1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 class CanonicalLoopInfo; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 class OMPUseDevicePtrClause; 79 class OMPUseDeviceAddrClause; 80 class SVETypeFlags; 81 class OMPExecutableDirective; 82 83 namespace analyze_os_log { 84 class OSLogBufferLayout; 85 } 86 87 namespace CodeGen { 88 class CodeGenTypes; 89 class CGCallee; 90 class CGFunctionInfo; 91 class CGBlockInfo; 92 class CGCXXABI; 93 class BlockByrefHelpers; 94 class BlockByrefInfo; 95 class BlockFieldFlags; 96 class RegionCodeGenTy; 97 class TargetCodeGenInfo; 98 struct OMPTaskDataTy; 99 struct CGCoroData; 100 101 /// The kind of evaluation to perform on values of a particular 102 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 103 /// CGExprAgg? 104 /// 105 /// TODO: should vectors maybe be split out into their own thing? 106 enum TypeEvaluationKind { 107 TEK_Scalar, 108 TEK_Complex, 109 TEK_Aggregate 110 }; 111 112 #define LIST_SANITIZER_CHECKS \ 113 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 114 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 115 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 116 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 117 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 118 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 119 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 120 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 121 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 122 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 123 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 124 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 125 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 126 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 127 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 128 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 129 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 130 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 131 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 132 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 133 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 134 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 135 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 136 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 137 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 138 139 enum SanitizerHandler { 140 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 141 LIST_SANITIZER_CHECKS 142 #undef SANITIZER_CHECK 143 }; 144 145 /// Helper class with most of the code for saving a value for a 146 /// conditional expression cleanup. 147 struct DominatingLLVMValue { 148 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 149 150 /// Answer whether the given value needs extra work to be saved. 151 static bool needsSaving(llvm::Value *value) { 152 // If it's not an instruction, we don't need to save. 153 if (!isa<llvm::Instruction>(value)) return false; 154 155 // If it's an instruction in the entry block, we don't need to save. 156 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 157 return (block != &block->getParent()->getEntryBlock()); 158 } 159 160 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 161 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 162 }; 163 164 /// A partial specialization of DominatingValue for llvm::Values that 165 /// might be llvm::Instructions. 166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 167 typedef T *type; 168 static type restore(CodeGenFunction &CGF, saved_type value) { 169 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 170 } 171 }; 172 173 /// A specialization of DominatingValue for Address. 174 template <> struct DominatingValue<Address> { 175 typedef Address type; 176 177 struct saved_type { 178 DominatingLLVMValue::saved_type SavedValue; 179 llvm::Type *ElementType; 180 CharUnits Alignment; 181 }; 182 183 static bool needsSaving(type value) { 184 return DominatingLLVMValue::needsSaving(value.getPointer()); 185 } 186 static saved_type save(CodeGenFunction &CGF, type value) { 187 return { DominatingLLVMValue::save(CGF, value.getPointer()), 188 value.getElementType(), value.getAlignment() }; 189 } 190 static type restore(CodeGenFunction &CGF, saved_type value) { 191 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 192 value.ElementType, value.Alignment); 193 } 194 }; 195 196 /// A specialization of DominatingValue for RValue. 197 template <> struct DominatingValue<RValue> { 198 typedef RValue type; 199 class saved_type { 200 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 201 AggregateAddress, ComplexAddress }; 202 203 llvm::Value *Value; 204 llvm::Type *ElementType; 205 unsigned K : 3; 206 unsigned Align : 29; 207 saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0) 208 : Value(v), ElementType(e), K(k), Align(a) {} 209 210 public: 211 static bool needsSaving(RValue value); 212 static saved_type save(CodeGenFunction &CGF, RValue value); 213 RValue restore(CodeGenFunction &CGF); 214 215 // implementations in CGCleanup.cpp 216 }; 217 218 static bool needsSaving(type value) { 219 return saved_type::needsSaving(value); 220 } 221 static saved_type save(CodeGenFunction &CGF, type value) { 222 return saved_type::save(CGF, value); 223 } 224 static type restore(CodeGenFunction &CGF, saved_type value) { 225 return value.restore(CGF); 226 } 227 }; 228 229 /// CodeGenFunction - This class organizes the per-function state that is used 230 /// while generating LLVM code. 231 class CodeGenFunction : public CodeGenTypeCache { 232 CodeGenFunction(const CodeGenFunction &) = delete; 233 void operator=(const CodeGenFunction &) = delete; 234 235 friend class CGCXXABI; 236 public: 237 /// A jump destination is an abstract label, branching to which may 238 /// require a jump out through normal cleanups. 239 struct JumpDest { 240 JumpDest() : Block(nullptr), Index(0) {} 241 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 242 unsigned Index) 243 : Block(Block), ScopeDepth(Depth), Index(Index) {} 244 245 bool isValid() const { return Block != nullptr; } 246 llvm::BasicBlock *getBlock() const { return Block; } 247 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 248 unsigned getDestIndex() const { return Index; } 249 250 // This should be used cautiously. 251 void setScopeDepth(EHScopeStack::stable_iterator depth) { 252 ScopeDepth = depth; 253 } 254 255 private: 256 llvm::BasicBlock *Block; 257 EHScopeStack::stable_iterator ScopeDepth; 258 unsigned Index; 259 }; 260 261 CodeGenModule &CGM; // Per-module state. 262 const TargetInfo &Target; 263 264 // For EH/SEH outlined funclets, this field points to parent's CGF 265 CodeGenFunction *ParentCGF = nullptr; 266 267 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 268 LoopInfoStack LoopStack; 269 CGBuilderTy Builder; 270 271 // Stores variables for which we can't generate correct lifetime markers 272 // because of jumps. 273 VarBypassDetector Bypasses; 274 275 /// List of recently emitted OMPCanonicalLoops. 276 /// 277 /// Since OMPCanonicalLoops are nested inside other statements (in particular 278 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 279 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 280 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 281 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 282 /// this stack when done. Entering a new loop requires clearing this list; it 283 /// either means we start parsing a new loop nest (in which case the previous 284 /// loop nest goes out of scope) or a second loop in the same level in which 285 /// case it would be ambiguous into which of the two (or more) loops the loop 286 /// nest would extend. 287 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 288 289 /// Number of nested loop to be consumed by the last surrounding 290 /// loop-associated directive. 291 int ExpectedOMPLoopDepth = 0; 292 293 // CodeGen lambda for loops and support for ordered clause 294 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 295 JumpDest)> 296 CodeGenLoopTy; 297 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 298 const unsigned, const bool)> 299 CodeGenOrderedTy; 300 301 // Codegen lambda for loop bounds in worksharing loop constructs 302 typedef llvm::function_ref<std::pair<LValue, LValue>( 303 CodeGenFunction &, const OMPExecutableDirective &S)> 304 CodeGenLoopBoundsTy; 305 306 // Codegen lambda for loop bounds in dispatch-based loop implementation 307 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 308 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 309 Address UB)> 310 CodeGenDispatchBoundsTy; 311 312 /// CGBuilder insert helper. This function is called after an 313 /// instruction is created using Builder. 314 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 315 llvm::BasicBlock *BB, 316 llvm::BasicBlock::iterator InsertPt) const; 317 318 /// CurFuncDecl - Holds the Decl for the current outermost 319 /// non-closure context. 320 const Decl *CurFuncDecl; 321 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 322 const Decl *CurCodeDecl; 323 const CGFunctionInfo *CurFnInfo; 324 QualType FnRetTy; 325 llvm::Function *CurFn = nullptr; 326 327 /// Save Parameter Decl for coroutine. 328 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 329 330 // Holds coroutine data if the current function is a coroutine. We use a 331 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 332 // in this header. 333 struct CGCoroInfo { 334 std::unique_ptr<CGCoroData> Data; 335 CGCoroInfo(); 336 ~CGCoroInfo(); 337 }; 338 CGCoroInfo CurCoro; 339 340 bool isCoroutine() const { 341 return CurCoro.Data != nullptr; 342 } 343 344 /// CurGD - The GlobalDecl for the current function being compiled. 345 GlobalDecl CurGD; 346 347 /// PrologueCleanupDepth - The cleanup depth enclosing all the 348 /// cleanups associated with the parameters. 349 EHScopeStack::stable_iterator PrologueCleanupDepth; 350 351 /// ReturnBlock - Unified return block. 352 JumpDest ReturnBlock; 353 354 /// ReturnValue - The temporary alloca to hold the return 355 /// value. This is invalid iff the function has no return value. 356 Address ReturnValue = Address::invalid(); 357 358 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 359 /// This is invalid if sret is not in use. 360 Address ReturnValuePointer = Address::invalid(); 361 362 /// If a return statement is being visited, this holds the return statment's 363 /// result expression. 364 const Expr *RetExpr = nullptr; 365 366 /// Return true if a label was seen in the current scope. 367 bool hasLabelBeenSeenInCurrentScope() const { 368 if (CurLexicalScope) 369 return CurLexicalScope->hasLabels(); 370 return !LabelMap.empty(); 371 } 372 373 /// AllocaInsertPoint - This is an instruction in the entry block before which 374 /// we prefer to insert allocas. 375 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 376 377 private: 378 /// PostAllocaInsertPt - This is a place in the prologue where code can be 379 /// inserted that will be dominated by all the static allocas. This helps 380 /// achieve two things: 381 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 382 /// 2. All other prologue code (which are dominated by static allocas) do 383 /// appear in the source order immediately after all static allocas. 384 /// 385 /// PostAllocaInsertPt will be lazily created when it is *really* required. 386 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 387 388 public: 389 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 390 /// immediately after AllocaInsertPt. 391 llvm::Instruction *getPostAllocaInsertPoint() { 392 if (!PostAllocaInsertPt) { 393 assert(AllocaInsertPt && 394 "Expected static alloca insertion point at function prologue"); 395 assert(AllocaInsertPt->getParent()->isEntryBlock() && 396 "EBB should be entry block of the current code gen function"); 397 PostAllocaInsertPt = AllocaInsertPt->clone(); 398 PostAllocaInsertPt->setName("postallocapt"); 399 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 400 } 401 402 return PostAllocaInsertPt; 403 } 404 405 /// API for captured statement code generation. 406 class CGCapturedStmtInfo { 407 public: 408 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 409 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 410 explicit CGCapturedStmtInfo(const CapturedStmt &S, 411 CapturedRegionKind K = CR_Default) 412 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 413 414 RecordDecl::field_iterator Field = 415 S.getCapturedRecordDecl()->field_begin(); 416 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 417 E = S.capture_end(); 418 I != E; ++I, ++Field) { 419 if (I->capturesThis()) 420 CXXThisFieldDecl = *Field; 421 else if (I->capturesVariable()) 422 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 423 else if (I->capturesVariableByCopy()) 424 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 425 } 426 } 427 428 virtual ~CGCapturedStmtInfo(); 429 430 CapturedRegionKind getKind() const { return Kind; } 431 432 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 433 // Retrieve the value of the context parameter. 434 virtual llvm::Value *getContextValue() const { return ThisValue; } 435 436 /// Lookup the captured field decl for a variable. 437 virtual const FieldDecl *lookup(const VarDecl *VD) const { 438 return CaptureFields.lookup(VD->getCanonicalDecl()); 439 } 440 441 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 442 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 443 444 static bool classof(const CGCapturedStmtInfo *) { 445 return true; 446 } 447 448 /// Emit the captured statement body. 449 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 450 CGF.incrementProfileCounter(S); 451 CGF.EmitStmt(S); 452 } 453 454 /// Get the name of the capture helper. 455 virtual StringRef getHelperName() const { return "__captured_stmt"; } 456 457 /// Get the CaptureFields 458 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 459 return CaptureFields; 460 } 461 462 private: 463 /// The kind of captured statement being generated. 464 CapturedRegionKind Kind; 465 466 /// Keep the map between VarDecl and FieldDecl. 467 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 468 469 /// The base address of the captured record, passed in as the first 470 /// argument of the parallel region function. 471 llvm::Value *ThisValue; 472 473 /// Captured 'this' type. 474 FieldDecl *CXXThisFieldDecl; 475 }; 476 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 477 478 /// RAII for correct setting/restoring of CapturedStmtInfo. 479 class CGCapturedStmtRAII { 480 private: 481 CodeGenFunction &CGF; 482 CGCapturedStmtInfo *PrevCapturedStmtInfo; 483 public: 484 CGCapturedStmtRAII(CodeGenFunction &CGF, 485 CGCapturedStmtInfo *NewCapturedStmtInfo) 486 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 487 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 488 } 489 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 490 }; 491 492 /// An abstract representation of regular/ObjC call/message targets. 493 class AbstractCallee { 494 /// The function declaration of the callee. 495 const Decl *CalleeDecl; 496 497 public: 498 AbstractCallee() : CalleeDecl(nullptr) {} 499 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 500 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 501 bool hasFunctionDecl() const { 502 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 503 } 504 const Decl *getDecl() const { return CalleeDecl; } 505 unsigned getNumParams() const { 506 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 507 return FD->getNumParams(); 508 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 509 } 510 const ParmVarDecl *getParamDecl(unsigned I) const { 511 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 512 return FD->getParamDecl(I); 513 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 514 } 515 }; 516 517 /// Sanitizers enabled for this function. 518 SanitizerSet SanOpts; 519 520 /// True if CodeGen currently emits code implementing sanitizer checks. 521 bool IsSanitizerScope = false; 522 523 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 524 class SanitizerScope { 525 CodeGenFunction *CGF; 526 public: 527 SanitizerScope(CodeGenFunction *CGF); 528 ~SanitizerScope(); 529 }; 530 531 /// In C++, whether we are code generating a thunk. This controls whether we 532 /// should emit cleanups. 533 bool CurFuncIsThunk = false; 534 535 /// In ARC, whether we should autorelease the return value. 536 bool AutoreleaseResult = false; 537 538 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 539 /// potentially set the return value. 540 bool SawAsmBlock = false; 541 542 const NamedDecl *CurSEHParent = nullptr; 543 544 /// True if the current function is an outlined SEH helper. This can be a 545 /// finally block or filter expression. 546 bool IsOutlinedSEHHelper = false; 547 548 /// True if CodeGen currently emits code inside presereved access index 549 /// region. 550 bool IsInPreservedAIRegion = false; 551 552 /// True if the current statement has nomerge attribute. 553 bool InNoMergeAttributedStmt = false; 554 555 /// True if the current statement has noinline attribute. 556 bool InNoInlineAttributedStmt = false; 557 558 /// True if the current statement has always_inline attribute. 559 bool InAlwaysInlineAttributedStmt = false; 560 561 // The CallExpr within the current statement that the musttail attribute 562 // applies to. nullptr if there is no 'musttail' on the current statement. 563 const CallExpr *MustTailCall = nullptr; 564 565 /// Returns true if a function must make progress, which means the 566 /// mustprogress attribute can be added. 567 bool checkIfFunctionMustProgress() { 568 if (CGM.getCodeGenOpts().getFiniteLoops() == 569 CodeGenOptions::FiniteLoopsKind::Never) 570 return false; 571 572 // C++11 and later guarantees that a thread eventually will do one of the 573 // following (6.9.2.3.1 in C++11): 574 // - terminate, 575 // - make a call to a library I/O function, 576 // - perform an access through a volatile glvalue, or 577 // - perform a synchronization operation or an atomic operation. 578 // 579 // Hence each function is 'mustprogress' in C++11 or later. 580 return getLangOpts().CPlusPlus11; 581 } 582 583 /// Returns true if a loop must make progress, which means the mustprogress 584 /// attribute can be added. \p HasConstantCond indicates whether the branch 585 /// condition is a known constant. 586 bool checkIfLoopMustProgress(bool HasConstantCond) { 587 if (CGM.getCodeGenOpts().getFiniteLoops() == 588 CodeGenOptions::FiniteLoopsKind::Always) 589 return true; 590 if (CGM.getCodeGenOpts().getFiniteLoops() == 591 CodeGenOptions::FiniteLoopsKind::Never) 592 return false; 593 594 // If the containing function must make progress, loops also must make 595 // progress (as in C++11 and later). 596 if (checkIfFunctionMustProgress()) 597 return true; 598 599 // Now apply rules for plain C (see 6.8.5.6 in C11). 600 // Loops with constant conditions do not have to make progress in any C 601 // version. 602 if (HasConstantCond) 603 return false; 604 605 // Loops with non-constant conditions must make progress in C11 and later. 606 return getLangOpts().C11; 607 } 608 609 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 610 llvm::Value *BlockPointer = nullptr; 611 612 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 613 FieldDecl *LambdaThisCaptureField = nullptr; 614 615 /// A mapping from NRVO variables to the flags used to indicate 616 /// when the NRVO has been applied to this variable. 617 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 618 619 EHScopeStack EHStack; 620 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 621 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 622 623 llvm::Instruction *CurrentFuncletPad = nullptr; 624 625 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 626 bool isRedundantBeforeReturn() override { return true; } 627 628 llvm::Value *Addr; 629 llvm::Value *Size; 630 631 public: 632 CallLifetimeEnd(Address addr, llvm::Value *size) 633 : Addr(addr.getPointer()), Size(size) {} 634 635 void Emit(CodeGenFunction &CGF, Flags flags) override { 636 CGF.EmitLifetimeEnd(Size, Addr); 637 } 638 }; 639 640 /// Header for data within LifetimeExtendedCleanupStack. 641 struct LifetimeExtendedCleanupHeader { 642 /// The size of the following cleanup object. 643 unsigned Size; 644 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 645 unsigned Kind : 31; 646 /// Whether this is a conditional cleanup. 647 unsigned IsConditional : 1; 648 649 size_t getSize() const { return Size; } 650 CleanupKind getKind() const { return (CleanupKind)Kind; } 651 bool isConditional() const { return IsConditional; } 652 }; 653 654 /// i32s containing the indexes of the cleanup destinations. 655 Address NormalCleanupDest = Address::invalid(); 656 657 unsigned NextCleanupDestIndex = 1; 658 659 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 660 llvm::BasicBlock *EHResumeBlock = nullptr; 661 662 /// The exception slot. All landing pads write the current exception pointer 663 /// into this alloca. 664 llvm::Value *ExceptionSlot = nullptr; 665 666 /// The selector slot. Under the MandatoryCleanup model, all landing pads 667 /// write the current selector value into this alloca. 668 llvm::AllocaInst *EHSelectorSlot = nullptr; 669 670 /// A stack of exception code slots. Entering an __except block pushes a slot 671 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 672 /// a value from the top of the stack. 673 SmallVector<Address, 1> SEHCodeSlotStack; 674 675 /// Value returned by __exception_info intrinsic. 676 llvm::Value *SEHInfo = nullptr; 677 678 /// Emits a landing pad for the current EH stack. 679 llvm::BasicBlock *EmitLandingPad(); 680 681 llvm::BasicBlock *getInvokeDestImpl(); 682 683 /// Parent loop-based directive for scan directive. 684 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 685 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 686 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 687 llvm::BasicBlock *OMPScanExitBlock = nullptr; 688 llvm::BasicBlock *OMPScanDispatch = nullptr; 689 bool OMPFirstScanLoop = false; 690 691 /// Manages parent directive for scan directives. 692 class ParentLoopDirectiveForScanRegion { 693 CodeGenFunction &CGF; 694 const OMPExecutableDirective *ParentLoopDirectiveForScan; 695 696 public: 697 ParentLoopDirectiveForScanRegion( 698 CodeGenFunction &CGF, 699 const OMPExecutableDirective &ParentLoopDirectiveForScan) 700 : CGF(CGF), 701 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 702 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 703 } 704 ~ParentLoopDirectiveForScanRegion() { 705 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 706 } 707 }; 708 709 template <class T> 710 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 711 return DominatingValue<T>::save(*this, value); 712 } 713 714 class CGFPOptionsRAII { 715 public: 716 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 717 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 718 ~CGFPOptionsRAII(); 719 720 private: 721 void ConstructorHelper(FPOptions FPFeatures); 722 CodeGenFunction &CGF; 723 FPOptions OldFPFeatures; 724 llvm::fp::ExceptionBehavior OldExcept; 725 llvm::RoundingMode OldRounding; 726 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 727 }; 728 FPOptions CurFPFeatures; 729 730 public: 731 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 732 /// rethrows. 733 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 734 735 /// A class controlling the emission of a finally block. 736 class FinallyInfo { 737 /// Where the catchall's edge through the cleanup should go. 738 JumpDest RethrowDest; 739 740 /// A function to call to enter the catch. 741 llvm::FunctionCallee BeginCatchFn; 742 743 /// An i1 variable indicating whether or not the @finally is 744 /// running for an exception. 745 llvm::AllocaInst *ForEHVar; 746 747 /// An i8* variable into which the exception pointer to rethrow 748 /// has been saved. 749 llvm::AllocaInst *SavedExnVar; 750 751 public: 752 void enter(CodeGenFunction &CGF, const Stmt *Finally, 753 llvm::FunctionCallee beginCatchFn, 754 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 755 void exit(CodeGenFunction &CGF); 756 }; 757 758 /// Returns true inside SEH __try blocks. 759 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 760 761 /// Returns true while emitting a cleanuppad. 762 bool isCleanupPadScope() const { 763 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 764 } 765 766 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 767 /// current full-expression. Safe against the possibility that 768 /// we're currently inside a conditionally-evaluated expression. 769 template <class T, class... As> 770 void pushFullExprCleanup(CleanupKind kind, As... A) { 771 // If we're not in a conditional branch, or if none of the 772 // arguments requires saving, then use the unconditional cleanup. 773 if (!isInConditionalBranch()) 774 return EHStack.pushCleanup<T>(kind, A...); 775 776 // Stash values in a tuple so we can guarantee the order of saves. 777 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 778 SavedTuple Saved{saveValueInCond(A)...}; 779 780 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 781 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 782 initFullExprCleanup(); 783 } 784 785 /// Queue a cleanup to be pushed after finishing the current full-expression, 786 /// potentially with an active flag. 787 template <class T, class... As> 788 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 789 if (!isInConditionalBranch()) 790 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 791 A...); 792 793 Address ActiveFlag = createCleanupActiveFlag(); 794 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 795 "cleanup active flag should never need saving"); 796 797 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 798 SavedTuple Saved{saveValueInCond(A)...}; 799 800 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 801 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 802 } 803 804 template <class T, class... As> 805 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 806 Address ActiveFlag, As... A) { 807 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 808 ActiveFlag.isValid()}; 809 810 size_t OldSize = LifetimeExtendedCleanupStack.size(); 811 LifetimeExtendedCleanupStack.resize( 812 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 813 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 814 815 static_assert(sizeof(Header) % alignof(T) == 0, 816 "Cleanup will be allocated on misaligned address"); 817 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 818 new (Buffer) LifetimeExtendedCleanupHeader(Header); 819 new (Buffer + sizeof(Header)) T(A...); 820 if (Header.IsConditional) 821 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 822 } 823 824 /// Set up the last cleanup that was pushed as a conditional 825 /// full-expression cleanup. 826 void initFullExprCleanup() { 827 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 828 } 829 830 void initFullExprCleanupWithFlag(Address ActiveFlag); 831 Address createCleanupActiveFlag(); 832 833 /// PushDestructorCleanup - Push a cleanup to call the 834 /// complete-object destructor of an object of the given type at the 835 /// given address. Does nothing if T is not a C++ class type with a 836 /// non-trivial destructor. 837 void PushDestructorCleanup(QualType T, Address Addr); 838 839 /// PushDestructorCleanup - Push a cleanup to call the 840 /// complete-object variant of the given destructor on the object at 841 /// the given address. 842 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 843 Address Addr); 844 845 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 846 /// process all branch fixups. 847 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 848 849 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 850 /// The block cannot be reactivated. Pops it if it's the top of the 851 /// stack. 852 /// 853 /// \param DominatingIP - An instruction which is known to 854 /// dominate the current IP (if set) and which lies along 855 /// all paths of execution between the current IP and the 856 /// the point at which the cleanup comes into scope. 857 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 858 llvm::Instruction *DominatingIP); 859 860 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 861 /// Cannot be used to resurrect a deactivated cleanup. 862 /// 863 /// \param DominatingIP - An instruction which is known to 864 /// dominate the current IP (if set) and which lies along 865 /// all paths of execution between the current IP and the 866 /// the point at which the cleanup comes into scope. 867 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 868 llvm::Instruction *DominatingIP); 869 870 /// Enters a new scope for capturing cleanups, all of which 871 /// will be executed once the scope is exited. 872 class RunCleanupsScope { 873 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 874 size_t LifetimeExtendedCleanupStackSize; 875 bool OldDidCallStackSave; 876 protected: 877 bool PerformCleanup; 878 private: 879 880 RunCleanupsScope(const RunCleanupsScope &) = delete; 881 void operator=(const RunCleanupsScope &) = delete; 882 883 protected: 884 CodeGenFunction& CGF; 885 886 public: 887 /// Enter a new cleanup scope. 888 explicit RunCleanupsScope(CodeGenFunction &CGF) 889 : PerformCleanup(true), CGF(CGF) 890 { 891 CleanupStackDepth = CGF.EHStack.stable_begin(); 892 LifetimeExtendedCleanupStackSize = 893 CGF.LifetimeExtendedCleanupStack.size(); 894 OldDidCallStackSave = CGF.DidCallStackSave; 895 CGF.DidCallStackSave = false; 896 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 897 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 898 } 899 900 /// Exit this cleanup scope, emitting any accumulated cleanups. 901 ~RunCleanupsScope() { 902 if (PerformCleanup) 903 ForceCleanup(); 904 } 905 906 /// Determine whether this scope requires any cleanups. 907 bool requiresCleanups() const { 908 return CGF.EHStack.stable_begin() != CleanupStackDepth; 909 } 910 911 /// Force the emission of cleanups now, instead of waiting 912 /// until this object is destroyed. 913 /// \param ValuesToReload - A list of values that need to be available at 914 /// the insertion point after cleanup emission. If cleanup emission created 915 /// a shared cleanup block, these value pointers will be rewritten. 916 /// Otherwise, they not will be modified. 917 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 918 assert(PerformCleanup && "Already forced cleanup"); 919 CGF.DidCallStackSave = OldDidCallStackSave; 920 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 921 ValuesToReload); 922 PerformCleanup = false; 923 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 924 } 925 }; 926 927 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 928 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 929 EHScopeStack::stable_end(); 930 931 class LexicalScope : public RunCleanupsScope { 932 SourceRange Range; 933 SmallVector<const LabelDecl*, 4> Labels; 934 LexicalScope *ParentScope; 935 936 LexicalScope(const LexicalScope &) = delete; 937 void operator=(const LexicalScope &) = delete; 938 939 public: 940 /// Enter a new cleanup scope. 941 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 942 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 943 CGF.CurLexicalScope = this; 944 if (CGDebugInfo *DI = CGF.getDebugInfo()) 945 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 946 } 947 948 void addLabel(const LabelDecl *label) { 949 assert(PerformCleanup && "adding label to dead scope?"); 950 Labels.push_back(label); 951 } 952 953 /// Exit this cleanup scope, emitting any accumulated 954 /// cleanups. 955 ~LexicalScope() { 956 if (CGDebugInfo *DI = CGF.getDebugInfo()) 957 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 958 959 // If we should perform a cleanup, force them now. Note that 960 // this ends the cleanup scope before rescoping any labels. 961 if (PerformCleanup) { 962 ApplyDebugLocation DL(CGF, Range.getEnd()); 963 ForceCleanup(); 964 } 965 } 966 967 /// Force the emission of cleanups now, instead of waiting 968 /// until this object is destroyed. 969 void ForceCleanup() { 970 CGF.CurLexicalScope = ParentScope; 971 RunCleanupsScope::ForceCleanup(); 972 973 if (!Labels.empty()) 974 rescopeLabels(); 975 } 976 977 bool hasLabels() const { 978 return !Labels.empty(); 979 } 980 981 void rescopeLabels(); 982 }; 983 984 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 985 986 /// The class used to assign some variables some temporarily addresses. 987 class OMPMapVars { 988 DeclMapTy SavedLocals; 989 DeclMapTy SavedTempAddresses; 990 OMPMapVars(const OMPMapVars &) = delete; 991 void operator=(const OMPMapVars &) = delete; 992 993 public: 994 explicit OMPMapVars() = default; 995 ~OMPMapVars() { 996 assert(SavedLocals.empty() && "Did not restored original addresses."); 997 }; 998 999 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1000 /// function \p CGF. 1001 /// \return true if at least one variable was set already, false otherwise. 1002 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1003 Address TempAddr) { 1004 LocalVD = LocalVD->getCanonicalDecl(); 1005 // Only save it once. 1006 if (SavedLocals.count(LocalVD)) return false; 1007 1008 // Copy the existing local entry to SavedLocals. 1009 auto it = CGF.LocalDeclMap.find(LocalVD); 1010 if (it != CGF.LocalDeclMap.end()) 1011 SavedLocals.try_emplace(LocalVD, it->second); 1012 else 1013 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1014 1015 // Generate the private entry. 1016 QualType VarTy = LocalVD->getType(); 1017 if (VarTy->isReferenceType()) { 1018 Address Temp = CGF.CreateMemTemp(VarTy); 1019 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1020 TempAddr = Temp; 1021 } 1022 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1023 1024 return true; 1025 } 1026 1027 /// Applies new addresses to the list of the variables. 1028 /// \return true if at least one variable is using new address, false 1029 /// otherwise. 1030 bool apply(CodeGenFunction &CGF) { 1031 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1032 SavedTempAddresses.clear(); 1033 return !SavedLocals.empty(); 1034 } 1035 1036 /// Restores original addresses of the variables. 1037 void restore(CodeGenFunction &CGF) { 1038 if (!SavedLocals.empty()) { 1039 copyInto(SavedLocals, CGF.LocalDeclMap); 1040 SavedLocals.clear(); 1041 } 1042 } 1043 1044 private: 1045 /// Copy all the entries in the source map over the corresponding 1046 /// entries in the destination, which must exist. 1047 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1048 for (auto &Pair : Src) { 1049 if (!Pair.second.isValid()) { 1050 Dest.erase(Pair.first); 1051 continue; 1052 } 1053 1054 auto I = Dest.find(Pair.first); 1055 if (I != Dest.end()) 1056 I->second = Pair.second; 1057 else 1058 Dest.insert(Pair); 1059 } 1060 } 1061 }; 1062 1063 /// The scope used to remap some variables as private in the OpenMP loop body 1064 /// (or other captured region emitted without outlining), and to restore old 1065 /// vars back on exit. 1066 class OMPPrivateScope : public RunCleanupsScope { 1067 OMPMapVars MappedVars; 1068 OMPPrivateScope(const OMPPrivateScope &) = delete; 1069 void operator=(const OMPPrivateScope &) = delete; 1070 1071 public: 1072 /// Enter a new OpenMP private scope. 1073 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1074 1075 /// Registers \p LocalVD variable as a private with \p Addr as the address 1076 /// of the corresponding private variable. \p 1077 /// PrivateGen is the address of the generated private variable. 1078 /// \return true if the variable is registered as private, false if it has 1079 /// been privatized already. 1080 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1081 assert(PerformCleanup && "adding private to dead scope"); 1082 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1083 } 1084 1085 /// Privatizes local variables previously registered as private. 1086 /// Registration is separate from the actual privatization to allow 1087 /// initializers use values of the original variables, not the private one. 1088 /// This is important, for example, if the private variable is a class 1089 /// variable initialized by a constructor that references other private 1090 /// variables. But at initialization original variables must be used, not 1091 /// private copies. 1092 /// \return true if at least one variable was privatized, false otherwise. 1093 bool Privatize() { return MappedVars.apply(CGF); } 1094 1095 void ForceCleanup() { 1096 RunCleanupsScope::ForceCleanup(); 1097 MappedVars.restore(CGF); 1098 } 1099 1100 /// Exit scope - all the mapped variables are restored. 1101 ~OMPPrivateScope() { 1102 if (PerformCleanup) 1103 ForceCleanup(); 1104 } 1105 1106 /// Checks if the global variable is captured in current function. 1107 bool isGlobalVarCaptured(const VarDecl *VD) const { 1108 VD = VD->getCanonicalDecl(); 1109 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1110 } 1111 }; 1112 1113 /// Save/restore original map of previously emitted local vars in case when we 1114 /// need to duplicate emission of the same code several times in the same 1115 /// function for OpenMP code. 1116 class OMPLocalDeclMapRAII { 1117 CodeGenFunction &CGF; 1118 DeclMapTy SavedMap; 1119 1120 public: 1121 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1122 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1123 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1124 }; 1125 1126 /// Takes the old cleanup stack size and emits the cleanup blocks 1127 /// that have been added. 1128 void 1129 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1130 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1131 1132 /// Takes the old cleanup stack size and emits the cleanup blocks 1133 /// that have been added, then adds all lifetime-extended cleanups from 1134 /// the given position to the stack. 1135 void 1136 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1137 size_t OldLifetimeExtendedStackSize, 1138 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1139 1140 void ResolveBranchFixups(llvm::BasicBlock *Target); 1141 1142 /// The given basic block lies in the current EH scope, but may be a 1143 /// target of a potentially scope-crossing jump; get a stable handle 1144 /// to which we can perform this jump later. 1145 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1146 return JumpDest(Target, 1147 EHStack.getInnermostNormalCleanup(), 1148 NextCleanupDestIndex++); 1149 } 1150 1151 /// The given basic block lies in the current EH scope, but may be a 1152 /// target of a potentially scope-crossing jump; get a stable handle 1153 /// to which we can perform this jump later. 1154 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1155 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1156 } 1157 1158 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1159 /// block through the normal cleanup handling code (if any) and then 1160 /// on to \arg Dest. 1161 void EmitBranchThroughCleanup(JumpDest Dest); 1162 1163 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1164 /// specified destination obviously has no cleanups to run. 'false' is always 1165 /// a conservatively correct answer for this method. 1166 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1167 1168 /// popCatchScope - Pops the catch scope at the top of the EHScope 1169 /// stack, emitting any required code (other than the catch handlers 1170 /// themselves). 1171 void popCatchScope(); 1172 1173 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1174 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1175 llvm::BasicBlock * 1176 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1177 1178 /// An object to manage conditionally-evaluated expressions. 1179 class ConditionalEvaluation { 1180 llvm::BasicBlock *StartBB; 1181 1182 public: 1183 ConditionalEvaluation(CodeGenFunction &CGF) 1184 : StartBB(CGF.Builder.GetInsertBlock()) {} 1185 1186 void begin(CodeGenFunction &CGF) { 1187 assert(CGF.OutermostConditional != this); 1188 if (!CGF.OutermostConditional) 1189 CGF.OutermostConditional = this; 1190 } 1191 1192 void end(CodeGenFunction &CGF) { 1193 assert(CGF.OutermostConditional != nullptr); 1194 if (CGF.OutermostConditional == this) 1195 CGF.OutermostConditional = nullptr; 1196 } 1197 1198 /// Returns a block which will be executed prior to each 1199 /// evaluation of the conditional code. 1200 llvm::BasicBlock *getStartingBlock() const { 1201 return StartBB; 1202 } 1203 }; 1204 1205 /// isInConditionalBranch - Return true if we're currently emitting 1206 /// one branch or the other of a conditional expression. 1207 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1208 1209 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1210 assert(isInConditionalBranch()); 1211 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1212 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1213 store->setAlignment(addr.getAlignment().getAsAlign()); 1214 } 1215 1216 /// An RAII object to record that we're evaluating a statement 1217 /// expression. 1218 class StmtExprEvaluation { 1219 CodeGenFunction &CGF; 1220 1221 /// We have to save the outermost conditional: cleanups in a 1222 /// statement expression aren't conditional just because the 1223 /// StmtExpr is. 1224 ConditionalEvaluation *SavedOutermostConditional; 1225 1226 public: 1227 StmtExprEvaluation(CodeGenFunction &CGF) 1228 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1229 CGF.OutermostConditional = nullptr; 1230 } 1231 1232 ~StmtExprEvaluation() { 1233 CGF.OutermostConditional = SavedOutermostConditional; 1234 CGF.EnsureInsertPoint(); 1235 } 1236 }; 1237 1238 /// An object which temporarily prevents a value from being 1239 /// destroyed by aggressive peephole optimizations that assume that 1240 /// all uses of a value have been realized in the IR. 1241 class PeepholeProtection { 1242 llvm::Instruction *Inst; 1243 friend class CodeGenFunction; 1244 1245 public: 1246 PeepholeProtection() : Inst(nullptr) {} 1247 }; 1248 1249 /// A non-RAII class containing all the information about a bound 1250 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1251 /// this which makes individual mappings very simple; using this 1252 /// class directly is useful when you have a variable number of 1253 /// opaque values or don't want the RAII functionality for some 1254 /// reason. 1255 class OpaqueValueMappingData { 1256 const OpaqueValueExpr *OpaqueValue; 1257 bool BoundLValue; 1258 CodeGenFunction::PeepholeProtection Protection; 1259 1260 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1261 bool boundLValue) 1262 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1263 public: 1264 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1265 1266 static bool shouldBindAsLValue(const Expr *expr) { 1267 // gl-values should be bound as l-values for obvious reasons. 1268 // Records should be bound as l-values because IR generation 1269 // always keeps them in memory. Expressions of function type 1270 // act exactly like l-values but are formally required to be 1271 // r-values in C. 1272 return expr->isGLValue() || 1273 expr->getType()->isFunctionType() || 1274 hasAggregateEvaluationKind(expr->getType()); 1275 } 1276 1277 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1278 const OpaqueValueExpr *ov, 1279 const Expr *e) { 1280 if (shouldBindAsLValue(ov)) 1281 return bind(CGF, ov, CGF.EmitLValue(e)); 1282 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1283 } 1284 1285 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1286 const OpaqueValueExpr *ov, 1287 const LValue &lv) { 1288 assert(shouldBindAsLValue(ov)); 1289 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1290 return OpaqueValueMappingData(ov, true); 1291 } 1292 1293 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1294 const OpaqueValueExpr *ov, 1295 const RValue &rv) { 1296 assert(!shouldBindAsLValue(ov)); 1297 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1298 1299 OpaqueValueMappingData data(ov, false); 1300 1301 // Work around an extremely aggressive peephole optimization in 1302 // EmitScalarConversion which assumes that all other uses of a 1303 // value are extant. 1304 data.Protection = CGF.protectFromPeepholes(rv); 1305 1306 return data; 1307 } 1308 1309 bool isValid() const { return OpaqueValue != nullptr; } 1310 void clear() { OpaqueValue = nullptr; } 1311 1312 void unbind(CodeGenFunction &CGF) { 1313 assert(OpaqueValue && "no data to unbind!"); 1314 1315 if (BoundLValue) { 1316 CGF.OpaqueLValues.erase(OpaqueValue); 1317 } else { 1318 CGF.OpaqueRValues.erase(OpaqueValue); 1319 CGF.unprotectFromPeepholes(Protection); 1320 } 1321 } 1322 }; 1323 1324 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1325 class OpaqueValueMapping { 1326 CodeGenFunction &CGF; 1327 OpaqueValueMappingData Data; 1328 1329 public: 1330 static bool shouldBindAsLValue(const Expr *expr) { 1331 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1332 } 1333 1334 /// Build the opaque value mapping for the given conditional 1335 /// operator if it's the GNU ?: extension. This is a common 1336 /// enough pattern that the convenience operator is really 1337 /// helpful. 1338 /// 1339 OpaqueValueMapping(CodeGenFunction &CGF, 1340 const AbstractConditionalOperator *op) : CGF(CGF) { 1341 if (isa<ConditionalOperator>(op)) 1342 // Leave Data empty. 1343 return; 1344 1345 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1346 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1347 e->getCommon()); 1348 } 1349 1350 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1351 /// expression is set to the expression the OVE represents. 1352 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1353 : CGF(CGF) { 1354 if (OV) { 1355 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1356 "for OVE with no source expression"); 1357 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1358 } 1359 } 1360 1361 OpaqueValueMapping(CodeGenFunction &CGF, 1362 const OpaqueValueExpr *opaqueValue, 1363 LValue lvalue) 1364 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1365 } 1366 1367 OpaqueValueMapping(CodeGenFunction &CGF, 1368 const OpaqueValueExpr *opaqueValue, 1369 RValue rvalue) 1370 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1371 } 1372 1373 void pop() { 1374 Data.unbind(CGF); 1375 Data.clear(); 1376 } 1377 1378 ~OpaqueValueMapping() { 1379 if (Data.isValid()) Data.unbind(CGF); 1380 } 1381 }; 1382 1383 private: 1384 CGDebugInfo *DebugInfo; 1385 /// Used to create unique names for artificial VLA size debug info variables. 1386 unsigned VLAExprCounter = 0; 1387 bool DisableDebugInfo = false; 1388 1389 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1390 /// calling llvm.stacksave for multiple VLAs in the same scope. 1391 bool DidCallStackSave = false; 1392 1393 /// IndirectBranch - The first time an indirect goto is seen we create a block 1394 /// with an indirect branch. Every time we see the address of a label taken, 1395 /// we add the label to the indirect goto. Every subsequent indirect goto is 1396 /// codegen'd as a jump to the IndirectBranch's basic block. 1397 llvm::IndirectBrInst *IndirectBranch = nullptr; 1398 1399 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1400 /// decls. 1401 DeclMapTy LocalDeclMap; 1402 1403 // Keep track of the cleanups for callee-destructed parameters pushed to the 1404 // cleanup stack so that they can be deactivated later. 1405 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1406 CalleeDestructedParamCleanups; 1407 1408 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1409 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1410 /// parameter. 1411 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1412 SizeArguments; 1413 1414 /// Track escaped local variables with auto storage. Used during SEH 1415 /// outlining to produce a call to llvm.localescape. 1416 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1417 1418 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1419 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1420 1421 // BreakContinueStack - This keeps track of where break and continue 1422 // statements should jump to. 1423 struct BreakContinue { 1424 BreakContinue(JumpDest Break, JumpDest Continue) 1425 : BreakBlock(Break), ContinueBlock(Continue) {} 1426 1427 JumpDest BreakBlock; 1428 JumpDest ContinueBlock; 1429 }; 1430 SmallVector<BreakContinue, 8> BreakContinueStack; 1431 1432 /// Handles cancellation exit points in OpenMP-related constructs. 1433 class OpenMPCancelExitStack { 1434 /// Tracks cancellation exit point and join point for cancel-related exit 1435 /// and normal exit. 1436 struct CancelExit { 1437 CancelExit() = default; 1438 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1439 JumpDest ContBlock) 1440 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1441 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1442 /// true if the exit block has been emitted already by the special 1443 /// emitExit() call, false if the default codegen is used. 1444 bool HasBeenEmitted = false; 1445 JumpDest ExitBlock; 1446 JumpDest ContBlock; 1447 }; 1448 1449 SmallVector<CancelExit, 8> Stack; 1450 1451 public: 1452 OpenMPCancelExitStack() : Stack(1) {} 1453 ~OpenMPCancelExitStack() = default; 1454 /// Fetches the exit block for the current OpenMP construct. 1455 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1456 /// Emits exit block with special codegen procedure specific for the related 1457 /// OpenMP construct + emits code for normal construct cleanup. 1458 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1459 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1460 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1461 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1462 assert(CGF.HaveInsertPoint()); 1463 assert(!Stack.back().HasBeenEmitted); 1464 auto IP = CGF.Builder.saveAndClearIP(); 1465 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1466 CodeGen(CGF); 1467 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1468 CGF.Builder.restoreIP(IP); 1469 Stack.back().HasBeenEmitted = true; 1470 } 1471 CodeGen(CGF); 1472 } 1473 /// Enter the cancel supporting \a Kind construct. 1474 /// \param Kind OpenMP directive that supports cancel constructs. 1475 /// \param HasCancel true, if the construct has inner cancel directive, 1476 /// false otherwise. 1477 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1478 Stack.push_back({Kind, 1479 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1480 : JumpDest(), 1481 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1482 : JumpDest()}); 1483 } 1484 /// Emits default exit point for the cancel construct (if the special one 1485 /// has not be used) + join point for cancel/normal exits. 1486 void exit(CodeGenFunction &CGF) { 1487 if (getExitBlock().isValid()) { 1488 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1489 bool HaveIP = CGF.HaveInsertPoint(); 1490 if (!Stack.back().HasBeenEmitted) { 1491 if (HaveIP) 1492 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1493 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1494 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1495 } 1496 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1497 if (!HaveIP) { 1498 CGF.Builder.CreateUnreachable(); 1499 CGF.Builder.ClearInsertionPoint(); 1500 } 1501 } 1502 Stack.pop_back(); 1503 } 1504 }; 1505 OpenMPCancelExitStack OMPCancelStack; 1506 1507 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1508 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1509 Stmt::Likelihood LH); 1510 1511 CodeGenPGO PGO; 1512 1513 /// Calculate branch weights appropriate for PGO data 1514 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1515 uint64_t FalseCount) const; 1516 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1517 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1518 uint64_t LoopCount) const; 1519 1520 public: 1521 /// Increment the profiler's counter for the given statement by \p StepV. 1522 /// If \p StepV is null, the default increment is 1. 1523 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1524 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1525 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1526 PGO.emitCounterIncrement(Builder, S, StepV); 1527 PGO.setCurrentStmt(S); 1528 } 1529 1530 /// Get the profiler's count for the given statement. 1531 uint64_t getProfileCount(const Stmt *S) { 1532 Optional<uint64_t> Count = PGO.getStmtCount(S); 1533 if (!Count.hasValue()) 1534 return 0; 1535 return *Count; 1536 } 1537 1538 /// Set the profiler's current count. 1539 void setCurrentProfileCount(uint64_t Count) { 1540 PGO.setCurrentRegionCount(Count); 1541 } 1542 1543 /// Get the profiler's current count. This is generally the count for the most 1544 /// recently incremented counter. 1545 uint64_t getCurrentProfileCount() { 1546 return PGO.getCurrentRegionCount(); 1547 } 1548 1549 private: 1550 1551 /// SwitchInsn - This is nearest current switch instruction. It is null if 1552 /// current context is not in a switch. 1553 llvm::SwitchInst *SwitchInsn = nullptr; 1554 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1555 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1556 1557 /// The likelihood attributes of the SwitchCase. 1558 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1559 1560 /// CaseRangeBlock - This block holds if condition check for last case 1561 /// statement range in current switch instruction. 1562 llvm::BasicBlock *CaseRangeBlock = nullptr; 1563 1564 /// OpaqueLValues - Keeps track of the current set of opaque value 1565 /// expressions. 1566 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1567 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1568 1569 // VLASizeMap - This keeps track of the associated size for each VLA type. 1570 // We track this by the size expression rather than the type itself because 1571 // in certain situations, like a const qualifier applied to an VLA typedef, 1572 // multiple VLA types can share the same size expression. 1573 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1574 // enter/leave scopes. 1575 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1576 1577 /// A block containing a single 'unreachable' instruction. Created 1578 /// lazily by getUnreachableBlock(). 1579 llvm::BasicBlock *UnreachableBlock = nullptr; 1580 1581 /// Counts of the number return expressions in the function. 1582 unsigned NumReturnExprs = 0; 1583 1584 /// Count the number of simple (constant) return expressions in the function. 1585 unsigned NumSimpleReturnExprs = 0; 1586 1587 /// The last regular (non-return) debug location (breakpoint) in the function. 1588 SourceLocation LastStopPoint; 1589 1590 public: 1591 /// Source location information about the default argument or member 1592 /// initializer expression we're evaluating, if any. 1593 CurrentSourceLocExprScope CurSourceLocExprScope; 1594 using SourceLocExprScopeGuard = 1595 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1596 1597 /// A scope within which we are constructing the fields of an object which 1598 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1599 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1600 class FieldConstructionScope { 1601 public: 1602 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1603 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1604 CGF.CXXDefaultInitExprThis = This; 1605 } 1606 ~FieldConstructionScope() { 1607 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1608 } 1609 1610 private: 1611 CodeGenFunction &CGF; 1612 Address OldCXXDefaultInitExprThis; 1613 }; 1614 1615 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1616 /// is overridden to be the object under construction. 1617 class CXXDefaultInitExprScope { 1618 public: 1619 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1620 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1621 OldCXXThisAlignment(CGF.CXXThisAlignment), 1622 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1623 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1624 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1625 } 1626 ~CXXDefaultInitExprScope() { 1627 CGF.CXXThisValue = OldCXXThisValue; 1628 CGF.CXXThisAlignment = OldCXXThisAlignment; 1629 } 1630 1631 public: 1632 CodeGenFunction &CGF; 1633 llvm::Value *OldCXXThisValue; 1634 CharUnits OldCXXThisAlignment; 1635 SourceLocExprScopeGuard SourceLocScope; 1636 }; 1637 1638 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1639 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1640 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1641 }; 1642 1643 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1644 /// current loop index is overridden. 1645 class ArrayInitLoopExprScope { 1646 public: 1647 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1648 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1649 CGF.ArrayInitIndex = Index; 1650 } 1651 ~ArrayInitLoopExprScope() { 1652 CGF.ArrayInitIndex = OldArrayInitIndex; 1653 } 1654 1655 private: 1656 CodeGenFunction &CGF; 1657 llvm::Value *OldArrayInitIndex; 1658 }; 1659 1660 class InlinedInheritingConstructorScope { 1661 public: 1662 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1663 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1664 OldCurCodeDecl(CGF.CurCodeDecl), 1665 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1666 OldCXXABIThisValue(CGF.CXXABIThisValue), 1667 OldCXXThisValue(CGF.CXXThisValue), 1668 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1669 OldCXXThisAlignment(CGF.CXXThisAlignment), 1670 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1671 OldCXXInheritedCtorInitExprArgs( 1672 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1673 CGF.CurGD = GD; 1674 CGF.CurFuncDecl = CGF.CurCodeDecl = 1675 cast<CXXConstructorDecl>(GD.getDecl()); 1676 CGF.CXXABIThisDecl = nullptr; 1677 CGF.CXXABIThisValue = nullptr; 1678 CGF.CXXThisValue = nullptr; 1679 CGF.CXXABIThisAlignment = CharUnits(); 1680 CGF.CXXThisAlignment = CharUnits(); 1681 CGF.ReturnValue = Address::invalid(); 1682 CGF.FnRetTy = QualType(); 1683 CGF.CXXInheritedCtorInitExprArgs.clear(); 1684 } 1685 ~InlinedInheritingConstructorScope() { 1686 CGF.CurGD = OldCurGD; 1687 CGF.CurFuncDecl = OldCurFuncDecl; 1688 CGF.CurCodeDecl = OldCurCodeDecl; 1689 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1690 CGF.CXXABIThisValue = OldCXXABIThisValue; 1691 CGF.CXXThisValue = OldCXXThisValue; 1692 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1693 CGF.CXXThisAlignment = OldCXXThisAlignment; 1694 CGF.ReturnValue = OldReturnValue; 1695 CGF.FnRetTy = OldFnRetTy; 1696 CGF.CXXInheritedCtorInitExprArgs = 1697 std::move(OldCXXInheritedCtorInitExprArgs); 1698 } 1699 1700 private: 1701 CodeGenFunction &CGF; 1702 GlobalDecl OldCurGD; 1703 const Decl *OldCurFuncDecl; 1704 const Decl *OldCurCodeDecl; 1705 ImplicitParamDecl *OldCXXABIThisDecl; 1706 llvm::Value *OldCXXABIThisValue; 1707 llvm::Value *OldCXXThisValue; 1708 CharUnits OldCXXABIThisAlignment; 1709 CharUnits OldCXXThisAlignment; 1710 Address OldReturnValue; 1711 QualType OldFnRetTy; 1712 CallArgList OldCXXInheritedCtorInitExprArgs; 1713 }; 1714 1715 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1716 // region body, and finalization codegen callbacks. This will class will also 1717 // contain privatization functions used by the privatization call backs 1718 // 1719 // TODO: this is temporary class for things that are being moved out of 1720 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1721 // utility function for use with the OMPBuilder. Once that move to use the 1722 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1723 // directly, or a new helper class that will contain functions used by both 1724 // this and the OMPBuilder 1725 1726 struct OMPBuilderCBHelpers { 1727 1728 OMPBuilderCBHelpers() = delete; 1729 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1730 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1731 1732 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1733 1734 /// Cleanup action for allocate support. 1735 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1736 1737 private: 1738 llvm::CallInst *RTLFnCI; 1739 1740 public: 1741 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1742 RLFnCI->removeFromParent(); 1743 } 1744 1745 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1746 if (!CGF.HaveInsertPoint()) 1747 return; 1748 CGF.Builder.Insert(RTLFnCI); 1749 } 1750 }; 1751 1752 /// Returns address of the threadprivate variable for the current 1753 /// thread. This Also create any necessary OMP runtime calls. 1754 /// 1755 /// \param VD VarDecl for Threadprivate variable. 1756 /// \param VDAddr Address of the Vardecl 1757 /// \param Loc The location where the barrier directive was encountered 1758 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1759 const VarDecl *VD, Address VDAddr, 1760 SourceLocation Loc); 1761 1762 /// Gets the OpenMP-specific address of the local variable /p VD. 1763 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1764 const VarDecl *VD); 1765 /// Get the platform-specific name separator. 1766 /// \param Parts different parts of the final name that needs separation 1767 /// \param FirstSeparator First separator used between the initial two 1768 /// parts of the name. 1769 /// \param Separator separator used between all of the rest consecutinve 1770 /// parts of the name 1771 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1772 StringRef FirstSeparator = ".", 1773 StringRef Separator = "."); 1774 /// Emit the Finalization for an OMP region 1775 /// \param CGF The Codegen function this belongs to 1776 /// \param IP Insertion point for generating the finalization code. 1777 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1778 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1779 assert(IP.getBlock()->end() != IP.getPoint() && 1780 "OpenMP IR Builder should cause terminated block!"); 1781 1782 llvm::BasicBlock *IPBB = IP.getBlock(); 1783 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1784 assert(DestBB && "Finalization block should have one successor!"); 1785 1786 // erase and replace with cleanup branch. 1787 IPBB->getTerminator()->eraseFromParent(); 1788 CGF.Builder.SetInsertPoint(IPBB); 1789 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1790 CGF.EmitBranchThroughCleanup(Dest); 1791 } 1792 1793 /// Emit the body of an OMP region 1794 /// \param CGF The Codegen function this belongs to 1795 /// \param RegionBodyStmt The body statement for the OpenMP region being 1796 /// generated 1797 /// \param AllocaIP Where to insert alloca instructions 1798 /// \param CodeGenIP Where to insert the region code 1799 /// \param RegionName Name to be used for new blocks 1800 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1801 const Stmt *RegionBodyStmt, 1802 InsertPointTy AllocaIP, 1803 InsertPointTy CodeGenIP, 1804 Twine RegionName); 1805 1806 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1807 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1808 ArrayRef<llvm::Value *> Args) { 1809 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1810 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1811 CodeGenIPBBTI->eraseFromParent(); 1812 1813 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1814 1815 if (Fn->doesNotThrow()) 1816 CGF.EmitNounwindRuntimeCall(Fn, Args); 1817 else 1818 CGF.EmitRuntimeCall(Fn, Args); 1819 1820 if (CGF.Builder.saveIP().isSet()) 1821 CGF.Builder.CreateBr(&FiniBB); 1822 } 1823 1824 /// Emit the body of an OMP region that will be outlined in 1825 /// OpenMPIRBuilder::finalize(). 1826 /// \param CGF The Codegen function this belongs to 1827 /// \param RegionBodyStmt The body statement for the OpenMP region being 1828 /// generated 1829 /// \param AllocaIP Where to insert alloca instructions 1830 /// \param CodeGenIP Where to insert the region code 1831 /// \param RegionName Name to be used for new blocks 1832 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1833 const Stmt *RegionBodyStmt, 1834 InsertPointTy AllocaIP, 1835 InsertPointTy CodeGenIP, 1836 Twine RegionName); 1837 1838 /// RAII for preserving necessary info during Outlined region body codegen. 1839 class OutlinedRegionBodyRAII { 1840 1841 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1842 CodeGenFunction::JumpDest OldReturnBlock; 1843 CodeGenFunction &CGF; 1844 1845 public: 1846 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1847 llvm::BasicBlock &RetBB) 1848 : CGF(cgf) { 1849 assert(AllocaIP.isSet() && 1850 "Must specify Insertion point for allocas of outlined function"); 1851 OldAllocaIP = CGF.AllocaInsertPt; 1852 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1853 1854 OldReturnBlock = CGF.ReturnBlock; 1855 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1856 } 1857 1858 ~OutlinedRegionBodyRAII() { 1859 CGF.AllocaInsertPt = OldAllocaIP; 1860 CGF.ReturnBlock = OldReturnBlock; 1861 } 1862 }; 1863 1864 /// RAII for preserving necessary info during inlined region body codegen. 1865 class InlinedRegionBodyRAII { 1866 1867 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1868 CodeGenFunction &CGF; 1869 1870 public: 1871 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1872 llvm::BasicBlock &FiniBB) 1873 : CGF(cgf) { 1874 // Alloca insertion block should be in the entry block of the containing 1875 // function so it expects an empty AllocaIP in which case will reuse the 1876 // old alloca insertion point, or a new AllocaIP in the same block as 1877 // the old one 1878 assert((!AllocaIP.isSet() || 1879 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1880 "Insertion point should be in the entry block of containing " 1881 "function!"); 1882 OldAllocaIP = CGF.AllocaInsertPt; 1883 if (AllocaIP.isSet()) 1884 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1885 1886 // TODO: Remove the call, after making sure the counter is not used by 1887 // the EHStack. 1888 // Since this is an inlined region, it should not modify the 1889 // ReturnBlock, and should reuse the one for the enclosing outlined 1890 // region. So, the JumpDest being return by the function is discarded 1891 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1892 } 1893 1894 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1895 }; 1896 }; 1897 1898 private: 1899 /// CXXThisDecl - When generating code for a C++ member function, 1900 /// this will hold the implicit 'this' declaration. 1901 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1902 llvm::Value *CXXABIThisValue = nullptr; 1903 llvm::Value *CXXThisValue = nullptr; 1904 CharUnits CXXABIThisAlignment; 1905 CharUnits CXXThisAlignment; 1906 1907 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1908 /// this expression. 1909 Address CXXDefaultInitExprThis = Address::invalid(); 1910 1911 /// The current array initialization index when evaluating an 1912 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1913 llvm::Value *ArrayInitIndex = nullptr; 1914 1915 /// The values of function arguments to use when evaluating 1916 /// CXXInheritedCtorInitExprs within this context. 1917 CallArgList CXXInheritedCtorInitExprArgs; 1918 1919 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1920 /// destructor, this will hold the implicit argument (e.g. VTT). 1921 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1922 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1923 1924 /// OutermostConditional - Points to the outermost active 1925 /// conditional control. This is used so that we know if a 1926 /// temporary should be destroyed conditionally. 1927 ConditionalEvaluation *OutermostConditional = nullptr; 1928 1929 /// The current lexical scope. 1930 LexicalScope *CurLexicalScope = nullptr; 1931 1932 /// The current source location that should be used for exception 1933 /// handling code. 1934 SourceLocation CurEHLocation; 1935 1936 /// BlockByrefInfos - For each __block variable, contains 1937 /// information about the layout of the variable. 1938 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1939 1940 /// Used by -fsanitize=nullability-return to determine whether the return 1941 /// value can be checked. 1942 llvm::Value *RetValNullabilityPrecondition = nullptr; 1943 1944 /// Check if -fsanitize=nullability-return instrumentation is required for 1945 /// this function. 1946 bool requiresReturnValueNullabilityCheck() const { 1947 return RetValNullabilityPrecondition; 1948 } 1949 1950 /// Used to store precise source locations for return statements by the 1951 /// runtime return value checks. 1952 Address ReturnLocation = Address::invalid(); 1953 1954 /// Check if the return value of this function requires sanitization. 1955 bool requiresReturnValueCheck() const; 1956 1957 llvm::BasicBlock *TerminateLandingPad = nullptr; 1958 llvm::BasicBlock *TerminateHandler = nullptr; 1959 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1960 1961 /// Terminate funclets keyed by parent funclet pad. 1962 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1963 1964 /// Largest vector width used in ths function. Will be used to create a 1965 /// function attribute. 1966 unsigned LargestVectorWidth = 0; 1967 1968 /// True if we need emit the life-time markers. This is initially set in 1969 /// the constructor, but could be overwritten to true if this is a coroutine. 1970 bool ShouldEmitLifetimeMarkers; 1971 1972 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1973 /// the function metadata. 1974 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1975 llvm::Function *Fn); 1976 1977 public: 1978 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1979 ~CodeGenFunction(); 1980 1981 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1982 ASTContext &getContext() const { return CGM.getContext(); } 1983 CGDebugInfo *getDebugInfo() { 1984 if (DisableDebugInfo) 1985 return nullptr; 1986 return DebugInfo; 1987 } 1988 void disableDebugInfo() { DisableDebugInfo = true; } 1989 void enableDebugInfo() { DisableDebugInfo = false; } 1990 1991 bool shouldUseFusedARCCalls() { 1992 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1993 } 1994 1995 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1996 1997 /// Returns a pointer to the function's exception object and selector slot, 1998 /// which is assigned in every landing pad. 1999 Address getExceptionSlot(); 2000 Address getEHSelectorSlot(); 2001 2002 /// Returns the contents of the function's exception object and selector 2003 /// slots. 2004 llvm::Value *getExceptionFromSlot(); 2005 llvm::Value *getSelectorFromSlot(); 2006 2007 Address getNormalCleanupDestSlot(); 2008 2009 llvm::BasicBlock *getUnreachableBlock() { 2010 if (!UnreachableBlock) { 2011 UnreachableBlock = createBasicBlock("unreachable"); 2012 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2013 } 2014 return UnreachableBlock; 2015 } 2016 2017 llvm::BasicBlock *getInvokeDest() { 2018 if (!EHStack.requiresLandingPad()) return nullptr; 2019 return getInvokeDestImpl(); 2020 } 2021 2022 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 2023 2024 const TargetInfo &getTarget() const { return Target; } 2025 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2026 const TargetCodeGenInfo &getTargetHooks() const { 2027 return CGM.getTargetCodeGenInfo(); 2028 } 2029 2030 //===--------------------------------------------------------------------===// 2031 // Cleanups 2032 //===--------------------------------------------------------------------===// 2033 2034 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2035 2036 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2037 Address arrayEndPointer, 2038 QualType elementType, 2039 CharUnits elementAlignment, 2040 Destroyer *destroyer); 2041 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2042 llvm::Value *arrayEnd, 2043 QualType elementType, 2044 CharUnits elementAlignment, 2045 Destroyer *destroyer); 2046 2047 void pushDestroy(QualType::DestructionKind dtorKind, 2048 Address addr, QualType type); 2049 void pushEHDestroy(QualType::DestructionKind dtorKind, 2050 Address addr, QualType type); 2051 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2052 Destroyer *destroyer, bool useEHCleanupForArray); 2053 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2054 QualType type, Destroyer *destroyer, 2055 bool useEHCleanupForArray); 2056 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2057 llvm::Value *CompletePtr, 2058 QualType ElementType); 2059 void pushStackRestore(CleanupKind kind, Address SPMem); 2060 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2061 bool useEHCleanupForArray); 2062 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2063 Destroyer *destroyer, 2064 bool useEHCleanupForArray, 2065 const VarDecl *VD); 2066 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2067 QualType elementType, CharUnits elementAlign, 2068 Destroyer *destroyer, 2069 bool checkZeroLength, bool useEHCleanup); 2070 2071 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2072 2073 /// Determines whether an EH cleanup is required to destroy a type 2074 /// with the given destruction kind. 2075 bool needsEHCleanup(QualType::DestructionKind kind) { 2076 switch (kind) { 2077 case QualType::DK_none: 2078 return false; 2079 case QualType::DK_cxx_destructor: 2080 case QualType::DK_objc_weak_lifetime: 2081 case QualType::DK_nontrivial_c_struct: 2082 return getLangOpts().Exceptions; 2083 case QualType::DK_objc_strong_lifetime: 2084 return getLangOpts().Exceptions && 2085 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2086 } 2087 llvm_unreachable("bad destruction kind"); 2088 } 2089 2090 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2091 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2092 } 2093 2094 //===--------------------------------------------------------------------===// 2095 // Objective-C 2096 //===--------------------------------------------------------------------===// 2097 2098 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2099 2100 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2101 2102 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2103 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2104 const ObjCPropertyImplDecl *PID); 2105 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2106 const ObjCPropertyImplDecl *propImpl, 2107 const ObjCMethodDecl *GetterMothodDecl, 2108 llvm::Constant *AtomicHelperFn); 2109 2110 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2111 ObjCMethodDecl *MD, bool ctor); 2112 2113 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2114 /// for the given property. 2115 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2116 const ObjCPropertyImplDecl *PID); 2117 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2118 const ObjCPropertyImplDecl *propImpl, 2119 llvm::Constant *AtomicHelperFn); 2120 2121 //===--------------------------------------------------------------------===// 2122 // Block Bits 2123 //===--------------------------------------------------------------------===// 2124 2125 /// Emit block literal. 2126 /// \return an LLVM value which is a pointer to a struct which contains 2127 /// information about the block, including the block invoke function, the 2128 /// captured variables, etc. 2129 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2130 2131 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2132 const CGBlockInfo &Info, 2133 const DeclMapTy &ldm, 2134 bool IsLambdaConversionToBlock, 2135 bool BuildGlobalBlock); 2136 2137 /// Check if \p T is a C++ class that has a destructor that can throw. 2138 static bool cxxDestructorCanThrow(QualType T); 2139 2140 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2141 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2142 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2143 const ObjCPropertyImplDecl *PID); 2144 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2145 const ObjCPropertyImplDecl *PID); 2146 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2147 2148 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2149 bool CanThrow); 2150 2151 class AutoVarEmission; 2152 2153 void emitByrefStructureInit(const AutoVarEmission &emission); 2154 2155 /// Enter a cleanup to destroy a __block variable. Note that this 2156 /// cleanup should be a no-op if the variable hasn't left the stack 2157 /// yet; if a cleanup is required for the variable itself, that needs 2158 /// to be done externally. 2159 /// 2160 /// \param Kind Cleanup kind. 2161 /// 2162 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2163 /// structure that will be passed to _Block_object_dispose. When 2164 /// \p LoadBlockVarAddr is true, the address of the field of the block 2165 /// structure that holds the address of the __block structure. 2166 /// 2167 /// \param Flags The flag that will be passed to _Block_object_dispose. 2168 /// 2169 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2170 /// \p Addr to get the address of the __block structure. 2171 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2172 bool LoadBlockVarAddr, bool CanThrow); 2173 2174 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2175 llvm::Value *ptr); 2176 2177 Address LoadBlockStruct(); 2178 Address GetAddrOfBlockDecl(const VarDecl *var); 2179 2180 /// BuildBlockByrefAddress - Computes the location of the 2181 /// data in a variable which is declared as __block. 2182 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2183 bool followForward = true); 2184 Address emitBlockByrefAddress(Address baseAddr, 2185 const BlockByrefInfo &info, 2186 bool followForward, 2187 const llvm::Twine &name); 2188 2189 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2190 2191 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2192 2193 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2194 const CGFunctionInfo &FnInfo); 2195 2196 /// Annotate the function with an attribute that disables TSan checking at 2197 /// runtime. 2198 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2199 2200 /// Emit code for the start of a function. 2201 /// \param Loc The location to be associated with the function. 2202 /// \param StartLoc The location of the function body. 2203 void StartFunction(GlobalDecl GD, 2204 QualType RetTy, 2205 llvm::Function *Fn, 2206 const CGFunctionInfo &FnInfo, 2207 const FunctionArgList &Args, 2208 SourceLocation Loc = SourceLocation(), 2209 SourceLocation StartLoc = SourceLocation()); 2210 2211 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2212 2213 void EmitConstructorBody(FunctionArgList &Args); 2214 void EmitDestructorBody(FunctionArgList &Args); 2215 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2216 void EmitFunctionBody(const Stmt *Body); 2217 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2218 2219 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2220 CallArgList &CallArgs); 2221 void EmitLambdaBlockInvokeBody(); 2222 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2223 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2224 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2225 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2226 } 2227 void EmitAsanPrologueOrEpilogue(bool Prologue); 2228 2229 /// Emit the unified return block, trying to avoid its emission when 2230 /// possible. 2231 /// \return The debug location of the user written return statement if the 2232 /// return block is is avoided. 2233 llvm::DebugLoc EmitReturnBlock(); 2234 2235 /// FinishFunction - Complete IR generation of the current function. It is 2236 /// legal to call this function even if there is no current insertion point. 2237 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2238 2239 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2240 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2241 2242 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2243 const ThunkInfo *Thunk, bool IsUnprototyped); 2244 2245 void FinishThunk(); 2246 2247 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2248 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2249 llvm::FunctionCallee Callee); 2250 2251 /// Generate a thunk for the given method. 2252 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2253 GlobalDecl GD, const ThunkInfo &Thunk, 2254 bool IsUnprototyped); 2255 2256 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2257 const CGFunctionInfo &FnInfo, 2258 GlobalDecl GD, const ThunkInfo &Thunk); 2259 2260 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2261 FunctionArgList &Args); 2262 2263 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2264 2265 /// Struct with all information about dynamic [sub]class needed to set vptr. 2266 struct VPtr { 2267 BaseSubobject Base; 2268 const CXXRecordDecl *NearestVBase; 2269 CharUnits OffsetFromNearestVBase; 2270 const CXXRecordDecl *VTableClass; 2271 }; 2272 2273 /// Initialize the vtable pointer of the given subobject. 2274 void InitializeVTablePointer(const VPtr &vptr); 2275 2276 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2277 2278 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2279 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2280 2281 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2282 CharUnits OffsetFromNearestVBase, 2283 bool BaseIsNonVirtualPrimaryBase, 2284 const CXXRecordDecl *VTableClass, 2285 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2286 2287 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2288 2289 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2290 /// to by This. 2291 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2292 const CXXRecordDecl *VTableClass); 2293 2294 enum CFITypeCheckKind { 2295 CFITCK_VCall, 2296 CFITCK_NVCall, 2297 CFITCK_DerivedCast, 2298 CFITCK_UnrelatedCast, 2299 CFITCK_ICall, 2300 CFITCK_NVMFCall, 2301 CFITCK_VMFCall, 2302 }; 2303 2304 /// Derived is the presumed address of an object of type T after a 2305 /// cast. If T is a polymorphic class type, emit a check that the virtual 2306 /// table for Derived belongs to a class derived from T. 2307 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2308 CFITypeCheckKind TCK, SourceLocation Loc); 2309 2310 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2311 /// If vptr CFI is enabled, emit a check that VTable is valid. 2312 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2313 CFITypeCheckKind TCK, SourceLocation Loc); 2314 2315 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2316 /// RD using llvm.type.test. 2317 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2318 CFITypeCheckKind TCK, SourceLocation Loc); 2319 2320 /// If whole-program virtual table optimization is enabled, emit an assumption 2321 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2322 /// enabled, emit a check that VTable is a member of RD's type identifier. 2323 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2324 llvm::Value *VTable, SourceLocation Loc); 2325 2326 /// Returns whether we should perform a type checked load when loading a 2327 /// virtual function for virtual calls to members of RD. This is generally 2328 /// true when both vcall CFI and whole-program-vtables are enabled. 2329 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2330 2331 /// Emit a type checked load from the given vtable. 2332 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2333 llvm::Value *VTable, 2334 llvm::Type *VTableTy, 2335 uint64_t VTableByteOffset); 2336 2337 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2338 /// given phase of destruction for a destructor. The end result 2339 /// should call destructors on members and base classes in reverse 2340 /// order of their construction. 2341 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2342 2343 /// ShouldInstrumentFunction - Return true if the current function should be 2344 /// instrumented with __cyg_profile_func_* calls 2345 bool ShouldInstrumentFunction(); 2346 2347 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2348 /// should not be instrumented with sanitizers. 2349 bool ShouldSkipSanitizerInstrumentation(); 2350 2351 /// ShouldXRayInstrument - Return true if the current function should be 2352 /// instrumented with XRay nop sleds. 2353 bool ShouldXRayInstrumentFunction() const; 2354 2355 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2356 /// XRay custom event handling calls. 2357 bool AlwaysEmitXRayCustomEvents() const; 2358 2359 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2360 /// XRay typed event handling calls. 2361 bool AlwaysEmitXRayTypedEvents() const; 2362 2363 /// Encode an address into a form suitable for use in a function prologue. 2364 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2365 llvm::Constant *Addr); 2366 2367 /// Decode an address used in a function prologue, encoded by \c 2368 /// EncodeAddrForUseInPrologue. 2369 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2370 llvm::Value *EncodedAddr); 2371 2372 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2373 /// arguments for the given function. This is also responsible for naming the 2374 /// LLVM function arguments. 2375 void EmitFunctionProlog(const CGFunctionInfo &FI, 2376 llvm::Function *Fn, 2377 const FunctionArgList &Args); 2378 2379 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2380 /// given temporary. 2381 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2382 SourceLocation EndLoc); 2383 2384 /// Emit a test that checks if the return value \p RV is nonnull. 2385 void EmitReturnValueCheck(llvm::Value *RV); 2386 2387 /// EmitStartEHSpec - Emit the start of the exception spec. 2388 void EmitStartEHSpec(const Decl *D); 2389 2390 /// EmitEndEHSpec - Emit the end of the exception spec. 2391 void EmitEndEHSpec(const Decl *D); 2392 2393 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2394 llvm::BasicBlock *getTerminateLandingPad(); 2395 2396 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2397 /// terminate. 2398 llvm::BasicBlock *getTerminateFunclet(); 2399 2400 /// getTerminateHandler - Return a handler (not a landing pad, just 2401 /// a catch handler) that just calls terminate. This is used when 2402 /// a terminate scope encloses a try. 2403 llvm::BasicBlock *getTerminateHandler(); 2404 2405 llvm::Type *ConvertTypeForMem(QualType T); 2406 llvm::Type *ConvertType(QualType T); 2407 llvm::Type *ConvertType(const TypeDecl *T) { 2408 return ConvertType(getContext().getTypeDeclType(T)); 2409 } 2410 2411 /// LoadObjCSelf - Load the value of self. This function is only valid while 2412 /// generating code for an Objective-C method. 2413 llvm::Value *LoadObjCSelf(); 2414 2415 /// TypeOfSelfObject - Return type of object that this self represents. 2416 QualType TypeOfSelfObject(); 2417 2418 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2419 static TypeEvaluationKind getEvaluationKind(QualType T); 2420 2421 static bool hasScalarEvaluationKind(QualType T) { 2422 return getEvaluationKind(T) == TEK_Scalar; 2423 } 2424 2425 static bool hasAggregateEvaluationKind(QualType T) { 2426 return getEvaluationKind(T) == TEK_Aggregate; 2427 } 2428 2429 /// createBasicBlock - Create an LLVM basic block. 2430 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2431 llvm::Function *parent = nullptr, 2432 llvm::BasicBlock *before = nullptr) { 2433 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2434 } 2435 2436 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2437 /// label maps to. 2438 JumpDest getJumpDestForLabel(const LabelDecl *S); 2439 2440 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2441 /// another basic block, simplify it. This assumes that no other code could 2442 /// potentially reference the basic block. 2443 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2444 2445 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2446 /// adding a fall-through branch from the current insert block if 2447 /// necessary. It is legal to call this function even if there is no current 2448 /// insertion point. 2449 /// 2450 /// IsFinished - If true, indicates that the caller has finished emitting 2451 /// branches to the given block and does not expect to emit code into it. This 2452 /// means the block can be ignored if it is unreachable. 2453 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2454 2455 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2456 /// near its uses, and leave the insertion point in it. 2457 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2458 2459 /// EmitBranch - Emit a branch to the specified basic block from the current 2460 /// insert block, taking care to avoid creation of branches from dummy 2461 /// blocks. It is legal to call this function even if there is no current 2462 /// insertion point. 2463 /// 2464 /// This function clears the current insertion point. The caller should follow 2465 /// calls to this function with calls to Emit*Block prior to generation new 2466 /// code. 2467 void EmitBranch(llvm::BasicBlock *Block); 2468 2469 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2470 /// indicates that the current code being emitted is unreachable. 2471 bool HaveInsertPoint() const { 2472 return Builder.GetInsertBlock() != nullptr; 2473 } 2474 2475 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2476 /// emitted IR has a place to go. Note that by definition, if this function 2477 /// creates a block then that block is unreachable; callers may do better to 2478 /// detect when no insertion point is defined and simply skip IR generation. 2479 void EnsureInsertPoint() { 2480 if (!HaveInsertPoint()) 2481 EmitBlock(createBasicBlock()); 2482 } 2483 2484 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2485 /// specified stmt yet. 2486 void ErrorUnsupported(const Stmt *S, const char *Type); 2487 2488 //===--------------------------------------------------------------------===// 2489 // Helpers 2490 //===--------------------------------------------------------------------===// 2491 2492 LValue MakeAddrLValue(Address Addr, QualType T, 2493 AlignmentSource Source = AlignmentSource::Type) { 2494 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2495 CGM.getTBAAAccessInfo(T)); 2496 } 2497 2498 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2499 TBAAAccessInfo TBAAInfo) { 2500 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2501 } 2502 2503 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2504 AlignmentSource Source = AlignmentSource::Type) { 2505 Address Addr(V, ConvertTypeForMem(T), Alignment); 2506 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2507 CGM.getTBAAAccessInfo(T)); 2508 } 2509 2510 LValue 2511 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2512 AlignmentSource Source = AlignmentSource::Type) { 2513 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2514 TBAAAccessInfo()); 2515 } 2516 2517 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2518 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2519 2520 Address EmitLoadOfReference(LValue RefLVal, 2521 LValueBaseInfo *PointeeBaseInfo = nullptr, 2522 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2523 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2524 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2525 AlignmentSource Source = 2526 AlignmentSource::Type) { 2527 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2528 CGM.getTBAAAccessInfo(RefTy)); 2529 return EmitLoadOfReferenceLValue(RefLVal); 2530 } 2531 2532 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2533 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2534 /// it is loaded from. 2535 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2536 LValueBaseInfo *BaseInfo = nullptr, 2537 TBAAAccessInfo *TBAAInfo = nullptr); 2538 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2539 2540 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2541 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2542 /// insertion point of the builder. The caller is responsible for setting an 2543 /// appropriate alignment on 2544 /// the alloca. 2545 /// 2546 /// \p ArraySize is the number of array elements to be allocated if it 2547 /// is not nullptr. 2548 /// 2549 /// LangAS::Default is the address space of pointers to local variables and 2550 /// temporaries, as exposed in the source language. In certain 2551 /// configurations, this is not the same as the alloca address space, and a 2552 /// cast is needed to lift the pointer from the alloca AS into 2553 /// LangAS::Default. This can happen when the target uses a restricted 2554 /// address space for the stack but the source language requires 2555 /// LangAS::Default to be a generic address space. The latter condition is 2556 /// common for most programming languages; OpenCL is an exception in that 2557 /// LangAS::Default is the private address space, which naturally maps 2558 /// to the stack. 2559 /// 2560 /// Because the address of a temporary is often exposed to the program in 2561 /// various ways, this function will perform the cast. The original alloca 2562 /// instruction is returned through \p Alloca if it is not nullptr. 2563 /// 2564 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2565 /// more efficient if the caller knows that the address will not be exposed. 2566 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2567 llvm::Value *ArraySize = nullptr); 2568 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2569 const Twine &Name = "tmp", 2570 llvm::Value *ArraySize = nullptr, 2571 Address *Alloca = nullptr); 2572 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2573 const Twine &Name = "tmp", 2574 llvm::Value *ArraySize = nullptr); 2575 2576 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2577 /// default ABI alignment of the given LLVM type. 2578 /// 2579 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2580 /// any given AST type that happens to have been lowered to the 2581 /// given IR type. This should only ever be used for function-local, 2582 /// IR-driven manipulations like saving and restoring a value. Do 2583 /// not hand this address off to arbitrary IRGen routines, and especially 2584 /// do not pass it as an argument to a function that might expect a 2585 /// properly ABI-aligned value. 2586 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2587 const Twine &Name = "tmp"); 2588 2589 /// CreateIRTemp - Create a temporary IR object of the given type, with 2590 /// appropriate alignment. This routine should only be used when an temporary 2591 /// value needs to be stored into an alloca (for example, to avoid explicit 2592 /// PHI construction), but the type is the IR type, not the type appropriate 2593 /// for storing in memory. 2594 /// 2595 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2596 /// ConvertType instead of ConvertTypeForMem. 2597 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2598 2599 /// CreateMemTemp - Create a temporary memory object of the given type, with 2600 /// appropriate alignmen and cast it to the default address space. Returns 2601 /// the original alloca instruction by \p Alloca if it is not nullptr. 2602 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2603 Address *Alloca = nullptr); 2604 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2605 Address *Alloca = nullptr); 2606 2607 /// CreateMemTemp - Create a temporary memory object of the given type, with 2608 /// appropriate alignmen without casting it to the default address space. 2609 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2610 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2611 const Twine &Name = "tmp"); 2612 2613 /// CreateAggTemp - Create a temporary memory object for the given 2614 /// aggregate type. 2615 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2616 Address *Alloca = nullptr) { 2617 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2618 T.getQualifiers(), 2619 AggValueSlot::IsNotDestructed, 2620 AggValueSlot::DoesNotNeedGCBarriers, 2621 AggValueSlot::IsNotAliased, 2622 AggValueSlot::DoesNotOverlap); 2623 } 2624 2625 /// Emit a cast to void* in the appropriate address space. 2626 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2627 2628 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2629 /// expression and compare the result against zero, returning an Int1Ty value. 2630 llvm::Value *EvaluateExprAsBool(const Expr *E); 2631 2632 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2633 void EmitIgnoredExpr(const Expr *E); 2634 2635 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2636 /// any type. The result is returned as an RValue struct. If this is an 2637 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2638 /// the result should be returned. 2639 /// 2640 /// \param ignoreResult True if the resulting value isn't used. 2641 RValue EmitAnyExpr(const Expr *E, 2642 AggValueSlot aggSlot = AggValueSlot::ignored(), 2643 bool ignoreResult = false); 2644 2645 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2646 // or the value of the expression, depending on how va_list is defined. 2647 Address EmitVAListRef(const Expr *E); 2648 2649 /// Emit a "reference" to a __builtin_ms_va_list; this is 2650 /// always the value of the expression, because a __builtin_ms_va_list is a 2651 /// pointer to a char. 2652 Address EmitMSVAListRef(const Expr *E); 2653 2654 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2655 /// always be accessible even if no aggregate location is provided. 2656 RValue EmitAnyExprToTemp(const Expr *E); 2657 2658 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2659 /// arbitrary expression into the given memory location. 2660 void EmitAnyExprToMem(const Expr *E, Address Location, 2661 Qualifiers Quals, bool IsInitializer); 2662 2663 void EmitAnyExprToExn(const Expr *E, Address Addr); 2664 2665 /// EmitExprAsInit - Emits the code necessary to initialize a 2666 /// location in memory with the given initializer. 2667 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2668 bool capturedByInit); 2669 2670 /// hasVolatileMember - returns true if aggregate type has a volatile 2671 /// member. 2672 bool hasVolatileMember(QualType T) { 2673 if (const RecordType *RT = T->getAs<RecordType>()) { 2674 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2675 return RD->hasVolatileMember(); 2676 } 2677 return false; 2678 } 2679 2680 /// Determine whether a return value slot may overlap some other object. 2681 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2682 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2683 // class subobjects. These cases may need to be revisited depending on the 2684 // resolution of the relevant core issue. 2685 return AggValueSlot::DoesNotOverlap; 2686 } 2687 2688 /// Determine whether a field initialization may overlap some other object. 2689 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2690 2691 /// Determine whether a base class initialization may overlap some other 2692 /// object. 2693 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2694 const CXXRecordDecl *BaseRD, 2695 bool IsVirtual); 2696 2697 /// Emit an aggregate assignment. 2698 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2699 bool IsVolatile = hasVolatileMember(EltTy); 2700 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2701 } 2702 2703 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2704 AggValueSlot::Overlap_t MayOverlap) { 2705 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2706 } 2707 2708 /// EmitAggregateCopy - Emit an aggregate copy. 2709 /// 2710 /// \param isVolatile \c true iff either the source or the destination is 2711 /// volatile. 2712 /// \param MayOverlap Whether the tail padding of the destination might be 2713 /// occupied by some other object. More efficient code can often be 2714 /// generated if not. 2715 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2716 AggValueSlot::Overlap_t MayOverlap, 2717 bool isVolatile = false); 2718 2719 /// GetAddrOfLocalVar - Return the address of a local variable. 2720 Address GetAddrOfLocalVar(const VarDecl *VD) { 2721 auto it = LocalDeclMap.find(VD); 2722 assert(it != LocalDeclMap.end() && 2723 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2724 return it->second; 2725 } 2726 2727 /// Given an opaque value expression, return its LValue mapping if it exists, 2728 /// otherwise create one. 2729 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2730 2731 /// Given an opaque value expression, return its RValue mapping if it exists, 2732 /// otherwise create one. 2733 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2734 2735 /// Get the index of the current ArrayInitLoopExpr, if any. 2736 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2737 2738 /// getAccessedFieldNo - Given an encoded value and a result number, return 2739 /// the input field number being accessed. 2740 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2741 2742 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2743 llvm::BasicBlock *GetIndirectGotoBlock(); 2744 2745 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2746 static bool IsWrappedCXXThis(const Expr *E); 2747 2748 /// EmitNullInitialization - Generate code to set a value of the given type to 2749 /// null, If the type contains data member pointers, they will be initialized 2750 /// to -1 in accordance with the Itanium C++ ABI. 2751 void EmitNullInitialization(Address DestPtr, QualType Ty); 2752 2753 /// Emits a call to an LLVM variable-argument intrinsic, either 2754 /// \c llvm.va_start or \c llvm.va_end. 2755 /// \param ArgValue A reference to the \c va_list as emitted by either 2756 /// \c EmitVAListRef or \c EmitMSVAListRef. 2757 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2758 /// calls \c llvm.va_end. 2759 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2760 2761 /// Generate code to get an argument from the passed in pointer 2762 /// and update it accordingly. 2763 /// \param VE The \c VAArgExpr for which to generate code. 2764 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2765 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2766 /// \returns A pointer to the argument. 2767 // FIXME: We should be able to get rid of this method and use the va_arg 2768 // instruction in LLVM instead once it works well enough. 2769 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2770 2771 /// emitArrayLength - Compute the length of an array, even if it's a 2772 /// VLA, and drill down to the base element type. 2773 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2774 QualType &baseType, 2775 Address &addr); 2776 2777 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2778 /// the given variably-modified type and store them in the VLASizeMap. 2779 /// 2780 /// This function can be called with a null (unreachable) insert point. 2781 void EmitVariablyModifiedType(QualType Ty); 2782 2783 struct VlaSizePair { 2784 llvm::Value *NumElts; 2785 QualType Type; 2786 2787 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2788 }; 2789 2790 /// Return the number of elements for a single dimension 2791 /// for the given array type. 2792 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2793 VlaSizePair getVLAElements1D(QualType vla); 2794 2795 /// Returns an LLVM value that corresponds to the size, 2796 /// in non-variably-sized elements, of a variable length array type, 2797 /// plus that largest non-variably-sized element type. Assumes that 2798 /// the type has already been emitted with EmitVariablyModifiedType. 2799 VlaSizePair getVLASize(const VariableArrayType *vla); 2800 VlaSizePair getVLASize(QualType vla); 2801 2802 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2803 /// generating code for an C++ member function. 2804 llvm::Value *LoadCXXThis() { 2805 assert(CXXThisValue && "no 'this' value for this function"); 2806 return CXXThisValue; 2807 } 2808 Address LoadCXXThisAddress(); 2809 2810 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2811 /// virtual bases. 2812 // FIXME: Every place that calls LoadCXXVTT is something 2813 // that needs to be abstracted properly. 2814 llvm::Value *LoadCXXVTT() { 2815 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2816 return CXXStructorImplicitParamValue; 2817 } 2818 2819 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2820 /// complete class to the given direct base. 2821 Address 2822 GetAddressOfDirectBaseInCompleteClass(Address Value, 2823 const CXXRecordDecl *Derived, 2824 const CXXRecordDecl *Base, 2825 bool BaseIsVirtual); 2826 2827 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2828 2829 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2830 /// load of 'this' and returns address of the base class. 2831 Address GetAddressOfBaseClass(Address Value, 2832 const CXXRecordDecl *Derived, 2833 CastExpr::path_const_iterator PathBegin, 2834 CastExpr::path_const_iterator PathEnd, 2835 bool NullCheckValue, SourceLocation Loc); 2836 2837 Address GetAddressOfDerivedClass(Address Value, 2838 const CXXRecordDecl *Derived, 2839 CastExpr::path_const_iterator PathBegin, 2840 CastExpr::path_const_iterator PathEnd, 2841 bool NullCheckValue); 2842 2843 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2844 /// base constructor/destructor with virtual bases. 2845 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2846 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2847 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2848 bool Delegating); 2849 2850 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2851 CXXCtorType CtorType, 2852 const FunctionArgList &Args, 2853 SourceLocation Loc); 2854 // It's important not to confuse this and the previous function. Delegating 2855 // constructors are the C++0x feature. The constructor delegate optimization 2856 // is used to reduce duplication in the base and complete consturctors where 2857 // they are substantially the same. 2858 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2859 const FunctionArgList &Args); 2860 2861 /// Emit a call to an inheriting constructor (that is, one that invokes a 2862 /// constructor inherited from a base class) by inlining its definition. This 2863 /// is necessary if the ABI does not support forwarding the arguments to the 2864 /// base class constructor (because they're variadic or similar). 2865 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2866 CXXCtorType CtorType, 2867 bool ForVirtualBase, 2868 bool Delegating, 2869 CallArgList &Args); 2870 2871 /// Emit a call to a constructor inherited from a base class, passing the 2872 /// current constructor's arguments along unmodified (without even making 2873 /// a copy). 2874 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2875 bool ForVirtualBase, Address This, 2876 bool InheritedFromVBase, 2877 const CXXInheritedCtorInitExpr *E); 2878 2879 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2880 bool ForVirtualBase, bool Delegating, 2881 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2882 2883 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2884 bool ForVirtualBase, bool Delegating, 2885 Address This, CallArgList &Args, 2886 AggValueSlot::Overlap_t Overlap, 2887 SourceLocation Loc, bool NewPointerIsChecked); 2888 2889 /// Emit assumption load for all bases. Requires to be be called only on 2890 /// most-derived class and not under construction of the object. 2891 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2892 2893 /// Emit assumption that vptr load == global vtable. 2894 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2895 2896 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2897 Address This, Address Src, 2898 const CXXConstructExpr *E); 2899 2900 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2901 const ArrayType *ArrayTy, 2902 Address ArrayPtr, 2903 const CXXConstructExpr *E, 2904 bool NewPointerIsChecked, 2905 bool ZeroInitialization = false); 2906 2907 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2908 llvm::Value *NumElements, 2909 Address ArrayPtr, 2910 const CXXConstructExpr *E, 2911 bool NewPointerIsChecked, 2912 bool ZeroInitialization = false); 2913 2914 static Destroyer destroyCXXObject; 2915 2916 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2917 bool ForVirtualBase, bool Delegating, Address This, 2918 QualType ThisTy); 2919 2920 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2921 llvm::Type *ElementTy, Address NewPtr, 2922 llvm::Value *NumElements, 2923 llvm::Value *AllocSizeWithoutCookie); 2924 2925 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2926 Address Ptr); 2927 2928 void EmitSehCppScopeBegin(); 2929 void EmitSehCppScopeEnd(); 2930 void EmitSehTryScopeBegin(); 2931 void EmitSehTryScopeEnd(); 2932 2933 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2934 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2935 2936 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2937 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2938 2939 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2940 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2941 CharUnits CookieSize = CharUnits()); 2942 2943 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2944 const CallExpr *TheCallExpr, bool IsDelete); 2945 2946 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2947 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2948 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2949 2950 /// Situations in which we might emit a check for the suitability of a 2951 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2952 /// compiler-rt. 2953 enum TypeCheckKind { 2954 /// Checking the operand of a load. Must be suitably sized and aligned. 2955 TCK_Load, 2956 /// Checking the destination of a store. Must be suitably sized and aligned. 2957 TCK_Store, 2958 /// Checking the bound value in a reference binding. Must be suitably sized 2959 /// and aligned, but is not required to refer to an object (until the 2960 /// reference is used), per core issue 453. 2961 TCK_ReferenceBinding, 2962 /// Checking the object expression in a non-static data member access. Must 2963 /// be an object within its lifetime. 2964 TCK_MemberAccess, 2965 /// Checking the 'this' pointer for a call to a non-static member function. 2966 /// Must be an object within its lifetime. 2967 TCK_MemberCall, 2968 /// Checking the 'this' pointer for a constructor call. 2969 TCK_ConstructorCall, 2970 /// Checking the operand of a static_cast to a derived pointer type. Must be 2971 /// null or an object within its lifetime. 2972 TCK_DowncastPointer, 2973 /// Checking the operand of a static_cast to a derived reference type. Must 2974 /// be an object within its lifetime. 2975 TCK_DowncastReference, 2976 /// Checking the operand of a cast to a base object. Must be suitably sized 2977 /// and aligned. 2978 TCK_Upcast, 2979 /// Checking the operand of a cast to a virtual base object. Must be an 2980 /// object within its lifetime. 2981 TCK_UpcastToVirtualBase, 2982 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2983 TCK_NonnullAssign, 2984 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2985 /// null or an object within its lifetime. 2986 TCK_DynamicOperation 2987 }; 2988 2989 /// Determine whether the pointer type check \p TCK permits null pointers. 2990 static bool isNullPointerAllowed(TypeCheckKind TCK); 2991 2992 /// Determine whether the pointer type check \p TCK requires a vptr check. 2993 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2994 2995 /// Whether any type-checking sanitizers are enabled. If \c false, 2996 /// calls to EmitTypeCheck can be skipped. 2997 bool sanitizePerformTypeCheck() const; 2998 2999 /// Emit a check that \p V is the address of storage of the 3000 /// appropriate size and alignment for an object of type \p Type 3001 /// (or if ArraySize is provided, for an array of that bound). 3002 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3003 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3004 SanitizerSet SkippedChecks = SanitizerSet(), 3005 llvm::Value *ArraySize = nullptr); 3006 3007 /// Emit a check that \p Base points into an array object, which 3008 /// we can access at index \p Index. \p Accessed should be \c false if we 3009 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3010 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3011 QualType IndexType, bool Accessed); 3012 3013 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3014 bool isInc, bool isPre); 3015 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3016 bool isInc, bool isPre); 3017 3018 /// Converts Location to a DebugLoc, if debug information is enabled. 3019 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3020 3021 /// Get the record field index as represented in debug info. 3022 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3023 3024 3025 //===--------------------------------------------------------------------===// 3026 // Declaration Emission 3027 //===--------------------------------------------------------------------===// 3028 3029 /// EmitDecl - Emit a declaration. 3030 /// 3031 /// This function can be called with a null (unreachable) insert point. 3032 void EmitDecl(const Decl &D); 3033 3034 /// EmitVarDecl - Emit a local variable declaration. 3035 /// 3036 /// This function can be called with a null (unreachable) insert point. 3037 void EmitVarDecl(const VarDecl &D); 3038 3039 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3040 bool capturedByInit); 3041 3042 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3043 llvm::Value *Address); 3044 3045 /// Determine whether the given initializer is trivial in the sense 3046 /// that it requires no code to be generated. 3047 bool isTrivialInitializer(const Expr *Init); 3048 3049 /// EmitAutoVarDecl - Emit an auto variable declaration. 3050 /// 3051 /// This function can be called with a null (unreachable) insert point. 3052 void EmitAutoVarDecl(const VarDecl &D); 3053 3054 class AutoVarEmission { 3055 friend class CodeGenFunction; 3056 3057 const VarDecl *Variable; 3058 3059 /// The address of the alloca for languages with explicit address space 3060 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3061 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3062 /// as a global constant. 3063 Address Addr; 3064 3065 llvm::Value *NRVOFlag; 3066 3067 /// True if the variable is a __block variable that is captured by an 3068 /// escaping block. 3069 bool IsEscapingByRef; 3070 3071 /// True if the variable is of aggregate type and has a constant 3072 /// initializer. 3073 bool IsConstantAggregate; 3074 3075 /// Non-null if we should use lifetime annotations. 3076 llvm::Value *SizeForLifetimeMarkers; 3077 3078 /// Address with original alloca instruction. Invalid if the variable was 3079 /// emitted as a global constant. 3080 Address AllocaAddr; 3081 3082 struct Invalid {}; 3083 AutoVarEmission(Invalid) 3084 : Variable(nullptr), Addr(Address::invalid()), 3085 AllocaAddr(Address::invalid()) {} 3086 3087 AutoVarEmission(const VarDecl &variable) 3088 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3089 IsEscapingByRef(false), IsConstantAggregate(false), 3090 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3091 3092 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3093 3094 public: 3095 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3096 3097 bool useLifetimeMarkers() const { 3098 return SizeForLifetimeMarkers != nullptr; 3099 } 3100 llvm::Value *getSizeForLifetimeMarkers() const { 3101 assert(useLifetimeMarkers()); 3102 return SizeForLifetimeMarkers; 3103 } 3104 3105 /// Returns the raw, allocated address, which is not necessarily 3106 /// the address of the object itself. It is casted to default 3107 /// address space for address space agnostic languages. 3108 Address getAllocatedAddress() const { 3109 return Addr; 3110 } 3111 3112 /// Returns the address for the original alloca instruction. 3113 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3114 3115 /// Returns the address of the object within this declaration. 3116 /// Note that this does not chase the forwarding pointer for 3117 /// __block decls. 3118 Address getObjectAddress(CodeGenFunction &CGF) const { 3119 if (!IsEscapingByRef) return Addr; 3120 3121 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3122 } 3123 }; 3124 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3125 void EmitAutoVarInit(const AutoVarEmission &emission); 3126 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3127 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3128 QualType::DestructionKind dtorKind); 3129 3130 /// Emits the alloca and debug information for the size expressions for each 3131 /// dimension of an array. It registers the association of its (1-dimensional) 3132 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3133 /// reference this node when creating the DISubrange object to describe the 3134 /// array types. 3135 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3136 const VarDecl &D, 3137 bool EmitDebugInfo); 3138 3139 void EmitStaticVarDecl(const VarDecl &D, 3140 llvm::GlobalValue::LinkageTypes Linkage); 3141 3142 class ParamValue { 3143 llvm::Value *Value; 3144 llvm::Type *ElementType; 3145 unsigned Alignment; 3146 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3147 : Value(V), ElementType(T), Alignment(A) {} 3148 public: 3149 static ParamValue forDirect(llvm::Value *value) { 3150 return ParamValue(value, nullptr, 0); 3151 } 3152 static ParamValue forIndirect(Address addr) { 3153 assert(!addr.getAlignment().isZero()); 3154 return ParamValue(addr.getPointer(), addr.getElementType(), 3155 addr.getAlignment().getQuantity()); 3156 } 3157 3158 bool isIndirect() const { return Alignment != 0; } 3159 llvm::Value *getAnyValue() const { return Value; } 3160 3161 llvm::Value *getDirectValue() const { 3162 assert(!isIndirect()); 3163 return Value; 3164 } 3165 3166 Address getIndirectAddress() const { 3167 assert(isIndirect()); 3168 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment)); 3169 } 3170 }; 3171 3172 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3173 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3174 3175 /// protectFromPeepholes - Protect a value that we're intending to 3176 /// store to the side, but which will probably be used later, from 3177 /// aggressive peepholing optimizations that might delete it. 3178 /// 3179 /// Pass the result to unprotectFromPeepholes to declare that 3180 /// protection is no longer required. 3181 /// 3182 /// There's no particular reason why this shouldn't apply to 3183 /// l-values, it's just that no existing peepholes work on pointers. 3184 PeepholeProtection protectFromPeepholes(RValue rvalue); 3185 void unprotectFromPeepholes(PeepholeProtection protection); 3186 3187 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3188 SourceLocation Loc, 3189 SourceLocation AssumptionLoc, 3190 llvm::Value *Alignment, 3191 llvm::Value *OffsetValue, 3192 llvm::Value *TheCheck, 3193 llvm::Instruction *Assumption); 3194 3195 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3196 SourceLocation Loc, SourceLocation AssumptionLoc, 3197 llvm::Value *Alignment, 3198 llvm::Value *OffsetValue = nullptr); 3199 3200 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3201 SourceLocation AssumptionLoc, 3202 llvm::Value *Alignment, 3203 llvm::Value *OffsetValue = nullptr); 3204 3205 //===--------------------------------------------------------------------===// 3206 // Statement Emission 3207 //===--------------------------------------------------------------------===// 3208 3209 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3210 void EmitStopPoint(const Stmt *S); 3211 3212 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3213 /// this function even if there is no current insertion point. 3214 /// 3215 /// This function may clear the current insertion point; callers should use 3216 /// EnsureInsertPoint if they wish to subsequently generate code without first 3217 /// calling EmitBlock, EmitBranch, or EmitStmt. 3218 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3219 3220 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3221 /// necessarily require an insertion point or debug information; typically 3222 /// because the statement amounts to a jump or a container of other 3223 /// statements. 3224 /// 3225 /// \return True if the statement was handled. 3226 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3227 3228 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3229 AggValueSlot AVS = AggValueSlot::ignored()); 3230 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3231 bool GetLast = false, 3232 AggValueSlot AVS = 3233 AggValueSlot::ignored()); 3234 3235 /// EmitLabel - Emit the block for the given label. It is legal to call this 3236 /// function even if there is no current insertion point. 3237 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3238 3239 void EmitLabelStmt(const LabelStmt &S); 3240 void EmitAttributedStmt(const AttributedStmt &S); 3241 void EmitGotoStmt(const GotoStmt &S); 3242 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3243 void EmitIfStmt(const IfStmt &S); 3244 3245 void EmitWhileStmt(const WhileStmt &S, 3246 ArrayRef<const Attr *> Attrs = None); 3247 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3248 void EmitForStmt(const ForStmt &S, 3249 ArrayRef<const Attr *> Attrs = None); 3250 void EmitReturnStmt(const ReturnStmt &S); 3251 void EmitDeclStmt(const DeclStmt &S); 3252 void EmitBreakStmt(const BreakStmt &S); 3253 void EmitContinueStmt(const ContinueStmt &S); 3254 void EmitSwitchStmt(const SwitchStmt &S); 3255 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3256 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3257 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3258 void EmitAsmStmt(const AsmStmt &S); 3259 3260 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3261 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3262 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3263 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3264 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3265 3266 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3267 void EmitCoreturnStmt(const CoreturnStmt &S); 3268 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3269 AggValueSlot aggSlot = AggValueSlot::ignored(), 3270 bool ignoreResult = false); 3271 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3272 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3273 AggValueSlot aggSlot = AggValueSlot::ignored(), 3274 bool ignoreResult = false); 3275 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3276 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3277 3278 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3279 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3280 3281 void EmitCXXTryStmt(const CXXTryStmt &S); 3282 void EmitSEHTryStmt(const SEHTryStmt &S); 3283 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3284 void EnterSEHTryStmt(const SEHTryStmt &S); 3285 void ExitSEHTryStmt(const SEHTryStmt &S); 3286 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3287 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3288 3289 void pushSEHCleanup(CleanupKind kind, 3290 llvm::Function *FinallyFunc); 3291 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3292 const Stmt *OutlinedStmt); 3293 3294 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3295 const SEHExceptStmt &Except); 3296 3297 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3298 const SEHFinallyStmt &Finally); 3299 3300 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3301 llvm::Value *ParentFP, 3302 llvm::Value *EntryEBP); 3303 llvm::Value *EmitSEHExceptionCode(); 3304 llvm::Value *EmitSEHExceptionInfo(); 3305 llvm::Value *EmitSEHAbnormalTermination(); 3306 3307 /// Emit simple code for OpenMP directives in Simd-only mode. 3308 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3309 3310 /// Scan the outlined statement for captures from the parent function. For 3311 /// each capture, mark the capture as escaped and emit a call to 3312 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3313 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3314 bool IsFilter); 3315 3316 /// Recovers the address of a local in a parent function. ParentVar is the 3317 /// address of the variable used in the immediate parent function. It can 3318 /// either be an alloca or a call to llvm.localrecover if there are nested 3319 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3320 /// frame. 3321 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3322 Address ParentVar, 3323 llvm::Value *ParentFP); 3324 3325 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3326 ArrayRef<const Attr *> Attrs = None); 3327 3328 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3329 class OMPCancelStackRAII { 3330 CodeGenFunction &CGF; 3331 3332 public: 3333 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3334 bool HasCancel) 3335 : CGF(CGF) { 3336 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3337 } 3338 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3339 }; 3340 3341 /// Returns calculated size of the specified type. 3342 llvm::Value *getTypeSize(QualType Ty); 3343 LValue InitCapturedStruct(const CapturedStmt &S); 3344 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3345 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3346 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3347 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3348 SourceLocation Loc); 3349 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3350 SmallVectorImpl<llvm::Value *> &CapturedVars); 3351 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3352 SourceLocation Loc); 3353 /// Perform element by element copying of arrays with type \a 3354 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3355 /// generated by \a CopyGen. 3356 /// 3357 /// \param DestAddr Address of the destination array. 3358 /// \param SrcAddr Address of the source array. 3359 /// \param OriginalType Type of destination and source arrays. 3360 /// \param CopyGen Copying procedure that copies value of single array element 3361 /// to another single array element. 3362 void EmitOMPAggregateAssign( 3363 Address DestAddr, Address SrcAddr, QualType OriginalType, 3364 const llvm::function_ref<void(Address, Address)> CopyGen); 3365 /// Emit proper copying of data from one variable to another. 3366 /// 3367 /// \param OriginalType Original type of the copied variables. 3368 /// \param DestAddr Destination address. 3369 /// \param SrcAddr Source address. 3370 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3371 /// type of the base array element). 3372 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3373 /// the base array element). 3374 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3375 /// DestVD. 3376 void EmitOMPCopy(QualType OriginalType, 3377 Address DestAddr, Address SrcAddr, 3378 const VarDecl *DestVD, const VarDecl *SrcVD, 3379 const Expr *Copy); 3380 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3381 /// \a X = \a E \a BO \a E. 3382 /// 3383 /// \param X Value to be updated. 3384 /// \param E Update value. 3385 /// \param BO Binary operation for update operation. 3386 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3387 /// expression, false otherwise. 3388 /// \param AO Atomic ordering of the generated atomic instructions. 3389 /// \param CommonGen Code generator for complex expressions that cannot be 3390 /// expressed through atomicrmw instruction. 3391 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3392 /// generated, <false, RValue::get(nullptr)> otherwise. 3393 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3394 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3395 llvm::AtomicOrdering AO, SourceLocation Loc, 3396 const llvm::function_ref<RValue(RValue)> CommonGen); 3397 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3398 OMPPrivateScope &PrivateScope); 3399 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3400 OMPPrivateScope &PrivateScope); 3401 void EmitOMPUseDevicePtrClause( 3402 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3403 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3404 void EmitOMPUseDeviceAddrClause( 3405 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3406 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3407 /// Emit code for copyin clause in \a D directive. The next code is 3408 /// generated at the start of outlined functions for directives: 3409 /// \code 3410 /// threadprivate_var1 = master_threadprivate_var1; 3411 /// operator=(threadprivate_var2, master_threadprivate_var2); 3412 /// ... 3413 /// __kmpc_barrier(&loc, global_tid); 3414 /// \endcode 3415 /// 3416 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3417 /// \returns true if at least one copyin variable is found, false otherwise. 3418 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3419 /// Emit initial code for lastprivate variables. If some variable is 3420 /// not also firstprivate, then the default initialization is used. Otherwise 3421 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3422 /// method. 3423 /// 3424 /// \param D Directive that may have 'lastprivate' directives. 3425 /// \param PrivateScope Private scope for capturing lastprivate variables for 3426 /// proper codegen in internal captured statement. 3427 /// 3428 /// \returns true if there is at least one lastprivate variable, false 3429 /// otherwise. 3430 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3431 OMPPrivateScope &PrivateScope); 3432 /// Emit final copying of lastprivate values to original variables at 3433 /// the end of the worksharing or simd directive. 3434 /// 3435 /// \param D Directive that has at least one 'lastprivate' directives. 3436 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3437 /// it is the last iteration of the loop code in associated directive, or to 3438 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3439 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3440 bool NoFinals, 3441 llvm::Value *IsLastIterCond = nullptr); 3442 /// Emit initial code for linear clauses. 3443 void EmitOMPLinearClause(const OMPLoopDirective &D, 3444 CodeGenFunction::OMPPrivateScope &PrivateScope); 3445 /// Emit final code for linear clauses. 3446 /// \param CondGen Optional conditional code for final part of codegen for 3447 /// linear clause. 3448 void EmitOMPLinearClauseFinal( 3449 const OMPLoopDirective &D, 3450 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3451 /// Emit initial code for reduction variables. Creates reduction copies 3452 /// and initializes them with the values according to OpenMP standard. 3453 /// 3454 /// \param D Directive (possibly) with the 'reduction' clause. 3455 /// \param PrivateScope Private scope for capturing reduction variables for 3456 /// proper codegen in internal captured statement. 3457 /// 3458 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3459 OMPPrivateScope &PrivateScope, 3460 bool ForInscan = false); 3461 /// Emit final update of reduction values to original variables at 3462 /// the end of the directive. 3463 /// 3464 /// \param D Directive that has at least one 'reduction' directives. 3465 /// \param ReductionKind The kind of reduction to perform. 3466 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3467 const OpenMPDirectiveKind ReductionKind); 3468 /// Emit initial code for linear variables. Creates private copies 3469 /// and initializes them with the values according to OpenMP standard. 3470 /// 3471 /// \param D Directive (possibly) with the 'linear' clause. 3472 /// \return true if at least one linear variable is found that should be 3473 /// initialized with the value of the original variable, false otherwise. 3474 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3475 3476 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3477 llvm::Function * /*OutlinedFn*/, 3478 const OMPTaskDataTy & /*Data*/)> 3479 TaskGenTy; 3480 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3481 const OpenMPDirectiveKind CapturedRegion, 3482 const RegionCodeGenTy &BodyGen, 3483 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3484 struct OMPTargetDataInfo { 3485 Address BasePointersArray = Address::invalid(); 3486 Address PointersArray = Address::invalid(); 3487 Address SizesArray = Address::invalid(); 3488 Address MappersArray = Address::invalid(); 3489 unsigned NumberOfTargetItems = 0; 3490 explicit OMPTargetDataInfo() = default; 3491 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3492 Address SizesArray, Address MappersArray, 3493 unsigned NumberOfTargetItems) 3494 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3495 SizesArray(SizesArray), MappersArray(MappersArray), 3496 NumberOfTargetItems(NumberOfTargetItems) {} 3497 }; 3498 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3499 const RegionCodeGenTy &BodyGen, 3500 OMPTargetDataInfo &InputInfo); 3501 3502 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3503 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3504 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3505 void EmitOMPTileDirective(const OMPTileDirective &S); 3506 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3507 void EmitOMPForDirective(const OMPForDirective &S); 3508 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3509 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3510 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3511 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3512 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3513 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3514 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3515 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3516 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3517 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3518 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3519 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3520 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3521 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3522 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3523 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3524 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3525 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3526 void EmitOMPScanDirective(const OMPScanDirective &S); 3527 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3528 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3529 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3530 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3531 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3532 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3533 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3534 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3535 void 3536 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3537 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3538 void 3539 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3540 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3541 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3542 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3543 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3544 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3545 void 3546 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3547 void EmitOMPParallelMasterTaskLoopDirective( 3548 const OMPParallelMasterTaskLoopDirective &S); 3549 void EmitOMPParallelMasterTaskLoopSimdDirective( 3550 const OMPParallelMasterTaskLoopSimdDirective &S); 3551 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3552 void EmitOMPDistributeParallelForDirective( 3553 const OMPDistributeParallelForDirective &S); 3554 void EmitOMPDistributeParallelForSimdDirective( 3555 const OMPDistributeParallelForSimdDirective &S); 3556 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3557 void EmitOMPTargetParallelForSimdDirective( 3558 const OMPTargetParallelForSimdDirective &S); 3559 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3560 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3561 void 3562 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3563 void EmitOMPTeamsDistributeParallelForSimdDirective( 3564 const OMPTeamsDistributeParallelForSimdDirective &S); 3565 void EmitOMPTeamsDistributeParallelForDirective( 3566 const OMPTeamsDistributeParallelForDirective &S); 3567 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3568 void EmitOMPTargetTeamsDistributeDirective( 3569 const OMPTargetTeamsDistributeDirective &S); 3570 void EmitOMPTargetTeamsDistributeParallelForDirective( 3571 const OMPTargetTeamsDistributeParallelForDirective &S); 3572 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3573 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3574 void EmitOMPTargetTeamsDistributeSimdDirective( 3575 const OMPTargetTeamsDistributeSimdDirective &S); 3576 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3577 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3578 3579 /// Emit device code for the target directive. 3580 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3581 StringRef ParentName, 3582 const OMPTargetDirective &S); 3583 static void 3584 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3585 const OMPTargetParallelDirective &S); 3586 /// Emit device code for the target parallel for directive. 3587 static void EmitOMPTargetParallelForDeviceFunction( 3588 CodeGenModule &CGM, StringRef ParentName, 3589 const OMPTargetParallelForDirective &S); 3590 /// Emit device code for the target parallel for simd directive. 3591 static void EmitOMPTargetParallelForSimdDeviceFunction( 3592 CodeGenModule &CGM, StringRef ParentName, 3593 const OMPTargetParallelForSimdDirective &S); 3594 /// Emit device code for the target teams directive. 3595 static void 3596 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3597 const OMPTargetTeamsDirective &S); 3598 /// Emit device code for the target teams distribute directive. 3599 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3600 CodeGenModule &CGM, StringRef ParentName, 3601 const OMPTargetTeamsDistributeDirective &S); 3602 /// Emit device code for the target teams distribute simd directive. 3603 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3604 CodeGenModule &CGM, StringRef ParentName, 3605 const OMPTargetTeamsDistributeSimdDirective &S); 3606 /// Emit device code for the target simd directive. 3607 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3608 StringRef ParentName, 3609 const OMPTargetSimdDirective &S); 3610 /// Emit device code for the target teams distribute parallel for simd 3611 /// directive. 3612 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3613 CodeGenModule &CGM, StringRef ParentName, 3614 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3615 3616 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3617 CodeGenModule &CGM, StringRef ParentName, 3618 const OMPTargetTeamsDistributeParallelForDirective &S); 3619 3620 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3621 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3622 /// future it is meant to be the number of loops expected in the loop nests 3623 /// (usually specified by the "collapse" clause) that are collapsed to a 3624 /// single loop by this function. 3625 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3626 int Depth); 3627 3628 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3629 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3630 3631 /// Emit inner loop of the worksharing/simd construct. 3632 /// 3633 /// \param S Directive, for which the inner loop must be emitted. 3634 /// \param RequiresCleanup true, if directive has some associated private 3635 /// variables. 3636 /// \param LoopCond Bollean condition for loop continuation. 3637 /// \param IncExpr Increment expression for loop control variable. 3638 /// \param BodyGen Generator for the inner body of the inner loop. 3639 /// \param PostIncGen Genrator for post-increment code (required for ordered 3640 /// loop directvies). 3641 void EmitOMPInnerLoop( 3642 const OMPExecutableDirective &S, bool RequiresCleanup, 3643 const Expr *LoopCond, const Expr *IncExpr, 3644 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3645 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3646 3647 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3648 /// Emit initial code for loop counters of loop-based directives. 3649 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3650 OMPPrivateScope &LoopScope); 3651 3652 /// Helper for the OpenMP loop directives. 3653 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3654 3655 /// Emit code for the worksharing loop-based directive. 3656 /// \return true, if this construct has any lastprivate clause, false - 3657 /// otherwise. 3658 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3659 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3660 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3661 3662 /// Emit code for the distribute loop-based directive. 3663 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3664 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3665 3666 /// Helpers for the OpenMP loop directives. 3667 void EmitOMPSimdInit(const OMPLoopDirective &D); 3668 void EmitOMPSimdFinal( 3669 const OMPLoopDirective &D, 3670 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3671 3672 /// Emits the lvalue for the expression with possibly captured variable. 3673 LValue EmitOMPSharedLValue(const Expr *E); 3674 3675 private: 3676 /// Helpers for blocks. 3677 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3678 3679 /// struct with the values to be passed to the OpenMP loop-related functions 3680 struct OMPLoopArguments { 3681 /// loop lower bound 3682 Address LB = Address::invalid(); 3683 /// loop upper bound 3684 Address UB = Address::invalid(); 3685 /// loop stride 3686 Address ST = Address::invalid(); 3687 /// isLastIteration argument for runtime functions 3688 Address IL = Address::invalid(); 3689 /// Chunk value generated by sema 3690 llvm::Value *Chunk = nullptr; 3691 /// EnsureUpperBound 3692 Expr *EUB = nullptr; 3693 /// IncrementExpression 3694 Expr *IncExpr = nullptr; 3695 /// Loop initialization 3696 Expr *Init = nullptr; 3697 /// Loop exit condition 3698 Expr *Cond = nullptr; 3699 /// Update of LB after a whole chunk has been executed 3700 Expr *NextLB = nullptr; 3701 /// Update of UB after a whole chunk has been executed 3702 Expr *NextUB = nullptr; 3703 OMPLoopArguments() = default; 3704 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3705 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3706 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3707 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3708 Expr *NextUB = nullptr) 3709 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3710 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3711 NextUB(NextUB) {} 3712 }; 3713 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3714 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3715 const OMPLoopArguments &LoopArgs, 3716 const CodeGenLoopTy &CodeGenLoop, 3717 const CodeGenOrderedTy &CodeGenOrdered); 3718 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3719 bool IsMonotonic, const OMPLoopDirective &S, 3720 OMPPrivateScope &LoopScope, bool Ordered, 3721 const OMPLoopArguments &LoopArgs, 3722 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3723 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3724 const OMPLoopDirective &S, 3725 OMPPrivateScope &LoopScope, 3726 const OMPLoopArguments &LoopArgs, 3727 const CodeGenLoopTy &CodeGenLoopContent); 3728 /// Emit code for sections directive. 3729 void EmitSections(const OMPExecutableDirective &S); 3730 3731 public: 3732 3733 //===--------------------------------------------------------------------===// 3734 // LValue Expression Emission 3735 //===--------------------------------------------------------------------===// 3736 3737 /// Create a check that a scalar RValue is non-null. 3738 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3739 3740 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3741 RValue GetUndefRValue(QualType Ty); 3742 3743 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3744 /// and issue an ErrorUnsupported style diagnostic (using the 3745 /// provided Name). 3746 RValue EmitUnsupportedRValue(const Expr *E, 3747 const char *Name); 3748 3749 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3750 /// an ErrorUnsupported style diagnostic (using the provided Name). 3751 LValue EmitUnsupportedLValue(const Expr *E, 3752 const char *Name); 3753 3754 /// EmitLValue - Emit code to compute a designator that specifies the location 3755 /// of the expression. 3756 /// 3757 /// This can return one of two things: a simple address or a bitfield 3758 /// reference. In either case, the LLVM Value* in the LValue structure is 3759 /// guaranteed to be an LLVM pointer type. 3760 /// 3761 /// If this returns a bitfield reference, nothing about the pointee type of 3762 /// the LLVM value is known: For example, it may not be a pointer to an 3763 /// integer. 3764 /// 3765 /// If this returns a normal address, and if the lvalue's C type is fixed 3766 /// size, this method guarantees that the returned pointer type will point to 3767 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3768 /// variable length type, this is not possible. 3769 /// 3770 LValue EmitLValue(const Expr *E); 3771 3772 /// Same as EmitLValue but additionally we generate checking code to 3773 /// guard against undefined behavior. This is only suitable when we know 3774 /// that the address will be used to access the object. 3775 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3776 3777 RValue convertTempToRValue(Address addr, QualType type, 3778 SourceLocation Loc); 3779 3780 void EmitAtomicInit(Expr *E, LValue lvalue); 3781 3782 bool LValueIsSuitableForInlineAtomic(LValue Src); 3783 3784 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3785 AggValueSlot Slot = AggValueSlot::ignored()); 3786 3787 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3788 llvm::AtomicOrdering AO, bool IsVolatile = false, 3789 AggValueSlot slot = AggValueSlot::ignored()); 3790 3791 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3792 3793 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3794 bool IsVolatile, bool isInit); 3795 3796 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3797 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3798 llvm::AtomicOrdering Success = 3799 llvm::AtomicOrdering::SequentiallyConsistent, 3800 llvm::AtomicOrdering Failure = 3801 llvm::AtomicOrdering::SequentiallyConsistent, 3802 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3803 3804 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3805 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3806 bool IsVolatile); 3807 3808 /// EmitToMemory - Change a scalar value from its value 3809 /// representation to its in-memory representation. 3810 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3811 3812 /// EmitFromMemory - Change a scalar value from its memory 3813 /// representation to its value representation. 3814 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3815 3816 /// Check if the scalar \p Value is within the valid range for the given 3817 /// type \p Ty. 3818 /// 3819 /// Returns true if a check is needed (even if the range is unknown). 3820 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3821 SourceLocation Loc); 3822 3823 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3824 /// care to appropriately convert from the memory representation to 3825 /// the LLVM value representation. 3826 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3827 SourceLocation Loc, 3828 AlignmentSource Source = AlignmentSource::Type, 3829 bool isNontemporal = false) { 3830 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3831 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3832 } 3833 3834 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3835 SourceLocation Loc, LValueBaseInfo BaseInfo, 3836 TBAAAccessInfo TBAAInfo, 3837 bool isNontemporal = false); 3838 3839 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3840 /// care to appropriately convert from the memory representation to 3841 /// the LLVM value representation. The l-value must be a simple 3842 /// l-value. 3843 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3844 3845 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3846 /// care to appropriately convert from the memory representation to 3847 /// the LLVM value representation. 3848 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3849 bool Volatile, QualType Ty, 3850 AlignmentSource Source = AlignmentSource::Type, 3851 bool isInit = false, bool isNontemporal = false) { 3852 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3853 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3854 } 3855 3856 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3857 bool Volatile, QualType Ty, 3858 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3859 bool isInit = false, bool isNontemporal = false); 3860 3861 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3862 /// care to appropriately convert from the memory representation to 3863 /// the LLVM value representation. The l-value must be a simple 3864 /// l-value. The isInit flag indicates whether this is an initialization. 3865 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3866 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3867 3868 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3869 /// this method emits the address of the lvalue, then loads the result as an 3870 /// rvalue, returning the rvalue. 3871 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3872 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3873 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3874 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3875 3876 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3877 /// lvalue, where both are guaranteed to the have the same type, and that type 3878 /// is 'Ty'. 3879 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3880 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3881 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3882 3883 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3884 /// as EmitStoreThroughLValue. 3885 /// 3886 /// \param Result [out] - If non-null, this will be set to a Value* for the 3887 /// bit-field contents after the store, appropriate for use as the result of 3888 /// an assignment to the bit-field. 3889 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3890 llvm::Value **Result=nullptr); 3891 3892 /// Emit an l-value for an assignment (simple or compound) of complex type. 3893 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3894 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3895 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3896 llvm::Value *&Result); 3897 3898 // Note: only available for agg return types 3899 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3900 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3901 // Note: only available for agg return types 3902 LValue EmitCallExprLValue(const CallExpr *E); 3903 // Note: only available for agg return types 3904 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3905 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3906 LValue EmitStringLiteralLValue(const StringLiteral *E); 3907 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3908 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3909 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3910 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3911 bool Accessed = false); 3912 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3913 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3914 bool IsLowerBound = true); 3915 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3916 LValue EmitMemberExpr(const MemberExpr *E); 3917 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3918 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3919 LValue EmitInitListLValue(const InitListExpr *E); 3920 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 3921 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3922 LValue EmitCastLValue(const CastExpr *E); 3923 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3924 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3925 3926 Address EmitExtVectorElementLValue(LValue V); 3927 3928 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3929 3930 Address EmitArrayToPointerDecay(const Expr *Array, 3931 LValueBaseInfo *BaseInfo = nullptr, 3932 TBAAAccessInfo *TBAAInfo = nullptr); 3933 3934 class ConstantEmission { 3935 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3936 ConstantEmission(llvm::Constant *C, bool isReference) 3937 : ValueAndIsReference(C, isReference) {} 3938 public: 3939 ConstantEmission() {} 3940 static ConstantEmission forReference(llvm::Constant *C) { 3941 return ConstantEmission(C, true); 3942 } 3943 static ConstantEmission forValue(llvm::Constant *C) { 3944 return ConstantEmission(C, false); 3945 } 3946 3947 explicit operator bool() const { 3948 return ValueAndIsReference.getOpaqueValue() != nullptr; 3949 } 3950 3951 bool isReference() const { return ValueAndIsReference.getInt(); } 3952 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3953 assert(isReference()); 3954 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3955 refExpr->getType()); 3956 } 3957 3958 llvm::Constant *getValue() const { 3959 assert(!isReference()); 3960 return ValueAndIsReference.getPointer(); 3961 } 3962 }; 3963 3964 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3965 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3966 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3967 3968 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3969 AggValueSlot slot = AggValueSlot::ignored()); 3970 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3971 3972 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3973 const ObjCIvarDecl *Ivar); 3974 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3975 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3976 3977 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3978 /// if the Field is a reference, this will return the address of the reference 3979 /// and not the address of the value stored in the reference. 3980 LValue EmitLValueForFieldInitialization(LValue Base, 3981 const FieldDecl* Field); 3982 3983 LValue EmitLValueForIvar(QualType ObjectTy, 3984 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3985 unsigned CVRQualifiers); 3986 3987 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3988 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3989 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3990 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3991 3992 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3993 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3994 LValue EmitStmtExprLValue(const StmtExpr *E); 3995 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3996 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3997 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3998 3999 //===--------------------------------------------------------------------===// 4000 // Scalar Expression Emission 4001 //===--------------------------------------------------------------------===// 4002 4003 /// EmitCall - Generate a call of the given function, expecting the given 4004 /// result type, and using the given argument list which specifies both the 4005 /// LLVM arguments and the types they were derived from. 4006 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4007 ReturnValueSlot ReturnValue, const CallArgList &Args, 4008 llvm::CallBase **callOrInvoke, bool IsMustTail, 4009 SourceLocation Loc); 4010 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4011 ReturnValueSlot ReturnValue, const CallArgList &Args, 4012 llvm::CallBase **callOrInvoke = nullptr, 4013 bool IsMustTail = false) { 4014 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4015 IsMustTail, SourceLocation()); 4016 } 4017 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4018 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4019 RValue EmitCallExpr(const CallExpr *E, 4020 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4021 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4022 CGCallee EmitCallee(const Expr *E); 4023 4024 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4025 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4026 4027 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4028 const Twine &name = ""); 4029 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4030 ArrayRef<llvm::Value *> args, 4031 const Twine &name = ""); 4032 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4033 const Twine &name = ""); 4034 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4035 ArrayRef<llvm::Value *> args, 4036 const Twine &name = ""); 4037 4038 SmallVector<llvm::OperandBundleDef, 1> 4039 getBundlesForFunclet(llvm::Value *Callee); 4040 4041 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4042 ArrayRef<llvm::Value *> Args, 4043 const Twine &Name = ""); 4044 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4045 ArrayRef<llvm::Value *> args, 4046 const Twine &name = ""); 4047 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4048 const Twine &name = ""); 4049 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4050 ArrayRef<llvm::Value *> args); 4051 4052 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4053 NestedNameSpecifier *Qual, 4054 llvm::Type *Ty); 4055 4056 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4057 CXXDtorType Type, 4058 const CXXRecordDecl *RD); 4059 4060 // Return the copy constructor name with the prefix "__copy_constructor_" 4061 // removed. 4062 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4063 CharUnits Alignment, 4064 bool IsVolatile, 4065 ASTContext &Ctx); 4066 4067 // Return the destructor name with the prefix "__destructor_" removed. 4068 static std::string getNonTrivialDestructorStr(QualType QT, 4069 CharUnits Alignment, 4070 bool IsVolatile, 4071 ASTContext &Ctx); 4072 4073 // These functions emit calls to the special functions of non-trivial C 4074 // structs. 4075 void defaultInitNonTrivialCStructVar(LValue Dst); 4076 void callCStructDefaultConstructor(LValue Dst); 4077 void callCStructDestructor(LValue Dst); 4078 void callCStructCopyConstructor(LValue Dst, LValue Src); 4079 void callCStructMoveConstructor(LValue Dst, LValue Src); 4080 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4081 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4082 4083 RValue 4084 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4085 const CGCallee &Callee, 4086 ReturnValueSlot ReturnValue, llvm::Value *This, 4087 llvm::Value *ImplicitParam, 4088 QualType ImplicitParamTy, const CallExpr *E, 4089 CallArgList *RtlArgs); 4090 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4091 llvm::Value *This, QualType ThisTy, 4092 llvm::Value *ImplicitParam, 4093 QualType ImplicitParamTy, const CallExpr *E); 4094 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4095 ReturnValueSlot ReturnValue); 4096 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4097 const CXXMethodDecl *MD, 4098 ReturnValueSlot ReturnValue, 4099 bool HasQualifier, 4100 NestedNameSpecifier *Qualifier, 4101 bool IsArrow, const Expr *Base); 4102 // Compute the object pointer. 4103 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4104 llvm::Value *memberPtr, 4105 const MemberPointerType *memberPtrType, 4106 LValueBaseInfo *BaseInfo = nullptr, 4107 TBAAAccessInfo *TBAAInfo = nullptr); 4108 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4109 ReturnValueSlot ReturnValue); 4110 4111 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4112 const CXXMethodDecl *MD, 4113 ReturnValueSlot ReturnValue); 4114 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4115 4116 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4117 ReturnValueSlot ReturnValue); 4118 4119 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4120 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4121 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4122 4123 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4124 const CallExpr *E, ReturnValueSlot ReturnValue); 4125 4126 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4127 4128 /// Emit IR for __builtin_os_log_format. 4129 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4130 4131 /// Emit IR for __builtin_is_aligned. 4132 RValue EmitBuiltinIsAligned(const CallExpr *E); 4133 /// Emit IR for __builtin_align_up/__builtin_align_down. 4134 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4135 4136 llvm::Function *generateBuiltinOSLogHelperFunction( 4137 const analyze_os_log::OSLogBufferLayout &Layout, 4138 CharUnits BufferAlignment); 4139 4140 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4141 4142 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4143 /// is unhandled by the current target. 4144 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4145 ReturnValueSlot ReturnValue); 4146 4147 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4148 const llvm::CmpInst::Predicate Fp, 4149 const llvm::CmpInst::Predicate Ip, 4150 const llvm::Twine &Name = ""); 4151 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4152 ReturnValueSlot ReturnValue, 4153 llvm::Triple::ArchType Arch); 4154 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4155 ReturnValueSlot ReturnValue, 4156 llvm::Triple::ArchType Arch); 4157 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4158 ReturnValueSlot ReturnValue, 4159 llvm::Triple::ArchType Arch); 4160 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4161 QualType RTy); 4162 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4163 QualType RTy); 4164 4165 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4166 unsigned LLVMIntrinsic, 4167 unsigned AltLLVMIntrinsic, 4168 const char *NameHint, 4169 unsigned Modifier, 4170 const CallExpr *E, 4171 SmallVectorImpl<llvm::Value *> &Ops, 4172 Address PtrOp0, Address PtrOp1, 4173 llvm::Triple::ArchType Arch); 4174 4175 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4176 unsigned Modifier, llvm::Type *ArgTy, 4177 const CallExpr *E); 4178 llvm::Value *EmitNeonCall(llvm::Function *F, 4179 SmallVectorImpl<llvm::Value*> &O, 4180 const char *name, 4181 unsigned shift = 0, bool rightshift = false); 4182 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4183 const llvm::ElementCount &Count); 4184 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4185 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4186 bool negateForRightShift); 4187 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4188 llvm::Type *Ty, bool usgn, const char *name); 4189 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4190 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4191 /// access builtin. Only required if it can't be inferred from the base 4192 /// pointer operand. 4193 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4194 4195 SmallVector<llvm::Type *, 2> 4196 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4197 ArrayRef<llvm::Value *> Ops); 4198 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4199 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4200 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4201 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4202 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4203 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4204 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4205 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4206 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4207 unsigned BuiltinID); 4208 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4209 llvm::ArrayRef<llvm::Value *> Ops, 4210 unsigned BuiltinID); 4211 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4212 llvm::ScalableVectorType *VTy); 4213 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4214 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4215 unsigned IntID); 4216 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4217 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4218 unsigned IntID); 4219 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4220 SmallVectorImpl<llvm::Value *> &Ops, 4221 unsigned BuiltinID, bool IsZExtReturn); 4222 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4223 SmallVectorImpl<llvm::Value *> &Ops, 4224 unsigned BuiltinID); 4225 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4226 SmallVectorImpl<llvm::Value *> &Ops, 4227 unsigned BuiltinID); 4228 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4229 SmallVectorImpl<llvm::Value *> &Ops, 4230 unsigned IntID); 4231 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4232 SmallVectorImpl<llvm::Value *> &Ops, 4233 unsigned IntID); 4234 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4235 SmallVectorImpl<llvm::Value *> &Ops, 4236 unsigned IntID); 4237 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4238 4239 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4240 llvm::Triple::ArchType Arch); 4241 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4242 4243 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4244 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4245 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4246 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4247 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4248 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4249 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4250 const CallExpr *E); 4251 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4252 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4253 ReturnValueSlot ReturnValue); 4254 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4255 llvm::AtomicOrdering &AO, 4256 llvm::SyncScope::ID &SSID); 4257 4258 enum class MSVCIntrin; 4259 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4260 4261 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4262 4263 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4264 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4265 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4266 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4267 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4268 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4269 const ObjCMethodDecl *MethodWithObjects); 4270 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4271 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4272 ReturnValueSlot Return = ReturnValueSlot()); 4273 4274 /// Retrieves the default cleanup kind for an ARC cleanup. 4275 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4276 CleanupKind getARCCleanupKind() { 4277 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4278 ? NormalAndEHCleanup : NormalCleanup; 4279 } 4280 4281 // ARC primitives. 4282 void EmitARCInitWeak(Address addr, llvm::Value *value); 4283 void EmitARCDestroyWeak(Address addr); 4284 llvm::Value *EmitARCLoadWeak(Address addr); 4285 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4286 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4287 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4288 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4289 void EmitARCCopyWeak(Address dst, Address src); 4290 void EmitARCMoveWeak(Address dst, Address src); 4291 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4292 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4293 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4294 bool resultIgnored); 4295 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4296 bool resultIgnored); 4297 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4298 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4299 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4300 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4301 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4302 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4303 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4304 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4305 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4306 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4307 4308 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4309 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4310 llvm::Type *returnType); 4311 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4312 4313 std::pair<LValue,llvm::Value*> 4314 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4315 std::pair<LValue,llvm::Value*> 4316 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4317 std::pair<LValue,llvm::Value*> 4318 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4319 4320 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4321 llvm::Type *returnType); 4322 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4323 llvm::Type *returnType); 4324 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4325 4326 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4327 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4328 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4329 4330 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4331 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4332 bool allowUnsafeClaim); 4333 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4334 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4335 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4336 4337 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4338 4339 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4340 4341 static Destroyer destroyARCStrongImprecise; 4342 static Destroyer destroyARCStrongPrecise; 4343 static Destroyer destroyARCWeak; 4344 static Destroyer emitARCIntrinsicUse; 4345 static Destroyer destroyNonTrivialCStruct; 4346 4347 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4348 llvm::Value *EmitObjCAutoreleasePoolPush(); 4349 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4350 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4351 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4352 4353 /// Emits a reference binding to the passed in expression. 4354 RValue EmitReferenceBindingToExpr(const Expr *E); 4355 4356 //===--------------------------------------------------------------------===// 4357 // Expression Emission 4358 //===--------------------------------------------------------------------===// 4359 4360 // Expressions are broken into three classes: scalar, complex, aggregate. 4361 4362 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4363 /// scalar type, returning the result. 4364 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4365 4366 /// Emit a conversion from the specified type to the specified destination 4367 /// type, both of which are LLVM scalar types. 4368 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4369 QualType DstTy, SourceLocation Loc); 4370 4371 /// Emit a conversion from the specified complex type to the specified 4372 /// destination type, where the destination type is an LLVM scalar type. 4373 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4374 QualType DstTy, 4375 SourceLocation Loc); 4376 4377 /// EmitAggExpr - Emit the computation of the specified expression 4378 /// of aggregate type. The result is computed into the given slot, 4379 /// which may be null to indicate that the value is not needed. 4380 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4381 4382 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4383 /// aggregate type into a temporary LValue. 4384 LValue EmitAggExprToLValue(const Expr *E); 4385 4386 /// Build all the stores needed to initialize an aggregate at Dest with the 4387 /// value Val. 4388 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4389 4390 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4391 /// make sure it survives garbage collection until this point. 4392 void EmitExtendGCLifetime(llvm::Value *object); 4393 4394 /// EmitComplexExpr - Emit the computation of the specified expression of 4395 /// complex type, returning the result. 4396 ComplexPairTy EmitComplexExpr(const Expr *E, 4397 bool IgnoreReal = false, 4398 bool IgnoreImag = false); 4399 4400 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4401 /// type and place its result into the specified l-value. 4402 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4403 4404 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4405 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4406 4407 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4408 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4409 4410 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4411 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4412 4413 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4414 /// global variable that has already been created for it. If the initializer 4415 /// has a different type than GV does, this may free GV and return a different 4416 /// one. Otherwise it just returns GV. 4417 llvm::GlobalVariable * 4418 AddInitializerToStaticVarDecl(const VarDecl &D, 4419 llvm::GlobalVariable *GV); 4420 4421 // Emit an @llvm.invariant.start call for the given memory region. 4422 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4423 4424 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4425 /// variable with global storage. 4426 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4427 bool PerformInit); 4428 4429 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4430 llvm::Constant *Addr); 4431 4432 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4433 llvm::FunctionCallee Dtor, 4434 llvm::Constant *Addr, 4435 llvm::FunctionCallee &AtExit); 4436 4437 /// Call atexit() with a function that passes the given argument to 4438 /// the given function. 4439 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4440 llvm::Constant *addr); 4441 4442 /// Call atexit() with function dtorStub. 4443 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4444 4445 /// Call unatexit() with function dtorStub. 4446 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4447 4448 /// Emit code in this function to perform a guarded variable 4449 /// initialization. Guarded initializations are used when it's not 4450 /// possible to prove that an initialization will be done exactly 4451 /// once, e.g. with a static local variable or a static data member 4452 /// of a class template. 4453 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4454 bool PerformInit); 4455 4456 enum class GuardKind { VariableGuard, TlsGuard }; 4457 4458 /// Emit a branch to select whether or not to perform guarded initialization. 4459 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4460 llvm::BasicBlock *InitBlock, 4461 llvm::BasicBlock *NoInitBlock, 4462 GuardKind Kind, const VarDecl *D); 4463 4464 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4465 /// variables. 4466 void 4467 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4468 ArrayRef<llvm::Function *> CXXThreadLocals, 4469 ConstantAddress Guard = ConstantAddress::invalid()); 4470 4471 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4472 /// variables. 4473 void GenerateCXXGlobalCleanUpFunc( 4474 llvm::Function *Fn, 4475 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4476 llvm::Constant *>> 4477 DtorsOrStermFinalizers); 4478 4479 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4480 const VarDecl *D, 4481 llvm::GlobalVariable *Addr, 4482 bool PerformInit); 4483 4484 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4485 4486 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4487 4488 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4489 4490 RValue EmitAtomicExpr(AtomicExpr *E); 4491 4492 //===--------------------------------------------------------------------===// 4493 // Annotations Emission 4494 //===--------------------------------------------------------------------===// 4495 4496 /// Emit an annotation call (intrinsic). 4497 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4498 llvm::Value *AnnotatedVal, 4499 StringRef AnnotationStr, 4500 SourceLocation Location, 4501 const AnnotateAttr *Attr); 4502 4503 /// Emit local annotations for the local variable V, declared by D. 4504 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4505 4506 /// Emit field annotations for the given field & value. Returns the 4507 /// annotation result. 4508 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4509 4510 //===--------------------------------------------------------------------===// 4511 // Internal Helpers 4512 //===--------------------------------------------------------------------===// 4513 4514 /// ContainsLabel - Return true if the statement contains a label in it. If 4515 /// this statement is not executed normally, it not containing a label means 4516 /// that we can just remove the code. 4517 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4518 4519 /// containsBreak - Return true if the statement contains a break out of it. 4520 /// If the statement (recursively) contains a switch or loop with a break 4521 /// inside of it, this is fine. 4522 static bool containsBreak(const Stmt *S); 4523 4524 /// Determine if the given statement might introduce a declaration into the 4525 /// current scope, by being a (possibly-labelled) DeclStmt. 4526 static bool mightAddDeclToScope(const Stmt *S); 4527 4528 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4529 /// to a constant, or if it does but contains a label, return false. If it 4530 /// constant folds return true and set the boolean result in Result. 4531 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4532 bool AllowLabels = false); 4533 4534 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4535 /// to a constant, or if it does but contains a label, return false. If it 4536 /// constant folds return true and set the folded value. 4537 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4538 bool AllowLabels = false); 4539 4540 /// isInstrumentedCondition - Determine whether the given condition is an 4541 /// instrumentable condition (i.e. no "&&" or "||"). 4542 static bool isInstrumentedCondition(const Expr *C); 4543 4544 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4545 /// increments a profile counter based on the semantics of the given logical 4546 /// operator opcode. This is used to instrument branch condition coverage 4547 /// for logical operators. 4548 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4549 llvm::BasicBlock *TrueBlock, 4550 llvm::BasicBlock *FalseBlock, 4551 uint64_t TrueCount = 0, 4552 Stmt::Likelihood LH = Stmt::LH_None, 4553 const Expr *CntrIdx = nullptr); 4554 4555 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4556 /// if statement) to the specified blocks. Based on the condition, this might 4557 /// try to simplify the codegen of the conditional based on the branch. 4558 /// TrueCount should be the number of times we expect the condition to 4559 /// evaluate to true based on PGO data. 4560 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4561 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4562 Stmt::Likelihood LH = Stmt::LH_None); 4563 4564 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4565 /// nonnull, if \p LHS is marked _Nonnull. 4566 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4567 4568 /// An enumeration which makes it easier to specify whether or not an 4569 /// operation is a subtraction. 4570 enum { NotSubtraction = false, IsSubtraction = true }; 4571 4572 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4573 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4574 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4575 /// \p IsSubtraction indicates whether the expression used to form the GEP 4576 /// is a subtraction. 4577 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4578 ArrayRef<llvm::Value *> IdxList, 4579 bool SignedIndices, 4580 bool IsSubtraction, 4581 SourceLocation Loc, 4582 const Twine &Name = ""); 4583 4584 /// Specifies which type of sanitizer check to apply when handling a 4585 /// particular builtin. 4586 enum BuiltinCheckKind { 4587 BCK_CTZPassedZero, 4588 BCK_CLZPassedZero, 4589 }; 4590 4591 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4592 /// enabled, a runtime check specified by \p Kind is also emitted. 4593 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4594 4595 /// Emit a description of a type in a format suitable for passing to 4596 /// a runtime sanitizer handler. 4597 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4598 4599 /// Convert a value into a format suitable for passing to a runtime 4600 /// sanitizer handler. 4601 llvm::Value *EmitCheckValue(llvm::Value *V); 4602 4603 /// Emit a description of a source location in a format suitable for 4604 /// passing to a runtime sanitizer handler. 4605 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4606 4607 /// Create a basic block that will either trap or call a handler function in 4608 /// the UBSan runtime with the provided arguments, and create a conditional 4609 /// branch to it. 4610 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4611 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4612 ArrayRef<llvm::Value *> DynamicArgs); 4613 4614 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4615 /// if Cond if false. 4616 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4617 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4618 ArrayRef<llvm::Constant *> StaticArgs); 4619 4620 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4621 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4622 void EmitUnreachable(SourceLocation Loc); 4623 4624 /// Create a basic block that will call the trap intrinsic, and emit a 4625 /// conditional branch to it, for the -ftrapv checks. 4626 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4627 4628 /// Emit a call to trap or debugtrap and attach function attribute 4629 /// "trap-func-name" if specified. 4630 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4631 4632 /// Emit a stub for the cross-DSO CFI check function. 4633 void EmitCfiCheckStub(); 4634 4635 /// Emit a cross-DSO CFI failure handling function. 4636 void EmitCfiCheckFail(); 4637 4638 /// Create a check for a function parameter that may potentially be 4639 /// declared as non-null. 4640 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4641 AbstractCallee AC, unsigned ParmNum); 4642 4643 /// EmitCallArg - Emit a single call argument. 4644 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4645 4646 /// EmitDelegateCallArg - We are performing a delegate call; that 4647 /// is, the current function is delegating to another one. Produce 4648 /// a r-value suitable for passing the given parameter. 4649 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4650 SourceLocation loc); 4651 4652 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4653 /// point operation, expressed as the maximum relative error in ulp. 4654 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4655 4656 /// Set the codegen fast-math flags. 4657 void SetFastMathFlags(FPOptions FPFeatures); 4658 4659 // Truncate or extend a boolean vector to the requested number of elements. 4660 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 4661 unsigned NumElementsDst, 4662 const llvm::Twine &Name = ""); 4663 4664 private: 4665 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4666 void EmitReturnOfRValue(RValue RV, QualType Ty); 4667 4668 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4669 4670 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4671 DeferredReplacements; 4672 4673 /// Set the address of a local variable. 4674 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4675 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4676 LocalDeclMap.insert({VD, Addr}); 4677 } 4678 4679 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4680 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4681 /// 4682 /// \param AI - The first function argument of the expansion. 4683 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4684 llvm::Function::arg_iterator &AI); 4685 4686 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4687 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4688 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4689 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4690 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4691 unsigned &IRCallArgPos); 4692 4693 std::pair<llvm::Value *, llvm::Type *> 4694 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4695 std::string &ConstraintStr); 4696 4697 std::pair<llvm::Value *, llvm::Type *> 4698 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4699 QualType InputType, std::string &ConstraintStr, 4700 SourceLocation Loc); 4701 4702 /// Attempts to statically evaluate the object size of E. If that 4703 /// fails, emits code to figure the size of E out for us. This is 4704 /// pass_object_size aware. 4705 /// 4706 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4707 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4708 llvm::IntegerType *ResType, 4709 llvm::Value *EmittedE, 4710 bool IsDynamic); 4711 4712 /// Emits the size of E, as required by __builtin_object_size. This 4713 /// function is aware of pass_object_size parameters, and will act accordingly 4714 /// if E is a parameter with the pass_object_size attribute. 4715 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4716 llvm::IntegerType *ResType, 4717 llvm::Value *EmittedE, 4718 bool IsDynamic); 4719 4720 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4721 Address Loc); 4722 4723 public: 4724 enum class EvaluationOrder { 4725 ///! No language constraints on evaluation order. 4726 Default, 4727 ///! Language semantics require left-to-right evaluation. 4728 ForceLeftToRight, 4729 ///! Language semantics require right-to-left evaluation. 4730 ForceRightToLeft 4731 }; 4732 4733 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4734 // an ObjCMethodDecl. 4735 struct PrototypeWrapper { 4736 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4737 4738 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4739 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4740 }; 4741 4742 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4743 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4744 AbstractCallee AC = AbstractCallee(), 4745 unsigned ParamsToSkip = 0, 4746 EvaluationOrder Order = EvaluationOrder::Default); 4747 4748 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4749 /// emit the value and compute our best estimate of the alignment of the 4750 /// pointee. 4751 /// 4752 /// \param BaseInfo - If non-null, this will be initialized with 4753 /// information about the source of the alignment and the may-alias 4754 /// attribute. Note that this function will conservatively fall back on 4755 /// the type when it doesn't recognize the expression and may-alias will 4756 /// be set to false. 4757 /// 4758 /// One reasonable way to use this information is when there's a language 4759 /// guarantee that the pointer must be aligned to some stricter value, and 4760 /// we're simply trying to ensure that sufficiently obvious uses of under- 4761 /// aligned objects don't get miscompiled; for example, a placement new 4762 /// into the address of a local variable. In such a case, it's quite 4763 /// reasonable to just ignore the returned alignment when it isn't from an 4764 /// explicit source. 4765 Address EmitPointerWithAlignment(const Expr *Addr, 4766 LValueBaseInfo *BaseInfo = nullptr, 4767 TBAAAccessInfo *TBAAInfo = nullptr); 4768 4769 /// If \p E references a parameter with pass_object_size info or a constant 4770 /// array size modifier, emit the object size divided by the size of \p EltTy. 4771 /// Otherwise return null. 4772 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4773 4774 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4775 4776 struct MultiVersionResolverOption { 4777 llvm::Function *Function; 4778 struct Conds { 4779 StringRef Architecture; 4780 llvm::SmallVector<StringRef, 8> Features; 4781 4782 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4783 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4784 } Conditions; 4785 4786 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4787 ArrayRef<StringRef> Feats) 4788 : Function(F), Conditions(Arch, Feats) {} 4789 }; 4790 4791 // Emits the body of a multiversion function's resolver. Assumes that the 4792 // options are already sorted in the proper order, with the 'default' option 4793 // last (if it exists). 4794 void EmitMultiVersionResolver(llvm::Function *Resolver, 4795 ArrayRef<MultiVersionResolverOption> Options); 4796 4797 private: 4798 QualType getVarArgType(const Expr *Arg); 4799 4800 void EmitDeclMetadata(); 4801 4802 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4803 const AutoVarEmission &emission); 4804 4805 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4806 4807 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4808 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4809 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4810 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4811 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4812 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4813 llvm::Value *EmitX86CpuInit(); 4814 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4815 }; 4816 4817 /// TargetFeatures - This class is used to check whether the builtin function 4818 /// has the required tagert specific features. It is able to support the 4819 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4820 /// ',' is higher than that of '|' . 4821 /// E.g: 4822 /// A,B|C means the builtin function requires both A and B, or C. 4823 /// If we want the builtin function requires both A and B, or both A and C, 4824 /// there are two ways: A,B|A,C or A,(B|C). 4825 /// The FeaturesList should not contain spaces, and brackets must appear in 4826 /// pairs. 4827 class TargetFeatures { 4828 struct FeatureListStatus { 4829 bool HasFeatures; 4830 StringRef CurFeaturesList; 4831 }; 4832 4833 const llvm::StringMap<bool> &CallerFeatureMap; 4834 4835 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4836 int InParentheses = 0; 4837 bool HasFeatures = true; 4838 size_t SubexpressionStart = 0; 4839 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4840 char CurrentToken = FeatureList[i]; 4841 switch (CurrentToken) { 4842 default: 4843 break; 4844 case '(': 4845 if (InParentheses == 0) 4846 SubexpressionStart = i + 1; 4847 ++InParentheses; 4848 break; 4849 case ')': 4850 --InParentheses; 4851 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4852 LLVM_FALLTHROUGH; 4853 case '|': 4854 case ',': 4855 if (InParentheses == 0) { 4856 if (HasFeatures && i != SubexpressionStart) { 4857 StringRef F = FeatureList.slice(SubexpressionStart, i); 4858 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4859 : CallerFeatureMap.lookup(F); 4860 } 4861 SubexpressionStart = i + 1; 4862 if (CurrentToken == '|') { 4863 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4864 } 4865 } 4866 break; 4867 } 4868 } 4869 assert(InParentheses == 0 && "Parentheses are not in pair"); 4870 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4871 HasFeatures = 4872 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4873 return {HasFeatures, StringRef()}; 4874 } 4875 4876 public: 4877 bool hasRequiredFeatures(StringRef FeatureList) { 4878 FeatureListStatus FS = {false, FeatureList}; 4879 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4880 FS = getAndFeatures(FS.CurFeaturesList); 4881 return FS.HasFeatures; 4882 } 4883 4884 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4885 : CallerFeatureMap(CallerFeatureMap) {} 4886 }; 4887 4888 inline DominatingLLVMValue::saved_type 4889 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4890 if (!needsSaving(value)) return saved_type(value, false); 4891 4892 // Otherwise, we need an alloca. 4893 auto align = CharUnits::fromQuantity( 4894 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4895 Address alloca = 4896 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4897 CGF.Builder.CreateStore(value, alloca); 4898 4899 return saved_type(alloca.getPointer(), true); 4900 } 4901 4902 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4903 saved_type value) { 4904 // If the value says it wasn't saved, trust that it's still dominating. 4905 if (!value.getInt()) return value.getPointer(); 4906 4907 // Otherwise, it should be an alloca instruction, as set up in save(). 4908 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4909 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4910 alloca->getAlign()); 4911 } 4912 4913 } // end namespace CodeGen 4914 4915 // Map the LangOption for floating point exception behavior into 4916 // the corresponding enum in the IR. 4917 llvm::fp::ExceptionBehavior 4918 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4919 } // end namespace clang 4920 4921 #endif 4922