1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
160 }
161 
162 /// AddGlobalCtor - Add a function to the list that will be called before
163 /// main() runs.
164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
165   // FIXME: Type coercion of void()* types.
166   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
167 }
168 
169 /// AddGlobalDtor - Add a function to the list that will be called
170 /// when the module is unloaded.
171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
174 }
175 
176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
177   // Ctor function type is void()*.
178   llvm::FunctionType* CtorFTy =
179     llvm::FunctionType::get(llvm::Type::VoidTy,
180                             std::vector<const llvm::Type*>(),
181                             false);
182   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
183 
184   // Get the type of a ctor entry, { i32, void ()* }.
185   llvm::StructType* CtorStructTy =
186     llvm::StructType::get(llvm::Type::Int32Ty,
187                           llvm::PointerType::getUnqual(CtorFTy), NULL);
188 
189   // Construct the constructor and destructor arrays.
190   std::vector<llvm::Constant*> Ctors;
191   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
192     std::vector<llvm::Constant*> S;
193     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
194     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
195     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
196   }
197 
198   if (!Ctors.empty()) {
199     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
200     new llvm::GlobalVariable(AT, false,
201                              llvm::GlobalValue::AppendingLinkage,
202                              llvm::ConstantArray::get(AT, Ctors),
203                              GlobalName,
204                              &TheModule);
205   }
206 }
207 
208 void CodeGenModule::EmitAnnotations() {
209   if (Annotations.empty())
210     return;
211 
212   // Create a new global variable for the ConstantStruct in the Module.
213   llvm::Constant *Array =
214   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
215                                                 Annotations.size()),
216                            Annotations);
217   llvm::GlobalValue *gv =
218   new llvm::GlobalVariable(Array->getType(), false,
219                            llvm::GlobalValue::AppendingLinkage, Array,
220                            "llvm.global.annotations", &TheModule);
221   gv->setSection("llvm.metadata");
222 }
223 
224 static CodeGenModule::GVALinkage
225 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
226   // "static" and attr(always_inline) functions get internal linkage.
227   if (FD->getStorageClass() == FunctionDecl::Static ||
228       FD->hasAttr<AlwaysInlineAttr>())
229     return CodeGenModule::GVA_Internal;
230 
231   if (!FD->isInline())
232     return CodeGenModule::GVA_Normal;
233 
234   if (FD->getStorageClass() == FunctionDecl::Extern)
235     return CodeGenModule::GVA_ExternInline;
236 
237   // If the inline function explicitly has the GNU inline attribute on it, then
238   // force to GNUC semantics, regardless of language.
239   if (FD->hasAttr<GNUCInlineAttr>())
240     return CodeGenModule::GVA_GNUCInline;
241 
242   // The definition of inline changes based on the language.  Note that we
243   // have already handled "static inline" above, with the GVA_Internal case.
244   if (Features.CPlusPlus)
245     return CodeGenModule::GVA_CXXInline;
246 
247   if (Features.C99)
248     return CodeGenModule::GVA_C99Inline;
249 
250   // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode.
251   return CodeGenModule::GVA_GNUCInline;
252 }
253 
254 /// SetFunctionDefinitionAttributes - Set attributes for a global.
255 ///
256 /// FIXME: This is currently only done for aliases and functions, but
257 /// not for variables (these details are set in
258 /// EmitGlobalVarDefinition for variables).
259 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
260                                                     llvm::GlobalValue *GV) {
261   GVALinkage Linkage = GetLinkageForFunction(D, Features);
262 
263   if (Linkage == GVA_Internal) {
264     GV->setLinkage(llvm::Function::InternalLinkage);
265   } else if (D->hasAttr<DLLExportAttr>()) {
266     GV->setLinkage(llvm::Function::DLLExportLinkage);
267   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
268     GV->setLinkage(llvm::Function::WeakAnyLinkage);
269   } else if (Linkage == GVA_ExternInline) {
270     // "extern inline" always gets available_externally linkage, which is the
271     // strongest linkage type we can give an inline function: we don't have to
272     // codegen the definition at all, yet we know that it is "ODR".
273     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
274   } else if (Linkage == GVA_CXXInline) {
275     // In C++, the compiler has to emit a definition in every translation unit
276     // that references the function.  We should use linkonce_odr because
277     // a) if all references in this translation unit are optimized away, we
278     // don't need to codegen it.  b) if the function persists, it needs to be
279     // merged with other definitions. c) C++ has the ODR, so we know the
280     // definition is dependable.
281     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
282   } else if (Linkage == GVA_C99Inline) {
283     // In C99 mode, 'inline' functions are guaranteed to have a strong
284     // definition somewhere else, so we can use available_externally linkage.
285     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
286   } else if (Linkage == GVA_GNUCInline) {
287     // In C89 mode, an 'inline' function may only occur in one translation
288     // unit in the program, but may be extern'd in others.  Give it strong
289     // external linkage.
290     GV->setLinkage(llvm::Function::ExternalLinkage);
291   } else {
292     GV->setLinkage(llvm::Function::ExternalLinkage);
293   }
294 
295   SetCommonAttributes(D, GV);
296 }
297 
298 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
299                                               const CGFunctionInfo &Info,
300                                               llvm::Function *F) {
301   AttributeListType AttributeList;
302   ConstructAttributeList(Info, D, AttributeList);
303 
304   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
305                                         AttributeList.size()));
306 
307   // Set the appropriate calling convention for the Function.
308   if (D->hasAttr<FastCallAttr>())
309     F->setCallingConv(llvm::CallingConv::X86_FastCall);
310 
311   if (D->hasAttr<StdCallAttr>())
312     F->setCallingConv(llvm::CallingConv::X86_StdCall);
313 }
314 
315 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
316                                                            llvm::Function *F) {
317   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
318     F->addFnAttr(llvm::Attribute::NoUnwind);
319 
320   if (D->hasAttr<AlwaysInlineAttr>())
321     F->addFnAttr(llvm::Attribute::AlwaysInline);
322 
323   if (D->hasAttr<NoinlineAttr>())
324     F->addFnAttr(llvm::Attribute::NoInline);
325 }
326 
327 void CodeGenModule::SetCommonAttributes(const Decl *D,
328                                         llvm::GlobalValue *GV) {
329   setGlobalVisibility(GV, D);
330 
331   if (D->hasAttr<UsedAttr>())
332     AddUsedGlobal(GV);
333 
334   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
335     GV->setSection(SA->getName());
336 }
337 
338 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
339                                         llvm::Function *F) {
340   SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
341   SetLLVMFunctionAttributesForDefinition(MD, F);
342 
343   F->setLinkage(llvm::Function::InternalLinkage);
344 
345   SetCommonAttributes(MD, F);
346 }
347 
348 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
349                                           llvm::Function *F) {
350   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
351 
352   // Only a few attributes are set on declarations; these may later be
353   // overridden by a definition.
354 
355   if (FD->hasAttr<DLLImportAttr>()) {
356     F->setLinkage(llvm::Function::DLLImportLinkage);
357   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
358     // "extern_weak" is overloaded in LLVM; we probably should have
359     // separate linkage types for this.
360     F->setLinkage(llvm::Function::ExternalWeakLinkage);
361   } else {
362     F->setLinkage(llvm::Function::ExternalLinkage);
363   }
364 
365   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
366     F->setSection(SA->getName());
367 }
368 
369 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
370   assert(!GV->isDeclaration() &&
371          "Only globals with definition can force usage.");
372   LLVMUsed.push_back(GV);
373 }
374 
375 void CodeGenModule::EmitLLVMUsed() {
376   // Don't create llvm.used if there is no need.
377   if (LLVMUsed.empty())
378     return;
379 
380   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
381   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
382 
383   // Convert LLVMUsed to what ConstantArray needs.
384   std::vector<llvm::Constant*> UsedArray;
385   UsedArray.resize(LLVMUsed.size());
386   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
387     UsedArray[i] =
388      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
389   }
390 
391   llvm::GlobalVariable *GV =
392     new llvm::GlobalVariable(ATy, false,
393                              llvm::GlobalValue::AppendingLinkage,
394                              llvm::ConstantArray::get(ATy, UsedArray),
395                              "llvm.used", &getModule());
396 
397   GV->setSection("llvm.metadata");
398 }
399 
400 void CodeGenModule::EmitDeferred() {
401   // Emit code for any potentially referenced deferred decls.  Since a
402   // previously unused static decl may become used during the generation of code
403   // for a static function, iterate until no  changes are made.
404   while (!DeferredDeclsToEmit.empty()) {
405     const ValueDecl *D = DeferredDeclsToEmit.back();
406     DeferredDeclsToEmit.pop_back();
407 
408     // The mangled name for the decl must have been emitted in GlobalDeclMap.
409     // Look it up to see if it was defined with a stronger definition (e.g. an
410     // extern inline function with a strong function redefinition).  If so,
411     // just ignore the deferred decl.
412     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
413     assert(CGRef && "Deferred decl wasn't referenced?");
414 
415     if (!CGRef->isDeclaration())
416       continue;
417 
418     // Otherwise, emit the definition and move on to the next one.
419     EmitGlobalDefinition(D);
420   }
421 }
422 
423 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
424 /// annotation information for a given GlobalValue.  The annotation struct is
425 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
426 /// GlobalValue being annotated.  The second field is the constant string
427 /// created from the AnnotateAttr's annotation.  The third field is a constant
428 /// string containing the name of the translation unit.  The fourth field is
429 /// the line number in the file of the annotated value declaration.
430 ///
431 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
432 ///        appears to.
433 ///
434 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
435                                                 const AnnotateAttr *AA,
436                                                 unsigned LineNo) {
437   llvm::Module *M = &getModule();
438 
439   // get [N x i8] constants for the annotation string, and the filename string
440   // which are the 2nd and 3rd elements of the global annotation structure.
441   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
442   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
443   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
444                                                   true);
445 
446   // Get the two global values corresponding to the ConstantArrays we just
447   // created to hold the bytes of the strings.
448   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
449   llvm::GlobalValue *annoGV =
450   new llvm::GlobalVariable(anno->getType(), false,
451                            llvm::GlobalValue::InternalLinkage, anno,
452                            GV->getName() + StringPrefix, M);
453   // translation unit name string, emitted into the llvm.metadata section.
454   llvm::GlobalValue *unitGV =
455   new llvm::GlobalVariable(unit->getType(), false,
456                            llvm::GlobalValue::InternalLinkage, unit,
457                            StringPrefix, M);
458 
459   // Create the ConstantStruct that is the global annotion.
460   llvm::Constant *Fields[4] = {
461     llvm::ConstantExpr::getBitCast(GV, SBP),
462     llvm::ConstantExpr::getBitCast(annoGV, SBP),
463     llvm::ConstantExpr::getBitCast(unitGV, SBP),
464     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
465   };
466   return llvm::ConstantStruct::get(Fields, 4, false);
467 }
468 
469 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
470   // Never defer when EmitAllDecls is specified or the decl has
471   // attribute used.
472   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
473     return false;
474 
475   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
476     // Constructors and destructors should never be deferred.
477     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
478       return false;
479 
480     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
481 
482     // static, static inline, always_inline, and extern inline functions can
483     // always be deferred.  Normal inline functions can be deferred in C99/C++.
484     if (Linkage == GVA_Internal || Linkage == GVA_ExternInline ||
485         Linkage == GVA_C99Inline || Linkage == GVA_CXXInline)
486       return true;
487     return false;
488   }
489 
490   const VarDecl *VD = cast<VarDecl>(Global);
491   assert(VD->isFileVarDecl() && "Invalid decl");
492   return VD->getStorageClass() == VarDecl::Static;
493 }
494 
495 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
496   // If this is an alias definition (which otherwise looks like a declaration)
497   // emit it now.
498   if (Global->hasAttr<AliasAttr>())
499     return EmitAliasDefinition(Global);
500 
501   // Ignore declarations, they will be emitted on their first use.
502   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
503     // Forward declarations are emitted lazily on first use.
504     if (!FD->isThisDeclarationADefinition())
505       return;
506   } else {
507     const VarDecl *VD = cast<VarDecl>(Global);
508     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
509 
510     // Forward declarations are emitted lazily on first use.
511     if (!VD->getInit() && VD->hasExternalStorage())
512       return;
513   }
514 
515   // Defer code generation when possible if this is a static definition, inline
516   // function etc.  These we only want to emit if they are used.
517   if (MayDeferGeneration(Global)) {
518     // If the value has already been used, add it directly to the
519     // DeferredDeclsToEmit list.
520     const char *MangledName = getMangledName(Global);
521     if (GlobalDeclMap.count(MangledName))
522       DeferredDeclsToEmit.push_back(Global);
523     else {
524       // Otherwise, remember that we saw a deferred decl with this name.  The
525       // first use of the mangled name will cause it to move into
526       // DeferredDeclsToEmit.
527       DeferredDecls[MangledName] = Global;
528     }
529     return;
530   }
531 
532   // Otherwise emit the definition.
533   EmitGlobalDefinition(Global);
534 }
535 
536 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
537   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
538     EmitGlobalFunctionDefinition(FD);
539   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
540     EmitGlobalVarDefinition(VD);
541   } else {
542     assert(0 && "Invalid argument to EmitGlobalDefinition()");
543   }
544 }
545 
546 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
547 /// module, create and return an llvm Function with the specified type. If there
548 /// is something in the module with the specified name, return it potentially
549 /// bitcasted to the right type.
550 ///
551 /// If D is non-null, it specifies a decl that correspond to this.  This is used
552 /// to set the attributes on the function when it is first created.
553 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
554                                                        const llvm::Type *Ty,
555                                                        const FunctionDecl *D) {
556   // Lookup the entry, lazily creating it if necessary.
557   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
558   if (Entry) {
559     if (Entry->getType()->getElementType() == Ty)
560       return Entry;
561 
562     // Make sure the result is of the correct type.
563     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
564     return llvm::ConstantExpr::getBitCast(Entry, PTy);
565   }
566 
567   // This is the first use or definition of a mangled name.  If there is a
568   // deferred decl with this name, remember that we need to emit it at the end
569   // of the file.
570   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
571   DeferredDecls.find(MangledName);
572   if (DDI != DeferredDecls.end()) {
573     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
574     // list, and remove it from DeferredDecls (since we don't need it anymore).
575     DeferredDeclsToEmit.push_back(DDI->second);
576     DeferredDecls.erase(DDI);
577   }
578 
579   // This function doesn't have a complete type (for example, the return
580   // type is an incomplete struct). Use a fake type instead, and make
581   // sure not to try to set attributes.
582   bool ShouldSetAttributes = true;
583   if (!isa<llvm::FunctionType>(Ty)) {
584     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
585                                  std::vector<const llvm::Type*>(), false);
586     ShouldSetAttributes = false;
587   }
588   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
589                                              llvm::Function::ExternalLinkage,
590                                              "", &getModule());
591   F->setName(MangledName);
592   if (D && ShouldSetAttributes)
593     SetFunctionAttributes(D, F);
594   Entry = F;
595   return F;
596 }
597 
598 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
599 /// non-null, then this function will use the specified type if it has to
600 /// create it (this occurs when we see a definition of the function).
601 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
602                                                  const llvm::Type *Ty) {
603   // If there was no specific requested type, just convert it now.
604   if (!Ty)
605     Ty = getTypes().ConvertType(D->getType());
606   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
607 }
608 
609 /// CreateRuntimeFunction - Create a new runtime function with the specified
610 /// type and name.
611 llvm::Constant *
612 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
613                                      const char *Name) {
614   // Convert Name to be a uniqued string from the IdentifierInfo table.
615   Name = getContext().Idents.get(Name).getName();
616   return GetOrCreateLLVMFunction(Name, FTy, 0);
617 }
618 
619 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
620 /// create and return an llvm GlobalVariable with the specified type.  If there
621 /// is something in the module with the specified name, return it potentially
622 /// bitcasted to the right type.
623 ///
624 /// If D is non-null, it specifies a decl that correspond to this.  This is used
625 /// to set the attributes on the global when it is first created.
626 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
627                                                      const llvm::PointerType*Ty,
628                                                      const VarDecl *D) {
629   // Lookup the entry, lazily creating it if necessary.
630   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
631   if (Entry) {
632     if (Entry->getType() == Ty)
633       return Entry;
634 
635     // Make sure the result is of the correct type.
636     return llvm::ConstantExpr::getBitCast(Entry, Ty);
637   }
638 
639   // We don't support __thread yet.
640   if (D && D->isThreadSpecified())
641     ErrorUnsupported(D, "thread local ('__thread') variable", true);
642 
643   // This is the first use or definition of a mangled name.  If there is a
644   // deferred decl with this name, remember that we need to emit it at the end
645   // of the file.
646   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
647     DeferredDecls.find(MangledName);
648   if (DDI != DeferredDecls.end()) {
649     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
650     // list, and remove it from DeferredDecls (since we don't need it anymore).
651     DeferredDeclsToEmit.push_back(DDI->second);
652     DeferredDecls.erase(DDI);
653   }
654 
655   llvm::GlobalVariable *GV =
656     new llvm::GlobalVariable(Ty->getElementType(), false,
657                              llvm::GlobalValue::ExternalLinkage,
658                              0, "", &getModule(),
659                              0, Ty->getAddressSpace());
660   GV->setName(MangledName);
661 
662   // Handle things which are present even on external declarations.
663   if (D) {
664     // FIXME: This code is overly simple and should be merged with
665     // other global handling.
666     GV->setConstant(D->getType().isConstant(Context));
667 
668     // FIXME: Merge with other attribute handling code.
669     if (D->getStorageClass() == VarDecl::PrivateExtern)
670       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
671 
672     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
673       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
674   }
675 
676   return Entry = GV;
677 }
678 
679 
680 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
681 /// given global variable.  If Ty is non-null and if the global doesn't exist,
682 /// then it will be greated with the specified type instead of whatever the
683 /// normal requested type would be.
684 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
685                                                   const llvm::Type *Ty) {
686   assert(D->hasGlobalStorage() && "Not a global variable");
687   QualType ASTTy = D->getType();
688   if (Ty == 0)
689     Ty = getTypes().ConvertTypeForMem(ASTTy);
690 
691   const llvm::PointerType *PTy =
692     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
693   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
694 }
695 
696 /// CreateRuntimeVariable - Create a new runtime global variable with the
697 /// specified type and name.
698 llvm::Constant *
699 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
700                                      const char *Name) {
701   // Convert Name to be a uniqued string from the IdentifierInfo table.
702   Name = getContext().Idents.get(Name).getName();
703   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
704 }
705 
706 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
707   llvm::Constant *Init = 0;
708   QualType ASTTy = D->getType();
709 
710   if (D->getInit() == 0) {
711     // This is a tentative definition; tentative definitions are
712     // implicitly initialized with { 0 }
713     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
714     if (ASTTy->isIncompleteArrayType()) {
715       // An incomplete array is normally [ TYPE x 0 ], but we need
716       // to fix it to [ TYPE x 1 ].
717       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
718       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
719     }
720     Init = llvm::Constant::getNullValue(InitTy);
721   } else {
722     Init = EmitConstantExpr(D->getInit(), D->getType());
723     if (!Init) {
724       ErrorUnsupported(D, "static initializer");
725       QualType T = D->getInit()->getType();
726       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
727     }
728   }
729 
730   const llvm::Type* InitType = Init->getType();
731   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
732 
733   // Strip off a bitcast if we got one back.
734   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
735     assert(CE->getOpcode() == llvm::Instruction::BitCast);
736     Entry = CE->getOperand(0);
737   }
738 
739   // Entry is now either a Function or GlobalVariable.
740   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
741 
742   // If we already have this global and it has an initializer, then
743   // we are in the rare situation where we emitted the defining
744   // declaration of the global and are now being asked to emit a
745   // definition which would be common. This occurs, for example, in
746   // the following situation because statics can be emitted out of
747   // order:
748   //
749   //  static int x;
750   //  static int *y = &x;
751   //  static int x = 10;
752   //  int **z = &y;
753   //
754   // Bail here so we don't blow away the definition. Note that if we
755   // can't distinguish here if we emitted a definition with a null
756   // initializer, but this case is safe.
757   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
758     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
759     return;
760   }
761 
762   // We have a definition after a declaration with the wrong type.
763   // We must make a new GlobalVariable* and update everything that used OldGV
764   // (a declaration or tentative definition) with the new GlobalVariable*
765   // (which will be a definition).
766   //
767   // This happens if there is a prototype for a global (e.g.
768   // "extern int x[];") and then a definition of a different type (e.g.
769   // "int x[10];"). This also happens when an initializer has a different type
770   // from the type of the global (this happens with unions).
771   if (GV == 0 ||
772       GV->getType()->getElementType() != InitType ||
773       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
774 
775     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
776     GlobalDeclMap.erase(getMangledName(D));
777 
778     // Make a new global with the correct type, this is now guaranteed to work.
779     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
780     GV->takeName(cast<llvm::GlobalValue>(Entry));
781 
782     // Replace all uses of the old global with the new global
783     llvm::Constant *NewPtrForOldDecl =
784         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
785     Entry->replaceAllUsesWith(NewPtrForOldDecl);
786 
787     // Erase the old global, since it is no longer used.
788     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
789   }
790 
791   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
792     SourceManager &SM = Context.getSourceManager();
793     AddAnnotation(EmitAnnotateAttr(GV, AA,
794                               SM.getInstantiationLineNumber(D->getLocation())));
795   }
796 
797   GV->setInitializer(Init);
798   GV->setConstant(D->getType().isConstant(Context));
799   GV->setAlignment(getContext().getDeclAlignInBytes(D));
800 
801   // Set the llvm linkage type as appropriate.
802   if (D->getStorageClass() == VarDecl::Static)
803     GV->setLinkage(llvm::Function::InternalLinkage);
804   else if (D->hasAttr<DLLImportAttr>())
805     GV->setLinkage(llvm::Function::DLLImportLinkage);
806   else if (D->hasAttr<DLLExportAttr>())
807     GV->setLinkage(llvm::Function::DLLExportLinkage);
808   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
809     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
810   else if (!CompileOpts.NoCommon &&
811            (!D->hasExternalStorage() && !D->getInit()))
812     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
813   else
814     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
815 
816   SetCommonAttributes(D, GV);
817 
818   // Emit global variable debug information.
819   if (CGDebugInfo *DI = getDebugInfo()) {
820     DI->setLocation(D->getLocation());
821     DI->EmitGlobalVariable(GV, D);
822   }
823 }
824 
825 
826 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
827   const llvm::FunctionType *Ty;
828 
829   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
830     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
831 
832     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
833   } else {
834     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
835 
836     // As a special case, make sure that definitions of K&R function
837     // "type foo()" aren't declared as varargs (which forces the backend
838     // to do unnecessary work).
839     if (D->getType()->isFunctionNoProtoType()) {
840       assert(Ty->isVarArg() && "Didn't lower type as expected");
841       // Due to stret, the lowered function could have arguments.
842       // Just create the same type as was lowered by ConvertType
843       // but strip off the varargs bit.
844       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
845       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
846     }
847   }
848 
849   // Get or create the prototype for teh function.
850   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
851 
852   // Strip off a bitcast if we got one back.
853   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
854     assert(CE->getOpcode() == llvm::Instruction::BitCast);
855     Entry = CE->getOperand(0);
856   }
857 
858 
859   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
860     // If the types mismatch then we have to rewrite the definition.
861     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
862            "Shouldn't replace non-declaration");
863 
864     // F is the Function* for the one with the wrong type, we must make a new
865     // Function* and update everything that used F (a declaration) with the new
866     // Function* (which will be a definition).
867     //
868     // This happens if there is a prototype for a function
869     // (e.g. "int f()") and then a definition of a different type
870     // (e.g. "int f(int x)").  Start by making a new function of the
871     // correct type, RAUW, then steal the name.
872     GlobalDeclMap.erase(getMangledName(D));
873     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
874     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
875 
876     // Replace uses of F with the Function we will endow with a body.
877     llvm::Constant *NewPtrForOldDecl =
878       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
879     Entry->replaceAllUsesWith(NewPtrForOldDecl);
880 
881     // Ok, delete the old function now, which is dead.
882     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
883 
884     Entry = NewFn;
885   }
886 
887   llvm::Function *Fn = cast<llvm::Function>(Entry);
888 
889   CodeGenFunction(*this).GenerateCode(D, Fn);
890 
891   SetFunctionDefinitionAttributes(D, Fn);
892   SetLLVMFunctionAttributesForDefinition(D, Fn);
893 
894   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
895     AddGlobalCtor(Fn, CA->getPriority());
896   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
897     AddGlobalDtor(Fn, DA->getPriority());
898 }
899 
900 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
901   const AliasAttr *AA = D->getAttr<AliasAttr>();
902   assert(AA && "Not an alias?");
903 
904   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
905 
906   // Unique the name through the identifier table.
907   const char *AliaseeName = AA->getAliasee().c_str();
908   AliaseeName = getContext().Idents.get(AliaseeName).getName();
909 
910   // Create a reference to the named value.  This ensures that it is emitted
911   // if a deferred decl.
912   llvm::Constant *Aliasee;
913   if (isa<llvm::FunctionType>(DeclTy))
914     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
915   else
916     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
917                                     llvm::PointerType::getUnqual(DeclTy), 0);
918 
919   // Create the new alias itself, but don't set a name yet.
920   llvm::GlobalValue *GA =
921     new llvm::GlobalAlias(Aliasee->getType(),
922                           llvm::Function::ExternalLinkage,
923                           "", Aliasee, &getModule());
924 
925   // See if there is already something with the alias' name in the module.
926   const char *MangledName = getMangledName(D);
927   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
928 
929   if (Entry && !Entry->isDeclaration()) {
930     // If there is a definition in the module, then it wins over the alias.
931     // This is dubious, but allow it to be safe.  Just ignore the alias.
932     GA->eraseFromParent();
933     return;
934   }
935 
936   if (Entry) {
937     // If there is a declaration in the module, then we had an extern followed
938     // by the alias, as in:
939     //   extern int test6();
940     //   ...
941     //   int test6() __attribute__((alias("test7")));
942     //
943     // Remove it and replace uses of it with the alias.
944 
945     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
946                                                           Entry->getType()));
947     Entry->eraseFromParent();
948   }
949 
950   // Now we know that there is no conflict, set the name.
951   Entry = GA;
952   GA->setName(MangledName);
953 
954   // Set attributes which are particular to an alias; this is a
955   // specialization of the attributes which may be set on a global
956   // variable/function.
957   if (D->hasAttr<DLLExportAttr>()) {
958     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
959       // The dllexport attribute is ignored for undefined symbols.
960       if (FD->getBody())
961         GA->setLinkage(llvm::Function::DLLExportLinkage);
962     } else {
963       GA->setLinkage(llvm::Function::DLLExportLinkage);
964     }
965   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
966     GA->setLinkage(llvm::Function::WeakAnyLinkage);
967   }
968 
969   SetCommonAttributes(D, GA);
970 }
971 
972 /// getBuiltinLibFunction - Given a builtin id for a function like
973 /// "__builtin_fabsf", return a Function* for "fabsf".
974 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
975   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
976           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
977          "isn't a lib fn");
978 
979   // Get the name, skip over the __builtin_ prefix (if necessary).
980   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
981   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
982     Name += 10;
983 
984   // Get the type for the builtin.
985   Builtin::Context::GetBuiltinTypeError Error;
986   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
987   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
988 
989   const llvm::FunctionType *Ty =
990     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
991 
992   // Unique the name through the identifier table.
993   Name = getContext().Idents.get(Name).getName();
994   // FIXME: param attributes for sext/zext etc.
995   return GetOrCreateLLVMFunction(Name, Ty, 0);
996 }
997 
998 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
999                                             unsigned NumTys) {
1000   return llvm::Intrinsic::getDeclaration(&getModule(),
1001                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1002 }
1003 
1004 llvm::Function *CodeGenModule::getMemCpyFn() {
1005   if (MemCpyFn) return MemCpyFn;
1006   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1007   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1008 }
1009 
1010 llvm::Function *CodeGenModule::getMemMoveFn() {
1011   if (MemMoveFn) return MemMoveFn;
1012   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1013   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1014 }
1015 
1016 llvm::Function *CodeGenModule::getMemSetFn() {
1017   if (MemSetFn) return MemSetFn;
1018   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1019   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1020 }
1021 
1022 static void appendFieldAndPadding(CodeGenModule &CGM,
1023                                   std::vector<llvm::Constant*>& Fields,
1024                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1025                                   llvm::Constant* Field,
1026                                   RecordDecl* RD, const llvm::StructType *STy) {
1027   // Append the field.
1028   Fields.push_back(Field);
1029 
1030   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1031 
1032   int NextStructFieldNo;
1033   if (!NextFieldD) {
1034     NextStructFieldNo = STy->getNumElements();
1035   } else {
1036     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1037   }
1038 
1039   // Append padding
1040   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1041     llvm::Constant *C =
1042       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1043 
1044     Fields.push_back(C);
1045   }
1046 }
1047 
1048 llvm::Constant *CodeGenModule::
1049 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1050   std::string str;
1051   unsigned StringLength;
1052 
1053   bool isUTF16 = false;
1054   if (Literal->containsNonAsciiOrNull()) {
1055     // Convert from UTF-8 to UTF-16.
1056     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1057     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1058     UTF16 *ToPtr = &ToBuf[0];
1059 
1060     ConversionResult Result;
1061     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1062                                 &ToPtr, ToPtr+Literal->getByteLength(),
1063                                 strictConversion);
1064     if (Result == conversionOK) {
1065       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1066       // without doing more surgery to this routine. Since we aren't explicitly
1067       // checking for endianness here, it's also a bug (when generating code for
1068       // a target that doesn't match the host endianness). Modeling this as an
1069       // i16 array is likely the cleanest solution.
1070       StringLength = ToPtr-&ToBuf[0];
1071       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1072       isUTF16 = true;
1073     } else if (Result == sourceIllegal) {
1074       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1075       str.assign(Literal->getStrData(), Literal->getByteLength());
1076       StringLength = str.length();
1077     } else
1078       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1079 
1080   } else {
1081     str.assign(Literal->getStrData(), Literal->getByteLength());
1082     StringLength = str.length();
1083   }
1084   llvm::StringMapEntry<llvm::Constant *> &Entry =
1085     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1086 
1087   if (llvm::Constant *C = Entry.getValue())
1088     return C;
1089 
1090   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1091   llvm::Constant *Zeros[] = { Zero, Zero };
1092 
1093   if (!CFConstantStringClassRef) {
1094     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1095     Ty = llvm::ArrayType::get(Ty, 0);
1096 
1097     // FIXME: This is fairly broken if
1098     // __CFConstantStringClassReference is already defined, in that it
1099     // will get renamed and the user will most likely see an opaque
1100     // error message. This is a general issue with relying on
1101     // particular names.
1102     llvm::GlobalVariable *GV =
1103       new llvm::GlobalVariable(Ty, false,
1104                                llvm::GlobalVariable::ExternalLinkage, 0,
1105                                "__CFConstantStringClassReference",
1106                                &getModule());
1107 
1108     // Decay array -> ptr
1109     CFConstantStringClassRef =
1110       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1111   }
1112 
1113   QualType CFTy = getContext().getCFConstantStringType();
1114   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1115 
1116   const llvm::StructType *STy =
1117     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1118 
1119   std::vector<llvm::Constant*> Fields;
1120   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1121 
1122   // Class pointer.
1123   FieldDecl *CurField = *Field++;
1124   FieldDecl *NextField = *Field++;
1125   appendFieldAndPadding(*this, Fields, CurField, NextField,
1126                         CFConstantStringClassRef, CFRD, STy);
1127 
1128   // Flags.
1129   CurField = NextField;
1130   NextField = *Field++;
1131   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1132   appendFieldAndPadding(*this, Fields, CurField, NextField,
1133                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1134                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1135                         CFRD, STy);
1136 
1137   // String pointer.
1138   CurField = NextField;
1139   NextField = *Field++;
1140   llvm::Constant *C = llvm::ConstantArray::get(str);
1141 
1142   const char *Sect, *Prefix;
1143   bool isConstant;
1144   if (isUTF16) {
1145     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1146     Sect = getContext().Target.getUnicodeStringSection();
1147     // FIXME: Why does GCC not set constant here?
1148     isConstant = false;
1149   } else {
1150     Prefix = getContext().Target.getStringSymbolPrefix(true);
1151     Sect = getContext().Target.getCFStringDataSection();
1152     // FIXME: -fwritable-strings should probably affect this, but we
1153     // are following gcc here.
1154     isConstant = true;
1155   }
1156   llvm::GlobalVariable *GV =
1157     new llvm::GlobalVariable(C->getType(), isConstant,
1158                              llvm::GlobalValue::InternalLinkage,
1159                              C, Prefix, &getModule());
1160   if (Sect)
1161     GV->setSection(Sect);
1162   if (isUTF16) {
1163     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1164     GV->setAlignment(Align);
1165   }
1166   appendFieldAndPadding(*this, Fields, CurField, NextField,
1167                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1168                         CFRD, STy);
1169 
1170   // String length.
1171   CurField = NextField;
1172   NextField = 0;
1173   Ty = getTypes().ConvertType(getContext().LongTy);
1174   appendFieldAndPadding(*this, Fields, CurField, NextField,
1175                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1176 
1177   // The struct.
1178   C = llvm::ConstantStruct::get(STy, Fields);
1179   GV = new llvm::GlobalVariable(C->getType(), true,
1180                                 llvm::GlobalVariable::InternalLinkage, C,
1181                                 getContext().Target.getCFStringSymbolPrefix(),
1182                                 &getModule());
1183   if (const char *Sect = getContext().Target.getCFStringSection())
1184     GV->setSection(Sect);
1185   Entry.setValue(GV);
1186 
1187   return GV;
1188 }
1189 
1190 /// GetStringForStringLiteral - Return the appropriate bytes for a
1191 /// string literal, properly padded to match the literal type.
1192 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1193   const char *StrData = E->getStrData();
1194   unsigned Len = E->getByteLength();
1195 
1196   const ConstantArrayType *CAT =
1197     getContext().getAsConstantArrayType(E->getType());
1198   assert(CAT && "String isn't pointer or array!");
1199 
1200   // Resize the string to the right size.
1201   std::string Str(StrData, StrData+Len);
1202   uint64_t RealLen = CAT->getSize().getZExtValue();
1203 
1204   if (E->isWide())
1205     RealLen *= getContext().Target.getWCharWidth()/8;
1206 
1207   Str.resize(RealLen, '\0');
1208 
1209   return Str;
1210 }
1211 
1212 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1213 /// constant array for the given string literal.
1214 llvm::Constant *
1215 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1216   // FIXME: This can be more efficient.
1217   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1218 }
1219 
1220 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1221 /// array for the given ObjCEncodeExpr node.
1222 llvm::Constant *
1223 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1224   std::string Str;
1225   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1226 
1227   return GetAddrOfConstantCString(Str);
1228 }
1229 
1230 
1231 /// GenerateWritableString -- Creates storage for a string literal.
1232 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1233                                              bool constant,
1234                                              CodeGenModule &CGM,
1235                                              const char *GlobalName) {
1236   // Create Constant for this string literal. Don't add a '\0'.
1237   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1238 
1239   // Create a global variable for this string
1240   return new llvm::GlobalVariable(C->getType(), constant,
1241                                   llvm::GlobalValue::InternalLinkage,
1242                                   C, GlobalName, &CGM.getModule());
1243 }
1244 
1245 /// GetAddrOfConstantString - Returns a pointer to a character array
1246 /// containing the literal. This contents are exactly that of the
1247 /// given string, i.e. it will not be null terminated automatically;
1248 /// see GetAddrOfConstantCString. Note that whether the result is
1249 /// actually a pointer to an LLVM constant depends on
1250 /// Feature.WriteableStrings.
1251 ///
1252 /// The result has pointer to array type.
1253 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1254                                                        const char *GlobalName) {
1255   bool IsConstant = !Features.WritableStrings;
1256 
1257   // Get the default prefix if a name wasn't specified.
1258   if (!GlobalName)
1259     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1260 
1261   // Don't share any string literals if strings aren't constant.
1262   if (!IsConstant)
1263     return GenerateStringLiteral(str, false, *this, GlobalName);
1264 
1265   llvm::StringMapEntry<llvm::Constant *> &Entry =
1266   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1267 
1268   if (Entry.getValue())
1269     return Entry.getValue();
1270 
1271   // Create a global variable for this.
1272   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1273   Entry.setValue(C);
1274   return C;
1275 }
1276 
1277 /// GetAddrOfConstantCString - Returns a pointer to a character
1278 /// array containing the literal and a terminating '\-'
1279 /// character. The result has pointer to array type.
1280 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1281                                                         const char *GlobalName){
1282   return GetAddrOfConstantString(str + '\0', GlobalName);
1283 }
1284 
1285 /// EmitObjCPropertyImplementations - Emit information for synthesized
1286 /// properties for an implementation.
1287 void CodeGenModule::EmitObjCPropertyImplementations(const
1288                                                     ObjCImplementationDecl *D) {
1289   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1290          e = D->propimpl_end(); i != e; ++i) {
1291     ObjCPropertyImplDecl *PID = *i;
1292 
1293     // Dynamic is just for type-checking.
1294     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1295       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1296 
1297       // Determine which methods need to be implemented, some may have
1298       // been overridden. Note that ::isSynthesized is not the method
1299       // we want, that just indicates if the decl came from a
1300       // property. What we want to know is if the method is defined in
1301       // this implementation.
1302       if (!D->getInstanceMethod(PD->getGetterName()))
1303         CodeGenFunction(*this).GenerateObjCGetter(
1304                                  const_cast<ObjCImplementationDecl *>(D), PID);
1305       if (!PD->isReadOnly() &&
1306           !D->getInstanceMethod(PD->getSetterName()))
1307         CodeGenFunction(*this).GenerateObjCSetter(
1308                                  const_cast<ObjCImplementationDecl *>(D), PID);
1309     }
1310   }
1311 }
1312 
1313 /// EmitNamespace - Emit all declarations in a namespace.
1314 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1315   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1316          E = ND->decls_end(getContext());
1317        I != E; ++I)
1318     EmitTopLevelDecl(*I);
1319 }
1320 
1321 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1322 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1323   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1324     ErrorUnsupported(LSD, "linkage spec");
1325     return;
1326   }
1327 
1328   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1329          E = LSD->decls_end(getContext());
1330        I != E; ++I)
1331     EmitTopLevelDecl(*I);
1332 }
1333 
1334 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1335 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1336   // If an error has occurred, stop code generation, but continue
1337   // parsing and semantic analysis (to ensure all warnings and errors
1338   // are emitted).
1339   if (Diags.hasErrorOccurred())
1340     return;
1341 
1342   switch (D->getKind()) {
1343   case Decl::CXXMethod:
1344   case Decl::Function:
1345   case Decl::Var:
1346     EmitGlobal(cast<ValueDecl>(D));
1347     break;
1348 
1349   case Decl::Namespace:
1350     EmitNamespace(cast<NamespaceDecl>(D));
1351     break;
1352 
1353     // Objective-C Decls
1354 
1355   // Forward declarations, no (immediate) code generation.
1356   case Decl::ObjCClass:
1357   case Decl::ObjCForwardProtocol:
1358   case Decl::ObjCCategory:
1359     break;
1360   case Decl::ObjCInterface:
1361     // If we already laid out this interface due to an @class, and if we
1362     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1363     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1364     break;
1365 
1366   case Decl::ObjCProtocol:
1367     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1368     break;
1369 
1370   case Decl::ObjCCategoryImpl:
1371     // Categories have properties but don't support synthesize so we
1372     // can ignore them here.
1373     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1374     break;
1375 
1376   case Decl::ObjCImplementation: {
1377     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1378     EmitObjCPropertyImplementations(OMD);
1379     Runtime->GenerateClass(OMD);
1380     break;
1381   }
1382   case Decl::ObjCMethod: {
1383     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1384     // If this is not a prototype, emit the body.
1385     if (OMD->getBody())
1386       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1387     break;
1388   }
1389   case Decl::ObjCCompatibleAlias:
1390     // compatibility-alias is a directive and has no code gen.
1391     break;
1392 
1393   case Decl::LinkageSpec:
1394     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1395     break;
1396 
1397   case Decl::FileScopeAsm: {
1398     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1399     std::string AsmString(AD->getAsmString()->getStrData(),
1400                           AD->getAsmString()->getByteLength());
1401 
1402     const std::string &S = getModule().getModuleInlineAsm();
1403     if (S.empty())
1404       getModule().setModuleInlineAsm(AsmString);
1405     else
1406       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1407     break;
1408   }
1409 
1410   default:
1411     // Make sure we handled everything we should, every other kind is
1412     // a non-top-level decl.  FIXME: Would be nice to have an
1413     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1414     // that easily.
1415     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1416   }
1417 }
1418