1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 
66 using namespace clang;
67 using namespace CodeGen;
68 
69 static llvm::cl::opt<bool> LimitedCoverage(
70     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
71     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
72     llvm::cl::init(false));
73 
74 static const char AnnotationSection[] = "llvm.metadata";
75 
76 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
77   switch (CGM.getTarget().getCXXABI().getKind()) {
78   case TargetCXXABI::Fuchsia:
79   case TargetCXXABI::GenericAArch64:
80   case TargetCXXABI::GenericARM:
81   case TargetCXXABI::iOS:
82   case TargetCXXABI::iOS64:
83   case TargetCXXABI::WatchOS:
84   case TargetCXXABI::GenericMIPS:
85   case TargetCXXABI::GenericItanium:
86   case TargetCXXABI::WebAssembly:
87   case TargetCXXABI::XL:
88     return CreateItaniumCXXABI(CGM);
89   case TargetCXXABI::Microsoft:
90     return CreateMicrosoftCXXABI(CGM);
91   }
92 
93   llvm_unreachable("invalid C++ ABI kind");
94 }
95 
96 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
97                              const PreprocessorOptions &PPO,
98                              const CodeGenOptions &CGO, llvm::Module &M,
99                              DiagnosticsEngine &diags,
100                              CoverageSourceInfo *CoverageInfo)
101     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
102       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
103       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
104       VMContext(M.getContext()), Types(*this), VTables(*this),
105       SanitizerMD(new SanitizerMetadata(*this)) {
106 
107   // Initialize the type cache.
108   llvm::LLVMContext &LLVMContext = M.getContext();
109   VoidTy = llvm::Type::getVoidTy(LLVMContext);
110   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
111   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
112   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
113   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
114   HalfTy = llvm::Type::getHalfTy(LLVMContext);
115   FloatTy = llvm::Type::getFloatTy(LLVMContext);
116   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
117   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
118   PointerAlignInBytes =
119     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
120   SizeSizeInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
122   IntAlignInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
124   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
125   IntPtrTy = llvm::IntegerType::get(LLVMContext,
126     C.getTargetInfo().getMaxPointerWidth());
127   Int8PtrTy = Int8Ty->getPointerTo(0);
128   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
129   AllocaInt8PtrTy = Int8Ty->getPointerTo(
130       M.getDataLayout().getAllocaAddrSpace());
131   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
132 
133   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
134 
135   if (LangOpts.ObjC)
136     createObjCRuntime();
137   if (LangOpts.OpenCL)
138     createOpenCLRuntime();
139   if (LangOpts.OpenMP)
140     createOpenMPRuntime();
141   if (LangOpts.CUDA)
142     createCUDARuntime();
143 
144   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
145   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
146       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
147     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
148                                getCXXABI().getMangleContext()));
149 
150   // If debug info or coverage generation is enabled, create the CGDebugInfo
151   // object.
152   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
153       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
154     DebugInfo.reset(new CGDebugInfo(*this));
155 
156   Block.GlobalUniqueCount = 0;
157 
158   if (C.getLangOpts().ObjC)
159     ObjCData.reset(new ObjCEntrypoints());
160 
161   if (CodeGenOpts.hasProfileClangUse()) {
162     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
163         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
164     if (auto E = ReaderOrErr.takeError()) {
165       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
166                                               "Could not read profile %0: %1");
167       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
168         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
169                                   << EI.message();
170       });
171     } else
172       PGOReader = std::move(ReaderOrErr.get());
173   }
174 
175   // If coverage mapping generation is enabled, create the
176   // CoverageMappingModuleGen object.
177   if (CodeGenOpts.CoverageMapping)
178     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
179 }
180 
181 CodeGenModule::~CodeGenModule() {}
182 
183 void CodeGenModule::createObjCRuntime() {
184   // This is just isGNUFamily(), but we want to force implementors of
185   // new ABIs to decide how best to do this.
186   switch (LangOpts.ObjCRuntime.getKind()) {
187   case ObjCRuntime::GNUstep:
188   case ObjCRuntime::GCC:
189   case ObjCRuntime::ObjFW:
190     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
191     return;
192 
193   case ObjCRuntime::FragileMacOSX:
194   case ObjCRuntime::MacOSX:
195   case ObjCRuntime::iOS:
196   case ObjCRuntime::WatchOS:
197     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
198     return;
199   }
200   llvm_unreachable("bad runtime kind");
201 }
202 
203 void CodeGenModule::createOpenCLRuntime() {
204   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
205 }
206 
207 void CodeGenModule::createOpenMPRuntime() {
208   // Select a specialized code generation class based on the target, if any.
209   // If it does not exist use the default implementation.
210   switch (getTriple().getArch()) {
211   case llvm::Triple::nvptx:
212   case llvm::Triple::nvptx64:
213     assert(getLangOpts().OpenMPIsDevice &&
214            "OpenMP NVPTX is only prepared to deal with device code.");
215     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
216     break;
217   default:
218     if (LangOpts.OpenMPSimd)
219       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
220     else
221       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
222     break;
223   }
224 
225   // The OpenMP-IR-Builder should eventually replace the above runtime codegens
226   // but we are not there yet so they both reside in CGModule for now and the
227   // OpenMP-IR-Builder is opt-in only.
228   if (LangOpts.OpenMPIRBuilder) {
229     OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
230     OMPBuilder->initialize();
231   }
232 }
233 
234 void CodeGenModule::createCUDARuntime() {
235   CUDARuntime.reset(CreateNVCUDARuntime(*this));
236 }
237 
238 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
239   Replacements[Name] = C;
240 }
241 
242 void CodeGenModule::applyReplacements() {
243   for (auto &I : Replacements) {
244     StringRef MangledName = I.first();
245     llvm::Constant *Replacement = I.second;
246     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
247     if (!Entry)
248       continue;
249     auto *OldF = cast<llvm::Function>(Entry);
250     auto *NewF = dyn_cast<llvm::Function>(Replacement);
251     if (!NewF) {
252       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
253         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
254       } else {
255         auto *CE = cast<llvm::ConstantExpr>(Replacement);
256         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
257                CE->getOpcode() == llvm::Instruction::GetElementPtr);
258         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
259       }
260     }
261 
262     // Replace old with new, but keep the old order.
263     OldF->replaceAllUsesWith(Replacement);
264     if (NewF) {
265       NewF->removeFromParent();
266       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
267                                                        NewF);
268     }
269     OldF->eraseFromParent();
270   }
271 }
272 
273 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
274   GlobalValReplacements.push_back(std::make_pair(GV, C));
275 }
276 
277 void CodeGenModule::applyGlobalValReplacements() {
278   for (auto &I : GlobalValReplacements) {
279     llvm::GlobalValue *GV = I.first;
280     llvm::Constant *C = I.second;
281 
282     GV->replaceAllUsesWith(C);
283     GV->eraseFromParent();
284   }
285 }
286 
287 // This is only used in aliases that we created and we know they have a
288 // linear structure.
289 static const llvm::GlobalObject *getAliasedGlobal(
290     const llvm::GlobalIndirectSymbol &GIS) {
291   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
292   const llvm::Constant *C = &GIS;
293   for (;;) {
294     C = C->stripPointerCasts();
295     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
296       return GO;
297     // stripPointerCasts will not walk over weak aliases.
298     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
299     if (!GIS2)
300       return nullptr;
301     if (!Visited.insert(GIS2).second)
302       return nullptr;
303     C = GIS2->getIndirectSymbol();
304   }
305 }
306 
307 void CodeGenModule::checkAliases() {
308   // Check if the constructed aliases are well formed. It is really unfortunate
309   // that we have to do this in CodeGen, but we only construct mangled names
310   // and aliases during codegen.
311   bool Error = false;
312   DiagnosticsEngine &Diags = getDiags();
313   for (const GlobalDecl &GD : Aliases) {
314     const auto *D = cast<ValueDecl>(GD.getDecl());
315     SourceLocation Location;
316     bool IsIFunc = D->hasAttr<IFuncAttr>();
317     if (const Attr *A = D->getDefiningAttr())
318       Location = A->getLocation();
319     else
320       llvm_unreachable("Not an alias or ifunc?");
321     StringRef MangledName = getMangledName(GD);
322     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
323     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
324     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
325     if (!GV) {
326       Error = true;
327       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
328     } else if (GV->isDeclaration()) {
329       Error = true;
330       Diags.Report(Location, diag::err_alias_to_undefined)
331           << IsIFunc << IsIFunc;
332     } else if (IsIFunc) {
333       // Check resolver function type.
334       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
335           GV->getType()->getPointerElementType());
336       assert(FTy);
337       if (!FTy->getReturnType()->isPointerTy())
338         Diags.Report(Location, diag::err_ifunc_resolver_return);
339     }
340 
341     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
342     llvm::GlobalValue *AliaseeGV;
343     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
344       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
345     else
346       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
347 
348     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
349       StringRef AliasSection = SA->getName();
350       if (AliasSection != AliaseeGV->getSection())
351         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
352             << AliasSection << IsIFunc << IsIFunc;
353     }
354 
355     // We have to handle alias to weak aliases in here. LLVM itself disallows
356     // this since the object semantics would not match the IL one. For
357     // compatibility with gcc we implement it by just pointing the alias
358     // to its aliasee's aliasee. We also warn, since the user is probably
359     // expecting the link to be weak.
360     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
361       if (GA->isInterposable()) {
362         Diags.Report(Location, diag::warn_alias_to_weak_alias)
363             << GV->getName() << GA->getName() << IsIFunc;
364         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
365             GA->getIndirectSymbol(), Alias->getType());
366         Alias->setIndirectSymbol(Aliasee);
367       }
368     }
369   }
370   if (!Error)
371     return;
372 
373   for (const GlobalDecl &GD : Aliases) {
374     StringRef MangledName = getMangledName(GD);
375     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
376     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
377     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
378     Alias->eraseFromParent();
379   }
380 }
381 
382 void CodeGenModule::clear() {
383   DeferredDeclsToEmit.clear();
384   if (OpenMPRuntime)
385     OpenMPRuntime->clear();
386 }
387 
388 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
389                                        StringRef MainFile) {
390   if (!hasDiagnostics())
391     return;
392   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
393     if (MainFile.empty())
394       MainFile = "<stdin>";
395     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
396   } else {
397     if (Mismatched > 0)
398       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
399 
400     if (Missing > 0)
401       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
402   }
403 }
404 
405 void CodeGenModule::Release() {
406   EmitDeferred();
407   EmitVTablesOpportunistically();
408   applyGlobalValReplacements();
409   applyReplacements();
410   checkAliases();
411   emitMultiVersionFunctions();
412   EmitCXXGlobalInitFunc();
413   EmitCXXGlobalDtorFunc();
414   registerGlobalDtorsWithAtExit();
415   EmitCXXThreadLocalInitFunc();
416   if (ObjCRuntime)
417     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
418       AddGlobalCtor(ObjCInitFunction);
419   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
420       CUDARuntime) {
421     if (llvm::Function *CudaCtorFunction =
422             CUDARuntime->makeModuleCtorFunction())
423       AddGlobalCtor(CudaCtorFunction);
424   }
425   if (OpenMPRuntime) {
426     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
427             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
428       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
429     }
430     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
431     OpenMPRuntime->clear();
432   }
433   if (PGOReader) {
434     getModule().setProfileSummary(
435         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
436         llvm::ProfileSummary::PSK_Instr);
437     if (PGOStats.hasDiagnostics())
438       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
439   }
440   EmitCtorList(GlobalCtors, "llvm.global_ctors");
441   EmitCtorList(GlobalDtors, "llvm.global_dtors");
442   EmitGlobalAnnotations();
443   EmitStaticExternCAliases();
444   EmitDeferredUnusedCoverageMappings();
445   if (CoverageMapping)
446     CoverageMapping->emit();
447   if (CodeGenOpts.SanitizeCfiCrossDso) {
448     CodeGenFunction(*this).EmitCfiCheckFail();
449     CodeGenFunction(*this).EmitCfiCheckStub();
450   }
451   emitAtAvailableLinkGuard();
452   if (Context.getTargetInfo().getTriple().isWasm() &&
453       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
454     EmitMainVoidAlias();
455   }
456   emitLLVMUsed();
457   if (SanStats)
458     SanStats->finish();
459 
460   if (CodeGenOpts.Autolink &&
461       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
462     EmitModuleLinkOptions();
463   }
464 
465   // On ELF we pass the dependent library specifiers directly to the linker
466   // without manipulating them. This is in contrast to other platforms where
467   // they are mapped to a specific linker option by the compiler. This
468   // difference is a result of the greater variety of ELF linkers and the fact
469   // that ELF linkers tend to handle libraries in a more complicated fashion
470   // than on other platforms. This forces us to defer handling the dependent
471   // libs to the linker.
472   //
473   // CUDA/HIP device and host libraries are different. Currently there is no
474   // way to differentiate dependent libraries for host or device. Existing
475   // usage of #pragma comment(lib, *) is intended for host libraries on
476   // Windows. Therefore emit llvm.dependent-libraries only for host.
477   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
478     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
479     for (auto *MD : ELFDependentLibraries)
480       NMD->addOperand(MD);
481   }
482 
483   // Record mregparm value now so it is visible through rest of codegen.
484   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
485     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
486                               CodeGenOpts.NumRegisterParameters);
487 
488   if (CodeGenOpts.DwarfVersion) {
489     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
490                               CodeGenOpts.DwarfVersion);
491   }
492 
493   if (Context.getLangOpts().SemanticInterposition)
494     // Require various optimization to respect semantic interposition.
495     getModule().setSemanticInterposition(1);
496 
497   if (CodeGenOpts.EmitCodeView) {
498     // Indicate that we want CodeView in the metadata.
499     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
500   }
501   if (CodeGenOpts.CodeViewGHash) {
502     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
503   }
504   if (CodeGenOpts.ControlFlowGuard) {
505     // Function ID tables and checks for Control Flow Guard (cfguard=2).
506     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
507   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
508     // Function ID tables for Control Flow Guard (cfguard=1).
509     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
510   }
511   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
512     // We don't support LTO with 2 with different StrictVTablePointers
513     // FIXME: we could support it by stripping all the information introduced
514     // by StrictVTablePointers.
515 
516     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
517 
518     llvm::Metadata *Ops[2] = {
519               llvm::MDString::get(VMContext, "StrictVTablePointers"),
520               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
521                   llvm::Type::getInt32Ty(VMContext), 1))};
522 
523     getModule().addModuleFlag(llvm::Module::Require,
524                               "StrictVTablePointersRequirement",
525                               llvm::MDNode::get(VMContext, Ops));
526   }
527   if (DebugInfo)
528     // We support a single version in the linked module. The LLVM
529     // parser will drop debug info with a different version number
530     // (and warn about it, too).
531     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
532                               llvm::DEBUG_METADATA_VERSION);
533 
534   // We need to record the widths of enums and wchar_t, so that we can generate
535   // the correct build attributes in the ARM backend. wchar_size is also used by
536   // TargetLibraryInfo.
537   uint64_t WCharWidth =
538       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
539   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
540 
541   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
542   if (   Arch == llvm::Triple::arm
543       || Arch == llvm::Triple::armeb
544       || Arch == llvm::Triple::thumb
545       || Arch == llvm::Triple::thumbeb) {
546     // The minimum width of an enum in bytes
547     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
548     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
549   }
550 
551   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
552     StringRef ABIStr = Target.getABI();
553     llvm::LLVMContext &Ctx = TheModule.getContext();
554     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
555                               llvm::MDString::get(Ctx, ABIStr));
556   }
557 
558   if (CodeGenOpts.SanitizeCfiCrossDso) {
559     // Indicate that we want cross-DSO control flow integrity checks.
560     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
561   }
562 
563   if (CodeGenOpts.WholeProgramVTables) {
564     // Indicate whether VFE was enabled for this module, so that the
565     // vcall_visibility metadata added under whole program vtables is handled
566     // appropriately in the optimizer.
567     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
568                               CodeGenOpts.VirtualFunctionElimination);
569   }
570 
571   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
572     getModule().addModuleFlag(llvm::Module::Override,
573                               "CFI Canonical Jump Tables",
574                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
575   }
576 
577   if (CodeGenOpts.CFProtectionReturn &&
578       Target.checkCFProtectionReturnSupported(getDiags())) {
579     // Indicate that we want to instrument return control flow protection.
580     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
581                               1);
582   }
583 
584   if (CodeGenOpts.CFProtectionBranch &&
585       Target.checkCFProtectionBranchSupported(getDiags())) {
586     // Indicate that we want to instrument branch control flow protection.
587     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
588                               1);
589   }
590 
591   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
592     // Indicate whether __nvvm_reflect should be configured to flush denormal
593     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
594     // property.)
595     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
596                               CodeGenOpts.FP32DenormalMode.Output !=
597                                   llvm::DenormalMode::IEEE);
598   }
599 
600   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
601   if (LangOpts.OpenCL) {
602     EmitOpenCLMetadata();
603     // Emit SPIR version.
604     if (getTriple().isSPIR()) {
605       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
606       // opencl.spir.version named metadata.
607       // C++ is backwards compatible with OpenCL v2.0.
608       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
609       llvm::Metadata *SPIRVerElts[] = {
610           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611               Int32Ty, Version / 100)),
612           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
613               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
614       llvm::NamedMDNode *SPIRVerMD =
615           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
616       llvm::LLVMContext &Ctx = TheModule.getContext();
617       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
618     }
619   }
620 
621   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
622     assert(PLevel < 3 && "Invalid PIC Level");
623     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
624     if (Context.getLangOpts().PIE)
625       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
626   }
627 
628   if (getCodeGenOpts().CodeModel.size() > 0) {
629     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
630                   .Case("tiny", llvm::CodeModel::Tiny)
631                   .Case("small", llvm::CodeModel::Small)
632                   .Case("kernel", llvm::CodeModel::Kernel)
633                   .Case("medium", llvm::CodeModel::Medium)
634                   .Case("large", llvm::CodeModel::Large)
635                   .Default(~0u);
636     if (CM != ~0u) {
637       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
638       getModule().setCodeModel(codeModel);
639     }
640   }
641 
642   if (CodeGenOpts.NoPLT)
643     getModule().setRtLibUseGOT();
644 
645   SimplifyPersonality();
646 
647   if (getCodeGenOpts().EmitDeclMetadata)
648     EmitDeclMetadata();
649 
650   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
651     EmitCoverageFile();
652 
653   if (DebugInfo)
654     DebugInfo->finalize();
655 
656   if (getCodeGenOpts().EmitVersionIdentMetadata)
657     EmitVersionIdentMetadata();
658 
659   if (!getCodeGenOpts().RecordCommandLine.empty())
660     EmitCommandLineMetadata();
661 
662   EmitTargetMetadata();
663 
664   EmitBackendOptionsMetadata(getCodeGenOpts());
665 }
666 
667 void CodeGenModule::EmitOpenCLMetadata() {
668   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
669   // opencl.ocl.version named metadata node.
670   // C++ is backwards compatible with OpenCL v2.0.
671   // FIXME: We might need to add CXX version at some point too?
672   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
673   llvm::Metadata *OCLVerElts[] = {
674       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
675           Int32Ty, Version / 100)),
676       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
677           Int32Ty, (Version % 100) / 10))};
678   llvm::NamedMDNode *OCLVerMD =
679       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
680   llvm::LLVMContext &Ctx = TheModule.getContext();
681   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
682 }
683 
684 void CodeGenModule::EmitBackendOptionsMetadata(
685     const CodeGenOptions CodeGenOpts) {
686   switch (getTriple().getArch()) {
687   default:
688     break;
689   case llvm::Triple::riscv32:
690   case llvm::Triple::riscv64:
691     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
692                               CodeGenOpts.SmallDataLimit);
693     break;
694   }
695 }
696 
697 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
698   // Make sure that this type is translated.
699   Types.UpdateCompletedType(TD);
700 }
701 
702 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
703   // Make sure that this type is translated.
704   Types.RefreshTypeCacheForClass(RD);
705 }
706 
707 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
708   if (!TBAA)
709     return nullptr;
710   return TBAA->getTypeInfo(QTy);
711 }
712 
713 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
714   if (!TBAA)
715     return TBAAAccessInfo();
716   return TBAA->getAccessInfo(AccessType);
717 }
718 
719 TBAAAccessInfo
720 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
721   if (!TBAA)
722     return TBAAAccessInfo();
723   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
724 }
725 
726 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
727   if (!TBAA)
728     return nullptr;
729   return TBAA->getTBAAStructInfo(QTy);
730 }
731 
732 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
733   if (!TBAA)
734     return nullptr;
735   return TBAA->getBaseTypeInfo(QTy);
736 }
737 
738 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
739   if (!TBAA)
740     return nullptr;
741   return TBAA->getAccessTagInfo(Info);
742 }
743 
744 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
745                                                    TBAAAccessInfo TargetInfo) {
746   if (!TBAA)
747     return TBAAAccessInfo();
748   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
749 }
750 
751 TBAAAccessInfo
752 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
753                                                    TBAAAccessInfo InfoB) {
754   if (!TBAA)
755     return TBAAAccessInfo();
756   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
757 }
758 
759 TBAAAccessInfo
760 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
761                                               TBAAAccessInfo SrcInfo) {
762   if (!TBAA)
763     return TBAAAccessInfo();
764   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
765 }
766 
767 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
768                                                 TBAAAccessInfo TBAAInfo) {
769   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
770     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
771 }
772 
773 void CodeGenModule::DecorateInstructionWithInvariantGroup(
774     llvm::Instruction *I, const CXXRecordDecl *RD) {
775   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
776                  llvm::MDNode::get(getLLVMContext(), {}));
777 }
778 
779 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
780   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
781   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
782 }
783 
784 /// ErrorUnsupported - Print out an error that codegen doesn't support the
785 /// specified stmt yet.
786 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
787   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
788                                                "cannot compile this %0 yet");
789   std::string Msg = Type;
790   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
791       << Msg << S->getSourceRange();
792 }
793 
794 /// ErrorUnsupported - Print out an error that codegen doesn't support the
795 /// specified decl yet.
796 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
797   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
798                                                "cannot compile this %0 yet");
799   std::string Msg = Type;
800   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
801 }
802 
803 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
804   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
805 }
806 
807 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
808                                         const NamedDecl *D) const {
809   if (GV->hasDLLImportStorageClass())
810     return;
811   // Internal definitions always have default visibility.
812   if (GV->hasLocalLinkage()) {
813     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
814     return;
815   }
816   if (!D)
817     return;
818   // Set visibility for definitions, and for declarations if requested globally
819   // or set explicitly.
820   LinkageInfo LV = D->getLinkageAndVisibility();
821   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
822       !GV->isDeclarationForLinker())
823     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
824 }
825 
826 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
827                                  llvm::GlobalValue *GV) {
828   if (GV->hasLocalLinkage())
829     return true;
830 
831   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
832     return true;
833 
834   // DLLImport explicitly marks the GV as external.
835   if (GV->hasDLLImportStorageClass())
836     return false;
837 
838   const llvm::Triple &TT = CGM.getTriple();
839   if (TT.isWindowsGNUEnvironment()) {
840     // In MinGW, variables without DLLImport can still be automatically
841     // imported from a DLL by the linker; don't mark variables that
842     // potentially could come from another DLL as DSO local.
843     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
844         !GV->isThreadLocal())
845       return false;
846   }
847 
848   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
849   // remain unresolved in the link, they can be resolved to zero, which is
850   // outside the current DSO.
851   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
852     return false;
853 
854   // Every other GV is local on COFF.
855   // Make an exception for windows OS in the triple: Some firmware builds use
856   // *-win32-macho triples. This (accidentally?) produced windows relocations
857   // without GOT tables in older clang versions; Keep this behaviour.
858   // FIXME: even thread local variables?
859   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
860     return true;
861 
862   // Only handle COFF and ELF for now.
863   if (!TT.isOSBinFormatELF())
864     return false;
865 
866   // If this is not an executable, don't assume anything is local.
867   const auto &CGOpts = CGM.getCodeGenOpts();
868   llvm::Reloc::Model RM = CGOpts.RelocationModel;
869   const auto &LOpts = CGM.getLangOpts();
870   if (RM != llvm::Reloc::Static && !LOpts.PIE)
871     return false;
872 
873   // A definition cannot be preempted from an executable.
874   if (!GV->isDeclarationForLinker())
875     return true;
876 
877   // Most PIC code sequences that assume that a symbol is local cannot produce a
878   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
879   // depended, it seems worth it to handle it here.
880   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
881     return false;
882 
883   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
884   llvm::Triple::ArchType Arch = TT.getArch();
885   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
886       Arch == llvm::Triple::ppc64le)
887     return false;
888 
889   // If we can use copy relocations we can assume it is local.
890   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
891     if (!Var->isThreadLocal() &&
892         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
893       return true;
894 
895   // If we can use a plt entry as the symbol address we can assume it
896   // is local.
897   // FIXME: This should work for PIE, but the gold linker doesn't support it.
898   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
899     return true;
900 
901   // Otherwise don't assume it is local.
902   return false;
903 }
904 
905 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
906   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
907 }
908 
909 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
910                                           GlobalDecl GD) const {
911   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
912   // C++ destructors have a few C++ ABI specific special cases.
913   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
914     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
915     return;
916   }
917   setDLLImportDLLExport(GV, D);
918 }
919 
920 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
921                                           const NamedDecl *D) const {
922   if (D && D->isExternallyVisible()) {
923     if (D->hasAttr<DLLImportAttr>())
924       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
925     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
926       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
927   }
928 }
929 
930 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
931                                     GlobalDecl GD) const {
932   setDLLImportDLLExport(GV, GD);
933   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
934 }
935 
936 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
937                                     const NamedDecl *D) const {
938   setDLLImportDLLExport(GV, D);
939   setGVPropertiesAux(GV, D);
940 }
941 
942 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
943                                        const NamedDecl *D) const {
944   setGlobalVisibility(GV, D);
945   setDSOLocal(GV);
946   GV->setPartition(CodeGenOpts.SymbolPartition);
947 }
948 
949 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
950   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
951       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
952       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
953       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
954       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
955 }
956 
957 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
958     CodeGenOptions::TLSModel M) {
959   switch (M) {
960   case CodeGenOptions::GeneralDynamicTLSModel:
961     return llvm::GlobalVariable::GeneralDynamicTLSModel;
962   case CodeGenOptions::LocalDynamicTLSModel:
963     return llvm::GlobalVariable::LocalDynamicTLSModel;
964   case CodeGenOptions::InitialExecTLSModel:
965     return llvm::GlobalVariable::InitialExecTLSModel;
966   case CodeGenOptions::LocalExecTLSModel:
967     return llvm::GlobalVariable::LocalExecTLSModel;
968   }
969   llvm_unreachable("Invalid TLS model!");
970 }
971 
972 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
973   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
974 
975   llvm::GlobalValue::ThreadLocalMode TLM;
976   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
977 
978   // Override the TLS model if it is explicitly specified.
979   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
980     TLM = GetLLVMTLSModel(Attr->getModel());
981   }
982 
983   GV->setThreadLocalMode(TLM);
984 }
985 
986 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
987                                           StringRef Name) {
988   const TargetInfo &Target = CGM.getTarget();
989   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
990 }
991 
992 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
993                                                  const CPUSpecificAttr *Attr,
994                                                  unsigned CPUIndex,
995                                                  raw_ostream &Out) {
996   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
997   // supported.
998   if (Attr)
999     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1000   else if (CGM.getTarget().supportsIFunc())
1001     Out << ".resolver";
1002 }
1003 
1004 static void AppendTargetMangling(const CodeGenModule &CGM,
1005                                  const TargetAttr *Attr, raw_ostream &Out) {
1006   if (Attr->isDefaultVersion())
1007     return;
1008 
1009   Out << '.';
1010   const TargetInfo &Target = CGM.getTarget();
1011   ParsedTargetAttr Info =
1012       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1013         // Multiversioning doesn't allow "no-${feature}", so we can
1014         // only have "+" prefixes here.
1015         assert(LHS.startswith("+") && RHS.startswith("+") &&
1016                "Features should always have a prefix.");
1017         return Target.multiVersionSortPriority(LHS.substr(1)) >
1018                Target.multiVersionSortPriority(RHS.substr(1));
1019       });
1020 
1021   bool IsFirst = true;
1022 
1023   if (!Info.Architecture.empty()) {
1024     IsFirst = false;
1025     Out << "arch_" << Info.Architecture;
1026   }
1027 
1028   for (StringRef Feat : Info.Features) {
1029     if (!IsFirst)
1030       Out << '_';
1031     IsFirst = false;
1032     Out << Feat.substr(1);
1033   }
1034 }
1035 
1036 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1037                                       const NamedDecl *ND,
1038                                       bool OmitMultiVersionMangling = false) {
1039   SmallString<256> Buffer;
1040   llvm::raw_svector_ostream Out(Buffer);
1041   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1042   if (MC.shouldMangleDeclName(ND))
1043     MC.mangleName(GD.getWithDecl(ND), Out);
1044   else {
1045     IdentifierInfo *II = ND->getIdentifier();
1046     assert(II && "Attempt to mangle unnamed decl.");
1047     const auto *FD = dyn_cast<FunctionDecl>(ND);
1048 
1049     if (FD &&
1050         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1051       Out << "__regcall3__" << II->getName();
1052     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1053                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1054       Out << "__device_stub__" << II->getName();
1055     } else {
1056       Out << II->getName();
1057     }
1058   }
1059 
1060   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1061     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1062       switch (FD->getMultiVersionKind()) {
1063       case MultiVersionKind::CPUDispatch:
1064       case MultiVersionKind::CPUSpecific:
1065         AppendCPUSpecificCPUDispatchMangling(CGM,
1066                                              FD->getAttr<CPUSpecificAttr>(),
1067                                              GD.getMultiVersionIndex(), Out);
1068         break;
1069       case MultiVersionKind::Target:
1070         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1071         break;
1072       case MultiVersionKind::None:
1073         llvm_unreachable("None multiversion type isn't valid here");
1074       }
1075     }
1076 
1077   return std::string(Out.str());
1078 }
1079 
1080 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1081                                             const FunctionDecl *FD) {
1082   if (!FD->isMultiVersion())
1083     return;
1084 
1085   // Get the name of what this would be without the 'target' attribute.  This
1086   // allows us to lookup the version that was emitted when this wasn't a
1087   // multiversion function.
1088   std::string NonTargetName =
1089       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1090   GlobalDecl OtherGD;
1091   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1092     assert(OtherGD.getCanonicalDecl()
1093                .getDecl()
1094                ->getAsFunction()
1095                ->isMultiVersion() &&
1096            "Other GD should now be a multiversioned function");
1097     // OtherFD is the version of this function that was mangled BEFORE
1098     // becoming a MultiVersion function.  It potentially needs to be updated.
1099     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1100                                       .getDecl()
1101                                       ->getAsFunction()
1102                                       ->getMostRecentDecl();
1103     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1104     // This is so that if the initial version was already the 'default'
1105     // version, we don't try to update it.
1106     if (OtherName != NonTargetName) {
1107       // Remove instead of erase, since others may have stored the StringRef
1108       // to this.
1109       const auto ExistingRecord = Manglings.find(NonTargetName);
1110       if (ExistingRecord != std::end(Manglings))
1111         Manglings.remove(&(*ExistingRecord));
1112       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1113       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1114       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1115         Entry->setName(OtherName);
1116     }
1117   }
1118 }
1119 
1120 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1121   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1122 
1123   // Some ABIs don't have constructor variants.  Make sure that base and
1124   // complete constructors get mangled the same.
1125   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1126     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1127       CXXCtorType OrigCtorType = GD.getCtorType();
1128       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1129       if (OrigCtorType == Ctor_Base)
1130         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1131     }
1132   }
1133 
1134   auto FoundName = MangledDeclNames.find(CanonicalGD);
1135   if (FoundName != MangledDeclNames.end())
1136     return FoundName->second;
1137 
1138   // Keep the first result in the case of a mangling collision.
1139   const auto *ND = cast<NamedDecl>(GD.getDecl());
1140   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1141 
1142   // Ensure either we have different ABIs between host and device compilations,
1143   // says host compilation following MSVC ABI but device compilation follows
1144   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1145   // mangling should be the same after name stubbing. The later checking is
1146   // very important as the device kernel name being mangled in host-compilation
1147   // is used to resolve the device binaries to be executed. Inconsistent naming
1148   // result in undefined behavior. Even though we cannot check that naming
1149   // directly between host- and device-compilations, the host- and
1150   // device-mangling in host compilation could help catching certain ones.
1151   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1152          getLangOpts().CUDAIsDevice ||
1153          (getContext().getAuxTargetInfo() &&
1154           (getContext().getAuxTargetInfo()->getCXXABI() !=
1155            getContext().getTargetInfo().getCXXABI())) ||
1156          getCUDARuntime().getDeviceSideName(ND) ==
1157              getMangledNameImpl(
1158                  *this,
1159                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1160                  ND));
1161 
1162   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1163   return MangledDeclNames[CanonicalGD] = Result.first->first();
1164 }
1165 
1166 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1167                                              const BlockDecl *BD) {
1168   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1169   const Decl *D = GD.getDecl();
1170 
1171   SmallString<256> Buffer;
1172   llvm::raw_svector_ostream Out(Buffer);
1173   if (!D)
1174     MangleCtx.mangleGlobalBlock(BD,
1175       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1176   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1177     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1178   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1179     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1180   else
1181     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1182 
1183   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1184   return Result.first->first();
1185 }
1186 
1187 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1188   return getModule().getNamedValue(Name);
1189 }
1190 
1191 /// AddGlobalCtor - Add a function to the list that will be called before
1192 /// main() runs.
1193 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1194                                   llvm::Constant *AssociatedData) {
1195   // FIXME: Type coercion of void()* types.
1196   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1197 }
1198 
1199 /// AddGlobalDtor - Add a function to the list that will be called
1200 /// when the module is unloaded.
1201 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1202   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1203     DtorsUsingAtExit[Priority].push_back(Dtor);
1204     return;
1205   }
1206 
1207   // FIXME: Type coercion of void()* types.
1208   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1209 }
1210 
1211 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1212   if (Fns.empty()) return;
1213 
1214   // Ctor function type is void()*.
1215   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1216   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1217       TheModule.getDataLayout().getProgramAddressSpace());
1218 
1219   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1220   llvm::StructType *CtorStructTy = llvm::StructType::get(
1221       Int32Ty, CtorPFTy, VoidPtrTy);
1222 
1223   // Construct the constructor and destructor arrays.
1224   ConstantInitBuilder builder(*this);
1225   auto ctors = builder.beginArray(CtorStructTy);
1226   for (const auto &I : Fns) {
1227     auto ctor = ctors.beginStruct(CtorStructTy);
1228     ctor.addInt(Int32Ty, I.Priority);
1229     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1230     if (I.AssociatedData)
1231       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1232     else
1233       ctor.addNullPointer(VoidPtrTy);
1234     ctor.finishAndAddTo(ctors);
1235   }
1236 
1237   auto list =
1238     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1239                                 /*constant*/ false,
1240                                 llvm::GlobalValue::AppendingLinkage);
1241 
1242   // The LTO linker doesn't seem to like it when we set an alignment
1243   // on appending variables.  Take it off as a workaround.
1244   list->setAlignment(llvm::None);
1245 
1246   Fns.clear();
1247 }
1248 
1249 llvm::GlobalValue::LinkageTypes
1250 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1251   const auto *D = cast<FunctionDecl>(GD.getDecl());
1252 
1253   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1254 
1255   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1256     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1257 
1258   if (isa<CXXConstructorDecl>(D) &&
1259       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1260       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1261     // Our approach to inheriting constructors is fundamentally different from
1262     // that used by the MS ABI, so keep our inheriting constructor thunks
1263     // internal rather than trying to pick an unambiguous mangling for them.
1264     return llvm::GlobalValue::InternalLinkage;
1265   }
1266 
1267   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1268 }
1269 
1270 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1271   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1272   if (!MDS) return nullptr;
1273 
1274   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1275 }
1276 
1277 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1278                                               const CGFunctionInfo &Info,
1279                                               llvm::Function *F) {
1280   unsigned CallingConv;
1281   llvm::AttributeList PAL;
1282   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1283   F->setAttributes(PAL);
1284   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1285 }
1286 
1287 static void removeImageAccessQualifier(std::string& TyName) {
1288   std::string ReadOnlyQual("__read_only");
1289   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1290   if (ReadOnlyPos != std::string::npos)
1291     // "+ 1" for the space after access qualifier.
1292     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1293   else {
1294     std::string WriteOnlyQual("__write_only");
1295     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1296     if (WriteOnlyPos != std::string::npos)
1297       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1298     else {
1299       std::string ReadWriteQual("__read_write");
1300       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1301       if (ReadWritePos != std::string::npos)
1302         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1303     }
1304   }
1305 }
1306 
1307 // Returns the address space id that should be produced to the
1308 // kernel_arg_addr_space metadata. This is always fixed to the ids
1309 // as specified in the SPIR 2.0 specification in order to differentiate
1310 // for example in clGetKernelArgInfo() implementation between the address
1311 // spaces with targets without unique mapping to the OpenCL address spaces
1312 // (basically all single AS CPUs).
1313 static unsigned ArgInfoAddressSpace(LangAS AS) {
1314   switch (AS) {
1315   case LangAS::opencl_global:   return 1;
1316   case LangAS::opencl_constant: return 2;
1317   case LangAS::opencl_local:    return 3;
1318   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1319   default:
1320     return 0; // Assume private.
1321   }
1322 }
1323 
1324 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1325                                          const FunctionDecl *FD,
1326                                          CodeGenFunction *CGF) {
1327   assert(((FD && CGF) || (!FD && !CGF)) &&
1328          "Incorrect use - FD and CGF should either be both null or not!");
1329   // Create MDNodes that represent the kernel arg metadata.
1330   // Each MDNode is a list in the form of "key", N number of values which is
1331   // the same number of values as their are kernel arguments.
1332 
1333   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1334 
1335   // MDNode for the kernel argument address space qualifiers.
1336   SmallVector<llvm::Metadata *, 8> addressQuals;
1337 
1338   // MDNode for the kernel argument access qualifiers (images only).
1339   SmallVector<llvm::Metadata *, 8> accessQuals;
1340 
1341   // MDNode for the kernel argument type names.
1342   SmallVector<llvm::Metadata *, 8> argTypeNames;
1343 
1344   // MDNode for the kernel argument base type names.
1345   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1346 
1347   // MDNode for the kernel argument type qualifiers.
1348   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1349 
1350   // MDNode for the kernel argument names.
1351   SmallVector<llvm::Metadata *, 8> argNames;
1352 
1353   if (FD && CGF)
1354     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1355       const ParmVarDecl *parm = FD->getParamDecl(i);
1356       QualType ty = parm->getType();
1357       std::string typeQuals;
1358 
1359       if (ty->isPointerType()) {
1360         QualType pointeeTy = ty->getPointeeType();
1361 
1362         // Get address qualifier.
1363         addressQuals.push_back(
1364             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1365                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1366 
1367         // Get argument type name.
1368         std::string typeName =
1369             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1370 
1371         // Turn "unsigned type" to "utype"
1372         std::string::size_type pos = typeName.find("unsigned");
1373         if (pointeeTy.isCanonical() && pos != std::string::npos)
1374           typeName.erase(pos + 1, 8);
1375 
1376         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1377 
1378         std::string baseTypeName =
1379             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1380                 Policy) +
1381             "*";
1382 
1383         // Turn "unsigned type" to "utype"
1384         pos = baseTypeName.find("unsigned");
1385         if (pos != std::string::npos)
1386           baseTypeName.erase(pos + 1, 8);
1387 
1388         argBaseTypeNames.push_back(
1389             llvm::MDString::get(VMContext, baseTypeName));
1390 
1391         // Get argument type qualifiers:
1392         if (ty.isRestrictQualified())
1393           typeQuals = "restrict";
1394         if (pointeeTy.isConstQualified() ||
1395             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1396           typeQuals += typeQuals.empty() ? "const" : " const";
1397         if (pointeeTy.isVolatileQualified())
1398           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1399       } else {
1400         uint32_t AddrSpc = 0;
1401         bool isPipe = ty->isPipeType();
1402         if (ty->isImageType() || isPipe)
1403           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1404 
1405         addressQuals.push_back(
1406             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1407 
1408         // Get argument type name.
1409         std::string typeName;
1410         if (isPipe)
1411           typeName = ty.getCanonicalType()
1412                          ->castAs<PipeType>()
1413                          ->getElementType()
1414                          .getAsString(Policy);
1415         else
1416           typeName = ty.getUnqualifiedType().getAsString(Policy);
1417 
1418         // Turn "unsigned type" to "utype"
1419         std::string::size_type pos = typeName.find("unsigned");
1420         if (ty.isCanonical() && pos != std::string::npos)
1421           typeName.erase(pos + 1, 8);
1422 
1423         std::string baseTypeName;
1424         if (isPipe)
1425           baseTypeName = ty.getCanonicalType()
1426                              ->castAs<PipeType>()
1427                              ->getElementType()
1428                              .getCanonicalType()
1429                              .getAsString(Policy);
1430         else
1431           baseTypeName =
1432               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1433 
1434         // Remove access qualifiers on images
1435         // (as they are inseparable from type in clang implementation,
1436         // but OpenCL spec provides a special query to get access qualifier
1437         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1438         if (ty->isImageType()) {
1439           removeImageAccessQualifier(typeName);
1440           removeImageAccessQualifier(baseTypeName);
1441         }
1442 
1443         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1444 
1445         // Turn "unsigned type" to "utype"
1446         pos = baseTypeName.find("unsigned");
1447         if (pos != std::string::npos)
1448           baseTypeName.erase(pos + 1, 8);
1449 
1450         argBaseTypeNames.push_back(
1451             llvm::MDString::get(VMContext, baseTypeName));
1452 
1453         if (isPipe)
1454           typeQuals = "pipe";
1455       }
1456 
1457       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1458 
1459       // Get image and pipe access qualifier:
1460       if (ty->isImageType() || ty->isPipeType()) {
1461         const Decl *PDecl = parm;
1462         if (auto *TD = dyn_cast<TypedefType>(ty))
1463           PDecl = TD->getDecl();
1464         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1465         if (A && A->isWriteOnly())
1466           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1467         else if (A && A->isReadWrite())
1468           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1469         else
1470           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1471       } else
1472         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1473 
1474       // Get argument name.
1475       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1476     }
1477 
1478   Fn->setMetadata("kernel_arg_addr_space",
1479                   llvm::MDNode::get(VMContext, addressQuals));
1480   Fn->setMetadata("kernel_arg_access_qual",
1481                   llvm::MDNode::get(VMContext, accessQuals));
1482   Fn->setMetadata("kernel_arg_type",
1483                   llvm::MDNode::get(VMContext, argTypeNames));
1484   Fn->setMetadata("kernel_arg_base_type",
1485                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1486   Fn->setMetadata("kernel_arg_type_qual",
1487                   llvm::MDNode::get(VMContext, argTypeQuals));
1488   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1489     Fn->setMetadata("kernel_arg_name",
1490                     llvm::MDNode::get(VMContext, argNames));
1491 }
1492 
1493 /// Determines whether the language options require us to model
1494 /// unwind exceptions.  We treat -fexceptions as mandating this
1495 /// except under the fragile ObjC ABI with only ObjC exceptions
1496 /// enabled.  This means, for example, that C with -fexceptions
1497 /// enables this.
1498 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1499   // If exceptions are completely disabled, obviously this is false.
1500   if (!LangOpts.Exceptions) return false;
1501 
1502   // If C++ exceptions are enabled, this is true.
1503   if (LangOpts.CXXExceptions) return true;
1504 
1505   // If ObjC exceptions are enabled, this depends on the ABI.
1506   if (LangOpts.ObjCExceptions) {
1507     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1508   }
1509 
1510   return true;
1511 }
1512 
1513 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1514                                                       const CXXMethodDecl *MD) {
1515   // Check that the type metadata can ever actually be used by a call.
1516   if (!CGM.getCodeGenOpts().LTOUnit ||
1517       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1518     return false;
1519 
1520   // Only functions whose address can be taken with a member function pointer
1521   // need this sort of type metadata.
1522   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1523          !isa<CXXDestructorDecl>(MD);
1524 }
1525 
1526 std::vector<const CXXRecordDecl *>
1527 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1528   llvm::SetVector<const CXXRecordDecl *> MostBases;
1529 
1530   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1531   CollectMostBases = [&](const CXXRecordDecl *RD) {
1532     if (RD->getNumBases() == 0)
1533       MostBases.insert(RD);
1534     for (const CXXBaseSpecifier &B : RD->bases())
1535       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1536   };
1537   CollectMostBases(RD);
1538   return MostBases.takeVector();
1539 }
1540 
1541 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1542                                                            llvm::Function *F) {
1543   llvm::AttrBuilder B;
1544 
1545   if (CodeGenOpts.UnwindTables)
1546     B.addAttribute(llvm::Attribute::UWTable);
1547 
1548   if (CodeGenOpts.StackClashProtector)
1549     B.addAttribute("probe-stack", "inline-asm");
1550 
1551   if (!hasUnwindExceptions(LangOpts))
1552     B.addAttribute(llvm::Attribute::NoUnwind);
1553 
1554   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1555     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1556       B.addAttribute(llvm::Attribute::StackProtect);
1557     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1558       B.addAttribute(llvm::Attribute::StackProtectStrong);
1559     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1560       B.addAttribute(llvm::Attribute::StackProtectReq);
1561   }
1562 
1563   if (!D) {
1564     // If we don't have a declaration to control inlining, the function isn't
1565     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1566     // disabled, mark the function as noinline.
1567     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1568         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1569       B.addAttribute(llvm::Attribute::NoInline);
1570 
1571     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1572     return;
1573   }
1574 
1575   // Track whether we need to add the optnone LLVM attribute,
1576   // starting with the default for this optimization level.
1577   bool ShouldAddOptNone =
1578       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1579   // We can't add optnone in the following cases, it won't pass the verifier.
1580   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1581   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1582 
1583   // Add optnone, but do so only if the function isn't always_inline.
1584   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1585       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1586     B.addAttribute(llvm::Attribute::OptimizeNone);
1587 
1588     // OptimizeNone implies noinline; we should not be inlining such functions.
1589     B.addAttribute(llvm::Attribute::NoInline);
1590 
1591     // We still need to handle naked functions even though optnone subsumes
1592     // much of their semantics.
1593     if (D->hasAttr<NakedAttr>())
1594       B.addAttribute(llvm::Attribute::Naked);
1595 
1596     // OptimizeNone wins over OptimizeForSize and MinSize.
1597     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1598     F->removeFnAttr(llvm::Attribute::MinSize);
1599   } else if (D->hasAttr<NakedAttr>()) {
1600     // Naked implies noinline: we should not be inlining such functions.
1601     B.addAttribute(llvm::Attribute::Naked);
1602     B.addAttribute(llvm::Attribute::NoInline);
1603   } else if (D->hasAttr<NoDuplicateAttr>()) {
1604     B.addAttribute(llvm::Attribute::NoDuplicate);
1605   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1606     // Add noinline if the function isn't always_inline.
1607     B.addAttribute(llvm::Attribute::NoInline);
1608   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1609              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1610     // (noinline wins over always_inline, and we can't specify both in IR)
1611     B.addAttribute(llvm::Attribute::AlwaysInline);
1612   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1613     // If we're not inlining, then force everything that isn't always_inline to
1614     // carry an explicit noinline attribute.
1615     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1616       B.addAttribute(llvm::Attribute::NoInline);
1617   } else {
1618     // Otherwise, propagate the inline hint attribute and potentially use its
1619     // absence to mark things as noinline.
1620     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1621       // Search function and template pattern redeclarations for inline.
1622       auto CheckForInline = [](const FunctionDecl *FD) {
1623         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1624           return Redecl->isInlineSpecified();
1625         };
1626         if (any_of(FD->redecls(), CheckRedeclForInline))
1627           return true;
1628         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1629         if (!Pattern)
1630           return false;
1631         return any_of(Pattern->redecls(), CheckRedeclForInline);
1632       };
1633       if (CheckForInline(FD)) {
1634         B.addAttribute(llvm::Attribute::InlineHint);
1635       } else if (CodeGenOpts.getInlining() ==
1636                      CodeGenOptions::OnlyHintInlining &&
1637                  !FD->isInlined() &&
1638                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1639         B.addAttribute(llvm::Attribute::NoInline);
1640       }
1641     }
1642   }
1643 
1644   // Add other optimization related attributes if we are optimizing this
1645   // function.
1646   if (!D->hasAttr<OptimizeNoneAttr>()) {
1647     if (D->hasAttr<ColdAttr>()) {
1648       if (!ShouldAddOptNone)
1649         B.addAttribute(llvm::Attribute::OptimizeForSize);
1650       B.addAttribute(llvm::Attribute::Cold);
1651     }
1652 
1653     if (D->hasAttr<MinSizeAttr>())
1654       B.addAttribute(llvm::Attribute::MinSize);
1655   }
1656 
1657   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1658 
1659   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1660   if (alignment)
1661     F->setAlignment(llvm::Align(alignment));
1662 
1663   if (!D->hasAttr<AlignedAttr>())
1664     if (LangOpts.FunctionAlignment)
1665       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1666 
1667   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1668   // reserve a bit for differentiating between virtual and non-virtual member
1669   // functions. If the current target's C++ ABI requires this and this is a
1670   // member function, set its alignment accordingly.
1671   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1672     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1673       F->setAlignment(llvm::Align(2));
1674   }
1675 
1676   // In the cross-dso CFI mode with canonical jump tables, we want !type
1677   // attributes on definitions only.
1678   if (CodeGenOpts.SanitizeCfiCrossDso &&
1679       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1680     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1681       // Skip available_externally functions. They won't be codegen'ed in the
1682       // current module anyway.
1683       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1684         CreateFunctionTypeMetadataForIcall(FD, F);
1685     }
1686   }
1687 
1688   // Emit type metadata on member functions for member function pointer checks.
1689   // These are only ever necessary on definitions; we're guaranteed that the
1690   // definition will be present in the LTO unit as a result of LTO visibility.
1691   auto *MD = dyn_cast<CXXMethodDecl>(D);
1692   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1693     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1694       llvm::Metadata *Id =
1695           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1696               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1697       F->addTypeMetadata(0, Id);
1698     }
1699   }
1700 }
1701 
1702 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1703   const Decl *D = GD.getDecl();
1704   if (dyn_cast_or_null<NamedDecl>(D))
1705     setGVProperties(GV, GD);
1706   else
1707     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1708 
1709   if (D && D->hasAttr<UsedAttr>())
1710     addUsedGlobal(GV);
1711 
1712   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1713     const auto *VD = cast<VarDecl>(D);
1714     if (VD->getType().isConstQualified() &&
1715         VD->getStorageDuration() == SD_Static)
1716       addUsedGlobal(GV);
1717   }
1718 }
1719 
1720 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1721                                                 llvm::AttrBuilder &Attrs) {
1722   // Add target-cpu and target-features attributes to functions. If
1723   // we have a decl for the function and it has a target attribute then
1724   // parse that and add it to the feature set.
1725   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1726   std::vector<std::string> Features;
1727   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1728   FD = FD ? FD->getMostRecentDecl() : FD;
1729   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1730   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1731   bool AddedAttr = false;
1732   if (TD || SD) {
1733     llvm::StringMap<bool> FeatureMap;
1734     getContext().getFunctionFeatureMap(FeatureMap, GD);
1735 
1736     // Produce the canonical string for this set of features.
1737     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1738       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1739 
1740     // Now add the target-cpu and target-features to the function.
1741     // While we populated the feature map above, we still need to
1742     // get and parse the target attribute so we can get the cpu for
1743     // the function.
1744     if (TD) {
1745       ParsedTargetAttr ParsedAttr = TD->parse();
1746       if (ParsedAttr.Architecture != "" &&
1747           getTarget().isValidCPUName(ParsedAttr.Architecture))
1748         TargetCPU = ParsedAttr.Architecture;
1749     }
1750   } else {
1751     // Otherwise just add the existing target cpu and target features to the
1752     // function.
1753     Features = getTarget().getTargetOpts().Features;
1754   }
1755 
1756   if (TargetCPU != "") {
1757     Attrs.addAttribute("target-cpu", TargetCPU);
1758     AddedAttr = true;
1759   }
1760   if (!Features.empty()) {
1761     llvm::sort(Features);
1762     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1763     AddedAttr = true;
1764   }
1765 
1766   return AddedAttr;
1767 }
1768 
1769 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1770                                           llvm::GlobalObject *GO) {
1771   const Decl *D = GD.getDecl();
1772   SetCommonAttributes(GD, GO);
1773 
1774   if (D) {
1775     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1776       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1777         GV->addAttribute("bss-section", SA->getName());
1778       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1779         GV->addAttribute("data-section", SA->getName());
1780       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1781         GV->addAttribute("rodata-section", SA->getName());
1782       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1783         GV->addAttribute("relro-section", SA->getName());
1784     }
1785 
1786     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1787       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1788         if (!D->getAttr<SectionAttr>())
1789           F->addFnAttr("implicit-section-name", SA->getName());
1790 
1791       llvm::AttrBuilder Attrs;
1792       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1793         // We know that GetCPUAndFeaturesAttributes will always have the
1794         // newest set, since it has the newest possible FunctionDecl, so the
1795         // new ones should replace the old.
1796         F->removeFnAttr("target-cpu");
1797         F->removeFnAttr("target-features");
1798         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1799       }
1800     }
1801 
1802     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1803       GO->setSection(CSA->getName());
1804     else if (const auto *SA = D->getAttr<SectionAttr>())
1805       GO->setSection(SA->getName());
1806   }
1807 
1808   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1809 }
1810 
1811 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1812                                                   llvm::Function *F,
1813                                                   const CGFunctionInfo &FI) {
1814   const Decl *D = GD.getDecl();
1815   SetLLVMFunctionAttributes(GD, FI, F);
1816   SetLLVMFunctionAttributesForDefinition(D, F);
1817 
1818   F->setLinkage(llvm::Function::InternalLinkage);
1819 
1820   setNonAliasAttributes(GD, F);
1821 }
1822 
1823 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1824   // Set linkage and visibility in case we never see a definition.
1825   LinkageInfo LV = ND->getLinkageAndVisibility();
1826   // Don't set internal linkage on declarations.
1827   // "extern_weak" is overloaded in LLVM; we probably should have
1828   // separate linkage types for this.
1829   if (isExternallyVisible(LV.getLinkage()) &&
1830       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1831     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1832 }
1833 
1834 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1835                                                        llvm::Function *F) {
1836   // Only if we are checking indirect calls.
1837   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1838     return;
1839 
1840   // Non-static class methods are handled via vtable or member function pointer
1841   // checks elsewhere.
1842   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1843     return;
1844 
1845   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1846   F->addTypeMetadata(0, MD);
1847   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1848 
1849   // Emit a hash-based bit set entry for cross-DSO calls.
1850   if (CodeGenOpts.SanitizeCfiCrossDso)
1851     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1852       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1853 }
1854 
1855 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1856                                           bool IsIncompleteFunction,
1857                                           bool IsThunk) {
1858 
1859   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1860     // If this is an intrinsic function, set the function's attributes
1861     // to the intrinsic's attributes.
1862     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1863     return;
1864   }
1865 
1866   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1867 
1868   if (!IsIncompleteFunction)
1869     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1870 
1871   // Add the Returned attribute for "this", except for iOS 5 and earlier
1872   // where substantial code, including the libstdc++ dylib, was compiled with
1873   // GCC and does not actually return "this".
1874   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1875       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1876     assert(!F->arg_empty() &&
1877            F->arg_begin()->getType()
1878              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1879            "unexpected this return");
1880     F->addAttribute(1, llvm::Attribute::Returned);
1881   }
1882 
1883   // Only a few attributes are set on declarations; these may later be
1884   // overridden by a definition.
1885 
1886   setLinkageForGV(F, FD);
1887   setGVProperties(F, FD);
1888 
1889   // Setup target-specific attributes.
1890   if (!IsIncompleteFunction && F->isDeclaration())
1891     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1892 
1893   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1894     F->setSection(CSA->getName());
1895   else if (const auto *SA = FD->getAttr<SectionAttr>())
1896      F->setSection(SA->getName());
1897 
1898   if (FD->isInlineBuiltinDeclaration()) {
1899     F->addAttribute(llvm::AttributeList::FunctionIndex,
1900                     llvm::Attribute::NoBuiltin);
1901   }
1902 
1903   if (FD->isReplaceableGlobalAllocationFunction()) {
1904     // A replaceable global allocation function does not act like a builtin by
1905     // default, only if it is invoked by a new-expression or delete-expression.
1906     F->addAttribute(llvm::AttributeList::FunctionIndex,
1907                     llvm::Attribute::NoBuiltin);
1908   }
1909 
1910   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1911     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1912   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1913     if (MD->isVirtual())
1914       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1915 
1916   // Don't emit entries for function declarations in the cross-DSO mode. This
1917   // is handled with better precision by the receiving DSO. But if jump tables
1918   // are non-canonical then we need type metadata in order to produce the local
1919   // jump table.
1920   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1921       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1922     CreateFunctionTypeMetadataForIcall(FD, F);
1923 
1924   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1925     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1926 
1927   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1928     // Annotate the callback behavior as metadata:
1929     //  - The callback callee (as argument number).
1930     //  - The callback payloads (as argument numbers).
1931     llvm::LLVMContext &Ctx = F->getContext();
1932     llvm::MDBuilder MDB(Ctx);
1933 
1934     // The payload indices are all but the first one in the encoding. The first
1935     // identifies the callback callee.
1936     int CalleeIdx = *CB->encoding_begin();
1937     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1938     F->addMetadata(llvm::LLVMContext::MD_callback,
1939                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1940                                                CalleeIdx, PayloadIndices,
1941                                                /* VarArgsArePassed */ false)}));
1942   }
1943 }
1944 
1945 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV, bool SkipCheck) {
1946   assert(SkipCheck || (!GV->isDeclaration() &&
1947                        "Only globals with definition can force usage."));
1948   LLVMUsed.emplace_back(GV);
1949 }
1950 
1951 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1952   assert(!GV->isDeclaration() &&
1953          "Only globals with definition can force usage.");
1954   LLVMCompilerUsed.emplace_back(GV);
1955 }
1956 
1957 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1958                      std::vector<llvm::WeakTrackingVH> &List) {
1959   // Don't create llvm.used if there is no need.
1960   if (List.empty())
1961     return;
1962 
1963   // Convert List to what ConstantArray needs.
1964   SmallVector<llvm::Constant*, 8> UsedArray;
1965   UsedArray.resize(List.size());
1966   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1967     UsedArray[i] =
1968         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1969             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1970   }
1971 
1972   if (UsedArray.empty())
1973     return;
1974   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1975 
1976   auto *GV = new llvm::GlobalVariable(
1977       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1978       llvm::ConstantArray::get(ATy, UsedArray), Name);
1979 
1980   GV->setSection("llvm.metadata");
1981 }
1982 
1983 void CodeGenModule::emitLLVMUsed() {
1984   emitUsed(*this, "llvm.used", LLVMUsed);
1985   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1986 }
1987 
1988 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1989   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1990   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1991 }
1992 
1993 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1994   llvm::SmallString<32> Opt;
1995   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1996   if (Opt.empty())
1997     return;
1998   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1999   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2000 }
2001 
2002 void CodeGenModule::AddDependentLib(StringRef Lib) {
2003   auto &C = getLLVMContext();
2004   if (getTarget().getTriple().isOSBinFormatELF()) {
2005       ELFDependentLibraries.push_back(
2006         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2007     return;
2008   }
2009 
2010   llvm::SmallString<24> Opt;
2011   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2012   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2013   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2014 }
2015 
2016 /// Add link options implied by the given module, including modules
2017 /// it depends on, using a postorder walk.
2018 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2019                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2020                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2021   // Import this module's parent.
2022   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2023     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2024   }
2025 
2026   // Import this module's dependencies.
2027   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2028     if (Visited.insert(Mod->Imports[I - 1]).second)
2029       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2030   }
2031 
2032   // Add linker options to link against the libraries/frameworks
2033   // described by this module.
2034   llvm::LLVMContext &Context = CGM.getLLVMContext();
2035   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2036 
2037   // For modules that use export_as for linking, use that module
2038   // name instead.
2039   if (Mod->UseExportAsModuleLinkName)
2040     return;
2041 
2042   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2043     // Link against a framework.  Frameworks are currently Darwin only, so we
2044     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2045     if (Mod->LinkLibraries[I-1].IsFramework) {
2046       llvm::Metadata *Args[2] = {
2047           llvm::MDString::get(Context, "-framework"),
2048           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2049 
2050       Metadata.push_back(llvm::MDNode::get(Context, Args));
2051       continue;
2052     }
2053 
2054     // Link against a library.
2055     if (IsELF) {
2056       llvm::Metadata *Args[2] = {
2057           llvm::MDString::get(Context, "lib"),
2058           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2059       };
2060       Metadata.push_back(llvm::MDNode::get(Context, Args));
2061     } else {
2062       llvm::SmallString<24> Opt;
2063       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2064           Mod->LinkLibraries[I - 1].Library, Opt);
2065       auto *OptString = llvm::MDString::get(Context, Opt);
2066       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2067     }
2068   }
2069 }
2070 
2071 void CodeGenModule::EmitModuleLinkOptions() {
2072   // Collect the set of all of the modules we want to visit to emit link
2073   // options, which is essentially the imported modules and all of their
2074   // non-explicit child modules.
2075   llvm::SetVector<clang::Module *> LinkModules;
2076   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2077   SmallVector<clang::Module *, 16> Stack;
2078 
2079   // Seed the stack with imported modules.
2080   for (Module *M : ImportedModules) {
2081     // Do not add any link flags when an implementation TU of a module imports
2082     // a header of that same module.
2083     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2084         !getLangOpts().isCompilingModule())
2085       continue;
2086     if (Visited.insert(M).second)
2087       Stack.push_back(M);
2088   }
2089 
2090   // Find all of the modules to import, making a little effort to prune
2091   // non-leaf modules.
2092   while (!Stack.empty()) {
2093     clang::Module *Mod = Stack.pop_back_val();
2094 
2095     bool AnyChildren = false;
2096 
2097     // Visit the submodules of this module.
2098     for (const auto &SM : Mod->submodules()) {
2099       // Skip explicit children; they need to be explicitly imported to be
2100       // linked against.
2101       if (SM->IsExplicit)
2102         continue;
2103 
2104       if (Visited.insert(SM).second) {
2105         Stack.push_back(SM);
2106         AnyChildren = true;
2107       }
2108     }
2109 
2110     // We didn't find any children, so add this module to the list of
2111     // modules to link against.
2112     if (!AnyChildren) {
2113       LinkModules.insert(Mod);
2114     }
2115   }
2116 
2117   // Add link options for all of the imported modules in reverse topological
2118   // order.  We don't do anything to try to order import link flags with respect
2119   // to linker options inserted by things like #pragma comment().
2120   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2121   Visited.clear();
2122   for (Module *M : LinkModules)
2123     if (Visited.insert(M).second)
2124       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2125   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2126   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2127 
2128   // Add the linker options metadata flag.
2129   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2130   for (auto *MD : LinkerOptionsMetadata)
2131     NMD->addOperand(MD);
2132 }
2133 
2134 void CodeGenModule::EmitDeferred() {
2135   // Emit deferred declare target declarations.
2136   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2137     getOpenMPRuntime().emitDeferredTargetDecls();
2138 
2139   // Emit code for any potentially referenced deferred decls.  Since a
2140   // previously unused static decl may become used during the generation of code
2141   // for a static function, iterate until no changes are made.
2142 
2143   if (!DeferredVTables.empty()) {
2144     EmitDeferredVTables();
2145 
2146     // Emitting a vtable doesn't directly cause more vtables to
2147     // become deferred, although it can cause functions to be
2148     // emitted that then need those vtables.
2149     assert(DeferredVTables.empty());
2150   }
2151 
2152   // Stop if we're out of both deferred vtables and deferred declarations.
2153   if (DeferredDeclsToEmit.empty())
2154     return;
2155 
2156   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2157   // work, it will not interfere with this.
2158   std::vector<GlobalDecl> CurDeclsToEmit;
2159   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2160 
2161   for (GlobalDecl &D : CurDeclsToEmit) {
2162     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2163     // to get GlobalValue with exactly the type we need, not something that
2164     // might had been created for another decl with the same mangled name but
2165     // different type.
2166     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2167         GetAddrOfGlobal(D, ForDefinition));
2168 
2169     // In case of different address spaces, we may still get a cast, even with
2170     // IsForDefinition equal to true. Query mangled names table to get
2171     // GlobalValue.
2172     if (!GV)
2173       GV = GetGlobalValue(getMangledName(D));
2174 
2175     // Make sure GetGlobalValue returned non-null.
2176     assert(GV);
2177 
2178     // Check to see if we've already emitted this.  This is necessary
2179     // for a couple of reasons: first, decls can end up in the
2180     // deferred-decls queue multiple times, and second, decls can end
2181     // up with definitions in unusual ways (e.g. by an extern inline
2182     // function acquiring a strong function redefinition).  Just
2183     // ignore these cases.
2184     if (!GV->isDeclaration())
2185       continue;
2186 
2187     // If this is OpenMP, check if it is legal to emit this global normally.
2188     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2189       continue;
2190 
2191     // Otherwise, emit the definition and move on to the next one.
2192     EmitGlobalDefinition(D, GV);
2193 
2194     // If we found out that we need to emit more decls, do that recursively.
2195     // This has the advantage that the decls are emitted in a DFS and related
2196     // ones are close together, which is convenient for testing.
2197     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2198       EmitDeferred();
2199       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2200     }
2201   }
2202 }
2203 
2204 void CodeGenModule::EmitVTablesOpportunistically() {
2205   // Try to emit external vtables as available_externally if they have emitted
2206   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2207   // is not allowed to create new references to things that need to be emitted
2208   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2209 
2210   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2211          && "Only emit opportunistic vtables with optimizations");
2212 
2213   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2214     assert(getVTables().isVTableExternal(RD) &&
2215            "This queue should only contain external vtables");
2216     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2217       VTables.GenerateClassData(RD);
2218   }
2219   OpportunisticVTables.clear();
2220 }
2221 
2222 void CodeGenModule::EmitGlobalAnnotations() {
2223   if (Annotations.empty())
2224     return;
2225 
2226   // Create a new global variable for the ConstantStruct in the Module.
2227   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2228     Annotations[0]->getType(), Annotations.size()), Annotations);
2229   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2230                                       llvm::GlobalValue::AppendingLinkage,
2231                                       Array, "llvm.global.annotations");
2232   gv->setSection(AnnotationSection);
2233 }
2234 
2235 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2236   llvm::Constant *&AStr = AnnotationStrings[Str];
2237   if (AStr)
2238     return AStr;
2239 
2240   // Not found yet, create a new global.
2241   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2242   auto *gv =
2243       new llvm::GlobalVariable(getModule(), s->getType(), true,
2244                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2245   gv->setSection(AnnotationSection);
2246   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2247   AStr = gv;
2248   return gv;
2249 }
2250 
2251 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2252   SourceManager &SM = getContext().getSourceManager();
2253   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2254   if (PLoc.isValid())
2255     return EmitAnnotationString(PLoc.getFilename());
2256   return EmitAnnotationString(SM.getBufferName(Loc));
2257 }
2258 
2259 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2260   SourceManager &SM = getContext().getSourceManager();
2261   PresumedLoc PLoc = SM.getPresumedLoc(L);
2262   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2263     SM.getExpansionLineNumber(L);
2264   return llvm::ConstantInt::get(Int32Ty, LineNo);
2265 }
2266 
2267 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2268                                                 const AnnotateAttr *AA,
2269                                                 SourceLocation L) {
2270   // Get the globals for file name, annotation, and the line number.
2271   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2272                  *UnitGV = EmitAnnotationUnit(L),
2273                  *LineNoCst = EmitAnnotationLineNo(L);
2274 
2275   llvm::Constant *ASZeroGV = GV;
2276   if (GV->getAddressSpace() != 0) {
2277     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2278                    GV, GV->getValueType()->getPointerTo(0));
2279   }
2280 
2281   // Create the ConstantStruct for the global annotation.
2282   llvm::Constant *Fields[4] = {
2283     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2284     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2285     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2286     LineNoCst
2287   };
2288   return llvm::ConstantStruct::getAnon(Fields);
2289 }
2290 
2291 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2292                                          llvm::GlobalValue *GV) {
2293   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2294   // Get the struct elements for these annotations.
2295   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2296     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2297 }
2298 
2299 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2300                                            llvm::Function *Fn,
2301                                            SourceLocation Loc) const {
2302   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2303   // Blacklist by function name.
2304   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2305     return true;
2306   // Blacklist by location.
2307   if (Loc.isValid())
2308     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2309   // If location is unknown, this may be a compiler-generated function. Assume
2310   // it's located in the main file.
2311   auto &SM = Context.getSourceManager();
2312   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2313     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2314   }
2315   return false;
2316 }
2317 
2318 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2319                                            SourceLocation Loc, QualType Ty,
2320                                            StringRef Category) const {
2321   // For now globals can be blacklisted only in ASan and KASan.
2322   const SanitizerMask EnabledAsanMask =
2323       LangOpts.Sanitize.Mask &
2324       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2325        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2326        SanitizerKind::MemTag);
2327   if (!EnabledAsanMask)
2328     return false;
2329   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2330   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2331     return true;
2332   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2333     return true;
2334   // Check global type.
2335   if (!Ty.isNull()) {
2336     // Drill down the array types: if global variable of a fixed type is
2337     // blacklisted, we also don't instrument arrays of them.
2338     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2339       Ty = AT->getElementType();
2340     Ty = Ty.getCanonicalType().getUnqualifiedType();
2341     // We allow to blacklist only record types (classes, structs etc.)
2342     if (Ty->isRecordType()) {
2343       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2344       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2345         return true;
2346     }
2347   }
2348   return false;
2349 }
2350 
2351 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2352                                    StringRef Category) const {
2353   const auto &XRayFilter = getContext().getXRayFilter();
2354   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2355   auto Attr = ImbueAttr::NONE;
2356   if (Loc.isValid())
2357     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2358   if (Attr == ImbueAttr::NONE)
2359     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2360   switch (Attr) {
2361   case ImbueAttr::NONE:
2362     return false;
2363   case ImbueAttr::ALWAYS:
2364     Fn->addFnAttr("function-instrument", "xray-always");
2365     break;
2366   case ImbueAttr::ALWAYS_ARG1:
2367     Fn->addFnAttr("function-instrument", "xray-always");
2368     Fn->addFnAttr("xray-log-args", "1");
2369     break;
2370   case ImbueAttr::NEVER:
2371     Fn->addFnAttr("function-instrument", "xray-never");
2372     break;
2373   }
2374   return true;
2375 }
2376 
2377 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2378   // Never defer when EmitAllDecls is specified.
2379   if (LangOpts.EmitAllDecls)
2380     return true;
2381 
2382   if (CodeGenOpts.KeepStaticConsts) {
2383     const auto *VD = dyn_cast<VarDecl>(Global);
2384     if (VD && VD->getType().isConstQualified() &&
2385         VD->getStorageDuration() == SD_Static)
2386       return true;
2387   }
2388 
2389   return getContext().DeclMustBeEmitted(Global);
2390 }
2391 
2392 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2393   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2394     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2395       // Implicit template instantiations may change linkage if they are later
2396       // explicitly instantiated, so they should not be emitted eagerly.
2397       return false;
2398     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2399     // not emit them eagerly unless we sure that the function must be emitted on
2400     // the host.
2401     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2402         !LangOpts.OpenMPIsDevice &&
2403         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2404         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2405       return false;
2406   }
2407   if (const auto *VD = dyn_cast<VarDecl>(Global))
2408     if (Context.getInlineVariableDefinitionKind(VD) ==
2409         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2410       // A definition of an inline constexpr static data member may change
2411       // linkage later if it's redeclared outside the class.
2412       return false;
2413   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2414   // codegen for global variables, because they may be marked as threadprivate.
2415   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2416       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2417       !isTypeConstant(Global->getType(), false) &&
2418       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2419     return false;
2420 
2421   return true;
2422 }
2423 
2424 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2425     const CXXUuidofExpr* E) {
2426   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2427   // well-formed.
2428   StringRef Uuid = E->getUuidStr();
2429   std::string Name = "_GUID_" + Uuid.lower();
2430   std::replace(Name.begin(), Name.end(), '-', '_');
2431 
2432   // The UUID descriptor should be pointer aligned.
2433   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2434 
2435   // Look for an existing global.
2436   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2437     return ConstantAddress(GV, Alignment);
2438 
2439   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2440   assert(Init && "failed to initialize as constant");
2441 
2442   auto *GV = new llvm::GlobalVariable(
2443       getModule(), Init->getType(),
2444       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2445   if (supportsCOMDAT())
2446     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2447   setDSOLocal(GV);
2448   return ConstantAddress(GV, Alignment);
2449 }
2450 
2451 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2452   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2453   assert(AA && "No alias?");
2454 
2455   CharUnits Alignment = getContext().getDeclAlign(VD);
2456   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2457 
2458   // See if there is already something with the target's name in the module.
2459   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2460   if (Entry) {
2461     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2462     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2463     return ConstantAddress(Ptr, Alignment);
2464   }
2465 
2466   llvm::Constant *Aliasee;
2467   if (isa<llvm::FunctionType>(DeclTy))
2468     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2469                                       GlobalDecl(cast<FunctionDecl>(VD)),
2470                                       /*ForVTable=*/false);
2471   else
2472     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2473                                     llvm::PointerType::getUnqual(DeclTy),
2474                                     nullptr);
2475 
2476   auto *F = cast<llvm::GlobalValue>(Aliasee);
2477   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2478   WeakRefReferences.insert(F);
2479 
2480   return ConstantAddress(Aliasee, Alignment);
2481 }
2482 
2483 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2484   const auto *Global = cast<ValueDecl>(GD.getDecl());
2485 
2486   // Weak references don't produce any output by themselves.
2487   if (Global->hasAttr<WeakRefAttr>())
2488     return;
2489 
2490   // If this is an alias definition (which otherwise looks like a declaration)
2491   // emit it now.
2492   if (Global->hasAttr<AliasAttr>())
2493     return EmitAliasDefinition(GD);
2494 
2495   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2496   if (Global->hasAttr<IFuncAttr>())
2497     return emitIFuncDefinition(GD);
2498 
2499   // If this is a cpu_dispatch multiversion function, emit the resolver.
2500   if (Global->hasAttr<CPUDispatchAttr>())
2501     return emitCPUDispatchDefinition(GD);
2502 
2503   // If this is CUDA, be selective about which declarations we emit.
2504   if (LangOpts.CUDA) {
2505     if (LangOpts.CUDAIsDevice) {
2506       if (!Global->hasAttr<CUDADeviceAttr>() &&
2507           !Global->hasAttr<CUDAGlobalAttr>() &&
2508           !Global->hasAttr<CUDAConstantAttr>() &&
2509           !Global->hasAttr<CUDASharedAttr>() &&
2510           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2511         return;
2512     } else {
2513       // We need to emit host-side 'shadows' for all global
2514       // device-side variables because the CUDA runtime needs their
2515       // size and host-side address in order to provide access to
2516       // their device-side incarnations.
2517 
2518       // So device-only functions are the only things we skip.
2519       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2520           Global->hasAttr<CUDADeviceAttr>())
2521         return;
2522 
2523       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2524              "Expected Variable or Function");
2525     }
2526   }
2527 
2528   if (LangOpts.OpenMP) {
2529     // If this is OpenMP, check if it is legal to emit this global normally.
2530     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2531       return;
2532     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2533       if (MustBeEmitted(Global))
2534         EmitOMPDeclareReduction(DRD);
2535       return;
2536     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2537       if (MustBeEmitted(Global))
2538         EmitOMPDeclareMapper(DMD);
2539       return;
2540     }
2541   }
2542 
2543   // Ignore declarations, they will be emitted on their first use.
2544   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2545     // Forward declarations are emitted lazily on first use.
2546     if (!FD->doesThisDeclarationHaveABody()) {
2547       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2548         return;
2549 
2550       StringRef MangledName = getMangledName(GD);
2551 
2552       // Compute the function info and LLVM type.
2553       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2554       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2555 
2556       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2557                               /*DontDefer=*/false);
2558       return;
2559     }
2560   } else {
2561     const auto *VD = cast<VarDecl>(Global);
2562     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2563     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2564         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2565       if (LangOpts.OpenMP) {
2566         // Emit declaration of the must-be-emitted declare target variable.
2567         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2568                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2569           bool UnifiedMemoryEnabled =
2570               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2571           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2572               !UnifiedMemoryEnabled) {
2573             (void)GetAddrOfGlobalVar(VD);
2574           } else {
2575             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2576                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2577                      UnifiedMemoryEnabled)) &&
2578                    "Link clause or to clause with unified memory expected.");
2579             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2580           }
2581 
2582           return;
2583         }
2584       }
2585       // If this declaration may have caused an inline variable definition to
2586       // change linkage, make sure that it's emitted.
2587       if (Context.getInlineVariableDefinitionKind(VD) ==
2588           ASTContext::InlineVariableDefinitionKind::Strong)
2589         GetAddrOfGlobalVar(VD);
2590       return;
2591     }
2592   }
2593 
2594   // Defer code generation to first use when possible, e.g. if this is an inline
2595   // function. If the global must always be emitted, do it eagerly if possible
2596   // to benefit from cache locality.
2597   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2598     // Emit the definition if it can't be deferred.
2599     EmitGlobalDefinition(GD);
2600     return;
2601   }
2602 
2603   // If we're deferring emission of a C++ variable with an
2604   // initializer, remember the order in which it appeared in the file.
2605   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2606       cast<VarDecl>(Global)->hasInit()) {
2607     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2608     CXXGlobalInits.push_back(nullptr);
2609   }
2610 
2611   StringRef MangledName = getMangledName(GD);
2612   if (GetGlobalValue(MangledName) != nullptr) {
2613     // The value has already been used and should therefore be emitted.
2614     addDeferredDeclToEmit(GD);
2615   } else if (MustBeEmitted(Global)) {
2616     // The value must be emitted, but cannot be emitted eagerly.
2617     assert(!MayBeEmittedEagerly(Global));
2618     addDeferredDeclToEmit(GD);
2619   } else {
2620     // Otherwise, remember that we saw a deferred decl with this name.  The
2621     // first use of the mangled name will cause it to move into
2622     // DeferredDeclsToEmit.
2623     DeferredDecls[MangledName] = GD;
2624   }
2625 }
2626 
2627 // Check if T is a class type with a destructor that's not dllimport.
2628 static bool HasNonDllImportDtor(QualType T) {
2629   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2630     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2631       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2632         return true;
2633 
2634   return false;
2635 }
2636 
2637 namespace {
2638   struct FunctionIsDirectlyRecursive
2639       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2640     const StringRef Name;
2641     const Builtin::Context &BI;
2642     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2643         : Name(N), BI(C) {}
2644 
2645     bool VisitCallExpr(const CallExpr *E) {
2646       const FunctionDecl *FD = E->getDirectCallee();
2647       if (!FD)
2648         return false;
2649       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2650       if (Attr && Name == Attr->getLabel())
2651         return true;
2652       unsigned BuiltinID = FD->getBuiltinID();
2653       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2654         return false;
2655       StringRef BuiltinName = BI.getName(BuiltinID);
2656       if (BuiltinName.startswith("__builtin_") &&
2657           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2658         return true;
2659       }
2660       return false;
2661     }
2662 
2663     bool VisitStmt(const Stmt *S) {
2664       for (const Stmt *Child : S->children())
2665         if (Child && this->Visit(Child))
2666           return true;
2667       return false;
2668     }
2669   };
2670 
2671   // Make sure we're not referencing non-imported vars or functions.
2672   struct DLLImportFunctionVisitor
2673       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2674     bool SafeToInline = true;
2675 
2676     bool shouldVisitImplicitCode() const { return true; }
2677 
2678     bool VisitVarDecl(VarDecl *VD) {
2679       if (VD->getTLSKind()) {
2680         // A thread-local variable cannot be imported.
2681         SafeToInline = false;
2682         return SafeToInline;
2683       }
2684 
2685       // A variable definition might imply a destructor call.
2686       if (VD->isThisDeclarationADefinition())
2687         SafeToInline = !HasNonDllImportDtor(VD->getType());
2688 
2689       return SafeToInline;
2690     }
2691 
2692     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2693       if (const auto *D = E->getTemporary()->getDestructor())
2694         SafeToInline = D->hasAttr<DLLImportAttr>();
2695       return SafeToInline;
2696     }
2697 
2698     bool VisitDeclRefExpr(DeclRefExpr *E) {
2699       ValueDecl *VD = E->getDecl();
2700       if (isa<FunctionDecl>(VD))
2701         SafeToInline = VD->hasAttr<DLLImportAttr>();
2702       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2703         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2704       return SafeToInline;
2705     }
2706 
2707     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2708       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2709       return SafeToInline;
2710     }
2711 
2712     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2713       CXXMethodDecl *M = E->getMethodDecl();
2714       if (!M) {
2715         // Call through a pointer to member function. This is safe to inline.
2716         SafeToInline = true;
2717       } else {
2718         SafeToInline = M->hasAttr<DLLImportAttr>();
2719       }
2720       return SafeToInline;
2721     }
2722 
2723     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2724       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2725       return SafeToInline;
2726     }
2727 
2728     bool VisitCXXNewExpr(CXXNewExpr *E) {
2729       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2730       return SafeToInline;
2731     }
2732   };
2733 }
2734 
2735 // isTriviallyRecursive - Check if this function calls another
2736 // decl that, because of the asm attribute or the other decl being a builtin,
2737 // ends up pointing to itself.
2738 bool
2739 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2740   StringRef Name;
2741   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2742     // asm labels are a special kind of mangling we have to support.
2743     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2744     if (!Attr)
2745       return false;
2746     Name = Attr->getLabel();
2747   } else {
2748     Name = FD->getName();
2749   }
2750 
2751   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2752   const Stmt *Body = FD->getBody();
2753   return Body ? Walker.Visit(Body) : false;
2754 }
2755 
2756 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2757   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2758     return true;
2759   const auto *F = cast<FunctionDecl>(GD.getDecl());
2760   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2761     return false;
2762 
2763   if (F->hasAttr<DLLImportAttr>()) {
2764     // Check whether it would be safe to inline this dllimport function.
2765     DLLImportFunctionVisitor Visitor;
2766     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2767     if (!Visitor.SafeToInline)
2768       return false;
2769 
2770     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2771       // Implicit destructor invocations aren't captured in the AST, so the
2772       // check above can't see them. Check for them manually here.
2773       for (const Decl *Member : Dtor->getParent()->decls())
2774         if (isa<FieldDecl>(Member))
2775           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2776             return false;
2777       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2778         if (HasNonDllImportDtor(B.getType()))
2779           return false;
2780     }
2781   }
2782 
2783   // PR9614. Avoid cases where the source code is lying to us. An available
2784   // externally function should have an equivalent function somewhere else,
2785   // but a function that calls itself is clearly not equivalent to the real
2786   // implementation.
2787   // This happens in glibc's btowc and in some configure checks.
2788   return !isTriviallyRecursive(F);
2789 }
2790 
2791 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2792   return CodeGenOpts.OptimizationLevel > 0;
2793 }
2794 
2795 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2796                                                        llvm::GlobalValue *GV) {
2797   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2798 
2799   if (FD->isCPUSpecificMultiVersion()) {
2800     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2801     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2802       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2803     // Requires multiple emits.
2804   } else
2805     EmitGlobalFunctionDefinition(GD, GV);
2806 }
2807 
2808 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2809   const auto *D = cast<ValueDecl>(GD.getDecl());
2810 
2811   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2812                                  Context.getSourceManager(),
2813                                  "Generating code for declaration");
2814 
2815   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2816     // At -O0, don't generate IR for functions with available_externally
2817     // linkage.
2818     if (!shouldEmitFunction(GD))
2819       return;
2820 
2821     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2822       std::string Name;
2823       llvm::raw_string_ostream OS(Name);
2824       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2825                                /*Qualified=*/true);
2826       return Name;
2827     });
2828 
2829     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2830       // Make sure to emit the definition(s) before we emit the thunks.
2831       // This is necessary for the generation of certain thunks.
2832       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2833         ABI->emitCXXStructor(GD);
2834       else if (FD->isMultiVersion())
2835         EmitMultiVersionFunctionDefinition(GD, GV);
2836       else
2837         EmitGlobalFunctionDefinition(GD, GV);
2838 
2839       if (Method->isVirtual())
2840         getVTables().EmitThunks(GD);
2841 
2842       return;
2843     }
2844 
2845     if (FD->isMultiVersion())
2846       return EmitMultiVersionFunctionDefinition(GD, GV);
2847     return EmitGlobalFunctionDefinition(GD, GV);
2848   }
2849 
2850   if (const auto *VD = dyn_cast<VarDecl>(D))
2851     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2852 
2853   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2854 }
2855 
2856 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2857                                                       llvm::Function *NewFn);
2858 
2859 static unsigned
2860 TargetMVPriority(const TargetInfo &TI,
2861                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2862   unsigned Priority = 0;
2863   for (StringRef Feat : RO.Conditions.Features)
2864     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2865 
2866   if (!RO.Conditions.Architecture.empty())
2867     Priority = std::max(
2868         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2869   return Priority;
2870 }
2871 
2872 void CodeGenModule::emitMultiVersionFunctions() {
2873   for (GlobalDecl GD : MultiVersionFuncs) {
2874     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2875     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2876     getContext().forEachMultiversionedFunctionVersion(
2877         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2878           GlobalDecl CurGD{
2879               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2880           StringRef MangledName = getMangledName(CurGD);
2881           llvm::Constant *Func = GetGlobalValue(MangledName);
2882           if (!Func) {
2883             if (CurFD->isDefined()) {
2884               EmitGlobalFunctionDefinition(CurGD, nullptr);
2885               Func = GetGlobalValue(MangledName);
2886             } else {
2887               const CGFunctionInfo &FI =
2888                   getTypes().arrangeGlobalDeclaration(GD);
2889               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2890               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2891                                        /*DontDefer=*/false, ForDefinition);
2892             }
2893             assert(Func && "This should have just been created");
2894           }
2895 
2896           const auto *TA = CurFD->getAttr<TargetAttr>();
2897           llvm::SmallVector<StringRef, 8> Feats;
2898           TA->getAddedFeatures(Feats);
2899 
2900           Options.emplace_back(cast<llvm::Function>(Func),
2901                                TA->getArchitecture(), Feats);
2902         });
2903 
2904     llvm::Function *ResolverFunc;
2905     const TargetInfo &TI = getTarget();
2906 
2907     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2908       ResolverFunc = cast<llvm::Function>(
2909           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2910       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2911     } else {
2912       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2913     }
2914 
2915     if (supportsCOMDAT())
2916       ResolverFunc->setComdat(
2917           getModule().getOrInsertComdat(ResolverFunc->getName()));
2918 
2919     llvm::stable_sort(
2920         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2921                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2922           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2923         });
2924     CodeGenFunction CGF(*this);
2925     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2926   }
2927 }
2928 
2929 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2930   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2931   assert(FD && "Not a FunctionDecl?");
2932   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2933   assert(DD && "Not a cpu_dispatch Function?");
2934   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2935 
2936   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2937     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2938     DeclTy = getTypes().GetFunctionType(FInfo);
2939   }
2940 
2941   StringRef ResolverName = getMangledName(GD);
2942 
2943   llvm::Type *ResolverType;
2944   GlobalDecl ResolverGD;
2945   if (getTarget().supportsIFunc())
2946     ResolverType = llvm::FunctionType::get(
2947         llvm::PointerType::get(DeclTy,
2948                                Context.getTargetAddressSpace(FD->getType())),
2949         false);
2950   else {
2951     ResolverType = DeclTy;
2952     ResolverGD = GD;
2953   }
2954 
2955   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2956       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2957   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2958   if (supportsCOMDAT())
2959     ResolverFunc->setComdat(
2960         getModule().getOrInsertComdat(ResolverFunc->getName()));
2961 
2962   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2963   const TargetInfo &Target = getTarget();
2964   unsigned Index = 0;
2965   for (const IdentifierInfo *II : DD->cpus()) {
2966     // Get the name of the target function so we can look it up/create it.
2967     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2968                               getCPUSpecificMangling(*this, II->getName());
2969 
2970     llvm::Constant *Func = GetGlobalValue(MangledName);
2971 
2972     if (!Func) {
2973       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2974       if (ExistingDecl.getDecl() &&
2975           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2976         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2977         Func = GetGlobalValue(MangledName);
2978       } else {
2979         if (!ExistingDecl.getDecl())
2980           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2981 
2982       Func = GetOrCreateLLVMFunction(
2983           MangledName, DeclTy, ExistingDecl,
2984           /*ForVTable=*/false, /*DontDefer=*/true,
2985           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2986       }
2987     }
2988 
2989     llvm::SmallVector<StringRef, 32> Features;
2990     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2991     llvm::transform(Features, Features.begin(),
2992                     [](StringRef Str) { return Str.substr(1); });
2993     Features.erase(std::remove_if(
2994         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2995           return !Target.validateCpuSupports(Feat);
2996         }), Features.end());
2997     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2998     ++Index;
2999   }
3000 
3001   llvm::sort(
3002       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3003                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3004         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3005                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3006       });
3007 
3008   // If the list contains multiple 'default' versions, such as when it contains
3009   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3010   // always run on at least a 'pentium'). We do this by deleting the 'least
3011   // advanced' (read, lowest mangling letter).
3012   while (Options.size() > 1 &&
3013          CodeGenFunction::GetX86CpuSupportsMask(
3014              (Options.end() - 2)->Conditions.Features) == 0) {
3015     StringRef LHSName = (Options.end() - 2)->Function->getName();
3016     StringRef RHSName = (Options.end() - 1)->Function->getName();
3017     if (LHSName.compare(RHSName) < 0)
3018       Options.erase(Options.end() - 2);
3019     else
3020       Options.erase(Options.end() - 1);
3021   }
3022 
3023   CodeGenFunction CGF(*this);
3024   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3025 
3026   if (getTarget().supportsIFunc()) {
3027     std::string AliasName = getMangledNameImpl(
3028         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3029     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3030     if (!AliasFunc) {
3031       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3032           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3033           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3034       auto *GA = llvm::GlobalAlias::create(
3035          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3036       GA->setLinkage(llvm::Function::WeakODRLinkage);
3037       SetCommonAttributes(GD, GA);
3038     }
3039   }
3040 }
3041 
3042 /// If a dispatcher for the specified mangled name is not in the module, create
3043 /// and return an llvm Function with the specified type.
3044 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3045     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3046   std::string MangledName =
3047       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3048 
3049   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3050   // a separate resolver).
3051   std::string ResolverName = MangledName;
3052   if (getTarget().supportsIFunc())
3053     ResolverName += ".ifunc";
3054   else if (FD->isTargetMultiVersion())
3055     ResolverName += ".resolver";
3056 
3057   // If this already exists, just return that one.
3058   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3059     return ResolverGV;
3060 
3061   // Since this is the first time we've created this IFunc, make sure
3062   // that we put this multiversioned function into the list to be
3063   // replaced later if necessary (target multiversioning only).
3064   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3065     MultiVersionFuncs.push_back(GD);
3066 
3067   if (getTarget().supportsIFunc()) {
3068     llvm::Type *ResolverType = llvm::FunctionType::get(
3069         llvm::PointerType::get(
3070             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3071         false);
3072     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3073         MangledName + ".resolver", ResolverType, GlobalDecl{},
3074         /*ForVTable=*/false);
3075     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3076         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3077     GIF->setName(ResolverName);
3078     SetCommonAttributes(FD, GIF);
3079 
3080     return GIF;
3081   }
3082 
3083   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3084       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3085   assert(isa<llvm::GlobalValue>(Resolver) &&
3086          "Resolver should be created for the first time");
3087   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3088   return Resolver;
3089 }
3090 
3091 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3092 /// module, create and return an llvm Function with the specified type. If there
3093 /// is something in the module with the specified name, return it potentially
3094 /// bitcasted to the right type.
3095 ///
3096 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3097 /// to set the attributes on the function when it is first created.
3098 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3099     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3100     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3101     ForDefinition_t IsForDefinition) {
3102   const Decl *D = GD.getDecl();
3103 
3104   // Any attempts to use a MultiVersion function should result in retrieving
3105   // the iFunc instead. Name Mangling will handle the rest of the changes.
3106   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3107     // For the device mark the function as one that should be emitted.
3108     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3109         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3110         !DontDefer && !IsForDefinition) {
3111       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3112         GlobalDecl GDDef;
3113         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3114           GDDef = GlobalDecl(CD, GD.getCtorType());
3115         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3116           GDDef = GlobalDecl(DD, GD.getDtorType());
3117         else
3118           GDDef = GlobalDecl(FDDef);
3119         EmitGlobal(GDDef);
3120       }
3121     }
3122 
3123     if (FD->isMultiVersion()) {
3124       if (FD->hasAttr<TargetAttr>())
3125         UpdateMultiVersionNames(GD, FD);
3126       if (!IsForDefinition)
3127         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3128     }
3129   }
3130 
3131   // Lookup the entry, lazily creating it if necessary.
3132   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3133   if (Entry) {
3134     if (WeakRefReferences.erase(Entry)) {
3135       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3136       if (FD && !FD->hasAttr<WeakAttr>())
3137         Entry->setLinkage(llvm::Function::ExternalLinkage);
3138     }
3139 
3140     // Handle dropped DLL attributes.
3141     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3142       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3143       setDSOLocal(Entry);
3144     }
3145 
3146     // If there are two attempts to define the same mangled name, issue an
3147     // error.
3148     if (IsForDefinition && !Entry->isDeclaration()) {
3149       GlobalDecl OtherGD;
3150       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3151       // to make sure that we issue an error only once.
3152       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3153           (GD.getCanonicalDecl().getDecl() !=
3154            OtherGD.getCanonicalDecl().getDecl()) &&
3155           DiagnosedConflictingDefinitions.insert(GD).second) {
3156         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3157             << MangledName;
3158         getDiags().Report(OtherGD.getDecl()->getLocation(),
3159                           diag::note_previous_definition);
3160       }
3161     }
3162 
3163     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3164         (Entry->getType()->getElementType() == Ty)) {
3165       return Entry;
3166     }
3167 
3168     // Make sure the result is of the correct type.
3169     // (If function is requested for a definition, we always need to create a new
3170     // function, not just return a bitcast.)
3171     if (!IsForDefinition)
3172       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3173   }
3174 
3175   // This function doesn't have a complete type (for example, the return
3176   // type is an incomplete struct). Use a fake type instead, and make
3177   // sure not to try to set attributes.
3178   bool IsIncompleteFunction = false;
3179 
3180   llvm::FunctionType *FTy;
3181   if (isa<llvm::FunctionType>(Ty)) {
3182     FTy = cast<llvm::FunctionType>(Ty);
3183   } else {
3184     FTy = llvm::FunctionType::get(VoidTy, false);
3185     IsIncompleteFunction = true;
3186   }
3187 
3188   llvm::Function *F =
3189       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3190                              Entry ? StringRef() : MangledName, &getModule());
3191 
3192   // If we already created a function with the same mangled name (but different
3193   // type) before, take its name and add it to the list of functions to be
3194   // replaced with F at the end of CodeGen.
3195   //
3196   // This happens if there is a prototype for a function (e.g. "int f()") and
3197   // then a definition of a different type (e.g. "int f(int x)").
3198   if (Entry) {
3199     F->takeName(Entry);
3200 
3201     // This might be an implementation of a function without a prototype, in
3202     // which case, try to do special replacement of calls which match the new
3203     // prototype.  The really key thing here is that we also potentially drop
3204     // arguments from the call site so as to make a direct call, which makes the
3205     // inliner happier and suppresses a number of optimizer warnings (!) about
3206     // dropping arguments.
3207     if (!Entry->use_empty()) {
3208       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3209       Entry->removeDeadConstantUsers();
3210     }
3211 
3212     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3213         F, Entry->getType()->getElementType()->getPointerTo());
3214     addGlobalValReplacement(Entry, BC);
3215   }
3216 
3217   assert(F->getName() == MangledName && "name was uniqued!");
3218   if (D)
3219     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3220   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3221     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3222     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3223   }
3224 
3225   if (!DontDefer) {
3226     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3227     // each other bottoming out with the base dtor.  Therefore we emit non-base
3228     // dtors on usage, even if there is no dtor definition in the TU.
3229     if (D && isa<CXXDestructorDecl>(D) &&
3230         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3231                                            GD.getDtorType()))
3232       addDeferredDeclToEmit(GD);
3233 
3234     // This is the first use or definition of a mangled name.  If there is a
3235     // deferred decl with this name, remember that we need to emit it at the end
3236     // of the file.
3237     auto DDI = DeferredDecls.find(MangledName);
3238     if (DDI != DeferredDecls.end()) {
3239       // Move the potentially referenced deferred decl to the
3240       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3241       // don't need it anymore).
3242       addDeferredDeclToEmit(DDI->second);
3243       DeferredDecls.erase(DDI);
3244 
3245       // Otherwise, there are cases we have to worry about where we're
3246       // using a declaration for which we must emit a definition but where
3247       // we might not find a top-level definition:
3248       //   - member functions defined inline in their classes
3249       //   - friend functions defined inline in some class
3250       //   - special member functions with implicit definitions
3251       // If we ever change our AST traversal to walk into class methods,
3252       // this will be unnecessary.
3253       //
3254       // We also don't emit a definition for a function if it's going to be an
3255       // entry in a vtable, unless it's already marked as used.
3256     } else if (getLangOpts().CPlusPlus && D) {
3257       // Look for a declaration that's lexically in a record.
3258       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3259            FD = FD->getPreviousDecl()) {
3260         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3261           if (FD->doesThisDeclarationHaveABody()) {
3262             addDeferredDeclToEmit(GD.getWithDecl(FD));
3263             break;
3264           }
3265         }
3266       }
3267     }
3268   }
3269 
3270   // Make sure the result is of the requested type.
3271   if (!IsIncompleteFunction) {
3272     assert(F->getType()->getElementType() == Ty);
3273     return F;
3274   }
3275 
3276   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3277   return llvm::ConstantExpr::getBitCast(F, PTy);
3278 }
3279 
3280 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3281 /// non-null, then this function will use the specified type if it has to
3282 /// create it (this occurs when we see a definition of the function).
3283 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3284                                                  llvm::Type *Ty,
3285                                                  bool ForVTable,
3286                                                  bool DontDefer,
3287                                               ForDefinition_t IsForDefinition) {
3288   // If there was no specific requested type, just convert it now.
3289   if (!Ty) {
3290     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3291     Ty = getTypes().ConvertType(FD->getType());
3292   }
3293 
3294   // Devirtualized destructor calls may come through here instead of via
3295   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3296   // of the complete destructor when necessary.
3297   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3298     if (getTarget().getCXXABI().isMicrosoft() &&
3299         GD.getDtorType() == Dtor_Complete &&
3300         DD->getParent()->getNumVBases() == 0)
3301       GD = GlobalDecl(DD, Dtor_Base);
3302   }
3303 
3304   StringRef MangledName = getMangledName(GD);
3305   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3306                                  /*IsThunk=*/false, llvm::AttributeList(),
3307                                  IsForDefinition);
3308 }
3309 
3310 static const FunctionDecl *
3311 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3312   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3313   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3314 
3315   IdentifierInfo &CII = C.Idents.get(Name);
3316   for (const auto &Result : DC->lookup(&CII))
3317     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3318       return FD;
3319 
3320   if (!C.getLangOpts().CPlusPlus)
3321     return nullptr;
3322 
3323   // Demangle the premangled name from getTerminateFn()
3324   IdentifierInfo &CXXII =
3325       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3326           ? C.Idents.get("terminate")
3327           : C.Idents.get(Name);
3328 
3329   for (const auto &N : {"__cxxabiv1", "std"}) {
3330     IdentifierInfo &NS = C.Idents.get(N);
3331     for (const auto &Result : DC->lookup(&NS)) {
3332       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3333       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3334         for (const auto &Result : LSD->lookup(&NS))
3335           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3336             break;
3337 
3338       if (ND)
3339         for (const auto &Result : ND->lookup(&CXXII))
3340           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3341             return FD;
3342     }
3343   }
3344 
3345   return nullptr;
3346 }
3347 
3348 /// CreateRuntimeFunction - Create a new runtime function with the specified
3349 /// type and name.
3350 llvm::FunctionCallee
3351 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3352                                      llvm::AttributeList ExtraAttrs, bool Local,
3353                                      bool AssumeConvergent) {
3354   if (AssumeConvergent) {
3355     ExtraAttrs =
3356         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3357                                 llvm::Attribute::Convergent);
3358   }
3359 
3360   llvm::Constant *C =
3361       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3362                               /*DontDefer=*/false, /*IsThunk=*/false,
3363                               ExtraAttrs);
3364 
3365   if (auto *F = dyn_cast<llvm::Function>(C)) {
3366     if (F->empty()) {
3367       F->setCallingConv(getRuntimeCC());
3368 
3369       // In Windows Itanium environments, try to mark runtime functions
3370       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3371       // will link their standard library statically or dynamically. Marking
3372       // functions imported when they are not imported can cause linker errors
3373       // and warnings.
3374       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3375           !getCodeGenOpts().LTOVisibilityPublicStd) {
3376         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3377         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3378           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3379           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3380         }
3381       }
3382       setDSOLocal(F);
3383     }
3384   }
3385 
3386   return {FTy, C};
3387 }
3388 
3389 /// isTypeConstant - Determine whether an object of this type can be emitted
3390 /// as a constant.
3391 ///
3392 /// If ExcludeCtor is true, the duration when the object's constructor runs
3393 /// will not be considered. The caller will need to verify that the object is
3394 /// not written to during its construction.
3395 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3396   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3397     return false;
3398 
3399   if (Context.getLangOpts().CPlusPlus) {
3400     if (const CXXRecordDecl *Record
3401           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3402       return ExcludeCtor && !Record->hasMutableFields() &&
3403              Record->hasTrivialDestructor();
3404   }
3405 
3406   return true;
3407 }
3408 
3409 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3410 /// create and return an llvm GlobalVariable with the specified type.  If there
3411 /// is something in the module with the specified name, return it potentially
3412 /// bitcasted to the right type.
3413 ///
3414 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3415 /// to set the attributes on the global when it is first created.
3416 ///
3417 /// If IsForDefinition is true, it is guaranteed that an actual global with
3418 /// type Ty will be returned, not conversion of a variable with the same
3419 /// mangled name but some other type.
3420 llvm::Constant *
3421 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3422                                      llvm::PointerType *Ty,
3423                                      const VarDecl *D,
3424                                      ForDefinition_t IsForDefinition) {
3425   // Lookup the entry, lazily creating it if necessary.
3426   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3427   if (Entry) {
3428     if (WeakRefReferences.erase(Entry)) {
3429       if (D && !D->hasAttr<WeakAttr>())
3430         Entry->setLinkage(llvm::Function::ExternalLinkage);
3431     }
3432 
3433     // Handle dropped DLL attributes.
3434     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3435       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3436 
3437     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3438       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3439 
3440     if (Entry->getType() == Ty)
3441       return Entry;
3442 
3443     // If there are two attempts to define the same mangled name, issue an
3444     // error.
3445     if (IsForDefinition && !Entry->isDeclaration()) {
3446       GlobalDecl OtherGD;
3447       const VarDecl *OtherD;
3448 
3449       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3450       // to make sure that we issue an error only once.
3451       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3452           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3453           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3454           OtherD->hasInit() &&
3455           DiagnosedConflictingDefinitions.insert(D).second) {
3456         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3457             << MangledName;
3458         getDiags().Report(OtherGD.getDecl()->getLocation(),
3459                           diag::note_previous_definition);
3460       }
3461     }
3462 
3463     // Make sure the result is of the correct type.
3464     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3465       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3466 
3467     // (If global is requested for a definition, we always need to create a new
3468     // global, not just return a bitcast.)
3469     if (!IsForDefinition)
3470       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3471   }
3472 
3473   auto AddrSpace = GetGlobalVarAddressSpace(D);
3474   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3475 
3476   auto *GV = new llvm::GlobalVariable(
3477       getModule(), Ty->getElementType(), false,
3478       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3479       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3480 
3481   // If we already created a global with the same mangled name (but different
3482   // type) before, take its name and remove it from its parent.
3483   if (Entry) {
3484     GV->takeName(Entry);
3485 
3486     if (!Entry->use_empty()) {
3487       llvm::Constant *NewPtrForOldDecl =
3488           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3489       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3490     }
3491 
3492     Entry->eraseFromParent();
3493   }
3494 
3495   // This is the first use or definition of a mangled name.  If there is a
3496   // deferred decl with this name, remember that we need to emit it at the end
3497   // of the file.
3498   auto DDI = DeferredDecls.find(MangledName);
3499   if (DDI != DeferredDecls.end()) {
3500     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3501     // list, and remove it from DeferredDecls (since we don't need it anymore).
3502     addDeferredDeclToEmit(DDI->second);
3503     DeferredDecls.erase(DDI);
3504   }
3505 
3506   // Handle things which are present even on external declarations.
3507   if (D) {
3508     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3509       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3510 
3511     // FIXME: This code is overly simple and should be merged with other global
3512     // handling.
3513     GV->setConstant(isTypeConstant(D->getType(), false));
3514 
3515     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3516 
3517     setLinkageForGV(GV, D);
3518 
3519     if (D->getTLSKind()) {
3520       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3521         CXXThreadLocals.push_back(D);
3522       setTLSMode(GV, *D);
3523     }
3524 
3525     setGVProperties(GV, D);
3526 
3527     // If required by the ABI, treat declarations of static data members with
3528     // inline initializers as definitions.
3529     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3530       EmitGlobalVarDefinition(D);
3531     }
3532 
3533     // Emit section information for extern variables.
3534     if (D->hasExternalStorage()) {
3535       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3536         GV->setSection(SA->getName());
3537     }
3538 
3539     // Handle XCore specific ABI requirements.
3540     if (getTriple().getArch() == llvm::Triple::xcore &&
3541         D->getLanguageLinkage() == CLanguageLinkage &&
3542         D->getType().isConstant(Context) &&
3543         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3544       GV->setSection(".cp.rodata");
3545 
3546     // Check if we a have a const declaration with an initializer, we may be
3547     // able to emit it as available_externally to expose it's value to the
3548     // optimizer.
3549     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3550         D->getType().isConstQualified() && !GV->hasInitializer() &&
3551         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3552       const auto *Record =
3553           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3554       bool HasMutableFields = Record && Record->hasMutableFields();
3555       if (!HasMutableFields) {
3556         const VarDecl *InitDecl;
3557         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3558         if (InitExpr) {
3559           ConstantEmitter emitter(*this);
3560           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3561           if (Init) {
3562             auto *InitType = Init->getType();
3563             if (GV->getType()->getElementType() != InitType) {
3564               // The type of the initializer does not match the definition.
3565               // This happens when an initializer has a different type from
3566               // the type of the global (because of padding at the end of a
3567               // structure for instance).
3568               GV->setName(StringRef());
3569               // Make a new global with the correct type, this is now guaranteed
3570               // to work.
3571               auto *NewGV = cast<llvm::GlobalVariable>(
3572                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3573                       ->stripPointerCasts());
3574 
3575               // Erase the old global, since it is no longer used.
3576               GV->eraseFromParent();
3577               GV = NewGV;
3578             } else {
3579               GV->setInitializer(Init);
3580               GV->setConstant(true);
3581               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3582             }
3583             emitter.finalize(GV);
3584           }
3585         }
3586       }
3587     }
3588   }
3589 
3590   if (GV->isDeclaration())
3591     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3592 
3593   LangAS ExpectedAS =
3594       D ? D->getType().getAddressSpace()
3595         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3596   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3597          Ty->getPointerAddressSpace());
3598   if (AddrSpace != ExpectedAS)
3599     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3600                                                        ExpectedAS, Ty);
3601 
3602   return GV;
3603 }
3604 
3605 llvm::Constant *
3606 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3607                                ForDefinition_t IsForDefinition) {
3608   const Decl *D = GD.getDecl();
3609   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3610     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3611                                 /*DontDefer=*/false, IsForDefinition);
3612   else if (isa<CXXMethodDecl>(D)) {
3613     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3614         cast<CXXMethodDecl>(D));
3615     auto Ty = getTypes().GetFunctionType(*FInfo);
3616     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3617                              IsForDefinition);
3618   } else if (isa<FunctionDecl>(D)) {
3619     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3620     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3621     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3622                              IsForDefinition);
3623   } else
3624     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3625                               IsForDefinition);
3626 }
3627 
3628 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3629     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3630     unsigned Alignment) {
3631   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3632   llvm::GlobalVariable *OldGV = nullptr;
3633 
3634   if (GV) {
3635     // Check if the variable has the right type.
3636     if (GV->getType()->getElementType() == Ty)
3637       return GV;
3638 
3639     // Because C++ name mangling, the only way we can end up with an already
3640     // existing global with the same name is if it has been declared extern "C".
3641     assert(GV->isDeclaration() && "Declaration has wrong type!");
3642     OldGV = GV;
3643   }
3644 
3645   // Create a new variable.
3646   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3647                                 Linkage, nullptr, Name);
3648 
3649   if (OldGV) {
3650     // Replace occurrences of the old variable if needed.
3651     GV->takeName(OldGV);
3652 
3653     if (!OldGV->use_empty()) {
3654       llvm::Constant *NewPtrForOldDecl =
3655       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3656       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3657     }
3658 
3659     OldGV->eraseFromParent();
3660   }
3661 
3662   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3663       !GV->hasAvailableExternallyLinkage())
3664     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3665 
3666   GV->setAlignment(llvm::MaybeAlign(Alignment));
3667 
3668   return GV;
3669 }
3670 
3671 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3672 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3673 /// then it will be created with the specified type instead of whatever the
3674 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3675 /// that an actual global with type Ty will be returned, not conversion of a
3676 /// variable with the same mangled name but some other type.
3677 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3678                                                   llvm::Type *Ty,
3679                                            ForDefinition_t IsForDefinition) {
3680   assert(D->hasGlobalStorage() && "Not a global variable");
3681   QualType ASTTy = D->getType();
3682   if (!Ty)
3683     Ty = getTypes().ConvertTypeForMem(ASTTy);
3684 
3685   llvm::PointerType *PTy =
3686     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3687 
3688   StringRef MangledName = getMangledName(D);
3689   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3690 }
3691 
3692 /// CreateRuntimeVariable - Create a new runtime global variable with the
3693 /// specified type and name.
3694 llvm::Constant *
3695 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3696                                      StringRef Name) {
3697   auto PtrTy =
3698       getContext().getLangOpts().OpenCL
3699           ? llvm::PointerType::get(
3700                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3701           : llvm::PointerType::getUnqual(Ty);
3702   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3703   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3704   return Ret;
3705 }
3706 
3707 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3708   assert(!D->getInit() && "Cannot emit definite definitions here!");
3709 
3710   StringRef MangledName = getMangledName(D);
3711   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3712 
3713   // We already have a definition, not declaration, with the same mangled name.
3714   // Emitting of declaration is not required (and actually overwrites emitted
3715   // definition).
3716   if (GV && !GV->isDeclaration())
3717     return;
3718 
3719   // If we have not seen a reference to this variable yet, place it into the
3720   // deferred declarations table to be emitted if needed later.
3721   if (!MustBeEmitted(D) && !GV) {
3722       DeferredDecls[MangledName] = D;
3723       return;
3724   }
3725 
3726   // The tentative definition is the only definition.
3727   EmitGlobalVarDefinition(D);
3728 }
3729 
3730 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3731   EmitExternalVarDeclaration(D);
3732 }
3733 
3734 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3735   return Context.toCharUnitsFromBits(
3736       getDataLayout().getTypeStoreSizeInBits(Ty));
3737 }
3738 
3739 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3740   LangAS AddrSpace = LangAS::Default;
3741   if (LangOpts.OpenCL) {
3742     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3743     assert(AddrSpace == LangAS::opencl_global ||
3744            AddrSpace == LangAS::opencl_constant ||
3745            AddrSpace == LangAS::opencl_local ||
3746            AddrSpace >= LangAS::FirstTargetAddressSpace);
3747     return AddrSpace;
3748   }
3749 
3750   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3751     if (D && D->hasAttr<CUDAConstantAttr>())
3752       return LangAS::cuda_constant;
3753     else if (D && D->hasAttr<CUDASharedAttr>())
3754       return LangAS::cuda_shared;
3755     else if (D && D->hasAttr<CUDADeviceAttr>())
3756       return LangAS::cuda_device;
3757     else if (D && D->getType().isConstQualified())
3758       return LangAS::cuda_constant;
3759     else
3760       return LangAS::cuda_device;
3761   }
3762 
3763   if (LangOpts.OpenMP) {
3764     LangAS AS;
3765     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3766       return AS;
3767   }
3768   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3769 }
3770 
3771 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3772   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3773   if (LangOpts.OpenCL)
3774     return LangAS::opencl_constant;
3775   if (auto AS = getTarget().getConstantAddressSpace())
3776     return AS.getValue();
3777   return LangAS::Default;
3778 }
3779 
3780 // In address space agnostic languages, string literals are in default address
3781 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3782 // emitted in constant address space in LLVM IR. To be consistent with other
3783 // parts of AST, string literal global variables in constant address space
3784 // need to be casted to default address space before being put into address
3785 // map and referenced by other part of CodeGen.
3786 // In OpenCL, string literals are in constant address space in AST, therefore
3787 // they should not be casted to default address space.
3788 static llvm::Constant *
3789 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3790                                        llvm::GlobalVariable *GV) {
3791   llvm::Constant *Cast = GV;
3792   if (!CGM.getLangOpts().OpenCL) {
3793     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3794       if (AS != LangAS::Default)
3795         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3796             CGM, GV, AS.getValue(), LangAS::Default,
3797             GV->getValueType()->getPointerTo(
3798                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3799     }
3800   }
3801   return Cast;
3802 }
3803 
3804 template<typename SomeDecl>
3805 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3806                                                llvm::GlobalValue *GV) {
3807   if (!getLangOpts().CPlusPlus)
3808     return;
3809 
3810   // Must have 'used' attribute, or else inline assembly can't rely on
3811   // the name existing.
3812   if (!D->template hasAttr<UsedAttr>())
3813     return;
3814 
3815   // Must have internal linkage and an ordinary name.
3816   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3817     return;
3818 
3819   // Must be in an extern "C" context. Entities declared directly within
3820   // a record are not extern "C" even if the record is in such a context.
3821   const SomeDecl *First = D->getFirstDecl();
3822   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3823     return;
3824 
3825   // OK, this is an internal linkage entity inside an extern "C" linkage
3826   // specification. Make a note of that so we can give it the "expected"
3827   // mangled name if nothing else is using that name.
3828   std::pair<StaticExternCMap::iterator, bool> R =
3829       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3830 
3831   // If we have multiple internal linkage entities with the same name
3832   // in extern "C" regions, none of them gets that name.
3833   if (!R.second)
3834     R.first->second = nullptr;
3835 }
3836 
3837 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3838   if (!CGM.supportsCOMDAT())
3839     return false;
3840 
3841   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3842   // them being "merged" by the COMDAT Folding linker optimization.
3843   if (D.hasAttr<CUDAGlobalAttr>())
3844     return false;
3845 
3846   if (D.hasAttr<SelectAnyAttr>())
3847     return true;
3848 
3849   GVALinkage Linkage;
3850   if (auto *VD = dyn_cast<VarDecl>(&D))
3851     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3852   else
3853     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3854 
3855   switch (Linkage) {
3856   case GVA_Internal:
3857   case GVA_AvailableExternally:
3858   case GVA_StrongExternal:
3859     return false;
3860   case GVA_DiscardableODR:
3861   case GVA_StrongODR:
3862     return true;
3863   }
3864   llvm_unreachable("No such linkage");
3865 }
3866 
3867 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3868                                           llvm::GlobalObject &GO) {
3869   if (!shouldBeInCOMDAT(*this, D))
3870     return;
3871   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3872 }
3873 
3874 /// Pass IsTentative as true if you want to create a tentative definition.
3875 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3876                                             bool IsTentative) {
3877   // OpenCL global variables of sampler type are translated to function calls,
3878   // therefore no need to be translated.
3879   QualType ASTTy = D->getType();
3880   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3881     return;
3882 
3883   // If this is OpenMP device, check if it is legal to emit this global
3884   // normally.
3885   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3886       OpenMPRuntime->emitTargetGlobalVariable(D))
3887     return;
3888 
3889   llvm::Constant *Init = nullptr;
3890   bool NeedsGlobalCtor = false;
3891   bool NeedsGlobalDtor =
3892       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3893 
3894   const VarDecl *InitDecl;
3895   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3896 
3897   Optional<ConstantEmitter> emitter;
3898 
3899   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3900   // as part of their declaration."  Sema has already checked for
3901   // error cases, so we just need to set Init to UndefValue.
3902   bool IsCUDASharedVar =
3903       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3904   // Shadows of initialized device-side global variables are also left
3905   // undefined.
3906   bool IsCUDAShadowVar =
3907       !getLangOpts().CUDAIsDevice &&
3908       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3909        D->hasAttr<CUDASharedAttr>());
3910   // HIP pinned shadow of initialized host-side global variables are also
3911   // left undefined.
3912   bool IsHIPPinnedShadowVar =
3913       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3914   if (getLangOpts().CUDA &&
3915       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3916     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3917   else if (D->hasAttr<LoaderUninitializedAttr>())
3918     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3919   else if (!InitExpr) {
3920     // This is a tentative definition; tentative definitions are
3921     // implicitly initialized with { 0 }.
3922     //
3923     // Note that tentative definitions are only emitted at the end of
3924     // a translation unit, so they should never have incomplete
3925     // type. In addition, EmitTentativeDefinition makes sure that we
3926     // never attempt to emit a tentative definition if a real one
3927     // exists. A use may still exists, however, so we still may need
3928     // to do a RAUW.
3929     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3930     Init = EmitNullConstant(D->getType());
3931   } else {
3932     initializedGlobalDecl = GlobalDecl(D);
3933     emitter.emplace(*this);
3934     Init = emitter->tryEmitForInitializer(*InitDecl);
3935 
3936     if (!Init) {
3937       QualType T = InitExpr->getType();
3938       if (D->getType()->isReferenceType())
3939         T = D->getType();
3940 
3941       if (getLangOpts().CPlusPlus) {
3942         Init = EmitNullConstant(T);
3943         NeedsGlobalCtor = true;
3944       } else {
3945         ErrorUnsupported(D, "static initializer");
3946         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3947       }
3948     } else {
3949       // We don't need an initializer, so remove the entry for the delayed
3950       // initializer position (just in case this entry was delayed) if we
3951       // also don't need to register a destructor.
3952       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3953         DelayedCXXInitPosition.erase(D);
3954     }
3955   }
3956 
3957   llvm::Type* InitType = Init->getType();
3958   llvm::Constant *Entry =
3959       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3960 
3961   // Strip off pointer casts if we got them.
3962   Entry = Entry->stripPointerCasts();
3963 
3964   // Entry is now either a Function or GlobalVariable.
3965   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3966 
3967   // We have a definition after a declaration with the wrong type.
3968   // We must make a new GlobalVariable* and update everything that used OldGV
3969   // (a declaration or tentative definition) with the new GlobalVariable*
3970   // (which will be a definition).
3971   //
3972   // This happens if there is a prototype for a global (e.g.
3973   // "extern int x[];") and then a definition of a different type (e.g.
3974   // "int x[10];"). This also happens when an initializer has a different type
3975   // from the type of the global (this happens with unions).
3976   if (!GV || GV->getType()->getElementType() != InitType ||
3977       GV->getType()->getAddressSpace() !=
3978           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3979 
3980     // Move the old entry aside so that we'll create a new one.
3981     Entry->setName(StringRef());
3982 
3983     // Make a new global with the correct type, this is now guaranteed to work.
3984     GV = cast<llvm::GlobalVariable>(
3985         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
3986             ->stripPointerCasts());
3987 
3988     // Replace all uses of the old global with the new global
3989     llvm::Constant *NewPtrForOldDecl =
3990         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3991     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3992 
3993     // Erase the old global, since it is no longer used.
3994     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3995   }
3996 
3997   MaybeHandleStaticInExternC(D, GV);
3998 
3999   if (D->hasAttr<AnnotateAttr>())
4000     AddGlobalAnnotations(D, GV);
4001 
4002   // Set the llvm linkage type as appropriate.
4003   llvm::GlobalValue::LinkageTypes Linkage =
4004       getLLVMLinkageVarDefinition(D, GV->isConstant());
4005 
4006   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4007   // the device. [...]"
4008   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4009   // __device__, declares a variable that: [...]
4010   // Is accessible from all the threads within the grid and from the host
4011   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4012   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4013   if (GV && LangOpts.CUDA) {
4014     if (LangOpts.CUDAIsDevice) {
4015       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4016           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4017         GV->setExternallyInitialized(true);
4018     } else {
4019       // Host-side shadows of external declarations of device-side
4020       // global variables become internal definitions. These have to
4021       // be internal in order to prevent name conflicts with global
4022       // host variables with the same name in a different TUs.
4023       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4024           D->hasAttr<HIPPinnedShadowAttr>()) {
4025         Linkage = llvm::GlobalValue::InternalLinkage;
4026 
4027         // Shadow variables and their properties must be registered
4028         // with CUDA runtime.
4029         unsigned Flags = 0;
4030         if (!D->hasDefinition())
4031           Flags |= CGCUDARuntime::ExternDeviceVar;
4032         if (D->hasAttr<CUDAConstantAttr>())
4033           Flags |= CGCUDARuntime::ConstantDeviceVar;
4034         // Extern global variables will be registered in the TU where they are
4035         // defined.
4036         if (!D->hasExternalStorage())
4037           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4038       } else if (D->hasAttr<CUDASharedAttr>())
4039         // __shared__ variables are odd. Shadows do get created, but
4040         // they are not registered with the CUDA runtime, so they
4041         // can't really be used to access their device-side
4042         // counterparts. It's not clear yet whether it's nvcc's bug or
4043         // a feature, but we've got to do the same for compatibility.
4044         Linkage = llvm::GlobalValue::InternalLinkage;
4045     }
4046   }
4047 
4048   // HIPPinnedShadowVar should remain in the final code object irrespective of
4049   // whether it is used or not within the code. Add it to used list, so that
4050   // it will not get eliminated when it is unused. Also, it is an extern var
4051   // within device code, and it should *not* get initialized within device code.
4052   if (IsHIPPinnedShadowVar)
4053     addUsedGlobal(GV, /*SkipCheck=*/true);
4054   else
4055     GV->setInitializer(Init);
4056 
4057   if (emitter)
4058     emitter->finalize(GV);
4059 
4060   // If it is safe to mark the global 'constant', do so now.
4061   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4062                   isTypeConstant(D->getType(), true));
4063 
4064   // If it is in a read-only section, mark it 'constant'.
4065   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4066     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4067     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4068       GV->setConstant(true);
4069   }
4070 
4071   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4072 
4073   // On Darwin, if the normal linkage of a C++ thread_local variable is
4074   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4075   // copies within a linkage unit; otherwise, the backing variable has
4076   // internal linkage and all accesses should just be calls to the
4077   // Itanium-specified entry point, which has the normal linkage of the
4078   // variable. This is to preserve the ability to change the implementation
4079   // behind the scenes.
4080   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4081       Context.getTargetInfo().getTriple().isOSDarwin() &&
4082       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4083       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4084     Linkage = llvm::GlobalValue::InternalLinkage;
4085 
4086   GV->setLinkage(Linkage);
4087   if (D->hasAttr<DLLImportAttr>())
4088     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4089   else if (D->hasAttr<DLLExportAttr>())
4090     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4091   else
4092     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4093 
4094   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4095     // common vars aren't constant even if declared const.
4096     GV->setConstant(false);
4097     // Tentative definition of global variables may be initialized with
4098     // non-zero null pointers. In this case they should have weak linkage
4099     // since common linkage must have zero initializer and must not have
4100     // explicit section therefore cannot have non-zero initial value.
4101     if (!GV->getInitializer()->isNullValue())
4102       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4103   }
4104 
4105   setNonAliasAttributes(D, GV);
4106 
4107   if (D->getTLSKind() && !GV->isThreadLocal()) {
4108     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4109       CXXThreadLocals.push_back(D);
4110     setTLSMode(GV, *D);
4111   }
4112 
4113   maybeSetTrivialComdat(*D, *GV);
4114 
4115   // Emit the initializer function if necessary.
4116   if (NeedsGlobalCtor || NeedsGlobalDtor)
4117     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4118 
4119   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4120 
4121   // Emit global variable debug information.
4122   if (CGDebugInfo *DI = getModuleDebugInfo())
4123     if (getCodeGenOpts().hasReducedDebugInfo())
4124       DI->EmitGlobalVariable(GV, D);
4125 }
4126 
4127 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4128   if (CGDebugInfo *DI = getModuleDebugInfo())
4129     if (getCodeGenOpts().hasReducedDebugInfo()) {
4130       QualType ASTTy = D->getType();
4131       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4132       llvm::PointerType *PTy =
4133           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4134       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4135       DI->EmitExternalVariable(
4136           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4137     }
4138 }
4139 
4140 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4141                                       CodeGenModule &CGM, const VarDecl *D,
4142                                       bool NoCommon) {
4143   // Don't give variables common linkage if -fno-common was specified unless it
4144   // was overridden by a NoCommon attribute.
4145   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4146     return true;
4147 
4148   // C11 6.9.2/2:
4149   //   A declaration of an identifier for an object that has file scope without
4150   //   an initializer, and without a storage-class specifier or with the
4151   //   storage-class specifier static, constitutes a tentative definition.
4152   if (D->getInit() || D->hasExternalStorage())
4153     return true;
4154 
4155   // A variable cannot be both common and exist in a section.
4156   if (D->hasAttr<SectionAttr>())
4157     return true;
4158 
4159   // A variable cannot be both common and exist in a section.
4160   // We don't try to determine which is the right section in the front-end.
4161   // If no specialized section name is applicable, it will resort to default.
4162   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4163       D->hasAttr<PragmaClangDataSectionAttr>() ||
4164       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4165       D->hasAttr<PragmaClangRodataSectionAttr>())
4166     return true;
4167 
4168   // Thread local vars aren't considered common linkage.
4169   if (D->getTLSKind())
4170     return true;
4171 
4172   // Tentative definitions marked with WeakImportAttr are true definitions.
4173   if (D->hasAttr<WeakImportAttr>())
4174     return true;
4175 
4176   // A variable cannot be both common and exist in a comdat.
4177   if (shouldBeInCOMDAT(CGM, *D))
4178     return true;
4179 
4180   // Declarations with a required alignment do not have common linkage in MSVC
4181   // mode.
4182   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4183     if (D->hasAttr<AlignedAttr>())
4184       return true;
4185     QualType VarType = D->getType();
4186     if (Context.isAlignmentRequired(VarType))
4187       return true;
4188 
4189     if (const auto *RT = VarType->getAs<RecordType>()) {
4190       const RecordDecl *RD = RT->getDecl();
4191       for (const FieldDecl *FD : RD->fields()) {
4192         if (FD->isBitField())
4193           continue;
4194         if (FD->hasAttr<AlignedAttr>())
4195           return true;
4196         if (Context.isAlignmentRequired(FD->getType()))
4197           return true;
4198       }
4199     }
4200   }
4201 
4202   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4203   // common symbols, so symbols with greater alignment requirements cannot be
4204   // common.
4205   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4206   // alignments for common symbols via the aligncomm directive, so this
4207   // restriction only applies to MSVC environments.
4208   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4209       Context.getTypeAlignIfKnown(D->getType()) >
4210           Context.toBits(CharUnits::fromQuantity(32)))
4211     return true;
4212 
4213   return false;
4214 }
4215 
4216 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4217     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4218   if (Linkage == GVA_Internal)
4219     return llvm::Function::InternalLinkage;
4220 
4221   if (D->hasAttr<WeakAttr>()) {
4222     if (IsConstantVariable)
4223       return llvm::GlobalVariable::WeakODRLinkage;
4224     else
4225       return llvm::GlobalVariable::WeakAnyLinkage;
4226   }
4227 
4228   if (const auto *FD = D->getAsFunction())
4229     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4230       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4231 
4232   // We are guaranteed to have a strong definition somewhere else,
4233   // so we can use available_externally linkage.
4234   if (Linkage == GVA_AvailableExternally)
4235     return llvm::GlobalValue::AvailableExternallyLinkage;
4236 
4237   // Note that Apple's kernel linker doesn't support symbol
4238   // coalescing, so we need to avoid linkonce and weak linkages there.
4239   // Normally, this means we just map to internal, but for explicit
4240   // instantiations we'll map to external.
4241 
4242   // In C++, the compiler has to emit a definition in every translation unit
4243   // that references the function.  We should use linkonce_odr because
4244   // a) if all references in this translation unit are optimized away, we
4245   // don't need to codegen it.  b) if the function persists, it needs to be
4246   // merged with other definitions. c) C++ has the ODR, so we know the
4247   // definition is dependable.
4248   if (Linkage == GVA_DiscardableODR)
4249     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4250                                             : llvm::Function::InternalLinkage;
4251 
4252   // An explicit instantiation of a template has weak linkage, since
4253   // explicit instantiations can occur in multiple translation units
4254   // and must all be equivalent. However, we are not allowed to
4255   // throw away these explicit instantiations.
4256   //
4257   // We don't currently support CUDA device code spread out across multiple TUs,
4258   // so say that CUDA templates are either external (for kernels) or internal.
4259   // This lets llvm perform aggressive inter-procedural optimizations.
4260   if (Linkage == GVA_StrongODR) {
4261     if (Context.getLangOpts().AppleKext)
4262       return llvm::Function::ExternalLinkage;
4263     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4264       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4265                                           : llvm::Function::InternalLinkage;
4266     return llvm::Function::WeakODRLinkage;
4267   }
4268 
4269   // C++ doesn't have tentative definitions and thus cannot have common
4270   // linkage.
4271   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4272       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4273                                  CodeGenOpts.NoCommon))
4274     return llvm::GlobalVariable::CommonLinkage;
4275 
4276   // selectany symbols are externally visible, so use weak instead of
4277   // linkonce.  MSVC optimizes away references to const selectany globals, so
4278   // all definitions should be the same and ODR linkage should be used.
4279   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4280   if (D->hasAttr<SelectAnyAttr>())
4281     return llvm::GlobalVariable::WeakODRLinkage;
4282 
4283   // Otherwise, we have strong external linkage.
4284   assert(Linkage == GVA_StrongExternal);
4285   return llvm::GlobalVariable::ExternalLinkage;
4286 }
4287 
4288 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4289     const VarDecl *VD, bool IsConstant) {
4290   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4291   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4292 }
4293 
4294 /// Replace the uses of a function that was declared with a non-proto type.
4295 /// We want to silently drop extra arguments from call sites
4296 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4297                                           llvm::Function *newFn) {
4298   // Fast path.
4299   if (old->use_empty()) return;
4300 
4301   llvm::Type *newRetTy = newFn->getReturnType();
4302   SmallVector<llvm::Value*, 4> newArgs;
4303   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4304 
4305   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4306          ui != ue; ) {
4307     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4308     llvm::User *user = use->getUser();
4309 
4310     // Recognize and replace uses of bitcasts.  Most calls to
4311     // unprototyped functions will use bitcasts.
4312     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4313       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4314         replaceUsesOfNonProtoConstant(bitcast, newFn);
4315       continue;
4316     }
4317 
4318     // Recognize calls to the function.
4319     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4320     if (!callSite) continue;
4321     if (!callSite->isCallee(&*use))
4322       continue;
4323 
4324     // If the return types don't match exactly, then we can't
4325     // transform this call unless it's dead.
4326     if (callSite->getType() != newRetTy && !callSite->use_empty())
4327       continue;
4328 
4329     // Get the call site's attribute list.
4330     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4331     llvm::AttributeList oldAttrs = callSite->getAttributes();
4332 
4333     // If the function was passed too few arguments, don't transform.
4334     unsigned newNumArgs = newFn->arg_size();
4335     if (callSite->arg_size() < newNumArgs)
4336       continue;
4337 
4338     // If extra arguments were passed, we silently drop them.
4339     // If any of the types mismatch, we don't transform.
4340     unsigned argNo = 0;
4341     bool dontTransform = false;
4342     for (llvm::Argument &A : newFn->args()) {
4343       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4344         dontTransform = true;
4345         break;
4346       }
4347 
4348       // Add any parameter attributes.
4349       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4350       argNo++;
4351     }
4352     if (dontTransform)
4353       continue;
4354 
4355     // Okay, we can transform this.  Create the new call instruction and copy
4356     // over the required information.
4357     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4358 
4359     // Copy over any operand bundles.
4360     callSite->getOperandBundlesAsDefs(newBundles);
4361 
4362     llvm::CallBase *newCall;
4363     if (dyn_cast<llvm::CallInst>(callSite)) {
4364       newCall =
4365           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4366     } else {
4367       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4368       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4369                                          oldInvoke->getUnwindDest(), newArgs,
4370                                          newBundles, "", callSite);
4371     }
4372     newArgs.clear(); // for the next iteration
4373 
4374     if (!newCall->getType()->isVoidTy())
4375       newCall->takeName(callSite);
4376     newCall->setAttributes(llvm::AttributeList::get(
4377         newFn->getContext(), oldAttrs.getFnAttributes(),
4378         oldAttrs.getRetAttributes(), newArgAttrs));
4379     newCall->setCallingConv(callSite->getCallingConv());
4380 
4381     // Finally, remove the old call, replacing any uses with the new one.
4382     if (!callSite->use_empty())
4383       callSite->replaceAllUsesWith(newCall);
4384 
4385     // Copy debug location attached to CI.
4386     if (callSite->getDebugLoc())
4387       newCall->setDebugLoc(callSite->getDebugLoc());
4388 
4389     callSite->eraseFromParent();
4390   }
4391 }
4392 
4393 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4394 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4395 /// existing call uses of the old function in the module, this adjusts them to
4396 /// call the new function directly.
4397 ///
4398 /// This is not just a cleanup: the always_inline pass requires direct calls to
4399 /// functions to be able to inline them.  If there is a bitcast in the way, it
4400 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4401 /// run at -O0.
4402 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4403                                                       llvm::Function *NewFn) {
4404   // If we're redefining a global as a function, don't transform it.
4405   if (!isa<llvm::Function>(Old)) return;
4406 
4407   replaceUsesOfNonProtoConstant(Old, NewFn);
4408 }
4409 
4410 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4411   auto DK = VD->isThisDeclarationADefinition();
4412   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4413     return;
4414 
4415   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4416   // If we have a definition, this might be a deferred decl. If the
4417   // instantiation is explicit, make sure we emit it at the end.
4418   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4419     GetAddrOfGlobalVar(VD);
4420 
4421   EmitTopLevelDecl(VD);
4422 }
4423 
4424 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4425                                                  llvm::GlobalValue *GV) {
4426   const auto *D = cast<FunctionDecl>(GD.getDecl());
4427 
4428   // Compute the function info and LLVM type.
4429   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4430   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4431 
4432   // Get or create the prototype for the function.
4433   if (!GV || (GV->getType()->getElementType() != Ty))
4434     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4435                                                    /*DontDefer=*/true,
4436                                                    ForDefinition));
4437 
4438   // Already emitted.
4439   if (!GV->isDeclaration())
4440     return;
4441 
4442   // We need to set linkage and visibility on the function before
4443   // generating code for it because various parts of IR generation
4444   // want to propagate this information down (e.g. to local static
4445   // declarations).
4446   auto *Fn = cast<llvm::Function>(GV);
4447   setFunctionLinkage(GD, Fn);
4448 
4449   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4450   setGVProperties(Fn, GD);
4451 
4452   MaybeHandleStaticInExternC(D, Fn);
4453 
4454 
4455   maybeSetTrivialComdat(*D, *Fn);
4456 
4457   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4458 
4459   setNonAliasAttributes(GD, Fn);
4460   SetLLVMFunctionAttributesForDefinition(D, Fn);
4461 
4462   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4463     AddGlobalCtor(Fn, CA->getPriority());
4464   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4465     AddGlobalDtor(Fn, DA->getPriority());
4466   if (D->hasAttr<AnnotateAttr>())
4467     AddGlobalAnnotations(D, Fn);
4468 }
4469 
4470 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4471   const auto *D = cast<ValueDecl>(GD.getDecl());
4472   const AliasAttr *AA = D->getAttr<AliasAttr>();
4473   assert(AA && "Not an alias?");
4474 
4475   StringRef MangledName = getMangledName(GD);
4476 
4477   if (AA->getAliasee() == MangledName) {
4478     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4479     return;
4480   }
4481 
4482   // If there is a definition in the module, then it wins over the alias.
4483   // This is dubious, but allow it to be safe.  Just ignore the alias.
4484   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4485   if (Entry && !Entry->isDeclaration())
4486     return;
4487 
4488   Aliases.push_back(GD);
4489 
4490   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4491 
4492   // Create a reference to the named value.  This ensures that it is emitted
4493   // if a deferred decl.
4494   llvm::Constant *Aliasee;
4495   llvm::GlobalValue::LinkageTypes LT;
4496   if (isa<llvm::FunctionType>(DeclTy)) {
4497     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4498                                       /*ForVTable=*/false);
4499     LT = getFunctionLinkage(GD);
4500   } else {
4501     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4502                                     llvm::PointerType::getUnqual(DeclTy),
4503                                     /*D=*/nullptr);
4504     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4505                                      D->getType().isConstQualified());
4506   }
4507 
4508   // Create the new alias itself, but don't set a name yet.
4509   auto *GA =
4510       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4511 
4512   if (Entry) {
4513     if (GA->getAliasee() == Entry) {
4514       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4515       return;
4516     }
4517 
4518     assert(Entry->isDeclaration());
4519 
4520     // If there is a declaration in the module, then we had an extern followed
4521     // by the alias, as in:
4522     //   extern int test6();
4523     //   ...
4524     //   int test6() __attribute__((alias("test7")));
4525     //
4526     // Remove it and replace uses of it with the alias.
4527     GA->takeName(Entry);
4528 
4529     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4530                                                           Entry->getType()));
4531     Entry->eraseFromParent();
4532   } else {
4533     GA->setName(MangledName);
4534   }
4535 
4536   // Set attributes which are particular to an alias; this is a
4537   // specialization of the attributes which may be set on a global
4538   // variable/function.
4539   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4540       D->isWeakImported()) {
4541     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4542   }
4543 
4544   if (const auto *VD = dyn_cast<VarDecl>(D))
4545     if (VD->getTLSKind())
4546       setTLSMode(GA, *VD);
4547 
4548   SetCommonAttributes(GD, GA);
4549 }
4550 
4551 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4552   const auto *D = cast<ValueDecl>(GD.getDecl());
4553   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4554   assert(IFA && "Not an ifunc?");
4555 
4556   StringRef MangledName = getMangledName(GD);
4557 
4558   if (IFA->getResolver() == MangledName) {
4559     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4560     return;
4561   }
4562 
4563   // Report an error if some definition overrides ifunc.
4564   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4565   if (Entry && !Entry->isDeclaration()) {
4566     GlobalDecl OtherGD;
4567     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4568         DiagnosedConflictingDefinitions.insert(GD).second) {
4569       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4570           << MangledName;
4571       Diags.Report(OtherGD.getDecl()->getLocation(),
4572                    diag::note_previous_definition);
4573     }
4574     return;
4575   }
4576 
4577   Aliases.push_back(GD);
4578 
4579   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4580   llvm::Constant *Resolver =
4581       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4582                               /*ForVTable=*/false);
4583   llvm::GlobalIFunc *GIF =
4584       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4585                                 "", Resolver, &getModule());
4586   if (Entry) {
4587     if (GIF->getResolver() == Entry) {
4588       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4589       return;
4590     }
4591     assert(Entry->isDeclaration());
4592 
4593     // If there is a declaration in the module, then we had an extern followed
4594     // by the ifunc, as in:
4595     //   extern int test();
4596     //   ...
4597     //   int test() __attribute__((ifunc("resolver")));
4598     //
4599     // Remove it and replace uses of it with the ifunc.
4600     GIF->takeName(Entry);
4601 
4602     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4603                                                           Entry->getType()));
4604     Entry->eraseFromParent();
4605   } else
4606     GIF->setName(MangledName);
4607 
4608   SetCommonAttributes(GD, GIF);
4609 }
4610 
4611 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4612                                             ArrayRef<llvm::Type*> Tys) {
4613   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4614                                          Tys);
4615 }
4616 
4617 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4618 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4619                          const StringLiteral *Literal, bool TargetIsLSB,
4620                          bool &IsUTF16, unsigned &StringLength) {
4621   StringRef String = Literal->getString();
4622   unsigned NumBytes = String.size();
4623 
4624   // Check for simple case.
4625   if (!Literal->containsNonAsciiOrNull()) {
4626     StringLength = NumBytes;
4627     return *Map.insert(std::make_pair(String, nullptr)).first;
4628   }
4629 
4630   // Otherwise, convert the UTF8 literals into a string of shorts.
4631   IsUTF16 = true;
4632 
4633   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4634   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4635   llvm::UTF16 *ToPtr = &ToBuf[0];
4636 
4637   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4638                                  ToPtr + NumBytes, llvm::strictConversion);
4639 
4640   // ConvertUTF8toUTF16 returns the length in ToPtr.
4641   StringLength = ToPtr - &ToBuf[0];
4642 
4643   // Add an explicit null.
4644   *ToPtr = 0;
4645   return *Map.insert(std::make_pair(
4646                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4647                                    (StringLength + 1) * 2),
4648                          nullptr)).first;
4649 }
4650 
4651 ConstantAddress
4652 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4653   unsigned StringLength = 0;
4654   bool isUTF16 = false;
4655   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4656       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4657                                getDataLayout().isLittleEndian(), isUTF16,
4658                                StringLength);
4659 
4660   if (auto *C = Entry.second)
4661     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4662 
4663   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4664   llvm::Constant *Zeros[] = { Zero, Zero };
4665 
4666   const ASTContext &Context = getContext();
4667   const llvm::Triple &Triple = getTriple();
4668 
4669   const auto CFRuntime = getLangOpts().CFRuntime;
4670   const bool IsSwiftABI =
4671       static_cast<unsigned>(CFRuntime) >=
4672       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4673   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4674 
4675   // If we don't already have it, get __CFConstantStringClassReference.
4676   if (!CFConstantStringClassRef) {
4677     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4678     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4679     Ty = llvm::ArrayType::get(Ty, 0);
4680 
4681     switch (CFRuntime) {
4682     default: break;
4683     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4684     case LangOptions::CoreFoundationABI::Swift5_0:
4685       CFConstantStringClassName =
4686           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4687                               : "$s10Foundation19_NSCFConstantStringCN";
4688       Ty = IntPtrTy;
4689       break;
4690     case LangOptions::CoreFoundationABI::Swift4_2:
4691       CFConstantStringClassName =
4692           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4693                               : "$S10Foundation19_NSCFConstantStringCN";
4694       Ty = IntPtrTy;
4695       break;
4696     case LangOptions::CoreFoundationABI::Swift4_1:
4697       CFConstantStringClassName =
4698           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4699                               : "__T010Foundation19_NSCFConstantStringCN";
4700       Ty = IntPtrTy;
4701       break;
4702     }
4703 
4704     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4705 
4706     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4707       llvm::GlobalValue *GV = nullptr;
4708 
4709       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4710         IdentifierInfo &II = Context.Idents.get(GV->getName());
4711         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4712         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4713 
4714         const VarDecl *VD = nullptr;
4715         for (const auto &Result : DC->lookup(&II))
4716           if ((VD = dyn_cast<VarDecl>(Result)))
4717             break;
4718 
4719         if (Triple.isOSBinFormatELF()) {
4720           if (!VD)
4721             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4722         } else {
4723           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4724           if (!VD || !VD->hasAttr<DLLExportAttr>())
4725             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4726           else
4727             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4728         }
4729 
4730         setDSOLocal(GV);
4731       }
4732     }
4733 
4734     // Decay array -> ptr
4735     CFConstantStringClassRef =
4736         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4737                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4738   }
4739 
4740   QualType CFTy = Context.getCFConstantStringType();
4741 
4742   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4743 
4744   ConstantInitBuilder Builder(*this);
4745   auto Fields = Builder.beginStruct(STy);
4746 
4747   // Class pointer.
4748   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4749 
4750   // Flags.
4751   if (IsSwiftABI) {
4752     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4753     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4754   } else {
4755     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4756   }
4757 
4758   // String pointer.
4759   llvm::Constant *C = nullptr;
4760   if (isUTF16) {
4761     auto Arr = llvm::makeArrayRef(
4762         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4763         Entry.first().size() / 2);
4764     C = llvm::ConstantDataArray::get(VMContext, Arr);
4765   } else {
4766     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4767   }
4768 
4769   // Note: -fwritable-strings doesn't make the backing store strings of
4770   // CFStrings writable. (See <rdar://problem/10657500>)
4771   auto *GV =
4772       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4773                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4774   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4775   // Don't enforce the target's minimum global alignment, since the only use
4776   // of the string is via this class initializer.
4777   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4778                             : Context.getTypeAlignInChars(Context.CharTy);
4779   GV->setAlignment(Align.getAsAlign());
4780 
4781   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4782   // Without it LLVM can merge the string with a non unnamed_addr one during
4783   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4784   if (Triple.isOSBinFormatMachO())
4785     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4786                            : "__TEXT,__cstring,cstring_literals");
4787   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4788   // the static linker to adjust permissions to read-only later on.
4789   else if (Triple.isOSBinFormatELF())
4790     GV->setSection(".rodata");
4791 
4792   // String.
4793   llvm::Constant *Str =
4794       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4795 
4796   if (isUTF16)
4797     // Cast the UTF16 string to the correct type.
4798     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4799   Fields.add(Str);
4800 
4801   // String length.
4802   llvm::IntegerType *LengthTy =
4803       llvm::IntegerType::get(getModule().getContext(),
4804                              Context.getTargetInfo().getLongWidth());
4805   if (IsSwiftABI) {
4806     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4807         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4808       LengthTy = Int32Ty;
4809     else
4810       LengthTy = IntPtrTy;
4811   }
4812   Fields.addInt(LengthTy, StringLength);
4813 
4814   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4815   // properly aligned on 32-bit platforms.
4816   CharUnits Alignment =
4817       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4818 
4819   // The struct.
4820   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4821                                     /*isConstant=*/false,
4822                                     llvm::GlobalVariable::PrivateLinkage);
4823   GV->addAttribute("objc_arc_inert");
4824   switch (Triple.getObjectFormat()) {
4825   case llvm::Triple::UnknownObjectFormat:
4826     llvm_unreachable("unknown file format");
4827   case llvm::Triple::XCOFF:
4828     llvm_unreachable("XCOFF is not yet implemented");
4829   case llvm::Triple::COFF:
4830   case llvm::Triple::ELF:
4831   case llvm::Triple::Wasm:
4832     GV->setSection("cfstring");
4833     break;
4834   case llvm::Triple::MachO:
4835     GV->setSection("__DATA,__cfstring");
4836     break;
4837   }
4838   Entry.second = GV;
4839 
4840   return ConstantAddress(GV, Alignment);
4841 }
4842 
4843 bool CodeGenModule::getExpressionLocationsEnabled() const {
4844   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4845 }
4846 
4847 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4848   if (ObjCFastEnumerationStateType.isNull()) {
4849     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4850     D->startDefinition();
4851 
4852     QualType FieldTypes[] = {
4853       Context.UnsignedLongTy,
4854       Context.getPointerType(Context.getObjCIdType()),
4855       Context.getPointerType(Context.UnsignedLongTy),
4856       Context.getConstantArrayType(Context.UnsignedLongTy,
4857                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4858     };
4859 
4860     for (size_t i = 0; i < 4; ++i) {
4861       FieldDecl *Field = FieldDecl::Create(Context,
4862                                            D,
4863                                            SourceLocation(),
4864                                            SourceLocation(), nullptr,
4865                                            FieldTypes[i], /*TInfo=*/nullptr,
4866                                            /*BitWidth=*/nullptr,
4867                                            /*Mutable=*/false,
4868                                            ICIS_NoInit);
4869       Field->setAccess(AS_public);
4870       D->addDecl(Field);
4871     }
4872 
4873     D->completeDefinition();
4874     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4875   }
4876 
4877   return ObjCFastEnumerationStateType;
4878 }
4879 
4880 llvm::Constant *
4881 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4882   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4883 
4884   // Don't emit it as the address of the string, emit the string data itself
4885   // as an inline array.
4886   if (E->getCharByteWidth() == 1) {
4887     SmallString<64> Str(E->getString());
4888 
4889     // Resize the string to the right size, which is indicated by its type.
4890     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4891     Str.resize(CAT->getSize().getZExtValue());
4892     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4893   }
4894 
4895   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4896   llvm::Type *ElemTy = AType->getElementType();
4897   unsigned NumElements = AType->getNumElements();
4898 
4899   // Wide strings have either 2-byte or 4-byte elements.
4900   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4901     SmallVector<uint16_t, 32> Elements;
4902     Elements.reserve(NumElements);
4903 
4904     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4905       Elements.push_back(E->getCodeUnit(i));
4906     Elements.resize(NumElements);
4907     return llvm::ConstantDataArray::get(VMContext, Elements);
4908   }
4909 
4910   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4911   SmallVector<uint32_t, 32> Elements;
4912   Elements.reserve(NumElements);
4913 
4914   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4915     Elements.push_back(E->getCodeUnit(i));
4916   Elements.resize(NumElements);
4917   return llvm::ConstantDataArray::get(VMContext, Elements);
4918 }
4919 
4920 static llvm::GlobalVariable *
4921 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4922                       CodeGenModule &CGM, StringRef GlobalName,
4923                       CharUnits Alignment) {
4924   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4925       CGM.getStringLiteralAddressSpace());
4926 
4927   llvm::Module &M = CGM.getModule();
4928   // Create a global variable for this string
4929   auto *GV = new llvm::GlobalVariable(
4930       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4931       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4932   GV->setAlignment(Alignment.getAsAlign());
4933   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4934   if (GV->isWeakForLinker()) {
4935     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4936     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4937   }
4938   CGM.setDSOLocal(GV);
4939 
4940   return GV;
4941 }
4942 
4943 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4944 /// constant array for the given string literal.
4945 ConstantAddress
4946 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4947                                                   StringRef Name) {
4948   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4949 
4950   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4951   llvm::GlobalVariable **Entry = nullptr;
4952   if (!LangOpts.WritableStrings) {
4953     Entry = &ConstantStringMap[C];
4954     if (auto GV = *Entry) {
4955       if (Alignment.getQuantity() > GV->getAlignment())
4956         GV->setAlignment(Alignment.getAsAlign());
4957       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4958                              Alignment);
4959     }
4960   }
4961 
4962   SmallString<256> MangledNameBuffer;
4963   StringRef GlobalVariableName;
4964   llvm::GlobalValue::LinkageTypes LT;
4965 
4966   // Mangle the string literal if that's how the ABI merges duplicate strings.
4967   // Don't do it if they are writable, since we don't want writes in one TU to
4968   // affect strings in another.
4969   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4970       !LangOpts.WritableStrings) {
4971     llvm::raw_svector_ostream Out(MangledNameBuffer);
4972     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4973     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4974     GlobalVariableName = MangledNameBuffer;
4975   } else {
4976     LT = llvm::GlobalValue::PrivateLinkage;
4977     GlobalVariableName = Name;
4978   }
4979 
4980   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4981   if (Entry)
4982     *Entry = GV;
4983 
4984   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4985                                   QualType());
4986 
4987   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4988                          Alignment);
4989 }
4990 
4991 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4992 /// array for the given ObjCEncodeExpr node.
4993 ConstantAddress
4994 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4995   std::string Str;
4996   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4997 
4998   return GetAddrOfConstantCString(Str);
4999 }
5000 
5001 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5002 /// the literal and a terminating '\0' character.
5003 /// The result has pointer to array type.
5004 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5005     const std::string &Str, const char *GlobalName) {
5006   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5007   CharUnits Alignment =
5008     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5009 
5010   llvm::Constant *C =
5011       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5012 
5013   // Don't share any string literals if strings aren't constant.
5014   llvm::GlobalVariable **Entry = nullptr;
5015   if (!LangOpts.WritableStrings) {
5016     Entry = &ConstantStringMap[C];
5017     if (auto GV = *Entry) {
5018       if (Alignment.getQuantity() > GV->getAlignment())
5019         GV->setAlignment(Alignment.getAsAlign());
5020       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5021                              Alignment);
5022     }
5023   }
5024 
5025   // Get the default prefix if a name wasn't specified.
5026   if (!GlobalName)
5027     GlobalName = ".str";
5028   // Create a global variable for this.
5029   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5030                                   GlobalName, Alignment);
5031   if (Entry)
5032     *Entry = GV;
5033 
5034   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5035                          Alignment);
5036 }
5037 
5038 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5039     const MaterializeTemporaryExpr *E, const Expr *Init) {
5040   assert((E->getStorageDuration() == SD_Static ||
5041           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5042   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5043 
5044   // If we're not materializing a subobject of the temporary, keep the
5045   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5046   QualType MaterializedType = Init->getType();
5047   if (Init == E->getSubExpr())
5048     MaterializedType = E->getType();
5049 
5050   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5051 
5052   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5053     return ConstantAddress(Slot, Align);
5054 
5055   // FIXME: If an externally-visible declaration extends multiple temporaries,
5056   // we need to give each temporary the same name in every translation unit (and
5057   // we also need to make the temporaries externally-visible).
5058   SmallString<256> Name;
5059   llvm::raw_svector_ostream Out(Name);
5060   getCXXABI().getMangleContext().mangleReferenceTemporary(
5061       VD, E->getManglingNumber(), Out);
5062 
5063   APValue *Value = nullptr;
5064   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5065     // If the initializer of the extending declaration is a constant
5066     // initializer, we should have a cached constant initializer for this
5067     // temporary. Note that this might have a different value from the value
5068     // computed by evaluating the initializer if the surrounding constant
5069     // expression modifies the temporary.
5070     Value = E->getOrCreateValue(false);
5071   }
5072 
5073   // Try evaluating it now, it might have a constant initializer.
5074   Expr::EvalResult EvalResult;
5075   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5076       !EvalResult.hasSideEffects())
5077     Value = &EvalResult.Val;
5078 
5079   LangAS AddrSpace =
5080       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5081 
5082   Optional<ConstantEmitter> emitter;
5083   llvm::Constant *InitialValue = nullptr;
5084   bool Constant = false;
5085   llvm::Type *Type;
5086   if (Value) {
5087     // The temporary has a constant initializer, use it.
5088     emitter.emplace(*this);
5089     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5090                                                MaterializedType);
5091     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5092     Type = InitialValue->getType();
5093   } else {
5094     // No initializer, the initialization will be provided when we
5095     // initialize the declaration which performed lifetime extension.
5096     Type = getTypes().ConvertTypeForMem(MaterializedType);
5097   }
5098 
5099   // Create a global variable for this lifetime-extended temporary.
5100   llvm::GlobalValue::LinkageTypes Linkage =
5101       getLLVMLinkageVarDefinition(VD, Constant);
5102   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5103     const VarDecl *InitVD;
5104     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5105         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5106       // Temporaries defined inside a class get linkonce_odr linkage because the
5107       // class can be defined in multiple translation units.
5108       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5109     } else {
5110       // There is no need for this temporary to have external linkage if the
5111       // VarDecl has external linkage.
5112       Linkage = llvm::GlobalVariable::InternalLinkage;
5113     }
5114   }
5115   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5116   auto *GV = new llvm::GlobalVariable(
5117       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5118       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5119   if (emitter) emitter->finalize(GV);
5120   setGVProperties(GV, VD);
5121   GV->setAlignment(Align.getAsAlign());
5122   if (supportsCOMDAT() && GV->isWeakForLinker())
5123     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5124   if (VD->getTLSKind())
5125     setTLSMode(GV, *VD);
5126   llvm::Constant *CV = GV;
5127   if (AddrSpace != LangAS::Default)
5128     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5129         *this, GV, AddrSpace, LangAS::Default,
5130         Type->getPointerTo(
5131             getContext().getTargetAddressSpace(LangAS::Default)));
5132   MaterializedGlobalTemporaryMap[E] = CV;
5133   return ConstantAddress(CV, Align);
5134 }
5135 
5136 /// EmitObjCPropertyImplementations - Emit information for synthesized
5137 /// properties for an implementation.
5138 void CodeGenModule::EmitObjCPropertyImplementations(const
5139                                                     ObjCImplementationDecl *D) {
5140   for (const auto *PID : D->property_impls()) {
5141     // Dynamic is just for type-checking.
5142     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5143       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5144 
5145       // Determine which methods need to be implemented, some may have
5146       // been overridden. Note that ::isPropertyAccessor is not the method
5147       // we want, that just indicates if the decl came from a
5148       // property. What we want to know is if the method is defined in
5149       // this implementation.
5150       auto *Getter = PID->getGetterMethodDecl();
5151       if (!Getter || Getter->isSynthesizedAccessorStub())
5152         CodeGenFunction(*this).GenerateObjCGetter(
5153             const_cast<ObjCImplementationDecl *>(D), PID);
5154       auto *Setter = PID->getSetterMethodDecl();
5155       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5156         CodeGenFunction(*this).GenerateObjCSetter(
5157                                  const_cast<ObjCImplementationDecl *>(D), PID);
5158     }
5159   }
5160 }
5161 
5162 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5163   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5164   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5165        ivar; ivar = ivar->getNextIvar())
5166     if (ivar->getType().isDestructedType())
5167       return true;
5168 
5169   return false;
5170 }
5171 
5172 static bool AllTrivialInitializers(CodeGenModule &CGM,
5173                                    ObjCImplementationDecl *D) {
5174   CodeGenFunction CGF(CGM);
5175   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5176        E = D->init_end(); B != E; ++B) {
5177     CXXCtorInitializer *CtorInitExp = *B;
5178     Expr *Init = CtorInitExp->getInit();
5179     if (!CGF.isTrivialInitializer(Init))
5180       return false;
5181   }
5182   return true;
5183 }
5184 
5185 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5186 /// for an implementation.
5187 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5188   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5189   if (needsDestructMethod(D)) {
5190     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5191     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5192     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5193         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5194         getContext().VoidTy, nullptr, D,
5195         /*isInstance=*/true, /*isVariadic=*/false,
5196         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5197         /*isImplicitlyDeclared=*/true,
5198         /*isDefined=*/false, ObjCMethodDecl::Required);
5199     D->addInstanceMethod(DTORMethod);
5200     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5201     D->setHasDestructors(true);
5202   }
5203 
5204   // If the implementation doesn't have any ivar initializers, we don't need
5205   // a .cxx_construct.
5206   if (D->getNumIvarInitializers() == 0 ||
5207       AllTrivialInitializers(*this, D))
5208     return;
5209 
5210   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5211   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5212   // The constructor returns 'self'.
5213   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5214       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5215       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5216       /*isVariadic=*/false,
5217       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5218       /*isImplicitlyDeclared=*/true,
5219       /*isDefined=*/false, ObjCMethodDecl::Required);
5220   D->addInstanceMethod(CTORMethod);
5221   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5222   D->setHasNonZeroConstructors(true);
5223 }
5224 
5225 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5226 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5227   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5228       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5229     ErrorUnsupported(LSD, "linkage spec");
5230     return;
5231   }
5232 
5233   EmitDeclContext(LSD);
5234 }
5235 
5236 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5237   for (auto *I : DC->decls()) {
5238     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5239     // are themselves considered "top-level", so EmitTopLevelDecl on an
5240     // ObjCImplDecl does not recursively visit them. We need to do that in
5241     // case they're nested inside another construct (LinkageSpecDecl /
5242     // ExportDecl) that does stop them from being considered "top-level".
5243     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5244       for (auto *M : OID->methods())
5245         EmitTopLevelDecl(M);
5246     }
5247 
5248     EmitTopLevelDecl(I);
5249   }
5250 }
5251 
5252 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5253 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5254   // Ignore dependent declarations.
5255   if (D->isTemplated())
5256     return;
5257 
5258   switch (D->getKind()) {
5259   case Decl::CXXConversion:
5260   case Decl::CXXMethod:
5261   case Decl::Function:
5262     EmitGlobal(cast<FunctionDecl>(D));
5263     // Always provide some coverage mapping
5264     // even for the functions that aren't emitted.
5265     AddDeferredUnusedCoverageMapping(D);
5266     break;
5267 
5268   case Decl::CXXDeductionGuide:
5269     // Function-like, but does not result in code emission.
5270     break;
5271 
5272   case Decl::Var:
5273   case Decl::Decomposition:
5274   case Decl::VarTemplateSpecialization:
5275     EmitGlobal(cast<VarDecl>(D));
5276     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5277       for (auto *B : DD->bindings())
5278         if (auto *HD = B->getHoldingVar())
5279           EmitGlobal(HD);
5280     break;
5281 
5282   // Indirect fields from global anonymous structs and unions can be
5283   // ignored; only the actual variable requires IR gen support.
5284   case Decl::IndirectField:
5285     break;
5286 
5287   // C++ Decls
5288   case Decl::Namespace:
5289     EmitDeclContext(cast<NamespaceDecl>(D));
5290     break;
5291   case Decl::ClassTemplateSpecialization: {
5292     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5293     if (DebugInfo &&
5294         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5295         Spec->hasDefinition())
5296       DebugInfo->completeTemplateDefinition(*Spec);
5297   } LLVM_FALLTHROUGH;
5298   case Decl::CXXRecord:
5299     if (DebugInfo) {
5300       if (auto *ES = D->getASTContext().getExternalSource())
5301         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5302           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5303     }
5304     // Emit any static data members, they may be definitions.
5305     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5306       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5307         EmitTopLevelDecl(I);
5308     break;
5309     // No code generation needed.
5310   case Decl::UsingShadow:
5311   case Decl::ClassTemplate:
5312   case Decl::VarTemplate:
5313   case Decl::Concept:
5314   case Decl::VarTemplatePartialSpecialization:
5315   case Decl::FunctionTemplate:
5316   case Decl::TypeAliasTemplate:
5317   case Decl::Block:
5318   case Decl::Empty:
5319   case Decl::Binding:
5320     break;
5321   case Decl::Using:          // using X; [C++]
5322     if (CGDebugInfo *DI = getModuleDebugInfo())
5323         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5324     return;
5325   case Decl::NamespaceAlias:
5326     if (CGDebugInfo *DI = getModuleDebugInfo())
5327         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5328     return;
5329   case Decl::UsingDirective: // using namespace X; [C++]
5330     if (CGDebugInfo *DI = getModuleDebugInfo())
5331       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5332     return;
5333   case Decl::CXXConstructor:
5334     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5335     break;
5336   case Decl::CXXDestructor:
5337     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5338     break;
5339 
5340   case Decl::StaticAssert:
5341     // Nothing to do.
5342     break;
5343 
5344   // Objective-C Decls
5345 
5346   // Forward declarations, no (immediate) code generation.
5347   case Decl::ObjCInterface:
5348   case Decl::ObjCCategory:
5349     break;
5350 
5351   case Decl::ObjCProtocol: {
5352     auto *Proto = cast<ObjCProtocolDecl>(D);
5353     if (Proto->isThisDeclarationADefinition())
5354       ObjCRuntime->GenerateProtocol(Proto);
5355     break;
5356   }
5357 
5358   case Decl::ObjCCategoryImpl:
5359     // Categories have properties but don't support synthesize so we
5360     // can ignore them here.
5361     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5362     break;
5363 
5364   case Decl::ObjCImplementation: {
5365     auto *OMD = cast<ObjCImplementationDecl>(D);
5366     EmitObjCPropertyImplementations(OMD);
5367     EmitObjCIvarInitializations(OMD);
5368     ObjCRuntime->GenerateClass(OMD);
5369     // Emit global variable debug information.
5370     if (CGDebugInfo *DI = getModuleDebugInfo())
5371       if (getCodeGenOpts().hasReducedDebugInfo())
5372         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5373             OMD->getClassInterface()), OMD->getLocation());
5374     break;
5375   }
5376   case Decl::ObjCMethod: {
5377     auto *OMD = cast<ObjCMethodDecl>(D);
5378     // If this is not a prototype, emit the body.
5379     if (OMD->getBody())
5380       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5381     break;
5382   }
5383   case Decl::ObjCCompatibleAlias:
5384     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5385     break;
5386 
5387   case Decl::PragmaComment: {
5388     const auto *PCD = cast<PragmaCommentDecl>(D);
5389     switch (PCD->getCommentKind()) {
5390     case PCK_Unknown:
5391       llvm_unreachable("unexpected pragma comment kind");
5392     case PCK_Linker:
5393       AppendLinkerOptions(PCD->getArg());
5394       break;
5395     case PCK_Lib:
5396         AddDependentLib(PCD->getArg());
5397       break;
5398     case PCK_Compiler:
5399     case PCK_ExeStr:
5400     case PCK_User:
5401       break; // We ignore all of these.
5402     }
5403     break;
5404   }
5405 
5406   case Decl::PragmaDetectMismatch: {
5407     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5408     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5409     break;
5410   }
5411 
5412   case Decl::LinkageSpec:
5413     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5414     break;
5415 
5416   case Decl::FileScopeAsm: {
5417     // File-scope asm is ignored during device-side CUDA compilation.
5418     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5419       break;
5420     // File-scope asm is ignored during device-side OpenMP compilation.
5421     if (LangOpts.OpenMPIsDevice)
5422       break;
5423     auto *AD = cast<FileScopeAsmDecl>(D);
5424     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5425     break;
5426   }
5427 
5428   case Decl::Import: {
5429     auto *Import = cast<ImportDecl>(D);
5430 
5431     // If we've already imported this module, we're done.
5432     if (!ImportedModules.insert(Import->getImportedModule()))
5433       break;
5434 
5435     // Emit debug information for direct imports.
5436     if (!Import->getImportedOwningModule()) {
5437       if (CGDebugInfo *DI = getModuleDebugInfo())
5438         DI->EmitImportDecl(*Import);
5439     }
5440 
5441     // Find all of the submodules and emit the module initializers.
5442     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5443     SmallVector<clang::Module *, 16> Stack;
5444     Visited.insert(Import->getImportedModule());
5445     Stack.push_back(Import->getImportedModule());
5446 
5447     while (!Stack.empty()) {
5448       clang::Module *Mod = Stack.pop_back_val();
5449       if (!EmittedModuleInitializers.insert(Mod).second)
5450         continue;
5451 
5452       for (auto *D : Context.getModuleInitializers(Mod))
5453         EmitTopLevelDecl(D);
5454 
5455       // Visit the submodules of this module.
5456       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5457                                              SubEnd = Mod->submodule_end();
5458            Sub != SubEnd; ++Sub) {
5459         // Skip explicit children; they need to be explicitly imported to emit
5460         // the initializers.
5461         if ((*Sub)->IsExplicit)
5462           continue;
5463 
5464         if (Visited.insert(*Sub).second)
5465           Stack.push_back(*Sub);
5466       }
5467     }
5468     break;
5469   }
5470 
5471   case Decl::Export:
5472     EmitDeclContext(cast<ExportDecl>(D));
5473     break;
5474 
5475   case Decl::OMPThreadPrivate:
5476     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5477     break;
5478 
5479   case Decl::OMPAllocate:
5480     break;
5481 
5482   case Decl::OMPDeclareReduction:
5483     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5484     break;
5485 
5486   case Decl::OMPDeclareMapper:
5487     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5488     break;
5489 
5490   case Decl::OMPRequires:
5491     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5492     break;
5493 
5494   default:
5495     // Make sure we handled everything we should, every other kind is a
5496     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5497     // function. Need to recode Decl::Kind to do that easily.
5498     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5499     break;
5500   }
5501 }
5502 
5503 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5504   // Do we need to generate coverage mapping?
5505   if (!CodeGenOpts.CoverageMapping)
5506     return;
5507   switch (D->getKind()) {
5508   case Decl::CXXConversion:
5509   case Decl::CXXMethod:
5510   case Decl::Function:
5511   case Decl::ObjCMethod:
5512   case Decl::CXXConstructor:
5513   case Decl::CXXDestructor: {
5514     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5515       return;
5516     SourceManager &SM = getContext().getSourceManager();
5517     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5518       return;
5519     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5520     if (I == DeferredEmptyCoverageMappingDecls.end())
5521       DeferredEmptyCoverageMappingDecls[D] = true;
5522     break;
5523   }
5524   default:
5525     break;
5526   };
5527 }
5528 
5529 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5530   // Do we need to generate coverage mapping?
5531   if (!CodeGenOpts.CoverageMapping)
5532     return;
5533   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5534     if (Fn->isTemplateInstantiation())
5535       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5536   }
5537   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5538   if (I == DeferredEmptyCoverageMappingDecls.end())
5539     DeferredEmptyCoverageMappingDecls[D] = false;
5540   else
5541     I->second = false;
5542 }
5543 
5544 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5545   // We call takeVector() here to avoid use-after-free.
5546   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5547   // we deserialize function bodies to emit coverage info for them, and that
5548   // deserializes more declarations. How should we handle that case?
5549   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5550     if (!Entry.second)
5551       continue;
5552     const Decl *D = Entry.first;
5553     switch (D->getKind()) {
5554     case Decl::CXXConversion:
5555     case Decl::CXXMethod:
5556     case Decl::Function:
5557     case Decl::ObjCMethod: {
5558       CodeGenPGO PGO(*this);
5559       GlobalDecl GD(cast<FunctionDecl>(D));
5560       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5561                                   getFunctionLinkage(GD));
5562       break;
5563     }
5564     case Decl::CXXConstructor: {
5565       CodeGenPGO PGO(*this);
5566       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5567       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5568                                   getFunctionLinkage(GD));
5569       break;
5570     }
5571     case Decl::CXXDestructor: {
5572       CodeGenPGO PGO(*this);
5573       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5574       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5575                                   getFunctionLinkage(GD));
5576       break;
5577     }
5578     default:
5579       break;
5580     };
5581   }
5582 }
5583 
5584 void CodeGenModule::EmitMainVoidAlias() {
5585   // In order to transition away from "__original_main" gracefully, emit an
5586   // alias for "main" in the no-argument case so that libc can detect when
5587   // new-style no-argument main is in used.
5588   if (llvm::Function *F = getModule().getFunction("main")) {
5589     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5590         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5591       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5592   }
5593 }
5594 
5595 /// Turns the given pointer into a constant.
5596 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5597                                           const void *Ptr) {
5598   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5599   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5600   return llvm::ConstantInt::get(i64, PtrInt);
5601 }
5602 
5603 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5604                                    llvm::NamedMDNode *&GlobalMetadata,
5605                                    GlobalDecl D,
5606                                    llvm::GlobalValue *Addr) {
5607   if (!GlobalMetadata)
5608     GlobalMetadata =
5609       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5610 
5611   // TODO: should we report variant information for ctors/dtors?
5612   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5613                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5614                                CGM.getLLVMContext(), D.getDecl()))};
5615   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5616 }
5617 
5618 /// For each function which is declared within an extern "C" region and marked
5619 /// as 'used', but has internal linkage, create an alias from the unmangled
5620 /// name to the mangled name if possible. People expect to be able to refer
5621 /// to such functions with an unmangled name from inline assembly within the
5622 /// same translation unit.
5623 void CodeGenModule::EmitStaticExternCAliases() {
5624   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5625     return;
5626   for (auto &I : StaticExternCValues) {
5627     IdentifierInfo *Name = I.first;
5628     llvm::GlobalValue *Val = I.second;
5629     if (Val && !getModule().getNamedValue(Name->getName()))
5630       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5631   }
5632 }
5633 
5634 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5635                                              GlobalDecl &Result) const {
5636   auto Res = Manglings.find(MangledName);
5637   if (Res == Manglings.end())
5638     return false;
5639   Result = Res->getValue();
5640   return true;
5641 }
5642 
5643 /// Emits metadata nodes associating all the global values in the
5644 /// current module with the Decls they came from.  This is useful for
5645 /// projects using IR gen as a subroutine.
5646 ///
5647 /// Since there's currently no way to associate an MDNode directly
5648 /// with an llvm::GlobalValue, we create a global named metadata
5649 /// with the name 'clang.global.decl.ptrs'.
5650 void CodeGenModule::EmitDeclMetadata() {
5651   llvm::NamedMDNode *GlobalMetadata = nullptr;
5652 
5653   for (auto &I : MangledDeclNames) {
5654     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5655     // Some mangled names don't necessarily have an associated GlobalValue
5656     // in this module, e.g. if we mangled it for DebugInfo.
5657     if (Addr)
5658       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5659   }
5660 }
5661 
5662 /// Emits metadata nodes for all the local variables in the current
5663 /// function.
5664 void CodeGenFunction::EmitDeclMetadata() {
5665   if (LocalDeclMap.empty()) return;
5666 
5667   llvm::LLVMContext &Context = getLLVMContext();
5668 
5669   // Find the unique metadata ID for this name.
5670   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5671 
5672   llvm::NamedMDNode *GlobalMetadata = nullptr;
5673 
5674   for (auto &I : LocalDeclMap) {
5675     const Decl *D = I.first;
5676     llvm::Value *Addr = I.second.getPointer();
5677     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5678       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5679       Alloca->setMetadata(
5680           DeclPtrKind, llvm::MDNode::get(
5681                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5682     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5683       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5684       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5685     }
5686   }
5687 }
5688 
5689 void CodeGenModule::EmitVersionIdentMetadata() {
5690   llvm::NamedMDNode *IdentMetadata =
5691     TheModule.getOrInsertNamedMetadata("llvm.ident");
5692   std::string Version = getClangFullVersion();
5693   llvm::LLVMContext &Ctx = TheModule.getContext();
5694 
5695   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5696   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5697 }
5698 
5699 void CodeGenModule::EmitCommandLineMetadata() {
5700   llvm::NamedMDNode *CommandLineMetadata =
5701     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5702   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5703   llvm::LLVMContext &Ctx = TheModule.getContext();
5704 
5705   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5706   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5707 }
5708 
5709 void CodeGenModule::EmitTargetMetadata() {
5710   // Warning, new MangledDeclNames may be appended within this loop.
5711   // We rely on MapVector insertions adding new elements to the end
5712   // of the container.
5713   // FIXME: Move this loop into the one target that needs it, and only
5714   // loop over those declarations for which we couldn't emit the target
5715   // metadata when we emitted the declaration.
5716   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5717     auto Val = *(MangledDeclNames.begin() + I);
5718     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5719     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5720     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5721   }
5722 }
5723 
5724 void CodeGenModule::EmitCoverageFile() {
5725   if (getCodeGenOpts().CoverageDataFile.empty() &&
5726       getCodeGenOpts().CoverageNotesFile.empty())
5727     return;
5728 
5729   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5730   if (!CUNode)
5731     return;
5732 
5733   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5734   llvm::LLVMContext &Ctx = TheModule.getContext();
5735   auto *CoverageDataFile =
5736       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5737   auto *CoverageNotesFile =
5738       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5739   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5740     llvm::MDNode *CU = CUNode->getOperand(i);
5741     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5742     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5743   }
5744 }
5745 
5746 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5747   // Sema has checked that all uuid strings are of the form
5748   // "12345678-1234-1234-1234-1234567890ab".
5749   assert(Uuid.size() == 36);
5750   for (unsigned i = 0; i < 36; ++i) {
5751     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5752     else                                         assert(isHexDigit(Uuid[i]));
5753   }
5754 
5755   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5756   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5757 
5758   llvm::Constant *Field3[8];
5759   for (unsigned Idx = 0; Idx < 8; ++Idx)
5760     Field3[Idx] = llvm::ConstantInt::get(
5761         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5762 
5763   llvm::Constant *Fields[4] = {
5764     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5765     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5766     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5767     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5768   };
5769 
5770   return llvm::ConstantStruct::getAnon(Fields);
5771 }
5772 
5773 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5774                                                        bool ForEH) {
5775   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5776   // FIXME: should we even be calling this method if RTTI is disabled
5777   // and it's not for EH?
5778   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5779       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5780        getTriple().isNVPTX()))
5781     return llvm::Constant::getNullValue(Int8PtrTy);
5782 
5783   if (ForEH && Ty->isObjCObjectPointerType() &&
5784       LangOpts.ObjCRuntime.isGNUFamily())
5785     return ObjCRuntime->GetEHType(Ty);
5786 
5787   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5788 }
5789 
5790 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5791   // Do not emit threadprivates in simd-only mode.
5792   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5793     return;
5794   for (auto RefExpr : D->varlists()) {
5795     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5796     bool PerformInit =
5797         VD->getAnyInitializer() &&
5798         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5799                                                         /*ForRef=*/false);
5800 
5801     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5802     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5803             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5804       CXXGlobalInits.push_back(InitFunction);
5805   }
5806 }
5807 
5808 llvm::Metadata *
5809 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5810                                             StringRef Suffix) {
5811   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5812   if (InternalId)
5813     return InternalId;
5814 
5815   if (isExternallyVisible(T->getLinkage())) {
5816     std::string OutName;
5817     llvm::raw_string_ostream Out(OutName);
5818     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5819     Out << Suffix;
5820 
5821     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5822   } else {
5823     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5824                                            llvm::ArrayRef<llvm::Metadata *>());
5825   }
5826 
5827   return InternalId;
5828 }
5829 
5830 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5831   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5832 }
5833 
5834 llvm::Metadata *
5835 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5836   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5837 }
5838 
5839 // Generalize pointer types to a void pointer with the qualifiers of the
5840 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5841 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5842 // 'void *'.
5843 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5844   if (!Ty->isPointerType())
5845     return Ty;
5846 
5847   return Ctx.getPointerType(
5848       QualType(Ctx.VoidTy).withCVRQualifiers(
5849           Ty->getPointeeType().getCVRQualifiers()));
5850 }
5851 
5852 // Apply type generalization to a FunctionType's return and argument types
5853 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5854   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5855     SmallVector<QualType, 8> GeneralizedParams;
5856     for (auto &Param : FnType->param_types())
5857       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5858 
5859     return Ctx.getFunctionType(
5860         GeneralizeType(Ctx, FnType->getReturnType()),
5861         GeneralizedParams, FnType->getExtProtoInfo());
5862   }
5863 
5864   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5865     return Ctx.getFunctionNoProtoType(
5866         GeneralizeType(Ctx, FnType->getReturnType()));
5867 
5868   llvm_unreachable("Encountered unknown FunctionType");
5869 }
5870 
5871 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5872   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5873                                       GeneralizedMetadataIdMap, ".generalized");
5874 }
5875 
5876 /// Returns whether this module needs the "all-vtables" type identifier.
5877 bool CodeGenModule::NeedAllVtablesTypeId() const {
5878   // Returns true if at least one of vtable-based CFI checkers is enabled and
5879   // is not in the trapping mode.
5880   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5881            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5882           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5883            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5884           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5885            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5886           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5887            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5888 }
5889 
5890 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5891                                           CharUnits Offset,
5892                                           const CXXRecordDecl *RD) {
5893   llvm::Metadata *MD =
5894       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5895   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5896 
5897   if (CodeGenOpts.SanitizeCfiCrossDso)
5898     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5899       VTable->addTypeMetadata(Offset.getQuantity(),
5900                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5901 
5902   if (NeedAllVtablesTypeId()) {
5903     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5904     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5905   }
5906 }
5907 
5908 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5909   if (!SanStats)
5910     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5911 
5912   return *SanStats;
5913 }
5914 llvm::Value *
5915 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5916                                                   CodeGenFunction &CGF) {
5917   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5918   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5919   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5920   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5921                                 "__translate_sampler_initializer"),
5922                                 {C});
5923 }
5924