2949 
2950   // Create the new alias itself, but don't set a name yet.
2951   auto *GA = llvm::GlobalAlias::create(
2952       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2953 
2954   if (Entry) {
2955     if (GA->getAliasee() == Entry) {
2956       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2957       return;
2958     }
2959 
2960     assert(Entry->isDeclaration());
2961 
2962     // If there is a declaration in the module, then we had an extern followed
2963     // by the alias, as in:
2964     //   extern int test6();
2965     //   ...
2966     //   int test6() __attribute__((alias("test7")));
2967     //
2968     // Remove it and replace uses of it with the alias.
2969     GA->takeName(Entry);
2970 
2971     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2972                                                           Entry->getType()));
2973     Entry->eraseFromParent();
2974   } else {
2975     GA->setName(MangledName);
2976   }
2977 
2978   // Set attributes which are particular to an alias; this is a
2979   // specialization of the attributes which may be set on a global
2980   // variable/function.
2981   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2982       D->isWeakImported()) {
2983     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2984   }
2985 
2986   if (const auto *VD = dyn_cast<VarDecl>(D))
2987     if (VD->getTLSKind())
2988       setTLSMode(GA, *VD);
2989 
2990   setAliasAttributes(D, GA);
2991 }
2992 
2993 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
2994   const auto *D = cast<ValueDecl>(GD.getDecl());
2995   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
2996   assert(IFA && "Not an ifunc?");
2997 
2998   StringRef MangledName = getMangledName(GD);
2999 
3000   if (IFA->getResolver() == MangledName) {
3001     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3002     return;
3003   }
3004 
3005   // Report an error if some definition overrides ifunc.
3006   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3007   if (Entry && !Entry->isDeclaration()) {
3008     GlobalDecl OtherGD;
3009     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3010         DiagnosedConflictingDefinitions.insert(GD).second) {
3011       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3012       Diags.Report(OtherGD.getDecl()->getLocation(),
3013                    diag::note_previous_definition);
3014     }
3015     return;
3016   }
3017 
3018   Aliases.push_back(GD);
3019 
3020   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3021   llvm::Constant *Resolver =
3022       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3023                               /*ForVTable=*/false);
3024   llvm::GlobalIFunc *GIF =
3025       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3026                                 "", Resolver, &getModule());
3027   if (Entry) {
3028     if (GIF->getResolver() == Entry) {
3029       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3030       return;
3031     }
3032     assert(Entry->isDeclaration());
3033 
3034     // If there is a declaration in the module, then we had an extern followed
3035     // by the ifunc, as in:
3036     //   extern int test();
3037     //   ...
3038     //   int test() __attribute__((ifunc("resolver")));
3039     //
3040     // Remove it and replace uses of it with the ifunc.
3041     GIF->takeName(Entry);
3042 
3043     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3044                                                           Entry->getType()));
3045     Entry->eraseFromParent();
3046   } else
3047     GIF->setName(MangledName);
3048 
3049   SetCommonAttributes(D, GIF);
3050 }
3051 
3052 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3053                                             ArrayRef<llvm::Type*> Tys) {
3054   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3055                                          Tys);
3056 }
3057 
3058 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3059 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3060                          const StringLiteral *Literal, bool TargetIsLSB,
3061                          bool &IsUTF16, unsigned &StringLength) {
3062   StringRef String = Literal->getString();
3063   unsigned NumBytes = String.size();
3064 
3065   // Check for simple case.
3066   if (!Literal->containsNonAsciiOrNull()) {
3067     StringLength = NumBytes;
3068     return *Map.insert(std::make_pair(String, nullptr)).first;
3069   }
3070 
3071   // Otherwise, convert the UTF8 literals into a string of shorts.
3072   IsUTF16 = true;
3073 
3074   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3075   const UTF8 *FromPtr = (const UTF8 *)String.data();
3076   UTF16 *ToPtr = &ToBuf[0];
3077 
3078   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3079                            &ToPtr, ToPtr + NumBytes,
3080                            strictConversion);
3081 
3082   // ConvertUTF8toUTF16 returns the length in ToPtr.
3083   StringLength = ToPtr - &ToBuf[0];
3084 
3085   // Add an explicit null.
3086   *ToPtr = 0;
3087   return *Map.insert(std::make_pair(
3088                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3089                                    (StringLength + 1) * 2),
3090                          nullptr)).first;
3091 }
3092 
3093 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3094 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3095                        const StringLiteral *Literal, unsigned &StringLength) {
3096   StringRef String = Literal->getString();
3097   StringLength = String.size();
3098   return *Map.insert(std::make_pair(String, nullptr)).first;
3099 }
3100 
3101 ConstantAddress
3102 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3103   unsigned StringLength = 0;
3104   bool isUTF16 = false;
3105   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3106       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3107                                getDataLayout().isLittleEndian(), isUTF16,
3108                                StringLength);
3109 
3110   if (auto *C = Entry.second)
3111     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3112 
3113   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3114   llvm::Constant *Zeros[] = { Zero, Zero };
3115   llvm::Value *V;
3116 
3117   // If we don't already have it, get __CFConstantStringClassReference.
3118   if (!CFConstantStringClassRef) {
3119     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3120     Ty = llvm::ArrayType::get(Ty, 0);
3121     llvm::Constant *GV =
3122         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3123 
3124     if (getTarget().getTriple().isOSBinFormatCOFF()) {
3125       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3126       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3127       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3128       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3129 
3130       const VarDecl *VD = nullptr;
3131       for (const auto &Result : DC->lookup(&II))
3132         if ((VD = dyn_cast<VarDecl>(Result)))
3133           break;
3134 
3135       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3136         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3137         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3138       } else {
3139         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3140         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3141       }
3142     }
3143 
3144     // Decay array -> ptr
3145     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3146     CFConstantStringClassRef = V;
3147   } else {
3148     V = CFConstantStringClassRef;
3149   }
3150 
3151   QualType CFTy = getContext().getCFConstantStringType();
3152 
3153   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3154 
3155   llvm::Constant *Fields[4];
3156 
3157   // Class pointer.
3158   Fields[0] = cast<llvm::ConstantExpr>(V);
3159 
3160   // Flags.
3161   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3162   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
3163                       : llvm::ConstantInt::get(Ty, 0x07C8);
3164 
3165   // String pointer.
3166   llvm::Constant *C = nullptr;
3167   if (isUTF16) {
3168     auto Arr = llvm::makeArrayRef(
3169         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3170         Entry.first().size() / 2);
3171     C = llvm::ConstantDataArray::get(VMContext, Arr);
3172   } else {
3173     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3174   }
3175 
3176   // Note: -fwritable-strings doesn't make the backing store strings of
3177   // CFStrings writable. (See <rdar://problem/10657500>)
3178   auto *GV =
3179       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3180                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3181   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3182   // Don't enforce the target's minimum global alignment, since the only use
3183   // of the string is via this class initializer.
3184   CharUnits Align = isUTF16
3185                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3186                         : getContext().getTypeAlignInChars(getContext().CharTy);
3187   GV->setAlignment(Align.getQuantity());
3188 
3189   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3190   // Without it LLVM can merge the string with a non unnamed_addr one during
3191   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3192   if (getTarget().getTriple().isOSBinFormatMachO())
3193     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3194                            : "__TEXT,__cstring,cstring_literals");
3195 
3196   // String.
3197   Fields[2] =
3198       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3199 
3200   if (isUTF16)
3201     // Cast the UTF16 string to the correct type.
3202     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3203 
3204   // String length.
3205   Ty = getTypes().ConvertType(getContext().LongTy);
3206   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3207 
3208   CharUnits Alignment = getPointerAlign();
3209 
3210   // The struct.
3211   C = llvm::ConstantStruct::get(STy, Fields);
3212   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3213                                 llvm::GlobalVariable::PrivateLinkage, C,
3214                                 "_unnamed_cfstring_");
3215   GV->setAlignment(Alignment.getQuantity());
3216   switch (getTarget().getTriple().getObjectFormat()) {
3217   case llvm::Triple::UnknownObjectFormat:
3218     llvm_unreachable("unknown file format");
3219   case llvm::Triple::COFF:
3220   case llvm::Triple::ELF:
3221     GV->setSection("cfstring");
3222     break;
3223   case llvm::Triple::MachO:
3224     GV->setSection("__DATA,__cfstring");
3225     break;
3226   }
3227   Entry.second = GV;
3228 
3229   return ConstantAddress(GV, Alignment);
3230 }
3231 
3232 ConstantAddress
3233 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3234   unsigned StringLength = 0;
3235   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3236       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3237 
3238   if (auto *C = Entry.second)
3239     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3240 
3241   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3242   llvm::Constant *Zeros[] = { Zero, Zero };
3243   llvm::Value *V;
3244   // If we don't already have it, get _NSConstantStringClassReference.
3245   if (!ConstantStringClassRef) {
3246     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3247     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3248     llvm::Constant *GV;
3249     if (LangOpts.ObjCRuntime.isNonFragile()) {
3250       std::string str =
3251         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3252                             : "OBJC_CLASS_$_" + StringClass;
3253       GV = getObjCRuntime().GetClassGlobal(str);
3254       // Make sure the result is of the correct type.
3255       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3256       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3257       ConstantStringClassRef = V;
3258     } else {
3259       std::string str =
3260         StringClass.empty() ? "_NSConstantStringClassReference"
3261                             : "_" + StringClass + "ClassReference";
3262       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3263       GV = CreateRuntimeVariable(PTy, str);
3264       // Decay array -> ptr
3265       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3266       ConstantStringClassRef = V;
3267     }
3268   } else
3269     V = ConstantStringClassRef;
3270 
3271   if (!NSConstantStringType) {
3272     // Construct the type for a constant NSString.
3273     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3274     D->startDefinition();
3275 
3276     QualType FieldTypes[3];
3277 
3278     // const int *isa;
3279     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3280     // const char *str;
3281     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3282     // unsigned int length;
3283     FieldTypes[2] = Context.UnsignedIntTy;
3284 
3285     // Create fields
3286     for (unsigned i = 0; i < 3; ++i) {
3287       FieldDecl *Field = FieldDecl::Create(Context, D,
3288                                            SourceLocation(),
3289                                            SourceLocation(), nullptr,
3290                                            FieldTypes[i], /*TInfo=*/nullptr,
3291                                            /*BitWidth=*/nullptr,
3292                                            /*Mutable=*/false,
3293                                            ICIS_NoInit);
3294       Field->setAccess(AS_public);
3295       D->addDecl(Field);
3296     }
3297 
3298     D->completeDefinition();
3299     QualType NSTy = Context.getTagDeclType(D);
3300     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3301   }
3302 
3303   llvm::Constant *Fields[3];
3304 
3305   // Class pointer.
3306   Fields[0] = cast<llvm::ConstantExpr>(V);
3307 
3308   // String pointer.
3309   llvm::Constant *C =
3310       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3311 
3312   llvm::GlobalValue::LinkageTypes Linkage;
3313   bool isConstant;
3314   Linkage = llvm::GlobalValue::PrivateLinkage;
3315   isConstant = !LangOpts.WritableStrings;
3316 
3317   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3318                                       Linkage, C, ".str");
3319   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3320   // Don't enforce the target's minimum global alignment, since the only use
3321   // of the string is via this class initializer.
3322   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3323   GV->setAlignment(Align.getQuantity());
3324   Fields[1] =
3325       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3326 
3327   // String length.
3328   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3329   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3330 
3331   // The struct.
3332   CharUnits Alignment = getPointerAlign();
3333   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3334   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3335                                 llvm::GlobalVariable::PrivateLinkage, C,
3336                                 "_unnamed_nsstring_");
3337   GV->setAlignment(Alignment.getQuantity());
3338   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3339   const char *NSStringNonFragileABISection =
3340       "__DATA,__objc_stringobj,regular,no_dead_strip";
3341   // FIXME. Fix section.
3342   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3343                      ? NSStringNonFragileABISection
3344                      : NSStringSection);
3345   Entry.second = GV;
3346 
3347   return ConstantAddress(GV, Alignment);
3348 }
3349 
3350 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3351   if (ObjCFastEnumerationStateType.isNull()) {
3352     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3353     D->startDefinition();
3354 
3355     QualType FieldTypes[] = {
3356       Context.UnsignedLongTy,
3357       Context.getPointerType(Context.getObjCIdType()),
3358       Context.getPointerType(Context.UnsignedLongTy),
3359       Context.getConstantArrayType(Context.UnsignedLongTy,
3360                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3361     };
3362 
3363     for (size_t i = 0; i < 4; ++i) {
3364       FieldDecl *Field = FieldDecl::Create(Context,
3365                                            D,
3366                                            SourceLocation(),
3367                                            SourceLocation(), nullptr,
3368                                            FieldTypes[i], /*TInfo=*/nullptr,
3369                                            /*BitWidth=*/nullptr,
3370                                            /*Mutable=*/false,
3371                                            ICIS_NoInit);
3372       Field->setAccess(AS_public);
3373       D->addDecl(Field);
3374     }
3375 
3376     D->completeDefinition();
3377     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3378   }
3379 
3380   return ObjCFastEnumerationStateType;
3381 }
3382 
3383 llvm::Constant *
3384 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3385   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3386 
3387   // Don't emit it as the address of the string, emit the string data itself
3388   // as an inline array.
3389   if (E->getCharByteWidth() == 1) {
3390     SmallString<64> Str(E->getString());
3391 
3392     // Resize the string to the right size, which is indicated by its type.
3393     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3394     Str.resize(CAT->getSize().getZExtValue());
3395     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3396   }
3397 
3398   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3399   llvm::Type *ElemTy = AType->getElementType();
3400   unsigned NumElements = AType->getNumElements();
3401 
3402   // Wide strings have either 2-byte or 4-byte elements.
3403   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3404     SmallVector<uint16_t, 32> Elements;
3405     Elements.reserve(NumElements);
3406 
3407     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3408       Elements.push_back(E->getCodeUnit(i));
3409     Elements.resize(NumElements);
3410     return llvm::ConstantDataArray::get(VMContext, Elements);
3411   }
3412 
3413   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3414   SmallVector<uint32_t, 32> Elements;
3415   Elements.reserve(NumElements);
3416 
3417   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3418     Elements.push_back(E->getCodeUnit(i));
3419   Elements.resize(NumElements);
3420   return llvm::ConstantDataArray::get(VMContext, Elements);
3421 }
3422 
3423 static llvm::GlobalVariable *
3424 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3425                       CodeGenModule &CGM, StringRef GlobalName,
3426                       CharUnits Alignment) {
3427   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3428   unsigned AddrSpace = 0;
3429   if (CGM.getLangOpts().OpenCL)
3430     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3431 
3432   llvm::Module &M = CGM.getModule();
3433   // Create a global variable for this string
3434   auto *GV = new llvm::GlobalVariable(
3435       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3436       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3437   GV->setAlignment(Alignment.getQuantity());
3438   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3439   if (GV->isWeakForLinker()) {
3440     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3441     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3442   }
3443 
3444   return GV;
3445 }
3446 
3447 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3448 /// constant array for the given string literal.
3449 ConstantAddress
3450 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3451                                                   StringRef Name) {
3452   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3453 
3454   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3455   llvm::GlobalVariable **Entry = nullptr;
3456   if (!LangOpts.WritableStrings) {
3457     Entry = &ConstantStringMap[C];
3458     if (auto GV = *Entry) {
3459       if (Alignment.getQuantity() > GV->getAlignment())
3460         GV->setAlignment(Alignment.getQuantity());
3461       return ConstantAddress(GV, Alignment);
3462     }
3463   }
3464 
3465   SmallString<256> MangledNameBuffer;
3466   StringRef GlobalVariableName;
3467   llvm::GlobalValue::LinkageTypes LT;
3468 
3469   // Mangle the string literal if the ABI allows for it.  However, we cannot
3470   // do this if  we are compiling with ASan or -fwritable-strings because they
3471   // rely on strings having normal linkage.
3472   if (!LangOpts.WritableStrings &&
3473       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3474       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3475     llvm::raw_svector_ostream Out(MangledNameBuffer);
3476     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3477 
3478     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3479     GlobalVariableName = MangledNameBuffer;
3480   } else {
3481     LT = llvm::GlobalValue::PrivateLinkage;
3482     GlobalVariableName = Name;
3483   }
3484 
3485   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3486   if (Entry)
3487     *Entry = GV;
3488 
3489   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3490                                   QualType());
3491   return ConstantAddress(GV, Alignment);
3492 }
3493 
3494 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3495 /// array for the given ObjCEncodeExpr node.
3496 ConstantAddress
3497 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3498   std::string Str;
3499   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3500 
3501   return GetAddrOfConstantCString(Str);
3502 }
3503 
3504 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3505 /// the literal and a terminating '\0' character.
3506 /// The result has pointer to array type.
3507 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3508     const std::string &Str, const char *GlobalName) {
3509   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3510   CharUnits Alignment =
3511     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3512 
3513   llvm::Constant *C =
3514       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3515 
3516   // Don't share any string literals if strings aren't constant.
3517   llvm::GlobalVariable **Entry = nullptr;
3518   if (!LangOpts.WritableStrings) {
3519     Entry = &ConstantStringMap[C];
3520     if (auto GV = *Entry) {
3521       if (Alignment.getQuantity() > GV->getAlignment())
3522         GV->setAlignment(Alignment.getQuantity());
3523       return ConstantAddress(GV, Alignment);
3524     }
3525   }
3526 
3527   // Get the default prefix if a name wasn't specified.
3528   if (!GlobalName)
3529     GlobalName = ".str";
3530   // Create a global variable for this.
3531   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3532                                   GlobalName, Alignment);
3533   if (Entry)
3534     *Entry = GV;
3535   return ConstantAddress(GV, Alignment);
3536 }
3537 
3538 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3539     const MaterializeTemporaryExpr *E, const Expr *Init) {
3540   assert((E->getStorageDuration() == SD_Static ||
3541           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3542   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3543 
3544   // If we're not materializing a subobject of the temporary, keep the
3545   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3546   QualType MaterializedType = Init->getType();
3547   if (Init == E->GetTemporaryExpr())
3548     MaterializedType = E->getType();
3549 
3550   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3551 
3552   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3553     return ConstantAddress(Slot, Align);
3554 
3555   // FIXME: If an externally-visible declaration extends multiple temporaries,
3556   // we need to give each temporary the same name in every translation unit (and
3557   // we also need to make the temporaries externally-visible).
3558   SmallString<256> Name;
3559   llvm::raw_svector_ostream Out(Name);
3560   getCXXABI().getMangleContext().mangleReferenceTemporary(
3561       VD, E->getManglingNumber(), Out);
3562 
3563   APValue *Value = nullptr;
3564   if (E->getStorageDuration() == SD_Static) {
3565     // We might have a cached constant initializer for this temporary. Note
3566     // that this might have a different value from the value computed by
3567     // evaluating the initializer if the surrounding constant expression
3568     // modifies the temporary.
3569     Value = getContext().getMaterializedTemporaryValue(E, false);
3570     if (Value && Value->isUninit())
3571       Value = nullptr;
3572   }
3573 
3574   // Try evaluating it now, it might have a constant initializer.
3575   Expr::EvalResult EvalResult;
3576   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3577       !EvalResult.hasSideEffects())
3578     Value = &EvalResult.Val;
3579 
3580   llvm::Constant *InitialValue = nullptr;
3581   bool Constant = false;
3582   llvm::Type *Type;
3583   if (Value) {
3584     // The temporary has a constant initializer, use it.
3585     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3586     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3587     Type = InitialValue->getType();
3588   } else {
3589     // No initializer, the initialization will be provided when we
3590     // initialize the declaration which performed lifetime extension.
3591     Type = getTypes().ConvertTypeForMem(MaterializedType);
3592   }
3593 
3594   // Create a global variable for this lifetime-extended temporary.
3595   llvm::GlobalValue::LinkageTypes Linkage =
3596       getLLVMLinkageVarDefinition(VD, Constant);
3597   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3598     const VarDecl *InitVD;
3599     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3600         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3601       // Temporaries defined inside a class get linkonce_odr linkage because the
3602       // class can be defined in multipe translation units.
3603       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3604     } else {
3605       // There is no need for this temporary to have external linkage if the
3606       // VarDecl has external linkage.
3607       Linkage = llvm::GlobalVariable::InternalLinkage;
3608     }
3609   }
3610   unsigned AddrSpace = GetGlobalVarAddressSpace(
3611       VD, getContext().getTargetAddressSpace(MaterializedType));
3612   auto *GV = new llvm::GlobalVariable(
3613       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3614       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3615       AddrSpace);
3616   setGlobalVisibility(GV, VD);
3617   GV->setAlignment(Align.getQuantity());
3618   if (supportsCOMDAT() && GV->isWeakForLinker())
3619     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3620   if (VD->getTLSKind())
3621     setTLSMode(GV, *VD);
3622   MaterializedGlobalTemporaryMap[E] = GV;
3623   return ConstantAddress(GV, Align);
3624 }
3625 
3626 /// EmitObjCPropertyImplementations - Emit information for synthesized
3627 /// properties for an implementation.
3628 void CodeGenModule::EmitObjCPropertyImplementations(const
3629                                                     ObjCImplementationDecl *D) {
3630   for (const auto *PID : D->property_impls()) {
3631     // Dynamic is just for type-checking.
3632     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3633       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3634 
3635       // Determine which methods need to be implemented, some may have
3636       // been overridden. Note that ::isPropertyAccessor is not the method
3637       // we want, that just indicates if the decl came from a
3638       // property. What we want to know is if the method is defined in
3639       // this implementation.
3640       if (!D->getInstanceMethod(PD->getGetterName()))
3641         CodeGenFunction(*this).GenerateObjCGetter(
3642                                  const_cast<ObjCImplementationDecl *>(D), PID);
3643       if (!PD->isReadOnly() &&
3644           !D->getInstanceMethod(PD->getSetterName()))
3645         CodeGenFunction(*this).GenerateObjCSetter(
3646                                  const_cast<ObjCImplementationDecl *>(D), PID);
3647     }
3648   }
3649 }
3650 
3651 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3652   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3653   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3654        ivar; ivar = ivar->getNextIvar())
3655     if (ivar->getType().isDestructedType())
3656       return true;
3657 
3658   return false;
3659 }
3660 
3661 static bool AllTrivialInitializers(CodeGenModule &CGM,
3662                                    ObjCImplementationDecl *D) {
3663   CodeGenFunction CGF(CGM);
3664   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3665        E = D->init_end(); B != E; ++B) {
3666     CXXCtorInitializer *CtorInitExp = *B;
3667     Expr *Init = CtorInitExp->getInit();
3668     if (!CGF.isTrivialInitializer(Init))
3669       return false;
3670   }
3671   return true;
3672 }
3673 
3674 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3675 /// for an implementation.
3676 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3677   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3678   if (needsDestructMethod(D)) {
3679     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3680     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3681     ObjCMethodDecl *DTORMethod =
3682       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3683                              cxxSelector, getContext().VoidTy, nullptr, D,
3684                              /*isInstance=*/true, /*isVariadic=*/false,
3685                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3686                              /*isDefined=*/false, ObjCMethodDecl::Required);
3687     D->addInstanceMethod(DTORMethod);
3688     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3689     D->setHasDestructors(true);
3690   }
3691 
3692   // If the implementation doesn't have any ivar initializers, we don't need
3693   // a .cxx_construct.
3694   if (D->getNumIvarInitializers() == 0 ||
3695       AllTrivialInitializers(*this, D))
3696     return;
3697 
3698   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3699   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3700   // The constructor returns 'self'.
3701   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3702                                                 D->getLocation(),
3703                                                 D->getLocation(),
3704                                                 cxxSelector,
3705                                                 getContext().getObjCIdType(),
3706                                                 nullptr, D, /*isInstance=*/true,
3707                                                 /*isVariadic=*/false,
3708                                                 /*isPropertyAccessor=*/true,
3709                                                 /*isImplicitlyDeclared=*/true,
3710                                                 /*isDefined=*/false,
3711                                                 ObjCMethodDecl::Required);
3712   D->addInstanceMethod(CTORMethod);
3713   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3714   D->setHasNonZeroConstructors(true);
3715 }
3716 
3717 /// EmitNamespace - Emit all declarations in a namespace.
3718 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3719   for (auto *I : ND->decls()) {
3720     if (const auto *VD = dyn_cast<VarDecl>(I))
3721       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3722           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3723         continue;
3724     EmitTopLevelDecl(I);
3725   }
3726 }
3727 
3728 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3729 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3730   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3731       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3732     ErrorUnsupported(LSD, "linkage spec");
3733     return;
3734   }
3735 
3736   for (auto *I : LSD->decls()) {
3737     // Meta-data for ObjC class includes references to implemented methods.
3738     // Generate class's method definitions first.
3739     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3740       for (auto *M : OID->methods())
3741         EmitTopLevelDecl(M);
3742     }
3743     EmitTopLevelDecl(I);
3744   }
3745 }
3746 
3747 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3748 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3749   // Ignore dependent declarations.
3750   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3751     return;
3752 
3753   switch (D->getKind()) {
3754   case Decl::CXXConversion:
3755   case Decl::CXXMethod:
3756   case Decl::Function:
3757     // Skip function templates
3758     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3759         cast<FunctionDecl>(D)->isLateTemplateParsed())
3760       return;
3761 
3762     EmitGlobal(cast<FunctionDecl>(D));
3763     // Always provide some coverage mapping
3764     // even for the functions that aren't emitted.
3765     AddDeferredUnusedCoverageMapping(D);
3766     break;
3767 
3768   case Decl::Var:
3769   case Decl::Decomposition:
3770     // Skip variable templates
3771     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3772       return;
3773   case Decl::VarTemplateSpecialization:
3774     EmitGlobal(cast<VarDecl>(D));
3775     break;
3776 
3777   // Indirect fields from global anonymous structs and unions can be
3778   // ignored; only the actual variable requires IR gen support.
3779   case Decl::IndirectField:
3780     break;
3781 
3782   // C++ Decls
3783   case Decl::Namespace:
3784     EmitNamespace(cast<NamespaceDecl>(D));
3785     break;
3786   case Decl::CXXRecord:
3787     // Emit any static data members, they may be definitions.
3788     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3789       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3790         EmitTopLevelDecl(I);
3791     break;
3792     // No code generation needed.
3793   case Decl::UsingShadow:
3794   case Decl::ClassTemplate:
3795   case Decl::VarTemplate:
3796   case Decl::VarTemplatePartialSpecialization:
3797   case Decl::FunctionTemplate:
3798   case Decl::TypeAliasTemplate:
3799   case Decl::Block:
3800   case Decl::Empty:
3801     break;
3802   case Decl::Using:          // using X; [C++]
3803     if (CGDebugInfo *DI = getModuleDebugInfo())
3804         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3805     return;
3806   case Decl::NamespaceAlias:
3807     if (CGDebugInfo *DI = getModuleDebugInfo())
3808         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3809     return;
3810   case Decl::UsingDirective: // using namespace X; [C++]
3811     if (CGDebugInfo *DI = getModuleDebugInfo())
3812       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3813     return;
3814   case Decl::CXXConstructor:
3815     // Skip function templates
3816     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3817         cast<FunctionDecl>(D)->isLateTemplateParsed())
3818       return;
3819 
3820     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3821     break;
3822   case Decl::CXXDestructor:
3823     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3824       return;
3825     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3826     break;
3827 
3828   case Decl::StaticAssert:
3829     // Nothing to do.
3830     break;
3831 
3832   // Objective-C Decls
3833 
3834   // Forward declarations, no (immediate) code generation.
3835   case Decl::ObjCInterface:
3836   case Decl::ObjCCategory:
3837     break;
3838 
3839   case Decl::ObjCProtocol: {
3840     auto *Proto = cast<ObjCProtocolDecl>(D);
3841     if (Proto->isThisDeclarationADefinition())
3842       ObjCRuntime->GenerateProtocol(Proto);
3843     break;
3844   }
3845 
3846   case Decl::ObjCCategoryImpl:
3847     // Categories have properties but don't support synthesize so we
3848     // can ignore them here.
3849     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3850     break;
3851 
3852   case Decl::ObjCImplementation: {
3853     auto *OMD = cast<ObjCImplementationDecl>(D);
3854     EmitObjCPropertyImplementations(OMD);
3855     EmitObjCIvarInitializations(OMD);
3856     ObjCRuntime->GenerateClass(OMD);
3857     // Emit global variable debug information.
3858     if (CGDebugInfo *DI = getModuleDebugInfo())
3859       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3860         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3861             OMD->getClassInterface()), OMD->getLocation());
3862     break;
3863   }
3864   case Decl::ObjCMethod: {
3865     auto *OMD = cast<ObjCMethodDecl>(D);
3866     // If this is not a prototype, emit the body.
3867     if (OMD->getBody())
3868       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3869     break;
3870   }
3871   case Decl::ObjCCompatibleAlias:
3872     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3873     break;
3874 
3875   case Decl::PragmaComment: {
3876     const auto *PCD = cast<PragmaCommentDecl>(D);
3877     switch (PCD->getCommentKind()) {
3878     case PCK_Unknown:
3879       llvm_unreachable("unexpected pragma comment kind");
3880     case PCK_Linker:
3881       AppendLinkerOptions(PCD->getArg());
3882       break;
3883     case PCK_Lib:
3884       AddDependentLib(PCD->getArg());
3885       break;
3886     case PCK_Compiler:
3887     case PCK_ExeStr:
3888     case PCK_User:
3889       break; // We ignore all of these.
3890     }
3891     break;
3892   }
3893 
3894   case Decl::PragmaDetectMismatch: {
3895     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3896     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3897     break;
3898   }
3899 
3900   case Decl::LinkageSpec:
3901     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3902     break;
3903 
3904   case Decl::FileScopeAsm: {
3905     // File-scope asm is ignored during device-side CUDA compilation.
3906     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3907       break;
3908     // File-scope asm is ignored during device-side OpenMP compilation.
3909     if (LangOpts.OpenMPIsDevice)
3910       break;
3911     auto *AD = cast<FileScopeAsmDecl>(D);
3912     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3913     break;
3914   }
3915 
3916   case Decl::Import: {
3917     auto *Import = cast<ImportDecl>(D);
3918 
3919     // If we've already imported this module, we're done.
3920     if (!ImportedModules.insert(Import->getImportedModule()))
3921       break;
3922 
3923     // Emit debug information for direct imports.
3924     if (!Import->getImportedOwningModule()) {
3925       if (CGDebugInfo *DI = getModuleDebugInfo())
3926         DI->EmitImportDecl(*Import);
3927     }
3928 
3929     // Emit the module initializers.
3930     for (auto *D : Context.getModuleInitializers(Import->getImportedModule()))
3931       EmitTopLevelDecl(D);
3932     break;
3933   }
3934 
3935   case Decl::OMPThreadPrivate:
3936     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3937     break;
3938 
3939   case Decl::ClassTemplateSpecialization: {
3940     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3941     if (DebugInfo &&
3942         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3943         Spec->hasDefinition())
3944       DebugInfo->completeTemplateDefinition(*Spec);
3945     break;
3946   }
3947 
3948   case Decl::OMPDeclareReduction:
3949     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3950     break;
3951 
3952   default:
3953     // Make sure we handled everything we should, every other kind is a
3954     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3955     // function. Need to recode Decl::Kind to do that easily.
3956     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3957     break;
3958   }
3959 }
3960 
3961 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3962   // Do we need to generate coverage mapping?
3963   if (!CodeGenOpts.CoverageMapping)
3964     return;
3965   switch (D->getKind()) {
3966   case Decl::CXXConversion:
3967   case Decl::CXXMethod:
3968   case Decl::Function:
3969   case Decl::ObjCMethod:
3970   case Decl::CXXConstructor:
3971   case Decl::CXXDestructor: {
3972     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3973       return;
3974     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3975     if (I == DeferredEmptyCoverageMappingDecls.end())
3976       DeferredEmptyCoverageMappingDecls[D] = true;
3977     break;
3978   }
3979   default:
3980     break;
3981   };
3982 }
3983 
3984 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3985   // Do we need to generate coverage mapping?
3986   if (!CodeGenOpts.CoverageMapping)
3987     return;
3988   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3989     if (Fn->isTemplateInstantiation())
3990       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3991   }
3992   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3993   if (I == DeferredEmptyCoverageMappingDecls.end())
3994     DeferredEmptyCoverageMappingDecls[D] = false;
3995   else
3996     I->second = false;
3997 }
3998 
3999 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4000   std::vector<const Decl *> DeferredDecls;
4001   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4002     if (!I.second)
4003       continue;
4004     DeferredDecls.push_back(I.first);
4005   }
4006   // Sort the declarations by their location to make sure that the tests get a
4007   // predictable order for the coverage mapping for the unused declarations.
4008   if (CodeGenOpts.DumpCoverageMapping)
4009     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4010               [] (const Decl *LHS, const Decl *RHS) {
4011       return LHS->getLocStart() < RHS->getLocStart();
4012     });
4013   for (const auto *D : DeferredDecls) {
4014     switch (D->getKind()) {
4015     case Decl::CXXConversion:
4016     case Decl::CXXMethod:
4017     case Decl::Function:
4018     case Decl::ObjCMethod: {
4019       CodeGenPGO PGO(*this);
4020       GlobalDecl GD(cast<FunctionDecl>(D));
4021       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4022                                   getFunctionLinkage(GD));
4023       break;
4024     }
4025     case Decl::CXXConstructor: {
4026       CodeGenPGO PGO(*this);
4027       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4028       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4029                                   getFunctionLinkage(GD));
4030       break;
4031     }
4032     case Decl::CXXDestructor: {
4033       CodeGenPGO PGO(*this);
4034       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4035       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4036                                   getFunctionLinkage(GD));
4037       break;
4038     }
4039     default:
4040       break;
4041     };
4042   }
4043 }
4044 
4045 /// Turns the given pointer into a constant.
4046 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4047                                           const void *Ptr) {
4048   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4049   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4050   return llvm::ConstantInt::get(i64, PtrInt);
4051 }
4052 
4053 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4054                                    llvm::NamedMDNode *&GlobalMetadata,
4055                                    GlobalDecl D,
4056                                    llvm::GlobalValue *Addr) {
4057   if (!GlobalMetadata)
4058     GlobalMetadata =
4059       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4060 
4061   // TODO: should we report variant information for ctors/dtors?
4062   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4063                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4064                                CGM.getLLVMContext(), D.getDecl()))};
4065   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4066 }
4067 
4068 /// For each function which is declared within an extern "C" region and marked
4069 /// as 'used', but has internal linkage, create an alias from the unmangled
4070 /// name to the mangled name if possible. People expect to be able to refer
4071 /// to such functions with an unmangled name from inline assembly within the
4072 /// same translation unit.
4073 void CodeGenModule::EmitStaticExternCAliases() {
4074   // Don't do anything if we're generating CUDA device code -- the NVPTX
4075   // assembly target doesn't support aliases.
4076   if (Context.getTargetInfo().getTriple().isNVPTX())
4077     return;
4078   for (auto &I : StaticExternCValues) {
4079     IdentifierInfo *Name = I.first;
4080     llvm::GlobalValue *Val = I.second;
4081     if (Val && !getModule().getNamedValue(Name->getName()))
4082       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4083   }
4084 }
4085 
4086 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4087                                              GlobalDecl &Result) const {
4088   auto Res = Manglings.find(MangledName);
4089   if (Res == Manglings.end())
4090     return false;
4091   Result = Res->getValue();
4092   return true;
4093 }
4094 
4095 /// Emits metadata nodes associating all the global values in the
4096 /// current module with the Decls they came from.  This is useful for
4097 /// projects using IR gen as a subroutine.
4098 ///
4099 /// Since there's currently no way to associate an MDNode directly
4100 /// with an llvm::GlobalValue, we create a global named metadata
4101 /// with the name 'clang.global.decl.ptrs'.
4102 void CodeGenModule::EmitDeclMetadata() {
4103   llvm::NamedMDNode *GlobalMetadata = nullptr;
4104 
4105   for (auto &I : MangledDeclNames) {
4106     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4107     // Some mangled names don't necessarily have an associated GlobalValue
4108     // in this module, e.g. if we mangled it for DebugInfo.
4109     if (Addr)
4110       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4111   }
4112 }
4113 
4114 /// Emits metadata nodes for all the local variables in the current
4115 /// function.
4116 void CodeGenFunction::EmitDeclMetadata() {
4117   if (LocalDeclMap.empty()) return;
4118 
4119   llvm::LLVMContext &Context = getLLVMContext();
4120 
4121   // Find the unique metadata ID for this name.
4122   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4123 
4124   llvm::NamedMDNode *GlobalMetadata = nullptr;
4125 
4126   for (auto &I : LocalDeclMap) {
4127     const Decl *D = I.first;
4128     llvm::Value *Addr = I.second.getPointer();
4129     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4130       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4131       Alloca->setMetadata(
4132           DeclPtrKind, llvm::MDNode::get(
4133                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4134     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4135       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4136       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4137     }
4138   }
4139 }
4140 
4141 void CodeGenModule::EmitVersionIdentMetadata() {
4142   llvm::NamedMDNode *IdentMetadata =
4143     TheModule.getOrInsertNamedMetadata("llvm.ident");
4144   std::string Version = getClangFullVersion();
4145   llvm::LLVMContext &Ctx = TheModule.getContext();
4146 
4147   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4148   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4149 }
4150 
4151 void CodeGenModule::EmitTargetMetadata() {
4152   // Warning, new MangledDeclNames may be appended within this loop.
4153   // We rely on MapVector insertions adding new elements to the end
4154   // of the container.
4155   // FIXME: Move this loop into the one target that needs it, and only
4156   // loop over those declarations for which we couldn't emit the target
4157   // metadata when we emitted the declaration.
4158   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4159     auto Val = *(MangledDeclNames.begin() + I);
4160     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4161     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4162     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4163   }
4164 }
4165 
4166 void CodeGenModule::EmitCoverageFile() {
4167   if (!getCodeGenOpts().CoverageFile.empty()) {
4168     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
4169       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4170       llvm::LLVMContext &Ctx = TheModule.getContext();
4171       llvm::MDString *CoverageFile =
4172           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
4173       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4174         llvm::MDNode *CU = CUNode->getOperand(i);
4175         llvm::Metadata *Elts[] = {CoverageFile, CU};
4176         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4177       }
4178     }
4179   }
4180 }
4181 
4182 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4183   // Sema has checked that all uuid strings are of the form
4184   // "12345678-1234-1234-1234-1234567890ab".
4185   assert(Uuid.size() == 36);
4186   for (unsigned i = 0; i < 36; ++i) {
4187     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4188     else                                         assert(isHexDigit(Uuid[i]));
4189   }
4190 
4191   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4192   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4193 
4194   llvm::Constant *Field3[8];
4195   for (unsigned Idx = 0; Idx < 8; ++Idx)
4196     Field3[Idx] = llvm::ConstantInt::get(
4197         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4198 
4199   llvm::Constant *Fields[4] = {
4200     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4201     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4202     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4203     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4204   };
4205 
4206   return llvm::ConstantStruct::getAnon(Fields);
4207 }
4208 
4209 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4210                                                        bool ForEH) {
4211   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4212   // FIXME: should we even be calling this method if RTTI is disabled
4213   // and it's not for EH?
4214   if (!ForEH && !getLangOpts().RTTI)
4215     return llvm::Constant::getNullValue(Int8PtrTy);
4216 
4217   if (ForEH && Ty->isObjCObjectPointerType() &&
4218       LangOpts.ObjCRuntime.isGNUFamily())
4219     return ObjCRuntime->GetEHType(Ty);
4220 
4221   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4222 }
4223 
4224 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4225   for (auto RefExpr : D->varlists()) {
4226     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4227     bool PerformInit =
4228         VD->getAnyInitializer() &&
4229         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4230                                                         /*ForRef=*/false);
4231 
4232     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4233     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4234             VD, Addr, RefExpr->getLocStart(), PerformInit))
4235       CXXGlobalInits.push_back(InitFunction);
4236   }
4237 }
4238 
4239 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4240   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4241   if (InternalId)
4242     return InternalId;
4243 
4244   if (isExternallyVisible(T->getLinkage())) {
4245     std::string OutName;
4246     llvm::raw_string_ostream Out(OutName);
4247     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4248 
4249     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4250   } else {
4251     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4252                                            llvm::ArrayRef<llvm::Metadata *>());
4253   }
4254 
4255   return InternalId;
4256 }
4257 
4258 /// Returns whether this module needs the "all-vtables" type identifier.
4259 bool CodeGenModule::NeedAllVtablesTypeId() const {
4260   // Returns true if at least one of vtable-based CFI checkers is enabled and
4261   // is not in the trapping mode.
4262   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4263            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4264           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4265            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4266           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4267            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4268           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4269            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4270 }
4271 
4272 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4273                                           CharUnits Offset,
4274                                           const CXXRecordDecl *RD) {
4275   llvm::Metadata *MD =
4276       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4277   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4278 
4279   if (CodeGenOpts.SanitizeCfiCrossDso)
4280     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4281       VTable->addTypeMetadata(Offset.getQuantity(),
4282                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4283 
4284   if (NeedAllVtablesTypeId()) {
4285     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4286     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4287   }
4288 }
4289 
4290 // Fills in the supplied string map with the set of target features for the
4291 // passed in function.
4292 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4293                                           const FunctionDecl *FD) {
4294   StringRef TargetCPU = Target.getTargetOpts().CPU;
4295   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4296     // If we have a TargetAttr build up the feature map based on that.
4297     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4298 
4299     // Make a copy of the features as passed on the command line into the
4300     // beginning of the additional features from the function to override.
4301     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4302                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4303                             Target.getTargetOpts().FeaturesAsWritten.end());
4304 
4305     if (ParsedAttr.second != "")
4306       TargetCPU = ParsedAttr.second;
4307 
4308     // Now populate the feature map, first with the TargetCPU which is either
4309     // the default or a new one from the target attribute string. Then we'll use
4310     // the passed in features (FeaturesAsWritten) along with the new ones from
4311     // the attribute.
4312     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4313   } else {
4314     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4315                           Target.getTargetOpts().Features);
4316   }
4317 }
4318 
4319 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4320   if (!SanStats)
4321     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4322 
4323   return *SanStats;
4324 }
4325 llvm::Value *
4326 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4327                                                   CodeGenFunction &CGF) {
4328   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4329   auto SamplerT = getOpenCLRuntime().getSamplerType();
4330   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4331   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4332                                 "__translate_sampler_initializer"),
4333                                 {C});
4334 }
4335