1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 
66 using namespace clang;
67 using namespace CodeGen;
68 
69 static llvm::cl::opt<bool> LimitedCoverage(
70     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
71     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
72     llvm::cl::init(false));
73 
74 static const char AnnotationSection[] = "llvm.metadata";
75 
76 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
77   switch (CGM.getTarget().getCXXABI().getKind()) {
78   case TargetCXXABI::Fuchsia:
79   case TargetCXXABI::GenericAArch64:
80   case TargetCXXABI::GenericARM:
81   case TargetCXXABI::iOS:
82   case TargetCXXABI::iOS64:
83   case TargetCXXABI::WatchOS:
84   case TargetCXXABI::GenericMIPS:
85   case TargetCXXABI::GenericItanium:
86   case TargetCXXABI::WebAssembly:
87   case TargetCXXABI::XL:
88     return CreateItaniumCXXABI(CGM);
89   case TargetCXXABI::Microsoft:
90     return CreateMicrosoftCXXABI(CGM);
91   }
92 
93   llvm_unreachable("invalid C++ ABI kind");
94 }
95 
96 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
97                              const PreprocessorOptions &PPO,
98                              const CodeGenOptions &CGO, llvm::Module &M,
99                              DiagnosticsEngine &diags,
100                              CoverageSourceInfo *CoverageInfo)
101     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
102       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
103       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
104       VMContext(M.getContext()), Types(*this), VTables(*this),
105       SanitizerMD(new SanitizerMetadata(*this)) {
106 
107   // Initialize the type cache.
108   llvm::LLVMContext &LLVMContext = M.getContext();
109   VoidTy = llvm::Type::getVoidTy(LLVMContext);
110   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
111   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
112   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
113   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
114   HalfTy = llvm::Type::getHalfTy(LLVMContext);
115   FloatTy = llvm::Type::getFloatTy(LLVMContext);
116   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
117   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
118   PointerAlignInBytes =
119     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
120   SizeSizeInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
122   IntAlignInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
124   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
125   IntPtrTy = llvm::IntegerType::get(LLVMContext,
126     C.getTargetInfo().getMaxPointerWidth());
127   Int8PtrTy = Int8Ty->getPointerTo(0);
128   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
129   AllocaInt8PtrTy = Int8Ty->getPointerTo(
130       M.getDataLayout().getAllocaAddrSpace());
131   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
132 
133   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
134 
135   if (LangOpts.ObjC)
136     createObjCRuntime();
137   if (LangOpts.OpenCL)
138     createOpenCLRuntime();
139   if (LangOpts.OpenMP)
140     createOpenMPRuntime();
141   if (LangOpts.CUDA)
142     createCUDARuntime();
143 
144   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
145   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
146       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
147     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
148                                getCXXABI().getMangleContext()));
149 
150   // If debug info or coverage generation is enabled, create the CGDebugInfo
151   // object.
152   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
153       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
154     DebugInfo.reset(new CGDebugInfo(*this));
155 
156   Block.GlobalUniqueCount = 0;
157 
158   if (C.getLangOpts().ObjC)
159     ObjCData.reset(new ObjCEntrypoints());
160 
161   if (CodeGenOpts.hasProfileClangUse()) {
162     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
163         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
164     if (auto E = ReaderOrErr.takeError()) {
165       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
166                                               "Could not read profile %0: %1");
167       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
168         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
169                                   << EI.message();
170       });
171     } else
172       PGOReader = std::move(ReaderOrErr.get());
173   }
174 
175   // If coverage mapping generation is enabled, create the
176   // CoverageMappingModuleGen object.
177   if (CodeGenOpts.CoverageMapping)
178     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
179 }
180 
181 CodeGenModule::~CodeGenModule() {}
182 
183 void CodeGenModule::createObjCRuntime() {
184   // This is just isGNUFamily(), but we want to force implementors of
185   // new ABIs to decide how best to do this.
186   switch (LangOpts.ObjCRuntime.getKind()) {
187   case ObjCRuntime::GNUstep:
188   case ObjCRuntime::GCC:
189   case ObjCRuntime::ObjFW:
190     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
191     return;
192 
193   case ObjCRuntime::FragileMacOSX:
194   case ObjCRuntime::MacOSX:
195   case ObjCRuntime::iOS:
196   case ObjCRuntime::WatchOS:
197     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
198     return;
199   }
200   llvm_unreachable("bad runtime kind");
201 }
202 
203 void CodeGenModule::createOpenCLRuntime() {
204   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
205 }
206 
207 void CodeGenModule::createOpenMPRuntime() {
208   // Select a specialized code generation class based on the target, if any.
209   // If it does not exist use the default implementation.
210   switch (getTriple().getArch()) {
211   case llvm::Triple::nvptx:
212   case llvm::Triple::nvptx64:
213     assert(getLangOpts().OpenMPIsDevice &&
214            "OpenMP NVPTX is only prepared to deal with device code.");
215     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
216     break;
217   default:
218     if (LangOpts.OpenMPSimd)
219       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
220     else
221       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
222     break;
223   }
224 
225   // The OpenMP-IR-Builder should eventually replace the above runtime codegens
226   // but we are not there yet so they both reside in CGModule for now and the
227   // OpenMP-IR-Builder is opt-in only.
228   if (LangOpts.OpenMPIRBuilder) {
229     OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
230     OMPBuilder->initialize();
231   }
232 }
233 
234 void CodeGenModule::createCUDARuntime() {
235   CUDARuntime.reset(CreateNVCUDARuntime(*this));
236 }
237 
238 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
239   Replacements[Name] = C;
240 }
241 
242 void CodeGenModule::applyReplacements() {
243   for (auto &I : Replacements) {
244     StringRef MangledName = I.first();
245     llvm::Constant *Replacement = I.second;
246     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
247     if (!Entry)
248       continue;
249     auto *OldF = cast<llvm::Function>(Entry);
250     auto *NewF = dyn_cast<llvm::Function>(Replacement);
251     if (!NewF) {
252       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
253         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
254       } else {
255         auto *CE = cast<llvm::ConstantExpr>(Replacement);
256         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
257                CE->getOpcode() == llvm::Instruction::GetElementPtr);
258         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
259       }
260     }
261 
262     // Replace old with new, but keep the old order.
263     OldF->replaceAllUsesWith(Replacement);
264     if (NewF) {
265       NewF->removeFromParent();
266       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
267                                                        NewF);
268     }
269     OldF->eraseFromParent();
270   }
271 }
272 
273 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
274   GlobalValReplacements.push_back(std::make_pair(GV, C));
275 }
276 
277 void CodeGenModule::applyGlobalValReplacements() {
278   for (auto &I : GlobalValReplacements) {
279     llvm::GlobalValue *GV = I.first;
280     llvm::Constant *C = I.second;
281 
282     GV->replaceAllUsesWith(C);
283     GV->eraseFromParent();
284   }
285 }
286 
287 // This is only used in aliases that we created and we know they have a
288 // linear structure.
289 static const llvm::GlobalObject *getAliasedGlobal(
290     const llvm::GlobalIndirectSymbol &GIS) {
291   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
292   const llvm::Constant *C = &GIS;
293   for (;;) {
294     C = C->stripPointerCasts();
295     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
296       return GO;
297     // stripPointerCasts will not walk over weak aliases.
298     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
299     if (!GIS2)
300       return nullptr;
301     if (!Visited.insert(GIS2).second)
302       return nullptr;
303     C = GIS2->getIndirectSymbol();
304   }
305 }
306 
307 void CodeGenModule::checkAliases() {
308   // Check if the constructed aliases are well formed. It is really unfortunate
309   // that we have to do this in CodeGen, but we only construct mangled names
310   // and aliases during codegen.
311   bool Error = false;
312   DiagnosticsEngine &Diags = getDiags();
313   for (const GlobalDecl &GD : Aliases) {
314     const auto *D = cast<ValueDecl>(GD.getDecl());
315     SourceLocation Location;
316     bool IsIFunc = D->hasAttr<IFuncAttr>();
317     if (const Attr *A = D->getDefiningAttr())
318       Location = A->getLocation();
319     else
320       llvm_unreachable("Not an alias or ifunc?");
321     StringRef MangledName = getMangledName(GD);
322     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
323     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
324     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
325     if (!GV) {
326       Error = true;
327       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
328     } else if (GV->isDeclaration()) {
329       Error = true;
330       Diags.Report(Location, diag::err_alias_to_undefined)
331           << IsIFunc << IsIFunc;
332     } else if (IsIFunc) {
333       // Check resolver function type.
334       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
335           GV->getType()->getPointerElementType());
336       assert(FTy);
337       if (!FTy->getReturnType()->isPointerTy())
338         Diags.Report(Location, diag::err_ifunc_resolver_return);
339     }
340 
341     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
342     llvm::GlobalValue *AliaseeGV;
343     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
344       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
345     else
346       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
347 
348     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
349       StringRef AliasSection = SA->getName();
350       if (AliasSection != AliaseeGV->getSection())
351         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
352             << AliasSection << IsIFunc << IsIFunc;
353     }
354 
355     // We have to handle alias to weak aliases in here. LLVM itself disallows
356     // this since the object semantics would not match the IL one. For
357     // compatibility with gcc we implement it by just pointing the alias
358     // to its aliasee's aliasee. We also warn, since the user is probably
359     // expecting the link to be weak.
360     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
361       if (GA->isInterposable()) {
362         Diags.Report(Location, diag::warn_alias_to_weak_alias)
363             << GV->getName() << GA->getName() << IsIFunc;
364         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
365             GA->getIndirectSymbol(), Alias->getType());
366         Alias->setIndirectSymbol(Aliasee);
367       }
368     }
369   }
370   if (!Error)
371     return;
372 
373   for (const GlobalDecl &GD : Aliases) {
374     StringRef MangledName = getMangledName(GD);
375     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
376     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
377     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
378     Alias->eraseFromParent();
379   }
380 }
381 
382 void CodeGenModule::clear() {
383   DeferredDeclsToEmit.clear();
384   if (OpenMPRuntime)
385     OpenMPRuntime->clear();
386 }
387 
388 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
389                                        StringRef MainFile) {
390   if (!hasDiagnostics())
391     return;
392   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
393     if (MainFile.empty())
394       MainFile = "<stdin>";
395     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
396   } else {
397     if (Mismatched > 0)
398       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
399 
400     if (Missing > 0)
401       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
402   }
403 }
404 
405 void CodeGenModule::Release() {
406   EmitDeferred();
407   EmitVTablesOpportunistically();
408   applyGlobalValReplacements();
409   applyReplacements();
410   checkAliases();
411   emitMultiVersionFunctions();
412   EmitCXXGlobalInitFunc();
413   EmitCXXGlobalDtorFunc();
414   registerGlobalDtorsWithAtExit();
415   EmitCXXThreadLocalInitFunc();
416   if (ObjCRuntime)
417     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
418       AddGlobalCtor(ObjCInitFunction);
419   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
420       CUDARuntime) {
421     if (llvm::Function *CudaCtorFunction =
422             CUDARuntime->makeModuleCtorFunction())
423       AddGlobalCtor(CudaCtorFunction);
424   }
425   if (OpenMPRuntime) {
426     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
427             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
428       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
429     }
430     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
431     OpenMPRuntime->clear();
432   }
433   if (PGOReader) {
434     getModule().setProfileSummary(
435         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
436         llvm::ProfileSummary::PSK_Instr);
437     if (PGOStats.hasDiagnostics())
438       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
439   }
440   EmitCtorList(GlobalCtors, "llvm.global_ctors");
441   EmitCtorList(GlobalDtors, "llvm.global_dtors");
442   EmitGlobalAnnotations();
443   EmitStaticExternCAliases();
444   EmitDeferredUnusedCoverageMappings();
445   if (CoverageMapping)
446     CoverageMapping->emit();
447   if (CodeGenOpts.SanitizeCfiCrossDso) {
448     CodeGenFunction(*this).EmitCfiCheckFail();
449     CodeGenFunction(*this).EmitCfiCheckStub();
450   }
451   emitAtAvailableLinkGuard();
452   if (Context.getTargetInfo().getTriple().isWasm() &&
453       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
454     EmitMainVoidAlias();
455   }
456   emitLLVMUsed();
457   if (SanStats)
458     SanStats->finish();
459 
460   if (CodeGenOpts.Autolink &&
461       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
462     EmitModuleLinkOptions();
463   }
464 
465   // On ELF we pass the dependent library specifiers directly to the linker
466   // without manipulating them. This is in contrast to other platforms where
467   // they are mapped to a specific linker option by the compiler. This
468   // difference is a result of the greater variety of ELF linkers and the fact
469   // that ELF linkers tend to handle libraries in a more complicated fashion
470   // than on other platforms. This forces us to defer handling the dependent
471   // libs to the linker.
472   //
473   // CUDA/HIP device and host libraries are different. Currently there is no
474   // way to differentiate dependent libraries for host or device. Existing
475   // usage of #pragma comment(lib, *) is intended for host libraries on
476   // Windows. Therefore emit llvm.dependent-libraries only for host.
477   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
478     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
479     for (auto *MD : ELFDependentLibraries)
480       NMD->addOperand(MD);
481   }
482 
483   // Record mregparm value now so it is visible through rest of codegen.
484   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
485     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
486                               CodeGenOpts.NumRegisterParameters);
487 
488   if (CodeGenOpts.DwarfVersion) {
489     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
490                               CodeGenOpts.DwarfVersion);
491   }
492 
493   if (Context.getLangOpts().SemanticInterposition)
494     // Require various optimization to respect semantic interposition.
495     getModule().setSemanticInterposition(1);
496   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
497     // Allow dso_local on applicable targets.
498     getModule().setSemanticInterposition(0);
499 
500   if (CodeGenOpts.EmitCodeView) {
501     // Indicate that we want CodeView in the metadata.
502     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
503   }
504   if (CodeGenOpts.CodeViewGHash) {
505     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
506   }
507   if (CodeGenOpts.ControlFlowGuard) {
508     // Function ID tables and checks for Control Flow Guard (cfguard=2).
509     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
510   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
511     // Function ID tables for Control Flow Guard (cfguard=1).
512     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
513   }
514   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
515     // We don't support LTO with 2 with different StrictVTablePointers
516     // FIXME: we could support it by stripping all the information introduced
517     // by StrictVTablePointers.
518 
519     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
520 
521     llvm::Metadata *Ops[2] = {
522               llvm::MDString::get(VMContext, "StrictVTablePointers"),
523               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
524                   llvm::Type::getInt32Ty(VMContext), 1))};
525 
526     getModule().addModuleFlag(llvm::Module::Require,
527                               "StrictVTablePointersRequirement",
528                               llvm::MDNode::get(VMContext, Ops));
529   }
530   if (DebugInfo)
531     // We support a single version in the linked module. The LLVM
532     // parser will drop debug info with a different version number
533     // (and warn about it, too).
534     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
535                               llvm::DEBUG_METADATA_VERSION);
536 
537   // We need to record the widths of enums and wchar_t, so that we can generate
538   // the correct build attributes in the ARM backend. wchar_size is also used by
539   // TargetLibraryInfo.
540   uint64_t WCharWidth =
541       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
542   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
543 
544   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
545   if (   Arch == llvm::Triple::arm
546       || Arch == llvm::Triple::armeb
547       || Arch == llvm::Triple::thumb
548       || Arch == llvm::Triple::thumbeb) {
549     // The minimum width of an enum in bytes
550     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
551     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
552   }
553 
554   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
555     StringRef ABIStr = Target.getABI();
556     llvm::LLVMContext &Ctx = TheModule.getContext();
557     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
558                               llvm::MDString::get(Ctx, ABIStr));
559   }
560 
561   if (CodeGenOpts.SanitizeCfiCrossDso) {
562     // Indicate that we want cross-DSO control flow integrity checks.
563     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
564   }
565 
566   if (CodeGenOpts.WholeProgramVTables) {
567     // Indicate whether VFE was enabled for this module, so that the
568     // vcall_visibility metadata added under whole program vtables is handled
569     // appropriately in the optimizer.
570     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
571                               CodeGenOpts.VirtualFunctionElimination);
572   }
573 
574   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
575     getModule().addModuleFlag(llvm::Module::Override,
576                               "CFI Canonical Jump Tables",
577                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
578   }
579 
580   if (CodeGenOpts.CFProtectionReturn &&
581       Target.checkCFProtectionReturnSupported(getDiags())) {
582     // Indicate that we want to instrument return control flow protection.
583     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
584                               1);
585   }
586 
587   if (CodeGenOpts.CFProtectionBranch &&
588       Target.checkCFProtectionBranchSupported(getDiags())) {
589     // Indicate that we want to instrument branch control flow protection.
590     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
591                               1);
592   }
593 
594   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
595     // Indicate whether __nvvm_reflect should be configured to flush denormal
596     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
597     // property.)
598     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
599                               CodeGenOpts.FP32DenormalMode.Output !=
600                                   llvm::DenormalMode::IEEE);
601   }
602 
603   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
604   if (LangOpts.OpenCL) {
605     EmitOpenCLMetadata();
606     // Emit SPIR version.
607     if (getTriple().isSPIR()) {
608       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
609       // opencl.spir.version named metadata.
610       // C++ is backwards compatible with OpenCL v2.0.
611       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
612       llvm::Metadata *SPIRVerElts[] = {
613           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
614               Int32Ty, Version / 100)),
615           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
616               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
617       llvm::NamedMDNode *SPIRVerMD =
618           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
619       llvm::LLVMContext &Ctx = TheModule.getContext();
620       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
621     }
622   }
623 
624   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
625     assert(PLevel < 3 && "Invalid PIC Level");
626     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
627     if (Context.getLangOpts().PIE)
628       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
629   }
630 
631   if (getCodeGenOpts().CodeModel.size() > 0) {
632     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
633                   .Case("tiny", llvm::CodeModel::Tiny)
634                   .Case("small", llvm::CodeModel::Small)
635                   .Case("kernel", llvm::CodeModel::Kernel)
636                   .Case("medium", llvm::CodeModel::Medium)
637                   .Case("large", llvm::CodeModel::Large)
638                   .Default(~0u);
639     if (CM != ~0u) {
640       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
641       getModule().setCodeModel(codeModel);
642     }
643   }
644 
645   if (CodeGenOpts.NoPLT)
646     getModule().setRtLibUseGOT();
647 
648   SimplifyPersonality();
649 
650   if (getCodeGenOpts().EmitDeclMetadata)
651     EmitDeclMetadata();
652 
653   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
654     EmitCoverageFile();
655 
656   if (DebugInfo)
657     DebugInfo->finalize();
658 
659   if (getCodeGenOpts().EmitVersionIdentMetadata)
660     EmitVersionIdentMetadata();
661 
662   if (!getCodeGenOpts().RecordCommandLine.empty())
663     EmitCommandLineMetadata();
664 
665   EmitTargetMetadata();
666 
667   EmitBackendOptionsMetadata(getCodeGenOpts());
668 }
669 
670 void CodeGenModule::EmitOpenCLMetadata() {
671   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
672   // opencl.ocl.version named metadata node.
673   // C++ is backwards compatible with OpenCL v2.0.
674   // FIXME: We might need to add CXX version at some point too?
675   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
676   llvm::Metadata *OCLVerElts[] = {
677       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
678           Int32Ty, Version / 100)),
679       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
680           Int32Ty, (Version % 100) / 10))};
681   llvm::NamedMDNode *OCLVerMD =
682       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
683   llvm::LLVMContext &Ctx = TheModule.getContext();
684   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
685 }
686 
687 void CodeGenModule::EmitBackendOptionsMetadata(
688     const CodeGenOptions CodeGenOpts) {
689   switch (getTriple().getArch()) {
690   default:
691     break;
692   case llvm::Triple::riscv32:
693   case llvm::Triple::riscv64:
694     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
695                               CodeGenOpts.SmallDataLimit);
696     break;
697   }
698 }
699 
700 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
701   // Make sure that this type is translated.
702   Types.UpdateCompletedType(TD);
703 }
704 
705 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
706   // Make sure that this type is translated.
707   Types.RefreshTypeCacheForClass(RD);
708 }
709 
710 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
711   if (!TBAA)
712     return nullptr;
713   return TBAA->getTypeInfo(QTy);
714 }
715 
716 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
717   if (!TBAA)
718     return TBAAAccessInfo();
719   if (getLangOpts().CUDAIsDevice) {
720     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
721     // access info.
722     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
723       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
724           nullptr)
725         return TBAAAccessInfo();
726     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
727       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
728           nullptr)
729         return TBAAAccessInfo();
730     }
731   }
732   return TBAA->getAccessInfo(AccessType);
733 }
734 
735 TBAAAccessInfo
736 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
737   if (!TBAA)
738     return TBAAAccessInfo();
739   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
740 }
741 
742 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
743   if (!TBAA)
744     return nullptr;
745   return TBAA->getTBAAStructInfo(QTy);
746 }
747 
748 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
749   if (!TBAA)
750     return nullptr;
751   return TBAA->getBaseTypeInfo(QTy);
752 }
753 
754 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
755   if (!TBAA)
756     return nullptr;
757   return TBAA->getAccessTagInfo(Info);
758 }
759 
760 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
761                                                    TBAAAccessInfo TargetInfo) {
762   if (!TBAA)
763     return TBAAAccessInfo();
764   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
765 }
766 
767 TBAAAccessInfo
768 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
769                                                    TBAAAccessInfo InfoB) {
770   if (!TBAA)
771     return TBAAAccessInfo();
772   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
773 }
774 
775 TBAAAccessInfo
776 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
777                                               TBAAAccessInfo SrcInfo) {
778   if (!TBAA)
779     return TBAAAccessInfo();
780   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
781 }
782 
783 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
784                                                 TBAAAccessInfo TBAAInfo) {
785   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
786     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
787 }
788 
789 void CodeGenModule::DecorateInstructionWithInvariantGroup(
790     llvm::Instruction *I, const CXXRecordDecl *RD) {
791   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
792                  llvm::MDNode::get(getLLVMContext(), {}));
793 }
794 
795 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
796   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
797   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
798 }
799 
800 /// ErrorUnsupported - Print out an error that codegen doesn't support the
801 /// specified stmt yet.
802 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
803   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
804                                                "cannot compile this %0 yet");
805   std::string Msg = Type;
806   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
807       << Msg << S->getSourceRange();
808 }
809 
810 /// ErrorUnsupported - Print out an error that codegen doesn't support the
811 /// specified decl yet.
812 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
813   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
814                                                "cannot compile this %0 yet");
815   std::string Msg = Type;
816   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
817 }
818 
819 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
820   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
821 }
822 
823 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
824                                         const NamedDecl *D) const {
825   if (GV->hasDLLImportStorageClass())
826     return;
827   // Internal definitions always have default visibility.
828   if (GV->hasLocalLinkage()) {
829     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
830     return;
831   }
832   if (!D)
833     return;
834   // Set visibility for definitions, and for declarations if requested globally
835   // or set explicitly.
836   LinkageInfo LV = D->getLinkageAndVisibility();
837   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
838       !GV->isDeclarationForLinker())
839     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
840 }
841 
842 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
843                                  llvm::GlobalValue *GV) {
844   if (GV->hasLocalLinkage())
845     return true;
846 
847   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
848     return true;
849 
850   // DLLImport explicitly marks the GV as external.
851   if (GV->hasDLLImportStorageClass())
852     return false;
853 
854   const llvm::Triple &TT = CGM.getTriple();
855   if (TT.isWindowsGNUEnvironment()) {
856     // In MinGW, variables without DLLImport can still be automatically
857     // imported from a DLL by the linker; don't mark variables that
858     // potentially could come from another DLL as DSO local.
859     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
860         !GV->isThreadLocal())
861       return false;
862   }
863 
864   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
865   // remain unresolved in the link, they can be resolved to zero, which is
866   // outside the current DSO.
867   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
868     return false;
869 
870   // Every other GV is local on COFF.
871   // Make an exception for windows OS in the triple: Some firmware builds use
872   // *-win32-macho triples. This (accidentally?) produced windows relocations
873   // without GOT tables in older clang versions; Keep this behaviour.
874   // FIXME: even thread local variables?
875   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
876     return true;
877 
878   // Only handle COFF and ELF for now.
879   if (!TT.isOSBinFormatELF())
880     return false;
881 
882   // If this is not an executable, don't assume anything is local.
883   const auto &CGOpts = CGM.getCodeGenOpts();
884   llvm::Reloc::Model RM = CGOpts.RelocationModel;
885   const auto &LOpts = CGM.getLangOpts();
886   if (RM != llvm::Reloc::Static && !LOpts.PIE)
887     return false;
888 
889   // A definition cannot be preempted from an executable.
890   if (!GV->isDeclarationForLinker())
891     return true;
892 
893   // Most PIC code sequences that assume that a symbol is local cannot produce a
894   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
895   // depended, it seems worth it to handle it here.
896   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
897     return false;
898 
899   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
900   llvm::Triple::ArchType Arch = TT.getArch();
901   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
902       Arch == llvm::Triple::ppc64le)
903     return false;
904 
905   // If we can use copy relocations we can assume it is local.
906   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
907     if (!Var->isThreadLocal() &&
908         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
909       return true;
910 
911   // If we can use a plt entry as the symbol address we can assume it
912   // is local.
913   // FIXME: This should work for PIE, but the gold linker doesn't support it.
914   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
915     return true;
916 
917   // Otherwise don't assume it is local.
918   return false;
919 }
920 
921 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
922   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
923 }
924 
925 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
926                                           GlobalDecl GD) const {
927   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
928   // C++ destructors have a few C++ ABI specific special cases.
929   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
930     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
931     return;
932   }
933   setDLLImportDLLExport(GV, D);
934 }
935 
936 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
937                                           const NamedDecl *D) const {
938   if (D && D->isExternallyVisible()) {
939     if (D->hasAttr<DLLImportAttr>())
940       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
941     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
942       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
943   }
944 }
945 
946 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
947                                     GlobalDecl GD) const {
948   setDLLImportDLLExport(GV, GD);
949   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
950 }
951 
952 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
953                                     const NamedDecl *D) const {
954   setDLLImportDLLExport(GV, D);
955   setGVPropertiesAux(GV, D);
956 }
957 
958 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
959                                        const NamedDecl *D) const {
960   setGlobalVisibility(GV, D);
961   setDSOLocal(GV);
962   GV->setPartition(CodeGenOpts.SymbolPartition);
963 }
964 
965 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
966   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
967       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
968       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
969       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
970       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
971 }
972 
973 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
974     CodeGenOptions::TLSModel M) {
975   switch (M) {
976   case CodeGenOptions::GeneralDynamicTLSModel:
977     return llvm::GlobalVariable::GeneralDynamicTLSModel;
978   case CodeGenOptions::LocalDynamicTLSModel:
979     return llvm::GlobalVariable::LocalDynamicTLSModel;
980   case CodeGenOptions::InitialExecTLSModel:
981     return llvm::GlobalVariable::InitialExecTLSModel;
982   case CodeGenOptions::LocalExecTLSModel:
983     return llvm::GlobalVariable::LocalExecTLSModel;
984   }
985   llvm_unreachable("Invalid TLS model!");
986 }
987 
988 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
989   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
990 
991   llvm::GlobalValue::ThreadLocalMode TLM;
992   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
993 
994   // Override the TLS model if it is explicitly specified.
995   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
996     TLM = GetLLVMTLSModel(Attr->getModel());
997   }
998 
999   GV->setThreadLocalMode(TLM);
1000 }
1001 
1002 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1003                                           StringRef Name) {
1004   const TargetInfo &Target = CGM.getTarget();
1005   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1006 }
1007 
1008 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1009                                                  const CPUSpecificAttr *Attr,
1010                                                  unsigned CPUIndex,
1011                                                  raw_ostream &Out) {
1012   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1013   // supported.
1014   if (Attr)
1015     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1016   else if (CGM.getTarget().supportsIFunc())
1017     Out << ".resolver";
1018 }
1019 
1020 static void AppendTargetMangling(const CodeGenModule &CGM,
1021                                  const TargetAttr *Attr, raw_ostream &Out) {
1022   if (Attr->isDefaultVersion())
1023     return;
1024 
1025   Out << '.';
1026   const TargetInfo &Target = CGM.getTarget();
1027   ParsedTargetAttr Info =
1028       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1029         // Multiversioning doesn't allow "no-${feature}", so we can
1030         // only have "+" prefixes here.
1031         assert(LHS.startswith("+") && RHS.startswith("+") &&
1032                "Features should always have a prefix.");
1033         return Target.multiVersionSortPriority(LHS.substr(1)) >
1034                Target.multiVersionSortPriority(RHS.substr(1));
1035       });
1036 
1037   bool IsFirst = true;
1038 
1039   if (!Info.Architecture.empty()) {
1040     IsFirst = false;
1041     Out << "arch_" << Info.Architecture;
1042   }
1043 
1044   for (StringRef Feat : Info.Features) {
1045     if (!IsFirst)
1046       Out << '_';
1047     IsFirst = false;
1048     Out << Feat.substr(1);
1049   }
1050 }
1051 
1052 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1053                                       const NamedDecl *ND,
1054                                       bool OmitMultiVersionMangling = false) {
1055   SmallString<256> Buffer;
1056   llvm::raw_svector_ostream Out(Buffer);
1057   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1058   if (MC.shouldMangleDeclName(ND))
1059     MC.mangleName(GD.getWithDecl(ND), Out);
1060   else {
1061     IdentifierInfo *II = ND->getIdentifier();
1062     assert(II && "Attempt to mangle unnamed decl.");
1063     const auto *FD = dyn_cast<FunctionDecl>(ND);
1064 
1065     if (FD &&
1066         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1067       Out << "__regcall3__" << II->getName();
1068     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1069                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1070       Out << "__device_stub__" << II->getName();
1071     } else {
1072       Out << II->getName();
1073     }
1074   }
1075 
1076   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1077     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1078       switch (FD->getMultiVersionKind()) {
1079       case MultiVersionKind::CPUDispatch:
1080       case MultiVersionKind::CPUSpecific:
1081         AppendCPUSpecificCPUDispatchMangling(CGM,
1082                                              FD->getAttr<CPUSpecificAttr>(),
1083                                              GD.getMultiVersionIndex(), Out);
1084         break;
1085       case MultiVersionKind::Target:
1086         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1087         break;
1088       case MultiVersionKind::None:
1089         llvm_unreachable("None multiversion type isn't valid here");
1090       }
1091     }
1092 
1093   return std::string(Out.str());
1094 }
1095 
1096 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1097                                             const FunctionDecl *FD) {
1098   if (!FD->isMultiVersion())
1099     return;
1100 
1101   // Get the name of what this would be without the 'target' attribute.  This
1102   // allows us to lookup the version that was emitted when this wasn't a
1103   // multiversion function.
1104   std::string NonTargetName =
1105       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1106   GlobalDecl OtherGD;
1107   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1108     assert(OtherGD.getCanonicalDecl()
1109                .getDecl()
1110                ->getAsFunction()
1111                ->isMultiVersion() &&
1112            "Other GD should now be a multiversioned function");
1113     // OtherFD is the version of this function that was mangled BEFORE
1114     // becoming a MultiVersion function.  It potentially needs to be updated.
1115     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1116                                       .getDecl()
1117                                       ->getAsFunction()
1118                                       ->getMostRecentDecl();
1119     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1120     // This is so that if the initial version was already the 'default'
1121     // version, we don't try to update it.
1122     if (OtherName != NonTargetName) {
1123       // Remove instead of erase, since others may have stored the StringRef
1124       // to this.
1125       const auto ExistingRecord = Manglings.find(NonTargetName);
1126       if (ExistingRecord != std::end(Manglings))
1127         Manglings.remove(&(*ExistingRecord));
1128       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1129       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1130       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1131         Entry->setName(OtherName);
1132     }
1133   }
1134 }
1135 
1136 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1137   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1138 
1139   // Some ABIs don't have constructor variants.  Make sure that base and
1140   // complete constructors get mangled the same.
1141   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1142     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1143       CXXCtorType OrigCtorType = GD.getCtorType();
1144       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1145       if (OrigCtorType == Ctor_Base)
1146         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1147     }
1148   }
1149 
1150   auto FoundName = MangledDeclNames.find(CanonicalGD);
1151   if (FoundName != MangledDeclNames.end())
1152     return FoundName->second;
1153 
1154   // Keep the first result in the case of a mangling collision.
1155   const auto *ND = cast<NamedDecl>(GD.getDecl());
1156   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1157 
1158   // Ensure either we have different ABIs between host and device compilations,
1159   // says host compilation following MSVC ABI but device compilation follows
1160   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1161   // mangling should be the same after name stubbing. The later checking is
1162   // very important as the device kernel name being mangled in host-compilation
1163   // is used to resolve the device binaries to be executed. Inconsistent naming
1164   // result in undefined behavior. Even though we cannot check that naming
1165   // directly between host- and device-compilations, the host- and
1166   // device-mangling in host compilation could help catching certain ones.
1167   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1168          getLangOpts().CUDAIsDevice ||
1169          (getContext().getAuxTargetInfo() &&
1170           (getContext().getAuxTargetInfo()->getCXXABI() !=
1171            getContext().getTargetInfo().getCXXABI())) ||
1172          getCUDARuntime().getDeviceSideName(ND) ==
1173              getMangledNameImpl(
1174                  *this,
1175                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1176                  ND));
1177 
1178   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1179   return MangledDeclNames[CanonicalGD] = Result.first->first();
1180 }
1181 
1182 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1183                                              const BlockDecl *BD) {
1184   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1185   const Decl *D = GD.getDecl();
1186 
1187   SmallString<256> Buffer;
1188   llvm::raw_svector_ostream Out(Buffer);
1189   if (!D)
1190     MangleCtx.mangleGlobalBlock(BD,
1191       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1192   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1193     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1194   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1195     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1196   else
1197     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1198 
1199   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1200   return Result.first->first();
1201 }
1202 
1203 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1204   return getModule().getNamedValue(Name);
1205 }
1206 
1207 /// AddGlobalCtor - Add a function to the list that will be called before
1208 /// main() runs.
1209 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1210                                   llvm::Constant *AssociatedData) {
1211   // FIXME: Type coercion of void()* types.
1212   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1213 }
1214 
1215 /// AddGlobalDtor - Add a function to the list that will be called
1216 /// when the module is unloaded.
1217 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1218   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1219     DtorsUsingAtExit[Priority].push_back(Dtor);
1220     return;
1221   }
1222 
1223   // FIXME: Type coercion of void()* types.
1224   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1225 }
1226 
1227 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1228   if (Fns.empty()) return;
1229 
1230   // Ctor function type is void()*.
1231   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1232   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1233       TheModule.getDataLayout().getProgramAddressSpace());
1234 
1235   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1236   llvm::StructType *CtorStructTy = llvm::StructType::get(
1237       Int32Ty, CtorPFTy, VoidPtrTy);
1238 
1239   // Construct the constructor and destructor arrays.
1240   ConstantInitBuilder builder(*this);
1241   auto ctors = builder.beginArray(CtorStructTy);
1242   for (const auto &I : Fns) {
1243     auto ctor = ctors.beginStruct(CtorStructTy);
1244     ctor.addInt(Int32Ty, I.Priority);
1245     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1246     if (I.AssociatedData)
1247       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1248     else
1249       ctor.addNullPointer(VoidPtrTy);
1250     ctor.finishAndAddTo(ctors);
1251   }
1252 
1253   auto list =
1254     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1255                                 /*constant*/ false,
1256                                 llvm::GlobalValue::AppendingLinkage);
1257 
1258   // The LTO linker doesn't seem to like it when we set an alignment
1259   // on appending variables.  Take it off as a workaround.
1260   list->setAlignment(llvm::None);
1261 
1262   Fns.clear();
1263 }
1264 
1265 llvm::GlobalValue::LinkageTypes
1266 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1267   const auto *D = cast<FunctionDecl>(GD.getDecl());
1268 
1269   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1270 
1271   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1272     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1273 
1274   if (isa<CXXConstructorDecl>(D) &&
1275       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1276       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1277     // Our approach to inheriting constructors is fundamentally different from
1278     // that used by the MS ABI, so keep our inheriting constructor thunks
1279     // internal rather than trying to pick an unambiguous mangling for them.
1280     return llvm::GlobalValue::InternalLinkage;
1281   }
1282 
1283   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1284 }
1285 
1286 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1287   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1288   if (!MDS) return nullptr;
1289 
1290   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1291 }
1292 
1293 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1294                                               const CGFunctionInfo &Info,
1295                                               llvm::Function *F) {
1296   unsigned CallingConv;
1297   llvm::AttributeList PAL;
1298   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1299   F->setAttributes(PAL);
1300   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1301 }
1302 
1303 static void removeImageAccessQualifier(std::string& TyName) {
1304   std::string ReadOnlyQual("__read_only");
1305   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1306   if (ReadOnlyPos != std::string::npos)
1307     // "+ 1" for the space after access qualifier.
1308     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1309   else {
1310     std::string WriteOnlyQual("__write_only");
1311     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1312     if (WriteOnlyPos != std::string::npos)
1313       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1314     else {
1315       std::string ReadWriteQual("__read_write");
1316       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1317       if (ReadWritePos != std::string::npos)
1318         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1319     }
1320   }
1321 }
1322 
1323 // Returns the address space id that should be produced to the
1324 // kernel_arg_addr_space metadata. This is always fixed to the ids
1325 // as specified in the SPIR 2.0 specification in order to differentiate
1326 // for example in clGetKernelArgInfo() implementation between the address
1327 // spaces with targets without unique mapping to the OpenCL address spaces
1328 // (basically all single AS CPUs).
1329 static unsigned ArgInfoAddressSpace(LangAS AS) {
1330   switch (AS) {
1331   case LangAS::opencl_global:   return 1;
1332   case LangAS::opencl_constant: return 2;
1333   case LangAS::opencl_local:    return 3;
1334   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1335   default:
1336     return 0; // Assume private.
1337   }
1338 }
1339 
1340 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1341                                          const FunctionDecl *FD,
1342                                          CodeGenFunction *CGF) {
1343   assert(((FD && CGF) || (!FD && !CGF)) &&
1344          "Incorrect use - FD and CGF should either be both null or not!");
1345   // Create MDNodes that represent the kernel arg metadata.
1346   // Each MDNode is a list in the form of "key", N number of values which is
1347   // the same number of values as their are kernel arguments.
1348 
1349   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1350 
1351   // MDNode for the kernel argument address space qualifiers.
1352   SmallVector<llvm::Metadata *, 8> addressQuals;
1353 
1354   // MDNode for the kernel argument access qualifiers (images only).
1355   SmallVector<llvm::Metadata *, 8> accessQuals;
1356 
1357   // MDNode for the kernel argument type names.
1358   SmallVector<llvm::Metadata *, 8> argTypeNames;
1359 
1360   // MDNode for the kernel argument base type names.
1361   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1362 
1363   // MDNode for the kernel argument type qualifiers.
1364   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1365 
1366   // MDNode for the kernel argument names.
1367   SmallVector<llvm::Metadata *, 8> argNames;
1368 
1369   if (FD && CGF)
1370     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1371       const ParmVarDecl *parm = FD->getParamDecl(i);
1372       QualType ty = parm->getType();
1373       std::string typeQuals;
1374 
1375       if (ty->isPointerType()) {
1376         QualType pointeeTy = ty->getPointeeType();
1377 
1378         // Get address qualifier.
1379         addressQuals.push_back(
1380             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1381                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1382 
1383         // Get argument type name.
1384         std::string typeName =
1385             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1386 
1387         // Turn "unsigned type" to "utype"
1388         std::string::size_type pos = typeName.find("unsigned");
1389         if (pointeeTy.isCanonical() && pos != std::string::npos)
1390           typeName.erase(pos + 1, 8);
1391 
1392         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1393 
1394         std::string baseTypeName =
1395             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1396                 Policy) +
1397             "*";
1398 
1399         // Turn "unsigned type" to "utype"
1400         pos = baseTypeName.find("unsigned");
1401         if (pos != std::string::npos)
1402           baseTypeName.erase(pos + 1, 8);
1403 
1404         argBaseTypeNames.push_back(
1405             llvm::MDString::get(VMContext, baseTypeName));
1406 
1407         // Get argument type qualifiers:
1408         if (ty.isRestrictQualified())
1409           typeQuals = "restrict";
1410         if (pointeeTy.isConstQualified() ||
1411             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1412           typeQuals += typeQuals.empty() ? "const" : " const";
1413         if (pointeeTy.isVolatileQualified())
1414           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1415       } else {
1416         uint32_t AddrSpc = 0;
1417         bool isPipe = ty->isPipeType();
1418         if (ty->isImageType() || isPipe)
1419           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1420 
1421         addressQuals.push_back(
1422             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1423 
1424         // Get argument type name.
1425         std::string typeName;
1426         if (isPipe)
1427           typeName = ty.getCanonicalType()
1428                          ->castAs<PipeType>()
1429                          ->getElementType()
1430                          .getAsString(Policy);
1431         else
1432           typeName = ty.getUnqualifiedType().getAsString(Policy);
1433 
1434         // Turn "unsigned type" to "utype"
1435         std::string::size_type pos = typeName.find("unsigned");
1436         if (ty.isCanonical() && pos != std::string::npos)
1437           typeName.erase(pos + 1, 8);
1438 
1439         std::string baseTypeName;
1440         if (isPipe)
1441           baseTypeName = ty.getCanonicalType()
1442                              ->castAs<PipeType>()
1443                              ->getElementType()
1444                              .getCanonicalType()
1445                              .getAsString(Policy);
1446         else
1447           baseTypeName =
1448               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1449 
1450         // Remove access qualifiers on images
1451         // (as they are inseparable from type in clang implementation,
1452         // but OpenCL spec provides a special query to get access qualifier
1453         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1454         if (ty->isImageType()) {
1455           removeImageAccessQualifier(typeName);
1456           removeImageAccessQualifier(baseTypeName);
1457         }
1458 
1459         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1460 
1461         // Turn "unsigned type" to "utype"
1462         pos = baseTypeName.find("unsigned");
1463         if (pos != std::string::npos)
1464           baseTypeName.erase(pos + 1, 8);
1465 
1466         argBaseTypeNames.push_back(
1467             llvm::MDString::get(VMContext, baseTypeName));
1468 
1469         if (isPipe)
1470           typeQuals = "pipe";
1471       }
1472 
1473       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1474 
1475       // Get image and pipe access qualifier:
1476       if (ty->isImageType() || ty->isPipeType()) {
1477         const Decl *PDecl = parm;
1478         if (auto *TD = dyn_cast<TypedefType>(ty))
1479           PDecl = TD->getDecl();
1480         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1481         if (A && A->isWriteOnly())
1482           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1483         else if (A && A->isReadWrite())
1484           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1485         else
1486           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1487       } else
1488         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1489 
1490       // Get argument name.
1491       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1492     }
1493 
1494   Fn->setMetadata("kernel_arg_addr_space",
1495                   llvm::MDNode::get(VMContext, addressQuals));
1496   Fn->setMetadata("kernel_arg_access_qual",
1497                   llvm::MDNode::get(VMContext, accessQuals));
1498   Fn->setMetadata("kernel_arg_type",
1499                   llvm::MDNode::get(VMContext, argTypeNames));
1500   Fn->setMetadata("kernel_arg_base_type",
1501                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1502   Fn->setMetadata("kernel_arg_type_qual",
1503                   llvm::MDNode::get(VMContext, argTypeQuals));
1504   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1505     Fn->setMetadata("kernel_arg_name",
1506                     llvm::MDNode::get(VMContext, argNames));
1507 }
1508 
1509 /// Determines whether the language options require us to model
1510 /// unwind exceptions.  We treat -fexceptions as mandating this
1511 /// except under the fragile ObjC ABI with only ObjC exceptions
1512 /// enabled.  This means, for example, that C with -fexceptions
1513 /// enables this.
1514 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1515   // If exceptions are completely disabled, obviously this is false.
1516   if (!LangOpts.Exceptions) return false;
1517 
1518   // If C++ exceptions are enabled, this is true.
1519   if (LangOpts.CXXExceptions) return true;
1520 
1521   // If ObjC exceptions are enabled, this depends on the ABI.
1522   if (LangOpts.ObjCExceptions) {
1523     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1524   }
1525 
1526   return true;
1527 }
1528 
1529 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1530                                                       const CXXMethodDecl *MD) {
1531   // Check that the type metadata can ever actually be used by a call.
1532   if (!CGM.getCodeGenOpts().LTOUnit ||
1533       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1534     return false;
1535 
1536   // Only functions whose address can be taken with a member function pointer
1537   // need this sort of type metadata.
1538   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1539          !isa<CXXDestructorDecl>(MD);
1540 }
1541 
1542 std::vector<const CXXRecordDecl *>
1543 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1544   llvm::SetVector<const CXXRecordDecl *> MostBases;
1545 
1546   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1547   CollectMostBases = [&](const CXXRecordDecl *RD) {
1548     if (RD->getNumBases() == 0)
1549       MostBases.insert(RD);
1550     for (const CXXBaseSpecifier &B : RD->bases())
1551       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1552   };
1553   CollectMostBases(RD);
1554   return MostBases.takeVector();
1555 }
1556 
1557 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1558                                                            llvm::Function *F) {
1559   llvm::AttrBuilder B;
1560 
1561   if (CodeGenOpts.UnwindTables)
1562     B.addAttribute(llvm::Attribute::UWTable);
1563 
1564   if (CodeGenOpts.StackClashProtector)
1565     B.addAttribute("probe-stack", "inline-asm");
1566 
1567   if (!hasUnwindExceptions(LangOpts))
1568     B.addAttribute(llvm::Attribute::NoUnwind);
1569 
1570   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1571     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1572       B.addAttribute(llvm::Attribute::StackProtect);
1573     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1574       B.addAttribute(llvm::Attribute::StackProtectStrong);
1575     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1576       B.addAttribute(llvm::Attribute::StackProtectReq);
1577   }
1578 
1579   if (!D) {
1580     // If we don't have a declaration to control inlining, the function isn't
1581     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1582     // disabled, mark the function as noinline.
1583     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1584         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1585       B.addAttribute(llvm::Attribute::NoInline);
1586 
1587     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1588     return;
1589   }
1590 
1591   // Track whether we need to add the optnone LLVM attribute,
1592   // starting with the default for this optimization level.
1593   bool ShouldAddOptNone =
1594       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1595   // We can't add optnone in the following cases, it won't pass the verifier.
1596   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1597   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1598 
1599   // Add optnone, but do so only if the function isn't always_inline.
1600   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1601       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1602     B.addAttribute(llvm::Attribute::OptimizeNone);
1603 
1604     // OptimizeNone implies noinline; we should not be inlining such functions.
1605     B.addAttribute(llvm::Attribute::NoInline);
1606 
1607     // We still need to handle naked functions even though optnone subsumes
1608     // much of their semantics.
1609     if (D->hasAttr<NakedAttr>())
1610       B.addAttribute(llvm::Attribute::Naked);
1611 
1612     // OptimizeNone wins over OptimizeForSize and MinSize.
1613     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1614     F->removeFnAttr(llvm::Attribute::MinSize);
1615   } else if (D->hasAttr<NakedAttr>()) {
1616     // Naked implies noinline: we should not be inlining such functions.
1617     B.addAttribute(llvm::Attribute::Naked);
1618     B.addAttribute(llvm::Attribute::NoInline);
1619   } else if (D->hasAttr<NoDuplicateAttr>()) {
1620     B.addAttribute(llvm::Attribute::NoDuplicate);
1621   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1622     // Add noinline if the function isn't always_inline.
1623     B.addAttribute(llvm::Attribute::NoInline);
1624   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1625              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1626     // (noinline wins over always_inline, and we can't specify both in IR)
1627     B.addAttribute(llvm::Attribute::AlwaysInline);
1628   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1629     // If we're not inlining, then force everything that isn't always_inline to
1630     // carry an explicit noinline attribute.
1631     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1632       B.addAttribute(llvm::Attribute::NoInline);
1633   } else {
1634     // Otherwise, propagate the inline hint attribute and potentially use its
1635     // absence to mark things as noinline.
1636     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1637       // Search function and template pattern redeclarations for inline.
1638       auto CheckForInline = [](const FunctionDecl *FD) {
1639         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1640           return Redecl->isInlineSpecified();
1641         };
1642         if (any_of(FD->redecls(), CheckRedeclForInline))
1643           return true;
1644         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1645         if (!Pattern)
1646           return false;
1647         return any_of(Pattern->redecls(), CheckRedeclForInline);
1648       };
1649       if (CheckForInline(FD)) {
1650         B.addAttribute(llvm::Attribute::InlineHint);
1651       } else if (CodeGenOpts.getInlining() ==
1652                      CodeGenOptions::OnlyHintInlining &&
1653                  !FD->isInlined() &&
1654                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1655         B.addAttribute(llvm::Attribute::NoInline);
1656       }
1657     }
1658   }
1659 
1660   // Add other optimization related attributes if we are optimizing this
1661   // function.
1662   if (!D->hasAttr<OptimizeNoneAttr>()) {
1663     if (D->hasAttr<ColdAttr>()) {
1664       if (!ShouldAddOptNone)
1665         B.addAttribute(llvm::Attribute::OptimizeForSize);
1666       B.addAttribute(llvm::Attribute::Cold);
1667     }
1668 
1669     if (D->hasAttr<MinSizeAttr>())
1670       B.addAttribute(llvm::Attribute::MinSize);
1671   }
1672 
1673   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1674 
1675   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1676   if (alignment)
1677     F->setAlignment(llvm::Align(alignment));
1678 
1679   if (!D->hasAttr<AlignedAttr>())
1680     if (LangOpts.FunctionAlignment)
1681       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1682 
1683   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1684   // reserve a bit for differentiating between virtual and non-virtual member
1685   // functions. If the current target's C++ ABI requires this and this is a
1686   // member function, set its alignment accordingly.
1687   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1688     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1689       F->setAlignment(llvm::Align(2));
1690   }
1691 
1692   // In the cross-dso CFI mode with canonical jump tables, we want !type
1693   // attributes on definitions only.
1694   if (CodeGenOpts.SanitizeCfiCrossDso &&
1695       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1696     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1697       // Skip available_externally functions. They won't be codegen'ed in the
1698       // current module anyway.
1699       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1700         CreateFunctionTypeMetadataForIcall(FD, F);
1701     }
1702   }
1703 
1704   // Emit type metadata on member functions for member function pointer checks.
1705   // These are only ever necessary on definitions; we're guaranteed that the
1706   // definition will be present in the LTO unit as a result of LTO visibility.
1707   auto *MD = dyn_cast<CXXMethodDecl>(D);
1708   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1709     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1710       llvm::Metadata *Id =
1711           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1712               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1713       F->addTypeMetadata(0, Id);
1714     }
1715   }
1716 }
1717 
1718 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1719   const Decl *D = GD.getDecl();
1720   if (dyn_cast_or_null<NamedDecl>(D))
1721     setGVProperties(GV, GD);
1722   else
1723     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1724 
1725   if (D && D->hasAttr<UsedAttr>())
1726     addUsedGlobal(GV);
1727 
1728   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1729     const auto *VD = cast<VarDecl>(D);
1730     if (VD->getType().isConstQualified() &&
1731         VD->getStorageDuration() == SD_Static)
1732       addUsedGlobal(GV);
1733   }
1734 }
1735 
1736 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1737                                                 llvm::AttrBuilder &Attrs) {
1738   // Add target-cpu and target-features attributes to functions. If
1739   // we have a decl for the function and it has a target attribute then
1740   // parse that and add it to the feature set.
1741   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1742   std::vector<std::string> Features;
1743   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1744   FD = FD ? FD->getMostRecentDecl() : FD;
1745   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1746   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1747   bool AddedAttr = false;
1748   if (TD || SD) {
1749     llvm::StringMap<bool> FeatureMap;
1750     getContext().getFunctionFeatureMap(FeatureMap, GD);
1751 
1752     // Produce the canonical string for this set of features.
1753     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1754       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1755 
1756     // Now add the target-cpu and target-features to the function.
1757     // While we populated the feature map above, we still need to
1758     // get and parse the target attribute so we can get the cpu for
1759     // the function.
1760     if (TD) {
1761       ParsedTargetAttr ParsedAttr = TD->parse();
1762       if (ParsedAttr.Architecture != "" &&
1763           getTarget().isValidCPUName(ParsedAttr.Architecture))
1764         TargetCPU = ParsedAttr.Architecture;
1765     }
1766   } else {
1767     // Otherwise just add the existing target cpu and target features to the
1768     // function.
1769     Features = getTarget().getTargetOpts().Features;
1770   }
1771 
1772   if (TargetCPU != "") {
1773     Attrs.addAttribute("target-cpu", TargetCPU);
1774     AddedAttr = true;
1775   }
1776   if (!Features.empty()) {
1777     llvm::sort(Features);
1778     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1779     AddedAttr = true;
1780   }
1781 
1782   return AddedAttr;
1783 }
1784 
1785 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1786                                           llvm::GlobalObject *GO) {
1787   const Decl *D = GD.getDecl();
1788   SetCommonAttributes(GD, GO);
1789 
1790   if (D) {
1791     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1792       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1793         GV->addAttribute("bss-section", SA->getName());
1794       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1795         GV->addAttribute("data-section", SA->getName());
1796       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1797         GV->addAttribute("rodata-section", SA->getName());
1798       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1799         GV->addAttribute("relro-section", SA->getName());
1800     }
1801 
1802     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1803       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1804         if (!D->getAttr<SectionAttr>())
1805           F->addFnAttr("implicit-section-name", SA->getName());
1806 
1807       llvm::AttrBuilder Attrs;
1808       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1809         // We know that GetCPUAndFeaturesAttributes will always have the
1810         // newest set, since it has the newest possible FunctionDecl, so the
1811         // new ones should replace the old.
1812         F->removeFnAttr("target-cpu");
1813         F->removeFnAttr("target-features");
1814         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1815       }
1816     }
1817 
1818     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1819       GO->setSection(CSA->getName());
1820     else if (const auto *SA = D->getAttr<SectionAttr>())
1821       GO->setSection(SA->getName());
1822   }
1823 
1824   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1825 }
1826 
1827 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1828                                                   llvm::Function *F,
1829                                                   const CGFunctionInfo &FI) {
1830   const Decl *D = GD.getDecl();
1831   SetLLVMFunctionAttributes(GD, FI, F);
1832   SetLLVMFunctionAttributesForDefinition(D, F);
1833 
1834   F->setLinkage(llvm::Function::InternalLinkage);
1835 
1836   setNonAliasAttributes(GD, F);
1837 }
1838 
1839 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1840   // Set linkage and visibility in case we never see a definition.
1841   LinkageInfo LV = ND->getLinkageAndVisibility();
1842   // Don't set internal linkage on declarations.
1843   // "extern_weak" is overloaded in LLVM; we probably should have
1844   // separate linkage types for this.
1845   if (isExternallyVisible(LV.getLinkage()) &&
1846       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1847     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1848 }
1849 
1850 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1851                                                        llvm::Function *F) {
1852   // Only if we are checking indirect calls.
1853   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1854     return;
1855 
1856   // Non-static class methods are handled via vtable or member function pointer
1857   // checks elsewhere.
1858   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1859     return;
1860 
1861   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1862   F->addTypeMetadata(0, MD);
1863   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1864 
1865   // Emit a hash-based bit set entry for cross-DSO calls.
1866   if (CodeGenOpts.SanitizeCfiCrossDso)
1867     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1868       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1869 }
1870 
1871 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1872                                           bool IsIncompleteFunction,
1873                                           bool IsThunk) {
1874 
1875   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1876     // If this is an intrinsic function, set the function's attributes
1877     // to the intrinsic's attributes.
1878     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1879     return;
1880   }
1881 
1882   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1883 
1884   if (!IsIncompleteFunction)
1885     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1886 
1887   // Add the Returned attribute for "this", except for iOS 5 and earlier
1888   // where substantial code, including the libstdc++ dylib, was compiled with
1889   // GCC and does not actually return "this".
1890   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1891       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1892     assert(!F->arg_empty() &&
1893            F->arg_begin()->getType()
1894              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1895            "unexpected this return");
1896     F->addAttribute(1, llvm::Attribute::Returned);
1897   }
1898 
1899   // Only a few attributes are set on declarations; these may later be
1900   // overridden by a definition.
1901 
1902   setLinkageForGV(F, FD);
1903   setGVProperties(F, FD);
1904 
1905   // Setup target-specific attributes.
1906   if (!IsIncompleteFunction && F->isDeclaration())
1907     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1908 
1909   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1910     F->setSection(CSA->getName());
1911   else if (const auto *SA = FD->getAttr<SectionAttr>())
1912      F->setSection(SA->getName());
1913 
1914   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1915   if (FD->isInlineBuiltinDeclaration()) {
1916     const FunctionDecl *FDBody;
1917     bool HasBody = FD->hasBody(FDBody);
1918     (void)HasBody;
1919     assert(HasBody && "Inline builtin declarations should always have an "
1920                       "available body!");
1921     if (shouldEmitFunction(FDBody))
1922       F->addAttribute(llvm::AttributeList::FunctionIndex,
1923                       llvm::Attribute::NoBuiltin);
1924   }
1925 
1926   if (FD->isReplaceableGlobalAllocationFunction()) {
1927     // A replaceable global allocation function does not act like a builtin by
1928     // default, only if it is invoked by a new-expression or delete-expression.
1929     F->addAttribute(llvm::AttributeList::FunctionIndex,
1930                     llvm::Attribute::NoBuiltin);
1931   }
1932 
1933   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1934     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1935   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1936     if (MD->isVirtual())
1937       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1938 
1939   // Don't emit entries for function declarations in the cross-DSO mode. This
1940   // is handled with better precision by the receiving DSO. But if jump tables
1941   // are non-canonical then we need type metadata in order to produce the local
1942   // jump table.
1943   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1944       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1945     CreateFunctionTypeMetadataForIcall(FD, F);
1946 
1947   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1948     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1949 
1950   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1951     // Annotate the callback behavior as metadata:
1952     //  - The callback callee (as argument number).
1953     //  - The callback payloads (as argument numbers).
1954     llvm::LLVMContext &Ctx = F->getContext();
1955     llvm::MDBuilder MDB(Ctx);
1956 
1957     // The payload indices are all but the first one in the encoding. The first
1958     // identifies the callback callee.
1959     int CalleeIdx = *CB->encoding_begin();
1960     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1961     F->addMetadata(llvm::LLVMContext::MD_callback,
1962                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1963                                                CalleeIdx, PayloadIndices,
1964                                                /* VarArgsArePassed */ false)}));
1965   }
1966 }
1967 
1968 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1969   assert(!GV->isDeclaration() &&
1970          "Only globals with definition can force usage.");
1971   LLVMUsed.emplace_back(GV);
1972 }
1973 
1974 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1975   assert(!GV->isDeclaration() &&
1976          "Only globals with definition can force usage.");
1977   LLVMCompilerUsed.emplace_back(GV);
1978 }
1979 
1980 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1981                      std::vector<llvm::WeakTrackingVH> &List) {
1982   // Don't create llvm.used if there is no need.
1983   if (List.empty())
1984     return;
1985 
1986   // Convert List to what ConstantArray needs.
1987   SmallVector<llvm::Constant*, 8> UsedArray;
1988   UsedArray.resize(List.size());
1989   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1990     UsedArray[i] =
1991         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1992             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1993   }
1994 
1995   if (UsedArray.empty())
1996     return;
1997   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1998 
1999   auto *GV = new llvm::GlobalVariable(
2000       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2001       llvm::ConstantArray::get(ATy, UsedArray), Name);
2002 
2003   GV->setSection("llvm.metadata");
2004 }
2005 
2006 void CodeGenModule::emitLLVMUsed() {
2007   emitUsed(*this, "llvm.used", LLVMUsed);
2008   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2009 }
2010 
2011 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2012   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2013   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2014 }
2015 
2016 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2017   llvm::SmallString<32> Opt;
2018   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2019   if (Opt.empty())
2020     return;
2021   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2022   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2023 }
2024 
2025 void CodeGenModule::AddDependentLib(StringRef Lib) {
2026   auto &C = getLLVMContext();
2027   if (getTarget().getTriple().isOSBinFormatELF()) {
2028       ELFDependentLibraries.push_back(
2029         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2030     return;
2031   }
2032 
2033   llvm::SmallString<24> Opt;
2034   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2035   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2036   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2037 }
2038 
2039 /// Add link options implied by the given module, including modules
2040 /// it depends on, using a postorder walk.
2041 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2042                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2043                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2044   // Import this module's parent.
2045   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2046     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2047   }
2048 
2049   // Import this module's dependencies.
2050   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2051     if (Visited.insert(Mod->Imports[I - 1]).second)
2052       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2053   }
2054 
2055   // Add linker options to link against the libraries/frameworks
2056   // described by this module.
2057   llvm::LLVMContext &Context = CGM.getLLVMContext();
2058   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2059 
2060   // For modules that use export_as for linking, use that module
2061   // name instead.
2062   if (Mod->UseExportAsModuleLinkName)
2063     return;
2064 
2065   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2066     // Link against a framework.  Frameworks are currently Darwin only, so we
2067     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2068     if (Mod->LinkLibraries[I-1].IsFramework) {
2069       llvm::Metadata *Args[2] = {
2070           llvm::MDString::get(Context, "-framework"),
2071           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2072 
2073       Metadata.push_back(llvm::MDNode::get(Context, Args));
2074       continue;
2075     }
2076 
2077     // Link against a library.
2078     if (IsELF) {
2079       llvm::Metadata *Args[2] = {
2080           llvm::MDString::get(Context, "lib"),
2081           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2082       };
2083       Metadata.push_back(llvm::MDNode::get(Context, Args));
2084     } else {
2085       llvm::SmallString<24> Opt;
2086       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2087           Mod->LinkLibraries[I - 1].Library, Opt);
2088       auto *OptString = llvm::MDString::get(Context, Opt);
2089       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2090     }
2091   }
2092 }
2093 
2094 void CodeGenModule::EmitModuleLinkOptions() {
2095   // Collect the set of all of the modules we want to visit to emit link
2096   // options, which is essentially the imported modules and all of their
2097   // non-explicit child modules.
2098   llvm::SetVector<clang::Module *> LinkModules;
2099   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2100   SmallVector<clang::Module *, 16> Stack;
2101 
2102   // Seed the stack with imported modules.
2103   for (Module *M : ImportedModules) {
2104     // Do not add any link flags when an implementation TU of a module imports
2105     // a header of that same module.
2106     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2107         !getLangOpts().isCompilingModule())
2108       continue;
2109     if (Visited.insert(M).second)
2110       Stack.push_back(M);
2111   }
2112 
2113   // Find all of the modules to import, making a little effort to prune
2114   // non-leaf modules.
2115   while (!Stack.empty()) {
2116     clang::Module *Mod = Stack.pop_back_val();
2117 
2118     bool AnyChildren = false;
2119 
2120     // Visit the submodules of this module.
2121     for (const auto &SM : Mod->submodules()) {
2122       // Skip explicit children; they need to be explicitly imported to be
2123       // linked against.
2124       if (SM->IsExplicit)
2125         continue;
2126 
2127       if (Visited.insert(SM).second) {
2128         Stack.push_back(SM);
2129         AnyChildren = true;
2130       }
2131     }
2132 
2133     // We didn't find any children, so add this module to the list of
2134     // modules to link against.
2135     if (!AnyChildren) {
2136       LinkModules.insert(Mod);
2137     }
2138   }
2139 
2140   // Add link options for all of the imported modules in reverse topological
2141   // order.  We don't do anything to try to order import link flags with respect
2142   // to linker options inserted by things like #pragma comment().
2143   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2144   Visited.clear();
2145   for (Module *M : LinkModules)
2146     if (Visited.insert(M).second)
2147       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2148   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2149   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2150 
2151   // Add the linker options metadata flag.
2152   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2153   for (auto *MD : LinkerOptionsMetadata)
2154     NMD->addOperand(MD);
2155 }
2156 
2157 void CodeGenModule::EmitDeferred() {
2158   // Emit deferred declare target declarations.
2159   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2160     getOpenMPRuntime().emitDeferredTargetDecls();
2161 
2162   // Emit code for any potentially referenced deferred decls.  Since a
2163   // previously unused static decl may become used during the generation of code
2164   // for a static function, iterate until no changes are made.
2165 
2166   if (!DeferredVTables.empty()) {
2167     EmitDeferredVTables();
2168 
2169     // Emitting a vtable doesn't directly cause more vtables to
2170     // become deferred, although it can cause functions to be
2171     // emitted that then need those vtables.
2172     assert(DeferredVTables.empty());
2173   }
2174 
2175   // Stop if we're out of both deferred vtables and deferred declarations.
2176   if (DeferredDeclsToEmit.empty())
2177     return;
2178 
2179   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2180   // work, it will not interfere with this.
2181   std::vector<GlobalDecl> CurDeclsToEmit;
2182   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2183 
2184   for (GlobalDecl &D : CurDeclsToEmit) {
2185     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2186     // to get GlobalValue with exactly the type we need, not something that
2187     // might had been created for another decl with the same mangled name but
2188     // different type.
2189     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2190         GetAddrOfGlobal(D, ForDefinition));
2191 
2192     // In case of different address spaces, we may still get a cast, even with
2193     // IsForDefinition equal to true. Query mangled names table to get
2194     // GlobalValue.
2195     if (!GV)
2196       GV = GetGlobalValue(getMangledName(D));
2197 
2198     // Make sure GetGlobalValue returned non-null.
2199     assert(GV);
2200 
2201     // Check to see if we've already emitted this.  This is necessary
2202     // for a couple of reasons: first, decls can end up in the
2203     // deferred-decls queue multiple times, and second, decls can end
2204     // up with definitions in unusual ways (e.g. by an extern inline
2205     // function acquiring a strong function redefinition).  Just
2206     // ignore these cases.
2207     if (!GV->isDeclaration())
2208       continue;
2209 
2210     // If this is OpenMP, check if it is legal to emit this global normally.
2211     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2212       continue;
2213 
2214     // Otherwise, emit the definition and move on to the next one.
2215     EmitGlobalDefinition(D, GV);
2216 
2217     // If we found out that we need to emit more decls, do that recursively.
2218     // This has the advantage that the decls are emitted in a DFS and related
2219     // ones are close together, which is convenient for testing.
2220     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2221       EmitDeferred();
2222       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2223     }
2224   }
2225 }
2226 
2227 void CodeGenModule::EmitVTablesOpportunistically() {
2228   // Try to emit external vtables as available_externally if they have emitted
2229   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2230   // is not allowed to create new references to things that need to be emitted
2231   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2232 
2233   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2234          && "Only emit opportunistic vtables with optimizations");
2235 
2236   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2237     assert(getVTables().isVTableExternal(RD) &&
2238            "This queue should only contain external vtables");
2239     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2240       VTables.GenerateClassData(RD);
2241   }
2242   OpportunisticVTables.clear();
2243 }
2244 
2245 void CodeGenModule::EmitGlobalAnnotations() {
2246   if (Annotations.empty())
2247     return;
2248 
2249   // Create a new global variable for the ConstantStruct in the Module.
2250   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2251     Annotations[0]->getType(), Annotations.size()), Annotations);
2252   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2253                                       llvm::GlobalValue::AppendingLinkage,
2254                                       Array, "llvm.global.annotations");
2255   gv->setSection(AnnotationSection);
2256 }
2257 
2258 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2259   llvm::Constant *&AStr = AnnotationStrings[Str];
2260   if (AStr)
2261     return AStr;
2262 
2263   // Not found yet, create a new global.
2264   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2265   auto *gv =
2266       new llvm::GlobalVariable(getModule(), s->getType(), true,
2267                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2268   gv->setSection(AnnotationSection);
2269   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2270   AStr = gv;
2271   return gv;
2272 }
2273 
2274 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2275   SourceManager &SM = getContext().getSourceManager();
2276   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2277   if (PLoc.isValid())
2278     return EmitAnnotationString(PLoc.getFilename());
2279   return EmitAnnotationString(SM.getBufferName(Loc));
2280 }
2281 
2282 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2283   SourceManager &SM = getContext().getSourceManager();
2284   PresumedLoc PLoc = SM.getPresumedLoc(L);
2285   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2286     SM.getExpansionLineNumber(L);
2287   return llvm::ConstantInt::get(Int32Ty, LineNo);
2288 }
2289 
2290 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2291                                                 const AnnotateAttr *AA,
2292                                                 SourceLocation L) {
2293   // Get the globals for file name, annotation, and the line number.
2294   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2295                  *UnitGV = EmitAnnotationUnit(L),
2296                  *LineNoCst = EmitAnnotationLineNo(L);
2297 
2298   llvm::Constant *ASZeroGV = GV;
2299   if (GV->getAddressSpace() != 0) {
2300     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2301                    GV, GV->getValueType()->getPointerTo(0));
2302   }
2303 
2304   // Create the ConstantStruct for the global annotation.
2305   llvm::Constant *Fields[4] = {
2306     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2307     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2308     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2309     LineNoCst
2310   };
2311   return llvm::ConstantStruct::getAnon(Fields);
2312 }
2313 
2314 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2315                                          llvm::GlobalValue *GV) {
2316   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2317   // Get the struct elements for these annotations.
2318   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2319     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2320 }
2321 
2322 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2323                                            llvm::Function *Fn,
2324                                            SourceLocation Loc) const {
2325   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2326   // Blacklist by function name.
2327   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2328     return true;
2329   // Blacklist by location.
2330   if (Loc.isValid())
2331     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2332   // If location is unknown, this may be a compiler-generated function. Assume
2333   // it's located in the main file.
2334   auto &SM = Context.getSourceManager();
2335   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2336     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2337   }
2338   return false;
2339 }
2340 
2341 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2342                                            SourceLocation Loc, QualType Ty,
2343                                            StringRef Category) const {
2344   // For now globals can be blacklisted only in ASan and KASan.
2345   const SanitizerMask EnabledAsanMask =
2346       LangOpts.Sanitize.Mask &
2347       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2348        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2349        SanitizerKind::MemTag);
2350   if (!EnabledAsanMask)
2351     return false;
2352   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2353   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2354     return true;
2355   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2356     return true;
2357   // Check global type.
2358   if (!Ty.isNull()) {
2359     // Drill down the array types: if global variable of a fixed type is
2360     // blacklisted, we also don't instrument arrays of them.
2361     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2362       Ty = AT->getElementType();
2363     Ty = Ty.getCanonicalType().getUnqualifiedType();
2364     // We allow to blacklist only record types (classes, structs etc.)
2365     if (Ty->isRecordType()) {
2366       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2367       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2368         return true;
2369     }
2370   }
2371   return false;
2372 }
2373 
2374 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2375                                    StringRef Category) const {
2376   const auto &XRayFilter = getContext().getXRayFilter();
2377   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2378   auto Attr = ImbueAttr::NONE;
2379   if (Loc.isValid())
2380     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2381   if (Attr == ImbueAttr::NONE)
2382     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2383   switch (Attr) {
2384   case ImbueAttr::NONE:
2385     return false;
2386   case ImbueAttr::ALWAYS:
2387     Fn->addFnAttr("function-instrument", "xray-always");
2388     break;
2389   case ImbueAttr::ALWAYS_ARG1:
2390     Fn->addFnAttr("function-instrument", "xray-always");
2391     Fn->addFnAttr("xray-log-args", "1");
2392     break;
2393   case ImbueAttr::NEVER:
2394     Fn->addFnAttr("function-instrument", "xray-never");
2395     break;
2396   }
2397   return true;
2398 }
2399 
2400 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2401   // Never defer when EmitAllDecls is specified.
2402   if (LangOpts.EmitAllDecls)
2403     return true;
2404 
2405   if (CodeGenOpts.KeepStaticConsts) {
2406     const auto *VD = dyn_cast<VarDecl>(Global);
2407     if (VD && VD->getType().isConstQualified() &&
2408         VD->getStorageDuration() == SD_Static)
2409       return true;
2410   }
2411 
2412   return getContext().DeclMustBeEmitted(Global);
2413 }
2414 
2415 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2416   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2417     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2418       // Implicit template instantiations may change linkage if they are later
2419       // explicitly instantiated, so they should not be emitted eagerly.
2420       return false;
2421     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2422     // not emit them eagerly unless we sure that the function must be emitted on
2423     // the host.
2424     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2425         !LangOpts.OpenMPIsDevice &&
2426         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2427         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2428       return false;
2429   }
2430   if (const auto *VD = dyn_cast<VarDecl>(Global))
2431     if (Context.getInlineVariableDefinitionKind(VD) ==
2432         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2433       // A definition of an inline constexpr static data member may change
2434       // linkage later if it's redeclared outside the class.
2435       return false;
2436   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2437   // codegen for global variables, because they may be marked as threadprivate.
2438   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2439       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2440       !isTypeConstant(Global->getType(), false) &&
2441       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2442     return false;
2443 
2444   return true;
2445 }
2446 
2447 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2448   StringRef Name = getMangledName(GD);
2449 
2450   // The UUID descriptor should be pointer aligned.
2451   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2452 
2453   // Look for an existing global.
2454   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2455     return ConstantAddress(GV, Alignment);
2456 
2457   ConstantEmitter Emitter(*this);
2458   llvm::Constant *Init;
2459 
2460   APValue &V = GD->getAsAPValue();
2461   if (!V.isAbsent()) {
2462     // If possible, emit the APValue version of the initializer. In particular,
2463     // this gets the type of the constant right.
2464     Init = Emitter.emitForInitializer(
2465         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2466   } else {
2467     // As a fallback, directly construct the constant.
2468     // FIXME: This may get padding wrong under esoteric struct layout rules.
2469     // MSVC appears to create a complete type 'struct __s_GUID' that it
2470     // presumably uses to represent these constants.
2471     MSGuidDecl::Parts Parts = GD->getParts();
2472     llvm::Constant *Fields[4] = {
2473         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2474         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2475         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2476         llvm::ConstantDataArray::getRaw(
2477             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2478             Int8Ty)};
2479     Init = llvm::ConstantStruct::getAnon(Fields);
2480   }
2481 
2482   auto *GV = new llvm::GlobalVariable(
2483       getModule(), Init->getType(),
2484       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2485   if (supportsCOMDAT())
2486     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2487   setDSOLocal(GV);
2488 
2489   llvm::Constant *Addr = GV;
2490   if (!V.isAbsent()) {
2491     Emitter.finalize(GV);
2492   } else {
2493     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2494     Addr = llvm::ConstantExpr::getBitCast(
2495         GV, Ty->getPointerTo(GV->getAddressSpace()));
2496   }
2497   return ConstantAddress(Addr, Alignment);
2498 }
2499 
2500 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2501   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2502   assert(AA && "No alias?");
2503 
2504   CharUnits Alignment = getContext().getDeclAlign(VD);
2505   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2506 
2507   // See if there is already something with the target's name in the module.
2508   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2509   if (Entry) {
2510     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2511     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2512     return ConstantAddress(Ptr, Alignment);
2513   }
2514 
2515   llvm::Constant *Aliasee;
2516   if (isa<llvm::FunctionType>(DeclTy))
2517     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2518                                       GlobalDecl(cast<FunctionDecl>(VD)),
2519                                       /*ForVTable=*/false);
2520   else
2521     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2522                                     llvm::PointerType::getUnqual(DeclTy),
2523                                     nullptr);
2524 
2525   auto *F = cast<llvm::GlobalValue>(Aliasee);
2526   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2527   WeakRefReferences.insert(F);
2528 
2529   return ConstantAddress(Aliasee, Alignment);
2530 }
2531 
2532 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2533   const auto *Global = cast<ValueDecl>(GD.getDecl());
2534 
2535   // Weak references don't produce any output by themselves.
2536   if (Global->hasAttr<WeakRefAttr>())
2537     return;
2538 
2539   // If this is an alias definition (which otherwise looks like a declaration)
2540   // emit it now.
2541   if (Global->hasAttr<AliasAttr>())
2542     return EmitAliasDefinition(GD);
2543 
2544   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2545   if (Global->hasAttr<IFuncAttr>())
2546     return emitIFuncDefinition(GD);
2547 
2548   // If this is a cpu_dispatch multiversion function, emit the resolver.
2549   if (Global->hasAttr<CPUDispatchAttr>())
2550     return emitCPUDispatchDefinition(GD);
2551 
2552   // If this is CUDA, be selective about which declarations we emit.
2553   if (LangOpts.CUDA) {
2554     if (LangOpts.CUDAIsDevice) {
2555       if (!Global->hasAttr<CUDADeviceAttr>() &&
2556           !Global->hasAttr<CUDAGlobalAttr>() &&
2557           !Global->hasAttr<CUDAConstantAttr>() &&
2558           !Global->hasAttr<CUDASharedAttr>() &&
2559           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2560           !Global->getType()->isCUDADeviceBuiltinTextureType())
2561         return;
2562     } else {
2563       // We need to emit host-side 'shadows' for all global
2564       // device-side variables because the CUDA runtime needs their
2565       // size and host-side address in order to provide access to
2566       // their device-side incarnations.
2567 
2568       // So device-only functions are the only things we skip.
2569       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2570           Global->hasAttr<CUDADeviceAttr>())
2571         return;
2572 
2573       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2574              "Expected Variable or Function");
2575     }
2576   }
2577 
2578   if (LangOpts.OpenMP) {
2579     // If this is OpenMP, check if it is legal to emit this global normally.
2580     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2581       return;
2582     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2583       if (MustBeEmitted(Global))
2584         EmitOMPDeclareReduction(DRD);
2585       return;
2586     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2587       if (MustBeEmitted(Global))
2588         EmitOMPDeclareMapper(DMD);
2589       return;
2590     }
2591   }
2592 
2593   // Ignore declarations, they will be emitted on their first use.
2594   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2595     // Forward declarations are emitted lazily on first use.
2596     if (!FD->doesThisDeclarationHaveABody()) {
2597       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2598         return;
2599 
2600       StringRef MangledName = getMangledName(GD);
2601 
2602       // Compute the function info and LLVM type.
2603       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2604       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2605 
2606       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2607                               /*DontDefer=*/false);
2608       return;
2609     }
2610   } else {
2611     const auto *VD = cast<VarDecl>(Global);
2612     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2613     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2614         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2615       if (LangOpts.OpenMP) {
2616         // Emit declaration of the must-be-emitted declare target variable.
2617         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2618                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2619           bool UnifiedMemoryEnabled =
2620               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2621           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2622               !UnifiedMemoryEnabled) {
2623             (void)GetAddrOfGlobalVar(VD);
2624           } else {
2625             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2626                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2627                      UnifiedMemoryEnabled)) &&
2628                    "Link clause or to clause with unified memory expected.");
2629             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2630           }
2631 
2632           return;
2633         }
2634       }
2635       // If this declaration may have caused an inline variable definition to
2636       // change linkage, make sure that it's emitted.
2637       if (Context.getInlineVariableDefinitionKind(VD) ==
2638           ASTContext::InlineVariableDefinitionKind::Strong)
2639         GetAddrOfGlobalVar(VD);
2640       return;
2641     }
2642   }
2643 
2644   // Defer code generation to first use when possible, e.g. if this is an inline
2645   // function. If the global must always be emitted, do it eagerly if possible
2646   // to benefit from cache locality.
2647   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2648     // Emit the definition if it can't be deferred.
2649     EmitGlobalDefinition(GD);
2650     return;
2651   }
2652 
2653   // If we're deferring emission of a C++ variable with an
2654   // initializer, remember the order in which it appeared in the file.
2655   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2656       cast<VarDecl>(Global)->hasInit()) {
2657     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2658     CXXGlobalInits.push_back(nullptr);
2659   }
2660 
2661   StringRef MangledName = getMangledName(GD);
2662   if (GetGlobalValue(MangledName) != nullptr) {
2663     // The value has already been used and should therefore be emitted.
2664     addDeferredDeclToEmit(GD);
2665   } else if (MustBeEmitted(Global)) {
2666     // The value must be emitted, but cannot be emitted eagerly.
2667     assert(!MayBeEmittedEagerly(Global));
2668     addDeferredDeclToEmit(GD);
2669   } else {
2670     // Otherwise, remember that we saw a deferred decl with this name.  The
2671     // first use of the mangled name will cause it to move into
2672     // DeferredDeclsToEmit.
2673     DeferredDecls[MangledName] = GD;
2674   }
2675 }
2676 
2677 // Check if T is a class type with a destructor that's not dllimport.
2678 static bool HasNonDllImportDtor(QualType T) {
2679   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2680     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2681       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2682         return true;
2683 
2684   return false;
2685 }
2686 
2687 namespace {
2688   struct FunctionIsDirectlyRecursive
2689       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2690     const StringRef Name;
2691     const Builtin::Context &BI;
2692     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2693         : Name(N), BI(C) {}
2694 
2695     bool VisitCallExpr(const CallExpr *E) {
2696       const FunctionDecl *FD = E->getDirectCallee();
2697       if (!FD)
2698         return false;
2699       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2700       if (Attr && Name == Attr->getLabel())
2701         return true;
2702       unsigned BuiltinID = FD->getBuiltinID();
2703       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2704         return false;
2705       StringRef BuiltinName = BI.getName(BuiltinID);
2706       if (BuiltinName.startswith("__builtin_") &&
2707           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2708         return true;
2709       }
2710       return false;
2711     }
2712 
2713     bool VisitStmt(const Stmt *S) {
2714       for (const Stmt *Child : S->children())
2715         if (Child && this->Visit(Child))
2716           return true;
2717       return false;
2718     }
2719   };
2720 
2721   // Make sure we're not referencing non-imported vars or functions.
2722   struct DLLImportFunctionVisitor
2723       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2724     bool SafeToInline = true;
2725 
2726     bool shouldVisitImplicitCode() const { return true; }
2727 
2728     bool VisitVarDecl(VarDecl *VD) {
2729       if (VD->getTLSKind()) {
2730         // A thread-local variable cannot be imported.
2731         SafeToInline = false;
2732         return SafeToInline;
2733       }
2734 
2735       // A variable definition might imply a destructor call.
2736       if (VD->isThisDeclarationADefinition())
2737         SafeToInline = !HasNonDllImportDtor(VD->getType());
2738 
2739       return SafeToInline;
2740     }
2741 
2742     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2743       if (const auto *D = E->getTemporary()->getDestructor())
2744         SafeToInline = D->hasAttr<DLLImportAttr>();
2745       return SafeToInline;
2746     }
2747 
2748     bool VisitDeclRefExpr(DeclRefExpr *E) {
2749       ValueDecl *VD = E->getDecl();
2750       if (isa<FunctionDecl>(VD))
2751         SafeToInline = VD->hasAttr<DLLImportAttr>();
2752       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2753         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2754       return SafeToInline;
2755     }
2756 
2757     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2758       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2759       return SafeToInline;
2760     }
2761 
2762     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2763       CXXMethodDecl *M = E->getMethodDecl();
2764       if (!M) {
2765         // Call through a pointer to member function. This is safe to inline.
2766         SafeToInline = true;
2767       } else {
2768         SafeToInline = M->hasAttr<DLLImportAttr>();
2769       }
2770       return SafeToInline;
2771     }
2772 
2773     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2774       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2775       return SafeToInline;
2776     }
2777 
2778     bool VisitCXXNewExpr(CXXNewExpr *E) {
2779       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2780       return SafeToInline;
2781     }
2782   };
2783 }
2784 
2785 // isTriviallyRecursive - Check if this function calls another
2786 // decl that, because of the asm attribute or the other decl being a builtin,
2787 // ends up pointing to itself.
2788 bool
2789 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2790   StringRef Name;
2791   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2792     // asm labels are a special kind of mangling we have to support.
2793     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2794     if (!Attr)
2795       return false;
2796     Name = Attr->getLabel();
2797   } else {
2798     Name = FD->getName();
2799   }
2800 
2801   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2802   const Stmt *Body = FD->getBody();
2803   return Body ? Walker.Visit(Body) : false;
2804 }
2805 
2806 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2807   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2808     return true;
2809   const auto *F = cast<FunctionDecl>(GD.getDecl());
2810   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2811     return false;
2812 
2813   if (F->hasAttr<DLLImportAttr>()) {
2814     // Check whether it would be safe to inline this dllimport function.
2815     DLLImportFunctionVisitor Visitor;
2816     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2817     if (!Visitor.SafeToInline)
2818       return false;
2819 
2820     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2821       // Implicit destructor invocations aren't captured in the AST, so the
2822       // check above can't see them. Check for them manually here.
2823       for (const Decl *Member : Dtor->getParent()->decls())
2824         if (isa<FieldDecl>(Member))
2825           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2826             return false;
2827       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2828         if (HasNonDllImportDtor(B.getType()))
2829           return false;
2830     }
2831   }
2832 
2833   // PR9614. Avoid cases where the source code is lying to us. An available
2834   // externally function should have an equivalent function somewhere else,
2835   // but a function that calls itself through asm label/`__builtin_` trickery is
2836   // clearly not equivalent to the real implementation.
2837   // This happens in glibc's btowc and in some configure checks.
2838   return !isTriviallyRecursive(F);
2839 }
2840 
2841 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2842   return CodeGenOpts.OptimizationLevel > 0;
2843 }
2844 
2845 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2846                                                        llvm::GlobalValue *GV) {
2847   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2848 
2849   if (FD->isCPUSpecificMultiVersion()) {
2850     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2851     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2852       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2853     // Requires multiple emits.
2854   } else
2855     EmitGlobalFunctionDefinition(GD, GV);
2856 }
2857 
2858 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2859   const auto *D = cast<ValueDecl>(GD.getDecl());
2860 
2861   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2862                                  Context.getSourceManager(),
2863                                  "Generating code for declaration");
2864 
2865   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2866     // At -O0, don't generate IR for functions with available_externally
2867     // linkage.
2868     if (!shouldEmitFunction(GD))
2869       return;
2870 
2871     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2872       std::string Name;
2873       llvm::raw_string_ostream OS(Name);
2874       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2875                                /*Qualified=*/true);
2876       return Name;
2877     });
2878 
2879     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2880       // Make sure to emit the definition(s) before we emit the thunks.
2881       // This is necessary for the generation of certain thunks.
2882       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2883         ABI->emitCXXStructor(GD);
2884       else if (FD->isMultiVersion())
2885         EmitMultiVersionFunctionDefinition(GD, GV);
2886       else
2887         EmitGlobalFunctionDefinition(GD, GV);
2888 
2889       if (Method->isVirtual())
2890         getVTables().EmitThunks(GD);
2891 
2892       return;
2893     }
2894 
2895     if (FD->isMultiVersion())
2896       return EmitMultiVersionFunctionDefinition(GD, GV);
2897     return EmitGlobalFunctionDefinition(GD, GV);
2898   }
2899 
2900   if (const auto *VD = dyn_cast<VarDecl>(D))
2901     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2902 
2903   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2904 }
2905 
2906 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2907                                                       llvm::Function *NewFn);
2908 
2909 static unsigned
2910 TargetMVPriority(const TargetInfo &TI,
2911                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2912   unsigned Priority = 0;
2913   for (StringRef Feat : RO.Conditions.Features)
2914     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2915 
2916   if (!RO.Conditions.Architecture.empty())
2917     Priority = std::max(
2918         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2919   return Priority;
2920 }
2921 
2922 void CodeGenModule::emitMultiVersionFunctions() {
2923   for (GlobalDecl GD : MultiVersionFuncs) {
2924     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2925     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2926     getContext().forEachMultiversionedFunctionVersion(
2927         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2928           GlobalDecl CurGD{
2929               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2930           StringRef MangledName = getMangledName(CurGD);
2931           llvm::Constant *Func = GetGlobalValue(MangledName);
2932           if (!Func) {
2933             if (CurFD->isDefined()) {
2934               EmitGlobalFunctionDefinition(CurGD, nullptr);
2935               Func = GetGlobalValue(MangledName);
2936             } else {
2937               const CGFunctionInfo &FI =
2938                   getTypes().arrangeGlobalDeclaration(GD);
2939               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2940               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2941                                        /*DontDefer=*/false, ForDefinition);
2942             }
2943             assert(Func && "This should have just been created");
2944           }
2945 
2946           const auto *TA = CurFD->getAttr<TargetAttr>();
2947           llvm::SmallVector<StringRef, 8> Feats;
2948           TA->getAddedFeatures(Feats);
2949 
2950           Options.emplace_back(cast<llvm::Function>(Func),
2951                                TA->getArchitecture(), Feats);
2952         });
2953 
2954     llvm::Function *ResolverFunc;
2955     const TargetInfo &TI = getTarget();
2956 
2957     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2958       ResolverFunc = cast<llvm::Function>(
2959           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2960       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2961     } else {
2962       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2963     }
2964 
2965     if (supportsCOMDAT())
2966       ResolverFunc->setComdat(
2967           getModule().getOrInsertComdat(ResolverFunc->getName()));
2968 
2969     llvm::stable_sort(
2970         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2971                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2972           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2973         });
2974     CodeGenFunction CGF(*this);
2975     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2976   }
2977 }
2978 
2979 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2980   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2981   assert(FD && "Not a FunctionDecl?");
2982   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2983   assert(DD && "Not a cpu_dispatch Function?");
2984   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2985 
2986   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2987     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2988     DeclTy = getTypes().GetFunctionType(FInfo);
2989   }
2990 
2991   StringRef ResolverName = getMangledName(GD);
2992 
2993   llvm::Type *ResolverType;
2994   GlobalDecl ResolverGD;
2995   if (getTarget().supportsIFunc())
2996     ResolverType = llvm::FunctionType::get(
2997         llvm::PointerType::get(DeclTy,
2998                                Context.getTargetAddressSpace(FD->getType())),
2999         false);
3000   else {
3001     ResolverType = DeclTy;
3002     ResolverGD = GD;
3003   }
3004 
3005   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3006       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3007   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3008   if (supportsCOMDAT())
3009     ResolverFunc->setComdat(
3010         getModule().getOrInsertComdat(ResolverFunc->getName()));
3011 
3012   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3013   const TargetInfo &Target = getTarget();
3014   unsigned Index = 0;
3015   for (const IdentifierInfo *II : DD->cpus()) {
3016     // Get the name of the target function so we can look it up/create it.
3017     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3018                               getCPUSpecificMangling(*this, II->getName());
3019 
3020     llvm::Constant *Func = GetGlobalValue(MangledName);
3021 
3022     if (!Func) {
3023       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3024       if (ExistingDecl.getDecl() &&
3025           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3026         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3027         Func = GetGlobalValue(MangledName);
3028       } else {
3029         if (!ExistingDecl.getDecl())
3030           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3031 
3032       Func = GetOrCreateLLVMFunction(
3033           MangledName, DeclTy, ExistingDecl,
3034           /*ForVTable=*/false, /*DontDefer=*/true,
3035           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3036       }
3037     }
3038 
3039     llvm::SmallVector<StringRef, 32> Features;
3040     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3041     llvm::transform(Features, Features.begin(),
3042                     [](StringRef Str) { return Str.substr(1); });
3043     Features.erase(std::remove_if(
3044         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3045           return !Target.validateCpuSupports(Feat);
3046         }), Features.end());
3047     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3048     ++Index;
3049   }
3050 
3051   llvm::sort(
3052       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3053                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3054         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3055                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3056       });
3057 
3058   // If the list contains multiple 'default' versions, such as when it contains
3059   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3060   // always run on at least a 'pentium'). We do this by deleting the 'least
3061   // advanced' (read, lowest mangling letter).
3062   while (Options.size() > 1 &&
3063          CodeGenFunction::GetX86CpuSupportsMask(
3064              (Options.end() - 2)->Conditions.Features) == 0) {
3065     StringRef LHSName = (Options.end() - 2)->Function->getName();
3066     StringRef RHSName = (Options.end() - 1)->Function->getName();
3067     if (LHSName.compare(RHSName) < 0)
3068       Options.erase(Options.end() - 2);
3069     else
3070       Options.erase(Options.end() - 1);
3071   }
3072 
3073   CodeGenFunction CGF(*this);
3074   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3075 
3076   if (getTarget().supportsIFunc()) {
3077     std::string AliasName = getMangledNameImpl(
3078         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3079     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3080     if (!AliasFunc) {
3081       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3082           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3083           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3084       auto *GA = llvm::GlobalAlias::create(
3085          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3086       GA->setLinkage(llvm::Function::WeakODRLinkage);
3087       SetCommonAttributes(GD, GA);
3088     }
3089   }
3090 }
3091 
3092 /// If a dispatcher for the specified mangled name is not in the module, create
3093 /// and return an llvm Function with the specified type.
3094 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3095     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3096   std::string MangledName =
3097       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3098 
3099   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3100   // a separate resolver).
3101   std::string ResolverName = MangledName;
3102   if (getTarget().supportsIFunc())
3103     ResolverName += ".ifunc";
3104   else if (FD->isTargetMultiVersion())
3105     ResolverName += ".resolver";
3106 
3107   // If this already exists, just return that one.
3108   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3109     return ResolverGV;
3110 
3111   // Since this is the first time we've created this IFunc, make sure
3112   // that we put this multiversioned function into the list to be
3113   // replaced later if necessary (target multiversioning only).
3114   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3115     MultiVersionFuncs.push_back(GD);
3116 
3117   if (getTarget().supportsIFunc()) {
3118     llvm::Type *ResolverType = llvm::FunctionType::get(
3119         llvm::PointerType::get(
3120             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3121         false);
3122     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3123         MangledName + ".resolver", ResolverType, GlobalDecl{},
3124         /*ForVTable=*/false);
3125     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3126         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3127     GIF->setName(ResolverName);
3128     SetCommonAttributes(FD, GIF);
3129 
3130     return GIF;
3131   }
3132 
3133   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3134       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3135   assert(isa<llvm::GlobalValue>(Resolver) &&
3136          "Resolver should be created for the first time");
3137   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3138   return Resolver;
3139 }
3140 
3141 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3142 /// module, create and return an llvm Function with the specified type. If there
3143 /// is something in the module with the specified name, return it potentially
3144 /// bitcasted to the right type.
3145 ///
3146 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3147 /// to set the attributes on the function when it is first created.
3148 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3149     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3150     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3151     ForDefinition_t IsForDefinition) {
3152   const Decl *D = GD.getDecl();
3153 
3154   // Any attempts to use a MultiVersion function should result in retrieving
3155   // the iFunc instead. Name Mangling will handle the rest of the changes.
3156   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3157     // For the device mark the function as one that should be emitted.
3158     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3159         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3160         !DontDefer && !IsForDefinition) {
3161       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3162         GlobalDecl GDDef;
3163         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3164           GDDef = GlobalDecl(CD, GD.getCtorType());
3165         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3166           GDDef = GlobalDecl(DD, GD.getDtorType());
3167         else
3168           GDDef = GlobalDecl(FDDef);
3169         EmitGlobal(GDDef);
3170       }
3171     }
3172 
3173     if (FD->isMultiVersion()) {
3174       if (FD->hasAttr<TargetAttr>())
3175         UpdateMultiVersionNames(GD, FD);
3176       if (!IsForDefinition)
3177         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3178     }
3179   }
3180 
3181   // Lookup the entry, lazily creating it if necessary.
3182   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3183   if (Entry) {
3184     if (WeakRefReferences.erase(Entry)) {
3185       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3186       if (FD && !FD->hasAttr<WeakAttr>())
3187         Entry->setLinkage(llvm::Function::ExternalLinkage);
3188     }
3189 
3190     // Handle dropped DLL attributes.
3191     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3192       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3193       setDSOLocal(Entry);
3194     }
3195 
3196     // If there are two attempts to define the same mangled name, issue an
3197     // error.
3198     if (IsForDefinition && !Entry->isDeclaration()) {
3199       GlobalDecl OtherGD;
3200       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3201       // to make sure that we issue an error only once.
3202       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3203           (GD.getCanonicalDecl().getDecl() !=
3204            OtherGD.getCanonicalDecl().getDecl()) &&
3205           DiagnosedConflictingDefinitions.insert(GD).second) {
3206         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3207             << MangledName;
3208         getDiags().Report(OtherGD.getDecl()->getLocation(),
3209                           diag::note_previous_definition);
3210       }
3211     }
3212 
3213     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3214         (Entry->getValueType() == Ty)) {
3215       return Entry;
3216     }
3217 
3218     // Make sure the result is of the correct type.
3219     // (If function is requested for a definition, we always need to create a new
3220     // function, not just return a bitcast.)
3221     if (!IsForDefinition)
3222       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3223   }
3224 
3225   // This function doesn't have a complete type (for example, the return
3226   // type is an incomplete struct). Use a fake type instead, and make
3227   // sure not to try to set attributes.
3228   bool IsIncompleteFunction = false;
3229 
3230   llvm::FunctionType *FTy;
3231   if (isa<llvm::FunctionType>(Ty)) {
3232     FTy = cast<llvm::FunctionType>(Ty);
3233   } else {
3234     FTy = llvm::FunctionType::get(VoidTy, false);
3235     IsIncompleteFunction = true;
3236   }
3237 
3238   llvm::Function *F =
3239       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3240                              Entry ? StringRef() : MangledName, &getModule());
3241 
3242   // If we already created a function with the same mangled name (but different
3243   // type) before, take its name and add it to the list of functions to be
3244   // replaced with F at the end of CodeGen.
3245   //
3246   // This happens if there is a prototype for a function (e.g. "int f()") and
3247   // then a definition of a different type (e.g. "int f(int x)").
3248   if (Entry) {
3249     F->takeName(Entry);
3250 
3251     // This might be an implementation of a function without a prototype, in
3252     // which case, try to do special replacement of calls which match the new
3253     // prototype.  The really key thing here is that we also potentially drop
3254     // arguments from the call site so as to make a direct call, which makes the
3255     // inliner happier and suppresses a number of optimizer warnings (!) about
3256     // dropping arguments.
3257     if (!Entry->use_empty()) {
3258       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3259       Entry->removeDeadConstantUsers();
3260     }
3261 
3262     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3263         F, Entry->getValueType()->getPointerTo());
3264     addGlobalValReplacement(Entry, BC);
3265   }
3266 
3267   assert(F->getName() == MangledName && "name was uniqued!");
3268   if (D)
3269     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3270   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3271     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3272     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3273   }
3274 
3275   if (!DontDefer) {
3276     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3277     // each other bottoming out with the base dtor.  Therefore we emit non-base
3278     // dtors on usage, even if there is no dtor definition in the TU.
3279     if (D && isa<CXXDestructorDecl>(D) &&
3280         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3281                                            GD.getDtorType()))
3282       addDeferredDeclToEmit(GD);
3283 
3284     // This is the first use or definition of a mangled name.  If there is a
3285     // deferred decl with this name, remember that we need to emit it at the end
3286     // of the file.
3287     auto DDI = DeferredDecls.find(MangledName);
3288     if (DDI != DeferredDecls.end()) {
3289       // Move the potentially referenced deferred decl to the
3290       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3291       // don't need it anymore).
3292       addDeferredDeclToEmit(DDI->second);
3293       DeferredDecls.erase(DDI);
3294 
3295       // Otherwise, there are cases we have to worry about where we're
3296       // using a declaration for which we must emit a definition but where
3297       // we might not find a top-level definition:
3298       //   - member functions defined inline in their classes
3299       //   - friend functions defined inline in some class
3300       //   - special member functions with implicit definitions
3301       // If we ever change our AST traversal to walk into class methods,
3302       // this will be unnecessary.
3303       //
3304       // We also don't emit a definition for a function if it's going to be an
3305       // entry in a vtable, unless it's already marked as used.
3306     } else if (getLangOpts().CPlusPlus && D) {
3307       // Look for a declaration that's lexically in a record.
3308       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3309            FD = FD->getPreviousDecl()) {
3310         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3311           if (FD->doesThisDeclarationHaveABody()) {
3312             addDeferredDeclToEmit(GD.getWithDecl(FD));
3313             break;
3314           }
3315         }
3316       }
3317     }
3318   }
3319 
3320   // Make sure the result is of the requested type.
3321   if (!IsIncompleteFunction) {
3322     assert(F->getFunctionType() == Ty);
3323     return F;
3324   }
3325 
3326   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3327   return llvm::ConstantExpr::getBitCast(F, PTy);
3328 }
3329 
3330 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3331 /// non-null, then this function will use the specified type if it has to
3332 /// create it (this occurs when we see a definition of the function).
3333 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3334                                                  llvm::Type *Ty,
3335                                                  bool ForVTable,
3336                                                  bool DontDefer,
3337                                               ForDefinition_t IsForDefinition) {
3338   // If there was no specific requested type, just convert it now.
3339   if (!Ty) {
3340     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3341     Ty = getTypes().ConvertType(FD->getType());
3342   }
3343 
3344   // Devirtualized destructor calls may come through here instead of via
3345   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3346   // of the complete destructor when necessary.
3347   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3348     if (getTarget().getCXXABI().isMicrosoft() &&
3349         GD.getDtorType() == Dtor_Complete &&
3350         DD->getParent()->getNumVBases() == 0)
3351       GD = GlobalDecl(DD, Dtor_Base);
3352   }
3353 
3354   StringRef MangledName = getMangledName(GD);
3355   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3356                                  /*IsThunk=*/false, llvm::AttributeList(),
3357                                  IsForDefinition);
3358 }
3359 
3360 static const FunctionDecl *
3361 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3362   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3363   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3364 
3365   IdentifierInfo &CII = C.Idents.get(Name);
3366   for (const auto &Result : DC->lookup(&CII))
3367     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3368       return FD;
3369 
3370   if (!C.getLangOpts().CPlusPlus)
3371     return nullptr;
3372 
3373   // Demangle the premangled name from getTerminateFn()
3374   IdentifierInfo &CXXII =
3375       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3376           ? C.Idents.get("terminate")
3377           : C.Idents.get(Name);
3378 
3379   for (const auto &N : {"__cxxabiv1", "std"}) {
3380     IdentifierInfo &NS = C.Idents.get(N);
3381     for (const auto &Result : DC->lookup(&NS)) {
3382       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3383       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3384         for (const auto &Result : LSD->lookup(&NS))
3385           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3386             break;
3387 
3388       if (ND)
3389         for (const auto &Result : ND->lookup(&CXXII))
3390           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3391             return FD;
3392     }
3393   }
3394 
3395   return nullptr;
3396 }
3397 
3398 /// CreateRuntimeFunction - Create a new runtime function with the specified
3399 /// type and name.
3400 llvm::FunctionCallee
3401 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3402                                      llvm::AttributeList ExtraAttrs, bool Local,
3403                                      bool AssumeConvergent) {
3404   if (AssumeConvergent) {
3405     ExtraAttrs =
3406         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3407                                 llvm::Attribute::Convergent);
3408   }
3409 
3410   llvm::Constant *C =
3411       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3412                               /*DontDefer=*/false, /*IsThunk=*/false,
3413                               ExtraAttrs);
3414 
3415   if (auto *F = dyn_cast<llvm::Function>(C)) {
3416     if (F->empty()) {
3417       F->setCallingConv(getRuntimeCC());
3418 
3419       // In Windows Itanium environments, try to mark runtime functions
3420       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3421       // will link their standard library statically or dynamically. Marking
3422       // functions imported when they are not imported can cause linker errors
3423       // and warnings.
3424       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3425           !getCodeGenOpts().LTOVisibilityPublicStd) {
3426         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3427         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3428           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3429           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3430         }
3431       }
3432       setDSOLocal(F);
3433     }
3434   }
3435 
3436   return {FTy, C};
3437 }
3438 
3439 /// isTypeConstant - Determine whether an object of this type can be emitted
3440 /// as a constant.
3441 ///
3442 /// If ExcludeCtor is true, the duration when the object's constructor runs
3443 /// will not be considered. The caller will need to verify that the object is
3444 /// not written to during its construction.
3445 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3446   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3447     return false;
3448 
3449   if (Context.getLangOpts().CPlusPlus) {
3450     if (const CXXRecordDecl *Record
3451           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3452       return ExcludeCtor && !Record->hasMutableFields() &&
3453              Record->hasTrivialDestructor();
3454   }
3455 
3456   return true;
3457 }
3458 
3459 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3460 /// create and return an llvm GlobalVariable with the specified type.  If there
3461 /// is something in the module with the specified name, return it potentially
3462 /// bitcasted to the right type.
3463 ///
3464 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3465 /// to set the attributes on the global when it is first created.
3466 ///
3467 /// If IsForDefinition is true, it is guaranteed that an actual global with
3468 /// type Ty will be returned, not conversion of a variable with the same
3469 /// mangled name but some other type.
3470 llvm::Constant *
3471 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3472                                      llvm::PointerType *Ty,
3473                                      const VarDecl *D,
3474                                      ForDefinition_t IsForDefinition) {
3475   // Lookup the entry, lazily creating it if necessary.
3476   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3477   if (Entry) {
3478     if (WeakRefReferences.erase(Entry)) {
3479       if (D && !D->hasAttr<WeakAttr>())
3480         Entry->setLinkage(llvm::Function::ExternalLinkage);
3481     }
3482 
3483     // Handle dropped DLL attributes.
3484     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3485       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3486 
3487     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3488       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3489 
3490     if (Entry->getType() == Ty)
3491       return Entry;
3492 
3493     // If there are two attempts to define the same mangled name, issue an
3494     // error.
3495     if (IsForDefinition && !Entry->isDeclaration()) {
3496       GlobalDecl OtherGD;
3497       const VarDecl *OtherD;
3498 
3499       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3500       // to make sure that we issue an error only once.
3501       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3502           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3503           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3504           OtherD->hasInit() &&
3505           DiagnosedConflictingDefinitions.insert(D).second) {
3506         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3507             << MangledName;
3508         getDiags().Report(OtherGD.getDecl()->getLocation(),
3509                           diag::note_previous_definition);
3510       }
3511     }
3512 
3513     // Make sure the result is of the correct type.
3514     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3515       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3516 
3517     // (If global is requested for a definition, we always need to create a new
3518     // global, not just return a bitcast.)
3519     if (!IsForDefinition)
3520       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3521   }
3522 
3523   auto AddrSpace = GetGlobalVarAddressSpace(D);
3524   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3525 
3526   auto *GV = new llvm::GlobalVariable(
3527       getModule(), Ty->getElementType(), false,
3528       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3529       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3530 
3531   // If we already created a global with the same mangled name (but different
3532   // type) before, take its name and remove it from its parent.
3533   if (Entry) {
3534     GV->takeName(Entry);
3535 
3536     if (!Entry->use_empty()) {
3537       llvm::Constant *NewPtrForOldDecl =
3538           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3539       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3540     }
3541 
3542     Entry->eraseFromParent();
3543   }
3544 
3545   // This is the first use or definition of a mangled name.  If there is a
3546   // deferred decl with this name, remember that we need to emit it at the end
3547   // of the file.
3548   auto DDI = DeferredDecls.find(MangledName);
3549   if (DDI != DeferredDecls.end()) {
3550     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3551     // list, and remove it from DeferredDecls (since we don't need it anymore).
3552     addDeferredDeclToEmit(DDI->second);
3553     DeferredDecls.erase(DDI);
3554   }
3555 
3556   // Handle things which are present even on external declarations.
3557   if (D) {
3558     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3559       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3560 
3561     // FIXME: This code is overly simple and should be merged with other global
3562     // handling.
3563     GV->setConstant(isTypeConstant(D->getType(), false));
3564 
3565     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3566 
3567     setLinkageForGV(GV, D);
3568 
3569     if (D->getTLSKind()) {
3570       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3571         CXXThreadLocals.push_back(D);
3572       setTLSMode(GV, *D);
3573     }
3574 
3575     setGVProperties(GV, D);
3576 
3577     // If required by the ABI, treat declarations of static data members with
3578     // inline initializers as definitions.
3579     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3580       EmitGlobalVarDefinition(D);
3581     }
3582 
3583     // Emit section information for extern variables.
3584     if (D->hasExternalStorage()) {
3585       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3586         GV->setSection(SA->getName());
3587     }
3588 
3589     // Handle XCore specific ABI requirements.
3590     if (getTriple().getArch() == llvm::Triple::xcore &&
3591         D->getLanguageLinkage() == CLanguageLinkage &&
3592         D->getType().isConstant(Context) &&
3593         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3594       GV->setSection(".cp.rodata");
3595 
3596     // Check if we a have a const declaration with an initializer, we may be
3597     // able to emit it as available_externally to expose it's value to the
3598     // optimizer.
3599     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3600         D->getType().isConstQualified() && !GV->hasInitializer() &&
3601         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3602       const auto *Record =
3603           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3604       bool HasMutableFields = Record && Record->hasMutableFields();
3605       if (!HasMutableFields) {
3606         const VarDecl *InitDecl;
3607         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3608         if (InitExpr) {
3609           ConstantEmitter emitter(*this);
3610           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3611           if (Init) {
3612             auto *InitType = Init->getType();
3613             if (GV->getValueType() != InitType) {
3614               // The type of the initializer does not match the definition.
3615               // This happens when an initializer has a different type from
3616               // the type of the global (because of padding at the end of a
3617               // structure for instance).
3618               GV->setName(StringRef());
3619               // Make a new global with the correct type, this is now guaranteed
3620               // to work.
3621               auto *NewGV = cast<llvm::GlobalVariable>(
3622                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3623                       ->stripPointerCasts());
3624 
3625               // Erase the old global, since it is no longer used.
3626               GV->eraseFromParent();
3627               GV = NewGV;
3628             } else {
3629               GV->setInitializer(Init);
3630               GV->setConstant(true);
3631               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3632             }
3633             emitter.finalize(GV);
3634           }
3635         }
3636       }
3637     }
3638   }
3639 
3640   if (GV->isDeclaration())
3641     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3642 
3643   LangAS ExpectedAS =
3644       D ? D->getType().getAddressSpace()
3645         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3646   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3647          Ty->getPointerAddressSpace());
3648   if (AddrSpace != ExpectedAS)
3649     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3650                                                        ExpectedAS, Ty);
3651 
3652   return GV;
3653 }
3654 
3655 llvm::Constant *
3656 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3657                                ForDefinition_t IsForDefinition) {
3658   const Decl *D = GD.getDecl();
3659   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3660     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3661                                 /*DontDefer=*/false, IsForDefinition);
3662   else if (isa<CXXMethodDecl>(D)) {
3663     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3664         cast<CXXMethodDecl>(D));
3665     auto Ty = getTypes().GetFunctionType(*FInfo);
3666     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3667                              IsForDefinition);
3668   } else if (isa<FunctionDecl>(D)) {
3669     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3670     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3671     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3672                              IsForDefinition);
3673   } else
3674     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3675                               IsForDefinition);
3676 }
3677 
3678 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3679     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3680     unsigned Alignment) {
3681   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3682   llvm::GlobalVariable *OldGV = nullptr;
3683 
3684   if (GV) {
3685     // Check if the variable has the right type.
3686     if (GV->getValueType() == Ty)
3687       return GV;
3688 
3689     // Because C++ name mangling, the only way we can end up with an already
3690     // existing global with the same name is if it has been declared extern "C".
3691     assert(GV->isDeclaration() && "Declaration has wrong type!");
3692     OldGV = GV;
3693   }
3694 
3695   // Create a new variable.
3696   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3697                                 Linkage, nullptr, Name);
3698 
3699   if (OldGV) {
3700     // Replace occurrences of the old variable if needed.
3701     GV->takeName(OldGV);
3702 
3703     if (!OldGV->use_empty()) {
3704       llvm::Constant *NewPtrForOldDecl =
3705       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3706       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3707     }
3708 
3709     OldGV->eraseFromParent();
3710   }
3711 
3712   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3713       !GV->hasAvailableExternallyLinkage())
3714     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3715 
3716   GV->setAlignment(llvm::MaybeAlign(Alignment));
3717 
3718   return GV;
3719 }
3720 
3721 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3722 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3723 /// then it will be created with the specified type instead of whatever the
3724 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3725 /// that an actual global with type Ty will be returned, not conversion of a
3726 /// variable with the same mangled name but some other type.
3727 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3728                                                   llvm::Type *Ty,
3729                                            ForDefinition_t IsForDefinition) {
3730   assert(D->hasGlobalStorage() && "Not a global variable");
3731   QualType ASTTy = D->getType();
3732   if (!Ty)
3733     Ty = getTypes().ConvertTypeForMem(ASTTy);
3734 
3735   llvm::PointerType *PTy =
3736     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3737 
3738   StringRef MangledName = getMangledName(D);
3739   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3740 }
3741 
3742 /// CreateRuntimeVariable - Create a new runtime global variable with the
3743 /// specified type and name.
3744 llvm::Constant *
3745 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3746                                      StringRef Name) {
3747   auto PtrTy =
3748       getContext().getLangOpts().OpenCL
3749           ? llvm::PointerType::get(
3750                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3751           : llvm::PointerType::getUnqual(Ty);
3752   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3753   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3754   return Ret;
3755 }
3756 
3757 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3758   assert(!D->getInit() && "Cannot emit definite definitions here!");
3759 
3760   StringRef MangledName = getMangledName(D);
3761   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3762 
3763   // We already have a definition, not declaration, with the same mangled name.
3764   // Emitting of declaration is not required (and actually overwrites emitted
3765   // definition).
3766   if (GV && !GV->isDeclaration())
3767     return;
3768 
3769   // If we have not seen a reference to this variable yet, place it into the
3770   // deferred declarations table to be emitted if needed later.
3771   if (!MustBeEmitted(D) && !GV) {
3772       DeferredDecls[MangledName] = D;
3773       return;
3774   }
3775 
3776   // The tentative definition is the only definition.
3777   EmitGlobalVarDefinition(D);
3778 }
3779 
3780 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3781   EmitExternalVarDeclaration(D);
3782 }
3783 
3784 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3785   return Context.toCharUnitsFromBits(
3786       getDataLayout().getTypeStoreSizeInBits(Ty));
3787 }
3788 
3789 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3790   LangAS AddrSpace = LangAS::Default;
3791   if (LangOpts.OpenCL) {
3792     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3793     assert(AddrSpace == LangAS::opencl_global ||
3794            AddrSpace == LangAS::opencl_constant ||
3795            AddrSpace == LangAS::opencl_local ||
3796            AddrSpace >= LangAS::FirstTargetAddressSpace);
3797     return AddrSpace;
3798   }
3799 
3800   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3801     if (D && D->hasAttr<CUDAConstantAttr>())
3802       return LangAS::cuda_constant;
3803     else if (D && D->hasAttr<CUDASharedAttr>())
3804       return LangAS::cuda_shared;
3805     else if (D && D->hasAttr<CUDADeviceAttr>())
3806       return LangAS::cuda_device;
3807     else if (D && D->getType().isConstQualified())
3808       return LangAS::cuda_constant;
3809     else
3810       return LangAS::cuda_device;
3811   }
3812 
3813   if (LangOpts.OpenMP) {
3814     LangAS AS;
3815     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3816       return AS;
3817   }
3818   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3819 }
3820 
3821 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3822   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3823   if (LangOpts.OpenCL)
3824     return LangAS::opencl_constant;
3825   if (auto AS = getTarget().getConstantAddressSpace())
3826     return AS.getValue();
3827   return LangAS::Default;
3828 }
3829 
3830 // In address space agnostic languages, string literals are in default address
3831 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3832 // emitted in constant address space in LLVM IR. To be consistent with other
3833 // parts of AST, string literal global variables in constant address space
3834 // need to be casted to default address space before being put into address
3835 // map and referenced by other part of CodeGen.
3836 // In OpenCL, string literals are in constant address space in AST, therefore
3837 // they should not be casted to default address space.
3838 static llvm::Constant *
3839 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3840                                        llvm::GlobalVariable *GV) {
3841   llvm::Constant *Cast = GV;
3842   if (!CGM.getLangOpts().OpenCL) {
3843     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3844       if (AS != LangAS::Default)
3845         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3846             CGM, GV, AS.getValue(), LangAS::Default,
3847             GV->getValueType()->getPointerTo(
3848                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3849     }
3850   }
3851   return Cast;
3852 }
3853 
3854 template<typename SomeDecl>
3855 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3856                                                llvm::GlobalValue *GV) {
3857   if (!getLangOpts().CPlusPlus)
3858     return;
3859 
3860   // Must have 'used' attribute, or else inline assembly can't rely on
3861   // the name existing.
3862   if (!D->template hasAttr<UsedAttr>())
3863     return;
3864 
3865   // Must have internal linkage and an ordinary name.
3866   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3867     return;
3868 
3869   // Must be in an extern "C" context. Entities declared directly within
3870   // a record are not extern "C" even if the record is in such a context.
3871   const SomeDecl *First = D->getFirstDecl();
3872   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3873     return;
3874 
3875   // OK, this is an internal linkage entity inside an extern "C" linkage
3876   // specification. Make a note of that so we can give it the "expected"
3877   // mangled name if nothing else is using that name.
3878   std::pair<StaticExternCMap::iterator, bool> R =
3879       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3880 
3881   // If we have multiple internal linkage entities with the same name
3882   // in extern "C" regions, none of them gets that name.
3883   if (!R.second)
3884     R.first->second = nullptr;
3885 }
3886 
3887 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3888   if (!CGM.supportsCOMDAT())
3889     return false;
3890 
3891   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3892   // them being "merged" by the COMDAT Folding linker optimization.
3893   if (D.hasAttr<CUDAGlobalAttr>())
3894     return false;
3895 
3896   if (D.hasAttr<SelectAnyAttr>())
3897     return true;
3898 
3899   GVALinkage Linkage;
3900   if (auto *VD = dyn_cast<VarDecl>(&D))
3901     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3902   else
3903     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3904 
3905   switch (Linkage) {
3906   case GVA_Internal:
3907   case GVA_AvailableExternally:
3908   case GVA_StrongExternal:
3909     return false;
3910   case GVA_DiscardableODR:
3911   case GVA_StrongODR:
3912     return true;
3913   }
3914   llvm_unreachable("No such linkage");
3915 }
3916 
3917 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3918                                           llvm::GlobalObject &GO) {
3919   if (!shouldBeInCOMDAT(*this, D))
3920     return;
3921   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3922 }
3923 
3924 /// Pass IsTentative as true if you want to create a tentative definition.
3925 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3926                                             bool IsTentative) {
3927   // OpenCL global variables of sampler type are translated to function calls,
3928   // therefore no need to be translated.
3929   QualType ASTTy = D->getType();
3930   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3931     return;
3932 
3933   // If this is OpenMP device, check if it is legal to emit this global
3934   // normally.
3935   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3936       OpenMPRuntime->emitTargetGlobalVariable(D))
3937     return;
3938 
3939   llvm::Constant *Init = nullptr;
3940   bool NeedsGlobalCtor = false;
3941   bool NeedsGlobalDtor =
3942       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3943 
3944   const VarDecl *InitDecl;
3945   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3946 
3947   Optional<ConstantEmitter> emitter;
3948 
3949   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3950   // as part of their declaration."  Sema has already checked for
3951   // error cases, so we just need to set Init to UndefValue.
3952   bool IsCUDASharedVar =
3953       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3954   // Shadows of initialized device-side global variables are also left
3955   // undefined.
3956   bool IsCUDAShadowVar =
3957       !getLangOpts().CUDAIsDevice &&
3958       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3959        D->hasAttr<CUDASharedAttr>());
3960   bool IsCUDADeviceShadowVar =
3961       getLangOpts().CUDAIsDevice &&
3962       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
3963        D->getType()->isCUDADeviceBuiltinTextureType());
3964   // HIP pinned shadow of initialized host-side global variables are also
3965   // left undefined.
3966   if (getLangOpts().CUDA &&
3967       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
3968     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3969   else if (D->hasAttr<LoaderUninitializedAttr>())
3970     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3971   else if (!InitExpr) {
3972     // This is a tentative definition; tentative definitions are
3973     // implicitly initialized with { 0 }.
3974     //
3975     // Note that tentative definitions are only emitted at the end of
3976     // a translation unit, so they should never have incomplete
3977     // type. In addition, EmitTentativeDefinition makes sure that we
3978     // never attempt to emit a tentative definition if a real one
3979     // exists. A use may still exists, however, so we still may need
3980     // to do a RAUW.
3981     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3982     Init = EmitNullConstant(D->getType());
3983   } else {
3984     initializedGlobalDecl = GlobalDecl(D);
3985     emitter.emplace(*this);
3986     Init = emitter->tryEmitForInitializer(*InitDecl);
3987 
3988     if (!Init) {
3989       QualType T = InitExpr->getType();
3990       if (D->getType()->isReferenceType())
3991         T = D->getType();
3992 
3993       if (getLangOpts().CPlusPlus) {
3994         Init = EmitNullConstant(T);
3995         NeedsGlobalCtor = true;
3996       } else {
3997         ErrorUnsupported(D, "static initializer");
3998         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3999       }
4000     } else {
4001       // We don't need an initializer, so remove the entry for the delayed
4002       // initializer position (just in case this entry was delayed) if we
4003       // also don't need to register a destructor.
4004       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4005         DelayedCXXInitPosition.erase(D);
4006     }
4007   }
4008 
4009   llvm::Type* InitType = Init->getType();
4010   llvm::Constant *Entry =
4011       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4012 
4013   // Strip off pointer casts if we got them.
4014   Entry = Entry->stripPointerCasts();
4015 
4016   // Entry is now either a Function or GlobalVariable.
4017   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4018 
4019   // We have a definition after a declaration with the wrong type.
4020   // We must make a new GlobalVariable* and update everything that used OldGV
4021   // (a declaration or tentative definition) with the new GlobalVariable*
4022   // (which will be a definition).
4023   //
4024   // This happens if there is a prototype for a global (e.g.
4025   // "extern int x[];") and then a definition of a different type (e.g.
4026   // "int x[10];"). This also happens when an initializer has a different type
4027   // from the type of the global (this happens with unions).
4028   if (!GV || GV->getValueType() != InitType ||
4029       GV->getType()->getAddressSpace() !=
4030           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4031 
4032     // Move the old entry aside so that we'll create a new one.
4033     Entry->setName(StringRef());
4034 
4035     // Make a new global with the correct type, this is now guaranteed to work.
4036     GV = cast<llvm::GlobalVariable>(
4037         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4038             ->stripPointerCasts());
4039 
4040     // Replace all uses of the old global with the new global
4041     llvm::Constant *NewPtrForOldDecl =
4042         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4043     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4044 
4045     // Erase the old global, since it is no longer used.
4046     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4047   }
4048 
4049   MaybeHandleStaticInExternC(D, GV);
4050 
4051   if (D->hasAttr<AnnotateAttr>())
4052     AddGlobalAnnotations(D, GV);
4053 
4054   // Set the llvm linkage type as appropriate.
4055   llvm::GlobalValue::LinkageTypes Linkage =
4056       getLLVMLinkageVarDefinition(D, GV->isConstant());
4057 
4058   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4059   // the device. [...]"
4060   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4061   // __device__, declares a variable that: [...]
4062   // Is accessible from all the threads within the grid and from the host
4063   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4064   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4065   if (GV && LangOpts.CUDA) {
4066     if (LangOpts.CUDAIsDevice) {
4067       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4068           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4069         GV->setExternallyInitialized(true);
4070     } else {
4071       // Host-side shadows of external declarations of device-side
4072       // global variables become internal definitions. These have to
4073       // be internal in order to prevent name conflicts with global
4074       // host variables with the same name in a different TUs.
4075       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4076         Linkage = llvm::GlobalValue::InternalLinkage;
4077         // Shadow variables and their properties must be registered with CUDA
4078         // runtime. Skip Extern global variables, which will be registered in
4079         // the TU where they are defined.
4080         if (!D->hasExternalStorage())
4081           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4082                                              D->hasAttr<CUDAConstantAttr>());
4083       } else if (D->hasAttr<CUDASharedAttr>()) {
4084         // __shared__ variables are odd. Shadows do get created, but
4085         // they are not registered with the CUDA runtime, so they
4086         // can't really be used to access their device-side
4087         // counterparts. It's not clear yet whether it's nvcc's bug or
4088         // a feature, but we've got to do the same for compatibility.
4089         Linkage = llvm::GlobalValue::InternalLinkage;
4090       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4091                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4092         // Builtin surfaces and textures and their template arguments are
4093         // also registered with CUDA runtime.
4094         Linkage = llvm::GlobalValue::InternalLinkage;
4095         const ClassTemplateSpecializationDecl *TD =
4096             cast<ClassTemplateSpecializationDecl>(
4097                 D->getType()->getAs<RecordType>()->getDecl());
4098         const TemplateArgumentList &Args = TD->getTemplateArgs();
4099         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4100           assert(Args.size() == 2 &&
4101                  "Unexpected number of template arguments of CUDA device "
4102                  "builtin surface type.");
4103           auto SurfType = Args[1].getAsIntegral();
4104           if (!D->hasExternalStorage())
4105             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4106                                                 SurfType.getSExtValue());
4107         } else {
4108           assert(Args.size() == 3 &&
4109                  "Unexpected number of template arguments of CUDA device "
4110                  "builtin texture type.");
4111           auto TexType = Args[1].getAsIntegral();
4112           auto Normalized = Args[2].getAsIntegral();
4113           if (!D->hasExternalStorage())
4114             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4115                                                TexType.getSExtValue(),
4116                                                Normalized.getZExtValue());
4117         }
4118       }
4119     }
4120   }
4121 
4122   GV->setInitializer(Init);
4123   if (emitter)
4124     emitter->finalize(GV);
4125 
4126   // If it is safe to mark the global 'constant', do so now.
4127   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4128                   isTypeConstant(D->getType(), true));
4129 
4130   // If it is in a read-only section, mark it 'constant'.
4131   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4132     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4133     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4134       GV->setConstant(true);
4135   }
4136 
4137   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4138 
4139   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4140   // function is only defined alongside the variable, not also alongside
4141   // callers. Normally, all accesses to a thread_local go through the
4142   // thread-wrapper in order to ensure initialization has occurred, underlying
4143   // variable will never be used other than the thread-wrapper, so it can be
4144   // converted to internal linkage.
4145   //
4146   // However, if the variable has the 'constinit' attribute, it _can_ be
4147   // referenced directly, without calling the thread-wrapper, so the linkage
4148   // must not be changed.
4149   //
4150   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4151   // weak or linkonce, the de-duplication semantics are important to preserve,
4152   // so we don't change the linkage.
4153   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4154       Linkage == llvm::GlobalValue::ExternalLinkage &&
4155       Context.getTargetInfo().getTriple().isOSDarwin() &&
4156       !D->hasAttr<ConstInitAttr>())
4157     Linkage = llvm::GlobalValue::InternalLinkage;
4158 
4159   GV->setLinkage(Linkage);
4160   if (D->hasAttr<DLLImportAttr>())
4161     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4162   else if (D->hasAttr<DLLExportAttr>())
4163     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4164   else
4165     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4166 
4167   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4168     // common vars aren't constant even if declared const.
4169     GV->setConstant(false);
4170     // Tentative definition of global variables may be initialized with
4171     // non-zero null pointers. In this case they should have weak linkage
4172     // since common linkage must have zero initializer and must not have
4173     // explicit section therefore cannot have non-zero initial value.
4174     if (!GV->getInitializer()->isNullValue())
4175       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4176   }
4177 
4178   setNonAliasAttributes(D, GV);
4179 
4180   if (D->getTLSKind() && !GV->isThreadLocal()) {
4181     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4182       CXXThreadLocals.push_back(D);
4183     setTLSMode(GV, *D);
4184   }
4185 
4186   maybeSetTrivialComdat(*D, *GV);
4187 
4188   // Emit the initializer function if necessary.
4189   if (NeedsGlobalCtor || NeedsGlobalDtor)
4190     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4191 
4192   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4193 
4194   // Emit global variable debug information.
4195   if (CGDebugInfo *DI = getModuleDebugInfo())
4196     if (getCodeGenOpts().hasReducedDebugInfo())
4197       DI->EmitGlobalVariable(GV, D);
4198 }
4199 
4200 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4201   if (CGDebugInfo *DI = getModuleDebugInfo())
4202     if (getCodeGenOpts().hasReducedDebugInfo()) {
4203       QualType ASTTy = D->getType();
4204       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4205       llvm::PointerType *PTy =
4206           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4207       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4208       DI->EmitExternalVariable(
4209           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4210     }
4211 }
4212 
4213 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4214                                       CodeGenModule &CGM, const VarDecl *D,
4215                                       bool NoCommon) {
4216   // Don't give variables common linkage if -fno-common was specified unless it
4217   // was overridden by a NoCommon attribute.
4218   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4219     return true;
4220 
4221   // C11 6.9.2/2:
4222   //   A declaration of an identifier for an object that has file scope without
4223   //   an initializer, and without a storage-class specifier or with the
4224   //   storage-class specifier static, constitutes a tentative definition.
4225   if (D->getInit() || D->hasExternalStorage())
4226     return true;
4227 
4228   // A variable cannot be both common and exist in a section.
4229   if (D->hasAttr<SectionAttr>())
4230     return true;
4231 
4232   // A variable cannot be both common and exist in a section.
4233   // We don't try to determine which is the right section in the front-end.
4234   // If no specialized section name is applicable, it will resort to default.
4235   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4236       D->hasAttr<PragmaClangDataSectionAttr>() ||
4237       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4238       D->hasAttr<PragmaClangRodataSectionAttr>())
4239     return true;
4240 
4241   // Thread local vars aren't considered common linkage.
4242   if (D->getTLSKind())
4243     return true;
4244 
4245   // Tentative definitions marked with WeakImportAttr are true definitions.
4246   if (D->hasAttr<WeakImportAttr>())
4247     return true;
4248 
4249   // A variable cannot be both common and exist in a comdat.
4250   if (shouldBeInCOMDAT(CGM, *D))
4251     return true;
4252 
4253   // Declarations with a required alignment do not have common linkage in MSVC
4254   // mode.
4255   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4256     if (D->hasAttr<AlignedAttr>())
4257       return true;
4258     QualType VarType = D->getType();
4259     if (Context.isAlignmentRequired(VarType))
4260       return true;
4261 
4262     if (const auto *RT = VarType->getAs<RecordType>()) {
4263       const RecordDecl *RD = RT->getDecl();
4264       for (const FieldDecl *FD : RD->fields()) {
4265         if (FD->isBitField())
4266           continue;
4267         if (FD->hasAttr<AlignedAttr>())
4268           return true;
4269         if (Context.isAlignmentRequired(FD->getType()))
4270           return true;
4271       }
4272     }
4273   }
4274 
4275   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4276   // common symbols, so symbols with greater alignment requirements cannot be
4277   // common.
4278   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4279   // alignments for common symbols via the aligncomm directive, so this
4280   // restriction only applies to MSVC environments.
4281   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4282       Context.getTypeAlignIfKnown(D->getType()) >
4283           Context.toBits(CharUnits::fromQuantity(32)))
4284     return true;
4285 
4286   return false;
4287 }
4288 
4289 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4290     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4291   if (Linkage == GVA_Internal)
4292     return llvm::Function::InternalLinkage;
4293 
4294   if (D->hasAttr<WeakAttr>()) {
4295     if (IsConstantVariable)
4296       return llvm::GlobalVariable::WeakODRLinkage;
4297     else
4298       return llvm::GlobalVariable::WeakAnyLinkage;
4299   }
4300 
4301   if (const auto *FD = D->getAsFunction())
4302     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4303       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4304 
4305   // We are guaranteed to have a strong definition somewhere else,
4306   // so we can use available_externally linkage.
4307   if (Linkage == GVA_AvailableExternally)
4308     return llvm::GlobalValue::AvailableExternallyLinkage;
4309 
4310   // Note that Apple's kernel linker doesn't support symbol
4311   // coalescing, so we need to avoid linkonce and weak linkages there.
4312   // Normally, this means we just map to internal, but for explicit
4313   // instantiations we'll map to external.
4314 
4315   // In C++, the compiler has to emit a definition in every translation unit
4316   // that references the function.  We should use linkonce_odr because
4317   // a) if all references in this translation unit are optimized away, we
4318   // don't need to codegen it.  b) if the function persists, it needs to be
4319   // merged with other definitions. c) C++ has the ODR, so we know the
4320   // definition is dependable.
4321   if (Linkage == GVA_DiscardableODR)
4322     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4323                                             : llvm::Function::InternalLinkage;
4324 
4325   // An explicit instantiation of a template has weak linkage, since
4326   // explicit instantiations can occur in multiple translation units
4327   // and must all be equivalent. However, we are not allowed to
4328   // throw away these explicit instantiations.
4329   //
4330   // We don't currently support CUDA device code spread out across multiple TUs,
4331   // so say that CUDA templates are either external (for kernels) or internal.
4332   // This lets llvm perform aggressive inter-procedural optimizations.
4333   if (Linkage == GVA_StrongODR) {
4334     if (Context.getLangOpts().AppleKext)
4335       return llvm::Function::ExternalLinkage;
4336     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4337       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4338                                           : llvm::Function::InternalLinkage;
4339     return llvm::Function::WeakODRLinkage;
4340   }
4341 
4342   // C++ doesn't have tentative definitions and thus cannot have common
4343   // linkage.
4344   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4345       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4346                                  CodeGenOpts.NoCommon))
4347     return llvm::GlobalVariable::CommonLinkage;
4348 
4349   // selectany symbols are externally visible, so use weak instead of
4350   // linkonce.  MSVC optimizes away references to const selectany globals, so
4351   // all definitions should be the same and ODR linkage should be used.
4352   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4353   if (D->hasAttr<SelectAnyAttr>())
4354     return llvm::GlobalVariable::WeakODRLinkage;
4355 
4356   // Otherwise, we have strong external linkage.
4357   assert(Linkage == GVA_StrongExternal);
4358   return llvm::GlobalVariable::ExternalLinkage;
4359 }
4360 
4361 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4362     const VarDecl *VD, bool IsConstant) {
4363   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4364   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4365 }
4366 
4367 /// Replace the uses of a function that was declared with a non-proto type.
4368 /// We want to silently drop extra arguments from call sites
4369 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4370                                           llvm::Function *newFn) {
4371   // Fast path.
4372   if (old->use_empty()) return;
4373 
4374   llvm::Type *newRetTy = newFn->getReturnType();
4375   SmallVector<llvm::Value*, 4> newArgs;
4376   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4377 
4378   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4379          ui != ue; ) {
4380     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4381     llvm::User *user = use->getUser();
4382 
4383     // Recognize and replace uses of bitcasts.  Most calls to
4384     // unprototyped functions will use bitcasts.
4385     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4386       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4387         replaceUsesOfNonProtoConstant(bitcast, newFn);
4388       continue;
4389     }
4390 
4391     // Recognize calls to the function.
4392     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4393     if (!callSite) continue;
4394     if (!callSite->isCallee(&*use))
4395       continue;
4396 
4397     // If the return types don't match exactly, then we can't
4398     // transform this call unless it's dead.
4399     if (callSite->getType() != newRetTy && !callSite->use_empty())
4400       continue;
4401 
4402     // Get the call site's attribute list.
4403     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4404     llvm::AttributeList oldAttrs = callSite->getAttributes();
4405 
4406     // If the function was passed too few arguments, don't transform.
4407     unsigned newNumArgs = newFn->arg_size();
4408     if (callSite->arg_size() < newNumArgs)
4409       continue;
4410 
4411     // If extra arguments were passed, we silently drop them.
4412     // If any of the types mismatch, we don't transform.
4413     unsigned argNo = 0;
4414     bool dontTransform = false;
4415     for (llvm::Argument &A : newFn->args()) {
4416       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4417         dontTransform = true;
4418         break;
4419       }
4420 
4421       // Add any parameter attributes.
4422       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4423       argNo++;
4424     }
4425     if (dontTransform)
4426       continue;
4427 
4428     // Okay, we can transform this.  Create the new call instruction and copy
4429     // over the required information.
4430     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4431 
4432     // Copy over any operand bundles.
4433     callSite->getOperandBundlesAsDefs(newBundles);
4434 
4435     llvm::CallBase *newCall;
4436     if (dyn_cast<llvm::CallInst>(callSite)) {
4437       newCall =
4438           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4439     } else {
4440       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4441       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4442                                          oldInvoke->getUnwindDest(), newArgs,
4443                                          newBundles, "", callSite);
4444     }
4445     newArgs.clear(); // for the next iteration
4446 
4447     if (!newCall->getType()->isVoidTy())
4448       newCall->takeName(callSite);
4449     newCall->setAttributes(llvm::AttributeList::get(
4450         newFn->getContext(), oldAttrs.getFnAttributes(),
4451         oldAttrs.getRetAttributes(), newArgAttrs));
4452     newCall->setCallingConv(callSite->getCallingConv());
4453 
4454     // Finally, remove the old call, replacing any uses with the new one.
4455     if (!callSite->use_empty())
4456       callSite->replaceAllUsesWith(newCall);
4457 
4458     // Copy debug location attached to CI.
4459     if (callSite->getDebugLoc())
4460       newCall->setDebugLoc(callSite->getDebugLoc());
4461 
4462     callSite->eraseFromParent();
4463   }
4464 }
4465 
4466 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4467 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4468 /// existing call uses of the old function in the module, this adjusts them to
4469 /// call the new function directly.
4470 ///
4471 /// This is not just a cleanup: the always_inline pass requires direct calls to
4472 /// functions to be able to inline them.  If there is a bitcast in the way, it
4473 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4474 /// run at -O0.
4475 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4476                                                       llvm::Function *NewFn) {
4477   // If we're redefining a global as a function, don't transform it.
4478   if (!isa<llvm::Function>(Old)) return;
4479 
4480   replaceUsesOfNonProtoConstant(Old, NewFn);
4481 }
4482 
4483 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4484   auto DK = VD->isThisDeclarationADefinition();
4485   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4486     return;
4487 
4488   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4489   // If we have a definition, this might be a deferred decl. If the
4490   // instantiation is explicit, make sure we emit it at the end.
4491   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4492     GetAddrOfGlobalVar(VD);
4493 
4494   EmitTopLevelDecl(VD);
4495 }
4496 
4497 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4498                                                  llvm::GlobalValue *GV) {
4499   const auto *D = cast<FunctionDecl>(GD.getDecl());
4500 
4501   // Compute the function info and LLVM type.
4502   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4503   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4504 
4505   // Get or create the prototype for the function.
4506   if (!GV || (GV->getValueType() != Ty))
4507     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4508                                                    /*DontDefer=*/true,
4509                                                    ForDefinition));
4510 
4511   // Already emitted.
4512   if (!GV->isDeclaration())
4513     return;
4514 
4515   // We need to set linkage and visibility on the function before
4516   // generating code for it because various parts of IR generation
4517   // want to propagate this information down (e.g. to local static
4518   // declarations).
4519   auto *Fn = cast<llvm::Function>(GV);
4520   setFunctionLinkage(GD, Fn);
4521 
4522   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4523   setGVProperties(Fn, GD);
4524 
4525   MaybeHandleStaticInExternC(D, Fn);
4526 
4527 
4528   maybeSetTrivialComdat(*D, *Fn);
4529 
4530   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4531 
4532   setNonAliasAttributes(GD, Fn);
4533   SetLLVMFunctionAttributesForDefinition(D, Fn);
4534 
4535   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4536     AddGlobalCtor(Fn, CA->getPriority());
4537   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4538     AddGlobalDtor(Fn, DA->getPriority());
4539   if (D->hasAttr<AnnotateAttr>())
4540     AddGlobalAnnotations(D, Fn);
4541 }
4542 
4543 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4544   const auto *D = cast<ValueDecl>(GD.getDecl());
4545   const AliasAttr *AA = D->getAttr<AliasAttr>();
4546   assert(AA && "Not an alias?");
4547 
4548   StringRef MangledName = getMangledName(GD);
4549 
4550   if (AA->getAliasee() == MangledName) {
4551     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4552     return;
4553   }
4554 
4555   // If there is a definition in the module, then it wins over the alias.
4556   // This is dubious, but allow it to be safe.  Just ignore the alias.
4557   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4558   if (Entry && !Entry->isDeclaration())
4559     return;
4560 
4561   Aliases.push_back(GD);
4562 
4563   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4564 
4565   // Create a reference to the named value.  This ensures that it is emitted
4566   // if a deferred decl.
4567   llvm::Constant *Aliasee;
4568   llvm::GlobalValue::LinkageTypes LT;
4569   if (isa<llvm::FunctionType>(DeclTy)) {
4570     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4571                                       /*ForVTable=*/false);
4572     LT = getFunctionLinkage(GD);
4573   } else {
4574     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4575                                     llvm::PointerType::getUnqual(DeclTy),
4576                                     /*D=*/nullptr);
4577     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4578                                      D->getType().isConstQualified());
4579   }
4580 
4581   // Create the new alias itself, but don't set a name yet.
4582   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4583   auto *GA =
4584       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4585 
4586   if (Entry) {
4587     if (GA->getAliasee() == Entry) {
4588       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4589       return;
4590     }
4591 
4592     assert(Entry->isDeclaration());
4593 
4594     // If there is a declaration in the module, then we had an extern followed
4595     // by the alias, as in:
4596     //   extern int test6();
4597     //   ...
4598     //   int test6() __attribute__((alias("test7")));
4599     //
4600     // Remove it and replace uses of it with the alias.
4601     GA->takeName(Entry);
4602 
4603     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4604                                                           Entry->getType()));
4605     Entry->eraseFromParent();
4606   } else {
4607     GA->setName(MangledName);
4608   }
4609 
4610   // Set attributes which are particular to an alias; this is a
4611   // specialization of the attributes which may be set on a global
4612   // variable/function.
4613   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4614       D->isWeakImported()) {
4615     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4616   }
4617 
4618   if (const auto *VD = dyn_cast<VarDecl>(D))
4619     if (VD->getTLSKind())
4620       setTLSMode(GA, *VD);
4621 
4622   SetCommonAttributes(GD, GA);
4623 }
4624 
4625 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4626   const auto *D = cast<ValueDecl>(GD.getDecl());
4627   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4628   assert(IFA && "Not an ifunc?");
4629 
4630   StringRef MangledName = getMangledName(GD);
4631 
4632   if (IFA->getResolver() == MangledName) {
4633     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4634     return;
4635   }
4636 
4637   // Report an error if some definition overrides ifunc.
4638   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4639   if (Entry && !Entry->isDeclaration()) {
4640     GlobalDecl OtherGD;
4641     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4642         DiagnosedConflictingDefinitions.insert(GD).second) {
4643       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4644           << MangledName;
4645       Diags.Report(OtherGD.getDecl()->getLocation(),
4646                    diag::note_previous_definition);
4647     }
4648     return;
4649   }
4650 
4651   Aliases.push_back(GD);
4652 
4653   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4654   llvm::Constant *Resolver =
4655       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4656                               /*ForVTable=*/false);
4657   llvm::GlobalIFunc *GIF =
4658       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4659                                 "", Resolver, &getModule());
4660   if (Entry) {
4661     if (GIF->getResolver() == Entry) {
4662       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4663       return;
4664     }
4665     assert(Entry->isDeclaration());
4666 
4667     // If there is a declaration in the module, then we had an extern followed
4668     // by the ifunc, as in:
4669     //   extern int test();
4670     //   ...
4671     //   int test() __attribute__((ifunc("resolver")));
4672     //
4673     // Remove it and replace uses of it with the ifunc.
4674     GIF->takeName(Entry);
4675 
4676     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4677                                                           Entry->getType()));
4678     Entry->eraseFromParent();
4679   } else
4680     GIF->setName(MangledName);
4681 
4682   SetCommonAttributes(GD, GIF);
4683 }
4684 
4685 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4686                                             ArrayRef<llvm::Type*> Tys) {
4687   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4688                                          Tys);
4689 }
4690 
4691 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4692 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4693                          const StringLiteral *Literal, bool TargetIsLSB,
4694                          bool &IsUTF16, unsigned &StringLength) {
4695   StringRef String = Literal->getString();
4696   unsigned NumBytes = String.size();
4697 
4698   // Check for simple case.
4699   if (!Literal->containsNonAsciiOrNull()) {
4700     StringLength = NumBytes;
4701     return *Map.insert(std::make_pair(String, nullptr)).first;
4702   }
4703 
4704   // Otherwise, convert the UTF8 literals into a string of shorts.
4705   IsUTF16 = true;
4706 
4707   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4708   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4709   llvm::UTF16 *ToPtr = &ToBuf[0];
4710 
4711   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4712                                  ToPtr + NumBytes, llvm::strictConversion);
4713 
4714   // ConvertUTF8toUTF16 returns the length in ToPtr.
4715   StringLength = ToPtr - &ToBuf[0];
4716 
4717   // Add an explicit null.
4718   *ToPtr = 0;
4719   return *Map.insert(std::make_pair(
4720                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4721                                    (StringLength + 1) * 2),
4722                          nullptr)).first;
4723 }
4724 
4725 ConstantAddress
4726 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4727   unsigned StringLength = 0;
4728   bool isUTF16 = false;
4729   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4730       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4731                                getDataLayout().isLittleEndian(), isUTF16,
4732                                StringLength);
4733 
4734   if (auto *C = Entry.second)
4735     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4736 
4737   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4738   llvm::Constant *Zeros[] = { Zero, Zero };
4739 
4740   const ASTContext &Context = getContext();
4741   const llvm::Triple &Triple = getTriple();
4742 
4743   const auto CFRuntime = getLangOpts().CFRuntime;
4744   const bool IsSwiftABI =
4745       static_cast<unsigned>(CFRuntime) >=
4746       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4747   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4748 
4749   // If we don't already have it, get __CFConstantStringClassReference.
4750   if (!CFConstantStringClassRef) {
4751     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4752     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4753     Ty = llvm::ArrayType::get(Ty, 0);
4754 
4755     switch (CFRuntime) {
4756     default: break;
4757     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4758     case LangOptions::CoreFoundationABI::Swift5_0:
4759       CFConstantStringClassName =
4760           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4761                               : "$s10Foundation19_NSCFConstantStringCN";
4762       Ty = IntPtrTy;
4763       break;
4764     case LangOptions::CoreFoundationABI::Swift4_2:
4765       CFConstantStringClassName =
4766           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4767                               : "$S10Foundation19_NSCFConstantStringCN";
4768       Ty = IntPtrTy;
4769       break;
4770     case LangOptions::CoreFoundationABI::Swift4_1:
4771       CFConstantStringClassName =
4772           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4773                               : "__T010Foundation19_NSCFConstantStringCN";
4774       Ty = IntPtrTy;
4775       break;
4776     }
4777 
4778     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4779 
4780     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4781       llvm::GlobalValue *GV = nullptr;
4782 
4783       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4784         IdentifierInfo &II = Context.Idents.get(GV->getName());
4785         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4786         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4787 
4788         const VarDecl *VD = nullptr;
4789         for (const auto &Result : DC->lookup(&II))
4790           if ((VD = dyn_cast<VarDecl>(Result)))
4791             break;
4792 
4793         if (Triple.isOSBinFormatELF()) {
4794           if (!VD)
4795             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4796         } else {
4797           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4798           if (!VD || !VD->hasAttr<DLLExportAttr>())
4799             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4800           else
4801             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4802         }
4803 
4804         setDSOLocal(GV);
4805       }
4806     }
4807 
4808     // Decay array -> ptr
4809     CFConstantStringClassRef =
4810         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4811                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4812   }
4813 
4814   QualType CFTy = Context.getCFConstantStringType();
4815 
4816   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4817 
4818   ConstantInitBuilder Builder(*this);
4819   auto Fields = Builder.beginStruct(STy);
4820 
4821   // Class pointer.
4822   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4823 
4824   // Flags.
4825   if (IsSwiftABI) {
4826     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4827     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4828   } else {
4829     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4830   }
4831 
4832   // String pointer.
4833   llvm::Constant *C = nullptr;
4834   if (isUTF16) {
4835     auto Arr = llvm::makeArrayRef(
4836         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4837         Entry.first().size() / 2);
4838     C = llvm::ConstantDataArray::get(VMContext, Arr);
4839   } else {
4840     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4841   }
4842 
4843   // Note: -fwritable-strings doesn't make the backing store strings of
4844   // CFStrings writable. (See <rdar://problem/10657500>)
4845   auto *GV =
4846       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4847                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4848   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4849   // Don't enforce the target's minimum global alignment, since the only use
4850   // of the string is via this class initializer.
4851   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4852                             : Context.getTypeAlignInChars(Context.CharTy);
4853   GV->setAlignment(Align.getAsAlign());
4854 
4855   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4856   // Without it LLVM can merge the string with a non unnamed_addr one during
4857   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4858   if (Triple.isOSBinFormatMachO())
4859     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4860                            : "__TEXT,__cstring,cstring_literals");
4861   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4862   // the static linker to adjust permissions to read-only later on.
4863   else if (Triple.isOSBinFormatELF())
4864     GV->setSection(".rodata");
4865 
4866   // String.
4867   llvm::Constant *Str =
4868       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4869 
4870   if (isUTF16)
4871     // Cast the UTF16 string to the correct type.
4872     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4873   Fields.add(Str);
4874 
4875   // String length.
4876   llvm::IntegerType *LengthTy =
4877       llvm::IntegerType::get(getModule().getContext(),
4878                              Context.getTargetInfo().getLongWidth());
4879   if (IsSwiftABI) {
4880     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4881         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4882       LengthTy = Int32Ty;
4883     else
4884       LengthTy = IntPtrTy;
4885   }
4886   Fields.addInt(LengthTy, StringLength);
4887 
4888   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4889   // properly aligned on 32-bit platforms.
4890   CharUnits Alignment =
4891       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4892 
4893   // The struct.
4894   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4895                                     /*isConstant=*/false,
4896                                     llvm::GlobalVariable::PrivateLinkage);
4897   GV->addAttribute("objc_arc_inert");
4898   switch (Triple.getObjectFormat()) {
4899   case llvm::Triple::UnknownObjectFormat:
4900     llvm_unreachable("unknown file format");
4901   case llvm::Triple::XCOFF:
4902     llvm_unreachable("XCOFF is not yet implemented");
4903   case llvm::Triple::COFF:
4904   case llvm::Triple::ELF:
4905   case llvm::Triple::Wasm:
4906     GV->setSection("cfstring");
4907     break;
4908   case llvm::Triple::MachO:
4909     GV->setSection("__DATA,__cfstring");
4910     break;
4911   }
4912   Entry.second = GV;
4913 
4914   return ConstantAddress(GV, Alignment);
4915 }
4916 
4917 bool CodeGenModule::getExpressionLocationsEnabled() const {
4918   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4919 }
4920 
4921 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4922   if (ObjCFastEnumerationStateType.isNull()) {
4923     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4924     D->startDefinition();
4925 
4926     QualType FieldTypes[] = {
4927       Context.UnsignedLongTy,
4928       Context.getPointerType(Context.getObjCIdType()),
4929       Context.getPointerType(Context.UnsignedLongTy),
4930       Context.getConstantArrayType(Context.UnsignedLongTy,
4931                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4932     };
4933 
4934     for (size_t i = 0; i < 4; ++i) {
4935       FieldDecl *Field = FieldDecl::Create(Context,
4936                                            D,
4937                                            SourceLocation(),
4938                                            SourceLocation(), nullptr,
4939                                            FieldTypes[i], /*TInfo=*/nullptr,
4940                                            /*BitWidth=*/nullptr,
4941                                            /*Mutable=*/false,
4942                                            ICIS_NoInit);
4943       Field->setAccess(AS_public);
4944       D->addDecl(Field);
4945     }
4946 
4947     D->completeDefinition();
4948     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4949   }
4950 
4951   return ObjCFastEnumerationStateType;
4952 }
4953 
4954 llvm::Constant *
4955 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4956   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4957 
4958   // Don't emit it as the address of the string, emit the string data itself
4959   // as an inline array.
4960   if (E->getCharByteWidth() == 1) {
4961     SmallString<64> Str(E->getString());
4962 
4963     // Resize the string to the right size, which is indicated by its type.
4964     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4965     Str.resize(CAT->getSize().getZExtValue());
4966     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4967   }
4968 
4969   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4970   llvm::Type *ElemTy = AType->getElementType();
4971   unsigned NumElements = AType->getNumElements();
4972 
4973   // Wide strings have either 2-byte or 4-byte elements.
4974   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4975     SmallVector<uint16_t, 32> Elements;
4976     Elements.reserve(NumElements);
4977 
4978     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4979       Elements.push_back(E->getCodeUnit(i));
4980     Elements.resize(NumElements);
4981     return llvm::ConstantDataArray::get(VMContext, Elements);
4982   }
4983 
4984   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4985   SmallVector<uint32_t, 32> Elements;
4986   Elements.reserve(NumElements);
4987 
4988   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4989     Elements.push_back(E->getCodeUnit(i));
4990   Elements.resize(NumElements);
4991   return llvm::ConstantDataArray::get(VMContext, Elements);
4992 }
4993 
4994 static llvm::GlobalVariable *
4995 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4996                       CodeGenModule &CGM, StringRef GlobalName,
4997                       CharUnits Alignment) {
4998   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4999       CGM.getStringLiteralAddressSpace());
5000 
5001   llvm::Module &M = CGM.getModule();
5002   // Create a global variable for this string
5003   auto *GV = new llvm::GlobalVariable(
5004       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5005       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5006   GV->setAlignment(Alignment.getAsAlign());
5007   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5008   if (GV->isWeakForLinker()) {
5009     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5010     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5011   }
5012   CGM.setDSOLocal(GV);
5013 
5014   return GV;
5015 }
5016 
5017 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5018 /// constant array for the given string literal.
5019 ConstantAddress
5020 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5021                                                   StringRef Name) {
5022   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5023 
5024   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5025   llvm::GlobalVariable **Entry = nullptr;
5026   if (!LangOpts.WritableStrings) {
5027     Entry = &ConstantStringMap[C];
5028     if (auto GV = *Entry) {
5029       if (Alignment.getQuantity() > GV->getAlignment())
5030         GV->setAlignment(Alignment.getAsAlign());
5031       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5032                              Alignment);
5033     }
5034   }
5035 
5036   SmallString<256> MangledNameBuffer;
5037   StringRef GlobalVariableName;
5038   llvm::GlobalValue::LinkageTypes LT;
5039 
5040   // Mangle the string literal if that's how the ABI merges duplicate strings.
5041   // Don't do it if they are writable, since we don't want writes in one TU to
5042   // affect strings in another.
5043   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5044       !LangOpts.WritableStrings) {
5045     llvm::raw_svector_ostream Out(MangledNameBuffer);
5046     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5047     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5048     GlobalVariableName = MangledNameBuffer;
5049   } else {
5050     LT = llvm::GlobalValue::PrivateLinkage;
5051     GlobalVariableName = Name;
5052   }
5053 
5054   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5055   if (Entry)
5056     *Entry = GV;
5057 
5058   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5059                                   QualType());
5060 
5061   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5062                          Alignment);
5063 }
5064 
5065 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5066 /// array for the given ObjCEncodeExpr node.
5067 ConstantAddress
5068 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5069   std::string Str;
5070   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5071 
5072   return GetAddrOfConstantCString(Str);
5073 }
5074 
5075 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5076 /// the literal and a terminating '\0' character.
5077 /// The result has pointer to array type.
5078 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5079     const std::string &Str, const char *GlobalName) {
5080   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5081   CharUnits Alignment =
5082     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5083 
5084   llvm::Constant *C =
5085       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5086 
5087   // Don't share any string literals if strings aren't constant.
5088   llvm::GlobalVariable **Entry = nullptr;
5089   if (!LangOpts.WritableStrings) {
5090     Entry = &ConstantStringMap[C];
5091     if (auto GV = *Entry) {
5092       if (Alignment.getQuantity() > GV->getAlignment())
5093         GV->setAlignment(Alignment.getAsAlign());
5094       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5095                              Alignment);
5096     }
5097   }
5098 
5099   // Get the default prefix if a name wasn't specified.
5100   if (!GlobalName)
5101     GlobalName = ".str";
5102   // Create a global variable for this.
5103   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5104                                   GlobalName, Alignment);
5105   if (Entry)
5106     *Entry = GV;
5107 
5108   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5109                          Alignment);
5110 }
5111 
5112 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5113     const MaterializeTemporaryExpr *E, const Expr *Init) {
5114   assert((E->getStorageDuration() == SD_Static ||
5115           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5116   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5117 
5118   // If we're not materializing a subobject of the temporary, keep the
5119   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5120   QualType MaterializedType = Init->getType();
5121   if (Init == E->getSubExpr())
5122     MaterializedType = E->getType();
5123 
5124   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5125 
5126   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5127     return ConstantAddress(Slot, Align);
5128 
5129   // FIXME: If an externally-visible declaration extends multiple temporaries,
5130   // we need to give each temporary the same name in every translation unit (and
5131   // we also need to make the temporaries externally-visible).
5132   SmallString<256> Name;
5133   llvm::raw_svector_ostream Out(Name);
5134   getCXXABI().getMangleContext().mangleReferenceTemporary(
5135       VD, E->getManglingNumber(), Out);
5136 
5137   APValue *Value = nullptr;
5138   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5139     // If the initializer of the extending declaration is a constant
5140     // initializer, we should have a cached constant initializer for this
5141     // temporary. Note that this might have a different value from the value
5142     // computed by evaluating the initializer if the surrounding constant
5143     // expression modifies the temporary.
5144     Value = E->getOrCreateValue(false);
5145   }
5146 
5147   // Try evaluating it now, it might have a constant initializer.
5148   Expr::EvalResult EvalResult;
5149   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5150       !EvalResult.hasSideEffects())
5151     Value = &EvalResult.Val;
5152 
5153   LangAS AddrSpace =
5154       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5155 
5156   Optional<ConstantEmitter> emitter;
5157   llvm::Constant *InitialValue = nullptr;
5158   bool Constant = false;
5159   llvm::Type *Type;
5160   if (Value) {
5161     // The temporary has a constant initializer, use it.
5162     emitter.emplace(*this);
5163     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5164                                                MaterializedType);
5165     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5166     Type = InitialValue->getType();
5167   } else {
5168     // No initializer, the initialization will be provided when we
5169     // initialize the declaration which performed lifetime extension.
5170     Type = getTypes().ConvertTypeForMem(MaterializedType);
5171   }
5172 
5173   // Create a global variable for this lifetime-extended temporary.
5174   llvm::GlobalValue::LinkageTypes Linkage =
5175       getLLVMLinkageVarDefinition(VD, Constant);
5176   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5177     const VarDecl *InitVD;
5178     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5179         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5180       // Temporaries defined inside a class get linkonce_odr linkage because the
5181       // class can be defined in multiple translation units.
5182       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5183     } else {
5184       // There is no need for this temporary to have external linkage if the
5185       // VarDecl has external linkage.
5186       Linkage = llvm::GlobalVariable::InternalLinkage;
5187     }
5188   }
5189   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5190   auto *GV = new llvm::GlobalVariable(
5191       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5192       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5193   if (emitter) emitter->finalize(GV);
5194   setGVProperties(GV, VD);
5195   GV->setAlignment(Align.getAsAlign());
5196   if (supportsCOMDAT() && GV->isWeakForLinker())
5197     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5198   if (VD->getTLSKind())
5199     setTLSMode(GV, *VD);
5200   llvm::Constant *CV = GV;
5201   if (AddrSpace != LangAS::Default)
5202     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5203         *this, GV, AddrSpace, LangAS::Default,
5204         Type->getPointerTo(
5205             getContext().getTargetAddressSpace(LangAS::Default)));
5206   MaterializedGlobalTemporaryMap[E] = CV;
5207   return ConstantAddress(CV, Align);
5208 }
5209 
5210 /// EmitObjCPropertyImplementations - Emit information for synthesized
5211 /// properties for an implementation.
5212 void CodeGenModule::EmitObjCPropertyImplementations(const
5213                                                     ObjCImplementationDecl *D) {
5214   for (const auto *PID : D->property_impls()) {
5215     // Dynamic is just for type-checking.
5216     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5217       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5218 
5219       // Determine which methods need to be implemented, some may have
5220       // been overridden. Note that ::isPropertyAccessor is not the method
5221       // we want, that just indicates if the decl came from a
5222       // property. What we want to know is if the method is defined in
5223       // this implementation.
5224       auto *Getter = PID->getGetterMethodDecl();
5225       if (!Getter || Getter->isSynthesizedAccessorStub())
5226         CodeGenFunction(*this).GenerateObjCGetter(
5227             const_cast<ObjCImplementationDecl *>(D), PID);
5228       auto *Setter = PID->getSetterMethodDecl();
5229       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5230         CodeGenFunction(*this).GenerateObjCSetter(
5231                                  const_cast<ObjCImplementationDecl *>(D), PID);
5232     }
5233   }
5234 }
5235 
5236 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5237   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5238   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5239        ivar; ivar = ivar->getNextIvar())
5240     if (ivar->getType().isDestructedType())
5241       return true;
5242 
5243   return false;
5244 }
5245 
5246 static bool AllTrivialInitializers(CodeGenModule &CGM,
5247                                    ObjCImplementationDecl *D) {
5248   CodeGenFunction CGF(CGM);
5249   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5250        E = D->init_end(); B != E; ++B) {
5251     CXXCtorInitializer *CtorInitExp = *B;
5252     Expr *Init = CtorInitExp->getInit();
5253     if (!CGF.isTrivialInitializer(Init))
5254       return false;
5255   }
5256   return true;
5257 }
5258 
5259 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5260 /// for an implementation.
5261 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5262   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5263   if (needsDestructMethod(D)) {
5264     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5265     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5266     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5267         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5268         getContext().VoidTy, nullptr, D,
5269         /*isInstance=*/true, /*isVariadic=*/false,
5270         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5271         /*isImplicitlyDeclared=*/true,
5272         /*isDefined=*/false, ObjCMethodDecl::Required);
5273     D->addInstanceMethod(DTORMethod);
5274     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5275     D->setHasDestructors(true);
5276   }
5277 
5278   // If the implementation doesn't have any ivar initializers, we don't need
5279   // a .cxx_construct.
5280   if (D->getNumIvarInitializers() == 0 ||
5281       AllTrivialInitializers(*this, D))
5282     return;
5283 
5284   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5285   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5286   // The constructor returns 'self'.
5287   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5288       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5289       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5290       /*isVariadic=*/false,
5291       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5292       /*isImplicitlyDeclared=*/true,
5293       /*isDefined=*/false, ObjCMethodDecl::Required);
5294   D->addInstanceMethod(CTORMethod);
5295   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5296   D->setHasNonZeroConstructors(true);
5297 }
5298 
5299 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5300 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5301   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5302       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5303     ErrorUnsupported(LSD, "linkage spec");
5304     return;
5305   }
5306 
5307   EmitDeclContext(LSD);
5308 }
5309 
5310 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5311   for (auto *I : DC->decls()) {
5312     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5313     // are themselves considered "top-level", so EmitTopLevelDecl on an
5314     // ObjCImplDecl does not recursively visit them. We need to do that in
5315     // case they're nested inside another construct (LinkageSpecDecl /
5316     // ExportDecl) that does stop them from being considered "top-level".
5317     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5318       for (auto *M : OID->methods())
5319         EmitTopLevelDecl(M);
5320     }
5321 
5322     EmitTopLevelDecl(I);
5323   }
5324 }
5325 
5326 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5327 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5328   // Ignore dependent declarations.
5329   if (D->isTemplated())
5330     return;
5331 
5332   switch (D->getKind()) {
5333   case Decl::CXXConversion:
5334   case Decl::CXXMethod:
5335   case Decl::Function:
5336     EmitGlobal(cast<FunctionDecl>(D));
5337     // Always provide some coverage mapping
5338     // even for the functions that aren't emitted.
5339     AddDeferredUnusedCoverageMapping(D);
5340     break;
5341 
5342   case Decl::CXXDeductionGuide:
5343     // Function-like, but does not result in code emission.
5344     break;
5345 
5346   case Decl::Var:
5347   case Decl::Decomposition:
5348   case Decl::VarTemplateSpecialization:
5349     EmitGlobal(cast<VarDecl>(D));
5350     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5351       for (auto *B : DD->bindings())
5352         if (auto *HD = B->getHoldingVar())
5353           EmitGlobal(HD);
5354     break;
5355 
5356   // Indirect fields from global anonymous structs and unions can be
5357   // ignored; only the actual variable requires IR gen support.
5358   case Decl::IndirectField:
5359     break;
5360 
5361   // C++ Decls
5362   case Decl::Namespace:
5363     EmitDeclContext(cast<NamespaceDecl>(D));
5364     break;
5365   case Decl::ClassTemplateSpecialization: {
5366     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5367     if (DebugInfo &&
5368         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5369         Spec->hasDefinition())
5370       DebugInfo->completeTemplateDefinition(*Spec);
5371   } LLVM_FALLTHROUGH;
5372   case Decl::CXXRecord:
5373     if (DebugInfo) {
5374       if (auto *ES = D->getASTContext().getExternalSource())
5375         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5376           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5377     }
5378     // Emit any static data members, they may be definitions.
5379     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5380       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5381         EmitTopLevelDecl(I);
5382     break;
5383     // No code generation needed.
5384   case Decl::UsingShadow:
5385   case Decl::ClassTemplate:
5386   case Decl::VarTemplate:
5387   case Decl::Concept:
5388   case Decl::VarTemplatePartialSpecialization:
5389   case Decl::FunctionTemplate:
5390   case Decl::TypeAliasTemplate:
5391   case Decl::Block:
5392   case Decl::Empty:
5393   case Decl::Binding:
5394     break;
5395   case Decl::Using:          // using X; [C++]
5396     if (CGDebugInfo *DI = getModuleDebugInfo())
5397         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5398     return;
5399   case Decl::NamespaceAlias:
5400     if (CGDebugInfo *DI = getModuleDebugInfo())
5401         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5402     return;
5403   case Decl::UsingDirective: // using namespace X; [C++]
5404     if (CGDebugInfo *DI = getModuleDebugInfo())
5405       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5406     return;
5407   case Decl::CXXConstructor:
5408     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5409     break;
5410   case Decl::CXXDestructor:
5411     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5412     break;
5413 
5414   case Decl::StaticAssert:
5415     // Nothing to do.
5416     break;
5417 
5418   // Objective-C Decls
5419 
5420   // Forward declarations, no (immediate) code generation.
5421   case Decl::ObjCInterface:
5422   case Decl::ObjCCategory:
5423     break;
5424 
5425   case Decl::ObjCProtocol: {
5426     auto *Proto = cast<ObjCProtocolDecl>(D);
5427     if (Proto->isThisDeclarationADefinition())
5428       ObjCRuntime->GenerateProtocol(Proto);
5429     break;
5430   }
5431 
5432   case Decl::ObjCCategoryImpl:
5433     // Categories have properties but don't support synthesize so we
5434     // can ignore them here.
5435     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5436     break;
5437 
5438   case Decl::ObjCImplementation: {
5439     auto *OMD = cast<ObjCImplementationDecl>(D);
5440     EmitObjCPropertyImplementations(OMD);
5441     EmitObjCIvarInitializations(OMD);
5442     ObjCRuntime->GenerateClass(OMD);
5443     // Emit global variable debug information.
5444     if (CGDebugInfo *DI = getModuleDebugInfo())
5445       if (getCodeGenOpts().hasReducedDebugInfo())
5446         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5447             OMD->getClassInterface()), OMD->getLocation());
5448     break;
5449   }
5450   case Decl::ObjCMethod: {
5451     auto *OMD = cast<ObjCMethodDecl>(D);
5452     // If this is not a prototype, emit the body.
5453     if (OMD->getBody())
5454       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5455     break;
5456   }
5457   case Decl::ObjCCompatibleAlias:
5458     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5459     break;
5460 
5461   case Decl::PragmaComment: {
5462     const auto *PCD = cast<PragmaCommentDecl>(D);
5463     switch (PCD->getCommentKind()) {
5464     case PCK_Unknown:
5465       llvm_unreachable("unexpected pragma comment kind");
5466     case PCK_Linker:
5467       AppendLinkerOptions(PCD->getArg());
5468       break;
5469     case PCK_Lib:
5470         AddDependentLib(PCD->getArg());
5471       break;
5472     case PCK_Compiler:
5473     case PCK_ExeStr:
5474     case PCK_User:
5475       break; // We ignore all of these.
5476     }
5477     break;
5478   }
5479 
5480   case Decl::PragmaDetectMismatch: {
5481     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5482     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5483     break;
5484   }
5485 
5486   case Decl::LinkageSpec:
5487     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5488     break;
5489 
5490   case Decl::FileScopeAsm: {
5491     // File-scope asm is ignored during device-side CUDA compilation.
5492     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5493       break;
5494     // File-scope asm is ignored during device-side OpenMP compilation.
5495     if (LangOpts.OpenMPIsDevice)
5496       break;
5497     auto *AD = cast<FileScopeAsmDecl>(D);
5498     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5499     break;
5500   }
5501 
5502   case Decl::Import: {
5503     auto *Import = cast<ImportDecl>(D);
5504 
5505     // If we've already imported this module, we're done.
5506     if (!ImportedModules.insert(Import->getImportedModule()))
5507       break;
5508 
5509     // Emit debug information for direct imports.
5510     if (!Import->getImportedOwningModule()) {
5511       if (CGDebugInfo *DI = getModuleDebugInfo())
5512         DI->EmitImportDecl(*Import);
5513     }
5514 
5515     // Find all of the submodules and emit the module initializers.
5516     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5517     SmallVector<clang::Module *, 16> Stack;
5518     Visited.insert(Import->getImportedModule());
5519     Stack.push_back(Import->getImportedModule());
5520 
5521     while (!Stack.empty()) {
5522       clang::Module *Mod = Stack.pop_back_val();
5523       if (!EmittedModuleInitializers.insert(Mod).second)
5524         continue;
5525 
5526       for (auto *D : Context.getModuleInitializers(Mod))
5527         EmitTopLevelDecl(D);
5528 
5529       // Visit the submodules of this module.
5530       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5531                                              SubEnd = Mod->submodule_end();
5532            Sub != SubEnd; ++Sub) {
5533         // Skip explicit children; they need to be explicitly imported to emit
5534         // the initializers.
5535         if ((*Sub)->IsExplicit)
5536           continue;
5537 
5538         if (Visited.insert(*Sub).second)
5539           Stack.push_back(*Sub);
5540       }
5541     }
5542     break;
5543   }
5544 
5545   case Decl::Export:
5546     EmitDeclContext(cast<ExportDecl>(D));
5547     break;
5548 
5549   case Decl::OMPThreadPrivate:
5550     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5551     break;
5552 
5553   case Decl::OMPAllocate:
5554     break;
5555 
5556   case Decl::OMPDeclareReduction:
5557     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5558     break;
5559 
5560   case Decl::OMPDeclareMapper:
5561     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5562     break;
5563 
5564   case Decl::OMPRequires:
5565     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5566     break;
5567 
5568   default:
5569     // Make sure we handled everything we should, every other kind is a
5570     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5571     // function. Need to recode Decl::Kind to do that easily.
5572     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5573     break;
5574   }
5575 }
5576 
5577 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5578   // Do we need to generate coverage mapping?
5579   if (!CodeGenOpts.CoverageMapping)
5580     return;
5581   switch (D->getKind()) {
5582   case Decl::CXXConversion:
5583   case Decl::CXXMethod:
5584   case Decl::Function:
5585   case Decl::ObjCMethod:
5586   case Decl::CXXConstructor:
5587   case Decl::CXXDestructor: {
5588     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5589       return;
5590     SourceManager &SM = getContext().getSourceManager();
5591     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5592       return;
5593     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5594     if (I == DeferredEmptyCoverageMappingDecls.end())
5595       DeferredEmptyCoverageMappingDecls[D] = true;
5596     break;
5597   }
5598   default:
5599     break;
5600   };
5601 }
5602 
5603 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5604   // Do we need to generate coverage mapping?
5605   if (!CodeGenOpts.CoverageMapping)
5606     return;
5607   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5608     if (Fn->isTemplateInstantiation())
5609       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5610   }
5611   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5612   if (I == DeferredEmptyCoverageMappingDecls.end())
5613     DeferredEmptyCoverageMappingDecls[D] = false;
5614   else
5615     I->second = false;
5616 }
5617 
5618 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5619   // We call takeVector() here to avoid use-after-free.
5620   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5621   // we deserialize function bodies to emit coverage info for them, and that
5622   // deserializes more declarations. How should we handle that case?
5623   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5624     if (!Entry.second)
5625       continue;
5626     const Decl *D = Entry.first;
5627     switch (D->getKind()) {
5628     case Decl::CXXConversion:
5629     case Decl::CXXMethod:
5630     case Decl::Function:
5631     case Decl::ObjCMethod: {
5632       CodeGenPGO PGO(*this);
5633       GlobalDecl GD(cast<FunctionDecl>(D));
5634       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5635                                   getFunctionLinkage(GD));
5636       break;
5637     }
5638     case Decl::CXXConstructor: {
5639       CodeGenPGO PGO(*this);
5640       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5641       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5642                                   getFunctionLinkage(GD));
5643       break;
5644     }
5645     case Decl::CXXDestructor: {
5646       CodeGenPGO PGO(*this);
5647       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5648       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5649                                   getFunctionLinkage(GD));
5650       break;
5651     }
5652     default:
5653       break;
5654     };
5655   }
5656 }
5657 
5658 void CodeGenModule::EmitMainVoidAlias() {
5659   // In order to transition away from "__original_main" gracefully, emit an
5660   // alias for "main" in the no-argument case so that libc can detect when
5661   // new-style no-argument main is in used.
5662   if (llvm::Function *F = getModule().getFunction("main")) {
5663     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5664         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5665       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5666   }
5667 }
5668 
5669 /// Turns the given pointer into a constant.
5670 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5671                                           const void *Ptr) {
5672   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5673   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5674   return llvm::ConstantInt::get(i64, PtrInt);
5675 }
5676 
5677 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5678                                    llvm::NamedMDNode *&GlobalMetadata,
5679                                    GlobalDecl D,
5680                                    llvm::GlobalValue *Addr) {
5681   if (!GlobalMetadata)
5682     GlobalMetadata =
5683       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5684 
5685   // TODO: should we report variant information for ctors/dtors?
5686   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5687                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5688                                CGM.getLLVMContext(), D.getDecl()))};
5689   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5690 }
5691 
5692 /// For each function which is declared within an extern "C" region and marked
5693 /// as 'used', but has internal linkage, create an alias from the unmangled
5694 /// name to the mangled name if possible. People expect to be able to refer
5695 /// to such functions with an unmangled name from inline assembly within the
5696 /// same translation unit.
5697 void CodeGenModule::EmitStaticExternCAliases() {
5698   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5699     return;
5700   for (auto &I : StaticExternCValues) {
5701     IdentifierInfo *Name = I.first;
5702     llvm::GlobalValue *Val = I.second;
5703     if (Val && !getModule().getNamedValue(Name->getName()))
5704       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5705   }
5706 }
5707 
5708 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5709                                              GlobalDecl &Result) const {
5710   auto Res = Manglings.find(MangledName);
5711   if (Res == Manglings.end())
5712     return false;
5713   Result = Res->getValue();
5714   return true;
5715 }
5716 
5717 /// Emits metadata nodes associating all the global values in the
5718 /// current module with the Decls they came from.  This is useful for
5719 /// projects using IR gen as a subroutine.
5720 ///
5721 /// Since there's currently no way to associate an MDNode directly
5722 /// with an llvm::GlobalValue, we create a global named metadata
5723 /// with the name 'clang.global.decl.ptrs'.
5724 void CodeGenModule::EmitDeclMetadata() {
5725   llvm::NamedMDNode *GlobalMetadata = nullptr;
5726 
5727   for (auto &I : MangledDeclNames) {
5728     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5729     // Some mangled names don't necessarily have an associated GlobalValue
5730     // in this module, e.g. if we mangled it for DebugInfo.
5731     if (Addr)
5732       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5733   }
5734 }
5735 
5736 /// Emits metadata nodes for all the local variables in the current
5737 /// function.
5738 void CodeGenFunction::EmitDeclMetadata() {
5739   if (LocalDeclMap.empty()) return;
5740 
5741   llvm::LLVMContext &Context = getLLVMContext();
5742 
5743   // Find the unique metadata ID for this name.
5744   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5745 
5746   llvm::NamedMDNode *GlobalMetadata = nullptr;
5747 
5748   for (auto &I : LocalDeclMap) {
5749     const Decl *D = I.first;
5750     llvm::Value *Addr = I.second.getPointer();
5751     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5752       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5753       Alloca->setMetadata(
5754           DeclPtrKind, llvm::MDNode::get(
5755                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5756     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5757       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5758       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5759     }
5760   }
5761 }
5762 
5763 void CodeGenModule::EmitVersionIdentMetadata() {
5764   llvm::NamedMDNode *IdentMetadata =
5765     TheModule.getOrInsertNamedMetadata("llvm.ident");
5766   std::string Version = getClangFullVersion();
5767   llvm::LLVMContext &Ctx = TheModule.getContext();
5768 
5769   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5770   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5771 }
5772 
5773 void CodeGenModule::EmitCommandLineMetadata() {
5774   llvm::NamedMDNode *CommandLineMetadata =
5775     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5776   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5777   llvm::LLVMContext &Ctx = TheModule.getContext();
5778 
5779   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5780   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5781 }
5782 
5783 void CodeGenModule::EmitTargetMetadata() {
5784   // Warning, new MangledDeclNames may be appended within this loop.
5785   // We rely on MapVector insertions adding new elements to the end
5786   // of the container.
5787   // FIXME: Move this loop into the one target that needs it, and only
5788   // loop over those declarations for which we couldn't emit the target
5789   // metadata when we emitted the declaration.
5790   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5791     auto Val = *(MangledDeclNames.begin() + I);
5792     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5793     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5794     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5795   }
5796 }
5797 
5798 void CodeGenModule::EmitCoverageFile() {
5799   if (getCodeGenOpts().CoverageDataFile.empty() &&
5800       getCodeGenOpts().CoverageNotesFile.empty())
5801     return;
5802 
5803   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5804   if (!CUNode)
5805     return;
5806 
5807   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5808   llvm::LLVMContext &Ctx = TheModule.getContext();
5809   auto *CoverageDataFile =
5810       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5811   auto *CoverageNotesFile =
5812       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5813   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5814     llvm::MDNode *CU = CUNode->getOperand(i);
5815     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5816     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5817   }
5818 }
5819 
5820 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5821                                                        bool ForEH) {
5822   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5823   // FIXME: should we even be calling this method if RTTI is disabled
5824   // and it's not for EH?
5825   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5826       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5827        getTriple().isNVPTX()))
5828     return llvm::Constant::getNullValue(Int8PtrTy);
5829 
5830   if (ForEH && Ty->isObjCObjectPointerType() &&
5831       LangOpts.ObjCRuntime.isGNUFamily())
5832     return ObjCRuntime->GetEHType(Ty);
5833 
5834   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5835 }
5836 
5837 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5838   // Do not emit threadprivates in simd-only mode.
5839   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5840     return;
5841   for (auto RefExpr : D->varlists()) {
5842     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5843     bool PerformInit =
5844         VD->getAnyInitializer() &&
5845         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5846                                                         /*ForRef=*/false);
5847 
5848     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5849     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5850             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5851       CXXGlobalInits.push_back(InitFunction);
5852   }
5853 }
5854 
5855 llvm::Metadata *
5856 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5857                                             StringRef Suffix) {
5858   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5859   if (InternalId)
5860     return InternalId;
5861 
5862   if (isExternallyVisible(T->getLinkage())) {
5863     std::string OutName;
5864     llvm::raw_string_ostream Out(OutName);
5865     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5866     Out << Suffix;
5867 
5868     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5869   } else {
5870     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5871                                            llvm::ArrayRef<llvm::Metadata *>());
5872   }
5873 
5874   return InternalId;
5875 }
5876 
5877 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5878   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5879 }
5880 
5881 llvm::Metadata *
5882 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5883   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5884 }
5885 
5886 // Generalize pointer types to a void pointer with the qualifiers of the
5887 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5888 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5889 // 'void *'.
5890 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5891   if (!Ty->isPointerType())
5892     return Ty;
5893 
5894   return Ctx.getPointerType(
5895       QualType(Ctx.VoidTy).withCVRQualifiers(
5896           Ty->getPointeeType().getCVRQualifiers()));
5897 }
5898 
5899 // Apply type generalization to a FunctionType's return and argument types
5900 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5901   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5902     SmallVector<QualType, 8> GeneralizedParams;
5903     for (auto &Param : FnType->param_types())
5904       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5905 
5906     return Ctx.getFunctionType(
5907         GeneralizeType(Ctx, FnType->getReturnType()),
5908         GeneralizedParams, FnType->getExtProtoInfo());
5909   }
5910 
5911   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5912     return Ctx.getFunctionNoProtoType(
5913         GeneralizeType(Ctx, FnType->getReturnType()));
5914 
5915   llvm_unreachable("Encountered unknown FunctionType");
5916 }
5917 
5918 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5919   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5920                                       GeneralizedMetadataIdMap, ".generalized");
5921 }
5922 
5923 /// Returns whether this module needs the "all-vtables" type identifier.
5924 bool CodeGenModule::NeedAllVtablesTypeId() const {
5925   // Returns true if at least one of vtable-based CFI checkers is enabled and
5926   // is not in the trapping mode.
5927   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5928            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5929           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5930            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5931           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5932            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5933           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5934            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5935 }
5936 
5937 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5938                                           CharUnits Offset,
5939                                           const CXXRecordDecl *RD) {
5940   llvm::Metadata *MD =
5941       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5942   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5943 
5944   if (CodeGenOpts.SanitizeCfiCrossDso)
5945     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5946       VTable->addTypeMetadata(Offset.getQuantity(),
5947                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5948 
5949   if (NeedAllVtablesTypeId()) {
5950     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5951     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5952   }
5953 }
5954 
5955 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5956   if (!SanStats)
5957     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5958 
5959   return *SanStats;
5960 }
5961 llvm::Value *
5962 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5963                                                   CodeGenFunction &CGF) {
5964   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5965   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5966   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5967   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5968                                 "__translate_sampler_initializer"),
5969                                 {C});
5970 }
5971 
5972 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
5973     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
5974   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
5975                                  /* forPointeeType= */ true);
5976 }
5977 
5978 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
5979                                                  LValueBaseInfo *BaseInfo,
5980                                                  TBAAAccessInfo *TBAAInfo,
5981                                                  bool forPointeeType) {
5982   if (TBAAInfo)
5983     *TBAAInfo = getTBAAAccessInfo(T);
5984 
5985   // Honor alignment typedef attributes even on incomplete types.
5986   // We also honor them straight for C++ class types, even as pointees;
5987   // there's an expressivity gap here.
5988   if (auto TT = T->getAs<TypedefType>()) {
5989     if (auto Align = TT->getDecl()->getMaxAlignment()) {
5990       if (BaseInfo)
5991         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
5992       return getContext().toCharUnitsFromBits(Align);
5993     }
5994   }
5995 
5996   if (BaseInfo)
5997     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
5998 
5999   CharUnits Alignment;
6000   if (T->isIncompleteType()) {
6001     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
6002   } else {
6003     // For C++ class pointees, we don't know whether we're pointing at a
6004     // base or a complete object, so we generally need to use the
6005     // non-virtual alignment.
6006     const CXXRecordDecl *RD;
6007     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
6008       Alignment = getClassPointerAlignment(RD);
6009     } else {
6010       Alignment = getContext().getTypeAlignInChars(T);
6011       if (T.getQualifiers().hasUnaligned())
6012         Alignment = CharUnits::One();
6013     }
6014 
6015     // Cap to the global maximum type alignment unless the alignment
6016     // was somehow explicit on the type.
6017     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6018       if (Alignment.getQuantity() > MaxAlign &&
6019           !getContext().isAlignmentRequired(T))
6020         Alignment = CharUnits::fromQuantity(MaxAlign);
6021     }
6022   }
6023   return Alignment;
6024 }
6025