1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 160 } 161 162 /// AddGlobalCtor - Add a function to the list that will be called before 163 /// main() runs. 164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 165 // FIXME: Type coercion of void()* types. 166 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 167 } 168 169 /// AddGlobalDtor - Add a function to the list that will be called 170 /// when the module is unloaded. 171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 174 } 175 176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 177 // Ctor function type is void()*. 178 llvm::FunctionType* CtorFTy = 179 llvm::FunctionType::get(llvm::Type::VoidTy, 180 std::vector<const llvm::Type*>(), 181 false); 182 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 183 184 // Get the type of a ctor entry, { i32, void ()* }. 185 llvm::StructType* CtorStructTy = 186 llvm::StructType::get(llvm::Type::Int32Ty, 187 llvm::PointerType::getUnqual(CtorFTy), NULL); 188 189 // Construct the constructor and destructor arrays. 190 std::vector<llvm::Constant*> Ctors; 191 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 192 std::vector<llvm::Constant*> S; 193 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 194 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 195 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 196 } 197 198 if (!Ctors.empty()) { 199 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 200 new llvm::GlobalVariable(AT, false, 201 llvm::GlobalValue::AppendingLinkage, 202 llvm::ConstantArray::get(AT, Ctors), 203 GlobalName, 204 &TheModule); 205 } 206 } 207 208 void CodeGenModule::EmitAnnotations() { 209 if (Annotations.empty()) 210 return; 211 212 // Create a new global variable for the ConstantStruct in the Module. 213 llvm::Constant *Array = 214 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 215 Annotations.size()), 216 Annotations); 217 llvm::GlobalValue *gv = 218 new llvm::GlobalVariable(Array->getType(), false, 219 llvm::GlobalValue::AppendingLinkage, Array, 220 "llvm.global.annotations", &TheModule); 221 gv->setSection("llvm.metadata"); 222 } 223 224 static CodeGenModule::GVALinkage 225 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 226 // "static" and attr(always_inline) functions get internal linkage. 227 if (FD->getStorageClass() == FunctionDecl::Static || 228 FD->hasAttr<AlwaysInlineAttr>()) 229 return CodeGenModule::GVA_Internal; 230 231 if (!FD->isInline()) 232 return CodeGenModule::GVA_Normal; 233 234 if (FD->getStorageClass() == FunctionDecl::Extern) 235 return CodeGenModule::GVA_ExternInline; 236 237 // If the inline function explicitly has the GNU inline attribute on it, then 238 // force to GNUC semantics, regardless of language. 239 if (FD->hasAttr<GNUCInlineAttr>()) 240 return CodeGenModule::GVA_GNUCInline; 241 242 // The definition of inline changes based on the language. Note that we 243 // have already handled "static inline" above, with the GVA_Internal case. 244 if (Features.CPlusPlus) 245 return CodeGenModule::GVA_CXXInline; 246 247 if (Features.C99) 248 return CodeGenModule::GVA_C99Inline; 249 250 // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode. 251 return CodeGenModule::GVA_GNUCInline; 252 } 253 254 /// SetFunctionDefinitionAttributes - Set attributes for a global. 255 /// 256 /// FIXME: This is currently only done for aliases and functions, but 257 /// not for variables (these details are set in 258 /// EmitGlobalVarDefinition for variables). 259 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 260 llvm::GlobalValue *GV) { 261 GVALinkage Linkage = GetLinkageForFunction(D, Features); 262 263 if (Linkage == GVA_Internal) { 264 GV->setLinkage(llvm::Function::InternalLinkage); 265 } else if (D->hasAttr<DLLExportAttr>()) { 266 GV->setLinkage(llvm::Function::DLLExportLinkage); 267 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 268 GV->setLinkage(llvm::Function::WeakAnyLinkage); 269 } else if (Linkage == GVA_ExternInline) { 270 // "extern inline" always gets available_externally linkage, which is the 271 // strongest linkage type we can give an inline function: we don't have to 272 // codegen the definition at all, yet we know that it is "ODR". 273 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 274 } else if (Linkage == GVA_CXXInline) { 275 // In C++, the compiler has to emit a definition in every translation unit 276 // that references the function. We should use linkonce_odr because 277 // a) if all references in this translation unit are optimized away, we 278 // don't need to codegen it. b) if the function persists, it needs to be 279 // merged with other definitions. c) C++ has the ODR, so we know the 280 // definition is dependable. 281 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 282 } else if (Linkage == GVA_C99Inline) { 283 // In C99 mode, 'inline' functions are guaranteed to have a strong 284 // definition somewhere else, so we can use available_externally linkage. 285 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 286 } else if (Linkage == GVA_GNUCInline) { 287 // In C89 mode, an 'inline' function may only occur in one translation 288 // unit in the program, but may be extern'd in others. Give it strong 289 // external linkage. 290 GV->setLinkage(llvm::Function::ExternalLinkage); 291 } else { 292 GV->setLinkage(llvm::Function::ExternalLinkage); 293 } 294 295 SetCommonAttributes(D, GV); 296 } 297 298 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 299 const CGFunctionInfo &Info, 300 llvm::Function *F) { 301 AttributeListType AttributeList; 302 ConstructAttributeList(Info, D, AttributeList); 303 304 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 305 AttributeList.size())); 306 307 // Set the appropriate calling convention for the Function. 308 if (D->hasAttr<FastCallAttr>()) 309 F->setCallingConv(llvm::CallingConv::X86_FastCall); 310 311 if (D->hasAttr<StdCallAttr>()) 312 F->setCallingConv(llvm::CallingConv::X86_StdCall); 313 } 314 315 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 316 llvm::Function *F) { 317 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 318 F->addFnAttr(llvm::Attribute::NoUnwind); 319 320 if (D->hasAttr<AlwaysInlineAttr>()) 321 F->addFnAttr(llvm::Attribute::AlwaysInline); 322 323 if (D->hasAttr<NoinlineAttr>()) 324 F->addFnAttr(llvm::Attribute::NoInline); 325 } 326 327 void CodeGenModule::SetCommonAttributes(const Decl *D, 328 llvm::GlobalValue *GV) { 329 setGlobalVisibility(GV, D); 330 331 if (D->hasAttr<UsedAttr>()) 332 AddUsedGlobal(GV); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 335 GV->setSection(SA->getName()); 336 } 337 338 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 339 llvm::Function *F) { 340 SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 341 SetLLVMFunctionAttributesForDefinition(MD, F); 342 343 F->setLinkage(llvm::Function::InternalLinkage); 344 345 SetCommonAttributes(MD, F); 346 } 347 348 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 349 llvm::Function *F) { 350 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 351 352 // Only a few attributes are set on declarations; these may later be 353 // overridden by a definition. 354 355 if (FD->hasAttr<DLLImportAttr>()) { 356 F->setLinkage(llvm::Function::DLLImportLinkage); 357 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 358 // "extern_weak" is overloaded in LLVM; we probably should have 359 // separate linkage types for this. 360 F->setLinkage(llvm::Function::ExternalWeakLinkage); 361 } else { 362 F->setLinkage(llvm::Function::ExternalLinkage); 363 } 364 365 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 366 F->setSection(SA->getName()); 367 } 368 369 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 370 assert(!GV->isDeclaration() && 371 "Only globals with definition can force usage."); 372 LLVMUsed.push_back(GV); 373 } 374 375 void CodeGenModule::EmitLLVMUsed() { 376 // Don't create llvm.used if there is no need. 377 if (LLVMUsed.empty()) 378 return; 379 380 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 381 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 382 383 // Convert LLVMUsed to what ConstantArray needs. 384 std::vector<llvm::Constant*> UsedArray; 385 UsedArray.resize(LLVMUsed.size()); 386 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 387 UsedArray[i] = 388 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 389 } 390 391 llvm::GlobalVariable *GV = 392 new llvm::GlobalVariable(ATy, false, 393 llvm::GlobalValue::AppendingLinkage, 394 llvm::ConstantArray::get(ATy, UsedArray), 395 "llvm.used", &getModule()); 396 397 GV->setSection("llvm.metadata"); 398 } 399 400 void CodeGenModule::EmitDeferred() { 401 // Emit code for any potentially referenced deferred decls. Since a 402 // previously unused static decl may become used during the generation of code 403 // for a static function, iterate until no changes are made. 404 while (!DeferredDeclsToEmit.empty()) { 405 const ValueDecl *D = DeferredDeclsToEmit.back(); 406 DeferredDeclsToEmit.pop_back(); 407 408 // The mangled name for the decl must have been emitted in GlobalDeclMap. 409 // Look it up to see if it was defined with a stronger definition (e.g. an 410 // extern inline function with a strong function redefinition). If so, 411 // just ignore the deferred decl. 412 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 413 assert(CGRef && "Deferred decl wasn't referenced?"); 414 415 if (!CGRef->isDeclaration()) 416 continue; 417 418 // Otherwise, emit the definition and move on to the next one. 419 EmitGlobalDefinition(D); 420 } 421 } 422 423 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 424 /// annotation information for a given GlobalValue. The annotation struct is 425 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 426 /// GlobalValue being annotated. The second field is the constant string 427 /// created from the AnnotateAttr's annotation. The third field is a constant 428 /// string containing the name of the translation unit. The fourth field is 429 /// the line number in the file of the annotated value declaration. 430 /// 431 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 432 /// appears to. 433 /// 434 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 435 const AnnotateAttr *AA, 436 unsigned LineNo) { 437 llvm::Module *M = &getModule(); 438 439 // get [N x i8] constants for the annotation string, and the filename string 440 // which are the 2nd and 3rd elements of the global annotation structure. 441 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 442 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 443 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 444 true); 445 446 // Get the two global values corresponding to the ConstantArrays we just 447 // created to hold the bytes of the strings. 448 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 449 llvm::GlobalValue *annoGV = 450 new llvm::GlobalVariable(anno->getType(), false, 451 llvm::GlobalValue::InternalLinkage, anno, 452 GV->getName() + StringPrefix, M); 453 // translation unit name string, emitted into the llvm.metadata section. 454 llvm::GlobalValue *unitGV = 455 new llvm::GlobalVariable(unit->getType(), false, 456 llvm::GlobalValue::InternalLinkage, unit, 457 StringPrefix, M); 458 459 // Create the ConstantStruct that is the global annotion. 460 llvm::Constant *Fields[4] = { 461 llvm::ConstantExpr::getBitCast(GV, SBP), 462 llvm::ConstantExpr::getBitCast(annoGV, SBP), 463 llvm::ConstantExpr::getBitCast(unitGV, SBP), 464 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 465 }; 466 return llvm::ConstantStruct::get(Fields, 4, false); 467 } 468 469 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 470 // Never defer when EmitAllDecls is specified or the decl has 471 // attribute used. 472 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 473 return false; 474 475 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 476 // Constructors and destructors should never be deferred. 477 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 478 return false; 479 480 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 481 482 // static, static inline, always_inline, and extern inline functions can 483 // always be deferred. Normal inline functions can be deferred in C99/C++. 484 if (Linkage == GVA_Internal || Linkage == GVA_ExternInline || 485 Linkage == GVA_C99Inline || Linkage == GVA_CXXInline) 486 return true; 487 return false; 488 } 489 490 const VarDecl *VD = cast<VarDecl>(Global); 491 assert(VD->isFileVarDecl() && "Invalid decl"); 492 return VD->getStorageClass() == VarDecl::Static; 493 } 494 495 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 496 // If this is an alias definition (which otherwise looks like a declaration) 497 // emit it now. 498 if (Global->hasAttr<AliasAttr>()) 499 return EmitAliasDefinition(Global); 500 501 // Ignore declarations, they will be emitted on their first use. 502 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 503 // Forward declarations are emitted lazily on first use. 504 if (!FD->isThisDeclarationADefinition()) 505 return; 506 } else { 507 const VarDecl *VD = cast<VarDecl>(Global); 508 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 509 510 // Forward declarations are emitted lazily on first use. 511 if (!VD->getInit() && VD->hasExternalStorage()) 512 return; 513 } 514 515 // Defer code generation when possible if this is a static definition, inline 516 // function etc. These we only want to emit if they are used. 517 if (MayDeferGeneration(Global)) { 518 // If the value has already been used, add it directly to the 519 // DeferredDeclsToEmit list. 520 const char *MangledName = getMangledName(Global); 521 if (GlobalDeclMap.count(MangledName)) 522 DeferredDeclsToEmit.push_back(Global); 523 else { 524 // Otherwise, remember that we saw a deferred decl with this name. The 525 // first use of the mangled name will cause it to move into 526 // DeferredDeclsToEmit. 527 DeferredDecls[MangledName] = Global; 528 } 529 return; 530 } 531 532 // Otherwise emit the definition. 533 EmitGlobalDefinition(Global); 534 } 535 536 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 537 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 538 EmitGlobalFunctionDefinition(FD); 539 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 540 EmitGlobalVarDefinition(VD); 541 } else { 542 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 543 } 544 } 545 546 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 547 /// module, create and return an llvm Function with the specified type. If there 548 /// is something in the module with the specified name, return it potentially 549 /// bitcasted to the right type. 550 /// 551 /// If D is non-null, it specifies a decl that correspond to this. This is used 552 /// to set the attributes on the function when it is first created. 553 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 554 const llvm::Type *Ty, 555 const FunctionDecl *D) { 556 // Lookup the entry, lazily creating it if necessary. 557 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 558 if (Entry) { 559 if (Entry->getType()->getElementType() == Ty) 560 return Entry; 561 562 // Make sure the result is of the correct type. 563 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 564 return llvm::ConstantExpr::getBitCast(Entry, PTy); 565 } 566 567 // This is the first use or definition of a mangled name. If there is a 568 // deferred decl with this name, remember that we need to emit it at the end 569 // of the file. 570 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 571 DeferredDecls.find(MangledName); 572 if (DDI != DeferredDecls.end()) { 573 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 574 // list, and remove it from DeferredDecls (since we don't need it anymore). 575 DeferredDeclsToEmit.push_back(DDI->second); 576 DeferredDecls.erase(DDI); 577 } 578 579 // This function doesn't have a complete type (for example, the return 580 // type is an incomplete struct). Use a fake type instead, and make 581 // sure not to try to set attributes. 582 bool ShouldSetAttributes = true; 583 if (!isa<llvm::FunctionType>(Ty)) { 584 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 585 std::vector<const llvm::Type*>(), false); 586 ShouldSetAttributes = false; 587 } 588 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 589 llvm::Function::ExternalLinkage, 590 "", &getModule()); 591 F->setName(MangledName); 592 if (D && ShouldSetAttributes) 593 SetFunctionAttributes(D, F); 594 Entry = F; 595 return F; 596 } 597 598 /// GetAddrOfFunction - Return the address of the given function. If Ty is 599 /// non-null, then this function will use the specified type if it has to 600 /// create it (this occurs when we see a definition of the function). 601 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 602 const llvm::Type *Ty) { 603 // If there was no specific requested type, just convert it now. 604 if (!Ty) 605 Ty = getTypes().ConvertType(D->getType()); 606 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 607 } 608 609 /// CreateRuntimeFunction - Create a new runtime function with the specified 610 /// type and name. 611 llvm::Constant * 612 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 613 const char *Name) { 614 // Convert Name to be a uniqued string from the IdentifierInfo table. 615 Name = getContext().Idents.get(Name).getName(); 616 return GetOrCreateLLVMFunction(Name, FTy, 0); 617 } 618 619 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 620 /// create and return an llvm GlobalVariable with the specified type. If there 621 /// is something in the module with the specified name, return it potentially 622 /// bitcasted to the right type. 623 /// 624 /// If D is non-null, it specifies a decl that correspond to this. This is used 625 /// to set the attributes on the global when it is first created. 626 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 627 const llvm::PointerType*Ty, 628 const VarDecl *D) { 629 // Lookup the entry, lazily creating it if necessary. 630 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 631 if (Entry) { 632 if (Entry->getType() == Ty) 633 return Entry; 634 635 // Make sure the result is of the correct type. 636 return llvm::ConstantExpr::getBitCast(Entry, Ty); 637 } 638 639 // We don't support __thread yet. 640 if (D && D->isThreadSpecified()) 641 ErrorUnsupported(D, "thread local ('__thread') variable", true); 642 643 // This is the first use or definition of a mangled name. If there is a 644 // deferred decl with this name, remember that we need to emit it at the end 645 // of the file. 646 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 647 DeferredDecls.find(MangledName); 648 if (DDI != DeferredDecls.end()) { 649 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 650 // list, and remove it from DeferredDecls (since we don't need it anymore). 651 DeferredDeclsToEmit.push_back(DDI->second); 652 DeferredDecls.erase(DDI); 653 } 654 655 llvm::GlobalVariable *GV = 656 new llvm::GlobalVariable(Ty->getElementType(), false, 657 llvm::GlobalValue::ExternalLinkage, 658 0, "", &getModule(), 659 0, Ty->getAddressSpace()); 660 GV->setName(MangledName); 661 662 // Handle things which are present even on external declarations. 663 if (D) { 664 // FIXME: This code is overly simple and should be merged with 665 // other global handling. 666 GV->setConstant(D->getType().isConstant(Context)); 667 668 // FIXME: Merge with other attribute handling code. 669 if (D->getStorageClass() == VarDecl::PrivateExtern) 670 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 671 672 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 673 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 674 } 675 676 return Entry = GV; 677 } 678 679 680 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 681 /// given global variable. If Ty is non-null and if the global doesn't exist, 682 /// then it will be greated with the specified type instead of whatever the 683 /// normal requested type would be. 684 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 685 const llvm::Type *Ty) { 686 assert(D->hasGlobalStorage() && "Not a global variable"); 687 QualType ASTTy = D->getType(); 688 if (Ty == 0) 689 Ty = getTypes().ConvertTypeForMem(ASTTy); 690 691 const llvm::PointerType *PTy = 692 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 693 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 694 } 695 696 /// CreateRuntimeVariable - Create a new runtime global variable with the 697 /// specified type and name. 698 llvm::Constant * 699 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 700 const char *Name) { 701 // Convert Name to be a uniqued string from the IdentifierInfo table. 702 Name = getContext().Idents.get(Name).getName(); 703 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 704 } 705 706 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 707 llvm::Constant *Init = 0; 708 QualType ASTTy = D->getType(); 709 710 if (D->getInit() == 0) { 711 // This is a tentative definition; tentative definitions are 712 // implicitly initialized with { 0 } 713 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 714 if (ASTTy->isIncompleteArrayType()) { 715 // An incomplete array is normally [ TYPE x 0 ], but we need 716 // to fix it to [ TYPE x 1 ]. 717 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 718 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 719 } 720 Init = llvm::Constant::getNullValue(InitTy); 721 } else { 722 Init = EmitConstantExpr(D->getInit(), D->getType()); 723 if (!Init) { 724 ErrorUnsupported(D, "static initializer"); 725 QualType T = D->getInit()->getType(); 726 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 727 } 728 } 729 730 const llvm::Type* InitType = Init->getType(); 731 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 732 733 // Strip off a bitcast if we got one back. 734 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 735 assert(CE->getOpcode() == llvm::Instruction::BitCast); 736 Entry = CE->getOperand(0); 737 } 738 739 // Entry is now either a Function or GlobalVariable. 740 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 741 742 // If we already have this global and it has an initializer, then 743 // we are in the rare situation where we emitted the defining 744 // declaration of the global and are now being asked to emit a 745 // definition which would be common. This occurs, for example, in 746 // the following situation because statics can be emitted out of 747 // order: 748 // 749 // static int x; 750 // static int *y = &x; 751 // static int x = 10; 752 // int **z = &y; 753 // 754 // Bail here so we don't blow away the definition. Note that if we 755 // can't distinguish here if we emitted a definition with a null 756 // initializer, but this case is safe. 757 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 758 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 759 return; 760 } 761 762 // We have a definition after a declaration with the wrong type. 763 // We must make a new GlobalVariable* and update everything that used OldGV 764 // (a declaration or tentative definition) with the new GlobalVariable* 765 // (which will be a definition). 766 // 767 // This happens if there is a prototype for a global (e.g. 768 // "extern int x[];") and then a definition of a different type (e.g. 769 // "int x[10];"). This also happens when an initializer has a different type 770 // from the type of the global (this happens with unions). 771 if (GV == 0 || 772 GV->getType()->getElementType() != InitType || 773 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 774 775 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 776 GlobalDeclMap.erase(getMangledName(D)); 777 778 // Make a new global with the correct type, this is now guaranteed to work. 779 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 780 GV->takeName(cast<llvm::GlobalValue>(Entry)); 781 782 // Replace all uses of the old global with the new global 783 llvm::Constant *NewPtrForOldDecl = 784 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 785 Entry->replaceAllUsesWith(NewPtrForOldDecl); 786 787 // Erase the old global, since it is no longer used. 788 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 789 } 790 791 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 792 SourceManager &SM = Context.getSourceManager(); 793 AddAnnotation(EmitAnnotateAttr(GV, AA, 794 SM.getInstantiationLineNumber(D->getLocation()))); 795 } 796 797 GV->setInitializer(Init); 798 GV->setConstant(D->getType().isConstant(Context)); 799 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 800 801 // Set the llvm linkage type as appropriate. 802 if (D->getStorageClass() == VarDecl::Static) 803 GV->setLinkage(llvm::Function::InternalLinkage); 804 else if (D->hasAttr<DLLImportAttr>()) 805 GV->setLinkage(llvm::Function::DLLImportLinkage); 806 else if (D->hasAttr<DLLExportAttr>()) 807 GV->setLinkage(llvm::Function::DLLExportLinkage); 808 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 809 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 810 else if (!CompileOpts.NoCommon && 811 (!D->hasExternalStorage() && !D->getInit())) 812 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 813 else 814 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 815 816 SetCommonAttributes(D, GV); 817 818 // Emit global variable debug information. 819 if (CGDebugInfo *DI = getDebugInfo()) { 820 DI->setLocation(D->getLocation()); 821 DI->EmitGlobalVariable(GV, D); 822 } 823 } 824 825 826 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 827 const llvm::FunctionType *Ty; 828 829 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 830 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 831 832 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 833 } else { 834 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 835 836 // As a special case, make sure that definitions of K&R function 837 // "type foo()" aren't declared as varargs (which forces the backend 838 // to do unnecessary work). 839 if (D->getType()->isFunctionNoProtoType()) { 840 assert(Ty->isVarArg() && "Didn't lower type as expected"); 841 // Due to stret, the lowered function could have arguments. 842 // Just create the same type as was lowered by ConvertType 843 // but strip off the varargs bit. 844 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 845 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 846 } 847 } 848 849 // Get or create the prototype for teh function. 850 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 851 852 // Strip off a bitcast if we got one back. 853 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 854 assert(CE->getOpcode() == llvm::Instruction::BitCast); 855 Entry = CE->getOperand(0); 856 } 857 858 859 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 860 // If the types mismatch then we have to rewrite the definition. 861 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 862 "Shouldn't replace non-declaration"); 863 864 // F is the Function* for the one with the wrong type, we must make a new 865 // Function* and update everything that used F (a declaration) with the new 866 // Function* (which will be a definition). 867 // 868 // This happens if there is a prototype for a function 869 // (e.g. "int f()") and then a definition of a different type 870 // (e.g. "int f(int x)"). Start by making a new function of the 871 // correct type, RAUW, then steal the name. 872 GlobalDeclMap.erase(getMangledName(D)); 873 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 874 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 875 876 // Replace uses of F with the Function we will endow with a body. 877 llvm::Constant *NewPtrForOldDecl = 878 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 879 Entry->replaceAllUsesWith(NewPtrForOldDecl); 880 881 // Ok, delete the old function now, which is dead. 882 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 883 884 Entry = NewFn; 885 } 886 887 llvm::Function *Fn = cast<llvm::Function>(Entry); 888 889 CodeGenFunction(*this).GenerateCode(D, Fn); 890 891 SetFunctionDefinitionAttributes(D, Fn); 892 SetLLVMFunctionAttributesForDefinition(D, Fn); 893 894 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 895 AddGlobalCtor(Fn, CA->getPriority()); 896 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 897 AddGlobalDtor(Fn, DA->getPriority()); 898 } 899 900 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 901 const AliasAttr *AA = D->getAttr<AliasAttr>(); 902 assert(AA && "Not an alias?"); 903 904 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 905 906 // Unique the name through the identifier table. 907 const char *AliaseeName = AA->getAliasee().c_str(); 908 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 909 910 // Create a reference to the named value. This ensures that it is emitted 911 // if a deferred decl. 912 llvm::Constant *Aliasee; 913 if (isa<llvm::FunctionType>(DeclTy)) 914 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 915 else 916 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 917 llvm::PointerType::getUnqual(DeclTy), 0); 918 919 // Create the new alias itself, but don't set a name yet. 920 llvm::GlobalValue *GA = 921 new llvm::GlobalAlias(Aliasee->getType(), 922 llvm::Function::ExternalLinkage, 923 "", Aliasee, &getModule()); 924 925 // See if there is already something with the alias' name in the module. 926 const char *MangledName = getMangledName(D); 927 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 928 929 if (Entry && !Entry->isDeclaration()) { 930 // If there is a definition in the module, then it wins over the alias. 931 // This is dubious, but allow it to be safe. Just ignore the alias. 932 GA->eraseFromParent(); 933 return; 934 } 935 936 if (Entry) { 937 // If there is a declaration in the module, then we had an extern followed 938 // by the alias, as in: 939 // extern int test6(); 940 // ... 941 // int test6() __attribute__((alias("test7"))); 942 // 943 // Remove it and replace uses of it with the alias. 944 945 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 946 Entry->getType())); 947 Entry->eraseFromParent(); 948 } 949 950 // Now we know that there is no conflict, set the name. 951 Entry = GA; 952 GA->setName(MangledName); 953 954 // Set attributes which are particular to an alias; this is a 955 // specialization of the attributes which may be set on a global 956 // variable/function. 957 if (D->hasAttr<DLLExportAttr>()) { 958 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 959 // The dllexport attribute is ignored for undefined symbols. 960 if (FD->getBody()) 961 GA->setLinkage(llvm::Function::DLLExportLinkage); 962 } else { 963 GA->setLinkage(llvm::Function::DLLExportLinkage); 964 } 965 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 966 GA->setLinkage(llvm::Function::WeakAnyLinkage); 967 } 968 969 SetCommonAttributes(D, GA); 970 } 971 972 /// getBuiltinLibFunction - Given a builtin id for a function like 973 /// "__builtin_fabsf", return a Function* for "fabsf". 974 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 975 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 976 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 977 "isn't a lib fn"); 978 979 // Get the name, skip over the __builtin_ prefix (if necessary). 980 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 981 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 982 Name += 10; 983 984 // Get the type for the builtin. 985 Builtin::Context::GetBuiltinTypeError Error; 986 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 987 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 988 989 const llvm::FunctionType *Ty = 990 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 991 992 // Unique the name through the identifier table. 993 Name = getContext().Idents.get(Name).getName(); 994 // FIXME: param attributes for sext/zext etc. 995 return GetOrCreateLLVMFunction(Name, Ty, 0); 996 } 997 998 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 999 unsigned NumTys) { 1000 return llvm::Intrinsic::getDeclaration(&getModule(), 1001 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1002 } 1003 1004 llvm::Function *CodeGenModule::getMemCpyFn() { 1005 if (MemCpyFn) return MemCpyFn; 1006 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1007 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1008 } 1009 1010 llvm::Function *CodeGenModule::getMemMoveFn() { 1011 if (MemMoveFn) return MemMoveFn; 1012 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1013 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1014 } 1015 1016 llvm::Function *CodeGenModule::getMemSetFn() { 1017 if (MemSetFn) return MemSetFn; 1018 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1019 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1020 } 1021 1022 static void appendFieldAndPadding(CodeGenModule &CGM, 1023 std::vector<llvm::Constant*>& Fields, 1024 FieldDecl *FieldD, FieldDecl *NextFieldD, 1025 llvm::Constant* Field, 1026 RecordDecl* RD, const llvm::StructType *STy) { 1027 // Append the field. 1028 Fields.push_back(Field); 1029 1030 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1031 1032 int NextStructFieldNo; 1033 if (!NextFieldD) { 1034 NextStructFieldNo = STy->getNumElements(); 1035 } else { 1036 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1037 } 1038 1039 // Append padding 1040 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1041 llvm::Constant *C = 1042 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1043 1044 Fields.push_back(C); 1045 } 1046 } 1047 1048 llvm::Constant *CodeGenModule:: 1049 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1050 std::string str; 1051 unsigned StringLength; 1052 1053 bool isUTF16 = false; 1054 if (Literal->containsNonAsciiOrNull()) { 1055 // Convert from UTF-8 to UTF-16. 1056 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1057 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1058 UTF16 *ToPtr = &ToBuf[0]; 1059 1060 ConversionResult Result; 1061 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1062 &ToPtr, ToPtr+Literal->getByteLength(), 1063 strictConversion); 1064 if (Result == conversionOK) { 1065 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1066 // without doing more surgery to this routine. Since we aren't explicitly 1067 // checking for endianness here, it's also a bug (when generating code for 1068 // a target that doesn't match the host endianness). Modeling this as an 1069 // i16 array is likely the cleanest solution. 1070 StringLength = ToPtr-&ToBuf[0]; 1071 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1072 isUTF16 = true; 1073 } else if (Result == sourceIllegal) { 1074 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1075 str.assign(Literal->getStrData(), Literal->getByteLength()); 1076 StringLength = str.length(); 1077 } else 1078 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1079 1080 } else { 1081 str.assign(Literal->getStrData(), Literal->getByteLength()); 1082 StringLength = str.length(); 1083 } 1084 llvm::StringMapEntry<llvm::Constant *> &Entry = 1085 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1086 1087 if (llvm::Constant *C = Entry.getValue()) 1088 return C; 1089 1090 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1091 llvm::Constant *Zeros[] = { Zero, Zero }; 1092 1093 if (!CFConstantStringClassRef) { 1094 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1095 Ty = llvm::ArrayType::get(Ty, 0); 1096 1097 // FIXME: This is fairly broken if 1098 // __CFConstantStringClassReference is already defined, in that it 1099 // will get renamed and the user will most likely see an opaque 1100 // error message. This is a general issue with relying on 1101 // particular names. 1102 llvm::GlobalVariable *GV = 1103 new llvm::GlobalVariable(Ty, false, 1104 llvm::GlobalVariable::ExternalLinkage, 0, 1105 "__CFConstantStringClassReference", 1106 &getModule()); 1107 1108 // Decay array -> ptr 1109 CFConstantStringClassRef = 1110 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1111 } 1112 1113 QualType CFTy = getContext().getCFConstantStringType(); 1114 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1115 1116 const llvm::StructType *STy = 1117 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1118 1119 std::vector<llvm::Constant*> Fields; 1120 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1121 1122 // Class pointer. 1123 FieldDecl *CurField = *Field++; 1124 FieldDecl *NextField = *Field++; 1125 appendFieldAndPadding(*this, Fields, CurField, NextField, 1126 CFConstantStringClassRef, CFRD, STy); 1127 1128 // Flags. 1129 CurField = NextField; 1130 NextField = *Field++; 1131 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1132 appendFieldAndPadding(*this, Fields, CurField, NextField, 1133 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1134 : llvm::ConstantInt::get(Ty, 0x07C8), 1135 CFRD, STy); 1136 1137 // String pointer. 1138 CurField = NextField; 1139 NextField = *Field++; 1140 llvm::Constant *C = llvm::ConstantArray::get(str); 1141 1142 const char *Sect, *Prefix; 1143 bool isConstant; 1144 if (isUTF16) { 1145 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1146 Sect = getContext().Target.getUnicodeStringSection(); 1147 // FIXME: Why does GCC not set constant here? 1148 isConstant = false; 1149 } else { 1150 Prefix = getContext().Target.getStringSymbolPrefix(true); 1151 Sect = getContext().Target.getCFStringDataSection(); 1152 // FIXME: -fwritable-strings should probably affect this, but we 1153 // are following gcc here. 1154 isConstant = true; 1155 } 1156 llvm::GlobalVariable *GV = 1157 new llvm::GlobalVariable(C->getType(), isConstant, 1158 llvm::GlobalValue::InternalLinkage, 1159 C, Prefix, &getModule()); 1160 if (Sect) 1161 GV->setSection(Sect); 1162 if (isUTF16) { 1163 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1164 GV->setAlignment(Align); 1165 } 1166 appendFieldAndPadding(*this, Fields, CurField, NextField, 1167 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1168 CFRD, STy); 1169 1170 // String length. 1171 CurField = NextField; 1172 NextField = 0; 1173 Ty = getTypes().ConvertType(getContext().LongTy); 1174 appendFieldAndPadding(*this, Fields, CurField, NextField, 1175 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1176 1177 // The struct. 1178 C = llvm::ConstantStruct::get(STy, Fields); 1179 GV = new llvm::GlobalVariable(C->getType(), true, 1180 llvm::GlobalVariable::InternalLinkage, C, 1181 getContext().Target.getCFStringSymbolPrefix(), 1182 &getModule()); 1183 if (const char *Sect = getContext().Target.getCFStringSection()) 1184 GV->setSection(Sect); 1185 Entry.setValue(GV); 1186 1187 return GV; 1188 } 1189 1190 /// GetStringForStringLiteral - Return the appropriate bytes for a 1191 /// string literal, properly padded to match the literal type. 1192 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1193 const char *StrData = E->getStrData(); 1194 unsigned Len = E->getByteLength(); 1195 1196 const ConstantArrayType *CAT = 1197 getContext().getAsConstantArrayType(E->getType()); 1198 assert(CAT && "String isn't pointer or array!"); 1199 1200 // Resize the string to the right size. 1201 std::string Str(StrData, StrData+Len); 1202 uint64_t RealLen = CAT->getSize().getZExtValue(); 1203 1204 if (E->isWide()) 1205 RealLen *= getContext().Target.getWCharWidth()/8; 1206 1207 Str.resize(RealLen, '\0'); 1208 1209 return Str; 1210 } 1211 1212 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1213 /// constant array for the given string literal. 1214 llvm::Constant * 1215 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1216 // FIXME: This can be more efficient. 1217 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1218 } 1219 1220 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1221 /// array for the given ObjCEncodeExpr node. 1222 llvm::Constant * 1223 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1224 std::string Str; 1225 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1226 1227 return GetAddrOfConstantCString(Str); 1228 } 1229 1230 1231 /// GenerateWritableString -- Creates storage for a string literal. 1232 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1233 bool constant, 1234 CodeGenModule &CGM, 1235 const char *GlobalName) { 1236 // Create Constant for this string literal. Don't add a '\0'. 1237 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1238 1239 // Create a global variable for this string 1240 return new llvm::GlobalVariable(C->getType(), constant, 1241 llvm::GlobalValue::InternalLinkage, 1242 C, GlobalName, &CGM.getModule()); 1243 } 1244 1245 /// GetAddrOfConstantString - Returns a pointer to a character array 1246 /// containing the literal. This contents are exactly that of the 1247 /// given string, i.e. it will not be null terminated automatically; 1248 /// see GetAddrOfConstantCString. Note that whether the result is 1249 /// actually a pointer to an LLVM constant depends on 1250 /// Feature.WriteableStrings. 1251 /// 1252 /// The result has pointer to array type. 1253 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1254 const char *GlobalName) { 1255 bool IsConstant = !Features.WritableStrings; 1256 1257 // Get the default prefix if a name wasn't specified. 1258 if (!GlobalName) 1259 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1260 1261 // Don't share any string literals if strings aren't constant. 1262 if (!IsConstant) 1263 return GenerateStringLiteral(str, false, *this, GlobalName); 1264 1265 llvm::StringMapEntry<llvm::Constant *> &Entry = 1266 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1267 1268 if (Entry.getValue()) 1269 return Entry.getValue(); 1270 1271 // Create a global variable for this. 1272 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1273 Entry.setValue(C); 1274 return C; 1275 } 1276 1277 /// GetAddrOfConstantCString - Returns a pointer to a character 1278 /// array containing the literal and a terminating '\-' 1279 /// character. The result has pointer to array type. 1280 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1281 const char *GlobalName){ 1282 return GetAddrOfConstantString(str + '\0', GlobalName); 1283 } 1284 1285 /// EmitObjCPropertyImplementations - Emit information for synthesized 1286 /// properties for an implementation. 1287 void CodeGenModule::EmitObjCPropertyImplementations(const 1288 ObjCImplementationDecl *D) { 1289 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1290 e = D->propimpl_end(); i != e; ++i) { 1291 ObjCPropertyImplDecl *PID = *i; 1292 1293 // Dynamic is just for type-checking. 1294 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1295 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1296 1297 // Determine which methods need to be implemented, some may have 1298 // been overridden. Note that ::isSynthesized is not the method 1299 // we want, that just indicates if the decl came from a 1300 // property. What we want to know is if the method is defined in 1301 // this implementation. 1302 if (!D->getInstanceMethod(PD->getGetterName())) 1303 CodeGenFunction(*this).GenerateObjCGetter( 1304 const_cast<ObjCImplementationDecl *>(D), PID); 1305 if (!PD->isReadOnly() && 1306 !D->getInstanceMethod(PD->getSetterName())) 1307 CodeGenFunction(*this).GenerateObjCSetter( 1308 const_cast<ObjCImplementationDecl *>(D), PID); 1309 } 1310 } 1311 } 1312 1313 /// EmitNamespace - Emit all declarations in a namespace. 1314 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1315 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1316 E = ND->decls_end(getContext()); 1317 I != E; ++I) 1318 EmitTopLevelDecl(*I); 1319 } 1320 1321 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1322 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1323 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1324 ErrorUnsupported(LSD, "linkage spec"); 1325 return; 1326 } 1327 1328 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1329 E = LSD->decls_end(getContext()); 1330 I != E; ++I) 1331 EmitTopLevelDecl(*I); 1332 } 1333 1334 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1335 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1336 // If an error has occurred, stop code generation, but continue 1337 // parsing and semantic analysis (to ensure all warnings and errors 1338 // are emitted). 1339 if (Diags.hasErrorOccurred()) 1340 return; 1341 1342 switch (D->getKind()) { 1343 case Decl::CXXMethod: 1344 case Decl::Function: 1345 case Decl::Var: 1346 EmitGlobal(cast<ValueDecl>(D)); 1347 break; 1348 1349 case Decl::Namespace: 1350 EmitNamespace(cast<NamespaceDecl>(D)); 1351 break; 1352 1353 // Objective-C Decls 1354 1355 // Forward declarations, no (immediate) code generation. 1356 case Decl::ObjCClass: 1357 case Decl::ObjCForwardProtocol: 1358 case Decl::ObjCCategory: 1359 break; 1360 case Decl::ObjCInterface: 1361 // If we already laid out this interface due to an @class, and if we 1362 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1363 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1364 break; 1365 1366 case Decl::ObjCProtocol: 1367 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1368 break; 1369 1370 case Decl::ObjCCategoryImpl: 1371 // Categories have properties but don't support synthesize so we 1372 // can ignore them here. 1373 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1374 break; 1375 1376 case Decl::ObjCImplementation: { 1377 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1378 EmitObjCPropertyImplementations(OMD); 1379 Runtime->GenerateClass(OMD); 1380 break; 1381 } 1382 case Decl::ObjCMethod: { 1383 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1384 // If this is not a prototype, emit the body. 1385 if (OMD->getBody()) 1386 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1387 break; 1388 } 1389 case Decl::ObjCCompatibleAlias: 1390 // compatibility-alias is a directive and has no code gen. 1391 break; 1392 1393 case Decl::LinkageSpec: 1394 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1395 break; 1396 1397 case Decl::FileScopeAsm: { 1398 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1399 std::string AsmString(AD->getAsmString()->getStrData(), 1400 AD->getAsmString()->getByteLength()); 1401 1402 const std::string &S = getModule().getModuleInlineAsm(); 1403 if (S.empty()) 1404 getModule().setModuleInlineAsm(AsmString); 1405 else 1406 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1407 break; 1408 } 1409 1410 default: 1411 // Make sure we handled everything we should, every other kind is 1412 // a non-top-level decl. FIXME: Would be nice to have an 1413 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1414 // that easily. 1415 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1416 } 1417 } 1418